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Abstract: Background: Artificial intelligence (AI) has emerged as a revolutionary technology with 
several applications across different dental fields, including pedodontics. This systematic review 
has the objective to catalog and explore the various uses of artificial intelligence in pediatric dentis-
try. Methods: A thorough exploration of scientific databases was carried out to identify studies ad-
dressing the usage of AI in pediatric dentistry until December 2023 in the Embase, Scopus, PubMed, 
and Web of Science databases by two researchers, S.L.R. and A.L.G. Results: From a pool of 1301 
articles, only 64 met the predefined criteria and were considered for inclusion in this review. From 
the data retrieved, it was possible to provide a narrative discussion of the potential implications of 
AI in the specialized area of pediatric dentistry. The use of AI algorithms and machine learning 
techniques has shown promising results in several applications of daily dental pediatric practice, 
including the following: (1) assisting the diagnostic and recognizing processes of early signs of den-
tal pathologies, (2) enhancing orthodontic diagnosis by automating cephalometric tracing and esti-
mating growth and development, (3) assisting and educating children to develop appropriate be-
havior for dental hygiene. Conclusion: AI holds significant potential in transforming clinical prac-
tice, improving patient outcomes, and elevating the standards of care in pediatric patients. Future 
directions may involve developing cloud-based platforms for data integration and sharing, lever-
aging large datasets for improved predictive results, and expanding AI applications for the pediatric 
population. 
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1. Introduction 
Although John McCarthy introduced the term “Artificial Intelligence” (AI) in a 1956 

conference, the concept itself goes back to 1943, with a work by McCulloch and Pitts. The 
goal was to build automated devices, also called machines, capable of carrying out hu-
man-level tasks in the field of informatics and mathematics [1]. While it might be chal-
lenging to define, AI is generally understood to refer to a machine program that is able to 
think and perform cognitive activities [2,3]. AI is applied in many different fields these 
days, such as economics, video games, cellphones, healthcare, and the auto industry [4]. 
It is critical to get a solid grasp of fundamental AI terminology in order to completely 
appreciate the implications of AI on the subject of pedodontics, as reported in Table 1. 
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Table 1. Explanation of AI terminology. 

AI term Explanation 

Artificial intelligence (AI) 

The primary objective of artificial intelligence (AI) is to build intelligent computers that can learn from 
data and find solutions on their own. When machines are given new information, they may utilize statis-
tical and probabilistic approaches to learn from past examples and make better decisions. Learning, the 
process by which behavior or performance is enhanced via practice and experience, is a necessary com-
ponent of intelligent systems [5]. 
AI is being used in medicine to replace the manual standards that were previously used in machine 
learning (ML) and deep learning (DL) [6]. 

Machine learning (ML) 
Machine learning (ML) uses computers to build statistical models and algorithms that improve under-
standing and reasoning [7]. It entails training algorithms on massive datasets to identify patterns, which 
are subsequently applied to forecast or choose fresh data [8].  

Deep learning (DL) 

Deep learning (DL) is a subfield of machine learning that uses artificial neural networks to mimic how 
the human brain learns [9]. Because they are trained using a large amount of data and algorithms, they 
are more accurate [6]. Layers of tiny communication units called neurons make up an artificial neural 
network (ANN), a kind of deep learning structure. An ANN with several hidden layers is all that deep 
learning is. A subset of ANNs called convolutional neural networks (CNNs) are mostly used in general 
medicine and dentistry [7,10]. CNNs, a subclass of DL, use fully connected layers plus a subsampling 
layer that resembles a multilayer perceptron to analyze an image with visual cortex cells [11].  

Big data 
The term “big data” refers to large datasets and/or the compilation of all accessible data from many 
sources. It may be utilized to identify patterns that result in unique experiences for different individuals 
[12]. 

Artificial intelligence has quickly gained traction in science and technology. It mostly 
depends on imaging, which forms the foundation of dentistry. Furthermore, AI is very 
helpful in evaluating and tracking a patient’s health over time, comprehending the long-
term effects of medication, and foreseeing potential health risks [10,13]. Artificial intelli-
gence has the potential to replace the long hours worked by dental practitioners. Moreo-
ver, in pedodontics, its first usage was to identify cephalometric landmarks in an autom-
atized way, without human help. 

It is also conceivable to integrate healthcare for all, improve people’s health at a re-
duced cost, and deliver individualized, preventative, and predictive dentistry. AI may, 
above all, raise the bar for dental care by optimizing diagnosis efficacy and accuracy, en-
hancing treatment visualization, simulating results, and forecasting oral health and disor-
ders [7,10,13]. 

Consideration has also been given to utilizing AI models as additional tools to im-
prove the precision and accuracy of diagnostics. Artificial intelligence (AI) has found 
widespread application in the medical sciences and has demonstrated considerable suc-
cess in various aspects of patient care. This encompasses evaluating a patient’s likelihood 
of falling ill and detecting various diseases [14–16]. 

This scoping review aims to comprehensively investigate the existing body of litera-
ture concerning the integration of AI in pediatric dentistry. The focus is on delving into 
recent advancements and the transformative possibilities that this technology holds, with 
a specific emphasis on its potential to enhance dental health outcomes for children. 

2. Materials and Methods 
The present scoping review will follow the guidelines of the Joanna Briggs Institute 

(JBI) for scoping reviews and the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) extensions for scoping reviews (PRISMA-ScR) [17,18]. The pro-
tocol of this scoping review is available as Supplementary Material S1, and it is registered 
in the Open Science Framework database (https://osf.io/z6prb) from 18 June 2024. 
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2.1. Research Question 
We developed a key research question to guide our search for strategies. The answer 

to this question could be used by pediatric dentists as a reference: “What are the current 
developments and challenges in the application of artificial intelligence in pediatric den-
tistry?”. 

2.2. Eligibility Criteria 
This review selectively incorporates original research articles that delve into the ap-

plication of AI models in the realms of pediatric dentistry and pedodontics. To maintain 
focus and rigor, incomplete texts, scoping reviews, narrative reviews, case series, consen-
sus conferences, and articles written in languages other than English have all been ex-
cluded from consideration, as well as studies including adults. Moreover, there was no 
restriction on the year of publication of the studies. This meticulous approach ensures a 
thorough examination of substantive and pertinent research contributions in the specified 
field. 

2.3. Literature Sources and Search Parameters 
To assess the corpus of the current literature on the subject, a few database searches 

were carried out from July 2023 through December 2023. The development of a search 
strategy that incorporated all discovered keywords and free-standing terms was aided by 
a health sciences librarian. The Web of Science, Embase, Scopus, and PubMed databases 
were utilized. To confirm the validity of every source of evidence listed in the reference 
list, additional research was looked into. The outcomes of modifying the search approach 
for every database are shown in Supplementary Table S1. 

2.4. Data Cleaning 
2.4.1. Study Selection 

Following the acquisition of search results from every electronic database, the cita-
tions were imported into EndNote X9, a reference manager program developed by Clari-
vateTM, London, UK. Reports that were duplicates were eliminated, and articles that pro-
vided updates or preliminary findings were only assessed once. Two writers, A.L.G. and 
S.L.R., checked all of the titles and abstracts they had gathered from the databases before 
reading the full texts of any relevant studies. The eligibility of the studies was evaluated 
objectively, and any disagreements were settled after discussion with another author, G.P. 
The agreement between the reviewers was highly reliable, with a kappa value of 0.963. 

2.4.2. Data Extraction 
In order to gather the characteristics and outcomes (study design, sample size, and 

objectives) needed for the ensuing literature analysis, two authors (S.L.R. and A.L.G.) cre-
ated a data extraction form. We discussed any discrepancies with G.P., another author 
reviewer. Cohenʹs kappa statistics were employed to evaluate the degree of concurrence 
between the two authors, resulting in a value indicating high reliability, 0.963. 

2.5. Information Synthesis 
The methodology employed in reporting the findings of this study was derived from 

established frameworks delineated in prior research conducted by other scholars [14,19]. 
In order to enhance the relevance to clinical indications, the observations were systemati-
cally categorized and discussed within distinct domains. These domains were meticu-
lously structured to encompass all the pertinent data extracted from the studies incorpo-
rated in the analysis. This approach ensures a systematic and comprehensive presentation 
of the research outcomes, building upon the foundations laid by previous scholarly inves-
tigations. 
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3. Results 
3.1. Study Inclusion (Study Characteristics) 

The reviewers examined 1154 records out of the 1301 citations that the strategy 
searches had turned up after removing duplicate files. Following the first screening of 
abstracts and titles, 959 articles were deemed unacceptable. The full texts of the remaining 
195 articles were then obtained for additional review. After a comprehensive examination 
of the entire texts of those papers, 64 studies were judged to be appropriate for the review. 
The publications that were eliminated at this time are included in Supplementary Table 
S2, along with the reasons given. Figure 1 provides a summary of all study selection in-
formation. Table 2 contains details of all the included articles. 

 
Figure 1. Flow-chart of the study selection. 
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Table 2. Articles included in the review. 

Author/Year/Country/Journal Sample AI Method Type of Study Results Objective 

Ahn 2021 [20], Korea, Diagnos-
tics 

1100 patients 
SqueezeNet, ResNet-18, 
ResNet-101, and Incep-

tion-ResNet-v2 
Retrospective study 

ResNet-101 and Inception-ResNet-v2 both have scores, recall, accuracy, and 
precision greater than 90%. SqueezeNet produced outcomes that were com-

paratively worse. 

The objective of this research was to create 
and assess deep learning models that auto-
matically identify mesiodens in panoramic 
radiographs with primary or mixed denti-

tion.  

Amasya 2020 [21], Turkey, 
American Journal of Orthodontics 

and Dentofacial Orthopedics 
647 patients ANN model Retrospective study 

The ranges of intraobserver agreement were wκ = 0.92–0.98, cκ = 0.65–0.85, 
and 70.8–87.5%. The ranges of interobserver agreement were wκ = 0.76–0.92, 

cκ = 0.45–0.65, and 50–72.2%. Observers 1, 2, 3, and 4 and the ANN model 
agreed on the following values: wκ = 0.85 (cκ = 0.52, 59.7%), wκ = 0.8 (cκ = 
0.4, 50%), wκ = 0.87 (cκ = 0.55, 62.5%), and wκ = 0.91 (cκ = 0.53, 61.1%), re-

spectively (p < 0.001). The ANN model and the human observers showed an 
average agreement of 58.3%. 

The objective of this study was to create an 
artificial neural network (ANN) model for 

the analysis of cervical vertebral maturation 
(CVM) and compare the model’s output to 
observations made by human observers.  

Arik 2017 [22], USA, Journal of 
Medical Imaging (Bellingham) 

250 patients CNN Retrospective study 

The findings show good anatomical type classification accuracy (~76% aver-
age classification accuracy for test set) and excellent anatomical landmark de-
tection accuracy (~1% to 2% greater success detection rate for a 2 mm range 

compared with the top benchmarks in the literature). 

The aim of this study was to use deep convo-
lutional neural networks (CNNs) for com-

pletely automated quantitative cephalometry. 

Bag 2023 [23], Turkey, BMC 
Oral Health 

981 patients YOLOv5 Retrospective study 

A total of 14,804 labels were created, including those for the mandibular ca-
nal (1879), maxillary sinus (1922), orbit (1944), mental foramen (884), foramen 

mandible (1885), incisura mandible (1922), articular eminence (1645), and 
condylar (1733) and coronoid (990) processes. The orbit (1), incisura mandible 
(0.99), maxillary sinus (0.98), and mandibular canal (0.97) yielded the highest 

F1 scores. The orbit, maxillary sinus, mandibular canal, incisura mandible, 
and condylar process yielded the best sensitivity levels. The articular emi-
nence (0.92) and mental foramen (0.92) had the lowest sensitivity ratings. 

The aim of the research was to examine the 
efficacy and dependability of artificial intelli-
gence in identifying maxillary and mandibu-

lar anatomic components shown on pano-
ramic radiographs in children. 

Bumann 2023 [24], USA, Journal 
of Dentistry 

448 patients CNN Retrospective study 

Models that can distinguish between primary and permanent teeth (mean av-
erage precision [mAP] 95.32% and performance [F-1] 92.50%), as well as the 

dental fillings that are connected to them (mAP 91.53% and F-1 91.00%) were 
created by using these high-performance classifiers. Additionally, a brand-
new approach to cooperative learning was created that makes use of these 

two classifiers to improve recognition performance (mAP 94.09 percent and 
F-1 93.41 percent). 

The objective of this work was to create a 
novel collaborative learning model that sim-
ultaneously identified and distinguished be-
tween primary and permanent teeth as well 

as detected fillings in order to support the as-
sessment of panoramic radiographs.  

Bunyarit 2021 [25], Malaysia, 
Pediatric Dental Journal 

1569 patients ANN model Retrospective study 

An initial comparison of estimated DA based on dental maturity scores from 
Chaillet and Demirjian with known CA revealed that DA was consistently 
overestimated for all age groups, with 2.09 ± 0.90 years for Malay boys and 

2.79 ± 0.99 years for Malay girls (paired t-test, p < 0.05). An adaption utilizing 
artificial neural networks was used to create new dental maturity scores 

(NDA) that were more appropriate for the Malay individuals in order to im-
prove the age estimation. According to the paired t-test results (p > 0.05), 

The purpose of this study was to evaluate the 
applicability of the Chaillet and Demirjian-in-
troduced 8-tooth approach on Malaysian chil-

dren aged 5.00–17.99 years and to produce 
teeth maturity ratings for age estimation 

based on artificial neural networks (ANNs) 
that are more accurate.  
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there was a greater degree of accuracy in determining dental age (0.035 ± 0.84 
years for boys and 0.048 ± 0.928 years for girls). 

Caliskan 2021 [26], Turkey, In-
ternational Journal of Computer-

ized Dentistry 

 CNN Retrospective study 
When compared to the reference standard, the system’s identification and 

categorization had a high success rate. When compared to observers, the sys-
tem’s performance was incredibly accurate. 

Comparing the effectiveness and dependabil-
ity of an artificial intelligence (AI) program 
for the identification and categorization of 

submerged teeth in panoramic radiographs 
was the study’s main goal.  

Chen 2020 [27], China, Angle 
Orthodontist 60 patients LINKS Prospective study 

With an average dice ratio of 0.80 for three-dimensional image segmentations 
and a minimal mean difference of two voxels on the midsagittal plane for 

digitized landmarks between the manually identified and the machine learn-
ing-based (LINKS) methods, the maxillary structure was successfully auto-
segmented. Between the impaction ([2.37 ± 0.34] × 10−4 mm3) and nonimpac-
tion ([2.36 ± 0.35] × 10−4 mm3) sides of SG, there was no discernible variation 
in bone volume. Comparing the SG and CG maxillae, the former exhibited 

considerably lower volumes, widths, heights, and depths (p < 0.05). 

In an effort to advance therapeutically useful 
knowledge, the aim of the research was to (1) 
provide a novel machine learning technique; 
and (2) evaluate maxillary structural varia-

tion in unilateral canine impaction.  

Dong 2023 [28], China, Applied 
Intelligence 

 YOLOv3 and SOS-Net Prospective study 

With an F1 score improvement of 3.77%, the ablation trials and visual analy-
sis of SOS-Net confirmed the efficacy and interpretability of the SFC block 

and ASA loss. Furthermore, comparison trials show that the suggested meth-
odology outperforms cutting-edge techniques in maturity staging and age es-

timation. 

In this study, an automatic system for deter-
mining the whole permanent dentition’s 
tooth maturity phases was developed. 

Duman 2023 [29], Turkey, Oral 
Radiology 

434 patients CNN Retrospective study 

There were 29 false positives, 17 false negatives, and 109 genuine positives 
out of the 43 test group photos with 126 labels. The results of the taurodont 
tooth segmentation process were 0.8650, 0.7898, and 0.8257 for sensitivity, 

precision, and F1 score, respectively. 

The goal of the work was to create and assess 
an AI model based on a CNN for the diagno-
sis of taurodontism in teeth using panoramic 

radiography.  

Felsch 2023 [30], Germany, NPJ 
Digital Medicine 

18,179 images SegFormer-B5 Retrospective study 

For the fine-tuned model, the overall diagnostic performance was 0.959, 
0.977, and 0.978 in terms of IoU, AP, and ACC. The most significant caries 

classes of dentin cavities (0.692, 0.830, and 0.997) and non-cavitations (0.630, 
0.813, and 0.990) had high levels of matching data. Similar outcomes were 

seen for atypical restoration (0.829, 0.902, and 0.999) for delimited opacity as-
sociated with MIH (0.672, 0.827, and 0.993). 

The goal of this work was to create an AI-
based algorithm that can identify, categorize, 

and pinpoint MIH and caries. 

Gajic 2021 [8], Serbia, Children 374 patients CNN Retrospective study 

Both human intuition and computer algorithms arrived at the same result on 
the optimal division of respondents. Thus, it was shown that the technique 
has high quality and that there is a necessity of carrying out these kinds of 

analyses in dental research. 

This study aimed to assess the effects of den-
tal health on adolescents’ quality of life using 

both artificial intelligence algorithms and 
conventional statistical approaches. 

Gomez-Rios 2023 [31], Spain, 
BMC Oral Health 

274 patients ORIENTATE Case study 

As a case study, its application to a dataset of children with special healthcare
requirements (SHCN) who were healthy and receiving deep sedation was 

presented. The feature selection technique on the sample dataset, in spite of 
its tiny size, identified a collection of characteristics with an F1 score of 0.83 

and an ROC (AUC) of 0.92 that might predict the need for a second sedation. 
Eight predictive factors were identified and ranked according to the model’s 

significance for each of the two groups. A comparison with a traditional 

The aim of the work was to present and ex-
plain ORIENTATE, a software that enables 

clinical practitioners without specialized 
technical knowledge to automatically use ma-

chine learning classification methods.  
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study and a discussion that drew conclusions from the relevance and interac-
tion plots were also given. 

Ha 2021 [32], Korea, Scientific 
Reports 

612 patients YOLOv3  Retrospective study 

In the original photos, the accuracy of the external test dataset was 89.8%, 
while the accuracy of the internal test dataset was 96.2%. The accuracies of 

the exterior test dataset were 86.7%, 95.3%, and 86.7% for the primary, mixed, 
and permanent dentition, respectively, whereas the accuracies of the internal 
test dataset were 96.7%, 97.5%, and 93.3%. In both test datasets, the CLAHE 

images produced less accurate findings than the original photos. 

The goal of this work was to create an AI 
model that can identify mesiodens on pano-

ramic radiographs of different dentition 
groups.  

Hansa 2021 [33], South Africa, 
American Journal of Orthodontics 

and Dentofacial Orthopedics 
90 patients Dental Monitoring Prospective study 

In terms of sample size, age, gender, angle categorization, maxillary and 
mandibular irregularity index, and the number of initial aligners, the two 

groups were homogeneous (p > 0.05). In the DM group, there was a substan-
tial (p = 0.001) drop in the number of appointments, by 3.5 visits (33.1%). The 

DM group also experienced a significant (p = 0.001) decrease in the time to 
the first refinement (1.7 months). Final tooth positions were statistically (p < 
0.05) more accurate for the DM group in comparison to the Invisalign-antici-
pated positions for the maxillary anterior dentition in rotational motions and 
the mandibular anterior dentition in buccal–lingual linear movement. For the 

maxillary posterior teeth, Invisalign therapy without DM was more in line 
with anticipated tooth placements at the tip.  

The clinically relevant criteria (>0.5 mm or >2°) were not exceeded by any of 
these variations, yet the DM group did so in 1.7 fewer months.  

The results of Invisalign clear aligner therapy 
were compared for treatment length, number 

of sessions, refinements and refinement 
aligners, and Invisalign’s accuracy in achiev-
ing projected tooth positions (aligner track-
ing) with and without Dental Monitoring 

(DM). 

Hansa 2021 [34], South Africa, 
Seminars in Orthodontics 

 Artificial intelligence-
driven remote monitoring 

Case series 

A few advantages that AI-driven remote monitoring (AIRM) provides for pa-
tient care before, during, and after treatment for aligners and fixed appli-

ances are illustrated graphically in this clinical display. Surprisingly, remote 
monitoring actually helps with patient–physician communication. This al-

lows the clinician to keep a closer eye on the patient and speak with them di-
rectly as needed.  

Reviewing the clinical applicability and justi-
fication of orthodontic remote monitoring 

was the goal of this case series. 

Hwang 2020 [35], Korea, Angle 
Orthodontist  

1028 cephalo-
grams 

YOLOv3  Retrospective study 

In contrast to the human intraexaminer variability of repeated manual detec-
tions, which showed a detection error of 0.97 ± 1.03 mm, artificial intelligence 
consistently detected similar positions on each landmark after multiple trials. 

Between humans and AI, the mean detection error was 1.46 ± 2.97 mm. Be-
tween human examiners, the mean difference was 1.50 ± 1.48 mm. Less than 
0.9 mm separated the detection errors made by AI and human examiners on 

average, and this difference did not appear to be clinically significant.  

The aim of the study was to compare the de-
tection patterns of 80 cephalometric land-

marks found by an automated identification 
system (AI) with those found by human ex-

aminers. The AI was based on a recently sug-
gested deep learning technology called You-

Only-Look-Once version 3 (YOLOv3).  

Iglovikov 2018 [36], USA, bio-
Rxiv 

12,600 images CNN Retrospective study 

The accuracy was higher in region C, which is composed of the proximal 
phalanges and metacarpals, with an MAE of 8.42 months. The MAE for re-

gion A (the entire image) was 8.08 months. With an MAE of 7.52 months, the 
linear ensemble of the three regional models performed better than other 

models mentioned in the study. With very few exceptions, the geographical 
trend MAE(B) > MAE(C) > MAE(A) > MAE (ensemble) was also shown for 

various model types and patient cohorts. 

In this research, data from the 2017 Pediatric 
Bone Age Challenge, hosted by the Radiolog-
ical Society of North America, were used to 

demonstrate the applicability of a fully auto-
mated deep learning method to the problem 

of bone age assessment.  
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Karhade 2021 [37], USA, Pediat-
ric Dentistry 

6404 patients AutoML  Retrospective study 

The highest AUC (0.74), Se (0.67), and PPV (0.64) scores were obtained by a 
parsimonious model that included two terms (i.e., children’s age and parent-
reported child oral health status: excellent/very good/good/fair/poor). This 

model also performed similarly when an external National Health and Nutri-
tion Examination Survey (NHANES) dataset was used (AUC equaled 0.80, Se 

equaled 0.73, and PPV equaled 0.49). On the other hand, a comprehensive 
model with 12 factors that included dental home, fluoride exposure, oral 
health behaviors, parental education, and race/ethnicity performed worse 

(AUC equaled 0.66, Se equaled 0.54, and PPV equaled 0.61). 

The aim of the research was to design and as-
sess an automated machine learning algo-

rithm (AutoML) for the classification of chil-
dren based on the status of early childhood 

caries (ECC). 

Kaya 2022 [11], Turkey, Imaging 
Science in Dentistry 

4518 patients YOLOv4 Retrospective study 

With an average precision value of 94.16% and an F1 value of 0.90, the 
YOLOv4 model, which identified permanent tooth germs on pediatric pano-
ramic radiographs, demonstrated a high degree of relevance. 90 ms was the 

average YOLOv4 inference time. 

This study evaluated a deep learning sys-
tem’s efficacy in detecting permanent tooth 
germs on pediatric panoramic radiographs. 

Kaya 2022 [38], USA, Journal of 
Clinical and Pediatric Dentistry 

4545 patients YOLOv4 Retrospective study 

Using pediatric panoramic radiographs, the model successfully identified 
and numbered both primary and permanent teeth, with a weighted F1 score 

of 0.91, a mean average precision (mAP) value of 92.22%, and a mean average 
recall (mAR) value of 94.44%. When it came to automated tooth detection 

and numbering on pediatric panoramic radiographs, the suggested CNN ap-
proach performed well and quickly. 

The goal of this paper was to assess how well 
a deep learning system performed on pediat-

ric panoramic radiographs for automated 
tooth recognition and numbering.  

Kaya 2023 [39], USA, Interna-
tional Journal of Computerized 

Dentistry 
4821 patients YOLOv4 Retrospective study 

With high F1 values of 0.95, 0.90, and 0.76 for immature teeth, permanent 
tooth germs, and brackets, respectively, the YOLOv4 model accurately diag-
nosed these conditions. Despite the encouraging outcomes, this model has 
certain drawbacks for a few dental procedures and structures, such as fill-

ings, root canals, and extra teeth. 

This study set out to assess how well a deep 
learning software system performed in iden-
tifying and categorizing dental procedures 
and structures on pediatric patients’ pano-

ramic radiographs.  

Kilic 2021 [40], Turkey, Den-
tomaxillofacial Radiology 

421 images CNN Retrospective study 

The artificial intelligence system was able to identify and classify children’s 
deciduous teeth based on panoramic radiographs. There were high rates of 

precision and sensitivity. According to estimates, the F1 score, precision, and 
sensitivity were 0.9686, 0.9571, and 0.9804, respectively. 

This study assessed the automated identifica-
tion and tagging of children’s deciduous 

teeth as seen on panoramic radiographs us-
ing a deep learning technique.  

Kim 2021 [41], Korea, Orthodon-
tics and Craniofacial Research 

455 patients CNN Retrospective study 
Eight machine learning models made up the final ensemble model. The 
RMSE, round MAE, and MAE were, in that order, 1.20, 0.87, and 0.90. 

The aim of this study was to use cervical ver-
tebrae (CV) pictures to forecast the stages of 
hand–wrist maturation and evaluate the pre-

cision of the suggested methods. 

Kim 2022 [42], Korea, Den-
tomaxillofacial Radiology 

988 radio-
graphs 

DeepLabV3plus and In-
ception-ResNet-v2 

Comparative study 

The mean BF score was 0.907, the IoU was 0.762, and the segmentation per-
formance utilizing posterior molar space in panoramic radiographs was 
0.839. For the diagnosis of mesiodens using automatic segmentation, the 

mean values of accuracy, precision, recall, F1 score, and area under the curve 
were, respectively, 0.971, 0.971, 0.971, and 0.971.  

The goal of this research was to create and as-
sess the efficacy of a deep learning model that 
uses an automatic region of interest (ROI) set-
ting and mesiodens diagnosis in panoramic 

radiographs of developing youngsters.  

Kok 2019 [43], Turkey, Progress 
in Orthodontics 

300 patients 

k-Nearest neighbors (k-
NN), naive Bayes (NB), 

decision tree (Tree), artifi-
cial neural network 

Comparative study 

The methods with the highest accuracy in detecting cervical vertebrae stages 
were k-NN: CVS 5 (60.9%)–CVS 6 (78.7%) and SVM: CVS 3 (73.2%)–CVS 4 

(58.5%) and CVS 1 (97.1%)–CVS 2 (90.5%), according to a confusion matrices 
decision tree. With the exception of CVS 5, which had the third-highest 

The goal of this research was to compare the 
performance of these algorithms and identify 

the cervical vertebrae stages (CVSs) for 
growth and development periods using the 



Healthcare 2024, 12, 1311 20 of 33 
 

 

(ANN), support vector 
machine (SVM), random 
forest (RF), and logistic 

regression (Log.Regr.) al-
gorithms. 

accuracy value of 47.4%, the ANN algorithm was found to have the second-
highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in 
identifying all stages. The most stable algorithm was the ANN, with an aver-
age rank of 2.17, based on how well the algorithms predicted the CVS classes. 

seven most popular artificial intelligence clas-
sifiers. 

Koopaie 2021 [44], Iran, BMC 
Oral Health 

40 patients 
Human cystatin S ELISA 

kit 
Comparative study 

In the early childhood caries group, the mean salivary cystatin S concentra-
tion was 191.55 ± 81.90 (ng/mL), while in the caries-free group, it was 370.06 ± 
128.87 (ng/mL). Salivary cystatin S levels in early childhood caries and caries-
free groups differed statistically significantly (p = 0.032), according to a t-test 
study. The logistic regression model based on salivary cystatin S levels and 

birth weight showed the highest, and an acceptable, potential for differentiat-
ing early childhood caries from caries-free controls, according to an analysis 

of the area under the curve (AUC) and accuracy of the ROC curve. Moreover, 
data about salivary cystatin S levels improved the machine learning tech-

niques’ capacity to distinguish early childhood caries from controls without 
caries. 

This work used statistical analysis and ma-
chine learning techniques to evaluate salivary 

cystatin S levels and demographic infor-
mation in early childhood caries cases com-

pared to caries-free cases.  

Kunz 2020 [45], Germany, Jour-
nal of Orofacial Orthopedics 

50 patients CNN Comparative study 
The AI’s forecasts and the gold standard set by humans nearly never differed 
statistically. It appears that there are no clinically significant differences be-

tween the two analyses. 

The purpose of this study was to develop an 
artificial intelligence (AI) program specifi-
cally designed to generate an automated 

cephalometric X-ray examination. 

Kuwada 2020 [46], Japan, Oral 
Surgery, Oral Medicine, Oral Pa-

thology and Oral Radiology 
550 patients AlexNet, VGG16, and De-

tectNet 
Comparative study 

In general, DetectNet yielded the greatest diagnostic effectiveness results. By 
comparison, VGG16 produced substantially lower values than DetectNet and 
AlexNet. Recall, precision, and the F-measure for detection in the incisor re-
gion were all 1.0, indicating faultless detection, according to an evaluation of 

DetectNet’s detection capability. 

The purpose of this study was to evaluate 
and compare the efficacy of three deep learn-
ing algorithms for the classification of indi-

viduals with fully erupted incisors who have 
maxillary impacted supernumerary teeth 

(ISTs).  

Larson 2018 [47], USA, Radiol-
ogy 

200 images CNN Comparative study 

With a mean RMS and MAD of 0.63 and 0.50 years, respectively, the mean 
difference between the reviewers’ and the model’s predictions of bone age 

was zero years. The three reviewers’ estimates, the clinical report’s estimate, 
and the model’s estimate all fell within a 95% confidence interval. The RMS 

for the Digital Hand Atlas dataset was 0.73 years, as opposed to a previously 
published model’s result of 0.61 years.  

The aim of this research was to examine how 
well an automated deep learning bone age 

assessment model that uses hand radio-
graphs performed in comparison to existing 
automated models and experienced radiolo-

gists. 

Lee 2017 [48], USA, Journal of 
Digital Imaging 

1200 images ImageNet Retrospective study 

Using held-out test photos, the models obtained 57.32 and 61.40% accuracies 
for the female and male cohorts, respectively, using an ImageNet pretrained 
and fine-tuned convolutional neural network (CNN). In 1 year, 90.39% of fe-

male test radiographs had a BAA assigned, and in 2 years, 98.11% of them 
did. In one year, 94.18% of male test radiographs were allocated, and in two 

years, 99.00%. The attention maps that showed the features the trained model 
utilized for BAA were made using the input occlusion approach.  

This paper presented a fully automated deep 
learning pipeline designed to run BAA, nor-

malize and preprocess input radiographs, 
and segment a region of interest.  
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Lee 2020 [49], Korea, BMC Oral 
Health  

400 patients 
Bayesian Convolutional 

Neural Networks 
(BCNNs) 

Retrospective study 

In the 2, 3, and 4 mm range, the framework demonstrated a mean landmark 
error (LE) of 1.53 ± 1.74 mm and attained successful detection rates (SDRs) of 
82.11, 92.28, and 95.95%, respectively. In particular, the gonion, the most in-
accurate location in earlier research, almost halved its error when compared 

to the other points. Furthermore, these findings showed a noticeably im-
proved ability to recognize anatomical anomalies. The framework can help 
with clinical convenience and decision-making by offering confidence re-

gions (95%) that take uncertainty into account. 

In this work, the authors sought to create a 
novel framework that makes use of Bayesian 
Convolutional Neural Networks (BCNNs) to 
locate cephalometric landmarks with confi-

dence areas. 

Lee 2020 [50], Korea, Oral Sur-
gery, Oral Medicine, Oral Pathol-

ogy and Oral Radiology 
50 radiographs CNN Prospective study 

The suggested approach yielded a mean IoU of 0.877 and an F1 score of 0.875 
(precision: 0.858, recall: 0.893). The segmentation method’s visual inspection 

revealed a strong similarity to the actual data.  

The aim of this paper was to assess a fully 
deep learning mask region-based convolu-
tional neural network (R-CNN) technique 

that uses individual annotation of panoramic 
radiographs for automatic teeth segmenta-

tion.  

Lee 2022 [51], Korea, Scientific 
Reports  471 patients CNN Prospective study 

The AUCs achieved for classifying young ages (10–19 years old) in the pre-
diction of three age-group categories ranged from 0.85 to 0.88 for five differ-
ent machine learning models. The AUC value for adult individuals (20–49 
years old) was roughly 0.73, whereas those for the elder age group (50–69 
years old) varied from 0.82 to 0.88. With mean AUCs ranging from 0.85 to 

0.87 and 80 to 0.90, respectively, age groups 1 (10–19 years old) and 6 (60–69 
years old) had the best scores among the six age-group classifications. Based 
on LDA weights, a feature analysis revealed that the L-Pulp Area was signifi-

cant in differentiating between young people (10–49 years old), while L-
Crown, U-Crown, L-Implant, U-Implant, and periodontitis served as predic-

tors for elderly people (50–69 years). 

The objective of this research was to examine 
the correlation between 18 radiomorphomet-
ric characteristics of panoramic radiographs 

and age, and to employ five machine learning 
algorithms to accurately and non-invasively 

predict the age group of individuals with 
permanent teeth.  

Lo Giudice 2021 [52], Italy, Or-
thodontics and Craniofacial Re-

search 
40 patients CNN Retrospective study 

The ICC score of 0.937 indicated a strong correlation between the measure-
ments, and there was a technique error of 0.24 mm3. There was a 0.71 (±0.49) 
cm3 difference between the approaches, although p > 0.05 indicated that the 

difference was not statistically significant. Results of 90.35% (±1.88) (tolerance 
0.5 mm) and 96.32% (±1.97%) (tolerance 1.0 mm) matched percentages were 
found. The DSC percentage discrepancies in the assessments conducted us-

ing the two methodologies were 2.8% and 3.1%, respectively.  

The aim of this paper was to assess the effi-
cacy of a fully automated deep learning-

based technique for mandibular segmenta-
tion from CBCT images.  

Mahto 2022 [53], Nepal, BMC 
Oral Health  

30 patients WebCeph Comparative study 

The ICC value for each measurement was more than 0.75. Seven parameters 
(ANB, FMA, IMPA/L1 to MP (°), LL to E-line, L1 to NB (mm), L1 to NB (°), S-
N to Go-Gn) had ICC values greater than 0.9, while five parameters (UL to E-
line, U1 to NA (mm), SNA, SNB, and U1 to NA (°)) had ICC values between 

0.75 and 0.90. 

The aim of this study was to assess the valid-
ity and reliability of automated cephalo-

metric measurements obtained from 
“WebCeph”TM and to compare the linear and 

angular cephalometric measurements ob-
tained from the web-based fully automated 
artificial intelligence (AI)-driven platform 

with those from manual tracing. 
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Mine 2022 [2], Japan, Interna-
tional Journal of Pediatric Dentis-

try 

220 radio-
graphs 

AlexNet, VGG16-TL, and 
Inceptionv3-TL 

Comparative study 
In terms of accuracy, sensitivity, specificity, and area under the ROC curve, 
the VGG16-TL model performed best; nevertheless, the other models dis-

played comparable performance. 

The purpose of this study was to use deep 
learning based on convolutional neural net-

works (CNNs) to identify children in the 
early stages of mixed dentition who had ex-

cess teeth.  

Mladenovic 2023 [54], Serbia, 
Diagnostics 1 patient CNN Case study 

Multiple tools must be used in practice because there is currently no one tool 
that can meet all clinical needs regarding supernumerary teeth and their seg-

mentation. 

The aim of this study was to examine the pos-
sibilities, advantages, and drawbacks of arti-

ficial intelligence; the authors offered a 
highly rare instance of a youngster with nine 

extra teeth together with two commercial 
tooth segmentation technologies. 

Mohammad-Rahimi 2022 [55], 
Iran, Korean Journal of Orthodon-

tics 

890 radio-
graphs 

CNN Retrospective study 

For the six-class CVM diagnosis, the model’s validation and test accuracies 
were 62.63% and 61.62%, respectively. Furthermore, the three-class classifica-
tion’s validation and test accuracies for the model were 75.76% and 82.83%, 
respectively. Moreover, significant agreements were noted between one of 

the two orthodontists and the AI model. 

By examining lateral cephalometric radio-
graphs, a novel deep learning model for as-
sessing growth spurts and cervical vertebral 

maturation (CVM) degree was presented and 
evaluated in this work.  

Montufar 2018 [56], Mexico, 
American Journal of Orthodontics 

and Dentofacial Orthopedics 
24 patients CNN Retrospective study 

This method produced a 3.64-mm mean error in the localization of cephalo-
metric landmarks from the 3D gold standard. The porion and sella regions 
had the highest localization errors due to their limited volume definition. 

Using an active shape model to look for land-
marks in related projections, this paper pro-

posed a novel method for automatic cephalo-
metric landmark localization on three-dimen-
sional (3D) cone beam computed tomography 

(CBCT) volumes.  

Niño-Sandoval 2016 [57], Co-
lombia, Forensic Science Interna-

tional 

229 radio-
graphs 

Support vector machine  Retrospective study 

The angles Pr-A-N, N-Pr-A, A-N-Pr, A-Te-Pr, A-Pr-Rhi, Rhi-A-Pr, Pr-A-Te, 
Te-Pr-A, Zm-A-Pr, and PNS-A-Pr were used to define accuracy, which came 
out to be 74.51%. Class II and Class III were correctly distinguished from one 

another, as demonstrated by the class precision and class recall.  

The purpose of this work was to recreate the 
normal mandibular position on a modern Co-
lombian sample by using an automatic non-
parametric technology called support vector 
machines to classify skeletal patterns using 

craniomaxillary factors.  

Nishimoto 2019 [58], Japan, 
Journal of Craniofacial Surgery 

219 images CNN Prospective study 

Prediction errors were 17.02 pixels on average and 16.22 pixels on the me-
dian. In cephalometric analysis, the neural network’s predicted angles and 

lengths did not differ statistically from those derived from manually plotted 
points. 

The authors developed a deep learning neu-
ral network-based automatic landmark pre-

diction system.  

Pang 2021 [59], China, Frontiers 
in Genetics 

1055 patients CNN Prospective study 

Cohort 2 (the testing cohort) had an AUC of 0.73 for the caries risk prediction 
model, demonstrating a good degree of discrimination ability. The caries risk 
prediction algorithm was able to correctly identify people with high and very 
high caries risk, but it underestimated the risks for people with low and very 

low caries risk, according to risk stratification. 

The purpose of this work was to use a ma-
chine learning algorithm to build a new 
model for predicting teenage caries risk 

based on genetic and environmental factors. 

Park 2019 [60], Korea, Angle Or-
thodontist 

283 images 

You-Only-Look-Once 
version 3 (YOLOv3) and 
Single Shot MultiBox De-

tector (SSD) methods.  

Retrospective study 

For 38 out of 80 landmarks, the YOLOv3 algorithm performed more accu-
rately than the SSD. There was no statistically significant difference between 

YOLOv3 and SSD for the remaining 42 out of 80 markers. YOLOv3 error 
plots revealed a more isotropic trend in addition to a reduced error range. 

The aim of this paper was to evaluate two of 
the most recent deep learning algorithms for 
the automatic recognition of cephalometric 
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For YOLOv3 and SSD, the average computational times per image were 2.89 
s and 0.05 s, respectively. YOLOv3 had an accuracy that was around 5% 

greater than the best standards reported in the literature. 

landmarks in terms of accuracy and compu-
tational efficiency.  

Park 2021 [61], Korea, Interna-
tional Journal of Environmental 

Research and Public Health 
4195 patients 

XGBoost (version 1.3.1), 
random forest, and 

LightGBM (version 3.1.1) 
Comparative study 

When the misclassification rates and area under the receiver operating char-
acteristic (AUROC) values of the various models were evaluated, it was 

found that the AUROC values of the four prediction models ranged from 
0.774 to 0.785. Moreover, there was no discernible variation found in the AU-

ROC values of the four models.  

In this study, the objective was to create pre-
diction models for early childhood caries 

based on machine learning and compare their 
effectiveness with the conventional regres-

sion model.  

Portella 2023 [62], Brazil, Clini-
cal Oral Investigations 

2481 teeth VGG19 Retrospective study 

There were 8749 photos in the training dataset and 140 images in the test da-
taset. With an F1 score of 0.887, accuracy of 0.879, precision of 0.949, positive 
agreement of 0.827, and negative agreement of 0.800, VGG19 performed well. 
Examiners US, ND, and SP had accuracy rates in Phase I of 0.543, 0.771, and 
0.807, respectively. For the same examiners, the accuracy rates increased to 

0.679, 0.886, and 0.857 in Phase II. For every examiner, the proportion of right 
responses was considerably greater in Phase II compared to Phase I 

(McNemar test; p < 0.05).  

The aim of this paper was to evaluate the 
suitability of this deep learning method as a 
supplemental tool and look into how well a 

convolutional neural network (CNN) can 
identify healthy teeth and early carious le-

sions on occlusal surfaces.  

Ramos-Gomez 2021 [63], USA, 
Dentistry Journal  

182 patients Random forest Retrospective study 

The age of the parents (MDG = 0.84; MDA = 1.97), unmet needs (MDG = 0.71; 
MDA = 2.06), and the child’s race (MDG = 0.38; MDA = 1.92) were among the 
survey factors that were highly predictive of active caries. Strong predictors 
of caries experience were the age of the parent (MDG = 2.97; MDA = 4.74), 

whether the child had experienced dental pain in the previous year (MDG = 
2.20; MDA = 4.04), and whether the child had experienced caries in the pre-

ceding year (MDG = 1.65; MDA = 3.84). 

Using a machine learning algorithm applied 
to parent survey assessments of their child’s 
oral health, this study explored the potential 
of screening for dental caries in youngsters. 

Rauf 2023 [64], Iraq, Medicina 450 images k-NN Prospective study 

Following the dataset’s application to both ML algorithms—linear regression 
and k-nearest neighbors—the evaluation measure reveals that k-NN outper-

forms LR in terms of prediction accuracy. The accuracy result was close to 
99%. 

In order to prevent future crowding in pa-
tients who are growing or even in adults 

seeking orthodontic treatment, the study at-
tempted to use artificial intelligence to fore-

cast the arch width as a diagnostic tool for or-
thodontics.  

Seo 2021 [65], Korea, Journal of 
Clinical Medicine 

600 radio-
graphs 

ResNet-18, MobileNet-v2, 
ResNet-50, ResNet-101, 
Inceptionv3, and Incep-

tion-ResNet-v2  

Retrospective study 
More than 90% accuracy was shown by all deep learning models, with Incep-

tion-ResNet-v2 demonstrating the best performance. 

This work aimed to assess and compare the 
effectiveness of six cutting-edge deep learn-
ing models for cervical vertebral maturation 
(CVM) based on convolutional neural net-

works (CNNs) on lateral cephalometric radi-
ographs. Additionally, it visualized the CVM 
classification for each model through the use 

of gradient-weighted class activation map 
(Grad-CAM) technology.  

Spampinato 2017 [66], Italy, 
Medical Image Analysis 

1391 radio-
graphs 

CNN Retrospective study 
The findings demonstrated state-of-the-art performance, with an average dif-

ference between manual and automatic evaluation of almost 0.8 years. 
In this work, the objective was to present and 
evaluate multiple deep learning methods for 
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automatically determining the age of skeleton 
bones. 

Tajmir 2019 [67], USA, Skeletal 
Radiology 

280 radio-
graphs 

CNN Comparative study 

The mean six-reader cohort accuracy was 63.6 and 97.4% within a year, 
whereas the total AI BAA accuracy was 68.2% and 98.6% within the same 

time frame. The mean single-reader RMSE was 0.661 years, whereas the AI 
RMSE was 0.601 years. The combined RMSE dropped from 0.661 to 0.508 

years, whereas each RMSE dropped independently with AI support. The ICC 
was 0.9951 with AI and 0.9914 without. 

The aim of this paper was to examine a co-
hort of pediatric radiologists’ BAA perfor-
mance both with and without AI support.  

Tanikawa 2009 [68], Japan, An-
gle Orthodontist 

65 radiographs CNN Retrospective study 
The algorithm had a mean success rate of 88% (range, 77–100%) in correctly 
identifying the specified anatomic entities in all the images and determining 

the landmark placements. 

This work set out to assess the reliability of a 
system that uses landmark-dependent criteria 

specific to each landmark to automatically 
recognize anatomic landmarks and surround-

ing structures on lateral cephalograms.  

Toledo-Reyes 2023 [69], Brazil, 
Journal of Dental Research 

639 patients 

ML algorithms: decision 
tree, random forest, and 
extreme gradient boost-

ing (XGBoost)  

Prospective study 

When it came to predicting caries in primary teeth following a 2-year follow-
up, all models’ areas under the receiver operating characteristic curve 

(AUCs) during training and testing were greater than 0.70, with baseline car-
ies severity being the best predictor. After ten years, the XGBoost-based 

SHAP algorithm, in reference to the testing set, achieved an AUC greater 
than 0.70, indicating that the top predictors of caries in permanent teeth were 
caries experience, nonuse of fluoridated toothpaste, parent education, higher 

frequency of sugar consumption, low frequency of visits to relatives, and 
poor parents’ perception of their children’s oral health. 

The aim of this research was to use early 
childhood factors to create and evaluate car-
ies prognosis models using machine learning 
(ML) in primary and permanent teeth after 

two and ten years of follow-up.  

Vila-Blanco 2020 [70], Spain, 
IEEE Transactions on Medical Im-

aging 

2289 radio-
graphs DAnet and DASnet Comparative study 

The median absolute error (AE) and median error (E) for the entire database 
were reduced by around 4 months, demonstrating that DASNet beats DANet 

in every way. As the real ages of the individuals lowered while analyzing 
DASNet in the reduced datasets, the AE values declined as well, reaching a 
median of roughly 8 months in the patients under the age of 15. In compari-

son to the most advanced manual age estimation techniques, the DASNet 
method shown notably fewer over- or underestimation issues. 

This paper proposed two totally automatic 
approaches to determine a subject’s chrono-

logical age from an OPG image. 

Wang 2016[71] , USA, Medical 
Physics 

30 patients Random forest Retrospective study 

Based on manually labelled ground truth, segmentation results on CBCT im-
ages of thirty participants were validated, both qualitatively and numerically. 
The authors’ method yielded average dice ratios of 0.94 and 0.91 for the man-

dible and maxilla, respectively. These values are significantly higher than 
those of the state-of-the-art method that relies on sparse representation (p-

value < 0.001). 

The aim of this paper was to incorporate 
prior spatial information into classification-
based segmentation, as this approach has 

outperformed the reliance on only picture ap-
pearances. Additionally, this approach has 
sought to overcome the difficulties in CBCT 
maxilla and mandible segmentation, in con-
trast to the majority of other methods that 

only concentrate on brain pictures. 
Wang 2016 [72], China, Ameri-
can Journal of Orthodontics and 

Dentofacial Orthopedics 
88 patients Eye-tracking device Comparative study 

There were significant differences observed in the scanpaths of laypersons 
viewing pretreatment smiling faces compared to those of laypersons viewing 

normal smiling subjects. Specifically, there was less fixation time (p < 0.05) 

The aim of this research was to investigate 
the potential of an eye-tracking technique as 

a new, impartial means of assessing 
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and later attention capture (p < 0.05) on the eyes, and more fixation time (p < 
0.05) and earlier attention capture (p < 0.05) on the mouth. When comparing 

post-treatment smiling individuals, similar findings were observed: there 
was a decrease in fixation duration (p < 0.05) and an earlier attention capture 

on the lips (p < 0.05), as well as a decrease in fixation time (p < 0.05) and a 
later attention capture on the eyes (p < 0.05). Compared to the normal indi-
viduals and post-treatment patients, the pretreatment repose faces showed 
an earlier attention catch on the mouth (p < 0.05). The categorization of pre-
treatment patients from normal subjects (treatment need) and pretreatment 
patients from post-treatment patients (treatment result) using a linear sup-
port vector machine demonstrated accuracies of 97.2% and 93.4%, respec-

tively. 

orthodontic treatment outcomes and need 
from the viewpoint of the general public, in 

contrast to more conventional evaluation 
methods.  

Wang 2020 [73], USA, JDR Clini-
cal & Translational Research 

545 patients 
Extreme gradient boost-
ing and naive Bayesian 

algorithms  
Prospective study 

The toolkits were created using data from 545 households with children 
ranging in age from 2 to 17 years old. Using the external data, the prediction 
accuracies for RFTN were 49% and 93%, respectively. Between the clinically 

determined COHSI and the anticipated COHSI, there was a correlation of 
0.88 (and 0.91 for its percentile). The COHSI toolkit’s RMSEs were 1.3 for its 

percentile and 4.2 for COHSI. 

In order to forecast children’s oral health sta-
tus index (COHSI) scores and referral for 

treatment needs (RFTN) assessments for oral 
health, the aim of this paper was to develop 

oral health assessment toolkits. 

You 2020 [74], China, BMC Oral 
Health 

98 images CNN Retrospective study 

The mean intensity of ulceration (MIoU) on the examined dental images was 
0.726 ± 0.165. After a week, the dentist’s MIoU was 0.689 ± 0.253, compared to 

0.695 ± 0.269 when diagnosing 98 digital camera photos. The AI model 
showed a higher MIoU (0.736 ± 0.174) than the dentist, and the results re-

mained the same after a week. The dentist’s and the AI model’s MIoUs after 
evaluating 102 intraoral pictures were 0.652 ± 0.195 and 0.724 ± 0.159, respec-
tively. A paired t-test revealed no statistically significant difference (p > 0.05) 
in the diagnosis of dental plaque on primary teeth between the AI model and 

the human professional. 

The purpose of this work was to develop an 
artificial intelligence (AI) model based on 

deep learning to identify plaque on primary 
teeth and to assess the model’s diagnostic 

performance.  

You 2021 [75], China, Zhonghua 
Kou Qiang Yi Xue Za Zhi 

109 images DeepLab Prospective study 

When training with 440 photographs and testing with 109 photos, the perma-
nent tooth model’s MIoU was 0.700 ± 0.191. The proportion of plaque and the 
quantity of pixels surrounding the plaque had a significant impact on the ac-
curacy of dental plaque identification in the regression model of the signifi-

cance test (p < 0.05). The standardized coefficients for the percentage of 
plaque were −0.551 and the number of pixels on the plaque edge line were -

0.289.  

The aim of this study was to create an AI sys-
tem that can identify dental plaque on per-
manent teeth and identify the contributing 

variables.  

Zaborowicz 2021 [76], Poland, 
Sensors 

619 images 
PNN, GRNN, RBF, and 

MLP 
Prospective study 

The study yielded three non-linear models of radial basis function networks 
(RBFs), with an accuracy range of 96 to 99%, and a collection of 21 unique in-
dicators required for the assessment of chronological age using computer im-

age analysis and neural modeling. 

The research presented in this paper aimed to 
create a new, efficient methodology for the 

use of contemporary IT techniques in the as-
sessment of chronological age.  

Zaborowicz 2022 [77], Poland, 
Sensors 

619 images 
PNN, GRNN, RBF, and 

MLP 
Prospective study 

Depending on the learning set utilized, the generated models’ MAE and 
RMSE errors ranged from 2.34 to 4.61 months and 5.58 to 7.49 months, re-

spectively. The range of the correlation coefficient (R2) was 0.92 to 0.96. 

The purpose of this effort was to confirm that 
a deeper neural network model could be 
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created that was more accurate than models 
created in the past.  

Zaorska 2021 [78], Poland, Genes 262 patients CNN Prospective study 

The logistic regression (LogReg) model had an area under the curve (AUC) of 
0.970 (95% CI: 0.912–0.994; p < 0.0001), 90% sensitivity, and 96% specificity, 
with an overall accuracy of 93% (p < 0.0001). For the test and validation pre-
dictions, the authors discovered 90.9–98.4% and 73.6–87.2% prediction accu-
racies, respectively. The most powerful predictors were ENAM_rs12640848 

(in LogReg), MMP16_rs1042937 (in NN), and AMELX_rs17878486 and 
TUFT1_rs2337360 (in both LogReg and NN). 

The purpose of this work was to develop an 
artificial neural network-based caries predic-
tion model that used selected SNPs from each 

of the three studies as predictors. 

Zhou 2021 [79], China, Diagnos-
tics 

1080 radio-
graphs 

CNN Retrospective study 

Between human examiners, the mean labelling error was 0.48 ± 0.12 mm. Be-
tween AI and human examiners, the mean labelling error was 0.36 ± 0.09 

mm. AI results and the gold standard agreed well overall, with an intraclass 
correlation coefficient (ICC) value of up to 98%. Furthermore, 71% of CVM 

staging was accurate. The CS 6 stage (85%) had the highest accuracy in terms 
of F1 score. 

The goal of this research was to create an arti-
ficial intelligence (AI) system that can assess 
AI performance and automatically ascertain 

the CVM state.  
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3.2. Study Characteristics 
The primary areas of focus for AI models created for use in pediatric dentistry have 

been the following: orthodontic diagnosis (n = 3) [57,64,72], automated cephalometric trac-
ing (n = 9) [35,45,48,49,53,56,58,60,68], segmentation and landmark identification (n = 7) 
[22,23,27,39,52,71,80], AI-driven remote monitoring (n = 2) [33,34], estimation of growth 
and development (n = 11) [21,36,41,43,47,48,55,65–67,79], dental plaque and cavities (n = 
4) [30,62,74,75], evaluating pediatric oral health through toolkits developed by machine 
learning (n = 3) [8,31,73], supernumerary tooth identification (n = 8) 
[2,11,20,29,32,42,46,54], early childhood caries (ECC) (n = 7) [37,44,59,61,63,69,78], chrono-
logical age assessment (n = 6) [25,28,51,70,76,77], identification of deciduous and young 
permanent teeth (n = 6) [24,26,28,38,40,50]. 

4. Discussion 
The integration of AI technology into dental practices holds the potential to elevate 

the standard of dental treatment significantly. By providing support to dentists, AI facili-
tates optimal dental care, leading to enhanced accuracy in diagnostics, treatment plan-
ning, and outcome predictions. Notably, deep learning plays a pivotal role in diagnosis, 
promising increased productivity, and improved precision across dental procedures. The 
advent of readily available data has allowed AI to demonstrate its efficacy in various pe-
diatric dentistry applications, with Convolutional Neural Network (CNN) models prov-
ing particularly effective in expediting and refining patient diagnoses. This collaborative 
approach encourages active patient engagement, thereby contributing to the overall suc-
cess rate of dental care [19,81–83]. Figure 2 explores the field of the application of AI in 
pedodontics. 

 
Figure 2. Field of application of AI in pedodontics. 

4.1. Orthodontic Diagnosis 
Accurate and precise orthodontic diagnosis relies on patient data, which is meticu-

lously collected from a comprehensive database containing a detailed inventory of the 
patientʹs concerns. This orthodontic diagnostic database is compiled through various 
means, such as written or verbal interviews, clinical examinations, and a thorough exam-
ination of patient records, including dental impressions, radiographs, and diagnostic pho-
tographs [84]. The patient assessment process in clinical settings faces challenges related 
to both accuracy and time constraints. Recognizing the need for enhanced efficiency, par-
ticularly in imaging and diagnosis, automation has become imperative given the substan-
tial time investment required for comprehensive patient evaluations and record compila-
tion [85]. Orthodontic diagnosis poses unique challenges, demanding a thorough 
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evaluation of various facial structures. The transition to digital platforms for patient data 
collection, coupled with the establishment of digital databases for diagnostic and treat-
ment purposes, has been facilitated by the integration of digital dentistry tools. While dig-
ital data acquisition has expedited the diagnosis and treatment phases, the analysis and 
decision-making stages still rely on the expertise of a clinician. This combination of auto-
mation and clinician experience aims to strike a balance, ensuring both speed and accu-
racy in the orthodontic assessment process [86,87]. Evaluation workloads have been 
greatly decreased and diagnostic variation has been minimized thanks to automation sys-
tems that use AI and ML technologies [85]. Orthodontic research has looked at a number 
of AI algorithms, all of which relied on voluminous patient examination records as input 
data. Some studies revealed that the integration of artificial intelligence into the diagnostic 
process resulted in a reduced dependency on specialized medical professionals and a de-
creased likelihood of incorrect diagnoses. The promising outcomes led researchers to con-
clude that the application of AI holds substantial potential within the field of orthodontics. 
The findings suggest that leveraging AI technology can not only streamline the diagnostic 
process but also contribute to increased accuracy, marking a significant advancement in 
orthodontic practices [57,72,85,86,88,89]. 

A separate study has put forth findings suggesting that machine learning exhibits the 
potential to elevate orthodontic diagnosis and treatment planning. The study concludes 
that by anticipating linear dental arch measurements and proactively addressing anterior 
segment malocclusion, machine learning can significantly contribute to improved accu-
racy in orthodontic assessments and treatment planning. The high accuracy demonstrated 
in the study highlights the promising prospects of integrating machine learning into or-
thodontic practices for more effective and precise outcomes [64]. 

4.2. Automated Cephalometric Tracing 
In the realm of pediatric orthodontics, the diagnosis and treatment planning pro-

cesses heavily rely on cephalometry—a technique that measures soft tissue profiles, facial 
features, and skull bones. Cephalometric tracing, a pivotal aspect of this methodology, 
can be executed using either computer software or manual labor [53,68,90]. The process 
of manual cephalometric tracing is laborious and subject to human error in identifying 
landmarks and measuring cephalometric parameters. The primary mistakes in manual 
tracing are frequently related to how radiographs can be unpredictable when it comes to 
measuring and identifying landmarks [48,56]. Efficiencies in time and accuracy are real-
ized through the adoption of computer-assisted cephalometric tracing, minimizing the 
potential for human error and enhancing the diagnostic precision of cephalometric anal-
ysis [45]. Earlier research articles indicate that the integration of AI-driven automated 
cephalometric tracing yields positive outcomes, having achieved a notably high success 
rate surpassing 90%, particularly in the differentiation of cephalometric landmarks using 
computerized software and web-based applications [35,49,53,58]. This innovative tech-
nique harnesses artificial intelligence and employs cutting-edge deep learning methods to 
identify cephalometric landmarks, aiming to reduce human error and enhance overall 
time efficiency in orthodontic procedures [60]. 

4.3. Segmentation and Landmark Identification 
In medical image analysis, image segmentation is an essential procedure that in-

volves separating pixels in X-rays, CT scans, or MRI images that correspond to specific 
organs or lesions [91]. Volumetric medical image analysis and computer-aided diagnosis 
systems heavily rely on precise segmentation, making the identification of landmarks in 
lateral cephalometric X-rays crucial for diagnosis and treatment planning in orthodontics 
[92]. Several investigations have targeted the automation of landmark identification in lat-
eral cephalometric X-rays [22,35,45,58,60,93]. The introduction of Convolutional Neural 
Networks (CNNs) has been pivotal in this endeavor. Arik [22] was among the pioneers to 
employ CNNs for automated landmark identification, while Park and Hwang [35,60] 
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utilized You-Only-Look-Once version 3 (YOLOv3) as their deep learning method of 
choice. Kunz [45] successfully automated the identification of 12 commonly used ortho-
dontic parameters using an open-source CNN. Nishimoto [58] utilized CNNs to automat-
ically identify landmarks, utilizing lateral cephalometric radiographs from diverse 
sources such as the internet and personal computers. These advancements underscore the 
transformative potential of deep learning in enhancing the accuracy and efficiency of or-
thodontic image analysis and diagnosis. 

According to Bag’s study [23], automatic segmentation of anatomical landmarks with 
YOLOv5 in orthopantomographs, such as the orbit, maxillary sinus, mandibular canal, 
mental foramen, foramen mandible, incisura mandible, articular eminence, and condylar 
and coronoid processes, may accelerate clinical diagnosis for doctors and raise their 
awareness of pathologies related to these structures. The orbit, maxillary sinus, mandibu-
lar canal, incisura mandible, and condylar process yielded the best sensitivity levels. The 
articular eminence (0.92) and mental foramen (0.92) had the lowest sensitivity ratings. 

Kaya et al. [39] conducted a study utilizing YOLOv4, an object detection model based 
on Convolutional Neural Networks (CNNs), to analyze the orthopantomographs of chil-
dren aged 5 to 13. The study demonstrated excellent results in the detection of immature 
teeth, permanent tooth germs, and brackets. However, certain dental procedures and 
structures, such as fillings, root canal therapy, and extra teeth, were not recognized effec-
tively. Despite these limitations, employing a deep learning-based method for the identi-
fication of specific dental structures and past dental treatments in pediatric panoramic X-
rays holds great potential. This approach may assist dentists in the early diagnosis of den-
tal defects and enable more precise treatment options, ultimately saving time and effort 
in the pediatric dental care landscape. 

Wang et al. created an automated cone beam computed tomography (CBCT) method 
for maxilla and mandibular segmentation [71]. They segmented both structures at the 
same time using a learning-based framework based on random forest [94,95]. The dice 
ratio, which calculates the overlap between the segmented and ground truth sets, is fre-
quently used to assess volumetric segmentation in medical images. 

In order to examine changes in maxillary structure in response to unilateral canine 
impaction, Chen et al. [27] improved Wang’s method [71]. The segmentation process was 
much more efficient thanks to the automatic algorithm. 

Using a CNN deep learning algorithm, Lo Giudice et al. [52,96] and Leonardi et al. 
[97] have separated the jaw and airways using artificial intelligence, respectively. 

Another study conducted by Gillot et al. [80] proposed an automated landmark iden-
tification method in CBCT images through the usage of the ALICBCT algorithm, an AI 
source. In this method, there is a first phase of machine training, followed by the usage of 
AI to identify landmark positions, which is faster than the clinician’s identification, with 
high accuracy. 

4.4. AI-Driven Remote Monitoring 
Harnessing the power of smartphones, patients or their parents can now employ ar-

tificial intelligence-driven remote monitoring (AIRM) to independently scan and record 
their dentition. This innovative approach empowers clinicians with the capability to re-
motely monitor patients’ oral health. Deep learning (DL) is employed by AIRM to improve 
tooth-movement tracking and identify key features from patient images. Research has 
delved into the accuracy of this technology and its consequential impact on treatment, 
showcasing the transformative potential of AI-driven remote monitoring in the realm of 
dental care. 

According to a pilot study, patients felt generally good about their experience with 
Invisalign, and AIRM may help patients need fewer treatments [98–100]. According to a 
recent study [33], the use of AI-driven remote monitoring (AIRM) reduced the number of 
patient appointments by about 3.5 visits, or 33.1%. Nevertheless, no clinically significant 
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differences in the course of treatment or the advancement of dental alignment were found 
in the study. 

The main benefit of AIRM is its capacity to reduce in-office visits, providing patients 
and their parents with more flexibility and convenience during their course of treatment 
[34]. Additionally, it creates a forum for improved patient–doctor communication. How-
ever, factors including the pedodontist’s practice, patient demographics, and geographic 
location may affect how cost-effective AIRM is overall [34]. 

Remote monitoring has emerged as a valuable technique in orthodontic therapy, en-
abling practitioners to conduct more frequent patient assessments while minimizing the 
necessity for extended in-person visits [101]. The incorporation of this technology has led 
to notable improvements in patient hygiene, precise diagnosis, and treatment planning. 
This modernization of the therapeutic process has not only streamlined patient care but 
has also significantly enhanced overall treatment outcomes in orthodontics. 

4.5. Estimation of Growth and Development 
In orthodontic treatment, precise timing is crucial, and anthropometric indices such 

as chronological age, menarche, vocal changes, height increase, and skeletal maturation 
(skeletal age) serve as valuable parameters for assessing growth and development 
[102,103]. Recognizing the substantial variability in growth dynamics during adolescence 
among individuals, relying solely on chronological age proves insufficient for estimating 
the remaining growth potential [41,104]. Skeletal age assessment becomes more appropri-
ate for evaluating individual growth [105–108], often determined through radiographs 
that reveal signs of skeletal maturity [109]. 

The cervical vertebral maturation (CVM) approach, frequently utilized for radiolog-
ical skeletal maturation measurement, involves identifying growth-related changes in 
wrist bones or vertebral bodies [110,111]. The CVM approach demonstrates a strong cor-
relation with the assessment of skeletal maturity through wrist X-rays [112–114]. Given 
the inherent role of lateral cephalometric radiographs in orthodontic diagnostics, they of-
fer a radiation-free alternative for evaluating vertebral body maturation in teenage pa-
tients [79,115–117]. The CVM technique focuses on morphological changes in vertebral 
bodies C2–C4, categorized into six stages corresponding to skeletal maturity [118]. How-
ever, accurate assessment can be challenging for inexperienced practitioners and prone to 
inaccuracy due to individual variations [41,65,119–121]. 

Recent advancements leverage artificial intelligence (AI) to automate the skeletal age 
determination process, providing an objective and standardized approach to overcome 
challenges associated with manual assessment [21,36,43,47,48,55,66,67,79]. This integra-
tion of AI holds promise in enhancing the accuracy and efficiency of skeletal age evalua-
tion in orthodontics. 

4.6. Dental Plaque and Cavities 
Dental plaque is characterized as a bacterial community primarily adhering to the 

gingival margins and interproximal areas, subsequently extending to the teeth [74]. Its 
identification can pose challenges, particularly in minimal quantities, where distinguish-
ing between the tooth and the plaque becomes intricate. Historically, practitioners utilized 
explorers or revealing solutions to mark affected areas, although these methods proved to 
be time-consuming and discomforting. Other side effects include an unpleasant taste and 
prolonged discoloration on the lips and oral tissue, which are primarily cosmetic in na-
ture. While alternative approaches employ digital image analysis and autofluorescence 
spectroscopy, they are constrained by technological and cost-related limitations [122–124]. 
With the development of digital cameras and image analysis software, the first practical 
imaging technique that assessed the full plaque-affected region, if any was present, was 
presented [125,126]. 

However, using DL techniques, some research has been conducted to identify pri-
mary or permanent teeth that are impacted by plaque [74,75]. One study developed CNN 
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models that can recognize plaque accumulation based on 886 dental pictures. Performance 
levels that were clinically acceptable were demonstrated by comparing the model to the 
analysis of a pediatric dentist with training. There are some disadvantages as well, since 
the final image quality greatly influenced the results, and the AI’s rationales for employing 
different methods to recognize plaque were not entirely obvious [74]. When these limita-
tions are removed, both doctors and parents may employ AI technology to regularly check 
on their children’s dental health. An intraoral camera was used to take pictures, and 440 
images were used to train the DL system, providing permanent-tooth plaque detection 
[75]. The technique demonstrated its ability to identify dental plaque placed on permanent 
teeth; nevertheless, the accuracy of the plaque identification decreased with increasing 
complexity of the dental plaque marginal line and dental plaque percentage. 

The use of dental images to identify caries and molar–incisor hypomineralization 
(MIH) was assessed in a different research study [30]. The model achieved excellent accu-
racy for the pixel-by-pixel detection and localization of MIH and caries. However, not all 
dental conditions or treatments that impact teeth because of genetics or development have 
been included in the model so far. Furthermore, only really good photos were considered. 
In order to assess the suitability of VGG19, a deep learning method, as an additional tool 
and to determine the accuracy with which a convolutional neural network (CNN) can 
identify healthy teeth and early carious lesions on occlusal surfaces, the use of a digital 
camera for caries detection was proposed [62]. Both the primary and secondary identifi-
cation of early carious lesions yielded satisfactory results using this strategy. This means 
that it can improve the accuracy of disease detection and serve as a valuable tool for the 
fast detection of caries lesions, enabling the formation of more prompt and reliable clinical 
judgments. 

4.7. Evaluating Pediatric Oral Health through Toolkits Developed by Machine Learning 
In contrast to other facets of general well-being, dental health frequently suffers, par-

ticularly in emerging and disadvantaged nations. A questionnaire on oral health was cre-
ated by the World Health Organization (WHO) [73] for both adults and children in recog-
nition of this gap. By creating machine learning-based oral health assessment toolkits that 
can precisely predict the Children’s Oral Health Status Index (COHSI) and Referral for 
Treatment Needs (RFTN), a research team hopes to solve these issues [73,127]. 

In the second study [127], the team utilized the PROMIS framework to create a con-
ceptual model, known as the oral health item bank system. This model, designed by a 
multidisciplinary team of specialists, including PROMIS experts, general dentists, pediat-
ric dentists, and social scientists, was anchored on three pillars: social, mental, and physi-
cal health. The resulting oral health item bank system demonstrated versatility, expanding 
its applicability beyond the realm of oral health assessments. It now encompasses the cre-
ation of tailored short forms designed for program evaluation and the formulation of oral 
health policies. 

A toolkit has been devised, featuring a concise assessment form (SF) that incorporates 
dimensions related to physical, mental, and social health. This resource is designed to as-
sist parents in evaluating their children’s oral health and identifying potential treatment 
needs [73]. The accuracy of this toolkit was influenced by factors such as the posed ques-
tions, the level of understanding by parents and children, the timing of survey completion, 
and, notably, the creation of an ML algorithm. Although the toolkit was created to support 
dentists in their examinations, it was not meant to be a substitute for physical examina-
tions. The toolkit assigned rankings to participants according to percentiles, evaluated 
their overall oral health status, and determined the need for any necessary therapeutic 
interventions. 

In a different study project [8], the relationship between teenage quality of life and 
dental health was investigated using statistical techniques and artificial intelligence algo-
rithms. 
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In a separate research endeavor, statistical methods and artificial intelligence algo-
rithms were employed to explore the link between oral health and teenage quality of life. 
Fascinatingly, an alignment occurred between human insight and artificial intelligence 
algorithms in partitioning respondents into distinct groups, unveiling insights that eluded 
detection through intuitive gender classification alone. 

Another notable contribution is the ORIENTATE platform that was presented in a 
different study [31]. ORIENTATE facilitates the automatic availability of machine learning 
classification techniques to healthcare professionals, without the need for specialized tech-
nical expertise. The platform not only provides a comprehensive report with interpreta-
tive graphs but also offers an interface for predicting new input samples. This empowers 
researchers without specific data technique knowledge to enhance or replace conventional 
statistical investigations, owing to the feature relevance and interaction plots, which ena-
ble precise statistical inference. These innovative approaches signify a transformative leap 
in dental health assessments, leveraging machine learning and advanced toolkits to bridge 
existing gaps and enhance overall oral health outcomes. 

4.8. Supernumerary Tooth Identification 
The diagnosis of mesiodens has been conducted using deep learning models [20]. 

The limited identification of supernumerary teeth on orthopantomographs is primarily 
attributed to the screening capabilities of less experienced dental personnel [128]. Addi-
tionally, a scarcity of proficiency among general dentists exists in recognizing mixed den-
tition in children. Given these constraints, CNNs have the potential to significantly assist 
in identifying additional teeth [2]. Researchers [20] detected mesiodens in primary or 
mixed dentition through AI, and suggested that this approach could expedite and enhance 
the accuracy of diagnoses for physicians with limited clinical experience. They utilized 
various deep learning models, including ResNet-18, SqueezeNet, Inception-ResNet-v2, 
and ResNet-101, based on the premise that deeper networks are more effective in classi-
fying mesiodens. 

Significantly, in a study [2] focusing on the detection of supernumerary teeth in the 
first phase of the transitional dentition stage, three CNN models—AlexNet, VGG16-TL, 
and Inceptionv3-TL—exhibited outstanding performance. One key strength lies in their 
open design, facilitating seamless integration into a clinical setting. However, there are 
notable limitations, including the limited datasets and the capability of AI-driven models 
to categorize images that are not conducive to two-dimensional panoramic radiography. 
Enhancing their usage capability in terms of real-world applicability requires the incor-
poration of a substantial number of medical photos collected from diverse hospitals and 
institutions into their training. 

A study [54] suggested comparing two AI models for 3D segmentation and automatic 
identification in dental radiography. The additional teeth were identified by Diagnocat 
Inc. (San Francisco, CA, USA); however, their completely automated program only allows 
for the export of 3D models. During the automated analysis, the Virtual Patient Creator 
(Relu, Leuven, Belgium) could not find any extra teeth. This device offers numerous ad-
ditional functionalities that can be employed for the detection of multiple teeth. Following 
the initial segmentation, processing methods can be applied to improve the quality of the 
segmented structures. Enhancements in 3D segmentation techniques aside, it is impera-
tive to use skilled specialists. Because of this, the importance of human knowledge should 
not diminish, and AI should be seen as an addition to it, rather than a replacement. 

Based on the findings of a study, learning methods such as DetectNet and AlexNet 
exhibited the capability to recognize on 2D orthopantomographs maxillary impacted su-
pernumerary teeth [46]. The study highlighted that this outcome was influenced by the 
presence of numerous permanent teeth that were still in the process of fully erupting in 
the patient’s mouth. 

Ha et al. [32] demonstrated the effectiveness of their approach in clinical practice for 
detecting mesiodens in orthopantomographs across all dentition types, in contrast to 
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Kuwada et al.’s study [46], which focused on permanent dentition. The model, based on 
YOLOv3, exhibited notably superior performance than other DL methods [19]. 

A study assessed the efficiency of a DL method in identifying permanent tooth 
germs, suggesting its potential utility in early dental deficiency or extra tooth diagnosis 
[11]. The study proposed that dentists could save time and effort with access to more pre-
cise treatment options. Authors using DL methods [DeepLabV3plus and Inception-Res-
Net-v2] for mesiodens diagnosis found that a fully automated process was possible, but 
determining the quantity and position of mesiodens remained challenging [42]. 

Another study [29] proposed to create and assess an AI model based on a CNN for 
the diagnosis of taurodontism in teeth using panoramic radiography (PyTorch-imple-
mented U-Net model). The lack of subgroup analysis for maxilla and mandible taurodont 
teeth was a study drawback, because, in the upper arch, the diagnosis could be limited 
due to the superimposition of structures (such as the maxillary sinus). The findings of the 
CNN’s identification of taurodontism were nearly identical to those observed in the des-
ignated training dataset, and the system’s ability to identify taurodontism in teeth was 
practically at the expert level. 

The CNN-based deep learning technique shows promise as a diagnostic aid for den-
tists, although significant advancements in clinical applications are needed before its 
widespread adoption. The expectation is that a more comprehensive diagnostic system, 
accommodating various ages and conditions, will be developed in the near future. This 
advancement could enhance screening for non-pediatric dentists and empower pedodon-
tists to proactively devise treatment strategies. 

4.9. Early Childhood Caries 
A complex disease, influenced by multiple causes in children, is ECC [61,129]. The 

contributing factors seem unrelated to behavioral and environmental elements, prompt-
ing inquiry into the possibility of a biological factor, specifically a hereditary one, playing 
a more fundamental role in the development of dental caries [78,130]. Researchers have 
identified numerous genes and gene polymorphisms as potential causes of caries in chil-
dren. However, the majority of studies have not comprehensively incorporated genetic 
variables associated with the disease [78,131]. 

As per Zaorska, K. et al. [78], single-nucleotide polymorphisms (SNPs) could be used 
to assess the risk of dental caries. This approach could aid in tailoring prevention strate-
gies during a child’s early years and offer guidance to parents in promoting healthier eat-
ing habits. The researchers applied artificial neural networks in their study to forecast the 
likelihood of dental caries based on polymorphisms. Using the information from these 
forecasts along with early treatment for instances that are discovered might help avoid 
caries entirely in children and enhance their quality of life in general. 

In a recent investigation, researchers compared the effectiveness of ML-based mod-
els, including XGBoost, random forest, and LightGBM, with a traditional regression 
model for early childhood caries detection [61]. The researchers could not detect any sig-
nificant differences even after using three different machine learning methods, when com-
paring the results with a logistic regression model. With a restricted feature set, this model 
can predict preschoolers’ risk of developing ECC by using straightforward tests and ques-
tionnaires. Its utility extends to identifying high-risk groups for ECC, implementing pro-
active preventive interventions, and shaping ECC prevention policies. The main objectives 
are to reduce the prevalence of early childhood caries and increase the benefits of dental 
health education for parents of young children. 

Another study, conducted by Toledo Reyes et al. [69], evaluated the difference be-
tween logistic regression analysis of predictors of primary and permanent teeth caries and 
an ML approach with 2- and 10-year follow-ups. The 2-year follow-up revealed the mod-
els’ highest overall performance, which is to be expected given the behavioral and soci-
opsychological changes that take place over time. Remarkably, multivariate LR analysis 
revealed that the only predictor significantly linked to the emergence of new lesions in the 
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primary teeth after two years was the degree of caries at baseline. Additional predictors 
for dental caries development in primary teeth were found by ML models. These included 
eating sweet foods frequently and low parental confidence in their child’s oral health. The 
top-performing models included caries experience in their prediction of caries incidence 
in permanent teeth, along with a few behavioral and socioeconomic variables (parents’ 
unemployment, education level, frequency of sugar consumption, and nonuse of fluoride 
toothpaste). Additionally, ML and LR found that seeing family members less frequently 
than once a month was a significant predictor. This work suggests that ML might be used 
in early infancy to predict the development of caries in primary and permanent teeth us-
ing easy-to-collect variables. 

In their research, Koopaie, M. et al. [44] conducted a comparative analysis of salivary 
cystatin S levels and demographic data between patients with early childhood caries and 
those without, employing both statistical analysis and ML techniques. Various learning 
models, including random forest, XGBoost, feed-forward neural networks, and support 
vector machines (SVMs), were utilized. The study suggests that salivary cystatin S levels 
can enhance the effectiveness of ML methods in distinguishing cases of early childhood 
caries from caries-free controls. Instead of simplifying the identification of crucial compo-
nents for assessing ECC levels, machine learning approaches enable the creation of com-
puter algorithms capable of considering a multitude of variables and their intricate rela-
tionships. This highlights the potential advantages of employing machine learning as a 
screening tool in the dental sector. 

In one study, ref [37] an automated machine learning application for child classifica-
tion based on ECC was created and assessed. According to the study’s findings, a parsi-
monious model performed best in terms of categorization. An ML algorithm can predict 
the risk of ECC based on the age of the children and the oral health judgments of the 
parents. Additionally, machine learning can provide highly accurate classifiers that can 
determine ECC status using demographic and proxy data. 

Some authors [59] created a novel caries risk prediction model (CRPM), to consider 
genetic and environmental factors. Policy-makers may plan the necessary preventative 
steps for the future by using the CRPM to identify high-risk populations at the community 
level. 

One study [63] examined the potential of screening for dental caries in children by 
using an ML algorithm to analyze parents’ perceptions of their children’s oral health 
through a survey. It demonstrates how parent-completed surveys should be taken into 
consideration to screen for active caries and the experience of caries in children, support-
ing dental clinicians. 

4.10. Chronological Age Assessment 
Dental age assessment typically employs either the clinical or pantomographic 

method. While the clinical method is quick but prone to high inaccuracies, the pantomo-
graphic approach, focusing on tooth bud mineralization, offers greater precision [76]. Var-
ious age assessment methods tailored for different age groups have been developed. 

One research study [76] used digital orthopantomography pictures and brain mod-
eling to develop a novel technique for estimating the chronological age of children and 
adolescents (4–15 years). This approach is easier to use, has almost perfect accuracy, and 
is notable for being among the first to use pantomographic pictures for metric age deter-
mination. One significant drawback is that it only uses OPT images—photos are not in-
cluded. 

Building on Demirjian’s scores, one study [25] utilized ANNs for dental maturity 
evaluations, revealing that the ages of Malaysian and Indian children and teenagers can 
be accurately determined using these maturity ratings. 

Neural modeling techniques were demonstrated to successfully predict metric age 
based on proprietary tooth and bone indications in another work [77]. Three deep neural 
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network models were used in the study to determine the chronological age of children 
and teenagers between the ages of 4 and 15. 

An intriguing work by Lee, Y.H. et al. [51] focused mostly on creating machine learn-
ing techniques using eighteen radiomorphometric characteristics extracted from or-
thopantomographs. They observed that ML methods are more effective in estimating age. 

A recent research study by Dong et al. [28] evaluated 97 OPT images of 3 to 14-year-
old patients in order to forecast each patient’s age based on the phases of seven permanent 
teeth in the left mandible with SOS-ResNet50, a CNN machine that was originally devel-
oped by researchers at Microsoft Research in Washington, DC, USA and applied to the 
research. Since the third molars are the only permanent teeth that are not fully formed in 
people between the ages of 14 and 15, the maturity of these teeth is more closely consid-
ered when estimating the age of these individuals, leading to a higher mean absolute error 
among teenagers. The expected dental ages for years 11–15 have been underestimated 
based on the examination of each age group. Furthermore, the expected dental ages of 
younger people have been slightly overstated; that is, for those who are 3–7 years old, 8–
9 years old, and 10–11 years old. This model has better performance than two already 
existing methods [70,132]. 

4.11. Detecting Deciduous and Young Permanent Teeth 
Various models, including YOLOv3, YOLOv4, Faster R-CNN, and R-CNN, have been 

employed for object detection and identification. Object detection algorithms can be cate-
gorized into two types: the YOLO algorithm, which is a single-stage method, and Mask-
R-CNN, R-CNN, and Faster R-CNN, which are two-stage methods. 

To identify teeth affected by dental disorders and create links to the detected teeth, 
automated and sophisticated detection techniques use tooth recognition. CNN-based 
mapping has demonstrated improved accuracy in automatic tooth segmentation [50]. Dig-
ital diagnostic solutions that save time and effort are getting closer to reality in dentistry 
with the use of panoramic radiography for numbering primary or permanent teeth [40]. 

The article conducted by Dong et al. [28] used the YOLOv3 algorithm to identify each 
tooth in an OPG image and give it the correct tooth number. Using YOLOv4 [38], an object 
identification model based on CNNs, researchers evaluated the performance of a DL 
method for automatic tooth detection and counting. The model displayed proficiency in 
identifying and enumerating both permanent and primary teeth. The outstanding speed 
and accuracy of YOLOv4 established it as the favored choice for object detection. 

Caliskan, S. et al. [26] used CNN algorithms to identify and classify unerupted mo-
lars, and they discovered that this method worked well. To find out if a specific tooth germ 
is missing using teeth-numbering algorithms, more study is required. Finding missing 
tooth germs may help dentists create more individualized treatment regimens. 

A speedier R-CNN Inceptionv2 technique was examined by some authors [40] to 
identify and count deciduous teeth in childrenʹs orthopantomographs. The approach 
identified and numbered only deciduous teeth with remarkable sensitivity and accuracy 
ratings. Considering the importance of primary teeth in forensic identification, this dis-
tinction is remarkable. 

In order to identify and number primary teeth on pediatric panoramic radiographs, 
Kilic, M.C. et al. looked at a quicker R-CNN Inceptionv2 methodology. They found that 
the method had good sensitivity and accuracy scores. Only primary teeth were found and 
numbered, which is noteworthy because primary teeth are crucial for forensic identifica-
tion. 

Another R-CNN method was proposed [24] to identify teeth, both deciduous and 
permanent ones, in OPT images, and their eventually associated fillings. This study ob-
tained high accuracy-level results, and dentists can use this information to enhance their 
radiograph interpretations, help convey the information to patients, and support dental 
students learning to read radiographs by creating ML models to evaluate orthopantomo-
graphs. 
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In structuring the discussion, it is important to highlight that, despite their often su-
perior accuracy, two-stage detectors demand more time and processing power compared 
to one-stage ones. Conversely, YOLO serves as an exemplar of a single-stage detector 
adept at rapidly and accurately classifying items. Moreover, instead of other CNN mod-
els, it has a superior real-time object recognition and a consistent above-average perfor-
mance across a diverse array of object classes. 

4.12. Application of AI in Adult and Pediatric Dentistry 
Because of the unique requirements and difficulties that each environment presents, 

the applications of artificial intelligence (AI) in adult and pediatric dentistry differ greatly. 
In adult dentistry, artificial intelligence (AI) is used to analyze radiographic pictures, 

CT scans, and clinical data to improve the diagnosis and treatment of dental disorders. AI 
systems are able to spot patterns and abnormalities that the human eye might miss, which 
makes it easier for medical professionals to spot pathologies like gum disease, caries, and 
oral lesions early on. Because of this, diagnoses may be made more quickly and accurately, 
lowering the possibility of mistakes and increasing treatment efficacy overall. 

Furthermore, by simplifying workflow management, treatment planning, and pa-
tient communication, AI can improve the operational effectiveness of dental offices. AI-
powered patient management systems can schedule appointments automatically, notify 
patients when they have appointments, and make it easier for medical professionals to 
share information. 

Conversely, artificial intelligence in pediatric dentistry is primarily concerned with 
behavior management and oral health education for younger children. Interactive games 
and instructional apps are created to keep kids interested and support the formation of 
good hygiene habits at a young age. To make learning enjoyable and interesting, these 
systems could make use of gamification and incentive strategies. 

Additionally, AI in pediatric dentistry can be utilized to tailor care to each child’s 
unique needs. AI algorithms, for instance, can provide therapeutic strategies that are more 
suited for kids with specific sensitivities or dental issues, or they can assist in determining 
the most ideal anesthesia dosage based on the patient’s age and weight. 

AI aims to enhance the overall patient experience in both situations by lowering den-
tal care-related anxiety and discomfort and encouraging improved long-term oral health. 
The particular uses, however, vary according to the features of the patients and the thera-
peutic difficulties that range across various demographic categories. Table 3 shows the 
possible field of application of AI in pedodontics. 

Table 3. Summary of field of application of AI in pedodontics. 

Field of Application Summary 

Orthodontic diagnosis 
Patient data is crucial for accurate orthodontic diagnosis in children. Automation, including AI and ML technologies, 
streamlines evaluations and reduces diagnostic variation. Research suggests AI’s potential to improve orthodontic prac-
tices by enhancing accuracy and efficiency, particularly in treatment planning and diagnosis [57,64,72]. 

Automated cephalometric 
tracing 

In pediatric orthodontics, cephalometry is crucial for diagnosis and treatment planning. Computer-assisted tracing im-
proves accuracy and efficiency compared to manual methods. AI-driven automated tracing achieves high success rates, 
reducing errors and enhancing time efficiency in orthodontic procedures [35,45,48,49,53,56,58,60,68]. 

Segmentation and land-
mark identification 

In medical imaging, segmentation identifies organs or lesions crucial for diagnosis and treatment planning. Automated 
landmark identification in X-rays and orthopantomographs, using CNNs like YOLOv5 and YOLOv4, improves effi-
ciency and accuracy. Deep learning methods also facilitate maxilla and mandibular segmentation in CBCT scans, aiding 
treatment planning. The ALICBCT algorithm automates landmark identification in CBCT images, enhancing speed and 
accuracy in orthodontic assessments [22,23,27,39,52,71,80]. 

AI-driven remote monitor-
ing 

Artificial intelligence-driven remote monitoring (AIRM) utilizes smartphones for independent dental scans, allowing 
clinicians to remotely monitor oral health. While AIRM reduces in-office visits and enhances patient–doctor communi-
cation, its cost-effectiveness may vary. Remote monitoring in orthodontic therapy improves patient care and treatment 
outcomes by enabling frequent assessments and precise diagnosis [33,34]. 

Estimation of growth and 
development 

In orthodontic treatment, precise timing is crucial, and anthropometric indices like chronological age and skeletal matu-
ration are vital for assessing growth. Skeletal age assessment, often determined through radiographs, is more reliable 
than relying solely on chronological age. The cervical vertebral maturation (CVM) approach correlates strongly with 
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skeletal maturity assessment. Recent AI advancements automate skeletal age determination, promising improved accu-
racy and efficiency in orthodontics [21,36,41,43,47,48,55,65–67,79]. 

Dental plaque and cavities 

Identifying dental plaque presents challenges, often addressed with time-consuming methods. Recent research utilizes 
deep learning techniques for plaque detection on primary and permanent teeth, showing promising results but facing 
challenges in image quality and AI rationale. Another study achieves high accuracy in detecting caries and MIH using 
digital imaging, suggesting the potential for improved disease detection and clinical judgments [30,62,74,75]. 

Evaluating pediatric oral 
health through toolkits de-
veloped by machine learn-

ing 

The WHO created a dental health questionnaire to address disparities, with machine learning tools predicting COHSI 
and RFTN. The PROMIS framework expands oral health assessment, and a toolkit aids parents in evaluating children’s 
oral health. Statistical techniques and AI explore the link between teenage quality of life and dental health. The ORIEN-
TATE platform offers machine learning tools for dental health assessments without specialized expertise, revolutioniz-
ing outcomes [8,31,73]. 

Supernumerary tooth iden-
tification 

Deep learning models assist in diagnosing dental issues like mesiodens and supernumerary teeth, especially when 
screening is challenging. Models such as ResNet-18 and Inception-ResNet-v2 show promise in detecting mesiodens in 
primary or mixed dentition, while CNN models like AlexNet and VGG16-TL perform well in identifying supernumer-
ary teeth during transitional dentition. Challenges include limited datasets and difficulties in categorizing panoramic 
radiography images. AI should complement human expertise, not replace it. Models like DetectNet and AlexNet are 
promising for recognizing supernumerary teeth, but fully automating diagnosis and determining mesiodensʹ quantity 
and position remain challenges. AI also aids in diagnosing taurodontism with expert-level accuracy. Further advance-
ments are needed for comprehensive diagnostic systems to benefit both dentists and patients [2,11,20,29,32,42,46,54]. 

Early childhood caries 

ML is used for predicting and diagnosing early childhood caries (ECC) and assessing caries risk factors. It identifies 
genetic markers, compares models like XGBoost and random forest for ECC detection, and analyzes predictors of caries 
in primary and permanent teeth. ML also examines salivary cystatin S levels and parental surveys for ECC risk assess-
ment. These studies demonstrate ML’s potential in ECC diagnosis and preventive strategies [37,44,59,61,63,69,78]. 

Chronological age assess-
ment 

Various methods, including clinical and pantomographic approaches, assess dental age. Digital orthopantomography 
accurately estimates age in children (4–15 years). Artificial neural networks and neural modeling techniques predict 
dental maturity and chronological age in children and teenagers (ages 4–15). Machine learning techniques using radio-
morphometric characteristics effectively estimate age. Evaluation of 97 OPT images forecasts age based on the phases of 
seven permanent teeth using SOS-ResNext50, outperforming existing methods [25,28,51,70,76,77]. 

Detecting deciduous and 
young permanent teeth 

Various object detection models, including YOLOv3, YOLOv4, Faster R-CNN, and R-CNN, are used in dental disorder 
identification. CNN-based mapping enhances tooth segmentation accuracy. YOLOv4 excels in tooth detection and 
counting due to its speed and accuracy. CNN algorithms effectively identify unerupted molars and aid in personalized 
treatment planning. R-CNN methods swiftly identify and number deciduous and primary teeth in pediatric radio-
graphs, aiding forensic identification. While two-stage detectors offer high accuracy, YOLO stands out for its real-time 
object recognition and consistent performance [24,26,28,38,40,50]. 

4.13. Strengths and Limitations 
This literature review focused on the different fields of AI in pedodontics and ana-

lyzed all current studies published on this topic. The high number of cited articles reflects 
the number of studies evaluated. Additionally, it is worth acknowledging that the number 
of publications addressing the utilization of AI in dentistry, specifically in pedodontics, is 
steadily increasing each year. Consequently, there was a requirement for an updated re-
view extending until December 2023. 

The lack of global and organized standards for AI development was identified as the 
main barrier to its efficacy. Furthermore, difficulties with gathering comprehensive data, 
guaranteeing accessibility, upholding appropriate data structures, and accomplishing 
comprehensiveness were noted [3]. However, additional queries are coming up concern-
ing the morality, obligations, value, and applications of AI in human life. The main rea-
sons for dissatisfaction among dental practitioners were the challenges of protecting pa-
tients’ privacy and their unwillingness to adopt AI-based techniques, given the need to 
preserve human interaction in clinical care. 

Nevertheless, considering the efficacy of these AI models, it is imperative to create 
and implement guidelines to have these models promoted and used in clinical settings as 
soon as possible. This will help medical practitioners diagnose patients and choose the 
best course of action. 

4.14. Future Applications of AI 
AI in pediatric dentistry has the potential to completely transform the field by im-

proving patient care, shortening procedures, and encouraging youngsters to have health-
ier teeth. The following are some possible areas for growth: 
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• AI-assisted diagnosis systems: Pediatric dentists should be able to diagnose cavities, 
dental abnormalities, and other oral pathologies in children early on with the use of 
sophisticated AI algorithms. To detect indications of dental problems swiftly and pre-
cisely, these systems might make use of natural language processing, radiography 
image analysis, and other clinical data. 

• Personalization of treatment: AI might be used to tailor treatment regimens to the 
unique requirements of every child. This could entail figuring out the ideal treatment 
plan for a given dental disease while taking the patient’s age, general health, and 
preferences into account. 

• Virtual assistance and tele-dentistry: AI-driven systems may be created to facilitate 
remote dental consultations and pediatric patient telemonitoring. These options may 
be especially helpful for families that do not have easy access to dental care or live in 
distant places. 

• Automated learning and patient education: AI technologies have the potential to cre-
ate engaging, customized educational programs for children that teach them good 
hygiene practices, make dental treatments understandable, and motivate them to 
take an active role in their oral healthcare. 

• Patient behavior management: AI may be used to create sophisticated algorithms that 
control how young patients behave when they see the dentist. These systems could 
provide children with a cozy and comforting environment throughout therapies by 
utilizing interactive technologies and child psychology-based approaches. 
AI may also enable predictive analytics to use patient data to foresee possible prob-

lems with oral health, enabling proactive interventions and preventative actions. Further-
more, dental professionals may be able to detect patterns and trends in patient popula-
tions with the aid of AI-driven data analytics, which could result in more successful public 
health campaigns and legislation to support pediatric oral health. 

In conclusion, the application of AI to pediatric dentistry has the potential to enhance 
treatment effectiveness, foster better communication between patients and dental profes-
sionals, and lessen patient anxiety about dental appointments—all of which can help sup-
port children’s oral health and general well-being. Further research and applications of 
AI-driven solutions in pediatric dentistry offer the potential for revolutionizing the sector 
and improving the standard of care given to young patients as technology continues to 
progress. 

5. Conclusions 
The early applications of AI in pedodontics focused on analyzing radiographic im-

ages and providing diagnostic support. AI systems were trained to automatically identify 
cavities and dental and skeletal anomalies, facilitating dentists’ work and accelerating di-
agnosis times. Another significant step was the development of intelligent medical rec-
ords. These digital systems integrate the patient’s health data, allowing a complete and 
organized view of their medical history. AI can analyze these data to identify potential 
oral health problems, suggest preventive and personalized treatments, and alert the den-
tist to any risk factors. 

Moreover, because it provides trustworthy and efficient solutions across several in-
dustries, AI is growing in popularity in the field of pedodontics, as reported in the present 
review. Subsequent efforts may concentrate on the creation of cloud-based frameworks 
intended to streamline data integration and encourage cooperative data exchange. Utiliz-
ing vast volumes of high-quality data can enhance the accuracy of prediction results and 
picture interpretation when employing ML techniques, since data are the fundamental 
building elements of robust models. An AI model that has been properly trained may be 
able to assist in the screening and diagnosis of growing patients in the field of pedodontics 
research. 
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