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Abstract: Celery (Apium graveolens L., var. Dulce), is a biennial herbaceous plant belonging to the 

Apiaceae family, cultivated in humid soils in the Mediterranean basin, in Central-Southern Europe, 

and in Asia. Despite its wide diffusion and although it is well-known that cultivar/origin strongly 

influences plant composition, only a few studies have been carried out on the different types of 

celery. The present work aims to investigate four different Italian types of celery (two common, Elne 

and Magnum celery, and two black, Torricella Peligna Black and Trevi Black celery), and to test, 

whether the combination of FT-IR spectroscopy and chemometrics allows their ecotype discrimina-

tion. The peculiarity of this study lies in the fact that all the analyzed celeries were grown in the 

same experimental field under the same soil and climate conditions. Consequently, the differences 

captured by the FT-IR-based tool are mainly imputable to the different ecotypes. In order to achieve 

this goal, FT-IR profiles were handled by two diverse classifiers: sequential preprocessing through 

ORThogonalization (SPORT) and soft independent modeling by class analogy (SIMCA). Eventually, 

the highest classification rate (90%, on an external set of 100 samples) has been achieved by SPORT. 

Keywords: celery; geographical origin; classification; authentication; class-modeling; discriminant 

analysis; SPORT; SIMCA 

 

1. Introduction 

Apium graveolens L., var. Dulce, commonly known as celery, is a biennial herbaceous 

plant belonging to the Apiaceae (or Umbelliferae), family, cultivated in humid soils in the 

Mediterranean basin, in Central-Southern Europe, and in Asia [1]. 

Celery provides a low-caloric intake, but it is very rich from a nutritional point of 

view. In fact, it is a considerable source of water, minerals (such as potassium, magne-

sium, calcium, phosphorus, iron, sodium, zinc, and copper), fibers, vitamins (mainly A, 

C, E, K, B1, B2, B6) and antioxidants. On average, concerning macronutrients, it contains 

46% of proteins, 45% of carbohydrates, and 9% of lipids [2–4]. 

Despite its wide diffusion in the culinary tradition of different nations, and although 

it is well-known that cultivar/origin strongly influences plant composition, only a few 

studies have been carried out on different types of celery. One of these is the work pub-

lished by Liu and coauthors [5], who analyzed four different celery cultivars (Benqin, 

Western, Baoqin, and Majiagou) grown in China using high-performance liquid chroma-

tography–mass spectrometry (HPLC–MS) and then compared the antioxidant composi-

tion in leaves and petioles. Eventually, they demonstrated that the inter-cultivar differ-

ences (in terms of antioxidant composition) were significant.  

Another study, focused on the metabolomic investigation of celeries harvested in dif-

ferent geographical areas, was carried out by Lau et al. [6]. In this work, 1H NMR was 

combined with principal component analysis (PCA) and partial least squares 
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discriminant analysis (PLS-DA) for the discrimination of extracts obtained from celeries 

harvested in Australia, Taiwan, and China. The authors concluded that the proposed ap-

proach is suitable for tracing celeries and that mannitol, sucrose, citric acid, glutamine, 

asparagine, and 4-hydroxybenzoic acid can be used as markers of origin. 

In 2021, Reale and collaborators [7] investigated the volatile composition of two Ital-

ian celery ecotypes: the Sperlonga White and the Torricella Peligna Black, by means of 

head-space solid-phase microextraction combined with gas-chromatography/mass spec-

trometry (HS-SPME/GC-MS) to evaluate resemblance/differences among the volatilome 

of these species and the commercial ones. The volatile compound composition thus ob-

tained (both on the leaves and on the petioles), was then analyzed using an exploratory 

method. In particular, the data were analyzed by principal component analysis (PCA), in 

order to evaluate whether there were any trends or similarities/dissimilarities between the 

aromatic profiles of the different samples. The authors concluded that Torricella Peligna 

Black celery exhibited a significantly different composition in volatile profile with respect 

to the others. Furthermore, they demonstrated that the composition of the volatile profile 

was suitable for discriminating celery petioles according to the harvesting time. Recently, 

Biancolillo et al. investigated Elne and Torricella Peligna black celeries coupling e-eye and 

chemometrics [8]. The proposed approaches consist of the analysis of the leaves using a 

microscope, and the subsequent extraction of the colorgrams from the obtained RGB im-

ages. Then, data were analyzed via Sequential preprocessing through orthogonalization 

linear discriminant analysis (SPORT-LDA), sequential and orthogonalized covariance se-

lection linear discriminant analysis (SO-CovSel-LDA), and a class-modeling method 

called soft independent modeling of class analogies (SIMCA). The lowest prediction er-

rors (on the external test set) were provided by SPORT-LDA and SO-CovSel-LDA. This 

approach is particularly interesting because, similarly to the methodology proposed in the 

present work, it allows to classify different ecotypes of celery by means of a green and 

completely non-destructive method. Starting from this point, the present work aims to 

test whether it is possible to develop an FT-IR-based tool for the discrimination of black 

and common types of Italian celeries. In particular, the comparison has been made among 

two different ecotypes of black celery, the Torricella Peligna Black and the Trevi Black, 

and two common cultivars: Elne and Magnum. Finally, the FT-IR profiles have been han-

dled by two classifiers: sequential preprocessing through ORThogonalization (SPORT) 

and soft independent modeling by class analogy (SIMCA). The choice of using FT-IR spec-

troscopy is dictated by the nowadays need of developing more sustainable methods, 

which are possibly faster and require less expensive sample preparation. In fact, the uni-

versal Attenuated Total Reflectance (uATR-) FT-IR instrumentation allows a non-destruc-

tive or semi-destructive analysis; it does not require sample preparation, and it excludes 

the need for chemical reagents (except for minimum quantities of methanol used to clean 

the instrument between measurements). Consequently, the proposed methodology ap-

pears as a green alternative to state-of-the-art methods (mainly chromatographic). The 

two mentioned classifiers have been chosen to test how two different natured approaches 

would behave on this data set, and because they have outperformed in similar contexts 

[9,10]. In the case of the discriminant approach, all the classes have been simultaneously 

investigated. On the other hand, SIMCA models focused on the two local ecotypes of ce-

leries grown in Central Italy.  

The present work aims to demonstrate a different chemical (and, therefore, organo-

leptic) composition among the different celery landraces, assisting in the recognition of 

the peculiarities of the local ecotypes and laying the foundations for their protection. 
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2. Results and Discussion 

Prior to the chemometric analysis, all the spectra were exported from the Spectrum 

software (PerkinElmer, Waltham, MA, USA) and imported in Matlab (R2015b; The Math-

works, Natick, MA, USA). Figure 1 shows all the 320 spectra associated with the different 

samples (left plot) and the mean spectrum of each category (right plot). From the plot, it 

is seen that the diverse types of celery do not present sensibly different absorptions. In 

general, mean spectra show a broad band centered at around 3300 cm−1, attributable to the 

O−H stretching of water, probably overlapping the vibrations associated with the same 

bond in sugars and polyphenols, and to the stretching of the N–H bond in proteins. The 

spectra have peaks also in the range of 2920–2860 cm⁻¹, which can be associated with the 

–CH, –CH2, and –CH3 stretching vibrations in carbohydrates, sugars, and lipids, whereas 

those around 1640 cm−1 are ascribable to the bending of water and to amide I and II in 

proteins. Eventually, peaks in the region of 1200–900 cm−1 can be attributed to C–H and 

C–O, bending modes in polysaccharides (mainly pectic and hemicellulosic components of 

plant cell walls). Other peaks in the range of 1800–1500 cm−1 can be associated with the C–

C skeletal vibrations (approximately around 1600 cm−1) or those associated with the C=C 

bonds in ketones (α,β-unsaturated). In addition, in the range of 1580 cm−1–1540 cm−1, vi-

brations ascribable to C–O bonds in esters can be detected. The C–O stretching vibration 

in glycosidic C–O–C also provides bands around 1100 cm−1 and 1050 cm−1 [11–15].  

 

Figure 1. FT-IR spectra. Plot (A): spectra of all the analyzed samples. Plot (B): mean spectra of sam-

ples belonging to the four classes. Legend: Elne—red line; Magnum—blue line; Torricella—yellow 

line; Trevi—purple line. 

2.1. Chemometric Analysis 

The chemometric analysis consists of a preliminary exploratory investigation made 

by means of PCA. Eventually, the classification of samples according to the botanical 

origin has been carried out following two different strategies. The first one, based on a 

discriminant approach, SPORT-LDA, and the second one, depending on SIMCA. 

2.1.1. Principal Component Analysis  

Initially, a PCA model has been calculated on all the mean-centered IR signals. The 

investigation of the outcome of the PCA, in particular the diagnostic T2 vs. Q, did not 

reveal the presence of outliers or suspicious samples. The analysis of the scores plot did 

not highlight clear clusters related to the four different categories taken into consideration 

(the PCA-scores plot is shown in Figure A1 in Appendix A). Nevertheless, by restricting 

the problem to only two classes, i.e., considering black celery samples vs. the common 

ones, it is possible to recognize some trends. Figure 2A displays the individuals projected 
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onto the space spanned by the first two components; samples of common celery (Elne + 

Magnum) are represented as green dots, while samples of black celery (Torricella + Trevi) 

are shown as blue squares. This representation shows that the objects tend to separate 

along PC2. In fact, except for a certain degree of overlapping, it is possible to note that a 

great part of common samples presents positive values of PC2, whereas the majority of 

black celeries fall at negative values of this component. Comparing these observations 

with the PC2 loading plot (Figure 2B), it is possible to conclude that black celeries are 

characterized by spectral variables in the range of 2916 cm⁻¹–1735 cm⁻¹ (negative variables 

in PC2-loadings), putatively attributable to carbohydrates, water, and sugars. On the op-

posite side, the common ones are characterized by the broad band centered around 3200 

cm⁻¹, and by variables in the range of 1600 cm⁻¹–1000 cm⁻¹, probably associable with a 

different water content and cell wall structure. 

 

Figure 2. PCA. (A) Samples projected onto the space spanned by the first two PCs. Legend: Black 

Celeries—blue squares; Common Celeries—green dots; (B) Loading Plot of PC2. 

2.1.2. Discriminant Classification of Botanical Varieties 

As will be described in Section 3.3, in order to externally validate the classification 

models, all the available samples were divided into a training (or calibration) and a test 

(or validation) set. Sample splitting was carried out in order to ensure the representative-

ness of all classes in the sample space (the reader is addressed to Section 3.3 for more 

details on the splitting algorithm). The training set was elaborated by means of SPORT-

LDA. The tested pretreatments were SNV, first derivative (15 point windows, second or-

der polynomial), and second derivative (15 point windows, third order polynomial). 
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Consequently, the model was calculated on four different predictor blocks. The first mod-

eled block (X1) was the one incorporating mean-centered data, the second block (X2) was 

preprocessed by SNV, and the last ones (X3 and X4) were pretreated by the first and the 

second derivatives. In order to define the optimal complexity of the model, all the possible 

combinations of latent variables (LVs) (between 0 and 10, meaning that 0 corresponds to 

discarding the block) for the different blocks were tested in a seven-fold cross-validation 

procedure. Eventually, the model providing the lowest classification error in cross-vali-

dation (CECV%) was adopted as the predictive one. The chosen calibration model was the 

one built extracting three, nine, and three LVs from the first three blocks, respectively, 

which led to a total correct classification rate in cross-validation of 92.2%. The absence of 

latent variables extracted from X4 indicates that the block pretreated by the second deriv-

ative has been discarded. The application of the optimal calibration model to the test set 

led to the correct classification of 90% of the validation samples. This corresponds to the 

erroneous classification of only 10 test samples out of 100. For class Elne, both sensitivity 

and specificity were 96%; for class Magnum, they were 80% and 99%; for class Torricella 

Black, they achieved 96% and 95%, and for class Trevi Black, they were 88% and 97%. The 

misclassified samples were 1 Elne (predicted as belonging to class Magnum), five objects 

appertaining to class Magnum (two confused with class Elne, two with class Torricella 

Black, and one with class Trevi Black), one Torricella Black sample (predicted as belonging 

to Trevi Black), and three Trevi Black samples (one misclassified with class Elne and two 

with class Torricella Black).  

The inspection of the projection of samples onto the first two canonical variates (CVs) 

(i.e., the directions of maximum separation among classes) [16] shown in Figure 3 reveals 

a good discrimination of the individuals into the four classes. In particular, the first ca-

nonical variate allows the discrimination between class Magnum (blue squares) and class 

Torricella Black (yellow diamonds), at negative values, from class Elne (red dots) and class 

Trevi Black (purple triangles), at positive CV1-scores. On the other hand, the second com-

ponent provides the distinction between the categories coupled along CV1. In fact, class 

Magnum can be discerned by class Torricella Black because the former falls at positive 

values of CV2, whereas the latter at negative CV2 scores. Similarly, class Elne (at positive 

values of the second canonical variate) separates from class Trevi Black (which falls at 

negative values of the second component) along CV2.  

 

Figure 3. SPORT-LDA analysis. Projection of samples onto the first CVs. Legend: class Elne—red 

dots; class Magnum—blue squares; class Torricella Black—yellow diamonds; class Trevi Black—

purple triangles. Filled and empty symbols represent calibration and validation samples, respec-

tively.  



Molecules 2023, 28, 1181 6 of 12 
 

 

SPORT, being a PLS-based method, is compatible with variable importance in the 

projection (VIP) analysis [17]. This variable ranking approach provides an indication of 

the variables contributing the most to the solution of the classification problem. Briefly, 

VIP indices are calculated for each spectral variable, and, customarily, those presenting a 

VIP index higher than one are considered relevant. The spectral variable characterizing 

the four categories has been highlighted in the plot in Figure 4. In the figure, black lines 

represent the mean spectrum of the four classes. Colored variables are those correspond-

ing to VIP indices higher than one. Red variables are associated with class Elne, blue var-

iables with class Magnum, whereas the mustard and purple features refer to class Torri-

cella and class Trevi, respectively. Please note that spectra have been vertically shifted to 

make all of them visible in the same figure. 

 

Figure 4. VIP analysis. Black lines represent the average spectra per class. The upmost line is the 

average spectrum for class Elne. The middle lines are average spectra for class Magnum and class 

Torricella Peligna Black, respectively. The lowest line is the average spectrum for class Trevi Black. 

Bold-colored variables are those corresponding to VIP > 1. 

Looking at Figure 4, it is possible to observe that the relevant variables belong to the 

same spectral ranges in each category, indicating that the major differences among them 

depend on the diverse abundancies of the compounds in the different ecotypes. Celeries 

are characterized by the spectral variables at 2916 cm⁻¹, 2849 cm⁻¹, and 1735 cm⁻¹, i.e., by 

the contribution provided by carbohydrates, lipids, and sugars, by the broad band cen-

tered at 3276 cm⁻¹ and by peaks at 1584 cm⁻¹, 1405 cm⁻¹, 1029 cm⁻¹, and 1007 cm⁻¹, probably 

associable with a different water content and cell wall structure.  

2.1.3. Class-Modeling of Botanical Varieties 

As described in Section 3.2, class-modeling approaches are conceived for the classifi-

cation of individual categories of interest. As a consequence, SIMCA modeling has been 

circumscribed on the two species of black celery. Unlike SPORT, SIMCA does not allow 

ensemble preprocessing; therefore, to test different preprocesses, it is necessary to create 

different models. The tested pretreatments are the same as previously discussed, i.e., bare 

mean-centering (MC), SNV, first derivative (D1), and second derivative (D2). Eventually, 

four different SIMCA models (one for each pretreated block) were created within seven-

fold cross-validation procedures.  

The results obtained and discussed in terms of efficiency in cross-validation are re-

ported in Table 1. The optimal model was chosen by preferring the maximization of this 

figure of merit. In the case of equal/similar efficiencies, the model requiring the minimum 

number of PCs was preferred. 
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Table 1. SIMCA results associated with the modeling of class Torricella Black and class Trevi 

Black. 

Class Torricella Black 

Pretreatment PCs Efficiency (%CV) 

MC 10 74.5 

SNV 11 70.9 

D1 9 80.0 

D2 10 80.0 

Class Trevi Black 

Pretreatment PCs Efficiency (%CV) 

MC 8 80.0  

SNV 11 69.1 

D1 13 70.9 

D2 12 70.9 

As appreciable, the optimal pre-processings are the first derivative and bare mean-

centering for class Torricella Black and class Trevi Black, respectively.  

The application of these models to the test set led to 68% of sensitivity and 85.3% of 

specificity for class Torricella Black and to 84% of sensitivity and 68.0% of specificity for 

class Trevi Black. These results are also graphically shown in Figure 5. From the figure, it 

is clear that, concerning class Torricella Black (top subplot in Figure 5), the model has a 

high specificity (i.e., it properly performs at rejecting samples that do not belong to the 

modeled class), but low sensitivity. On the other hand, the plot associated with the model 

of class Trevi Black shows the opposite trend encountered in this category, i.e., a high 

sensitivity (68% of samples appertaining to the modeled class are correctly accepted) is 

accompanied by a low specificity, resulting in a model which (erroneously) accepts too 

many individuals.  
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Figure 5. SIMCA analysis. Plot (A): model of class Torricella Black; Plot (B): model of class Trevi 

Black. Legend: class Magnum—blue squares; class Torricella Black—yellow diamonds; class Elne—

red dots; class Trevi Black—purple triangles. Filled and empty symbols represent calibration and 

validation samples, respectively. The dashed line delimits the acceptance region. 

3. Materials and Methods 

3.1. Samples 

Four varieties of celery (Apium graveolens L.) were investigated: “Elne”, “Magnum”, 

Torricella Peligna Black, and Trevi Black. The first two types are common varieties of cel-

ery, easily available in (super)markets in Italy, while the latter two are niche types of black 

celery, mainly grown in specific areas of central Italy (Abruzzo and Umbria). Black celery 

from Trevi is protected by the Slow Food Presidia, whereas black celery from Torricella 

Peligna is in the process of being registered in the regional Abruzzo registry of plant bio-

diversity, conceived for in situ or ex situ conservation of varieties at extinction risk.  

Several plants of these four types of celery have been grown in an experimental field 

located in Torricella Peligna (Abruzzo). The seeds were planted on the 12th of May 2021 

and harvested on the 1st of December 2021. It has to be noted that the plants of the 
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different types of celery involved in the study were all grown in experimental fields close 

to the territory of Majella National Park, consequently, under the same soil and climatic 

conditions.  

Eventually, petioles (including leaves) were collected from both the outside and the 

inside of the stalks and stored in a freezer at −18 °C. Prior to the analysis, each single leaf 

sample was left to thaw, and dabbed with absorbent paper. The leaves that showed im-

perfections, spots, or breakage of various kinds were discarded. Before proceeding with 

the analysis, a visual investigation was also carried out to ensure that there was no soil or 

mud on the leaves. Eventually, samples were analyzed by ATR-FT-IR. For each type of 

celery, 80 leaves (from different plants) were analyzed. The analysis took place as de-

scribed in Section 3.2. 

3.2. Collection of ATR-FT-IR Spectra 

The analysis was carried out using an FT-IR spectrometer (PerkinElmer Spectrum 

Two™-PerkinElmer, Waltham, MA, USA). For each measurement, one single leaf was 

placed on the appropriate support of the instrument. The leaf was then pressed on the 

single-bounce diamond (PerkinElmer Universal Attenuated Total Reflectance (uATR) di-

amond crystal), checking that the pressure was approximately the same for each collected 

spectrum. 

The spectral range explored was 4000 cm−1–400 cm−1 (4 cm−1 resolution), and 16 scans 

were collected for each individual sample. The entire data set consisted of 320 spectra (80 

for each type of celery), resulting in a data matrix X of dimensions 320 × 3601. Between 

one leaf and another, the diamond was cleaned with a soft tissue moistened with metha-

nol. After a few minutes of waiting, a sample-free spectrum was collected to check for the 

absence of methanol residues. 

3.3. Chemometric Model-Building and Validation 

The aim of the present work is to classify celery samples according to their type. In 

order to achieve this goal, discriminant and class-modeling methods were used. These 

two different strategies were chosen in order to evaluate how approaches of different na-

tures would behave on the samples under examination.  

Initially, all the available data were investigated using an explorative method in or-

der to unveil trends within them. For this purpose, the principal component analysis 

(PCA) [18] was exploited, which allows the bilinear decomposition of the data matrix X 

according to Equation (1): 

X = TPt + E (1)

where T and P are the scores and the loadings matrix, respectively, and E contains the 

residuals. Briefly, this represents a compression of information into an extremely reduced 

number of latent variables (the PCs), which allows the creation of plots (scores and load-

ings plots) aimed at interpreting the system. 

Subsequently, after the exploratory analysis, and after the verification that there are 

no outliers or suspicious samples, it is possible to proceed with the creation of the classi-

fication models. 

The discriminant classifier used is SPORT-LDA [19], an approach derived from Se-

quential and Orthogonalized Partial Least Squares Linear Discriminant Analysis (SOPLS-

LDA) [20]. SPORT is an ensemble preprocessing method that allows extracting infor-

mation from pre-treated data blocks; eventually, its combination with linear discriminant 

analysis (LDA) [21] endorses classification. The pre-processing methods used were as fol-

lows: Standard Normal Variate (SNV) [22], the first (D1) and the second (D2) derivatives 

calculated employing the Savitzky–Golay approach [23], using 15 point windows, and the 

second and the third order polynomial, respectively. In theory, SPORT allows to model 

any number of predictor blocks. In this case, the investigation was restricted to the meth-

ods that seemed the most appropriate for the data under investigation. Among the various 
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discriminant methods available in the literature, SPORT-LDA was chosen because it has 

several benefits. Among the main ones is its ability to remove the redundancies among 

the analyzed data blocks (this derives from the fact that, before extracting information 

from the different data blocks, they are orthogonalized with respect to the information 

extracted from the already modeled ones). For more details on the SPORT algorithm, the 

reader is addressed to the literature [19,24,25]. 

The second exploited strategy is based on the SIMCA [26], which is one of the most 

widely used class-modeling methods. Given its nature, it is particularly suitable for han-

dling the so-called asymmetric classification problems, i.e., all those situations where the 

interest lies in a particular class. In fact, this approach is based on the individual modeling 

of categories. Very briefly, in order to build a SIMCA model, the first step is to calculate a 

PCA model on the class of interest. Then, the distance from this model and all the inves-

tigated objects is estimated. According to this entity, an individual will be accepted by the 

model (and predicted as belonging to the modeled class) or rejected (and not considered 

part of the category of interest).  

In the present work, the SIMCA-modeled categories are those associated with black 

celeries. Consequently, in Section 2, only the models associated with class Torricella Pel-

igna Black, and class Trevi Black will be discussed. For the algorithm of SIMCA, and de-

tails about its application, the reader can refer to [26,27]. Contrary to SPORT-LDA, where 

the outcome of the analysis is generally provided in terms of total predictive accu-

racy/classification error, in SIMCA, the results are discussed in terms of sensitivity, spec-

ificity, and efficiency. The first entity refers to the percentage of samples correctly accepted 

by the class model; the second represents the percentage of objects properly rejected by 

the class model, while the efficiency is the geometric average between the two. This last 

figure of merit is the one that is investigated in cross-validation in order to decide which 

calibration model is more suitable for the data under examination. 

In order to externally validate the classification models, all the available samples 

were divided into a training (or calibration) and a test (or validation) set. To ensure the 

representativeness of the distribution of samples in the four classes, the Duplex algorithm 

[28] was individually applied to the spectra belonging to every single category. Addition-

ally, 25 objects per class were selected to be part of the test set; consequently, the calibra-

tion set was made of 220 samples (55 per class), and the validation set of 100 spectra. 

4. Conclusions 

The present study investigated the characteristics of four ecotypes of Italian celery. 

To ensure that the observed differences mainly derive from the different types of celery, 

the analyzed plants were all grown in the same experimental field (under the same grow-

ing conditions). The application of both SPORT and SIMCA to the IR signals collected on 

the 320 samples revealed significant differences among the diverse types of celery. Both 

classifiers achieved good accuracies in prediction on the test set; the SPORT-based strat-

egy is the one that allowed obtaining the best results from the predictive point of view. In 

fact, it led to the correct classification of 90% of the validation samples. In general, it is 

possible to conclude that Elne, Magnum, Torricella Black, and Trevi Black celeries have 

different characteristics which are distinguishable by IR analysis combined with SPORT. 

This is an interesting outcome, supporting the fact that the local varieties of celeries grown 

in Torricella Peligna and in Trevi have peculiarities that distinguish them from common 

celeries. 

Author Contributions: Conceptualization, A.A.D., V.D.C., M.D.S., and L.D.M.; methodology, 

A.A.D. and A.B.; software, A.B. and M.F.; validation A.A.D. and A.B.; formal analysis, L.D., M.F., 

and A.B.; investigation, L.D. and M.F.; resources, A.A.D., V.D.C., M.D.S., and L.D.M.; data curation, 

L.D., M.F., and A.B.; writing—original draft preparation, A.B.; writing—review and editing, A.A.D.; 

visualization, A.B. and M.F.; supervision, A.A.D.; project administration, A.A.D., V.D.C., M.D.S., 



Molecules 2023, 28, 1181 11 of 12 
 

 

and L.D.M.; funding acquisition, A.A.D., V.D.C., M.D.S., and L.D.M. All authors have read and 

agreed to the published version of the manuscript. 

Funding: This research was funded by FEASR—PSR Abruzzo 2014/2022 MISURA 19 “Leader” 

SOTTOMISURA 19.2 “Sostegno all’esecuzione degli interventi nell’ambito della strategia di 

sviluppo locale di tipo partecipativo”. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on request from the 

corresponding author. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

A PCA model was calculated for all samples, taking care of the four different 

categories. No clear clusters can be noticed in the PCA-scores plot (Figure A1). 

 

Figure A1. PCA. Samples projected onto the space spanned by the first two PCs. Legend: class 

Elne—red dots; class Magnum—blue squares; class Torricella Black—yellow diamonds; class Trevi 

Black—purple triangles. 
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