
Received 21 August 2023, accepted 14 September 2023, date of publication 18 September 2023,
date of current version 22 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3316602

Top-k Distance Queries on Large
Time-Evolving Graphs
ANDREA D’ASCENZO AND MATTIA D’EMIDIO
Department of Information Engineering, Computer Science, and Mathematics, University of L’Aquila, 67100 L’Aquila, Italy

Corresponding authors: Andrea D’ascenzo (andrea.dascenzo@graduate.univaq.it) and Mattia D’emidio (mattia.demidio@univaq.it)

This work was supported in part by the Italian National Group for Scientific Computation of Istituto Nazionale di Alta Matematica
(GNCS-INdAM).

ABSTRACT Fast extraction of top-k distances from graph data is a primitive of paramount importance in
the fields of data mining, network analytics and machine learning, where ranked distances are exploited
for several purposes (e.g. link prediction or network classification). While investigation on computational
methods to address this retrieval task for regularly sized, static inputs has been extensive, much less is known
when managed graphs are massive, i.e. having millions of vertices/edges, and time-evolving, i.e. when their
structure can grow over time, a scenario that introduces a number of scalability and effectiveness issues
otherwise not arising. Since, nowadays, most real-world applications exploiting top-k distances have to
handle inherently dynamic and rapidly growing graphs, in this paper we present the first dynamic indexing
scheme that supports very fast queries on top-k distances when graphs are massive and incrementally time-
evolving. We assess the scalability and effectiveness of our method through extensive experimentation on
both real-world and artificial graph datasets.

INDEX TERMS Algorithm engineering, dynamic algorithms, k shortest distances, massive graph mining.

I. INTRODUCTION
Mining path-related properties (e.g. distances, communities,
or centrality measures) is considered a fundamental operation
to be performed on graph data, for several reasons. Chiefly,
such model of data is one of the most used in computing
systems, due to its effectiveness in capturing the inherent
networked nature of many domains, and algorithms to
quickly compute such properties represent indispensable
tools in many prominent real-world scenarios where graph
datasets have to be managed [37]. For instance, distances
and centrality measures are largely exploited to accomplish
artificial reasoning and machine learning tasks or for network
optimization purposes, locally connected communities and
eccentricities are employed to support many meaningful
network analytics processes [3], [44], [47], [49], [59],
[60]. Due to such applicability, computational problems
related to the aforementioned properties have been deeply
investigated in the literature, and for most of them efficient

The associate editor coordinating the review of this manuscript and

approving it for publication was Chong Leong Gan .

algorithms, with polynomially-bounded time complexities,
are well-known since decades [28], [37], [57].

Nonetheless, a recent trend of research has been concerned
with the scalability issues that most of such algorithms exhibit
and, in particular, with the poor performance they show
when applied to so-called massive graphs, i.e. graphs having
millions of vertices and edges. In these cases, in fact, (even)
polynomial-time algorithms can often yield unsustainable
running times in practice, which are incompatible with
the requirements of modern data-intensive information sys-
tems [4], [19], [39]. For this reason, and since massive graphs
are pervading computing and data management applications,
researchers and practitioners have been motivated to design
innovative algorithmic strategies to achieve faster solutions
to many computational problems of interest, at least from a
practical viewpoint and/or for special graph classes [4], [8],
[12], [19].

A particularly active area in this context is that dedicated
to the so-called k shortest distances (k-sd) problem which
asks to retrieve, upon a query, the top-k distances for a
pair of vertices of a graph, i.e. the lengths of the k shortest
paths connecting the pair. Fast computation of top-k distances

102228 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-5612-0798
https://orcid.org/0000-0001-7833-9520
https://orcid.org/0000-0002-2951-1192

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

FIGURE 1. Top-1 distance versus Top-k distances for the two black
vertices in three different graphs [3].

from graph data is a primitive of paramount importance in
the fields of data mining, information retrieval, and machine
learning, where ranked distances are exploited for diverse
purposes [3], [22], including networks design/optimization,
speech-recognition, hypertext classification, reconstruction
of metabolic pathways, analysis of gene networks, similarity
searching, link prediction. In general, the problemfinds appli-
cations in all those analytics tasks where classic shortest-path
distances are not enough informative to characterize the
structural properties of a graph dataset. A paradigmatic
example is given by all those real-world scenarios where, due
to the well-known small-world phenomenon, the diameter of
the managed graph is small. As a result, on the one hand
many pairs of vertices are at the same (shortest path) distance.
On the other hand, such pairs typically do not share the
same set of top-k distances (see Fig. 1 for an example).
Hence, based on the distance information alone,many pairs of
vertices (or vertices) could be considered as equally relevant,
which is by no means a realistic assumption; on the contrary,
considering ranked, top-k distances is crucial to address
mentioned analytics tasks with accuracy and effectiveness.
We refer the interested reader to [22] and [44], and references
therein, for a more thorough list of applications relying
on effective computation of top-k distances, including the
prominent setting of high-accuracy link prediction [3], [44].

The reference approach for solving the k-sd problem,
in terms of worst-case time complexity, is Eppstein’s
algorithm [21] which takesO(n+m+k) (O(n log n+m+k),
respectively) time to compute the k shortest distances for a
pair of vertices on an unweighted (weighted, respectively) n-
vertex, m-edge graph. However, despite the polynomial time
complexity, the approach is known to exhibit unsatisfactory
performance, and to scale poorly with respect to the graph
size and the value of k , as it can require up to tens of seconds
to answer a query on the top-k distances for a single pair of
vertices in large graphs [3].

Since in the above-mentioned applications this kind of
queries must be interactively computed for many vertex
pairs on large graphs, the authors of [3] introduce an
algorithmic framework, called k-pll in what follows,
to allow the extraction of top-k distances from massive

graphs with practical running times. The method divides the
computational effort in two steps: (i) in an offline phase,
a one-time preprocessing of the input is performed, with the
aim of computing a compact data structure, named k-2-Hop-
Cover index (k–2hc index or simply k–2hc, for short), that
stores appropriately selected lengths of paths and cycles in
the graph; (ii) at runtime, upon a query on the top-k distances
for a pair of vertices, an appropriate query algorithm, that
takes as input only the k–2hc data structure, is executed to
answer such queries very quickly. Specifically, while in terms
of worst-case query time and space complexities k-pll is not
better than Eppstein’s algorithm, in [3] it is experimentally
shown that k-pll performs very well in practice and enables
answering to top-k distance queries within few microseconds
per vertex pair (thousands of times faster than Eppstein’s
algorithm), at the price of at most few thousands of seconds of
preprocessing time and of storing some GBs of indexing data,
even when graphs have millions of edges. Hence, k-pll is
considered the state-of-the-art for solving the k-sd problem
at scale.

Unfortunately, the solution proposed in [3], as many
similar methods for massive graph processing based on
indexing techniques [17], [19], is not suited to be adopted
in scenarios where the input graph is time-evolving (also
known as dynamic), i.e. when the graph topology and/or
edge weights can change over time. In fact, essentially
all approaches that rely on preprocessing to obtain fast
query answering, do not natively guarantee correctness when
the managed graph grows over time since, even after few
modifications on the input, precomputed data structures
might become obsolete (i.e. no longer properly reflecting the
underlying graph structure) and therefore lead to incorrect
query results [5], [17], [24], [63]. This is the case of the
framework of [3], as it is easy to see how, even after a
single update to the topology of the input graph (e.g. an edge
insertion), an arbitrary number of lengths of paths and cycles,
stored in the index, can become obsolete and therefore
potentially lead to incorrect top-k distances returned by the
query algorithm.

To the best of our knowledge, the only possibility to use
the k–2hc index on a time-evolving network (and hence to
solve the k-sd problem very quickly at scale when graphs
dynamically change) is to recompute the data structure from
scratch after each update to the network occurs. The latter,
however, cannot be considered a viable option in practice
since the precomputation step, though effective, generally
induces non-negligible time overheads, incompatible with
data-intensive applications that rely on ranked distances.

Since, as well-documented in the literature [9], [15], [23],
[32], [54], most real-world applications exploiting ranked
distances deal with inherently dynamic and rapidly growing
graphs, the availability of effective dynamic algorithms, able
to identify and update only the part of the data structure
that is compromised by some graph change faster than the
preprocessing routine, is essential to enable the retrieval of
top-k distances in temporal contexts. Again to the best of our

VOLUME 11, 2023 102229

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

knowledge, nomethod of this kind exists fork-pll and hence
for the k-sd problem at scale, while similar investigations
have been successfully conducted for preprocessing-based
methods for extracting other path-related properties from
large-scale graph datasets [5], [17], [30], [33], [34].
Our Contribution. In this paper, we design dyn-kpll,
an incremental dynamic algorithm that is able to keep
k-2-Hop-Cover indexes updated when graphs can grow over
time, i.e. when they are subject to incremental updates
(vertex/edge insertions, or weight decreases). We prove its
correctness, give its time complexity and present the results of
extensive experimentation, involving both real and artificial
time-evolving graphs, to demonstrate its scalability and
effectiveness.

Specifically, we provide strong empirical evidences of
dyn-kpll: (i) being able to update k–2hc indexes very
quickly, by running several orders of magnitude faster than
the recomputation from scratch, even for massive graphs;
(ii) being capable of preserving the compactness of the data
structure and thus its competitive performance in terms of
time to answer top-k distance queries. Thus, our method can
be considered the first dynamic indexing scheme that natively
supports very fast answers to top-k distance queries in large
time-evolving graphs.

It is worth remarking here that the focus of this work
is on incremental updates only for several reasons, well-
motivated in the literature [5]. Specifically, such updates
are the most frequent types of updates that occur in the
real-world domains where ranked distances are exploited
(e.g. co-authorship, co-occurrence, and interaction networks,
are just few examples of graphs that can only grow over
time, digital social networks are instead an example of
graphs in which decremental updates - removal of edges
or nodes or weight increases - are extremely rarer than
incremental ones); second, no method is known to answer to
top-k distance queries with the same excellent performance
of k-pll under dynamic conditions, without re-executing
a preprocessing routine from scratch, hence designing an
effective incremental algorithm represents a first step toward
using k-pll with time-evolving graphs; third, addressing
incremental updates very often represent the first natural
step to understand the inherent complexity of the problem
of handling generic updates, and to drive the design of
techniques to effectively attack it [17], [24], [43].

A. RELATED WORKS
The problem of computing ranked, top-k distances and paths
has been largely investigated in the last decades, in several
variants and flavors and within various domains of computer
science and engineering. Perhaps the problem that is most
closely related to thek-sd problem and that has been received
similar attention in the literature is the so-called k-Simple
Shortest Paths problem (or kSiSP) which asks to find, upon a
query, the top-k shortest paths, in terms of length, that connect
a given pair of vertices of a graph and are simple, i.e. that do

not self-intersect or contain loops (differently w.r.t. the k-sd
problem where loops must be taken into account, as part of
the graph structure, while computing ranked distances). This
version of the problem finds application in specific domains
such as e.g. data routing for communication networks or
journey planning in transit networks. Despite the evident
similarities with the k-sd problem, the kSiSP is generally
considered computationally harder. In particular, the best
worst-case running time for this problem is that of Yen’s
algorithm [61], which requires O(kn(m + n log n)) time to
compute the top-k simple shortest paths for a vertex pair
of a graph having n vertices and m edges. Such approach
remains, to this day, the reference method to address the
problem, even tough several attempts at improving its running
time has been made in the last forty years. Specifically,
Gotthilf et al. have managed to improve the algorithm
to run in (O(kn(m + n log log n))) worst-case time [29])
and there exists an algorithm that, for undirected graphs
only, yields an O(k(m + n log n)) worst-case running time,
by Katoh et al. [38]. Nonetheless, both methods have been
shown, experimentally, to exhibit a performance in practice
that is similar to that of Yen’s solution, with peak performance
on moderate to large diameter graphs such as square grids
or large road networks in the undirected variant [2], [26],
[50]. Some heuristics, to achieve the computation of top-k
simple shortest paths faster than above mentioned strategies,
at least from a practical perspective, or for special graph
classes or under assumptions on the computational model
(e.g. in distributed settings), have been proposed in the recent
past and are worth being mentioned to complete the overview
on available solutions to the problem, see e.g. [11], [27], [36],
[42], [55], [62], and [64].

However, none of them exhibit the same scalability
properties, and query performance at scale, of methods
based on preprocessing that have been proposed for other
relevant problems of the graph mining domain, such as the
method of Akiba et al. for the k-sd problem [3] or that by
Delling et al. for plain shortest path distance queries [19].
In this sense, designing an algorithmic method to compute
top-k simple shortest paths with small running times per
query (within microseconds, compatible with interactive
applications) when the managed graph is massive, is still
an open problem and represents a very active area of
research [64].
Most successes in the direction of designing scalable

methods for performing graph mining operations on massive
graphs have been obtained through consolidated algorithmic
techniques, such as preprocessing [4], [19], [40], [64],
sampling [6], [15], [53], approximation [7], [9], [14], [46] or
core-level parallelization [18], [35], [50], [58].

Among strategies based on preprocessing, those that rely
on computing indices in the form of vertex labelings have
represented a significant portion of such progress, especially
for path-related problems [63]. In particular, the hub-labeling
technique, originally introduced for connectivity problems
on large graphs by Cohen et al. [13], has been adapted to

102230 VOLUME 11, 2023

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

solve several problems on large graph data: besides the
aforementioned work of Delling et al. for shortest path
distances [19], it is certainly worth mentioning the studies
of: (i) Wang et al. [59], in which hub-labelings are exploited
to accelerate the computation of best routes on timetable
graphs; (ii) Abraham et al. where labelings are combined
with hierarchical strategies to speed-up the computation of
shortest paths in road networks [1]; (iii) Peng et al. in which
a precomputed labeling is exploited to answer reachability
queries up to 5 orders of magnitude faster than state-of-the-
art [52]; (iv) Zhang et al. which adapt hub-labeling techniques
to efficiently retrieve the number of shortest paths (i.e. the
number of paths having the same, which is also the shortest,
length) between any pair of vertices [63].

Essentially all studies on acceleration of algorithms for
large graph mining by precomputation of suited data struc-
tures have been followed by investigations on corresponding
dynamic algorithms to update/maintain such data structures
under dynamic conditions, i.e. when the given input graph is
time-evolving, in order to amortize the time necessary to the
preprocessing (i.e. to avoid the recomputation from scratch
of the data structure) whenever the graph is subject to some
modification. The latter is universally considered a far more
realistic setting with respect to static, non-changing graphs.
Examples include the design and experimental evaluation of
dynamic algorithms for shortest path trees [16], for transitive
closures [30], for centrality measures [9], [58], or for graph-
based timetable models [12].
Similar works have been concerned with the design

and experimental evaluation of dynamic algorithms to
update/maintain labeling based indices, such as e.g.: the
work of Akiba et al. to update 2-hop-cover labelings when
graphs are subject to incremental modifications (edge/vertex
insertions) [5]; the work by D’Angelo et al., which extended
the approach of [5] to handle the fully dynamic scenario
(when the managed graph can undergo also edge/vertex dele-
tions) [17]; and the work of [25] which improved the overall
performance in terms of space and preprocessing/update time
of [5] and [17] by considering an hybrid, landmark-based
strategy that induce larger query times; the studies in [23] and
[24], which have focused on the effect of batch of updates
occurring simultaneously on mentioned hybrid labelings.

Note that, a thorough survey on recent advances in the
field of dynamic graph algorithms has been drawn up by
Hanauer et al. in [31].

II. PRELIMINARIES
In this study we focus on networks that are modeled as a
graph G = (V ,E) with a vertex set V and an edge set
E . We denote by n = |V | (m = |E|, respectively) the
number of vertices (edges, respectively) ofG. To simplify our
discussion, we consider only undirected, unweighted graphs
first. Nonetheless, the method presented in this paper can be
extended to weighted digraphs, as discussed in Section III-A.
A path p = (s = v1, v2, . . . , t = vr) in G, connecting a pair
of vertices s, t ∈ V (its endpoints), is a sequence of r vertices

such that {vi, vi+1} ∈ E for all i ∈ [1, r−1].We call cycle any
path whose endpoints coincide while we call simple a path
with no self-intersections, i.e. without vertex repetitions. An
internal vertex of a path p is a vertex in p different from its
endpoints. The length ℓ(p) of a path p is the number of edges
in p; note that, for non-simple paths, path length considers
possible multiplicities of occurrences of edges. A shortest
path p(s, t), for a pair of vertices s, t ∈ V , is a path having
minimum length among all those inG connecting s and t . The
distance d(s, t) between s and t is the length of a shortest path
p(s, t).
We assume vertices are uniquely represented by integers,

so to enable natural comparisons for any pair u, v ∈ V by
expressions such as u < v or u ≤ v. Given any two vertices
s, t ∈ V , we define: (i) Pst to be the set of paths connecting s
and t inG; (ii)P>v

st to be the set of paths inPst whose internal
vertices are all larger than v, for some v ∈ V ; (iii) P≯v

st to be
the set of paths in Pst such that at least one internal vertex
is smaller than or equal to v. Furthermore, we call pi(s, t) the
i-th shortest path between s and t , that is the i-th element in
Pst , sorted in non-decreasing order according to path lengths,
and use di(s, t) = ℓ(pi(s, t)) to refer to the i-th shortest
distance for pair s, t , i.e. the length of the i-th shortest path
in Pst . Similarly, we use d>v

i (s, t) (d≥vi (s, t) and d≯v
i (s, t),

respectively) to refer to the i-th shortest distances when
paths are restricted to consider only internal vertices that are
larger (larger than or equal to and not greater, respectively)
than some v ∈ V . Similarly, we use p>v

i (s, t) (p≥vi (s, t),
respectively) to refer to the corresponding i-th shortest paths,
and d>v(s, t) = d>v

1 (s, t) (p>v(s, t) = p>v
1 (s, t), respectively)

to refer to the distance (a shortest path inducing such distance,
respectively) subject to the same restrictions on vertices.
Finally, we call degv the degree of a vertex v ∈ V , that is
the number of neighbors {w : (v,w) ∈ E} of v. We use deg>v

v
to denote the number of such neighbors > v.

A. K SHORTEST DISTANCES PROBLEM
Given a graph G = (V ,E), an integer k ≥ 1, and a pair of
vertices s, t ∈ V , the k shortest distances (k-sd) problem
asks to compute the setDk

st = {d1(s, t), d2(s, t), . . . , dk (s, t)}
of the k shortest distances between s and t in G. The
framework of [3] is the state-of-the-art approach to address
the k-sd problem at scale. It is based on the computation
of a data structure called k-2-Hop Cover index, which
is a generalization of the 2-Hop Cover index, originally
introduced in [4], and defined as follows.
Definition 1 (k-2-Hop Cover Index): Given a graph G =

(V ,E), define, for each vertex v ∈ V: (i) a length label L(v),
containing pairs (u, δuv) where u ∈ V and δuv is the length of
a path from u to v; (ii) a loop label C(v), storing a sequence of
k integers (δ1, δ2, . . . , δk) representing lengths of cycles in G
that include vertex v. Then, the pair I = (L,C), where L =
{L(v)v∈V } and C = {C(v)}v∈V , is called a k-2-Hop Cover
index of G.

VOLUME 11, 2023 102231

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

A k-2-Hop Cover index is often referred to as k-2-Hop Cover
labeling or simply as k-2-Hop Cover (k–2hc for short); we
use these notations interchangeably and refer to elements
in the labels as entries. Depending on the entries stored in
a k–2hc, such data structure can be used to solve the k-
sd problem correctly or not. Specifically, this hold when
the index satisfies the so-called k-cover property, which we
define as follows:
Definition 2 (k-Cover Property): Given k–2hc I =

(L,C) of a graph G = (V ,E), let QUERY(I , s, t) denote a
query on I for a pair of vertices s, t ∈ V , that returns the
smallest k elements from multiset 1(I , s, t) = {δvs + δvv +

δvt |(v, δvs) ∈ L(s), δvv ∈ C(v), (v, δvt) ∈ L(t)}. Then, I
satisfies the k-cover property if and only if, for any s, t ∈ V ,
we have QUERY(I , s, t) = {d1(s, t), d2(s, t), . . . , dk (s, t))}.
In other words, an index satisfying the k-cover property for
a graph G allows to retrieve the k shortest distances in G,
for any pair of vertices s, t ∈ V , by a query on the index
that selects the smallest summations in 1(I , s, t), obtained
by properly combining values of lengths of paths and cycles.
Specifically, such combinations are obtained by summing the
length of a path from s to some vertex v, the length of a cycle
on v, and the length of a path from v to t . We say index
IcoversG whenever I satisfies the k-cover property for G.
Any vertex v that form one of the k smallest combinations
in 1(I , s, t) is called a hub vertex for pair s, t , for any
s, t ∈ V . Clearly, whenever a pair s, t is disconnected in
G then di(s, t) = ∞∀i ∈ [1, k] and QUERY(I , s, t) returns
a single. default infinity value whenever there is no vertex
v ∈ V such that (v, δsv) ∈ L(s), δvv ∈ C(v), (v, δtv) ∈ L(t).
An example of k–2hc I = (L,C) covering a graph is shown
in Figure 2. The size of the index is defined to be the total
number of entries in all labels, both of length and loop type,
and it can be easily shown that computing a k–2hc covering
a graph and having minimum size is NP-hard: this follows
from the hardness of computing a minimum sized 2-hop
cover index [13]. Moreover, computing a k–2hc having size
O(kn2) can be easily achieved by, e.g., O(n2) executions of
the Eppstein’s algorithm.

To the best of our knowledge, no algorithm is known for
computing a k–2hc with a guarantee on the approximation
on the size of the index. The method in [3] however
achieves practical performance, in terms of trade-off between
preprocessing time, index size and query time, and is
currently considered the most effective framework to solve
the k-sd problem for large graphs. Such method is based on
precomputing a k–2hc that covers a given input graph by
(i) sorting vertices according to some easy-to-compute cen-
trality measure (e.g. degree); (ii) filling both loop and length
labels progressively, by performing appropriately modified
visits of the graph, each rooted at a different vertex of the
graph, following the established sorting; (iii) incorporating
a stopping criterion that prunes the searches whenever no
length, shorter than those already stored, can be found. The
preprocessing strategy to build a k–2hc is summarized in
Algorithm 1 and consists of two main sub-routines, named

mod-bfs and prun-ksd, given in Algorithms 2 and 3,
respectively.

Algorithm 1 Algorithm k-pll
Input: Graph G = (V ,E), integer k > 0, vertex

ordering v1, v2, . . . , vn
Output: k–2hc I covering graph G

1 for i = 1 . . . n do /* Computation of Cycle
Labels */

2 C(vi)← mod-bfs(vi, k);
3 for i = 1 . . . n do /* Computation of Length
Labels */

4 L(vi)← prun-ksd(vi);
5 return I = ({C(v)v∈V }, {L(v)v∈V });

Algorithm 2 Sub-Routine mod-bfs of Algorithm 1
Input: Vertex v ∈ V , integer k > 0
Output: Loop label C(v)

1 C(v)← ∅;
2 foreach t ∈ V do visited[t]← 0;
3 visited[v]← 1;
4 Q← {(v, 0)};
5 while Q ̸= ∅ do
6 Dequeue (x, δ) from Q;
7 visited[x]← visited[x]+ 1;
8 if x = v then Add δ to C(v);
9 if visited[x] < k then

10 foreach w ∈ V such that (x,w) ∈ E ∧ w ≥ v do
Enqueue (w, δ + 1) into Q;

11 return C(v);

Algorithm 3 Sub-Routine prun-ksd of Algorithm 1
Input: Vertex v ∈ V , integer k > 0
Output: Length label L(v)

1 L(v)← ∅;
2 Q← {(v, 0)};
3 while Q ̸= ∅ do
4 Dequeue (x, δ) from Q;
5 if δ < max{d : d ∈ QUERY(I , v, x)} then
6 Add (v, δ) to L(x);
7 foreach w ∈ V such that (x,w) ∈ E ∧ w > v do

Enqueue (w, δ + 1) into Q;
8 return L(v);

Procedure mod-bfs (prun-ksd, respectively) computes
loop (length, respectively) labels by performing visits of the
graph, each starting from a different vertex vi, following
the vertex sorting, that traverses only vertices larger than
or equal to (larger to, respectively) vi. The construction
guarantees that: (i) lengths in L(v), associated with a vertex
u, form the sequence (d>u

1 (u, v), d>u
2 (u, v), . . . , d>u

l (u, v))

102232 VOLUME 11, 2023

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

FIGURE 2. A k–2hc I = (L, C) of a graph. Vertex IDs are assigned in non-increasing order
of degree [19].

of the 1 ≤ l ≤ k shortest lengths induced by
paths whose internal vertices are larger than u and that
are shorter than d≯u

k (u, v); (ii) lengths in C(v) form the
sequence (d≥v1 (v, v), d≥v2 (v, v), . . . , d≥vk (v, v)) of the lengths
of k shortest cycles in G that include v and vertices larger
than or equal to v. Properties (i) and (ii), combined, guarantee
that the resulting k–2hc satisfies the k-cover property. It is
easy to observe that the running time of Algorithm 1 is
O(nkl(n + m)), if l is the maximum number of entries in
any label [3]. Note that, in the reminder of the paper, for the
sake of brevity, we use acronym k-pll also to refer to the
preprocessing routine of the framework, i.e. Algorithm 1.

B. TIME-EVOLVING SCENARIOS
We assume we are given an initial graph, say G = (V ,E),
and that such graph can undergo incremental modifications
(i.e. vertex/edge insertions) for G (i.e. the graph is time-
evolving). We focus on the incremental k-sd problem which
asks, given an incremental modification x (e.g. the insertion
of an edge e ̸∈ E) occurring on G, to compute the set Dk

st =

{d ′1(s, t), d
′

2(s, t), . . . , d
′
k (s, t)} of the k shortest distances

between s and t inG′, for some s, t ∈ V ′, whereG′ = (V ′,E ′)
is the graph obtained by applying x to G (e.g. by inserting e
into E). Clearly, such problem can be solved, with the same
complexity and practical performance, by any algorithm that
solves the static counterpart of the problem without relying
on preprocessed data (e.g. [21]), as it suffices to execute such
algorithm on G′, after a change, for the given pair. However,
if preprocessed data are exploited to achieve superior query
performance, as in the k-pll framework, then solving the
incremental k-sd problem requires updating such data in
order to preserve the correctness of the approach, which
translates into the definition of the following problem.
Definition 3 (Incremental k–2hc Problem): Given a

graph G = (V ,E) and a k–2hc I covering G. Let x be an
incremental modification of G and let G′ = (V ′,E ′) be graph
obtained by applying x to G. Then, the incremental k–2hc
problem asks to compute a k–2hc I ′ that covers G′.
To the best of our knowledge, the only known way to address
the incremental k–2hc problem is to recompute from scratch
a k–2hc I ′ covering G′ via k-pll. However, this induces

Algorithm 4 Algorithm dyn-kpll
Input: Graph G = (V ,E), k–2hc I = (L,C) covering

G, integer k > 0, edge (x, y) ̸∈ E , vertex ordering
v1, v2, . . . , vn

Output: k–2hc I = (L,C) covering G′ = (V ,E ′),
(x, y) ∈ E ′

1 Compute aff-set as in Eq. 1;
2 foreach v ∈ aff-set do /* Update Cycle
Labels */

3 C(v)← mod-bfs(v, k)
4 foreach (v, δvx) ∈ L(x) do /* Update Length
Labels */

5 resume-pksd(v, y, δvx)
6 foreach (v, δvy) ∈ L(y) do
7 resume-pksd(v, x, δvy)

large time overheads. Thus, in the next section we introduce
a dynamic algorithm to cope with such problem without
executing the preprocessing on each updated graph. Observe
that, if the change to be managed is a vertex insertion, this can
be modeled and handled as a sequence of edge insertions to a
newly inserted vertex [17]. Therefore, in what follows, again
for the simplicity of the description’ sake, we focus on graphs
subject to edge insertions only. In the reminder of the paper,
we will use d ′j (s, t) = ℓ(p′i(s, t)) to denote the j-th shortest
distance, 1 ≤ j ≤ k , for a pair s, t in a graph G′ whenever the
meaning is clear from the context.

III. DYNAMIC ALGORITHM
In this section, we introduce our new method, called dyn-
kpll, to solve the incremental k–2hc problem.

The main routine (see Algorithm 4), takes as input a graph
G, for which an index I = (L,C) coveringG is available, and
an incremental update (the insertion of an edge e = {x, y})
for G. Let G′ the graph obtained by inserting e into G; then,
the algorithm updates I to obtain an index I ′ = (L ′,C ′),
which covers G′, by separately performing the update of the
loop labeling C and of the length labeling L. Specifically,
first the update of C is performed. To this aim, the procedure

VOLUME 11, 2023 102233

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

Algorithm 5 Sub-Routine resume-pksd of Algorithm
4
Input: Vertex v ∈ V , endpoint u ∈ {x, y} of inserted

edge, length lu of path from v to u induced by the
insertion

Output: Updated L(w) for any affected vertex w ∈ V
1 Q← (u, lu + 1);
2 while Q ̸= ∅ do
3 Dequeue (w, δ) from Q;
4 if δ < max{d : d ∈ QUERY(I , v,w)} then
5 L(w)← L(w) ∪ (v, δ);
6 foreach z ∈ V such that (w, z) ∈ E ∧ z > v do

Enqueue (z, δ + 1) into Q;

identifies any vertex v for which at least one length in C(v)
may be incorrect due to the change, i.e. any vertex such that
C(v) does not contain (d ′≥v1 (v, v), d ′≥v2 (v, v), . . . , d ′≥vk (v, v)).
This is done by computing a set aff-set, defined as:

aff-set = {v ∈ V : d>v(v, x) ≤ k ∨ d>v(v, x) ≤ k}∩

{v ∈ V : v ≤ min(x, y) ∧ deg>v
v < k}. (1)

Such set contains any vertex v: (i) which is connected to either
x or y by a shortest path not longer than k and whose internal
vertices are greater than v; (ii) whose set of neighbors greater
than v has size smaller than k . For each of such vertices,
previously found cycle lengths are removed from the loop
labels and new ones are computed via procedure mod-bfs.

Then, the algorithm continues with the update of L, which
is achieved by a strategy inspired by the dynamic algorithm
of [5]. Essentially, the underlying idea is to resume visits
of the graph, rooted at specific vertices, and to prune such
visits under certain conditions, in order to update only the
length labels of vertices that are affected by the edge insertion.
A vertex is said to be affected by an insertion if at least
an entry must be added to the corresponding length label
in order to guarantee that the resulting k–2hc I ′ covers
the new graph G′. Such resumed visits are performed by
procedure resume-pksd, shown in Algorithm 5, and mimic
those performed by routine prun-ksd. More specifically, the
update procedure and its pruning mechanism are based on
the following observation: if any of the k shortest distances
between two vertices s and t changes, then any new value
of distance that becomes part of the top-k shortest distances
for the pair must be induced by paths from s to t passing
through the new edge e in the new graph. Hence, the update
procedure must process the graph, after the edge insertion,
in order to find those vertices s for which the above condition
holds toward some other vertex t , since its length label must
be updated to store lengths of paths that induce new distances
in the top-k set, and to limit the visit of the graph to such
vertices only.

The above is done in two steps: first, we identify candidate
pairs of vertices for which at least one value in the set of top-k
shortest distances might change because of the new arc. This

is achieved by scanning the length labels of the two endpoints
of the newly inserted arc. Then, we start BFS-like visits,
rooted at vertices that are in such length labels, from either
of the two endpoints, and incorporate in such visits a pruning
strategy that stops the traversing of the graph, at some vertex,
once no more shortest distances induced by paths passing
through said vertex can be found.

Now, w.l.o.g, we describe the details of the procedure for
one endpoint only, say x, as it is symmetric for the other. The
algorithm starts by scanning the length label of x and, for
each pair (v, δvx) ∈ L(x), we execute procedure prun-ksd,
that takes as inputs vertices v and y, and value δvx . Such
routine ‘‘resumes’’ a visit, rooted at v, starting from vertex
y and extending a path to x of length δvx . This is done by
initializing a suited queue and by exploring the graph in a BFS
fashion. Whenever a vertex w, together with its path length
δ, is dequeued we test whether the maximum value returned
by QUERY(I , v,w) is larger than δ, to evaluate whether any
of the k shortest distances to w are shortened by the edge
insertion. If this is the case, we add entry (v, δ) to L(w), which
corresponds to the shorter length induced by the new path,
and continue the search towards neighbors of w having order
greater than the root v. On the other hand, if δ is not less than
the values returned byQUERY, than the visit fromw is pruned.
The procedure terminates when either all branches of the visit
are pruned at some vertex or when the queue becomes empty.
Figure 3 shows the result of the execution of algorithm dyn-
kpll on the k–2hc of Figure 2.
Observe that it can be shown that algorithm dyn-kpll is

able to correctly solve the incremental k–2hc problem, i.e.
it is able to update a k–2hc index I , covering a graph G,
to a k–2hc index I ′, covering graph G′, which is the graph
obtained by inserting an edge into G. Note that, I ′ satisfying
the k-cover property on G′ implies that I ′ can be used to
correctly answer to top-k distance queries on G′ (i.e. to solve
the incremental k-sd problem). More specifically, we can
prove the following result.
Theorem 1: Given a graph G and a k–2hc index I =

(C,L) covering G, let G′ be the graph obtained by inserting
an edge e ̸∈ E into G. Call k–2hc I ′ = (C ′,L ′) the updated
k–2hc computed by Algorithm 4. Then, I ′ = (C ′,L ′)
satisfies the k-cover property for G′.
Let e = (x, y) the edge inserted into G. The proof is

divided in two parts: (a) first, we show that C ′(v) is correct,
i.e. contains lengths (d ′≥v1 (v, v), d ′≥v2 (v, v), . . . , d ′≥vk (v, v)) for
any v ∈ V ; (b) then we prove that I ′ = (C ′,L ′)
satisfies the k-cover property for G′ by showing that the
length label L ′(t) of any vertex t contains the sequence
(d ′>s1 (s, t), d ′>s2 (s, t), . . . , d ′>sl (s, t)) of the 1 ≤ l ≤ k
shortest lengths induced by paths whose internal vertices are
larger than s, for any s ∈ V such that s < t , that are shorter
than d≯s

k (s, t).
Concerning (a), observe that the only step of dyn-kpll

that alters loop labels is line 3. Since we employ the
mod-bfs sub-routine, which computes lengths (d ′≥v1 (v, v),
d ′≥v2 (v, v), . . . , d ′≥vk (v, v)) when invoked on a vertex v [3],

102234 VOLUME 11, 2023

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

FIGURE 3. Result of executing dyn-kpll on the k–2hc of Figure 2 after inserting edge
(v2, v6). New entries are underlined.

and since we execute such routine for each vertex in set
aff-set, in order to prove (a) it is sufficient to show that
C ′(w) = C(w) for vertices w ̸∈ aff-set. To this end,
by contradiction assume that C ′(w) is not correct for some
vertex w ̸∈ aff-set, i.e. if we take the k shortest values
in C ′(w), say l1, l2 . . . , lk , then there exists one value li for
some i ∈ [1, k] that is longer than the length of one of the
k shortest cycles in G′, say c, that includes w and vertices
larger than or equal to w. Clearly c must include edge e,
as otherwise its length would already be in C(w). Now, notice
that any vertex w ̸∈ aff-set is such that either (i) both
d>w(w, x) ≥ k + 1 and d>w(w, y) ≥ k + 1, for some
shortest path p>w(w, x) and p>w(w, y), resp., since any vertex
w ∈ aff-set satisfies w ≤ min(x, y), or (ii) deg>w

w ≥ k (see
line 1). Consider (i): any cycle including edge e and vertex w,
whose vertices are larger than or equal to w, must be at least
2k + 3 long. This value of length is higher than all lengths
2, 4, . . . , 2k of the (at least) k cycles that are induced by the
traversal, back and forth, in a BFS order and starting from
w, of any sub-path of length at most k of either p>w(w, x) or
p>w(w, y). Hence, we reach a contradiction. For case (ii) a
similar argument can be applied. In fact, if a vertex w is such
that deg>w

w ≥ k , then the k shortest cycles on w are given by
paths of length 2 obtained by traversing back and forth any k
edges incident tow.We have thus reached a contradiction also
here, since the new edge e does not contribute to the shortest
cycles on w, i.e. C ′(w) = C(w), and this concludes the proof
of (a).

We now focus on (b) and distinguish two cases: s /∈ L(x)∪
L(y) or s ∈ L(x) ∪ L(y). Assume that s and t are connected
in G, as viceversa shortest distances are infinity in both G
and G′ and the claim trivially follows. In the first case, i.e.
s /∈ L(x)∪L(y), we have that s is not hub vertex inG for any of
the k shortest distances from s to both x and y, and that either
s is not connected to x and y, or any hub vertex for such pairs,
say h, is such that h < s. In the former sub-case, no path in G
from s to t passes through x and y, hence the same holds for
G′, since the only difference is the insertion of e, and the claim

follows. In the latter sub-case, instead, we have that any hub
vertex, say h, for pairs s, x and s, y, is such that h < s. This
implies that all paths in G, inducing the k shortest distances
from s to x, y, have an internal vertex that is smaller than s.
Therefore none of the k shortest paths inG from s to t , whose
internal vertices are larger than s (if any), passes through x or
y. Thus, the corresponding shortest distances are not changed
by the insertion and the claim again holds.

We now consider the second case, i.e. s ∈ L(x)∪L(y), and
prove the statement for sub-case s ∈ L(x) only, as the proof
is symmetric for sub-case s ∈ L(y). Suppose by contradiction
that s ∈ L(x) but lengths in L ′(t), associated to s, do not
form the sequence (d ′>s1 (s, t), d ′>s2 (s, t), . . . , d ′>sl (s, t)) of the
1 ≤ l ≤ k shortest lengths induced by paths whose internal
vertices are larger than s and that are shorter than d≯s

k (s, t).
Let γ1, γ2, . . . , γl be the sequence of the first l ≥ 0 lengths
associated to s in L ′(t) and let γi be i–th smallest value
in this sequence such that γi ̸= d ′>si (s, t). Specifically,
observe that since we are inserting an edge, we have that
d ′>si (s, t) < d>s

i (s, t) hence γi > d ′>si (s, t) can only be
an overestimation of the true value d ′>si (s, t) (and clearly
this holds also if s /∈ L(t) as in that case d>s

1 (s, t) = ∞
by hypothesis). Moreover, the path inducing d ′>si (s, t), say
p′>si (s, t), must contain edge e, as otherwise we would have
γi = d ′>si (s, t). We can thus divide the path p′>si (s, t) as
p′>si (s, x), {x, y}, p′>si (y, t). Since s ∈ L(x), we have that an
execution of procedure resume-pksd is started, rooted at s,
by enqueueing (y, δsx+1) toQ for each length δsx in entries of
L(x) associated to s. Now, consider the value δsx induced by
the path p′>si (s, x), which is such that (s, δsx) ∈ L(x), since I
coversG. Then, it is easy to show, by induction on the lengths
of paths induce by the visit, that procedure resume-pksd
rooted at s, with (y, δsx + 1) enqueued into Q as initial step,
will not be pruned neither in y nor in any of the vertices
in p′>si (y, t), including t , leading to a contradiction. In fact,
suppose that at some vertex w at distance δsw in the path
p′>si (y, t) the visit is pruned. Since the path traverses only
vertices whose order is higher than s, it must be the case

VOLUME 11, 2023 102235

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

that δsw is larger than any of the top-k distances from s to
w, provided by the current index. This implies that, in G′,
there exist k distances (d ′≯s

1 (s, t), d ′≯s
2 (s, t), . . . , d ′≯s

k (s, t)),
induced by the k shortest paths from s to w concatenated
to path p′>si (w, t), whose total length is less than d ′>si (s, t),
which is clearly a contradiction. Therefore, it follows that no
vertex on p′>si (y, t) is pruned during routine resume-pksd,
which eventually adds entry (s, d ′>si (s, t)) to L ′(t). □
Concerning the time complexity of dyn-kpll, we can

prove the following result, expressed in an output bounded
sense, a commonly done for dynamic algorithms in the
literature [5], [17].
Theorem 2: Let I = (L,C) be a k–2hc covering a graph

G and let l the maximum number of entries in any length label
of I . Given an edge insertion x on G, let G′ be the graph
obtained by applying x to G. Then, algorithm dyn-kpll
takes O(kl2s+ rkc) time to update I to a k–2hc I ′ covering
G′ where r, s and c denote the cardinality of aff-set, the
maximum size of the subgraph visited during any execution
of resume-pksd and mod-bfs, respectively.
Observe that dyn-kpll invokes resume-pksd at most k

times for any vertex v ∈ L(x) (v ∈ L(y), resp.). Notice also
that, in any given execution ofdyn-kpll, the number of such
vertices (hence calls to resume-pksd) is β = |L(x) ∪ L(y)|
and that, clearly, β is at most l. Each execution, moreover,
in the worst-case takes O(ls) time to perform QUERY on
each visited vertex. Thus, the total running time required to
update the length labeling by performing β times procedure
resume-pksd is O(β(kls)). Finally, line 3 is executed at
most r times, each requiring O(kc) time. Since set aff-set
is computed in O(r + c) time, the total running time is
O(β(kls)+ r(kc)) = O(kl2s+ rkc), since β = O(l). □

It is easy to notice that the time complexity of dyn-kpll
is in the worst-case, asymptotically speaking, larger than
that of k-pll, as l and r are O(kn) and O(n), respectively,
while s and c are O(m). However, our experimentation shows
that, in practice, such values are by far smaller than the
worst case. Moreover, since dyn-kpll preserves the k-cover
property, one can repeatedly solve the incremental k–2hc
problem for sequences of modifications of arbitrary length
σ inO(σ (kl2s+ rkc)) time, by updating σ times the index via
dyn-kpll.

A. GENERALIZATIONS
In what follows we briefly discuss on how both k-pll
and dyn-kpll can be extended to handle general, possibly
weighted, digraphs.

1) DIRECTED GRAPHS
In this case, a k–2hc stores three labels for each vertex
v ∈ V , to consider edge orientations: (i) C(v), storing lengths
of (now oriented) cycles; (ii) Lin(v), containing lengths of
paths that terminate into v; (iii) Lout (v), containing lengths of
path emanating from v. The preprocessing phase is adapted to
consider both directions and to run twice the preprocessing

routine, one in G and one in the transpose graph of G. The
visits are pruned by performing properly oriented queries,
that combine lengths of paths emanating from s, cycles on hub
vertices v, and lengths of paths terminating into t , for a pair
s, t . Similarly, dyn-kpll can be adapted to handle directed
graphs by executing prun-ksd twice, once in G and once
in the transpose graph of G, and by identifying vertices v in
aff-set (line 1 in Algorithm 4) as in Eq. 1 that also have a
path p≥x(v, x) (p≥x(v, y) resp.) of length at most k .

2) WEIGHTED GRAPHS
In this case, label entries store weights of cycles and paths,
rather than lengths, which are the sums of the weights of
the edges they are formed of. To build a k–2hc in this
setting, one has to apply weighted versions of bothmod-bfs
and prun-ksd, where the exploration is performed in
a Dijkstra’s algorithm fashion (i.e. by using a priority
queue and by assigning priorities on the basis of path/cycle
weights [20]). Similarly, dyn-kpll can be adapted to handle
general incremental changes to the graph, including weight
decreases, by: (i) resuming weighted versions of mod-bfs
and prun-ksd from, resp., vertices in aff-set (line 1
in Algorithm 4) and vertices in the length labels of the
updated edge endpoints (lines 4 and 6 in Algorithm 4). The
upper bound used to identify vertices in aff-set (line 3 in
Algorithm 4) is replaced by kW , whereW is the largest edge
weight in the graph.

IV. EXPERIMENTAL EVALUATION
In this section, we describe the experimental evaluation we
conducted to assess the performance of dyn-kpll.

A. EXPERIMENTAL SETUP
We implemented both k-pll and dyn-kpll; all our code
is written in C++ and compiled with GCC 9.4.0 with
optimization level O3.1 All tests have been executed on a
workstation equipped with an Intel© Xeon© CPU E5-2643
3.40 GHz and 128 GB of RAM, running Ubuntu Linux.
As inputs to our experiments, inspired by other experimental
studies on graph algorithms [3], [19], [63], we consider a
large collection of both real-world and artificial graphs. The
former were taken from publicly available repositories [41],
[45], [51], [56] and include graphs representing networks
of various application domains of interest (e.g. web graphs)
with heterogeneous densities and topologies. The latter were
produced via well-established generation models, such as
Erdős-Rényi and Barabási-Albert [10]. More details on
used inputs, including number of vertices and edges, type
(real-world or synthetically generated), average degree, and
diameter (denoted by 0), are reported in Table 1. Graphs are
sorted from top to bottom according to |V |.

1Publicly available at https://github.com/D-hash/IncrementalK2HC

102236 VOLUME 11, 2023

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

TABLE 1. Overview of input graphs.

TABLE 2. Results of the rand-ins experiment, k = 2 and k = 4.

1) EXECUTED TESTS
For parameter k , our experimental trials use values as in [3],
namely k ∈ {2, 4, 8, 16}, since (i) the range is relevant to the
applications domains of interest; (ii) evaluating performance
indicators across doubling values of the parameter magnifies
the observed changes in the algorithms’ behaviors [48]. For
each input graph G and value of k , we perform three types of
experiments, depending on how edges to insert are selected.

2) EXPERIMENT RAND-INS
In this experiment, we first execute k-pll to compute a
k–2hc index I covering G. Then, we select uniformly at
random, for σ > 0 times, two vertices x, y that are not
adjacent in the graph, add edge (x, y), obtain a graph G′, and
rundyn-kpll to update index I to I ′ coveringG′. Eventually,
we compute from scratch a k–2hc index I ′′ covering the
last snapshot of the graph via k-pll. The purpose of this
setting is to evaluate the algorithm’s behavior regardless of
the probability of an insertion to occur.

3) EXPERIMENT SEMI-REAL
In this experiment, we start by removing σ > 0 edges,
selected uniformly at random, from a graph G to obtain a
graph Ginit . We compute a k–2hc index I covering Ginit via

k-pll and then re-insert, one after the other, the σ sampled
edges, until such removed edges are all re-inserted and the
original graphG is restored. After each insertion we rundyn-
kpll to update the index to an index I ′ covering the graph
G′ comprising the insertion. Finally, we execute k-pll to
compute from scratch a k–2hc index I ′′ covering G. The
purpose of this setting is to assess the algorithm’s behavior
in a semi-realistic context, where insertions are sampled to
follow the distribution induced by edges that are actually in
the graph at some point of its evolution.

4) EXPERIMENT TEMPORAL
In this experiment, we consider real-world graphs whose
historical evolution is known in the form of timestamps,
defining the order in which any edge has been added to the
graph. For each dataset of this kind (identified by the flag
temporal in Table 1), having a total of η edges, we start by
considering the graph G to be a snapshot of the dataset with
η − σ > 0 edges and by computing a k–2hc I covering G
via k-pll. Then, we proceed by adding the σ edges in the
order dictated by the timestamps and by running dyn-kpll,
after each insertion, to update index I to I ′ covering the graph
G′ containing the insertion. Eventually we execute k-pll to
compute a k–2hc index I ′′ covering the final graph, as in the

VOLUME 11, 2023 102237

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

TABLE 3. Results of the rand-ins experiment, k = 8 and k = 16.

TABLE 4. Results of the semi-real experiment for k = 2 and k = 4.

previous settings. The purpose of this setting is to evaluate
the algorithm’s performance in real-world scenarios.

In all mentioned experiments, at the end of the σ insertions
(each followed by an execution of dyn-kpll), and after
the final execution of k-pll, we perform 105 top-k distance
queries on both I ′ and I ′′ and measure average query times.
We also measure sizes of indexes I ′ and I ′′, preprocessing
time to build I ′′ from scratch via k-pll, and running time for
obtaining each updated I ′ time via dyn-kpll. In all trials
vertex ordering is established according to non-increasing
values of vertex degree, while σ is set to 10 000, since
this induces significant changes to the topology of all
considered input graphs, and solicits boundary conditions for
the algorithm under study.

B. ANALYSIS
The results of our experimentation are summarized in
Tables 2–3 (rand-ins), Tables 4–5 (semi-real) and
Tables 6–7 (temporal). For each input graph G, we report:
(i) computational time (column CT, in seconds), that is
running time of k-pll to rebuild the index and average
running time of dyn-kpll to update the index after each
insertion, resp.; (ii) average speed-up, that is average ratio of
the running time of k-pll to rebuild the index to the running
time of dyn-kpll to update the index, after each insertion;
(iii) index size, that is size of the index recomputed via k-pll
and size of that updated via dyn-kpll after all insertions,

resp. (column IS, expressed in MBs); (iv) average query time
for performing the 105 queries on the index recomputed via
k-pll and on that updated bydyn-kpll after each insertion,
resp. (column QT, in microseconds). Rows are sorted top-to-
bottom according to graph order, i.e. |V |.

1) SPEED-UP AND SCALABILITY
Our data show that, despite the worst-case time complexity
of Thm. 2, dyn-kpll is extremely fast in updating indexes
even for the largest inputs and values of k , and outperforms
the recomputation from scratch by k-pll in all experimental
trials by orders of magnitude, regardless of graph size,
density, diameter and k . More in details, the observed
speed-up by dyn-kpll is minimum when the value of
k approaches the graph diameter, where dyn-kpll is,
on average, more than two orders of magnitude faster than
k-pll (see Tables 3–5, for k = 16), and it increases on
large networks where dyn-kpll is up to tens of thousands
times faster than k-pll (see e.g. graph ytb in Table 2 where
k-pll requires ≈ 13 minutes to build the index, while
dyn-kpll updates it in≈ 5 hundredths of a second, or graph
wik in Table 7 where k-pll requires ≈ 8 hours to build the
index, while dyn-kpll runs for ≈ 13 seconds on average).
Indeed, we observe that speed-ups increase as the graph size
increases, which suggests that our approach scales well with
input size (see Figures 4–5 where graphs on the x-axis are
sorted left-to-right according to |V |).

102238 VOLUME 11, 2023

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

TABLE 5. Results of the semi-real experiment, k = 8 and k = 16.

TABLE 6. Results of the temporal experiment for k = 2 and k = 4.

TABLE 7. Results of the temporal experiment for k = 8 and k = 16.

2) SIZE AND QUERY TIME
Measures collected during our experimentation also represent
strong evidences of the fact that indexes updated via
dyn-kpll preserve the nice properties of k-2-Hop Covers
in terms of compactness (i.e. index size), which is reflected
into extremely small average query times, even for the
largest inputs. In fact, essentially across all graphs, values
of k , and settings, the sizes of indexes obtained through
dyn-kpll are comparable to those of indexes recomputed
via k-pll, to within fewMBs of difference. Some exceptions
are observed on graph cts (e.g. when k = 16 in rand-
ins experiment), where the size of the index updated by
dyn-kpll grows to become around up to 11% larger than
that of the index recomputed via k-pll (see Table 3). This
phenomenon is expected and most likely due to the lazy
nature of the update strategy by dyn-kpll which, similarly
to other dynamic algorithms for labelings [5], avoids the
removal, from the index, of so-called obsolete entries (i.e.
entries that, due to incremental changes, are no longer
necessary to cover any pair). This choice is done to keep
update times low and, on the one hand, it is easy to observe

that it does not affect the correctness: in fact, the k-cover
property is preserved since the query algorithm always selects
the smallest values in the multisets (and hence any path
longer or having the same length as the k-th, if any, is not
returned as part of a solution for any given pair). On the
other hand, our data show that above mentioned deviations
in sizes are in most of the cases negligible and in all cases
do not affect average query times, which remain in the order
of few microseconds after thousands of updates and also for
instances having millions of edges. We remark that this is a
desirable behavior to exhibit in a time-evolving environment,
since non-preprocessing based methods can require tens of
seconds to extract top-k distances from large graphs [3], while
dyn-kpll allows query answering in few microseconds
at the price of few seconds of update time, and thus to
exploit top-k distances in meaningful real-world scenarios
(e.g. dynamic link prediction [3], [44]).

3) PLATFORM-INDEPENDENT METRICS
All above considerations on both effectiveness and scalability
of dyn-kpll are corroborated by the measures of values

VOLUME 11, 2023 102239

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

FIGURE 4. Speed-up by dyn-kpll vs graph size in rand-ins (left) and semi-real (right) experiments. Lines show linear regressions.

FIGURE 5. Speed-up by dyn-kpll vs graph size in temporal
experiments. Lines show linear regressions.

TABLE 8. Measures of platform-independent metrics for a subset of
input graphs, rand-ins experiment, k = 2 and k = 16.

β, r, s and c (as defined in Thm. 2) we collected in our tests.
In almost all cases, in fact, β and r are orders of magnitude
smaller than |V |while c and s are orders of magnitude smaller
than |E| (except for large k , approaching the graph diameter;
in such a case the measure of s tend to reach |V |). An excerpt
of such measures is shown in Table 8 for the rand-ins
experiment with k = 16. Values are averaged, and rounded to
the first integer digit, over the total number of graph updates.
Results for other graphs and k are omitted as they are similar
and lead to equivalent considerations.

4) IMPACT OF K AND TYPE OF EXPERIMENTS
Concerning the impact of k on the performance of
dyn-kpll, we observe that the provided speed-up tend to
decrease as k increases (see e.g. column Avg. Speed-up in
Tables 2–7 or trend lines in Figure 5), even if dyn-kpll
remains orders of magnitude faster than k-pll. This might

be due to the fact that the number of new cycles and paths,
induced by a newly inserted edge and whose length is shorter
than existing ones, tend to increase with k . This conclusion
is supported by our measures of r, s and c which are such
that r ≪ |V | and s, c ≪ |E| for low values of k but tend to
increase with k itself, more evidently when k becomes larger
than the graph diameter. Other performance indicators (e.g.
query time) are weakly influenced by increases of k , and this
witnesses for our method scaling well also against k . Finally,
it is worth noticing that performance indicators observed
for dyn-kpll do not exhibit significant variation across
experimental settings, which suggests that our method is
robust against ‘‘adversarial’’ scenarios where edges to be
inserted are not sampled from an empirical distribution and
insertions do not follow typical network formation dynamics
(e.g. preferential attachment).

To summarize, our experimentation provides strong evi-
dences that maintaining k-2-Hop Covers viadyn-kpll is the
most practical framework to deal with top-k distance queries
when large graphs subject to incremental updates have to be
managed, and that hence dyn-kpll improves over the state-
of-the-art method in dynamic contexts.

V. CONCLUSION
We have studied methods to extract top-k distances from
massively sized graphs. We have introduced dyn-kpll,
a new dynamic algorithm to update k-2-Hop Covers when
the managed graph is time-evolving, and assessed its effec-
tiveness and scalability through extensive experimentation,
hence delivering the first scalable algorithmic framework for
fast retrieval of top-k distances from massive time-evolving
graphs.

Several future research directions can be identified.
Perhaps the most relevant one concerns the consolidation
of the experimental evaluation presented here to include
weighted digraphs. Another interesting direction might be
investigating whether and how dyn-kpll can be generalized
to handle any type of graph modification and hence to
avoid the recomputation from scratch also when vertex/edge
removals can occur, even though such modifications are
much less frequent in the real-world domains where ranked
distances are exploited [3], [5], [19].

102240 VOLUME 11, 2023

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

REFERENCES
[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck,

‘‘Hierarchical hub labelings for shortest paths,’’ in Proc. 20th Annu. Eur.
Symp. (ESA) (Lecture Notes in Computer Science), vol. 7501, L. Epstein
and P. Ferragina, Eds. Ljubljana, Slovenia: Springer, Sep. 2012, pp. 24–35.

[2] D. Ajwani, E. Duriakova, N. Hurley, U. Meyer, and A. Schickedanz,
‘‘An empirical comparison of k-shortest simple path algorithms on
multicores,’’ in Proc. 47th Int. Conf. Parallel Process. (ICPP). New York,
NY, USA: Association for Computing Machinery, Aug. 2018.

[3] T. Akiba, T. Hayashi, N. Nori, Y. Iwata, and Y. Yoshida, ‘‘Efficient top-k
shortest-path distance queries on large networks by pruned landmark
labeling,’’ in Proc. 29th AAAI Conf. Artif. Intell., 2015, pp. 2–8.

[4] T. Akiba, Y. Iwata, and Y. Yoshida, ‘‘Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,’’ in Proc. ACM
Int. Conf. Manag. Data (SIGMOD), 2013, pp. 349–360.

[5] T. Akiba, Y. Iwata, and Y. Yoshida, ‘‘Dynamic and historical shortest-path
distance queries on large evolving networks by pruned landmark labeling,’’
in Proc. 23rd ACM Int. Conf. World Wide Web, Apr. 2014, pp. 237–248.

[6] B. Bandyopadhyay, D. Fuhry, A. Chakrabarti, and S. Parthasarathy,
‘‘Topological graph sketching for incremental and scalable analytics,’’ in
Proc. 25th ACM Int. Conf. Inf. Knowl. Manage. (CIKM). New York, NY,
USA: Association for Computing Machinery, Oct. 2016, pp. 1231–1240.

[7] A. Baroni, A. Conte, M. Patrignani, and S. Ruggieri, ‘‘Efficiently
clustering very large attributed graphs,’’ inProc. IEEE/ACM Int. Conf. Adv.
Social Netw. Anal. Mining (ASONAM). New York, NY, USA: Association
for Computing Machinery, Jul. 2017, pp. 369–376.

[8] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes,
and D. Wagner, ‘‘Combining hierarchical and goal-directed speed-up
techniques for Dijkstra’s algorithm,’’ ACM J. Exp. Algorithmics, vol. 15,
pp. 1–26, Mar. 2010.

[9] E. Bergamini and H.Meyerhenke, ‘‘Approximating betweenness centrality
in fully dynamic networks,’’ Internet Math., vol. 12, no. 5, pp. 281–314,
Sep. 2016.

[10] B. Bollobás, RandomGraphs (Cambridge Studies in AdvancedMathemat-
ics), vol. 73, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2011.

[11] L. Chang, X. Lin, L. Qin, J. X. Yu, and J. Pei, ‘‘Efficiently computing top-k
shortest path join,’’ in Proc. 18th Int. Conf. Extending Database Technol.
(EDBT), 2015, pp. 133–144.

[12] A. Cionini, G. D’Angelo, M. D’Emidio, D. Frigioni, K. Giannakopoulou,
A. Paraskevopoulos, and C. D. Zaroliagis, ‘‘Engineering graph-basedmod-
els for dynamic timetable information systems,’’ J. Discrete Algorithms,
vols. 46–47, pp. 40–58, Sep./Nov. 2017.

[13] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, ‘‘Reachability and
distance queries via 2-hop labels,’’ SIAM J. Comput., vol. 32, no. 5,
pp. 1338–1355, Jan. 2003.

[14] P. Crescenzi, C. Magnien, and A. Marino, ‘‘Approximating the temporal
neighbourhood function of large temporal graphs,’’ Algorithms, vol. 12,
no. 10, p. 211, Oct. 2019.

[15] P. Crescenzi, C. Magnien, and A. Marino, ‘‘Finding top-k nodes for
temporal closeness in large temporal graphs,’’ Algorithms, vol. 13, no. 9,
p. 211, Aug. 2020.

[16] A. D’Andrea, M. D’Emidio, D. Frigioni, S. Leucci, and G. Proietti,
‘‘Dynamic maintenance of a shortest-path tree on homogeneous batches
of updates: New algorithms and experiments,’’ ACM J. Exp. Algorithmics,
vol. 20, pp. 1.5:1.1–1.5:1.33, Dec. 2015.

[17] G. D’angelo, M. D’emidio, and D. Frigioni, ‘‘Fully dynamic 2-hop cover
labeling,’’ ACM J. Exp. Algorithmics, vol. 24, pp. 1–36, Dec. 2019.

[18] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck, ‘‘PHAST:
Hardware-accelerated shortest path trees,’’ J. Parallel Distrib. Comput.,
vol. 73, no. 7, pp. 940–952, Jul. 2013.

[19] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, ‘‘Robust distance
queries on massive networks,’’ in Proc. 22th Eur. Symp. Algorithms
(ESA) (Lecture Notes in Computer Science), vol. 8737. Berlin, Germany:
Springer, 2014, pp. 321–333.

[20] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numerische Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[21] D. Eppstein, ‘‘Finding the k shortest paths,’’ SIAM J. Comput., vol. 28,
no. 2, pp. 652–673, 1998.

[22] D. Eppstein, ‘‘k-best enumeration,’’ in Encyclopedia of Algorithms.
Boston, MA, USA: Springer, 2016, pp. 1003–1006.

[23] M. Farhan, H. Koehler, and Q. Wang, ‘‘BatchHL+: Batch dynamic
labelling for distance queries on large-scale networks,’’ VLDB J., pp. 1–29,
May 2023.

[24] M. Farhan, Q. Wang, and H. Koehler, ‘‘BatchHL: Answering distance
queries on batch-dynamic networks at scale,’’ in Proc. Int. Conf. Manag.
Data (SIGMOD), Z. G. Ives, A. Bonifati, A. E. Abbadi, Eds. Philadelphia,
PA, USA: ACM, Jun. 2022, pp. 2020–2033.

[25] M. Farhan, Q. Wang, Y. Lin, and B. McKay, ‘‘Fast fully dynamic labelling
for distance queries,’’ VLDB J., vol. 31, pp. 483–506, May 2022.

[26] G. Feng, ‘‘Finding k shortest simple paths in directed graphs: A
node classification algorithm,’’ Networks, vol. 64, no. 1, pp. 6–17,
Aug. 2014.

[27] J. Gao, H. Qiu, X. Jiang, T.Wang, and D. Yang, ‘‘Fast top-k simple shortest
paths discovery in graphs,’’ in Proc. 19th ACM Int. Conf. Inf. Knowl.
Manage., Oct. 2010, pp. 509–518.

[28] M. Girvan and M. E. J. Newman, ‘‘Community structure in social
and biological networks,’’ Proc. Nat. Acad. Sci. USA, vol. 99, no. 12,
pp. 7821–7826, Jun. 2002.

[29] Z. Gotthilf and M. Lewenstein, ‘‘Improved algorithms for the k simple
shortest paths and the replacement paths problems,’’ Inf. Process. Lett.,
vol. 109, no. 7, pp. 352–355, Mar. 2009.

[30] K. Hanauer, M. Henzinger, and C. Schulz, ‘‘Faster fully dynamic transitive
closure in practice,’’ in Proc. 18th Int. Symp. Exp. Algorithms (SEA)
(Leibniz International Proceedings in Informatics), vol. 160, S. Faro and
D. Cantone, Eds. Wadern, Germany: Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2020, pp. 14:1–14:14.

[31] K. Hanauer, M. Henzinger, and C. Schulz, ‘‘Recent advances in fully
dynamic graph algorithms—A quick reference guide,’’ ACM J. Exp.
Algorithmics, vol. 27, pp. 1–45, Dec. 2022.

[32] X. Hao, T. Lian, and L. Wang, ‘‘Dynamic link prediction by integrat-
ing node vector evolution and local neighborhood representation,’’ in
Proc. 43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr. (SIGIR).
New York, NY, USA: Association for Computing Machinery, 2020,
pp. 1717–1720.

[33] M. S. Hassan, W. G. Aref, and A. M. Aly, ‘‘Graph indexing for shortest-
path finding over dynamic sub-graphs,’’ in Proc. ACM Int. Conf. Manage.
Data (SIGMOD), Jun. 2016, pp. 1183–1197.

[34] T. Hayashi, T. Akiba, and K.-I. Kawarabayashi, ‘‘Fully dynamic shortest-
path distance query acceleration on massive networks,’’ in Proc. 25th ACM
Int. Conf. Inf. Knowl. Manage. (CIKM), Oct. 2016, pp. 1533–1542.

[35] M. Henzinger, A. Noe, and C. Schulz, ‘‘Faster parallel multiterminal
cuts,’’ in Proc. SIAM Conf. Appl. Comput. Discrete Algorithms (ACDA),
M. Bender, J. Gilbert, B. Hendrickson, and B. D. Sullivan, Eds.
Philadelphia, PA, USA: SIAM, Jul. 2021, pp. 100–110.

[36] J. Hershberger,M.Maxel, and S. Suri, ‘‘Finding the k shortest simple paths:
A new algorithm and its implementation,’’ ACM Trans. Algorithms, vol. 3,
no. 4, p. 45, Nov. 2007.

[37] M.-Y. Kao, Encyclopedia of Algorithms. New York, NY, USA: Springer,
2016.

[38] N. Katoh, T. Ibaraki, and H. Mine, ‘‘An efficient algorithm for k shortest
simple paths,’’ Networks, vol. 12, no. 4, pp. 411–427, Winter 1982.

[39] D. Kocher and N. Augsten, ‘‘A scalable index for top-k subtree similarity
queries,’’ in Proc. Int. Conf. Manage. Data (SIGMOD). New York, NY,
USA: Association for Computing Machinery, Jun. 2019, pp. 1624–1641.

[40] S. Kontogiannis, D. Wagner, and C. Zaroliagis, ‘‘An axiomatic approach
to time-dependent shortest path oracles,’’ Algorithmica, vol. 84, no. 3,
pp. 815–870, Mar. 2022.

[41] J. Kunegis, ‘‘KONECT—The Koblenz network collection,’’ in Proc. Int.
Conf. World Wide Web Companion, 2013, pp. 1343–1350.

[42] D. Kurz and P. Mutzel, ‘‘A sidetrack-based algorithm for finding
the k shortest simple paths in a directed graph,’’ in Proc. 27th Int.
Symp. Algorithms Comput. (ISAAC) (Leibniz International Proceedings
in Informatics), vol. 64, S.-H. Hong, Ed. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2016, pp. 49:1–49:13.

[43] J. Langguth, A. Tumanis, and A. Azad, ‘‘Incremental clustering algorithms
for massive dynamic graphs,’’ in Proc. Int. Conf. Data Mining Workshops
(ICDMW), Auckland, New Zealand, Dec. 2021, pp. 360–369.

[44] A. Lebedev, J. Lee, V. Rivera, andM.Mazzara, ‘‘Link prediction using top-
k shortest distances,’’ in Proc. 31st Brit. Int. Conf. Databases (BICOD)
(Lecture Notes in Computer Science), vol. 10365, A. Calì, P. T. Wood,
N. J. Martin, and A. Poulovassilis, Eds. Cham, Switzerland: Springer,
2017, pp. 101–105.

[45] J. Leskovec and R. Sosič, ‘‘SNAP: A general-purpose network analysis
and graph-mining library,’’ ACM Trans. Intell. Syst. Technol., vol. 8, no. 1,
pp. 1–20, Jul. 2016.

VOLUME 11, 2023 102241

A. D’ascenzo, M. D’emidio: Top-k Distance Queries on Large Time-Evolving Graphs

[46] J. Li, Y. Cao, and X. Liu, ‘‘Approximating graph pattern queries using
views,’’ in Proc. 25th ACM Int. Conf. Inf. Knowl. Manage. (CIKM).
New York, NY, USA: Association for Computing Machinery, Oct. 2016,
pp. 449–458.

[47] W. Li, M. Qiao, L. Qin, L. Chang, Y. Zhang, and X. Lin, ‘‘On scalable
computation of graph eccentricities,’’ in Proc. Int. Conf. Manag. Data
(SIGMOD), Z. G. Ives, A. Bonifati, and A. E. Abbadi, Eds. Philadelphia,
PA, USA: ACM, Jun. 2022, pp. 904–916.

[48] C. C. McGeoch, A Guide to Experimental Algorithmics. Cambridge, U.K.:
Cambridge Univ. Press, 2012.

[49] M. Newman, Networks. Oxford, U.K.: Oxford Univ. Press, 2018.
[50] M. Pascoal, ‘‘Implementations and empirical comparison of k shortest

loopless path algorithms,’’ 9th DIMACS Implement. Challenge—Shortest
Paths, Sapienza Univ., Rome, Italy, Tech. Rep., 2006.

[51] T. P. Peixoto, ‘‘The Netzschleuder network catalogue and repository,’’
Zenodo, Tech. Rep., 2020, doi: 10.5281/zenodo.7839981.

[52] Y. Peng, X. Lin, Y. Zhang, W. Zhang, and L. Qin, ‘‘Answering reachability
and K -reach queries on large graphs with label constraints,’’ VLDB J.,
vol. 31, no. 1, pp. 101–127, Jan. 2022.

[53] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, ‘‘Fast shortest path
distance estimation in large networks,’’ in Proc. 18th ACM Conf. Inf.
Knowl. Manage., Nov. 2009, pp. 867–876.

[54] K. Qiu, J. Zhao, X. Wang, X. Fu, and S. Secci, ‘‘Efficient recovery path
computation for fast reroute in large-scale software-defined networks,’’
IEEE J. Sel. Areas Commun., vol. 37, no. 8, pp. 1755–1768, Aug. 2019.

[55] L. Roditty and U. Zwick, ‘‘Replacement paths and k simple shortest paths
in unweighted directed graphs,’’ ACM Trans. Algorithms, vol. 8, no. 4,
pp. 1–11, Sep. 2012.

[56] R. A. Rossi and N. K. Ahmed, ‘‘The network data repository with
interactive graph analytics and visualization,’’ in Proc. 29th AAAI Conf.
Artif. Intell., 2015, pp. 4292–4293.

[57] M. Thorup, ‘‘Undirected single-source shortest paths with positive integer
weights in linear time,’’ J. ACM, vol. 46, no. 3, pp. 362–394, May 1999.

[58] A. van derGrinten, G. Custers, D. L. Thanh, andH.Meyerhenke, ‘‘AnMPI-
parallel algorithm for static and dynamic top-k harmonic centrality,’’
in Proc. IEEE 34th Int. Symp. Comput. Archit. High Perform. Comput.
(SBAC-PAD), Bordeaux, France, Nov. 2022, pp. 100–109.

[59] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou, ‘‘Efficient route planning
on public transportation networks: A labelling approach,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data, May 2015, pp. 967–982.

[60] Y. Yano, T. Akiba, Y. Iwata, and Y. Yoshida, ‘‘Fast and scalable reachability
queries on graphs by pruned labeling with landmarks and paths,’’ in
Proc. 22nd ACM Int. Conf. Conf. Inf. Knowl. Manage. (CIKM), 2013,
pp. 1601–1606.

[61] J. Y. Yen, ‘‘An algorithm for finding shortest routes from all source nodes
to a given destination in general networks,’’ Quart. Appl. Math., vol. 27,
no. 4, pp. 526–530, 1970.

[62] Z. Yu, X. Yu, N. Koudas, Y. Liu, Y. Li, Y. Chen, and D. Yang, ‘‘Distributed
processing of k shortest path queries over dynamic road networks,’’ in
Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2020, pp. 665–679.

[63] Y. Zhang and J. X. Yu, ‘‘Hub labeling for shortest path counting,’’ in Proc.
ACM SIGMOD Int. Conf. Manage. Data, Jun. 2020, pp. 1813–1828.

[64] A. A. Zoobi, D. Coudert, and N. Nisse, ‘‘Space and time trade-off for the k
shortest simple paths problem,’’ in Proc. 18th Int. Symp. Exp. Algorithms
(SEA) (Leibniz International Proceedings in Informatics), vol. 160, S. Faro
and D. Cantone, Eds. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020, pp. 18:1–18:13.

ANDREA D’ASCENZO was born in L’Aquila,
in 1996. He received the degree (cum laude) in
computer science from the University of L’Aquila,
where he is currently pursuing the Ph.D. degree
in information and communication technology.
His main research interests include experimental
algorithms, in particular algorithms for massive
(dynamic) graphs, combinatorial optimization,
with a special attention to biology-related topics
and algorithmic game theory.

MATTIA D’EMIDIO received the Ph.D. degree
in information and electrical engineering from the
University of L’Aquila, Italy, in 2014.

He is currently an Assistant Professor and
a Researcher in computer engineering with the
Department of Information Engineering, Com-
puter Science and Mathematics (DISIM), Uni-
versity of L’Aquila. He is the author/coauthor
of tens of papers selected for publication by
international, peer-reviewed journals, and confer-

ences. His primary research interests include the design, analysis, and
implementation of efficient algorithms for combinatorial problems. His
work follows an algorithm engineering approach and is mostly focused
on algorithms for effective mining of massive (possibly dynamic) graphs,
frameworks for parallel processing, big data analytics, and study of
distributed systems of autonomous entities from an algorithmic perspective
(including game theoretic aspects). He has been part of several program
and organizing committees of international conferences. He has served as
a reviewer for many international journals and conferences of the computer
science/engineering.

Open Access funding provided by ‘Università degli Studi dell’Aquila’ within the CRUI CARE Agreement

102242 VOLUME 11, 2023

http://dx.doi.org/10.5281/zenodo.7839981

