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Abstract
We study the mathematical theory of second order systems with two species, arising in the
dynamics of interacting particles subject to linear damping, to nonlocal forces and to ex-
ternal ones, and resulting into a nonlocal version of the compressible Euler system with
linear damping. Our results are limited to the 1 space dimensional case but allow for ini-
tial data taken in a Wasserstein space of probability measures. We first consider the case of
smooth nonlocal interaction potentials, not subject to any symmetry condition, and prove
existence and uniqueness. The concept of solutions relies on a stickiness condition in case
of collisions, in the spirit of previous works in the literature. The result uses concepts from
classical Hilbert space theory of gradient flows (cf. Brezis, Operateurs maximaux mono-
tones et semi-groupes de contractions dans les espaces de Hilbert, 1973) and a trick used in
Brenier et al. (J. Math. Pures Appl. 99(5):577–617, 2013). We then consider a large-time and
large-damping scaled version of our system and prove convergence to solutions to the corre-
sponding first order system. Finally, we consider the case of Newtonian potentials - subject
to symmetry of the cross-interaction potentials - and external convex potentials. After show-
ing existence in the sticky particles framework in the spirit of Brenier et al. (J. Math. Pures
Appl. 99(5):577–617, 2013), we prove convergence for large times towards Dirac delta so-
lutions for the two densities. All the results share a common technical framework in that
solutions are considered in a Lagrangian framework, which allows to estimate the behav-
ior of solutions via L2 estimates of the pseudo-inverse variables corresponding to the two
densities. In particular, due to this technique, the large-damping result holds under a rather
weak condition on the initial data, which does not require well-prepared initial velocities.
We complement the results with numerical simulations.
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1 Introduction

Nonlocal aggregation models touch various domains of science and technology such as
astro-particle physics, microbiology, population biology, social sciences, artificial intelli-
gence and machine learning. The use of integro-partial differential equations in this context,
describing the evolution of a density of individuals ρ(x, t) subject to nonlocal interaction
forces, such as

∂ρ

∂t
= div(ρ∇W ∗ ρ) , (1)

has become very popular in the literature. In (1), x is a spatial variable typically ranging
in R

d , t ≥ 0 is time, W = W(x) is a given interaction potential accounting for attractive
or repulsive drift among individuals. The modelling approach in (1) allows to formulate
concepts of solutions in a “probability measure landscape”, which includes the motion of
“pointy particles”

ẋi = − 1

N

N∑

j=1

∇W(xi − xj ) (2)

as a special case of the “continuum theory”, see for example the results in [1, 10] framed
within the Wasserstein gradient flow theory.

At least on a formal level, a similar dichotomy exists in the case of a second order ap-
proach that takes into account inertial effects, namely

∂ρ

∂t
+ div(ρv) = 0

∂(ρv)

∂t
+ div(ρv ⊗ v) = −ρ∇W ∗ ρ , (3)

the “particle-counterpart” of which is given by the second order particle system

ẋi = vi

v̇i = − 1

N

N∑

j=1

∇W(xi − xj ) . (4)

In (3), v = v(x, t) is the Eulerian velocity of the fluid-like ensemble of individuals.
System (3) can be considered as a nonlocal version of Euler system for gas-dynamics,

in which the classical “pressure term” −∇p(ρ) is replaced by a nonlocal interaction force
−ρ∇W ∗ρ. A variant of (3) includes a linear “friction” - or “damping” - term (with σ > 0 a
damping parameter) and an external force −∇V , the full model including nonlinear pressure
thus looks like

∂ρ

∂t
+ div(ρv) = 0

∂(ρv)

∂t
+ div(ρv ⊗ v) + ∇p(ρ) = −ρ∇W ∗ ρ − ρ∇V − σρv . (5)
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The existence theory for systems of the form (5) is a classical challenge of the analysis
of PDEs, with strong links with the mathematical theory of systems of conservation laws.
Since we are not concerned with pressure terms in this paper, we briefly list a few references
on this matter such as [18, 27] for the multi-dimensional case and [13, 16, 20, 21] for the
one-dimensional case. We refer to [11] for a survey on Euler equations.

In the pressure-less case p = 0 in (5), the density ρ is not forced to be absolutely continue
with respect to Lebesgue measure. Hence, “particle” solutions in the spirit of (4) are allowed.
When two particles collide, a standard way to continue the solution after collision is the so-
called sticky particle condition, which forces particles to stay attached to each other after
collision, with a post-collisional velocity that is uniquely determined by the conservation of
momentum. The existence and uniqueness of such “sticky particle” solutions has attracted
the attention of many researchers for decades. We refer to the recent [3] for a through ex-
planation of the issues related with existence and uniqueness in the multi-dimensional case.
A case with W �= 0 that is particularly interesting in the applications is the Euler-Posson
model, in which W is the solution operator to Poisson equation, see [25]. In one space di-
mension the theory is quite rich of results in the literature, we mention here [5, 6, 24]. In
particular, [6, 24] first addressed the coupling with general nonlocal forces W �= 0 in the
context of Wasserstein gradient flows.

At least on a formal level, models of the form

∂ρ

∂t
= div(∇p(ρ) + ρ∇(V + W ∗ ρ)) (6)

can be obtained by rescaling time in (5) as t = στ and letting σ → +∞. Such a singular
limit regime is called “overdamped limit”, or “large friction limit”, and, in case p �= 0, it is
well-known in the literature of singular limits for systems of conservation laws as a “diffu-
sive relaxation limit”. Relevant examples arise in the case of porous-medium like pressures
[22] p(ρ) = ργ , γ > 1, see also [23] for more general models, and the more recent result in
[9].

In recent years the attention of many researchers in this field turned to systems with
many species, motivated for example by opinion formation models [17], chemotaxis models
with many species of cells and other aggregation phenomena in biology [8, 12], pedestrian
movements [2]. In many of those phenomena, the second order modelling approach via
(3) or similar seems more appropriate in that inertial effects, sometimes referred in these
contexts as “persistence” effects, do play a role in the model’s dynamics. However, while
the mathematical theory of many species systems in the first order modelling approach has
been considered in many papers, see e.g. [10, 14, 15], very little attention has been devoted to
second order models with many species. In this paper we wish to provide a first contribution
in that direction, by restricting for the moment to the one-dimensional case.

More precisely, we will first of all tackle the existence theory of the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∂

∂x
(ρv) = 0,

∂η

∂t
+ ∂

∂x
(ηw) = 0,

∂

∂t
(ρv) + ∂

∂x
(ρv2) = −σρv − ρ[K ′

ρ ∗ ρ + H ′
ρ ∗ η],

∂

∂t
(ηw) + ∂

∂x
(ηw2) = −σηw − η[K ′

η ∗ η + H ′
η ∗ ρ],

(7)
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equipped with initial data

{
(ρ, v)(t = 0) = (ρ, v),

(η,w)(t = 0) = (η,w).
(8)

In system (7), ρ and η are probability measures modelling two species of agents, or indi-
viduals, v and w are the corresponding Eulerian velocities of the two species, σ > 0 is the
damping parameter, Hρ , Hη , Kρ , Kη are smooth (to an extent to be specified later) given
space-depending potentials. Kρ and Kη are called self-interaction potentials as they describe
the interaction between the agents of same species, Hρ and Hη are called cross-interaction
potentials and model the interaction between the agents of opposing species. The convolu-
tions in (7) are meant with respect to the space variable. All potentials appear in the system
with their first derivative. This choice of ours is merely motivated by the fact that all those
terms should be considered as gradients of potential energies.

System (7) has a natural discrete particle counterpart. Let us consider x1, . . . , xN as N

particles of the first species with masses m1, . . . ,mN , and y1, . . . , yM as M particles of the
second species with masses n1, . . . , nM . The dynamics of xi and yj is determined by the
following equations

{
ẍi (t) = −σ ẋi(t) − ∑

k �=i mkK
′
ρ

(
xi(t) − xk(t)

) − ∑
k nkH

′
ρ

(
xi(t) − yk(t)

)
,

ÿj (t) = −σ ẏj (t) − ∑
k �=j nkK

′
η

(
yj (t) − yk(t)

) − ∑
k mkH

′
η

(
yj (t) − xk(t)

)
,

(9)

with i = 1, . . . ,N and j = 1, . . . ,M and the following initial data

{
xi(0) = xi,

ẋi(0) = vi,

{
yj (0) = yj ,

ẏj (0) = wj .

The candidate large-friction of (7) is the first order system

⎧
⎪⎨

⎪⎩

∂ρ

∂t
= ∂

∂x

[
ρK ′

ρ ∗ ρ + ρH ′
ρ ∗ η

]
,

∂η

∂t
= ∂

∂x

[
ηK ′

η ∗ η + ηH ′
η ∗ ρ

]
,

(10)

which was extensively studied in [14], see also [15] for the case with cross-diffusion terms.
Our work contributes to the above line of research in what follows. We stress that our

results only deal with the one space dimensional case.
(i) In the case of smooth interaction potentials, we provide a well-posedness result in the

2-Wasserstein space of probability measures. Our main result is contained in Theorem
1.

(ii) We then investigate the large damping limit and prove that, under a suitable rescaling,
our system converges towards the corresponding first order model. Our result in this
framework is stated in Theorem 2. We observe that, at least to our knowledge, the
technique used in Theorem 2 was never used in the one-species case.

(iii) We then consider the case of Newtonian potentials for the self-interaction part and
suitably coercive external potentials and prove a large-time collapse result in Theorem
3.

The paper is structured as follows. In Sect. 2 we introduce the main concepts of gradi-
ent flows in Wasserstein spaces that we need in our paper, we introduce the large-damping
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scaling limit, we state our model in a suitable Lagrangian framework, and we state our main
results (see Sect. 2.6). In Sect. 3 we prove Theorem 1, essentially following the classical
strategy of [7], which is also used in [6] for the one-species case. In Sect. 4 we prove Theo-
rem 2. In Sect. 5 we consider the case of Newtonian potentials and prove existence of sticky
solutions and the large time collapse to Dirac deltas stated in Theorem 3. Finally, in Sect. 6
we provide some numerical simulations.

2 Preliminaries and Main Results

In what follows we will set the notations, the assumptions, and introduce definitions that
will be used throughout the paper, see Sects. 2.1 and 2.2. Sections 2.3 and 2.5 are devoted
to the precise description of system (7) in terms of particles and Lagrangian coordinates
respectively. In Sect. 2.4 we provide a formal argument for the large damping limit of system
(7) towards (10). Finally Sect. 2.6 collects the main results of the paper.

2.1 One Dimensional Wasserstein Distance

We start introducing some preliminaries and definitions on the metric structure; the reader
can refer to the classical references [1, 26] for further details. Let P(Rn) be the set of Borel
probability measures on R

n. Given μ ∈ P(Rn) and a Borel map T : Rn → R
m, we denote

by ν := T #μ ∈ P(Rm) the push-forward of μ through T defined by

ν(A) = μ
(
T −1(A)

)
for all Borel sets A ⊂R

m.

We denote by P2(R
d) the set of probability measures on R

d with finite second moment,
i.e.,

´
Rd |x|2 dμ(x) < ∞ for all μ ∈ P2(R

d). The 2-Wasserstein distance W2(μ, ν) between
two measures μ,ν ∈ P2(R

d) is defined by

W 2
2 (μ, ν) = inf

γ∈	(μ,ν)

{ ¨

Rd×Rd

|x − y|2 dγ (x, y)

}
, (11)

where 	(μ,ν) denotes the class of transport plans between μ and ν, i.e., the probability
measures γ on R

d ×R
d that satisfy the conditions

π1#γ = μ, π2#γ = ν,

where πi is the projection operator on the i-th component of the product space. By intro-
ducing the class of optimal plans between μ and ν, i.e., minimizers of (11), denoted by
	o(μ,ν), the Wasserstein distance can be rewritten as

W 2
2 (μ, ν) =

¨

Rd×Rd

|x − y|2 dγ (x, y) γ ∈ 	o(μ,ν). (12)

In the one-dimensional case, there exists a unique optimal plan γ ∈ 	o(μ,ν) for which
the infimum in (11) is attained, and it can be characterised by the monotone rearrangements
of μ and ν: given μ ∈ P(R), its monotone rearrangement is

Xμ(m) := inf{x : Mμ(x) > m} for all m ∈ �,
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where � := (0,1) and Mμ is the cumulative distribution of the measure μ, i.e.,

Mμ(x) := μ
(
(−∞, x]) for all x ∈R.

The map Xμ is right-continuous and nondecreasing and satisfies, by denoting the one-
dimensional Lebesgue measure on � by m,

(
Xμ

)
#m = μ,

ˆ

R

ζ(x)μ(dx) =
ˆ

�

ζ
(
Xμ(m)

)
dm

for all Borel maps ζ :R→ R. In particular, μ ∈ P2(R) if and only if Xμ ∈ L2(�). Moreover,
the joint map Xμ,ν : � → R×R defined by Xμ,ν(m) := (

Xμ(m),Xν(m)
)

characterises the
optimal transport plan γ ∈ 	o(μ,ν) by the formula

γ = (
Xμ,ν

)
#m,

according to which

W 2
2 (μ, ν) =

ˆ

�

|Xμ(m) − Xν(m)|2 dm.

We further recall that, introducing the closed convex set of right-continuous non-decreasing
functions in the Hilbert space L2(�), i.e.,

K := {X ∈ L2(�) : X is non-decreasing}, (13)

the map

 : P2(R) � μ → Xμ ∈ K (14)

is a distance-preserving bijection between the space of probability measures with finite sec-
ond moments P2(R) and the convex cone K of non-decreasing L2-functions.

Since we are dealing with a two-species system, we will work on the product space
P2(R) ×P2(R). For all μ = (μ1,μ2), ν = (ν1, ν2) ∈ P2(R) ×P2(R), we define the product
Wasserstein distance as follows

W2
2 (μ,ν) = W 2

2 (μ1, ν1) + W 2
2 (μ2, ν2).

2.2 Main Assumptions

In this subsection we collect the main assumptions we will need in the rest of the paper. We
start by specifying the class of interaction potentials we are going to use.

Definition 1 A function K :R →R is called an admissible potential if

K ∈ W 2,∞(R), K(0) = 0 and K(−x) = K(x). (A)

An admissible potential K is said to be sub-quadratic at infinity if there exists a constant
C > 0 such that

K(x) ≤ C(1 + |x|2) for all x ∈R. (SQ)
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An admissible potential K has a sub-linear gradient if there exists C > 0 such that

K ′(x) ≤ C(1 + |x|) for all x ∈R. (SL)

We call an admissible potential attractive if

K(x) = k(|x|) ≥ 0, for all x ∈ R and K ′(r)r ≥ 0 for all r ∈ R. (AT)

In Sect. 5 we will also take into account the action of external potentials in the dynamics.
More precisely, we consider A ∈ C2(R) and assume that there exist the positive constants λ

and α such that

A(x) ≥ λ|x|2 (H1)

and

xA′(x) ≥ α|x|2 (H2)

for all x ∈R.
Denoting with 〈·, ·〉L2(�)2 the inner product on the space L2(�)2, that is

〈Z1,Z2〉L2(�)2 =
ˆ

�

[
X1(s)X2(s) + Y1(s)Y2(s)

]
ds,

for Z1 = (X1, Y1) and Z2 = (X2, Y2) in L2(�)2, we recall below the notion of Fréchet sub-
differential for a generic operator F on a general Hilbert space.

Definition 2 Let H be a Hilbert space. For a given, proper and lower semi-continuous func-
tional F : H → (−∞,+∞], we say that Z ∈ H belongs to the sub-differential of F at Z̃ ∈ H

if and only if

F(R) − F(Z̃) ≥ 〈Z,R − Z̃〉H + o(‖R − Z̃‖),
as ‖R − Z̃‖ → 0, with R ∈ H . The sub-differential of F at Z̃ is denoted by ∂F(Z̃).

In particular, throughout the paper, we will usually consider as Hilbert spaces H = L2(�)

or H = L2(�)2.
Let IK : L2(�) → [0,+∞) be the indicator function of the L2-convex cone K introduced

in (13), that is

IK(X) =
{

0 if X ∈ K,

+∞ otherwise.

For a given X ∈ L2(�), the sub-differential of IK in X is given by

∂IK(X) =
{
Z ∈ L2(�) : IK(X̃) ≥ IK(X) +

ˆ

�

Z(m)(X̃(m) − X(m))dm for all X̃ ∈ K
}
,

or in its alternative form

∂IK(X) =
{

{Z ∈ L2(�) : 0 ≥ ´
�

Z(m)(X̃(m) − X(m))dm for all X̃ ∈ K} ifX ∈ K,

∅ otherwise.
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The definitions above can be easily extended to any Hilbert space H different from L2,
as sometimes required in the following sections. Furthermore, we will denote with A◦ the
unique element of minimal norm in any closed convex set A ⊂ H .

We conclude this subsection with the following definition, which we borrow from [6].

Definition 3 An operator F : K → L2(�) is bounded if there exists a constant C ≥ 0 such
that

‖F [X]‖L2(�) ≤ C(1 + ‖X‖L2(�)) for all X ∈ K.

An operator F : K → L2(�) is pointwise linearly bounded if there exists a constant Cp ≥ 0
such that

|F [X](m)| ≤ Cp

(
1 + |X(m)| + ‖X‖L1(�)

)
for a.e. m ∈ � and all X ∈ K.

An operator F : K → L2(�) is uniformly continuous if there exists a modulus of continuity
ω such that

‖F [X1] − F [X2]‖L2(�) ≤ ω
(‖X1 − X2‖L2(�)

)
for all X1,X2 ∈ K.

2.3 Particles System

We dedicate this subsection to the study of sticky solutions in the finite dimensional case.
Let x = (x1, . . . , xN) ∈ R

N and y = (y1, . . . , yM) ∈ R
M be the positions of particles of the

first and second species respectively. The “sticky” condition clearly preserves the ordering
of the particles, therefore their evolution is confined in the closed convex set

K
N ×K

M = {(x, y) ∈R
N ×R

M : x1 ≤ · · · ≤ xN, y1 ≤ · · · ≤ yM}.

Setting v = (v1, . . . , vN) ∈ R
N and w = (w1, . . . ,wM) ∈ R

M as the velocity vectors of par-
ticles of the first species and second species respectively, we consider the following system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi (t) = vi(t),

ẏj (t) = wj(t),

v̇i(t) = ai(x(t)) + bi(x(t), y(t)) − σvi(t),

ẇj (t) = cj (y(t)) + dj (x(t), y(t)) − σwj (t),

(15)

for i = 1, . . . ,N and j = 1, . . . ,M . In system (15),

ai(x) = −
N∑

k=1

mkK
′
ρ(xi − xk) , bi(x, y) = −

M∑

k=1

nkH
′
ρ(xi − yk) , i = 1, . . . ,N ,

cj (y) = −
M∑

k=1

nkK
′
η(yi − yk) , dj (x, y) = −

N∑

k=1

mkH
′
η(yj − xk) , j = 1, . . . ,M .

The i-th component of the vector field

a(x) : x ∈ K
N → (

a1(x), . . . , aN(x)
) ∈ R

N
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models the interactions between particles of the first species and the i-th particle of the first
species, while the i-th component of the vector field

b(x, y) : (x, y) ∈K
N ×K

M → (b1(x, y), . . . , bN(x, y)) ∈R
N

describes the interactions between the i-th particle of the first species and particles of the
second species. Similarly one can describe the j -th component of the terms

c(y) : y ∈K
M → (c1(y), . . . , cM(y)) ∈R

M,

and

d(x, y) : (x, y) ∈K
N ×K

M → (d1(x, y), . . . , dM(x, y)) ∈ R
M,

respectively.
Assuming that all the potentials in (15) are smooth enough (for example with C2 regu-

larity), a unique solution to (15) exists as long as particles occupy distinct positions. When
two or more particles collide, we apply the concept of sticky particle solution sketched in
the introduction. Following [6, 24], the precise formalisation of sticky collisions requires the
definition of the following normal cones

NxK
N := {l ∈R

N : l · (̃x − x) ≤ 0 for all x̃ ∈K
N },

NyK
M := {n ∈ R

M : n · (ỹ − y) ≤ 0 for all ỹ ∈K
M}.

Note that the normal cone NxK
N is equal to the sub-differential ∂IKN (x) of the indicator

function of KN at the point x. When two particles of the same species collide, an instan-
taneous force is released and the respective particles velocities evolve as elements of the
normal cones NxK

N and NyK
M respectively. Given these premises, we can consider the

second order system of differential inclusions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = v,

ẏ = w,

v̇ + NxK
N � a(x) + b(x, y) − σv,

ẇ + NyK
M � c(y) + d(x, y) − σw.

(16)

System (16) is justified as follows. Introducing the vector W(t) = (V (t),W(t)) =
eσt (v(t),w(t)), from (15) we get

Ẇ(t) = eσtA(x(t), y(t)) ,

where A(x, y) is the vector in R
N+M with components a(x)+b(x, y) and c(y)+d(x, y) re-

spectively. Now, due to the smoothness of the interaction potentials, the vector field A(x, y)

can be extended by continuity to the boundary of the cone K
N ×K

M . Therefore, as W and
(v,w) only differ by a scalar factor, a suitable modified version of the differential equation
for W that keeps the dynamics in K

N ×K
M is the differential inclusion

Ẇ(t) ∈ eσtA(x(t), y(t)) + Nx(t)K
N × Ny(t)K

M ,

which easily yields the last two differential inclusions in (16).
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According to [6], if x : [0,∞) → K
N satisfies the global sticky condition, i.e., particles

are not allowed to split after colliding, then the following monotonicity property on the
family of normal cones Nx(t)K

N holds:

Nx(s)K
N ⊂ Nx(t)K

N for all s < t .

Hence, for any function ζ : [0,∞) →R
N such that ζ(t) ∈ Nx(t)K

N , we have

tˆ

s

ζ(r) dr ∈ Nx(t)K
N for all s < t .

Consequently, integrating the last two equations in (16) on a time interval [s, t], one obtains

v(t) + σx(t) + Nx(t)K
N � v(s) + σx(s) +

tˆ

s

a(x(r)) dr +
tˆ

s

b(x(r), y(r)) dr, (17)

w(t) + σy(t) + Ny(t)K
M � w(s) + σy(s) +

tˆ

s

c(y(r)) dr +
tˆ

s

d(x(r), y(r)) dr. (18)

System (16), together with (17) and (18), can be rewritten in a more compact form in the
new variables (x, y,p, q) where p and q are defined by

p(t) =
tˆ

s

a(x(r)) dr +
tˆ

s

b(x(r), y(r)) dr + v(s) + σx(s),

q(t) =
tˆ

s

c(y(r)) dr +
tˆ

s

d(x(r), y(r)) dr + w(s) + σy(s),

yielding the following first order system of differential inclusions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ + σx + NxK
N � p,

ẏ + σy + NyK
M � q,

ṗ = a(x) + b(x, y),

q̇ = c(y) + d(x, y),

with the additional characterisation of v and w in terms of p and q

v(t) + σ

tˆ

s

v(r) dr + NxK
N � p(t),

w(t) + σ

tˆ

s

w(r) dr + NyK
M � q(t).
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2.4 Time Scaling and Formal Large Damping Limit

One of the purposes of the present work is to study system (7) in the large time / large
damping regime, namely we aim to send σ → +∞ in (7) after having suitably rescaled the
time variable. We start performing the scaling at the level of particles, namely for system
(9). Consider the new time variable τ defined by

τ = t

σ
, (19)

and introduce the scaled particle trajectories as follows:

xi(t) = χi(τ ) = χi(t/σ ), i = 1, . . . ,N,

yj (t) = ξj (τ ) = ξj (t/σ ), j = 1, . . . ,M.

Notice that we can scale the initial velocities accordingly as

χ̇i(0) := νi = σvi, ξ̇j (0) := ωj = σwj .

Hence, system (9) becomes

σ−2χ̈i (τ ) = −χ̇i(τ ) −
∑

k �=i

mkK
′
ρ

(
χi(τ ) − χk(τ )

) −
∑

k

nkH
′
ρ

(
χi(τ ) − ξk(τ )

)
,

σ−2ξ̈j (τ ) = −ξ̇j (τ ) −
∑

k �=j

nkK
′
η

(
ξj (τ ) − ξk(τ )

) −
∑

k

mkH
′
η

(
ξj (τ ) − χk(τ )

)
.

A formal limit σ → +∞ leads to the following first order system of differential equations
for particle positions

χ̇i(τ ) = −
∑

k �=i

mkK
′
ρ

(
χi(τ ) − χk(τ )

) −
∑

k

nkH
′
ρ

(
χi(τ ) − ξk(τ )

)
,

ξ̇j (τ ) = −
∑

k �=j

nkK
′
η

(
ξj (τ ) − ξk(τ )

) −
∑

k

mkH
′
η

(
ξj (τ ) − χk(τ )

)
.

A similar time scaling can be performed at the level of (7). Using the definition of τ in (19)
and considering (ρ̃, ṽ, η̃, w̃) solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ̃

∂t
+ ∂

∂x
(ρ̃ṽ) = 0,

∂η̃

∂t
+ ∂

∂x
(̃ηw̃) = 0,

∂

∂t
(ρ̃ṽ) + ∂

∂x
(ρ̃ṽ2) = −σ ρ̃ṽ − ρ̃[K ′

ρ ∗ ρ̃ + H ′
ρ ∗ η̃],

∂

∂t
(̃ηw̃) + ∂

∂x
(̃ηw̃2) = −σ η̃w̃ − η̃[K ′

η ∗ η̃ + H ′
η ∗ ρ̃],

we can introduce the rescaled densities and velocities as

ρ(τ, x) = ρ̃(t, x), v(τ, x) = σ ṽ(t, x),

η(τ, x) = η̃(t, x), w(τ, x) = σw̃(t, x).
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Then the quadruple (ρ, v, η,w) solves

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂τ
+ ∂

∂x
(ρv) = 0,

∂η

∂τ
+ ∂

∂x
(ηw) = 0,

σ−2

[
∂

∂τ
(ρv) + ∂

∂x
(ρv2)

]
= −ρv − ρ[K ′

ρ ∗ ρ + H ′
ρ ∗ η],

σ−2

[
∂

∂τ
(ηw) + ∂

∂x
(ηw2)

]
= −ηw − η[K ′

η ∗ η + H ′
η ∗ ρ],

(20)

and formally, as σ → ∞, we have

⎧
⎪⎨

⎪⎩

∂ρ

∂τ
= ∂

∂x

[
ρK ′

ρ ∗ ρ + ρH ′
ρ ∗ η

]
,

∂η

∂τ
= ∂

∂x

[
ηK ′

η ∗ η + ηH ′
η ∗ ρ

]
.

(21)

2.5 Lagrangian Description of the Continuum Model

We now transpose the considerations above in terms of a Lagrangian description for system
(7). For any X ∈ K, where K denotes the convex cone introduced in (13), we define the set

�X := {m ∈ � : X is constant in an open neighborhood of m} , (22)

and the closed subspace

HX = {Z ∈ L2(0,1) : Z is constant on each interval (a, b) ⊂ �X}. (23)

A crucial quantity in the following analysis is the projection PHX
: L2 → HX given by

PHX
(U) =

⎧
⎪⎪⎨

⎪⎪⎩

b 

a

U(m)dm in any maximal interval (a, b) ∈ �X,

U a.e. in � \ �X,

(24)

for all U ∈ L2(�). The proof of the following Lemma is an easy consequence of Jensen’s
inequality, see [6, Lemma 2.2].

Lemma 1 (HX-contraction) Let ψ : R → [0,∞) be a convex l.s.c. function. Then PHX
is

dominated by X, namely
ˆ

�

ψ
(
PHX

(Y )
)
dm ≤

ˆ

�

ψ(Y )dm for all X ∈ K and all Y ∈ L2(�),

and we write PHX
≺ X.

Consider a quadruple (ρ, η, v,w) solution to (7) and define the maps X,Y : [0,∞) ×
� →R and the velocities V,W : [0,∞) × � →R as follows

X(t, ·) = (ρ(t, ·)), V (t, ·) = v(t,X(t, ·)) = ∂tX(t, ·),
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Y (t, ·) = (η(t, ·)), W(t, ·) = w(t,Y (t, ·)) = ∂tY (t, ·),
where  is the isometry defined in (14) that associates to a probability measure its monotone
rearrangement. In the new unknowns (X,Y,V,W), system (7) can be (formally) rephrased
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tX(t) = V (t),

∂tY (t) = W(t),

∂tV (t) = −
ˆ

�

K ′
ρ

(
X(m) − X(m′)

)
dm′ −

ˆ

�

H ′
ρ

(
X(m) − Y (m′)

)
dm′ − σV (t),

∂tW(t) = −
ˆ

�

K ′
η

(
Y (m) − Y (m′)

)
dm′ −

ˆ

�

H ′
η

(
Y (m) − X(m′)

)
dm′ − σW(t).

Similarly to Sect. 2.3, one can show that the previous system can be reformulated in terms of
differential inclusions to incorporate particles collisions. Moreover, since we will investigate
on the large-damping limit, through the paper we consider the Lagrangian counterpart of the
rescaled system (20). Then, according to the previous calculations, we get the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εẊ(t) + X(t) + ∂IK(X(t)) � εV + X +
tˆ

0

F [X(·, r), Y (·, r)]dr,

εẎ (t) + Y (t) + ∂IK(Y (t)) � εW + Y +
tˆ

0

G[X(·, r), Y (·, r)]dr,

(25)

with ε := σ−2 and where we have denoted by

F : K ×K → L2(�) and G : K ×K → L2(�)

the operators

F [X,Y ](m) = −
ˆ

�

K ′
ρ

(
X(r,m) − X(r,m′)

)
dm′ −

ˆ

�

H ′
ρ

(
X(r,m) − Y (r,m′)

)
dm′, (26)

G[X,Y ](m) = −
ˆ

�

K ′
η

(
Y (r,m) − Y (r,m′)

)
dm′ −

ˆ

�

H ′
η

(
Y (r,m) − X(r,m′)

)
dm′ . (27)

We observe that if Kρ , Hρ , Kη , Hη are C1 functions that satisfy (A) and (SL) then the
two operators F and G defined in (26) and (27) are uniformly continuous and bounded
according to Definition 3.

Definition 4 (Lagrangian solutions) Let Hρ,Kρ,Hη,Kη ∈ C1(R) be potentials satisfying
(A) and (SL). Let X,Y ∈ K and V ,W ∈ L2(�) be given. A Lagrangian solution to (25) with
initial data (X,Y ,V ,W) is a pair (X,Y ) ∈ Liploc([0,∞);K) × Liploc([0,∞);K) satisfying
X(0) = X, Y (0) = Y and (25) for a.e. t ∈ [0,∞).

In order to consider the case of Newtonian potentials, we introduce the following notion
of generalised Lagrangian solutions for system (25) under globally sticky dynamics, see
[6].
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Definition 5 A generalised solution to the system (25) is a pair (X,Y ) ∈ Lip
loc

([0,∞);K)×
Lip

loc
([0,∞);K) such that

(1) Differential inclusion:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εẊ(t) + X(t) + ∂IK(X(t)) � εV + X +
tˆ

0

�(s)ds,

εẎ (t) + Y (t) + ∂IK(Y (t)) � εW + Y +
tˆ

0

�(s)ds,

holds for a.e. t ∈ (0,∞), for some maps �,� ∈ L∞
loc

([0,∞);L2(�)) ×
L∞

loc
([0,∞);L2(�)) with

� − F [X(t), Y (t)] ∈ H⊥
X(t) and � ≺ F [X(t), Y (t)] for a.e. t ∈ (0,∞)

(28)
and, similarly,

� − G[X(t), Y (t)] ∈ H⊥
Y(t) and � ≺ G[X(t), Y (t)] for a.e. t ∈ (0,∞),

(29)
where F [X(t), Y (t)] and G[X(t), Y (t)] are the operators defined in (26) and (27).

(2) Semigroup property: for all t ≥ t1 ≥ 0, the right derivatives V = d+
dt

X and W = d+
dt

Y

satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εV (t) + X(t) + ∂IK(X(t)) � εV (t1) + X(t1) +
tˆ

t1

�(s)ds, (30)

εW(t) + Y (t) + ∂IK(Y (t)) � εW(t1) + Y (t1) +
tˆ

t1

�(s)ds. (31)

(3) Projection formula: for all t ≥ t1 ≥ 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(t) = PK

(
X(t1) + 1

ε
(t − t1)

(
X(t1) + εV (t1)

) − 1

ε

tˆ

t1

X(s)ds + 1

ε

tˆ

t1

(t − s)�(s) ds

)
,(32)

Y (t) = PK

(
Y (t1) + 1

ε
(t − t1)

(
Y (t1) + εW(t1)

) − 1

ε

tˆ

t1

Y (s) ds + 1

ε

tˆ

t1

(t − s)�(s) ds

)
. (33)

Note that if we choose �(t) := F [X(t), Y (t)] and �(t) := G[X(t), Y (t)] with F and
G as in (26) and (27) and the interaction potentials Kρ , Kη , Hρ and Hη satisfying (A) and
(SL), then any Lagrangian solution is a generalised Lagrangian solution.

In the following we will make use of the auxiliary variables

P (t,m) = εV (m) + X(m) +
tˆ

0

F [X(·, r), Y (·, r)](m)dr, (34)
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and

Q(t,m) = εW(m) + Y(m) +
tˆ

0

G[X(·, r), Y (·, r)](m)dr, (35)

that allow to rephrase system (25) in the equivalent form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εẊ + X + ∂IK(X) � P,

εẎ + Y + ∂IK(Y ) � Q,

Ṗ = F [X,Y ],
Q̇ = G[X,Y ].

(36)

2.6 Main Results

We collect in this subsection the main results presented in the paper. The first result concerns
the well-posedness of system (7) in the 2-Wasserstein space of probability measures and in
the sense of sticky solutions, under smoothness assumptions on the interaction kernels.

Theorem 1 Let T > 0 and suppose that the kernels Hρ,Kρ,Hη,Kη ∈ C1(R) satisfy (A)
and (SL). Let ρ,η ∈ P2(R) and v ∈ L2(dρ) and w ∈ L2(dη). Then, there exists a unique
quadruple

(ρ, η, v,w) ∈ Lip
([0, T ];P2(R) ×P2(R) × L2(dρ(t)) × L2(dη(t))

)

that is a distributional solution to system (7) such that

lim
t↓0

ρ(t, ·) = ρ in P2(R), lim
t↓0

ρ(t, ·)v(t, ·) = ρv in M(R),

lim
t↓0

η(t, ·) = η in P2(R), lim
t↓0

η(t, ·)w(t, ·) = ηw in M(R).

We then address the σ → ∞ limit of (7) towards (10) using the rescaling in (20), making
rigorous the formal argument presented in Sect. 2.4. This task is performed at the level of the
Lagrangian system (25) sending the parameter ε = σ−2 → 0, coming back to the Eulerian
description through the isometry (14). The following result is proved in Sect. 4.

Theorem 2 Let T > 0 and suppose that the kernels Hρ,Kρ,Hη,Kη ∈ C1(R) satisfy (A) and
(SL). Let (ρε, ηε, vε,wε) be solution to system (20) with ε = σ−2 under the initial condition
(ρε, ηε, vε,wε) and let (ρ, η) be solution to system (21) with initial data (ρ, η). Further-
more, assume that

(i) ρε → ρ and ηε → η as ε → 0 in P2(R);
(ii) vε = o(1/ε) in L2(dρε) and wε = o(1/ε) in L2(dηε) as ε → 0.

Then,

lim
ε→0

T̂

0

W2
2

(
(ρε, ηε), (ρ, η)

)
dt = 0.
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Remark 1 (Initial data are not well-prepared in the velocity variable) In Theorem 2, recall-
ing that vε = 1√

ε
v, assumption (ii) is satisfied in case v ∈ L2(dρ) and w ∈ L2(dη) are given

and independent of ε. Therefore, assumption (ii) is quite general in the context of singular
limits. Assumption (i) instead imposes that the initial density should converge to the one of
the limiting first order system.

Lastly, under the action of Newtonian self-interaction kernels, Kρ(x) = Kη(x) =
N(x) := |x|, symmetric and attractive cross-interactions, Hρ(x) = Hη(x) = H(x) and suit-
ably coercive external potentials, we focus on a different aspect, that is the convergence to
stationary solutions of (7). More precisely, we will consider the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∂

∂x
(ρv) = 0,

∂η

∂t
+ ∂

∂x
(ηw) = 0,

∂

∂t
(ρv) + ∂

∂x
(ρv2) = −σρv − ρ[N ′ ∗ ρ + H ′ ∗ η + Aρ],

∂

∂t
(ηw) + ∂

∂x
(ηw2) = −σηw − η[N ′ ∗ η + H ′ ∗ ρ + Aη],

(37)

and its Lagrangian counterpart

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tX(t,m) = V (t,m),

∂tY (t,m) = W(t,m),

∂tV (t,m) = −
ˆ

�

sign
(
X(t,m) − X(t,m′)

)
dm′

−
ˆ

�

H ′(X(t,m) − Y (t,m′)
)
dm′ − σV (t,m) − A′

ρ(X),

∂tW(t,m) = −
ˆ

�

sign
(
Y (t,m) − Y (t,m′)

)
dm′

−
ˆ

�

H ′(Y (t,m) − X(t,m′)
)
dm′ − σW(t,m) − A′

η(Y ).

(38)

Stationary solutions in this case are (ρs, ηs) = (δ0, δ0) where δ is the Dirac measure, which
corresponds to (Xs,Ys) = (0,0) in terms of the Lagrangian description. The last result we
present in the paper shows that solutions to (37) converge to the stable stationary solution in
the 2-Wasserstein distance.

Theorem 3 Let H be an interaction potential under assumptions (A), (SL) and (AT). Con-
sider Aρ ,Aη ∈ C2(R) under assumptions (H1) and (H2). Let (X,Y ) ∈ Liploc([0,∞);K)2

be a generalised Lagrangian solution to (38) in the sense of Definition 5. Assume that the
initial positions (X,Y ) ∈ K2 and velocities (V ,W) ∈ (

L2(�)
)2

satisfy

‖X‖L2 + ‖Y‖L2 + ‖V ‖L2 + ‖W‖L2 < ∞,

then

lim
t→∞

(
‖X‖L2 + ‖Y‖L2 + ‖V ‖L2 + ‖W‖L2

)
= 0.
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Furthermore calling ρ(t, ·) := −1(X(t, ·)) and η(t, ·) := −1(Y (t, ·)), where  is the
isometry defined in (14), we have

lim
t→∞W2

2

(
(ρ, η), (ρs, ηs)

) = 0.

3 Existence and Uniqueness for Smooth Potentials

In this section we prove Theorem 1, namely existence and uniqueness of solution to system
(7). To perform this task, we pass through existence of solutions to the Lagrangian sys-
tem (25), where we apply the theory of Maximal Monotone Operators subject to Lipschitz
perturbations in the spirit of [7, Theorem 3.17], see Proposition 1 below. The result in the
original variables is then proved using the properties contained in Proposition 2 below.

We start proving the following Lemma.

Lemma 2 Let (X,Y ), (X̃, Ỹ ) ∈ K × K be given. Consider the interaction kernels Hρ , Kρ ,
Hη , Kη under assumptions (A) and (SL) and let F and G be the operators defined in (26)
and (27) respectively. Then there exist two positive constants C1 and C2 depending on the
Lipschitz constants of the kernels, such that

(i) ‖F [X,Y ] − F [X̃, Ỹ ]‖2
L2(�)

≤ C1
(‖X − X̃‖2

L2(�)
+ ‖Y − Ỹ‖2

L2(�)

)
,

(ii) ‖G[X,Y ] − G[X̃, Ỹ ]‖2
L2(�)

≤ C2

(‖X − X̃‖2
L2(�)

+ ‖Y − Ỹ‖2
L2(�)

)
.

Proof We only prove (i) since (ii) follows from a similar argument. By the definition of F

in (26) we have

‖F [X,Y ] − F [X̃, Ỹ ]‖2
L2(�)

=
ˆ

�

∣∣∣∣−
ˆ

�

K ′
ρ

(
X(r,m) − X(r,m′)

)
dm′ −

ˆ

�

H ′
ρ

(
X(r,m) − Y (r,m′)

)
dm′

+
ˆ

�

K ′
ρ

(
X̃(r,m) − X̃(r,m′)

)
dm′ +

ˆ

�

H ′
ρ

(
X̃(r,m) − Ỹ (r,m′)

)
dm′

∣∣∣∣
2

dm.

(39)

Using the fact that |x + y|2 ≤ 2(|x|2 + |y|2), the right hand side of (39) can be controlled by

2
ˆ

�

(∣∣∣∣
ˆ

�

[
K ′

ρ

(
X(r,m) − X(r,m′)

) − K ′
ρ(X̃(r,m) − X̃(r,m′)

)]
dm′

∣∣∣∣
2

+
∣∣∣∣
ˆ

�

[
H ′

ρ

(
X(r,m) − Y (r,m′)

) − H ′
ρ

(
X̃(r,m) − Ỹ (r,m′)

)]
dm′

∣∣∣∣
2)

dm

≤ 2
ˆ

�

(ˆ

�

|K ′
ρ

(
X(r,m) − X(r,m′)

) − K ′
ρ(X̃(r,m) − X̃(r,m′)

)|dm′
)2

+
(ˆ

�

|H ′
ρ

(
X(r,m) − Y (r,m′)

) − H ′
ρ(X̃(r,m) − Ỹ (r,m′)

)|dm′
)2

dm.

(40)
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Let L(K ′
ρ) and L(H ′

ρ) be the Lipschitz constants of K ′
ρ and H ′

ρ respectively, then, using
Jensen’s inequality, the right hand side of (40) is bounded by

2
ˆ

�

(ˆ

�

L(K ′
ρ)

(|X(r,m) − X̃(r,m)| + |X(r,m′) − X̃(r,m′)|)dm′
)2

+
(ˆ

�

L(H ′
ρ)

(|X(r,m) − X̃(r,m)| + |Y (r,m′) − Ỹ (r,m′)|)dm′
)2

dm

≤ 4
ˆ

�

(ˆ

�

[
L(K ′

ρ)
2|X(r,m) − X̃(r,m)|2 + L(K ′

ρ)
2|X(r,m′) − X̃(r,m′)|2]dm′

)

+
(ˆ

�

[
L(H ′

ρ)
2|X(r,m) − X̃(r,m)|2 + L(H ′

ρ)
2|Y (r,m′) − Ỹ (r,m′)|2]dm′

)
dm.

Thus, there exists a positive constant C1 = C1
(
L(K ′

ρ),L(H ′
ρ)

)
such that

‖F [X,Y ] − F [X̃, Ỹ ]‖2
L2(�)

≤ C1

(‖X − X̃‖2
L2(�)

+ ‖Y − Ỹ‖2
L2(�)

)
.

Analogously, one can prove the inequality (ii), we omit the details. �

We are now ready to state existence result for Lagrangian solution to system (25).

Proposition 1 Let T > 0 and suppose that the kernels Hρ,Kρ,Hη,Kη ∈ C1(R) satisfy (A)
and (SL). Then, for every (X,Y ,V ,W) ∈ K2 × L2(�)2 there exists a unique Lagrangian
solution (X,Y ) to (25) in [0, T ].

Proof According to the discussion in Sect. 2.5, system (25) can be rewritten in the following
equivalent form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ + ∂

(
IK(X) + |X|2

2ε

)
� P

ε
,

Ẏ + ∂

(
IK(Y ) + |Y |2

2ε

)
� Q

ε
,

Ṗ = F [X,Y ],
Q̇ = G[X,Y ],

(41)

where P and Q are defined in (34) and (35) respectively. In order to prove the result we will
follow the strategy in [7, Theorem 3.17]. Consider the operator

A(X,Y,P,Q) := IK(X) + IK(Y ) + |X|2
2ε

+ |Y |2
2ε

defined on the Hilbert space H := L2(�)2 × L2(�)2. Note that A is convex and bounded
from below. Consider the iterative sequence defined as follows: fix U0 := (X,Y ,P ,Q) ≡
(X,Y , εV + X,εW + Y) and, for n ≥ 1 construct Un+1(t) := (Xn+1(t), Yn+1(t),Pn+1(t),



Second Order Two-Species Systems with Nonlocal Interactions Page 19 of 41 9

Qn+1(t)) recursively as the weak solution to the implicit-explicit system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋn+1 + ∂

(
IK(Xn+1) + |Xn+1|2

2ε

)
� Pn

ε
, Xn+1(0) = X,

Ẏn+1 + ∂

(
IK(Yn+1) + |Yn+1|2

2ε

)
� Qn

ε
, Yn+1(0) = Y ,

Ṗn+1 = F [Xn,Yn], Pn+1(0) = P ,

Q̇n+1 = G[Xn,Yn], Qn+1(0) = Q.

(42)

Setting R(Un) = (
Pn/ε,Qn/ε,F [Xn,Yn],G[Xn,Yn]

)
, the previous system (42) can be

rewritten in the following compact form

U̇n+1 + ∂A(Un+1) � R(Un). (43)

Since the functional A is convex, its sub-differential is a maximal monotone operator in the
sense of [7] and R can be seen as a Lipschitz perturbation of it, see [7, Lemma 3.1]. A direct
computation shows that

1

2

d

dt
‖Un+1 − Un‖2

L2(0,1)
≤ (

Un+1 − Un,R(Un) − R(Un−1)
)
.

Proceeding as in [7, Lemma A.5], we may introduce the function

ψδ(t) = 1

2

(
‖Un+1(0) − Un(0)‖2

L2(�)
+ δ

)2

+
tˆ

0

(
Un+1(r) − Un(r),R(Un)(r) − R(Un−1(r))

)
dr

and prove that it is absolutely continuous for all t ∈ [0, T ] with

√
ψδ(t) ≤ √

ψδ(0) + 1√
2

tˆ

0

‖R(Un)(r) − R(Un−1)(r)‖L2(�) dr,

uniformly in δ. Since ‖Un+1(t) − Un(t)‖L2(�) ≤ √
2
√

ψδ(t) for all δ > 0, we have that

‖Un+1(t) − Un(t)‖L2(�) ≤
tˆ

0

‖R(Un)(r) − R(Un−1)(r)‖L2(�) dr.

Invoking Lemma 2 and the definitions for P and Q in (34) and (35) respectively, we can say
that there exists a positive constant C depending on T , ε and on the Lipschitz constants of
the kernels L(K ′

ρ), L(H ′
ρ), L(K ′

η), L(H ′
η) such that

‖Un+1(t) − Un(t)‖L2(�) ≤ C

tˆ

0

‖Un(r) − Un−1(r)‖L2(�) dr for 0 ≤ t ≤ T .
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An easy iterative procedure implies that

‖Un+1(t) − Un(t)‖L2(�) ≤ (Ct)n

n! ‖U1 − U0‖L2(�),

thus, Un uniformly converges on [0, T ] to some U . Due to the Lemma 2, R is continuous
in L2 in each component. Moreover, since the subdifferential of A is closed, we can pass to
the limit in (43) and obtain that U is a weak solution to the system (41).

Concerning uniqueness, let U1 = (X1, Y1,P1,Q1) and U2 = (X2, Y2,P2,Q2) be two so-
lutions to system (41) with the same initial condition U 1 = U 2 = U . Proceeding in an anal-
ogous way as before, we can argue that

‖U1(t) − U2(t)‖L2(�) ≤ C

tˆ

0

‖U1(r) − U2(r)‖L2(�) dr for 0 ≤ t ≤ T ,

where the positive constant C depends on T , ε, L(K ′
ρ), L(H ′

ρ), L(K ′
η), L(H ′

η). This implies
that

‖U1(t) − U2(t)‖L2(�) ≤ eCt‖U 1 − U 2‖L2(�) = 0,

that proves the uniqueness. �

The following Proposition collects some properties of Lagrangian solution.

Proposition 2 Let F,G : K × K → L2(�) be uniformly continuous operators in (26) and
(27) and let (X,Y ) be the Lagrangian solution to (25). Then, the following properties hold:

(i) The right-derivatives

V = d+

dt
X, W = d+

dt
Y (44)

exist for all t ≥ 0.
(ii) V and W are the unique elements of minimal norm in the closed convex sets

1

ε

(
P (t) − ∂IK(X(t)) − X(t)

)
and

1

ε

(
Q(t) − ∂IK(Y (t)) − Y (t)

)
,

respectively, i.e.

V (t) =
(

1

ε

(
P (t) − ∂IK(X(t)) − X(t)

))◦
, (45)

and

W(t) =
(

1

ε

(
Q(t) − ∂IK(Y (t)) − Y (t)

))◦
. (46)

In particular, by replacing Ẋ by V and Ẏ by W , (25) and (36) hold for all t ≥ 0.
(iii) The functions t → V (t) and t → W(t) are right-continuous for all t ≥ 0.
(iv) If T 0

X ⊂ (0,∞) and T 0
Y ⊂ (0,∞) denote the subsets of all times at which the maps

s → ‖V (s)‖L2(�) and s → ‖W(s)‖L2(�) respectively are continuous, then (0,∞) \ T 0
X

and (0,∞) \ T 0
Y are negligible, V and W are continuous, X and Y are differentiable

in L2(�) at every point of T 0
X and T 0

Y respectively.
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(v) Setting ρ(t, ·) := −1(X(t, ·)) and η(t, ·) := −1(Y (t, ·)) where  is the isometry
introduced in (14), there exist a unique map v(t, ·) ∈ L2(R, ρ) and a unique map
w(t, ·) ∈ L2(R, η) such that

Ẋ(t) = V (t) = PHX(t)

(
1

ε

(
P (t) − X(t)

)) = v(t,X(t)) ∈ HX(t), (47)

for every t ∈ T 0
X , and

Ẏ (t) = W(t) = PHY (t)

(
1

ε

(
Q(t) − Y (t)

)) = w(t,Y (t)) ∈ HY(t), (48)

for every t ∈ T 0
Y .

Proof The results in (i), (ii), (iii) are consequences of the general theory of [7, Theorem
3.5]. Concerning (iv) and (v), we follow [6, Theorem 3.5]. We prove only (47), since the
proof of (48) is similar. By applying [7, Remark 3.9], one can see that if t is a point of
differentiability of X, the derivative with respect to time of X in t is the projection of 0 onto
the affine space generated by P (t) − ∂IK(X(t)) − X(t), i.e., the orthogonal projection of
P (t)−X(t) onto the orthogonal complement of the space generated by ∂IK(X(t)). By using
[6, Lemma 2.5], we obtain (47). Since any element of HX(t) can be written as v ◦ X, where
v ∈ L2(�) is a suitable Borel map, we have that there exists a Borel map v : [0,∞)×R→R

such that v(t, ·) ∈ L2(R, ρ(t, ·)) and V (t, ·) = v(t,X(t)) for t ∈ T 0
X . �

We are now in the position of proving the main result of this Section, namely Theorem
1, that concerns existence and uniqueness of the solution to system (7).

Proof of Theorem 1 Let ρ,η ∈ P2(R) and v ∈ L2(dρ), w ∈ L2(dη) be given initial condi-
tions. Define the L2(�)-functions X = (ρ) and Y = (η) and the compositions V = v◦X

and W = w ◦ Y . Then (X,Y ,V ,W) is an admissible initial condition for system (25), thus
Proposition 1 ensures existence and uniqueness of a couple (X,Y ) that is the Lagrangian
solution to (25). According to Proposition 2 we can define the right-continuous functions
V and W such that (44) holds for all t ≥ 0 and introduce ρ(t, ·) := −1(X(t, ·)) and
η(t, ·) := −1(Y (t, ·)). Let v(t, ·) be the map given by Proposition 2 and ϕ be a test function
on (0, T ) ×R, then

∞̂

o

ˆ

R

ε
(
∂tϕ(t, x) + ∂xϕ(t, x)v(t, x)

)
v(t, x)ρ(t, dx) dt

=
∞̂

0

ˆ

�

ε
(
∂tϕ(t,X(t,m)) + ∂xϕ(t,X(t,m))v(t,X(t,m))

)
v(t,X(t,m)) dmdt.

(49)

Using (47) and integrating by parts, the r.h.s. of (49) is equal to

∞̂

0

ˆ

�

(
d

dt
ϕ(t,X(t,m))

)(
P (t,m) − X(t,m)

)
dmdt

=
∞̂

0

ˆ

�

ϕ(t,X(t,m))
(
Ẋ(t,m) − Ṗ (t,m)

)
dmdt.

(50)
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As proved in Proposition 2 we have that Ẋ(t,m) = V (t,m) and from the definition of the
operator P (t,m) in (34), one obtains that (50) equals

∞̂

0

ˆ

�

ϕ(t,X(t,m))

(
V (t,m) +

ˆ

�

K ′
ρ

(
X(s,m) − X(s,m′)

)
dm′

+
ˆ

�

H ′
ρ

(
X(s,m) − Y (s,m′)

)
dm′

)
dmdt

=
∞̂

o

ˆ

R

ϕ(t, x)
(
v(t, x) + K ′

ρ ∗ ρ(t, x) + H ′
ρ ∗ η(t, x)

)
ρ(t, dx) dt,

that is the distributional formulation of the momentum equation in (7). Similarly, for the
continuity equation we have

∞̂

0

1ˆ

0

(
d

dt
ϕ(t,X(t,m))

)
dmdt

=
∞̂

0

1ˆ

0

(
∂tϕ(t,X(t,m)) + ∂xϕ(t,X(t,m))V (t,m)

)
dmdt

=
∞̂

0

ˆ

R

(
∂tϕ(t, x) + ϕx(t, x)v(t, x)

)
ρ(t, dx) dt = 0.

Concerning the initial conditions, since limt↓0 X(t) = X in L2(�) for Proposition 1 and X =
(ρ), we have that ρ → ρ in P2(R) as t → 0. Moreover, V = v ◦X, so that limt↓0 V (t) = V

in L2(�), therefore for every ϕ ∈ Cb(R) we have

ˆ

R

ϕ(x)v(x)ρ(dx) =
1ˆ

0

ϕ(X(m))V (m)dm

= lim
t↓0

1ˆ

0

ϕ(X(t,m))V (t,m)dm = lim
t↓0

ˆ

R

ϕ(t, x)v(t, x)ρ(t, dx).

A similar argument can be used for the pair (η,w). �

4 Large-Damping Limit

In this section we study the large-damping limit of system (7) for the damping parameter
σ → ∞ as stated in Theorem 2. In particular, we aim at making the formal argument intro-
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duced in Sect. 2.4 rigorous, and showing that solutions to system (20) converge to the ones
of the first order system

⎧
⎪⎨

⎪⎩

∂ρ

∂t
= ∂

∂x
[ρK ′

ρ ∗ ρ + ρH ′
ρ ∗ η],

∂η

∂t
= ∂

∂x
[ηK ′

η ∗ η + ηH ′
η ∗ ρ].

(51)

In what follows we will assume that the potentials Hρ , Hη Kρ , Kη are under assumptions
(A) and (SL).

Recalling the definition of F [X,Y ](m) and G[X,Y ](m) in (26) and (27), we introduce
the operator

L
(
(X,Y )

)
(m) :=

(
F [X,Y ](m)

G[X,Y ](m)

)
.

By setting Zε = (Xε,Yε), Zε = (Xε,Y ε), Uε = (Vε,Wε) and Uε = (V ε,Wε), system (25)
can be rewritten in the following compact form

εŻε(t) + Zε(t) + ∂IK2(Zε(t)) � εUε + Zε +
tˆ

0

L(Zε(r)) dr. (52)

We are now in the position of proving Theorem 2.

Proof of Theorem 2 Let (ρ, η) be a solution to system (51) subject to the initial condition
(ρ, η), and (ρε, ηε, vε,wε) be a solution to system (20) subject to the initial condition
(ρε, ηε, vε,wε), Define X0 = (ρ) and Y0 = (η), then Z0 = (X0, Y0) is a solution to

Z0(t) + ∂IK2(Z0(t) � Z0 +
tˆ

0

L(Z0(r)) dr, (53)

with Z0 = (X0, Y 0) = ((ρ),(η)). Similarly, consider Zε = (Xε,Yε) that solves (52),
with Xε = (ρε) and Yε = (ηε). Adding εŻ0(t) to both sides of (53) and taking the dif-
ference between (52) and (53), we get

ε
(
Żε(t) − Ż0(t)

) + Zε(t) − Z0(t) + ∂IK2(Zε(t)) − ∂IK2(Z0(t))

� εUε + Zε − Z0 − εŻ0(t) +
tˆ

0

[
L(Zε(r)) − L(Z0(r))

]
dr.

(54)

We now estimate the evolution of the L2 norm of the quantity Zε(t) − Z0(t). In doing that,
we use the monotonicity of the set valued operator ∂IK2 , which is a consequence of the
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convexity of the indicator function and of the definition of sub-differential.

ε

2

d

dt

ˆ

�

(
Zε(t,m) − Z0(t,m)

)2
dm +

ˆ

�

(
Zε(t,m) − Z0(t,m)

)2
dm

≤
ˆ

�

[
εUε(m) + Zε(m) − Z0(m)

](
Zε(t,m) − Z0(t,m)

)
dm

− ε

ˆ

�

Ż0(t,m)
(
Zε(t,m) − Z0(t,m)

)
dm

+
tˆ

0

ˆ

�

[
L(Zε(r,m)) − L(Z0(r,m))](Zε(t,m) − Z0(t,m)

)
dmdr.

(55)

Using Young’s inequality and the bounds in Lemma 2, (55) becomes

ε

2

d

dt

ˆ

�

(
Zε(t,m) − Z0(t,m)

)2
dm +

ˆ

�

(
Zε(t,m) − Z0(t,m)

)2
dm

≤ 1

2

ˆ

�

[
εUε(m) + Zε(m) − Z0(m)

]2
dm + 1

2

ˆ

�

(
Zε(t,m) − Z0(t,m)

)2
dm

+ ε

2

ˆ

�

Ż2
0(t,m)dm + ε

2

ˆ

�

(
Zε(t,m) − Z0(t,m)

)2
dm

+ 1

2

tˆ

0

ˆ

�

[
L(Zε(r,m)) − L(Z0(r,m))]2 dmdr + 1

2

tˆ

0

ˆ

�

(
Zε(r,m) − Z0(r,m)

)2
dmdr ,

which implies

ε

2

d

dt

ˆ

�

(
Zε(t,m) − Z0(t,m)

)2
dm + 1 − ε

2

ˆ

�

(
Zε(t,m) − Z0(t,m)

)2
dm

≤ 1

2

ˆ

�

[
εUε(m) + Zε(m) − Z0(m)

]2
dm + ε

2

ˆ

�

Ż2
0(t,m)dm

+ C
1

2

tˆ

0

ˆ

�

(
Zε(r,m) − Z0(r,m)

)2
dmdr ,

where C is a fixed constant depending on the operator L and coming from Lemma 2. Inte-
grating over [0, T ] and denoting

A(ε,T ) := (2ε + 4T )

ˆ

�

(
Zε(m) − Z0(m)

)2
dm + 4T

ˆ

�

[
εUε(m)

]2
dm
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+ 2ε

T̂

0

ˆ

�

Ż2
0(t,m)dmdt,

assuming ε < 1/2, by using Cauchy-Schwarz inequality we have that

T̂

0

ˆ

�

(
Zε(t,m) − Z0(t,m)

)2
dmdt

≤ C

T̂

0

tˆ

0

ˆ

�

(
Zε(r,m) − Z0(r,m)

)2
dmdr dt + A(ε,T ) ,

by suitably renaming the constant C. By applying Gronwall’s lemma we get

T̂

0

ˆ

�

(
Zε(t,m) − Z0(t,m)

)2
dmdt ≤ A(ε,T )eCT .

In order to conclude it is enough to see that A(ε,T ) → 0 as ε → 0. We recall assumption
(i) reads ρε → ρ and ηε → η in P2(R), thus Zε → Z0 as ε → 0 in L2(�)2. Assumption (ii)
implies initial velocities under the following conditions

vε = o(1/ε) in L2(dρε) and wε = o(1/ε) in L2(dηε) as ε → 0,

thus εUε → 0 as ε → 0. Finally, the last term in A(ε,T ) converges to zero since Ż0 does
not depend on ε. �

5 Newtonian Potentials

This section is devoted to study existence of solutions and asymptotic property of system (7)
when self-attractive forces are driven by Newtonian potentials, i.e., Kρ(x) = Kη(x) = |x|.
We restrict the analysis to the case of equal cross-potentials, namely Hρ = Hη =: H . We also
consider two uniformly convex external potentials Aρ and Aη acting on the system. More
precisely, we assume Aρ ,Aη ∈ C2(R) under assumptions (H1) and (H2). These additional
terms don’t affect the study of existence of solutions, in the generalised sense specified in
Definition 5, but are only required in the study of asymptotic behaviour in Theorem 3. The
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system we are dealing with can be expressed in Lagrangian coordinates as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tX(t,m) = V (t,m),

∂tY (t,m) = W(t,m),

∂tV (t,m) = −
ˆ

�

sign
(
X(t,m) − X(t,m′)

)
dm′

−
ˆ

�

H ′(X(t,m) − Y (t,m′)
)
dm′ − σV (t,m) − A′

ρ(X),

∂tW(t,m) = −
ˆ

�

sign
(
Y (t,m) − Y (t,m′)

)
dm′

−
ˆ

�

H ′(Y (t,m) − X(t,m′)
)
dm′ − σW(t,m) − A′

η(Y ).

(56)

We can associate to the system (56) the following functional

F(X,Y ) =1

2

ˆ

�

ˆ

�

|X(m) − X(m′)|dm′ dm + 1

2

ˆ

�

ˆ

�

|Y (m) − Y (m′)|dm′ dm

+
ˆ

�

ˆ

�

H
(
Y (m) − X(m′)

)
dm′ dm +

ˆ

�

Aρ(X(m))dm +
ˆ

�

Aη(Y (m))dm.

(57)

In particular, we write

F(X,Y ) := S(X) + S(Y ) + K(X,Y ),

where

S(X) := 1

2

ˆ

�

ˆ

�

|X(m) − X(m′)|dm′ dm,

S(Y ) := 1

2

ˆ

�

ˆ

�

|Y (m) − Y (m′)|dm′ dm,

K(X,Y ) :=
ˆ

�

ˆ

�

H
(
Y (m) − X(m′)

)
dm′ dm +

ˆ

�

Aρ(X(m))dm +
ˆ

�

Aη(Y (m))dm.

As shown in [4, 10], it is easy to prove that the self-interaction contributions in F are
linear when restricted to K.

Lemma 3 If X ∈ K, then

S(X) =
ˆ

�

(2m − 1)X(m)dm.

Proof A direct computation shows that

S(X) = 1

2

ˆ

�

ˆ

�

|X(m) − X(s)|ds dm =
¨

{X(m)≥X(s)}

(
X(m) − X(s)

)
dmds.
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Since X ∈ K, X is non-decreasing, then the set {X(m) ≥ X(s)} can be characterised as
follows

{X(m) ≥ X(s)} = {m ≥ s} ∪ {m ≤ s ≤ �(m)},
with

�(m) = sup{s ∈ [0,1] : X(s) = X(m)}.
Moreover, X(s) = X(m) on {m ≤ s ≤ �(m)}, then

S(X) =
¨

m≥s

(
X(m) − X(s)

)
dmds

=
(ˆ

�

m̂

0

X(m)ds dm −
ˆ

�

1ˆ

s

X(s) dmds

)

=
ˆ

�

mX(m)dm −
ˆ

�

(1 − s)X(s) ds

=
ˆ

�

(2m − 1)X(m)dm. �

The first result in this Section consists in proving the existence of a map t →
(X(t), Y (t)) that is a generalised Lagrangian solution to (25) with respect to the choice
� = PHX

(F1)(t,m) and � = PHY
(F2)(t,m), i.e., the system (56) can be written as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tX(t,m) = PHX
(V )(t,m),

∂tY (t,m) = PHY
(W)(t,m),

∂tV (t,m) = −PHX
(F1[X,Y ])(m) − σV (t,m),

∂tW(t,m) = −PHY
(F2[X,Y ])(m) − σW(t,m),

(58)

where

F1[X,Y ](m) = 2m − 1 +
ˆ

�

H ′(X(m) − Y (m′)
)
dm′ + A′

ρ(X) (59)

and

F2[X,Y ](m) = 2m − 1 +
ˆ

�

H ′(Y (m) − X(m′)
)
dm′ + A′

η(Y ) (60)

are the force operators and describe the external and interaction forces that act on the system.
The following proposition ensures that a generalised Lagrangian solution exists.

Proposition 3 Assume the cross-potential H under assumptions (A) and (SL). Assume the
external potentials Aρ,Aη ∈ C2(R). Then for every (X,Y ,V ,W) ∈ K2 × HX × HY there
exists a generalised Lagrangian solution to system (56) with initial data (X,Y ,V ,W) in the
sense of Definition 5.
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Proof The proof is based on a discretization argument, inspired by the result in [6, Theorem
4.5]. Consider the following two partitions of �:

0 =: l0 < l1 < · · · < lN := 1, and 0 =: z0 < z1 < · · · < zM := 1,

with

li :=
i∑

j=1

mj, and zj :=
j∑

i=1

ni,

for i = 1, . . . ,N − 1 and j = 1, . . . ,M − 1, and introduce the piecewise constant functions

X(t, ·) =
N∑

i=1

xi(t)1Li
, V (t, ·) =

N∑

i=1

vi(t)1Li
, (61)

Y (t, ·) =
M∑

j=1

yj (t)1Zj
, W(t, ·) =

M∑

j=1

wj(t)1Zj
, (62)

defined on the intervals Li := [li−1, li ) and Zj := [zj−1, zj ), for i = 1, . . . ,N − 1 and j =
1, . . . ,M − 1. Consider the finite dimensional Hilbert space

Hm ×Hn :=
{
(X,Y ) =

( N∑

i=1

xi1Li
,

M∑

j=1

yj1Zj

)
: (x, y) ∈R

N ×R
M

}
⊂ L2(�) × L2(�)

and its closed convex cone

Km ×Kn :=
{
(X,Y ) =

( N∑

i=1

xi1Li
,

M∑

j=1

yj1Zj

)
: (x, y) ∈K

N ×K
M

}
⊂ K ×K.

Note that the projected forces

Fm[X,Y ] := PHm(F1[X,Y ]) and Fn[X,Y ] := PHn (F2[X,Y ])
are well defined and Lipschitz continuous according to the definitions in (59)-(60) and as-
sumptions (A) and (SL).

Now, assume that the initial condition (X,Y ,V ,W) ∈ Km ×Kn ×HX ×HY doesn’t hit
the boundary of Km ×Kn. Consider the time interval [0, t1) with t1 = min

{
tX1 , tY1

}
where

tX1 = inf {t > 0 : X(t) ∈ ∂Km} , tY1 = inf {t > 0 : Y (t) ∈ ∂Kn} .

Then, we obtain (61)-(62) by solving

Ẋ(t) = V (t), V̇ (t) = PHm

(
1

ε

(
F1[X(t), Y (t)] − V (t)

))
,

Ẏ (t) = W(t), Ẇ (t) = PHn

(
1

ε

(
F2[X(t), Y (t)] − W(t)

))
.

(63)

We have that Hm = HX(t) and Hn = HY(t) in [0, t1), thus the projection onto the set Hm

yields functions defined on � that are constant on the same intervals where (X,V ) is con-
stant, and similarly the projection onto Hn. Taking t1 as the new initial time, we can consider
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a new initial condition (X
′
, Y

′
,V

′
,W

′
) ∈ Km′ ×Kn′ ×H

X
′ ×H

Y
′ of dimensions N ′ ≤ N and

M ′ ≤ M and, proceeding in the same fashion, we can define t2 > t1 and consider the evo-
lution in the time interval [t1, t2). Iterating the procedure, we obtain a sequence of collision
times 0 =: t0 < t1 < · · · < tK := ∞ and the quadruple (X,Y,V,W) such that

Ẋ(t) = V (t), V̇ (t) = PHX(t)

(
1

ε

(
F1[X(t), Y (t)] − V (t)

))
,

Ẏ (t) = W(t), Ẇ (t) = PHY (t)

(
1

ε

(
F2[X(t), Y (t)] − W(t)

))
,

(64)

for all t ∈ [tk−1, tk), k = 1, . . . ,K with

HX(t) = HX(tk−1), HY(t) = HY(tk−1). (65)

When an inelastic collision occurs, we have that

X(tk+) = X(tk−), V (tk+) = PHX(tk )
(V (tk−)),

Y (tk+) = Y (tk−), W(tk+) = PHY (tk )
(W(tk−)).

(66)

We proceed by induction on the collision times. In the first time interval [0, t1), inclusion
(30) holds by considering the empty set for the subdifferential ∂IK(X(t)). Now, suppose
that (30) is satisfied in [tk−1, tk). Hence, by induction assumption,

εV (tk−) + X(tk−) + ξ = εV + X +
tkˆ

0

PHX(s)
(F1[X(s),Y (s)]) ds (67)

with ξ ∈ ∂IK(X(tk)). By (64),

εẊ(t) + X(t) =X(tk+) + εV (tk+) +
tˆ

tk

PHX(s)
(F1[X(s),Y (s)]) ds

=X(tk+) + ε
(
V (tk+) − V (tk−)

) + εV (tk−)

+
tˆ

tk

PHX(s)
(F1[X(s),Y (s)]) ds

(68)

for any t ∈ [tk, tk+1). Combining equations (67) and (68) we get

εẊ(t) + X(t) + ε
(
V (tk−) − V (tk+)

) + ξ = εV + X +
tˆ

0

PHX(s)
(F1[X(s),Y (s)]) ds.

Invoking again (64), we have

V (tk−) = lim
h→0+

X(tk) − X(tk − h)

h
,
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hence using (66), we derive

V (tk−) − V (tk+) =V (tk−) − PHX(tk )
(V (tk−))

= lim
h→0+

X(tk) − X(tk − h) − PHX(tk )

(
X(tk) − X(tk − h)

)

h

= lim
h→0+

PHX(tk )
(X(tk − h)) − X(tk − h)

h
.

Applying [6, Lemma 2.6], we find that V (tk−)−V (tk+) ∈ ∂IK(X(tk)), and using the mono-
tonicity property of the sub-differential, one obtains that

ξ + V (tk−) − V (tk+) ∈ ∂IK(X(t))

for all t ∈ [tk, tk+1). Therefore inclusion (30) is satisfied. Now, let us prove that (32) holds.
Consider system (36) with P replaced by

P1(t,m) = εV (m) + X(m) +
tˆ

0

F1[X(r, ·), Y (r, ·)](m)dr.

Thus, we have that for any t ≥ s ≥ 0,

1

ε
[P1(s) − X(s)] − V (s) ∈ ∂IK(X(s)) ⊂ ∂IK(X(t)),

where we used the monotonicity of the sub-differential. Integrating on s ∈ [0, t] we obtain

tˆ

0

1

ε
[P1(s) − X(s)]ds + X − X(t) ∈ ∂IK(X(t))

for a.e. t ≥ 0. Since the following property holds (cfr. [6])

Y = PK(X) ⇐⇒ X − Y ∈ ∂IK(Y ),

we derive

X(t) = PK

(
X − 1

ε

tˆ

0

X(s)ds + 1

ε
t
(
εV + X

) + 1

ε

tˆ

0

(t − s)F1[X(s),Y (s)]ds

)
.

A similar proof holds for the equations (31) and (33). Finally, since the construction above
starts form discrete initial data in the form of the piecewise constant functions as in (61)-(62),
and since these functions are dense in L2(�), we can approximate any given initial data and
then combine the procedure into the proof with the stability Theorem 4.4 in [6]. �

Now, we provide an estimate on the total energy of the system (58), used in the proof of
Theorem 3 below.
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Lemma 4 Let (X,Y,V,W) ∈ K2 × L2(0,1)2 be the solution to the system (58) with initial
data (X,Y ,V ,W). Then, the following uniform estimate holds:

sup
t≥0

(
F(X,Y ) + 1

2
‖V ‖2

L2(�)
+ 1

2
‖W‖2

L2(�)

)
≤ F(X,Y ) + 1

2
‖V ‖2

L2(�)
+ 1

2
‖W‖2

L2(�)
. (69)

Proof The proof is based on an estimate of the following total energy

E(X,Y,V,W) = 1

2

ˆ

�

|V |2 dm + 1

2

ˆ

�

|W |2 dm + F(X,Y ).

Considering (X,Y,V,W) generalised solution to (58), we have

d+

dt
E(X,Y,V,W) = − σ

ˆ

�

(|V |2 + |W |2)dm

−
ˆ

�

V PHX
(F1) dm −

ˆ

�

WPHY
(F2) dm

+
ˆ

�

PHX
(V )

[
2m − 1 +

ˆ

�

H ′(X(m) − Y (m′)
)
dm′ + A′

ρ(X)
]
dm

+
ˆ

�

PHY
(W)

[
2m − 1 +

ˆ

�

H ′(Y (m) − X(m′)
)
dm′ + A′

η(Y )
]
dm.

(70)

Thanks to the definitions of F1[X,Y ] and F2[X,Y ] in (59)-(60), we obtain that

d+

dt
E(X,Y,V,W) = − σ

ˆ

�

(|V |2 + |W |2)dm −
ˆ

�

V PHX
(F1) dm

−
ˆ

�

WPHY
(F2) dm +

ˆ

�

PHX
(V )F1 dm +

ˆ

�

PHY
(W)F2 dm.

(71)

By definition of the projection operator in (24),

ˆ

�

PHX
(V )

(
PHX

(F1[X,Y ]) − F1[X,Y ])dm = 0 =
ˆ

�

PHX
(F1[X,Y ])(PHX

(V ) − V
)
dm,

then
ˆ

�

(
F1[X,Y ]PHX

(V ) − V PHX
(F1[X,Y ]))dm = 0,

and similarly

ˆ

�

(
F2[X,Y ]PHY

(W) − WPHY
(F2[X,Y ]))dm = 0,
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therefore (71) reduces to

d+

dt
E(X,Y,V,W) = −σ

ˆ

�

|V |2 dm − σ

ˆ

�

|W |2 dm ≤ 0, (72)

from which we can easily deduce the uniform estimate (69). �

We can now provide the proof of Theorem 3.

Proof of Theorem 3 Integrating in time the equation (72), we find that for all T > 0

E(X,Y,V,W)
∣∣
t=T

+ σ

T̂

0

ˆ

�

(|V |2 + |W |2)dmdt = E(X,Y,V,W)
∣∣
t=0

.

Thanks to the non-negativity of the cross-potential H , assumption (H1) and the fact that

ˆ

�

(2m − 1)(X + Y )dm = −
ˆ

�

(m2 − m)(∂mX + ∂mY )dm ≥ 0, (73)

which holds since m2 − m ≤ 0 for m ∈ (0,1) and ∂mX + ∂mY ≥ 0 for X,Y ∈ K, we obtain
that

σ

T̂

0

ˆ

�

(|V |2 + |W |2)dmdt ≤ −λ

ˆ

�

|X|2∣∣
t=T

dm − μ

ˆ

�

|Y |2∣∣
t=T

dm + C1,

where C1 is a constant depending on initial data and λ and μ are the constants in assumption
(H1) for both potentials. Thus

∞̂

0

ˆ

�

(|V |2 + |W |2)dmdt < +∞. (74)

Computing the temporal derivative of the L2-distance between (X,Y ) and (Xs,Ys), we de-
rive

1

2

d

dt

ˆ

�

(|X|2 + |Y |2)dm =
ˆ

�

XPHX
(V )dm +

ˆ

�

YPHY
(W)dm

=
ˆ

�

X
(
PHX

(V ) − V
)
dm +

ˆ

�

Y
(
PHY

(W) − W
)
dm

+
ˆ

�

(XV + YW) dm

=
ˆ

�

(XV + YW) dm.

(75)
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In order to control the last term in the chain of equality above we compute

d

dt

ˆ

�

(XV + YW) dm =
ˆ

�

X
[ − σV − PHX

(F1)
]
dm +

ˆ

�

V PHX
(V )dm

+
ˆ

�

Y
[ − σW − PHY

(F2)
]
dm +

ˆ

�

WPHY
(W)dm.

(76)

Using the definitions of F1 and F2 in (59) and (60) and the property for the projection
operator we have

d

dt

ˆ

�

(XV + YW) dm =
ˆ

�

( − σXV − σYW + |V |2 + |W |2)dm −
ˆ

�

(2m − 1)(X + Y )dm

−
ˆ

�

ˆ

�

X(m)H ′(X(m) − Y (m′)
)
dm′ dm

−
ˆ

�

ˆ

�

Y (m)H ′(Y (m) − X(m′)
)
dm′ dm

−
ˆ

�

XA′
ρ(X)dm −

ˆ

�

YA′
η(Y ) dm. (77)

Using assumption (AT) we can bound the terms involving the cross-interaction potential H

as follows

−
ˆ

�

ˆ

�

X(m)H ′(X(m) − Y (m′)
)
dm′ dm −

ˆ

�

ˆ

�

Y (m)H ′(Y (m) − X(m′)
)
dm′ dm

= −
ˆ

�

ˆ

�

H ′(X(m) − Y (m′)
)(

X(m) − Y (m′)
)
dm′ dm ≤ 0,

thus, using assumption (H2) and (73), (77) can be bounded from above by

d

dt

ˆ

�

(XV + YW) dm ≤
ˆ

�

( − σXV − σYW + |V |2 + |W |2 − α|X|2 − β|Y |2)dm. (78)

Note that for any A > 0 we have −XV ≤ X2A2 + V 2

4A2 . Then, applying this inequality to
−σXV and −σYW , we obtain the following inequality holding for any A1,A2 > 0:

ˆ

�

( − σXV − σYW + |V |2 + |W |2 − α|X|2 − β|Y |2)dm

≤ −
ˆ

�

|X|2(α − σA2
1

)
dm −

ˆ

�

|Y |2(β − σA2
2

)
dm

+
ˆ

�

|V |2(1 + σ

4A2
1

)
dm +

ˆ

�

|W |2(1 + σ

4A2
2

)
dm.

(79)
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By taking sufficiently small A1 and A2, we have that (78) is bounded from above by

d

dt

ˆ

�

(XV + YW) dm ≤ −C1

ˆ

�

(|X|2 + |Y |2)dm + C2

ˆ

�

(|V |2 + |W |2)dm (80)

for some constants C1,C2 > 0. Putting together estimates (75) and (80), we have that

d

dt

ˆ

�

(|X|2 + |Y |2 + XV + YW
)
dm

≤ 2
ˆ

�

(
XV + YW

)
dm − C1

ˆ

�

(|X|2 + |Y |2)dm + C2

ˆ

�

(|V |2 + |W |2)dm.

(81)

Integrating in time inequality (81), for all T > 0 we obtain
ˆ

�

(|X|2 + |Y |2 + XV + YW
)
dm

∣∣
t=T

−
ˆ

�

(|X|2 + |Y |2 + XV + YW
)
dm

∣∣
t=0

≤2

T̂

0

ˆ

�

(
XV + YW

)
dmdt − C1

T̂

0

ˆ

�

(|X|2 + |Y |2)dmdt

+ C2

T̂

0

ˆ

�

(|V |2 + |W |2)dmdt,

thus

C1

T̂

0

ˆ

�

(|X|2 + |Y |2)dmdt ≤C2

T̂

0

ˆ

�

(|V |2 + |W |2)dmdt

+ 2

T̂

0

ˆ

�

(
XV + YW

)
dmdt

−
ˆ

�

(|X|2 + |Y |2 + XV + YW
)
dm

∣∣
t=T

+ C2,

where C2 is a constant which depends on initial data. Proceeding as in (79) and using the
bound in (74), we have that

∞̂

0

ˆ

�

(|X|2 + |Y |2)dm < +∞. (82)

Combining estimates (74) and (82) we get

∞̂

0

ˆ

�

(|X|2 + |Y |2 + |V |2 + |W |2)dmdt < +∞,
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Fig. 1 In this first example, we fix N = 160, and M = 150. All the potentials are attractive. In particular we

set Kρ(x) = −e−|x|3 , Kη(x) = −e−|x|4 , Hρ(x) = Hη(x) = −e−|x|2

Fig. 2 Evolution under the action of attractive self-potentials given by Kρ(x) = −3e−|x|2 , and

Kη(x) = −2e−2|x|3 , and repulsive cross-potentials Hρ(x) = −|x|2, Hη(x) = e−|x|2 . In this example,
N = 180, M = 200

hence, there exists a sub-sequence {tk}k such that

ˆ

�

(|X(tk)|2 + |Y (tk)|2 + |V (tk)|2 + |W(tk)|2
)
dm → 0 as tk → +∞. (83)

Since the operator F defined in (57) is a monotone operator, then

F(X,Y ) + 1

2

ˆ

�

|V |2 dm + 1

2

ˆ

�

|W |2 dm → � > 0 as t → +∞

and � is unique. Moreover, Lemma 2 ensures that the operator F is continuous, thus

1

2

ˆ

�

|V |2 dm + 1

2

ˆ

�

|W |2 dm + F(X,Y )
∣∣
t=tk

→ � as tk → +∞.
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Fig. 3 Two possible outcomes (top and bottom) for the evolution of the system under the action of self-

repulsive potentials Kρ(x) = 2e−|x|2 and Kη(x) = e−|x|3 and attractive cross-potentials Hρ(x) = |x|2 and

Hη(x) = −e−3|x|2 . In both the simulations the numbers of particles are fixed as N = 170 and M = 160, but
initial velocities change (randomly)

Using the coercivity of the external potentials Aρ and Aη and (83), we have that � is neces-
sarily zero, hence the statement holds. �

6 Simulations

This last section is devoted to provide some numerical examples on the behaviour of solu-
tions to system (7). Numerical simulations will be performed by using the discrete particle
counterpart of (7), namely solving numerically (9). We recall that the system of ODEs we
are dealing with is the following

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = vi(t),

ẏj (t) = wj(t),

v̇i(t) = −σvi(t) −
∑

k �=i

mk∇Kρ

(
xi(t) − xk(t)

) −
∑

k

nk∇Hρ

(
xi(t) − yk(t)

)
,

ẇj (t) = −σwj (t) −
∑

k �=j

nk∇Kη

(
yj (t) − yk(t)

) −
∑

k

mk∇Hη

(
yj (t) − xk(t)

)
,

(84)

where xi and yj denote the particles positions of first and second species respectively, vi

and wj their velocities and mi and nj their masses, for i = 1, . . . ,N and j = 1, . . . ,M .
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Fig. 4 Evolution under the action of attractive Newtonian self-potentials and attractive Gaussian cross-

potentials given by Hρ(x) = Hη(x) = −e−|x|2 . The external potentials are Aρ(x) = |x − 1
2 |2 and

Aη(x) = 2|x − 1
2 |2. In this example, N = 200 and M = 210

Fig. 5 In this example, N = 180, M = 190, the self-potentials are Newtonian attractive and the cross-

potentials are equal and repulsive. In particular they are Hρ(x) = Hη(x) = 3e−|x|4 . The external potentials

are Aρ(x) = 1
2 |x − 1

2 |2 and Aη(x) = 5|x − 1
2 |2

For simplicity we assume all the particles having the same mass. By a normalisation in
the masses the total number of particles for each species, N and M respectively, will be
modified in each of the examples below in order to highlights possible different changes in
the solutions.

System (84) will be coupled with an uniform distributed set of particles in the space
interval [0,1] and a random distribution for the velocities. We then let the particles evolve
by using an explicit second order three steps Runge-Kutta method, (cf. [19]) up to the first
collision. In order to detect collisions between particles we fix a tolerance parameter toll and
we assume that it occurs when the distance between two consecutive particles of the same
species, for instance xi and xi+1, is smaller than toll. Once two consecutive particles collide
they are replaced by a single particle with new position and velocity given by

xi+ 1
2
(t) = xi(t) + xi+1(t)

2
,
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Fig. 6 Solutions to the second order system (blue in the online version) and solutions to first order sys-

tem (51) (in red) under the action of the following potentials are Kρ(x) = −e−|x|3 , Kη(x) = −e−|x|4 ,

Hρ(x) = Hη(x) = −e−|x|2 . In this simulation we set N = 160, M = 150 and σ = 10 (top) and σ = 1000
(bottom)

vi+ 1
2
(t) = vi(t) + vi+1(t)

2
,

and doubled mass, and we let the system evolve again with this new set of particles. In all
the simulations below we fix toll = 0.002.

We study numerical solutions to the system (84) both in case of smooth potentials and
in case of Newtonian self-potentials. Several examples are presented in the smooth case,
where we highlight the possibility of a sticky dynamics, both in attractive and repulsive
regime. Furthermore, we will compare solutions to second order system with solution to
first order one as the increasing values of the damping parameter σ , also comparing the
Wasserstein distance between the solution to the second order system and the solution to the
first order system as σ varies. Wasserstein distance is computed using its one-dimensional
equivalence with the L2-norm at the level of monotone rearrangements.

The first examples we provide concern the evolution of particles subject to the action of
radial smooth potentials. Figure 1 displays the sticky particle dynamics when all the poten-
tials are smooth and attractive. Instead, in Fig. 2 the self-potentials are attractive and the
cross-potentials are repulsive, while in Fig. 3 the self-potentials are repulsive and the cross-
potentials are attractive. In particular, we highlight how the behaviour is strongly different
by comparing two simulations performed with the same potentials, number of particles and
initial position, but different set of initial (random) velocities.
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Fig. 7 Solutions to the second order system (blue in the online version) and solutions to first order system (51)

(in red) under the action of the following potentials are Kρ(x) = −e−|x|2 , Kη(x) = −e−3|x|3 , Hρ(x) = |x|2,

Hη(x) = −e−2|x|4 .. In this simulation we set N = 180, M = 190 and σ = 5 (top) and σ = 900 (bottom)

Fig. 8 Behaviour of the Wasserstein distance between solutions of the first order system and solutions of
the second order system. The self-potentials are Newtonian attractive potentials, while the cross-potentials

are given by Hρ(x) = Hη(x) = −e−|x|2 . Increasing the damping parameter Wasserstein distance remain
controlled

We then show a couple of simulations in which the self-potentials are attractive Newto-
nian, while the cross-potentials are symmetric, radial and smooth. In particular, in Fig. 4, the
cross-potentials are attractive, indeed the particles collide, while in Fig. 5, they are repulsive
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and not all the particles collide. According to results in Sect. 5 also the effect of external
potentials is taken into account.

We then focus on the numerical investigation of the large damping regime. Figures 6
and 7 show a comparison between particles evolution associated to the second order system
and the ones associated to the first order system (51), for various choices of potentials. We
highlight numerically the relevance of the damping parameter σ in the evolution: increasing
the value of σ solutions of the two different problems become indistinguishable.

Finally in Fig. 8, considering the same potentials in Fig. 4, we display the Wasserstein
distance between the solution to the second order system and the ones to the first order
system for different values of σ . For small values of σ , the Wasserstein distance grows
initially, and then decays in time. When σ is bigger, the distance remains controlled for all
times.

Acknowledgements The research of MDF and SF is supported by the Ministry of University and Research
(MIUR), Italy under the grant PRIN 2020- Project N. 20204NT8W4, Nonlinear Evolutions PDEs, fluid dy-
namics and transport equations: theoretical foundations and applications. The research of SF and VI is sup-
ported by the Italian INdAM project N. E55F22000270001 “Fenomeni di trasporto in leggi di conservazione e
loro applicazioni”. SF is also supported by University of L’Aquila 2021 project 04ATE2021 - “Mathematical
Models For Social Innovations: Vehicular And Pedestrian Traffic, Opinion Formation And Seismology.”

Funding Note Open access funding provided by Università degli Studi dell’Aquila within the CRUI-CARE
Agreement.

Declarations

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability
Measures, 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2008)

2. Appert-Rolland, C., Degond, P., Motsch, S.: Two-way multi-lane traffic model for pedestrians in corri-
dors. Netw. Heterog. Media 6(3), 351–381 (2011)

3. Bianchini, S., Sara, D.: On the sticky particle solutions to the multi-dimensional pressureless Euler equa-
tions (2020)

4. Bonaschi, G.A., Carrillo, J.A., Di Francesco, M., Peletier, M.A.: Equivalence of gradient flows and
entropy solutions for singular nonlocal interaction equations in 1D. ESAIM, COCV 21(2), 414–441
(2015)

5. Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35(6),
2317–2328 (1998)

6. Brenier, Y., Gangbo, W., Savaré, G., Westdickenberg, M.: Sticky particle dynamics with interactions. J.
Math. Pures Appl. 99(5), 577–617 (2013)

7. Brézis, H.: Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert.
North-Holland Pub. Co., Amsterdam (1973)

8. Bruna, M., Chapman, S.J.: Diffusion of finite-size particles in confined geometries. Bull. Math. Biol.
76(4), 947–982 (2014)

http://creativecommons.org/licenses/by/4.0/


Second Order Two-Species Systems with Nonlocal Interactions Page 41 of 41 9

9. Carrillo, J.A., Choi, Y., Tse, O.: Convergence to equilibrium in Wasserstein distance for damped Euler
equations with interaction forces. Commun. Math. Phys. 365(1), 329–361 (2018)

10. Carrillo, J.A., Di Francesco, M., Esposito, A., Fagioli, S., Schmidtchen, M.: Measure solutions to a
system of continuity equations driven by Newtonian nonlocal interactions. Discrete Contin. Dyn. Syst.
40(2), 1191–1231 (2020)

11. Chen, G.: Euler equations and related hyperbolic conservation laws. Handb. Differ. Equ., Evol. Equ. 2,
1–104 (2016)

12. Conca, C., Espejo, E., Vilches, K.: Remarks on the blowup and global existence for a two species chemo-
tactic Keller-Segel system in R

2. Eur. J. Appl. Math. 22(6), 553–580 (2011)
13. Dafermos, C.M., Pan, R.: Global BV solutions for the p-system with frictional damping. SIAM J. Math.

Anal. 41(3), 1190–1205 (2009)
14. Di Francesco, M., Fagioli, S.: Measure solutions for non-local interaction PDEs with two species. Non-

linearity 26, 2777 (2013)
15. Di Francesco, M., Esposito, A., Fagioli, S.: Nonlinear degenerate cross-diffusion systems with nonlocal

interaction. Nonlinear Anal. 169, 94–117 (2018)
16. Ding, X.X., Chen, G.Q., Zhu Luo, P.: Convergence of the fractional step Lax-Friedrichs scheme and

Godunov scheme for the isentropic system of gas dynamics. Commun. Math. Phys. 121(1), 63–84 (1989)
17. Düring, B., Wolfram, M.-T.: Opinion dynamics: inhomogeneous Boltzmann-type equations modelling

opinion leadership and political segregation. Proc. A. 471(2182), 20150345 (2015)
18. Fang, D., Xu, J.: Existence and asymptotic behavior of c1 solutions to the multi-dimensional compress-

ible Euler equations with damping. Nonlinear Anal., Theory Methods Appl. 70(1), 244–261 (2009)
19. Gottlieb, S., Shu, C., Tadmor, E.: Strong stability-preserving high-order time discretization methods.

SIAM Rev. 43, 89–112 (2001)
20. Hsiao, L., Luo, T., Yang, T.: Global BV solutions of compressible Euler equations with spherical sym-

metry and damping. J. Differ. Equ. 146(1), 203–225 (1998)
21. Huang, F., Pan, R.: Asymptotic behavior of the solutions to the damped compressible Euler equations

with vacuum. J. Differ. Equ. 220(1), 207–233 (2006)
22. Huang, F., Marcati, P., Pan, R.: Convergence to the Barenblatt solution for the compressible Euler equa-

tions with damping and vacuum. Arch. Ration. Mech. Anal. 176(1), 1–24 (2005)
23. Lattanzio, C., Tzavaras, A.E.: From gas dynamics with large friction to gradient flows describing diffu-

sion theories. Commun. Partial Differ. Equ. 42(2), 261–290 (2017)
24. Natile, L., Savaré, G.: A Wasserstein approach to the one-dimensional sticky particle system. SIAM J.

Math. Anal. 41(4), 1340–1365 (2009)
25. Nguyen, T., Tudorascu, A.: Pressureless Euler/Euler–Poisson systems via adhesion dynamics and scalar

conservation laws. SIAM J. Math. Anal. 40(754–775), 01 (2008)
26. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. Am. Math. Soc.,

Providence (2003)
27. Wang, W., Yang, T.: The pointwise estimates of solutions for Euler equations with damping in multi-

dimensions. J. Differ. Equ. 173, 410–450 (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.


	Second Order Two-Species Systems with Nonlocal Interactions: Existence and Large Damping Limits
	Abstract
	Introduction
	Preliminaries and Main Results
	One Dimensional Wasserstein Distance
	Main Assumptions
	Particles System
	Time Scaling and Formal Large Damping Limit
	Lagrangian Description of the Continuum Model
	Main Results

	Existence and Uniqueness for Smooth Potentials
	Large-Damping Limit
	Newtonian Potentials
	Simulations
	Acknowledgements
	References


