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Simple Summary: This study aimed to predict the Length of hospital Stay (LoS) after laparoscopic
right hemicolectomy for colon cancer using machine learning techniques. Accurately forecasting LoS
is crucial for improving patient care and hospital resource management. The researchers utilized data
from two large Italian studies, CoDIG 1 and CoDIG 2, to train and validate various machine learning
models. The Random Forest (RF) algorithm demonstrated the best internal performance, while the
Support Vector Machine (SVM) outperformed in external validation. Key factors influencing LoS
included the use of fast-track protocols, type of anastomosis, and drainage. These findings could help
tailor postoperative care and optimize hospital resources, ultimately enhancing patient outcomes and
operational efficiency.

Abstract: The evolution of laparoscopic right hemicolectomy, particularly with complete meso-
colic excision (CME) and central vascular ligation (CVL), represents a significant advancement in
colon cancer surgery. The CoDIG 1 and CoDIG 2 studies highlighted Italy’s progressive approach,
providing useful findings for optimizing patient outcomes and procedural efficiency. Within this
context, accurately predicting postoperative length of stay (LoS) is crucial for improving resource
allocation and patient care, yet its determination through machine learning techniques (MLTs) re-
mains underexplored. This study aimed to harness MLTs to forecast the LoS for patients undergoing
right hemicolectomy for colon cancer, using data from the CoDIG 1 (1224 patients) and CoDIG 2
(788 patients) studies. Multiple MLT algorithms, including random forest (RF) and support vector
machine (SVM), were trained to predict LoS, with CoDIG 1 data used for internal validation and
CoDIG 2 data for external validation. The RF algorithm showed a strong internal validation perfor-
mance, achieving the best performances and a 0.92 ROC in predicting long-term stays (more than
5 days). External validation using the SVM model demonstrated 75% ROC values. Factors such as
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fast-track protocols, anastomosis, and drainage emerged as key predictors of LoS. Integrating MLTs
into predicting postoperative LOS in colon cancer surgery offers a promising avenue for personalized
patient care and improved surgical management. Using intraoperative features in the algorithm
enables the profiling of a patient’s stay based on the planned intervention. This issue is important for
tailoring postoperative care to individual patients and for hospitals to effectively plan and manage
long-term stays for more critical procedures.

Keywords: machine learning; right hemicolectomy; colon cancer; laparoscopy; length of stay

1. Introduction

The surgical management of colon cancer, particularly the extent of lymphadenectomy
and the impact of surgical techniques on postoperative outcomes, has been a subject of
ongoing research and debate within the medical community [1]. Recent advancements in
laparoscopic surgery, including the principles of complete mesocolic excision (CME) and
central vascular ligation (CVL), have shown promise in improving oncological outcomes.
The peculiarity of right hemicolectomy surgery for colon cancer, in Italy, has been explored
in the CoDIG studies [2,3], underscoring surgeons’ commitment to advancing operative
practices and patient care.

The CoDIG 1 study is a multicenter research project that has laid the groundwork for
understanding the variability in surgical techniques and their impact on patient outcomes
across different medical centers [3]. The CoDIG 2 study was based on the findings of the
CoDIG 1 study and aimed to validate and extend its insights by focusing on the effectiveness
of surgical techniques and the integration of new medical practices [2].

In this research framework, predicting and profiling the LoS in hospitals, especially
after surgical procedures, is important for several reasons. It enables healthcare providers
to optimize resource allocation, ensuring that beds, staff, and other essential resources are
available and used efficiently [4]. By anticipating how long patients will stay, hospitals can
better manage admissions and discharges, reduce bottlenecks, and improve the overall
patient flow [5]. Moreover, accurately predicting LoS could help to identify patients at risk
of prolonged stays, allowing healthcare teams to tailor postoperative care plans, implement
targeted interventions early, and potentially shorten the duration of hospitalization [6,7].

In clinical research, the use of machine learning techniques (MLTs) for surgical outcome
prediction represents a significant advancement over classical statistical models. MLT
algorithms can process complex datasets with multiple variables, thereby capturing the
nonlinear relationships and interactions that classical models may overlook [8].

Integrating MLTs into the predictive framework enhances the accuracy of postopera-
tive hospital stay predictions, enabling personalized patient care and setting new standards
in surgical research and practice [9]. This proactive approach facilitates efficient resource
allocation and more effective interventions. The application of MLTs in this context aligns
with the state of the art in medical research, pushing the boundaries of personalized
medicine and setting new standards for surgical care [10].

Despite its potential benefits, the use of MLTs to predict the LoS after right hemicolec-
tomy for colon cancer is currently underrepresented in the literature. This gap highlights
the significant opportunity for research and development in surgical care.

This study aimed to consider MLTs to predict the postoperative LoS in patients un-
dergoing right hemicolectomy for colon cancer using data from the CoDIG 1 and CoDIG 2
studies. This study aimed to fill a gap in the literature by providing an assessment of the
predictive power of MLTs in this specific surgical context.
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2. Materials and Methods
2.1. Data

The MLT models for predicting LoS were internally validated on the CoDIG 1 [3]
dataset and externally validated on the CoDIG 2 [2] data.

• The CoDIG 1 [3] data were obtained from a large, multicenter, Italian study aimed at
evaluating the surgical outcomes associated with two different techniques of ileocolic
anastomosis (intracorporeal [ICA] and extracorporeal [ECA]) during laparoscopic
right hemicolectomy. This prospective cohort study, endorsed by the Italian Society of
Endoscopic Surgery and New Technologies (SICE), involved 85 surgical units across
Italy, which contributed data on 1225 patients who underwent elective laparoscopic or
robotic right hemicolectomy between March 2018 and September 2018.

• CoDIG 2 [2] data were used to externally validate the MLTs. The CoDIG 2 study
is an observational multicenter national study involving 76 Italian surgical wards
specializing in colorectal surgery aimed at assessing the practices of Italian surgeons
regarding the extent of lymphadenectomy performed during right hemicolectomy
(RH) for colon cancer. We sought to understand the current surgical approaches and
any evolving trends compared with the previous CoDIG 1 study.

Other details of the aforementioned studies are reported in the literature [2,3].

2.2. Descriptive Statistics

Descriptive information about the data was conveyed by presenting the medians and
interquartile ranges for quantitative variables and the absolute and relative frequencies for
qualitative variables. The data were categorized based on the LoS, specifically highlighting
stays longer than one week for descriptive purposes. To analyze the differences between
groups, the Wilcoxon test was used for quantitative variables, whereas the chi-square test
or, if suitable, the Fisher exact test was used for qualitative ones.

The multivariable logistic regression model OR, calculated on the training sample,
with 95% confidence intervals on the risk of a prolonged stay (more than one week), is also
reported for descriptive purposes in the Supplementary Material.

2.3. Machine Learning
2.3.1. Patient Variables

This study focused on a subset of variables deemed relevant for predicting LoS, such
as patient demographics, pre-existing comorbidities, the American Society of Anesthesiolo-
gists (ASA) scores, surgical details, and intraoperative variables. The variables used for
training the models are summarized in Table 1 and described in Section S1.
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Table 1. Baseline demographic and clinical characteristics of the CoDIG 1 training sample and CoDIG 2 external validation set.

CoDIG 1 (Internal Validation Sample) CoDIG 2 (External Validation Sample)

Variables
Less than 1 Week More than 1 Week Total

p
Less than 1 Week More than 1 Week Total

p
(n = 570) (n = 654) (n = 1224) (n = 454) (n = 334) (n = 788)

Preoperative

Age (years) (median [IQR]) 74.0 [65.0;80.0] 73.0 [64.0;80.0] 74.0 [65.0;80.0] 0.315 73.0 [65.0;80.0] 76.0 [70.0;82.0] 74.0 [67.0;81.0] <0.001

Gender, n (%) 0.99 0.075
Male 293 (51.4%) 337 (51.5%) 630 (51.5%) 228 (50.2%) 190 (56.9%) 418 (53.0%)

Female 277 (48.6%) 317 (48.5%) 594 (48.5%) 226 (49.8%) 144 (43.1%) 370 (47.0%)

BMI, n (%) 0.137 0.421
<18 13 (2.28%) 27 (4.13%) 40 (3.27%) 10 (2.20%) 4 (1.20%) 14 (1.78%)

18–24 272 (47.7%) 294 (45.0%) 566 (46.2%) 216 (47.6%) 154 (46.1%) 370 (47.0%)
25–30 203 (35.6%) 253 (38.7%) 456 (37.3%) 175 (38.5%) 126 (37.7%) 301 (38.2%)
>30 82 (14.4%) 80 (12.2%) 162 (13.2%) 53 (11.7%) 50 (15.0%) 103 (13.1%)

ASA score, n (%) 0.2 <0.001
I 42 (7.37%) 51 (7.80%) 93 (7.60%) 23 (5.07%) 4 (1.20%) 27 (3.43%)
II 269 (47.2%) 338 (51.7%) 607 (49.6%) 238 (52.4%) 121 (36.2%) 359 (45.6%)
III 237 (41.6%) 250 (38.2%) 487 (39.8%) 179 (39.4%) 173 (51.8%) 352 (44.7%)
IV 22 (3.86%) 15 (2.29%) 37 (3.02%) 14 (3.08%) 36 (10.8%) 50 (6.35%)

Pathology, n (%) 0.562 0.314
Benign 77 (13.5%) 80 (12.2%) 157 (12.8%) 26 (5.73%) 13 (3.89%) 39 (4.95%)

Malignant 493 (86.5%) 574 (87.8%) 1067 (87.2%) 428 (94.3%) 321 (96.1%) 749 (95.1%)

Comorbidities, n (%) 0.987 0.001
None 330 (57.9%) 380 (58.1%) 710 (58.0%) 297 (65.4%) 180 (53.9%) 477 (60.5%)

One or more 240 (42.1%) 274 (41.9%) 514 (42.0%) 157 (34.6%) 154 (46.1%) 311 (39.5%)

Previous abdominal surgery, n (%) 0.635 0.297
None 299 (52.5%) 353 (54.0%) 652 (53.3%) 252 (55.5%) 172 (51.5%) 424 (53.8%)

One or more 271 (47.5%) 301 (46.0%) 572 (46.7%) 202 (44.5%) 162 (48.5%) 364 (46.2%)

Tumor, n(%) 0.255 <0.001
T1 69 (14.7%) 66 (12.3%) 135 (13.5%) 68 (17.0%) 33 (11.2%) 101 (14.6%)
T2 94 (20.1%) 114 (21.3%) 208 (20.7%) 121 (30.3%) 57 (19.4%) 178 (25.7%)
T3 249 (53.2%) 271 (50.7%) 520 (51.8%) 172 (43.1%) 161 (54.8%) 333 (48.1%)
T4 56 (12.0%) 84 (15.7%) 140 (14.0%) 38 (9.52%) 43 (14.6%) 81 (11.7%)
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Table 1. Cont.

CoDIG 1 (Internal Validation Sample) CoDIG 2 (External Validation Sample)

Variables
Less than 1 Week More than 1 Week Total

p
Less than 1 Week More than 1 Week Total

p
(n = 570) (n = 654) (n = 1224) (n = 454) (n = 334) (n = 788)

Node, n (%) 0.6 0.016
N+ 58 (12.2%) 75 (13.9%) 133 (13.1%) 34 (8.59%) 45 (15.5%) 79 (11.5%)
N0 308 (64.6%) 348 (64.7%) 656 (64.6%) 258 (65.2%) 169 (58.3%) 427 (62.2%)
N1 111 (23.3%) 115 (21.4%) 226 (22.3%) 104 (26.3%) 76 (26.2%) 180 (26.2%)

Metastasis, n(%) 0.496 0.187
M0 443 (94.7%) 498 (93.4%) 941 (94.0%) 377 (95.4%) 270 (92.8%) 647 (94.3%)
M+ 25 (5.34%) 35 (6.57%) 60 (5.99%) 18 (4.56%) 21 (7.22%) 39 (5.69%)

Intraoperative

Length of surgical procedure, n (%) 0.089 <0.001
>270 min 27 (4.74%) 48 (7.34%) 75 (6.13%) 37 (8.15%) 46 (13.8%) 83 (10.5%)

181–270 min 180 (31.6%) 220 (33.6%) 400 (32.7%) 152 (33.5%) 141 (42.2%) 293 (37.2%)
90–180 min 363 (63.7%) 386 (59.0%) 749 (61.2%) 265 (58.4%) 147 (44.0%) 412 (52.3%)

Blood transfusion, n (%) <0.001 <0.001
No 20 (3.51%) 59 (9.02%) 79 (6.45%) 448 (98.7%) 312 (93.4%) 760 (96.4%)
Yes 550 (96.5%) 595 (91.0%) 1145 (93.5%) 6 (1.32%) 22 (6.59%) 28 (3.55%)

Intraoperative minimal
bleeding > 200 mL, n (%) <0.001 0.001

No 551 (96.7%) 603 (92.2%) 1154 (94.3%) 419 (92.3%) 288 (86.2%) 707 (89.7%)
Yes 19 (3.33%) 51 (7.80%) 70 (5.72%) 35 (7.71%) 46 (13.8%) 81 (10.3%)

Anastomosis, n (%) <0.001 <0.001
Extracorporeal 87 (15.3%) 276 (42.2%) 363 (29.7%) 89 (19.6%) 121 (36.2%) 210 (26.6%)
Intracorporeal 483 (84.7%) 378 (57.8%) 861 (70.3%) 365 (80.4%) 213 (63.8%) 578 (73.4%)

Drainage, n(%) <0.001 <0.001
No 303 (53.2%) 171 (26.1%) 474 (38.7%) 185 (40.7%) 92 (27.5%) 277 (35.2%)
Yes 267 (46.8%) 483 (73.9%) 750 (61.3%) 269 (59.3%) 242 (72.5%) 511 (64.8%)

Conversion *, n (%) <0.001 0.004
No 566 (99.3%) 592 (90.5%) 1158 (94.6%) 431 (94.9%) 298 (89.2%) 729 (92.5%)
Yes 4 (0.70%) 62 (9.48%) 66 (5.39%) 23 (5.07%) 36 (10.8%) 59 (7.49%)
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Table 1. Cont.

CoDIG 1 (Internal Validation Sample) CoDIG 2 (External Validation Sample)

Variables
Less than 1 Week More than 1 Week Total

p
Less than 1 Week More than 1 Week Total

p
(n = 570) (n = 654) (n = 1224) (n = 454) (n = 334) (n = 788)

Fast-track protocol, n (%) <0.001 <0.001
No 135 (23.7%) 435 (66.5%) 570 (46.6%) 80 (17.6%) 167 (50.0%) 247 (31.3%)
Yes 435 (76.3%) 219 (33.5%) 654 (53.4%) 374 (82.4%) 167 (50.0%) 541 (68.7%)

Right hemicolectomy **, n(%) 0.068 0.262
Laparoscopic 513 (90.0%) 575 (87.9%) 1088 (88.9%) 369 (81.3%) 278 (83.2%) 647 (82.1%)

Robotic 34 (5.96%) 60 (9.17%) 94 (7.68%) 59 (13.0%) 32 (9.58%) 91 (11.5%)
Video-assisted *** 23 (4.04%) 19 (2.91%) 42 (3.43%) 26 (5.73%) 24 (7.19%) 50 (6.35%)

Outcome

LoS 3.00 [2.00;3.00] 7.00 [5.00;9.00] 7.00 [5.00;8.00] <0.001 6.00 [5.00;8.00] 8.00 [7.00;11.0] 6.00 [5.00;8.00] <0.001

* Conversion indicates conversion to open surgery; ** hemicolectomy type indicates the surgical approach (open, laparoscopic, or video-assisted); *** video-assisted surgery refers to a
hybrid laparoscopic technique with anastomosis performed through service access.
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2.3.2. Machine Learning Model Training and Validation

To predict LoS, several MLTs have been employed, including random forest (RF) [11,12],
gradient-boosting machine (GBM) [13], generalized linear model via penalization (GLM-
NET) [14], support vector machine (SVM) [15] with a linear separation function, and
traditional linear models (LMs). Other details concerning the algorithms are reported in
Supplementary Material Section S1.

The caret package [16] in R 4.3.2 [17] was used for model training. We applied 100 boot-
strap runs with an optimism correction for model validation and internal training.

Each model was trained on CoDIG 1 [3] data using a set of predictors, dynamically
selected by bootstrap resampling based on preprocessing outcomes, and evaluated using
the mean absolute percentage error (MAPE) for regression tasks. Preprocessing steps, such
as centering and scaling, were applied to optimize model performance.

The comparison across models focused on the MAPE for regression models to identify
the best-performing algorithm. The proportion of correct predictions within an LoS of three
days was also computed as a model performance measure with the root-mean-square error
(RMSE). The ROC for the prediction score in identifying a prolonged stay (longer than 5.48
days) was reported. This quantity represented the average stay duration (4.24 days) plus
the standard deviation (1.24) reported as performing weighted averages, for the study size,
of the data reported in the recent review by Meyer and colleagues [18].

The model performance measures were also calculated to predict the LoS in the
external validation set CoDIG 2 [2].

2.3.3. Variable Importance

To assess the relative importance of the variables in our predictive models, we im-
plemented a variable importance evaluation method tailored to measure the contribution
of each predictor to the model’s predictive ability. This approach allowed us to identify
the factors most influential in predicting the outcomes of interest, such as the length of
hospital stay.

The SHAP (Shapley additive explanations) [19] importance was considered for assess-
ing the variables’ importance. The SHAP values provided a measure of each variable’s
contribution to the MLT’s predictions.

This metric assigned each variable a value that represented its importance in making a
particular prediction, based on the concept of Shapley values from cooperative game theory.

The selected model was the best algorithm, satisfying a suitable performance in both
the training and validation samples.

2.3.4. Shiny Application Development

A Shiny application was developed to operationalize the best-performing MLT model
for the real-time prediction of postoperative LoS in patients undergoing right hemicolec-
tomy. This web-based tool was built with RStudio’s Shiny 1.8.0 [20] package, enabling
healthcare professionals to input patient-specific data and receive immediate LoS estimates
(see the Supplementary Materials).

3. Results

This machine was developed on a sample of 1224 patients who underwent colorectal
surgery and were categorized into two groups according to the length of their postoperative
hospitalization: individuals with a time of less than one week (n = 570) and those with a
period longer than one week (n = 654).

One patient with no information on their postoperative LOS was excluded from the
training. The machines were externally validated using 788 CoDIG 2 data (Table 1).

Table 1 presents the patients’ demographic and clinical characteristics used to train
the models in both samples. The demographic variables, including age and sex, showed
no statistically significant differences between the two groups, such as BMI categories,
in the training sample (Table 1). Conversely, the presence of blood transfusion, type of
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anastomosis, implementation of drainage, conversion to open surgery, and adherence to
fast-track protocols showed statistically significant differences between the groups. Ele-
vated rates of blood transfusion, employment of extracorporeal anastomosis, postoperative
drainage, conversion to open surgery, and non-compliance with fast-track protocols are all
associated with prolonged hospital stays. Borderline results were observed for the type of
right hemicolectomy and the length of the surgical procedure (Table 1).

In the CoDIG 2 dataset, instead, patients who remained in the hospital for more than
one week were older, with a higher ASA score severity and comorbidities. Differences were
also observed according to the tumor and node staging. Moreover, a longer hospital stay
was associated with a longer surgical duration (Table 1). The median LoS was 7 (5–8) days
in CoDIG 1 and 6 (5–8) in CoDIG 2.

To predict the length of hospital stay, we applied several MLTs (Table 2).

Table 2. Comparison of model performance for LOS. Internal validation (CoDIG 1) measures were
reported together with external validation measures (CoDIG 1). MAPE, RMSE, and accuracy were
defined as the proportion of records correctly classified within three days. The ROC is the ability
of the algorithm to predict a long-term stay (>5 days). The best-performing algorithms have been
highlighted in bold text.

CoDIG 1 Internal Validation CoDIG 2 External Validation

Model MAPE RMSE ROC Accuracy MAPE RMSE ROC Accuracy

Random forest (RF) 0.21 2.8 0.92 0.94 0.81 6.04 0.65 0.42
Support vector machine (SVM) 0.29 5.00 0.86 0.83 0.48 4.68 0.75 0.79
Gradient-boosting machine (GBM) 0.38 4.78 0.81 0.81 0.91 6.15 0.67 0.3
Generalized linear model with penalized
maximum likelihood (GLMNET) 0.38 4.8 0.8 0.81 0.76 5.54 0.68 0.43

Linear model (LM) 0.38 4.75 0.78 0.8 0.93 6.3 0.67 0.3

RF exhibited the lowest MAPE and RMSE and the highest accuracy among all the
models in the training sample, indicating a remarkable predictive capability and overall
precision. GBM presented a marginally higher MAPE than RF; however, the MAPE re-
mained sufficiently low. Its RMSE was higher than that of RF but was still reasonably low.
This may represent an acceptable choice for balancing the predictive accuracy and model
complexity. SVM had a lower MAPE than GBM but it was still higher than that of RF. Such
a value could be acceptable, but its RMSE was the highest among all the models. Finally,
GLMNET and LM presented similar values for both metrics and were worse than those
of RF.

Considering the external validation sample, the best-performing algorithm for all
metrics was SVM, followed by the RF model (Table 1).

Figure 1 shows a plot of the predicted versus observed values for the RF and SVM
best-performing algorithms used to visually assess the prediction ability and precision of
the training sample. The figure confirms the superior performance of RF in predicting the
outcomes of the training sample.

Figure 2 shows the SVM’s variable importance plot (VIP), where all the variables
are plotted with their importance measure. The leading LoS predictors identified by
the VIP plot were the fast-track protocol, anastomosis, and drainage use in the surgical
procedure. For comparison purposes, the same relevant significant variables were identified
by considering a logistic regression model calculated based on the risk of a prolonged
stay (more than one week). The fast-track protocol, anastomosis, and drainage revealed
more precise effects with a shorter confidence interval length (Figure S1). The fast-track
protocol with anastomosis and a short length of the surgical procedure showed a protective
effect against prolonged hospital stay. Drainage, intraoperative minimal bleeding, and
conversion were risk factors for a prolonged stay (Figure S1).
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Figure 2. Variable importance plot for LOS with SVM algorithm. Anastomosis indicates the use of
intracorporeal anastomosis, conversion indicates the conversion to open surgery, and hemicolec-
tomy type indicates the surgical approach (open, laparoscopic, or video-assisted, where video-
assisted surgery refers to a hybrid laparoscopic technique with anastomosis performed through
service access).

4. Discussion

The CoDIG [2,3] studies have contributed to the expanding body of evidence support-
ing the shift from conventional open surgery to laparoscopic techniques. This transition
offers patient benefits, including a reduction in postoperative pain, a decrease in hospital
stays, and a quicker resumption of normal activities [21,22]. These patient-centered out-
comes are of utmost importance in the context of cancer surgery, where the quality of life
post-surgery is a crucial oncological outcome [23].

The proposed research contributes to surgical oncology by predicting the LoS for
most laparoscopic right hemicolectomy (RH) cases using the developed MLT model. This
predictive tool could assist in better hospital resource management and set realistic recovery
expectations for patients and families [4]. This is especially important in high-demand
facilities where bed space and staff are limited. Forecasting long-term stays helps hospitals
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allocate staff, plan discharges, coordinate follow-up care, reduce bottlenecks, and enhance
overall efficiency [24].

The superior performance of SVM over RF in external validation emphasizes the
need for careful algorithm selection. SVM’s advantage suggests it may be less prone to
overfitting, which affects the model performance on new data. This aligns with other
studies showing RF and SVM as the top algorithms for LOS prediction [25]. This suggests
that the SVM methodology for finding the optimal regression hyperplane might be better
suited to the dataset’s characteristics in external validation scenarios, where the data may
present different distributions or variable relationships than those observed in the training
sample [26].

From a clinical standpoint, the identification of key variables in the VIP plot that
influence the LoS underscores the significance of the fast-track protocol, anastomosis, and
drainage as the primary predictors. The fast-track protocol, which includes elements
like early mobilization, optimized pain management, and reduced perioperative fasting,
has been shown to significantly shorten LoS and improve patient outcomes in colorectal
surgery. This aligns with the enhanced recovery after surgery (ERAS) protocol litera-
ture [27], which consistently demonstrates that such measures lead to faster recovery,
decreased complication rates, and enhanced patient satisfaction, thereby improving both
clinical and operational efficiency [28,29]. Concerning the impact of adherence to the ERAS
protocol, the literature evidence that, despite these recommendations, ERAS protocols are
not widely adopted in Italy. One of the primary obstacles is the organizational difficulty
in altering existing care pathways. Implementing an ERAS protocol requires significant
resources and imposes considerable demands on the multidisciplinary team. Furthermore,
a recent literature review found different perioperative management programs [30], each
with considerable variations in their components and levels of compliance [31].

Anastomosis, the surgical connection between two structures, is another critical predic-
tor. The type and quality of anastomosis can influence the recovery time and the likelihood
of postoperative complications such as leaks, which are associated with longer hospital
stays. Identifying its impact highlights the need for meticulous surgical techniques and
postoperative monitoring to mitigate risks and enhance recovery [32]. Regarding the use of
intracorporeal anastomosis, the data in the CoDIG 1 study demonstrated better short-term
outcomes, including reduced hospital stays and postoperative pain [3]. These findings
are further supported by a systematic review and meta-analysis, which confirm the bene-
fits of intracorporeal anastomosis in improving recovery and minimizing postoperative
discomfort [33].

Prophylactic abdominal drains have been historically used in colorectal surgery for
removing harmful fluid collections and early detection of complications [34]. However,
recent evidence indicates that drains may increase the risk of surgical site infections and
adhesions [35]. This finding emphasizes the importance of postoperative care and the
protocols surrounding the use of drains [36]. In our data, drainage use was associated
with a prolonged hospital stay. Evidence suggests that drains can increase serous fluid
production, risk of surgical site infection, and adhesions, and prolong hospital stays,
impacting pain control, mobility, discomfort, and anxiety [35]. The ERAS Society, American
Society of Colon and Rectal Surgeons, and other guidelines recommend against routine use
of pelvic and peritoneal drains in colorectal surgery based on moderate-quality evidence
from RCTs and meta-analyses [37]. However, drainage is still adopted in surgical practice,
and many surgeons, especially in Europe and China, still believe prophylactic drainage
reduces the risk of complications and aids the early detection of issues like intra-abdominal
bleeding or anastomotic leakage [38].

Furthermore, factors such as conversion to open surgery, intraoperative minimal
bleeding, and the length of the surgical procedure, while less impactful on the prediction al-
gorithm’s performance, are significant predictors of prolonged stays in a logistic regression
model, even if with higher variability in the effect. Conversion to open surgery increases
the operative duration and blood loss, adversely affecting patient stay and post-surgical
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outcomes, as reported in the literature [39]. Minimally invasive techniques like laparoscopy
reduce hemorrhage and the risks associated with perioperative transfusions, improving
patient care [39].

Surgical outcomes also depend on surgeons’ experience and require tailored goals
based on hospital-specific criteria. Successful ERAS implementation necessitates a well-
informed, collaborative team with updated protocol knowledge and clearly defined roles.
Continuous adaptation and post-implementation research are essential for refining protocol
adherence. Other research efforts are useful in this direction [40].

Our study confirms that fast-track protocols significantly reduce LoS, supporting the
literature on this topic. While fast-track implementation is important, it is not a preoperative
factor that can predict LOS. Instead, our findings highlight the importance of using MLTs to
identify patients at risk of prolonged stays based on preoperative and intraoperative data.
This proactive approach not only improves patient recovery but also provides a stronger
incentive for adopting these risk prediction models in clinical practice.

Moreover, the utilization of intraoperative variables in the algorithm enables the
detailed profiling of a patient’s stay based on the planned intervention. This aspect,
firstly, allows healthcare providers to tailor postoperative care plans more precisely for
individual patients. By understanding the expected course of recovery, medical teams can
anticipate potential complications, allocate appropriate resources, and ensure that each
patient receives the necessary attention and interventions to promote optimal healing [41].

These results should encourage further exploration and refinement of machine learn-
ing models in the context of surgical outcomes. Future research could focus on integrating
more diverse datasets, considering additional postoperative outcomes, and exploring the
use of these models in real-time clinical decision support systems [42].

Limitations

Our study recognizes several limitations. Firstly, the parameters influencing LoS,
such as fast-track protocols, anastomosis type, and drain policy, are well-documented
and largely dependent on the clinical practices and expertise within a department. Fast-
track protocols require a departmental commitment to advanced training and horizontal
integration among surgeons, nurses, theatre staff, anesthetists, and ward care. Similarly,
the choice of anastomosis and drain policy relies heavily on the proficiency of highly
trained surgeons.

Moreover, while our predictive models effectively identify patients at risk for pro-
longed stays using intraoperative and preoperative data, these factors cannot be preoper-
atively predicted. However, this limitation underscores its utility in proactive planning
management and resource allocation.

Future research should focus on refining these models by incorporating more granular
data on surgical practices and exploring additional preoperative predictors to enhance
their applicability.

5. Conclusions

This study reports an MLT predictive tool for postoperative hospital stays in right
hemicolectomy colon cancer surgery patients, utilizing data from the CoDIG studies. The
relevant predictors of LoS identified underscore the significance of the fast-track protocol,
anastomosis, and drainage as the primary predictors. The implementation of the predictive
tool promises to improve healthcare delivery by enabling personalized patient care and
optimizing resource allocation. This research paves the way for future advancements in
patient-centered care, emphasizing the need for broader validation and exploration of MLTs
in healthcare.
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web app interface.
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CME Complete mesocolic excision
CVL Central vascular ligation
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CME Complete mesocolic excision
CVL Central vascular ligation
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MDA Mean decrease accuracy
RH Right hemicolectomy
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