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Abstract: Obesity is a chronic, multifactorial disease characterized by persistent low-grade tissue and
systemic inflammation. Fat accumulation in adipose tissue (AT) leads to stress and dysfunctional
adipocytes, along with the infiltration of immune cells, which initiates and sustains inflammation.
Neutrophils are the first immune cells to infiltrate AT during high-fat diet (HFD)-induced obesity.
Emerging evidence suggests that the formation and release of neutrophil extracellular traps (NETs)
play a significant role in the progression of obesity and related diseases. Additionally, obesity is
associated with an imbalance in gut microbiota and increased intestinal barrier permeability, resulting
in the translocation of live bacteria, bacterial deoxyribonucleic acid (DNA), lipopolysaccharides (LPS),
and pro-inflammatory cytokines into the bloodstream and AT, thereby contributing to metabolic
inflammation. Recent research has also shown that short-chain fatty acids (SCFAs), produced by
gut microbiota, can influence various functions of neutrophils, including their activation, migration,
and the generation of inflammatory mediators. This review comprehensively summarizes recent
advancements in understanding the role of neutrophils and NET formation in the pathophysiology
of obesity and related disorders while also focusing on updated potential therapeutic approaches
targeting NETs based on studies conducted in humans and animal models.

Keywords: obesity; obesity-related diseases; neutrophils; neutrophil extracellular traps; NETosis;
inflammation; gut microbiome; dysbiosis; short-chain fatty acids

1. Introduction

Obesity is a complex metabolic disease influenced by various factors, including
genetics, socioeconomic status, and environmental conditions. These elements affect
food consumption, nutrient absorption, thermogenesis, and fat storage in adipose tissue
(AT) [1–3]. Obesity is linked to conditions such as hyperglycemia, dyslipidemia, and
hypertension, making it a major risk factor for various conditions. These include insulin
resistance (IR), type 2 diabetes (T2D), impaired kidney function, poor wound healing,
non-alcoholic steatohepatitis (NASH), cardiovascular disease, Alzheimer’s disease, stroke,
sleep apnea, cancer, and others [4]. The metabolism of AT plays a crucial role in the negative
effects of increased body fat [5,6].

Chronic low-grade inflammation is a hallmark of metabolic disorders like obesity [7].
Excessive caloric intake and subsequent weight gain lead to an increase in the number or
size of adipocytes. This results in changes to the phenotype of AT, particularly in white
AT. This shift is characterized by the development of inflamed adipocytes with altered
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functions and the recruitment of immune cells that release pro-inflammatory cytokines [8].
In lean mice, AT inflammation is suppressed by a coordinated interaction between im-
munosuppressive CD4+ regulatory T cells (Tregs), anti-inflammatory M2 macrophages,
type 2 innate lymphoid (ILC2) cells, and eosinophils. In contrast, obesity causes a dramatic
increase in pro-inflammatory CD4+ type 1 T helper (Th1) cells, cytotoxic CD8+ T cells, and
M1 macrophages, while the number of Tregs decreases, resulting in chronic low-grade
inflammation [8].

Although human data is still limited, evidence suggests a similar inflammatory re-
sponse involving immune cells in the AT of obese individuals. In cases of obesity, peripheral
neutrophils are often the first immune cells to infiltrate AT in high-fat diet (HFD) condi-
tions [9]. An HFD can lead to a twenty-fold increase in neutrophil numbers within three
days, compared to seven days for macrophages [9]. Additionally, obesity is known to alter
the gut microbiome and increase gut permeability [10], facilitating the translocation of
endotoxins, such as lipopolysaccharides (LPS), which drive inflammation in various tissues,
including AT [11]. Pathogenic bacteria from the gastrointestinal tract may also translocate
into obese AT, contributing to increased neutrophil activity [12]. Infiltrating neutrophils
utilize various mechanisms, including phagocytosis, reactive oxygen species (ROS) produc-
tion, degranulation, and the release of neutrophil extracellular traps (NETs). While NETs
are essential for the antimicrobial response of neutrophils [13], excessive release of these
traps can lead to vessel occlusion, tissue damage, and an exaggerated immune response
due to ROS production and the release of cytotoxic granule proteins [13,14]. Emerging
evidence suggests that elevated NET levels may contribute to the progression of obesity
and its associated comorbidities. Studies indicate that deleting or inhibiting NETs may be a
safe approach for these patients [15–17]. Therefore, targeting NETs is crucial for managing
inflammation related to obesity. This review emphasizes the role of neutrophils in inflam-
mation associated with obesity, highlighting the significance of neutrophil infiltration in
the immune dysfunction resulting from obesity. Furthermore, we discuss recent findings
regarding the mechanisms behind the formation of NETs and their implications for obesity
and related diseases.

2. Review Criteria

This review is based on original articles and reviews published over the last two decades,
which were retrieved through PubMed using specific search terms or combinations thereof:
obesity, inflammation, neutrophils, NETs, NE, MPO, endothelial dysfunction, type 2 dia-
betes (T2D), LPS, gut microbiota, and various outcomes. Only papers published in English
were included in the review. Additionally, further relevant papers were identified from the
reference lists of the retrieved articles.

3. Obesity-Related Peripheral Neutrophilia

Polymorphonuclear neutrophils are the most abundant type of white blood cells in
human blood and play a critical role as primary effector cells in the human immune system.
They protect the body against pathogens and inflammatory stimuli [18–20]. When an
infection or inflammation occurs, neutrophils migrate from the bloodstream to the affected
sites, acting as phagocytic cells. They release proteolytic enzymes through a process
called degranulation, produce ROS through oxidative bursts, and form NETs that possess
antimicrobial properties [18]. In addition to their role in fighting infections, neutrophils
are essential participants in acute inflammatory reactions, as they are the first leukocytes
to be recruited to sites of inflammation. They produce significant amounts of cytokines
and chemokines, such as tumor necrosis factor-alfa (TNF-α), interleukin-1beta (IL-1β),
interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1), all of which help
regulate the overall immune response [21].

Moreover, neutrophils play a crucial role in regulating adaptive immunity by recruit-
ing and activating T lymphocytes at inflammation sites [22]. They also produce various
cytokines that influence lymphocytes and can act as antigen-presenting cells (APCs) [22].
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Research focusing on obesity has shown that increased adiposity is associated with in-
creased levels of leukocytes in circulation. Specifically, neutrophil counts have been found
to positively correlate with body mass index (BMI), waist circumference, and serum C-
reactive protein (CRP) levels [23–27]. In individuals with obesity, neutrophils exhibit an
activated phenotype, indicated by increased plasma concentrations of myeloperoxidase
(MPO) and neutrophil elastase (NE) compared to healthy controls [28–31]. This heightened
activity of neutrophils is linked to a greater release of pro-inflammatory cytokines and
cardiovascular risk biomarkers [29]. For instance, in humans, plasma MPO levels have
been found to positively correlate with endothelial dysfunction [32] and cardiovascular
disease risk in individuals with T2D [33]. Collectively, these findings underscore the signif-
icance of neutrophils and their activation in the development of obesity-related diseases,
highlighting a critical event in the inflammatory response to HFDs.

4. Neutrophils: The First Immune Cells Infiltrating Adipose Tissue (AT) During Obesity

While macrophages are the most studied and undeniably crucial immune cells in-
volved in AT inflammation, neutrophils are emerging as critical early players in the patho-
genesis of obesity. Under normal, homeostatic conditions, only a small number of neu-
trophils are present in AT. However, during inflammation induced by experimental obesity,
the number of neutrophils infiltrating AT increases rapidly [9]. Peripheral neutrophils are
recruited to AT through various chemotactic factors produced in the tissue [34]. In the
context of obesity, inflamed adipocytes produce elevated levels of IL-8, which acts as a
potent chemoattractant for neutrophil infiltration into AT (Figure 1).

Additionally, neutrophils can attract more circulating neutrophils by releasing C–X–C
motif chemokine ligand 2 (CXCL2), another significant neutrophil chemoattractant [35,36].
Once in the AT, neutrophils interact with adipocytes by binding integrin αMβ2 (also
known as Mac-1), which is present on the neutrophils, to intercellular adhesion molecule
1 (ICAM-1) on the adipocytes [9]. Recent studies have reported a bidirectional crosstalk
between adipocytes and neutrophils, which contributes to AT inflammation through the
production of various pro-inflammatory substances, such as leptin, IL-1β, TNF-α, ROS,
matrix metalloproteinase-8 (MMP-8), often involving infiltrating macrophages [37,38]. In
fact, neutrophils, when activated, release inflammatory factors that recruit macrophages
and other immune cells, including B cells, T cells, and natural killer (NK) cells. This process
perpetuates the inflammatory state as these cells produce cytokines and chemokines that
can spread to other parts of the body, creating a systemic inflammatory condition. In obese
AT, macrophages increase significantly due to enhanced recruitment, retention, and prolif-
eration. Recruitment is mainly mediated by the myeloid C–C motif chemokine receptor-2
(CCR2), which is the receptor for MCP-1. Macrophage retention involves direct contact
with adipocytes, facilitated by the adhesion of integrin α4β1 on macrophages to VCAM-1
on adipocytes. Macrophages can also proliferate in response to Th2 cytokines, such as
IL-4, IL-13, and granulocyte/monocyte colony-stimulating factor (GM-CSF). Additionally,
neutrophils interact directly with adipocytes through the binding of integrin αMβ2 to
ICAM-1 on the adipocytes [9]. This interaction leads to the production of IL-1β and TNF-α,
which are important activators of macrophages [39–41]. Neutrophils also produce NE,
which directly activates macrophages, and granule protein cathelicidin (LL-37), which can
stimulate the release of additional proinflammatory cytokines from macrophages. Acti-
vated neutrophils can further recruit monocytes through the release of azurocidin, LL-37,
cathepsin G, proteinase 3 (PR3), and human neutrophil peptides 1–3 (HNP1–3) [42,43]. Fur-
thermore, lactoferrin, azurocidin, and HNP1–3 can induce the polarization of macrophages
toward the M1 proinflammatory phenotype [44–46]. Therefore, neutrophil proteins play a
significant role in intensifying inflammation by promoting macrophage activation and the
subsequent release of proinflammatory cytokines.
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Figure 1. The emerging role of neutrophils as critical early players in the pathogenesis of obesity.
Neutrophil recruitment by obese adipose tissue (AT), and bidirectional adipocyte–neutrophil crosstalk
have a substantial impact on the inflammatory profile of AT through the production of a plethora of
pro-inflammatory factors and NET formation. These images were created with https://www.canva.
com/ (accessed on 12 November 2024).

In animal models of obesity-induced inflammation, the number of neutrophils in
peripheral circulation increases, allowing them to infiltrate the blood vessel endothelium
and AT [9,47]. Notably, neutrophil infiltration into AT can occur as early as three days after
HFD feeding and can be sustained for up to 90 days, indicating that neutrophils play a
crucial role in the early stages of obesity [48]. This early inflammatory response dominated
by neutrophils has been shown to contribute in the pathogenesis of metabolic alterations
that accompany obesity [9,15,27,48–57].

A study by Mansuy-Aubert et al. utilized a proteomic approach and found that serum
levels of alpha-1 antitrypsin (A1AT), an endogenous inhibitor of NE, were significantly
decreased in both the serum and liver of obese mice [15]. In contrast, the researchers
observed that NE activity was notably elevated in the serum of both obese and HFD-fed
mice. This suggests that obesity is linked to a substantial increase in the ratio of NE protease
activity to its natural inhibitor, A1AT. Notably, genetic deletion of NE and overexpressing
of human A1AT significantly reduced AT inflammation, IR, body weight gain, and liver
steatosis in mice fed an HFD [15,48]. Furthermore, Kawanishi et al. demonstrated that
exercise training reduced both neutrophil infiltration and NE expression in the AT of HFD-
induced obese mice [51], leading to a decrease in macrophage content and inflammatory
cytokine expression in the AT.

In a recent study conducted by Shantaram et al., researchers gavaged microbiome-
depleted mice with stool samples from individuals with and without obesity during
high-fat or normal diet administration. The results showed that only the mice on an HFD
that received stool from subjects with obesity exhibited an enrichment of VAT neutrophils,
suggesting donor microbiome and recipient HFD determine VAT neutrophilia [12]. Inter-
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estingly, transcriptomic analyses revealed that VAT neutrophils are functionally distinct
from circulating neutrophils [12]. VAT neutrophils also showed a significant increase
in the production of extracellular matrix components and other proteins that influence
their surrounding microenvironment [12]. These components included growth factors,
fibrosin, angiopoietin-2, amphiregulin, various types of collagen, MMPs, and tissue in-
hibitors of MMPs. Furthermore, the transcriptomic analysis indicated that VAT neutrophils
exhibited higher expression of genes associated with ROS production and degranulation,
suggesting an enhanced pro-inflammatory function [12]. This distinct profile implies that
neutrophils in VAT adapt to a lipid-rich environment while expressing genes that promote
inflammation.

Table 1 summarizes the main preclinical and clinical studies investigating the role of
activated neutrophils in obesity and related diseases.

Table 1. Main preclinical and clinical studies investigating the role of activated neutrophils in obesity
and related diseases.

Preclinical and
Clinical Studies Role of Neutrophils Reference

Animal models

HFD-fed mouse model.
Early increase in the expression of AT MPO and neutrophil infiltration in response to an HFD.
Once in the AT, neutrophils interact with adipocytes through the binding of integrin αMβ2
(Mac-1) on the neutrophils to ICAM-1 on the adipocytes. This interaction activates the
neutrophils and prompts them to produce IL-1β and TNF-α, which further stimulate
inflammation in the AT.

[9]

HFD-fed mouse model.
Sustained increased AT and liver neutrophil content.
High levels of NE secretion and association to IR.

[48]

HFD-fed mouse model.
Neutrophil-derived cathelicidin (CRAMP) may enhance the adhesion and extravasation of
monocytes into atherosclerotic arteries through direct or indirect chemotactic activities, making
them important facilitators of monocyte/macrophage accumulation during the early stages of
atherosclerosis.

[50]

HFD-fed mouse model.
Neutrophil activation and NE deposition into AT are correlated with significant higher levels of
the chemoattractants MCP-1, IL-8, and markers of activated M1 macrophages such as F4/80,
CD68, TNFα, and CD11c.

[15]

HFD-fed mouse model.
Neutrophil activation and neutrophil-derived NE in AT can promote the activation and
infiltration of macrophages and increased inflammatory cytokine mRNA levels.

[51]

p38γ/δ−/− mice model.
Mice lacking p38γ/δ in myeloid cells are protected against diet-induced fatty liver. This effect
is due to defective migration of p38γ/δ-deficient neutrophils to the damaged liver, where they
normally induce inflammation and metabolic changes. p38γ/δ KO and myeloid-specific
p38γ/δ cKO mice are resistant to hepatic steatosis induced by HFD or
methionine-choline-deficient diet.

[52]

HFD-fed mouse model.
Neutrophils and IL-1b are required for the efficient expression of chemotactic molecules in
adipose tissue, which contributed to macrophage infiltration.

[38]

HFD-fed rat model.
Neutrophil-derived MPO affects microvascular IR or muscle metabolic insulin sensitivity. [54]

HFD-induced NASH mouse model; Caspase-1 knockout mice, which also miss caspase-11, and
NE/PR3 knockout mice, were developed and intercrossed to obtain quadruple knockout mice
(Casp1/Casp11/NE/PR3). Age-matched WT C57BL/6 mice were used as controls. Mice
deficient in caspase-1, NE, and PR3 are protected from developing diet-induced weigh gain,
liver steatosis, and AT inflammation when compared with controls.

[57]
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Table 1. Cont.

Preclinical and
Clinical Studies Role of Neutrophils Reference

Clinical studies

N. 37 severely obese subjects, N. 9 control subjects.
Both circulating MPO and calprotectin levels are significantly increased in severely obese
subjects as compared to healthy controls. Neutrophil-specific marker CD66b is significantly
increased in severely obese individuals. Weight loss after bariatric surgery is associated with
decreased plasma levels of inflammatory mediators.

[28]

N. 40 Human liver specimens obtained during bariatric surgery from severely obese patients.
Hepatic expression of CXC chemokines is associated with MPO-mediated oxidative damage
along with increased expression of IL-8 and neutrophil sequestration in NASH.

[49]

N. 223 obese children, N. 223 normal-weight children.
MPO may serve as an early biomarker of inflammation linked to cardiovascular risk in obese
prepubertal children, similar to CRP, MMP-9, and resistin.

[29]

N. 14 morbidly obese women, N. 9 control lean women.
Circulating levels of CXCL2 are approximately 3-fold higher in obese subjects than in controls.
Analogously, CXCL2, IL-2, IL-6, IL-8, and other chemokines are significantly increased in
subcutaneous AT from obese subjects compared with controls. Blood neutrophils from obese
subjects release high levels of proinflammatory mediators, MPO, and ROS, promoting the
initiation and perpetuation of the senescence of AT-ECs.

[35]

N. 49 obese subjects, N. 46 lean subjects.
Male obesity was associated with increased percentage of peripheral neutrophils and increased
expression of neutrophil activation-related genes, including MPO and NE.

[30]

N. 9 obese patients with NASH, N. 11 healthy control subjects.
Expression of p38δ and p38γ is elevated in the liver from patients with NASH. p38γ/δ control
neutrophil migration to the damaged liver. Migration of neutrophils to the liver is necessary for
the development of steatosis.

[52]

N. 112 T2D patients (N. 27 good glycemic control without complications (GC), N. 32 good
glycemic control with complications (GCC), N. 21 poor glycemic control without complications
(PC) and N. 32 poor glycemic control with complications (PCC), N. 34 non-diabetic
volunteers (NGT).
In neutrophils, the highest levels of the proinflammatory cytokines, TNFα, IL-6 and IFN-β
mRNA are present in the GC subjects when compared to NGT control. RANTES mRNA
expression is elevated in neutrophils obtained from the GC subjects. Also, expression of most
TLR mRNAs is increased in neutrophils from GC subjects when compared to NGT. IL-6 and
IFN-β mRNA levels are elevated in neutrophils from GC and PC and TNFα mRNA levels are
elevated in neutrophils from GC group, compared with NGT.

[53]

N. 25 obese subjects, N. 27 overweight subjects, N. 22 lean subjects.
NE and MPO mRNA expressions in the peripheral blood leukocytes are upregulated in
overweight and obese subjects as compared to lean subjects. No difference was found between
overweight and obese groups. The NE and MPO mRNA levels show significant positive
correlation with markers of cardiovascular disease including BMI, serum triglycerides, and
atherogenic index of plasma.

[31]

N. 18 obese subjects, N. 18 control healthy subjects.
Obese patients show increased activity of peripheral blood neutrophils which exhibit higher
ROS generation and release of cytokines, thus enhancing the extent of local and systemic
inflammation. Following weight loss from gastric band surgery, there is a notable reduction in
the levels of MPO and ENA-78, a neutrophil-activating peptide derived from epithelial cells
that is elevated in inflamed tissues. The weight loss is also associated with decreased ROS
production and lower cytokine release compared to healthy controls.

[58]

N. 271 obese individuals with NASH, N. 41 patients with NASH, N. 401 obese with T2D
patients and N. 205 lean healthy controls.
PR3 and NE plasma concentrations are elevated both in individuals with liver steatosis and in
patients with T2D when compared to lean healthy individuals and obese individuals and are
associated with hsCRP, the marker of systemic inflammation. PR3 and NE concentrations in the
liver tend to be higher in patients with advanced stages of NASH when compared to patients
with mild disease.

[55]
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Table 1. Cont.

Preclinical and
Clinical Studies Role of Neutrophils Reference

Clinical studies

N. 162 obese children and adolescents, N. 73 overweight children and adolescents, N. 47
normal weight children and adolescents.
Absolute neutrophil count is significantly higher in children with obesity (p = 0.002) compared
to non-obese participants. A positive correlation between neutrophil count and waist
circumference, fasting insulin, IR, and triglycerides. Neutrophils are not associated with
glucose levels (fasting, during glucose tolerance test or as HbA1c) or the rest of the lipid profile.
CRP trended with ANC overall. In addition, absolute neutrophil count, and CRP are associated
with metabolic impairment and cardiovascular risk factors

[27]

N. 30 NASH patients, N. 10 healthy control subjects.
Peripheral blood neutrophils from NASH patients show, at baseline, high levels of ROS
production as compared to controls. Neutrophils of NASH patients show a more active
phenotype and strongly suppress CD4+ and CD8+ T cell proliferation and activation,
suggesting that, in the presence of steatohepatitis, an immunological tolerance might take place,
thus contributing to the progression of liver disease.

[56]

N. 82 obese subjects, N. 14 control lean subjects.
VAT neutrophils are more abundant in obese subjects compared to lean subjects and express
more inflammation and activation-related genes compared to peripheral blood neutrophils.
VAT neutrophils correlate with both circulating levels of LPS and insulin resistance, suggesting
VAT neutrophil abundance is related to the presence of bacteria and influences
systemic metabolism.

[12]

5. Neutrophil Extracellular Traps (NETs)

One of the key functions of neutrophils is the formation of NETs [59–61]. NETs are
composed of proteins from azurophilic (primary) granules, which include NE, cathepsin
G, and MPO. They also contain proteins from secondary and tertiary granules, such as
lactoferrin and gelatinase [62,63]. However, the primary component of NETs is nuclear
DNA [64]. This web-like structure enables NETs to prevent the spread of pathogens
throughout the body, functioning effectively as traps that capture, localize, and eliminate
these invaders [64]. Originally, the release of a NET was linked to neutrophil cell death, a
process termed “NETosis”. However, recent expert reviews suggest that “NETosis” may
not fully encompass all types of NET release. As a result, they recommend using the term
“NET formation”, especially when neutrophil death is not observed [65].

NET formation can occur in two ways: with neutrophil cell death, known as “suicidal
NETosis”, or while preserving neutrophil functions, known as “vital NETosis”. There is a
broad consensus that the formation of NETs in response to both microbial and sterile agents
is a natural phenomenon occurring in vivo. Nonetheless, only a limited number of studies
have addressed the direct effects of specific stimuli on NET induction in vivo. Despite
these limitations, various infectious and sterile stimuli have been identified as triggers for
NET formation. These stimuli include a range of pathogens, cytokines (such as IL-8, IL-1β,
and TNF-α), chemokines, immune complexes, and interactions between neutrophils and
activated platelets or endothelial cells (ECs) [66]. Additionally, several non-physiological
agonists, including bacterial products like LPS and phorbol esters like phorbol myristate
acetate (PMA), are commonly used to induce NETs ex vivo [67].

6. Pathways of NET Formation

NET formation occurs through two main pathways: the nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase 2 (Nox2)-dependent pathway and the Nox2-independent path-
way [68]. One of the best-understood mechanisms leading to NET release is the lytic
pathway. This process requires Nox2 activity and consists of several steps: ceasing actin
rearrangement and polymerization, disassembling the nuclear envelope, and decondens-
ing nuclear chromatin. These steps lead to the mixing of chromatin with the cytoplasm,
ultimately resulting in the release of DNA into the extracellular space. Stimulation of
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neutrophils by PMA, LPS, and bacteria activates Nox2 via the protein kinase C (PKC)
and c-Raf-MEK-Akt-ERK signaling pathway [69]. Activation of Nox2 generates ROS and
increases calcium influx, which in turn activates protein arginine deiminase 4 (PAD4) [70].
PAD4 hypercitrullinates histones H3, H2A, and H4, resulting in reduced positive charge on
the histones and subsequent chromatin decondensation [71]. Simultaneously, the forma-
tion of ROS promotes the translocation of MPO and NE, two key enzymes stored in the
azurophilic granules of naïve neutrophils, into the nucleus, which aids in the disruption
of chromatin packaging [72]. MPO converts hydrogen peroxide into hypochlorous acid,
which activates NE. This activation results in the degradation of the cytoskeleton and the
dismantling of the nuclear membrane, facilitating the expulsion of NETs [73]. During
PMA-induced NET release, NE cleaves gasdermin D to its active form [74], which forms
pores in the plasma and granule membranes, enhancing the release of NE and other granule
contents [75]. The lytic pathway lasts several hours (1–4 h) and when it leads to neutrophil
death, it is referred to as “suicidal NETosis” [76].

In contrast, the non-lytic pathway of NET formation shows that histone citrullination
and chromatin decondensation can occur independently of Nox2 through the activation of
PAD4 [70,77,78]. This pathway can be initiated by calcium ionophores, such as ionomycin,
which increase intracellular calcium levels and activate PAD4 to facilitate histone H3
citrullination [79]. As a result, the electrostatic bond between histones and DNA weakens,
leading to chromatin decondensation [80,81]. The modified chromatin is then packaged into
vesicles that merge with the plasma membrane, allowing the nuclear DNA to be released
outside the cell through vesicular transport without damaging the plasma membrane. This
mechanism allows neutrophils to maintain their viability and normal functions, including
chemotaxis and phagocytosis [82]. This pathway, referred to as “vital NETosis”, allows
neutrophils to release NETs within 5 to 60 min, independent of ROS and the Raf/MEK/ERK
pathway [60,68].

7. NETs in Obesity and Obesity-Related Diseases

Obesity-induced low-grade chronic inflammation plays a crucial role in activating
neutrophils. Therefore, it is important to explore the potential link between obesity, related
diseases (i.e., T2D and cancer), inflammation, and NETs. Several experimental and human
studies have shown a strong association between obesity-related inflammation and ele-
vated levels of NETs. In a diet-induced obesity (DIO) mouse model, researchers observed
increased plasma concentrations of MCP-1/CCL2 [16]. MCP-1 is a potent chemotactic
factor for monocytes and is known to contribute to diseases associated with endothelial
dysfunction, such as atherosclerosis [83]. The authors suggest that since MCP-1 expression
may be connected to cardiovascular disease progression associated with obesity, their
findings provide further support for the hypothesis that NET formation is involved in the
inflammatory processes linked to DIO. Additionally, circulating concentrations of MCP-1
are found to be higher in obese patients [84–86]. Moreover, cathelicidin-related antimicro-
bial peptide (CRAMP), a marker of NET formation [50], was significantly increased in the
mesenteric arterial walls of DIO mice compared to control mice [16]. Notably, inhibiting
or degrading NETs significantly reduced MCP-1 levels in DIO mice, suggesting that NET
formation is a key driver of the inflammatory processes associated with obesity [16]. In-
deed, prevention of NET formation with Cl-amidine or dissolution of NETs with DNase
restored endothelium-dependent vasodilation to the mesenteric arteries of DIO mice. A
study conducted by Van Bruggen et al. investigated the effects of PAD4 activity and NET
release on hematological and cardiac physiology in the context of obesity-induced chronic
inflammation [87]. The researchers utilized an animal model comprising wild-type (WT)
mice and neutrophil-specific PAD4 deficient (Ne-PAD4−/−) mice. Both groups were fed an
HFD for 10 weeks, alongside a control diet group. The findings revealed that neutrophils
isolated from the HFD-fed mice exhibited increased levels of NET formation compared
to those from mice on a control diet. Notably, Ne-PAD4−/− mice on the HFD gained less
weight than their WT counterparts, who steadily gained weight throughout the 10-week
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experimental period. Furthermore, WT mice showed a decrease in diastolic function when
compared to baseline values, while Ne-PAD4−/− mice maintained their baseline values.
The authors highlighted the significance of systemic NET release during metabolic stress
and its contribution to cardiac deterioration, linked to changes in the innate immune system
triggered by obesity [87]. Recent studies have revealed that NET levels are significantly
higher in the blood and AT of obese patients compared to those with a normal weight
(eutrophic controls). Bioinformatics and proteomics analyses identified IL-8, heat shock
protein 90 (HSP90), and the E1 heat shock protein family (HSPE1) as being associated
with obesity, inflammation, and the release of NETs [17]. These findings suggest that the
elevated NET levels in the serum of obese patients may influence inflammatory markers.
As a result, inhibiting NETs could represent a potential therapeutic approach for treating
obesity-related comorbidities [17].

In a study conducted by D’Abbondanza et al., researchers analyzed levels of NET
byproducts in morbidly obese individuals undergoing bariatric surgery compared to
healthy controls [88]. The findings revealed that the accumulation of DNA fragments
associated with MPO was significantly higher in patients prior to the intervention compared
to the controls (p < 0.001). This accumulation correlated with various factors, including
body weight, BMI, waist and hip circumferences, glyco-metabolic variables, and systolic
blood pressure. However, the trend of NET release following surgery was heterogeneous.
Some patients showed significant improvements in NET regulation after bariatric surgery,
while others did not exhibit changes in NET accumulation. Among the latter group were
individuals with a higher incidence of cardiovascular events, thus supporting the possible
role of non-fat associated stimuli in neutrophil activation and NET formation [88].

Several studies conducted in both humans and mice have emphasized the role of NETs
in HFD-associated NASH. In a mouse model fed an HFD, abnormal neutrophil infiltration
into liver tissue and subsequent NET formation were identified as early events in the
development of NASH, potentially contributing to inflammation and liver damage [89,90].
Notably, the depletion of NETs using DNase I significantly reduces hepatic inflammation
and slows the progression of NASH resulting from HFD-induced liver injury [89,90]. In
particular, in their study, Wu et al. [90] utilized a diet-induced NASH mouse model to
investigate the immune cell profile at various time points during NASH. They observed
neutrophil infiltration after three weeks, along with the formation of NETs in the liver, which
triggered immune responses in macrophages rather than causing injury to hepatocytes.
Using a metabolomic approach, the researchers found that the linoleic acid metabolism
pathway was altered in NASH mice, a finding that was further validated by reviewing
existing clinical data from NASH patients. Additionally, they reported that linoleic acid and
gamma-linolenic acid induced in vitro significant NETosis (p < 0.001 compared to control)
by triggering an oxidative burst. Furthermore, they found that silybin, a hepatoprotective
agent, could significantly inhibit NETosis both in vitro and in NASH mice.

In the study by van der Windt et al., elevated levels of a NET marker (MPO-DNA
complexes) were observed in the serum of patients with NASH [91]. The authors also
reported that neutrophil infiltration and NET formation in murine NASH models contribute
to the progression of hepatocellular carcinoma. An influx of neutrophils in the livers of
NASH mice was observed starting at 5 weeks, leading to an approximately two-fold
increase in their numbers. Western blot analysis showed the presence of citrullinated
histone-3, an indicator of NET formation, in these mouse livers. The authors noted that
while neutrophil counts returned to baseline levels by 12 weeks, NET formation remained
detectable throughout the 20-week duration of the experiment. Importantly, this NET
formation was followed by an influx of macrophages derived from monocytes, which were
recruited to the liver as part of the inflammatory response. These macrophages have been
identified as the predominant effector immune cells in NASH and are a significant source
of inflammatory cytokines, which contribute to the amplification of inflammation [92,93].
Importantly, inhibiting NET formation—either through DNase treatment or by utilizing
PAD4 knockout mice—did not prevent the development of fatty liver, but it altered the
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pattern of liver inflammation and resulted in reduced tumor growth [91]. In particular,
the DNase treatment resulted in a significant 45% decrease in the NASH score (p < 0.05),
indicating a meaningful improvement in hepatic inflammation and effectively reducing
inflammatory processes associated with NASH. Another study showed that increased
plasma levels of NETs in NASH patients exhibited cytotoxic effects on ECs, causing them
to adopt pro-coagulant and pro-inflammatory characteristics [94]. The authors observed
a significant increase in circulating NET biomarkers in the plasma of NASH patients
compared to healthy controls. These biomarkers included cell free-DNA (cf-DNA), MPO-
DNA complexes, NE-DNA complexes, and citH3-DNA complexes, as measured using
ELISA. The increase ranged from approximately two to three times, with a p-value < 0.001.
Additionally, the levels of plasma IL-6 and TNF-α were significantly higher in patients with
NASH compared to the control group. The study found a positive correlation between the
levels of inflammatory factors and the markers of NETs. Furthermore, the authors observed
that the impaired vascular endothelium transitioned to a pro-inflammatory phenotype,
indicated by the high expression of ICAM-1 and VCAM-1. These findings support the
hypothesis that the chronic inflammatory environment associated with NASH promotes the
formation of NETs, which contribute to a hypercoagulant state. However, treatment with
DNase I successfully reversed these effects [94]. Recent immunohistochemical studies have
shown that the density of NETs is lower in colorectal cancer tissues from diabetic patients
receiving metformin. These findings suggest that metformin treatment may enhance
outcomes for patients with both colorectal cancer and T2D by influencing the formation
of NETs [95]. In the study of Carestia et al., patients diagnosed with T2D exhibited higher
levels of NET generation, as well as increased levels of NE, mono- and oligonucleotides,
and cf-DNA compared to healthy individuals, and all neutrophil responses were restored
to normal after 12 months of metformin treatment [96]. The authors suggest that NETs
could represent a novel biomarker for T2DM and that increased in vivo NET formation
appears not to be the consequence of impaired glycemic control and is not associated
with thrombotic events. The different results reported in the study by Bryk et al. [97]
following treatment with metformin have been attributed by the authors to factors such
as the patients’ age, the timing of their diagnosis, and their history of thrombotic events.
Nevertheless, the authors conclude that their findings suggest that in T2DM patients,
markers of NETosis in circulating plasma, including H3Cit and cf-DNA, are associated with
glycemic control, markers of systemic low-grade inflammation, and previous myocardial
infarction. Increased NETosis, as detectable in circulating blood, is linked to a prothrombotic
state, particularly characterized by hypofibrinolysis in T2D patients. This study indicates
that NETosis may contribute to the thrombotic and cardiovascular risks associated with the
disease, highlighting the need for further investigation into the role of NET generation in
the natural progression of diabetes and its complications.

Menegazzo et al. identified a positive correlation between glucose control markers,
such as hemoglobin A1c, and circulating NET markers, including mononucleosomes and
oligonucleotides [98]. Hyperglycemia was linked to increased NET formation, suggesting
a connection between diabetes and NETosis. In vitro results confirmed that high con-
centrations of glucose induced an increased NET release by white blood cells isolated
from healthy donors [98]. Notably, treatment with metformin in patients with T2D signifi-
cantly reduced concentrations of NET components [99]. On the other hand, a subsequent
study by Menegazzo et al. reported that metformin treatment reduced levels of serum
NE, proteinase-3, citrullinated histone, and double strand DNA (dsDNA) [99]. The study
demonstrated that metformin decreased NETosis in neutrophils when exposed to classi-
cal NET-inducing agents, and importantly, this effect was independent of metformin’s
anti-hyperglycemic properties [99]. Additionally, the potential clinical significance of met-
formin’s inhibition of neutrophils and NET formation has been explored in animal models
and diabetic patients [100,101]. In summary, metformin has been shown to lower the risk
of adverse cardiovascular outcomes in diabetic patients through mechanisms unrelated
to glycemic control and potentially involving the inhibition of NETosis. A recent study
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reported that PMA and recombinant High Mobility Group Box-1 (HMGB1) effectively
induced the formation of NETs from human neutrophils. This was evidenced by flow
cytometric detection of citrullinated histone H3 immunopositivity. While metformin had a
limited effect on spontaneous NET formation, it significantly reduced it when neutrophils
were stimulated with either PMA or HMGB1 [102]. PAD4 expression also significantly
increases in individuals with T2D, thereby contributing to impaired wound healing in
both mice and humans [103,104]. In particular, Wong et al. found that Western blotting
showed a four-fold increase in PAD4 protein expression in the neutrophils of individuals
with diabetes compared to healthy controls [103]. A proteomic analysis conducted by
Fadini et al. showed that NET components were more abundant in the blood of patients
with nonhealing diabetic foot ulcers [104]. Elevated levels of circulating NE and PR3 were
associated with infections, and serum NE levels were predictive of delayed healing [104].
Indeed, NE, a key marker of NETs, was found to be 59% higher in worsening wounds
compared to those that were stable or healed (p < 0.05). This indicates that local NETosis
is linked to impaired wound healing. In diabetic mice, increased PAD4 activity in the
skin, along with evidence of histone citrullination and intravital microscopy, indicated that
NETosis was occurring in the beds of excisional wounds [104]. Remarkably, inhibiting
NET formation through PAD4 knockout or disrupting NETs with DNase I or Cl-amidine
accelerated wound healing in diabetic mice [103,104]. Collectively, these findings suggest
that NETosis may hinder the healing process of diabetic foot ulcers. Recent research also
demonstrated that extracellular vesicles derived from mesenchymal stem cells can transfer
functional mitochondria to neutrophils in wound tissue [105]. This transfer triggers mito-
chondrial fusion and restores mitochondrial function, ultimately leading to a reduction in
NET formation [105]. These insights reveal a novel NET-mediated pathway involved in
wound healing in diabetes and suggest that inhibiting NET formation could serve as an
effective therapeutic strategy for enhancing wound healing.

Increased deposition of NETs has been reported in the glomeruli of patients with
diabetic nephropathy, as well as in diabetic mice [106]. In particular, a significant increase
in serum MPO-DNA complexes (p < 0.0001) was observed in patients with type II diabetes
who also have diabetic kidney disease when compared to control subjects (patients with
type II diabetes without diabetic kidney disease). The treatment of these mice with DNase
I reduced their susceptibility to glomerulopathy and mitigated damage to the glomerular
ECs (GECS) by lowering NET release [106].

A recent study by Wang et al. found that increased neutrophil infiltration and the
formation of NETs in the VAT of obese mice contribute to the development of pancreatic
cancer [107]. The results showed that obesity significantly increased the infiltration of
neutrophils around visceral adipocytes. This was accompanied by a decrease in CD8+
T cells and an increase in regulatory T cells within the pancreas. However, there was
no significant difference in the infiltration of tumor-associated macrophages, although
a slight increase in polarization toward the M2 pro-tumor phenotype was observed in
obese mice. Notably, NETs were significantly upregulated in obese mice, as indicated
by higher levels of citrullinated histone H3 and MPO. Additionally, the mRNA levels of
enzymes associated with NETs, such as MPO, MMP-9, NE, cathepsin G, and lactoferrin,
were also elevated in these mice. Importantly, PD-L1 (Programmed Death-Ligand 1), an
immune checkpoint involved in creating a tumor immunosuppressive microenvironment,
was expressed in most of the infiltrating neutrophils. Metformin treatment significantly
reduced the levels of NETs in the HFD group. Additionally, both metformin and DNase I
were shown to significantly inhibit this process and decrease the formation of precancerous
lesions [107]. Furthermore, researchers have suggested that neutrophil infiltration induced
by adipocytes may contribute to desmoplasia and chemotherapy resistance in pancreatic
cancer, particularly in obese mouse models [108]. These findings provide valuable insights
into how neutrophils and NET formation can promote pancreatic cancer and suggest
potential strategies for addressing pancreatic cancer related to obesity.
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Table 2 summarizes the main preclinical and clinical studies investigating the role
of NETs in obesity and related diseases. In Table 3 are reported studies and therapeutic
approaches used to target NETs.

Table 2. Main studies investigating NETs in obesity and related diseases.

Preclinical and Clinical Studies Role of NETs References

Obese murine models

Increased NET accumulation in mesenteric arterial walls of obese
mouse models may affect endothelial function. [16]

Increased systemic NET release is linked to obesity progression and
an increased risk of venous thrombosis. [87]

NETs in the pancreas may induce an inflammatory response in ductal
cells and promote the development of pro-tumorigenic cells both
in vivo and vitro.

[107]

Obese patients and obese murine model Elevated NET serum levels correlate with inflammatory markers
such as IL-8, HSP90, and HSPE1. [17]

Obese patients Increased levels of plasmatic NETs in obese patients are correlated
with BMI, waist, hips, glyco-metabolic markers and blood pressure. [88]

Murine NASH model Accumulation of NETs in liver tissue are identified as an early event
in the development of NASH. [89,90]

NASH patients and murine NASH model NETs promote hepatic inflammation and contribute to the
development and progression of hepatocellular carcinoma in NASH. [91]

NASH patients NET accumulation exerts cytotoxic effects on the ECs, converting
them to a procoagulant and pro-inflammatory phenotype in NASH. [94]

T2D patients and murine T2D models

Elevated levels of circulating NET markers are predictive of delayed
healing in diabetic patients. In a diabetic mouse model, higher levels
of NET markers and increased PAD4 activity are associated with
wound nonhealing.

[103]

The presence of NET components worsens ulcers in T2D patients. In
a diabetic mouse model, increased skin PAD4 activity and NET
markers hinder wound healing.

[104]

Excessive deposition of NETs in the renal glomeruli of diabetic
patients and mouse models cause injury to glomerular endothelial
cells, contributing to the progression of diabetic kidney disease.

[106]

T2D patients

Hyperglycemia is associated with increased systemic levels of NET
markers in T2D patients. In vitro results confirm that high glucose
induces an increased release of NETs by white blood cells isolated
from healthy donors.

[98]

Findings support that NETs represent biomarkers in T2D. Increased
NETs do not seem to result from poor glycemic control; rather, they
are attributed to proinflammatory cytokines.

[96]

Higher levels of systemic NET biomarkers are associated with T2D. [97]

Table 3. Inhibition of NETs as a therapeutic approach in obesity and related diseases.

Active Agent/Drug with Anti-NET
Potential Mechanism of Action and Effect Reference

Cl-amidine NET inhibition; Promotion of wound healing in murine T2D model. [104]

Cl-amidine and DNase I NET inhibition; Reduction of the endothelial dysfunction through restoring
vasodilation of the mesenteric arteries in obese mice. [16]
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Table 3. Cont.

Active Agent/Drug with Anti-NET
Potential Mechanism of Action and Effect Reference

DNase I

NET inhibition; Protection from HFD-induced liver injury and reduction of
hepatic damage progression in NASH murine model. [89,90]

NET inhibition; Reduction of liver inflammatory profile and
development/progression of hepatocellular carcinoma in NASH
murine model.

[91]

NET inhibition; Reverting the damaging actions of NETs in the procoagulant
and proinflammatory phenotype in NASH patients. [94]

NET inhibition; Promotion of wound healing and reduction of NET-driven
chronic inflammation in murine T2D models. [103]

NET inhibition; Reduction of glomerular EC injury and improvement of
diabetic kidney disease in murine model. [106]

DNase I and Metformin NET inhibition; Combined treatment with Metformin and DNase I
significantly reverses the pro-tumorigenic effects of NETs. [107]

Metformin
NET inhibition; Metformin treatment reduces the levels of NET formation
independently of glucose control in T2D patients. [96,99]

NET inhibition; Metformin intake before surgery significantly improves the
colorectal cancer-associated outcomes of diabetic patients to a level equal to or
even better than that of non-diabetic patients.

[95]

Silybin NET inhibition; Reduction of HFD-induced liver injury in NASH
murine model. [90]

Overall, these reports highlight the significant role of NETs in obesity and obesity-
related conditions, emphasizing the complex nature of obesity itself. A deeper under-
standing of these dynamics is essential for developing effective management strategies for
obesity and its related health risks.

8. Obesity, Gut Dysbiosis, and NETs

Gut dysbiosis refers to a change in the gut microbiome composition that is typi-
cally characterized by reduced microbial diversity and altered microbial functions and
metabolism. This condition is associated with the development of obesity and related
metabolic disorders, including T2D, MetS, and cardiovascular diseases, and chronic kidney
disease [109–114]. Dysbiosis is especially important in promoting chronic low-grade inflam-
mation, also known as meta-inflammation, which is considered a significant contributor to
the onset of obesity and its associated diseases [111,115–117].

The gut microbiota play an increasingly recognized role in maintaining energy balance
and activating the host’s immune response through various molecular interactions [118].
Specific microorganisms within the gut microbiota actively regulate metabolic processes
such as glucose metabolism, lipid control, and insulin sensitivity by producing metabolites
like SCFAs, bile acids, and other bioactive substances [119]. Obesity, like several other
human disorders, is associated with gastrointestinal dysbiosis, where the ratios, abundance,
and composition of microbes are altered, subsequently affecting SCFA generation. While
no definitive microbiome signature for diagnosing obesity has been identified so far, com-
mon profiles include a reduction in the abundance of species capable of producing SCFAs,
particularly butyrate, and an increase in opportunistic pathogens, such as LPS-releasing
bacteria [120,121]. Individuals with low gut bacterial diversity are more prone to conditions
like overweight, obesity, dyslipidemia, IR, and low-grade inflammation [122]. Research also
indicates that specific dietary interventions can modify the gut microbiome composition in
obese individuals [123] (Figure 2). Consequent structural changes in the intestinal epithe-
lium allow LPS and gut bacteria to enter the bloodstream in humans and mice [123–127].
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This leads to an increase in plasma levels of gut bacteria and LPS, a condition known
as metabolic endotoxemia [125]. LPS activates Toll-like receptor 4 (TLR4), subsequently
promoting the activation of nuclear factor kappa B (NF-κB)-dependent transcription pro-
grams for various pro-inflammatory cytokines, such as IL-1β, IL-18, IL-6, IL-33, TNF-α, and
interferon-gamma (IFN-γ). As a consequence, metabolic endotoxemia can contribute to
chronic inflammation typically associated with obesity and related diseases [125]. Of note,
previous findings have reported the presence of bacterial DNA and living bacteria in obese
human AT, suggesting the host–microbial interaction as a possible link to the dysmetabolic
and inflammatory status of obese patients [128].
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Recently, a study conducted by Shantaram et al. provided multiple lines of evidence in
support of the translocation of bacteria from the gastrointestinal tract of obese individuals
as a contributor to neutrophilia in visceral AT (VAT) [12]. Obese subjects showed elevated
plasma levels of LPS-binding protein and zonulin, and the count of neutrophils in VAT
correlated with circulating LPS levels. Ampliseq analyses showed that LPS-responsive
genes, such as LITAF (LPS-induced TNF factor), TLR2, TLR4, and CD14—proteins that
bind to bacterial components [129–131]—were upregulated in VAT neutrophils compared
to circulating neutrophils. In addition, the bacteria found in human VAT were found to
primarily originate from the gut. Adipocytes from individuals with obesity expressed
IL-8 at levels ten times higher than those in lean individuals, and LPS stimulated IL-8
gene expression in cultured adipocytes by nearly 150-fold. Therefore, IL-8 produced by
adipocytes in response to bacteria likely played a significant role in attracting neutrophils
to VAT.

SCFAs, including acetate, butyrate, and propionate, are believed to mediate the rela-
tionship between gut microbiota and immune responses [132]. These metabolites influence
the epigenetic regulation of immune cells, including neutrophils. For example, SCFAs
regulate the recruitment of neutrophils by modulating the synthesis of inflammatory sub-
stances such as IL-17 and TNF-α [118]. They stimulate the neutrophil G-protein-coupled
receptor 43 (GPR43), which plays a key role in neutrophil chemotaxis [133]. Additionally,
SCFAs can alter neutrophil functions, such as their ability to perform phagocytosis and
generate ROS and nitric oxide (NO) [134,135]. While ROS are vital for eliminating bacteria
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and other pathogens, excessive production can damage body tissues. SCFAs help regulate
ROS generation in neutrophils, supporting a healthy immune response [136]. However,
the exact impact of SCFAs on neutrophil reactions to inflammatory substances like LPS
is still not fully understood. Research has shown that SCFAs can significantly reduce
TNF-α production in human neutrophils exposed to LPS [135], but they do not affect IL-8
production, indicating that LPS triggers TNF-α and IL-8 production through different
pathways. A study by Li et al. [137] evaluated the role of butyrate in modulating NETs in
an inflammatory bowel disease (IBD) mouse model. They found that butyrate improved
mucosal inflammation by inhibiting neutrophil-associated immune responses, including
NET formation. Butyrate has also been shown to inhibit in vitro neutrophil migration and
the development of NETs in cells from IBD patients [137,138].

In summary, one fascinating way by which the gut microbiome influences the im-
mune response is by regulating NET formation through SCFAs, which function effectively
under specific concentrations and environmental conditions. SCFAs produced by the
gut microbiome enter the bloodstream and affect AT physiology through mechanisms
that may involve GPRs, also known as free fatty acid receptors (FFARs) [139]. FFAR2
(GPR43) selectively binds to acetate, while propionate and butyrate show high affinity for
FFAR3 [140], thereby activating metabolic pathways associated with obesity and related dis-
eases [141,142]. SCFAs also impact the intestinal environment by lowering colonic pH [143]
and modulating microbial and colonic energy homeostasis [11,144]. They can counteract
obesity-related inflammation [145] and regulate glucose and lipid metabolism [146,147].
Numerous studies suggest that SCFAs are promising therapeutic agents for managing
obesity and metabolic disorders, especially due to their ability to modulate NET formation.
However, further research is needed to fully understand the precise mechanisms through
which SCFAs regulate this process.

Probiotic supplementation is recognized as an effective strategy for modulating gut mi-
crobiota [148–150] and increasing SCFA production in individuals with severe obesity [151].
By reshaping gut microbiota, reducing inflammation, and improving overall intestinal
health, this approach can lower metabolic endotoxemia, thus helping to restore the function
of peripheral tissues, such as AT [152,153]. Therefore, probiotics are valuable tools in the
treatment of obesity and related diseases.

9. Concluding Remarks

Neutrophils are increasingly recognized as important early participants in the de-
velopment of obesity and related diseases. In this review, we have compiled key studies
that emphasize the role of neutrophils and their activation in the onset and progression
of obesity and obesity-related conditions. We highlight their significant contribution to
the inflammatory response triggered by HFDs. A better understanding of the causal re-
lationship between neutrophils and obesity may lead to new management strategies for
obesity-related inflammation, positioning neutrophils as a potential therapeutic target.

Emerging evidence indicates that NETosis is implicated in obesity and related dis-
eases, such as T2D and NASH [94,98]. Excessive activation and inappropriate recruitment
of NETs due to increased AT may contribute to alterations in the inflammatory profile
associated with obesity. This can lead to both local and systemic inflammation, ultimately
resulting in severe organ damage. However, the interaction between NETosis and chronic
metabolic diseases is not fully understood, and there is a significant gap in comprehensive
mechanistic studies.

Future research should aim to clarify the mechanisms of NETosis in various diseases
and explore ways to regulate its generation and interruption. It is essential to remember
that neutrophil phagocytosis is crucial for host defense, and any drugs targeting NET
formation must not compromise the physiological functions of these cells. Clinical trials
should be designed to evaluate the efficacy of NET-interfering drugs in obese patients. In
conclusion, while the discovery of NETosis has significantly advanced our understanding
of the pathophysiology and natural history of several diseases, further extensive research is
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necessary. Further studies should investigate the impact of NETs on different diseases and
foster the development of targeted therapeutic strategies that minimally affect the host’s
immune system.
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