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ABSTRACT

We study a Hegselmann-Krause type opinion formation model for a system of two populations. The two groups interact with
each other via subsets of individuals, namely, the leaders, and natural time delay effects are considered. By using careful estimates
of the system’s trajectories, we are able to prove an asymptotic convergence to consensus result. Some numerical tests illustrate

the theoretical result and point out some possible applications.
MSC2020 Classification: 34D05, 91D10, 34K20

1 | Introduction

Due to applications in various scientific fields, multiagent sys-
tems have become in the last years a very attractive research topic.
They naturally appear, for example, in biology [1-3], ecology [4],
economics [2, 5], social sciences [6-12], physics [13, 14], control
theory [15-19], and engineering and robotics [20, 21]. For other
applications, see also [22-24]. An important feature often ana-
lyzed is the possible emergence of self-organization leading the
group’s agents to globally collective behaviors. Here, we are inter-
ested in the celebrated Hegselmann-Krause model for opinion
formation, originally proposed in [25]. Since then, several gener-
alizations have been proposed (see, e.g., [6, 7, 26-30]).

One of the most natural extensions of the Hegselmann-Krause
model concerns the analysis of the time-delayed interactions,
in order to take into account the times necessary for each
agent to receive information from other agents or reaction
times. Opinion formation models in the presence of time delay

effects have already been studied by several authors; see, for
example, [17,31-36]. Concerning the second-order version of the
Hegselmann-Krause model, namely, the Cucker-Smale model
[3], introduced to describe flocking phenomena, delayed interac-
tions have also been considered in many papers; see, for example,
[37-46].

In this paper, we are interested in studying the convergence to
consensus for a Hegselmann-Krause type opinion formation
model involving two populations. The term “opinion” admits
various interpretations in different scientific areas. Typically, it
stands for a numerical characteristic of a social agent, which
can change and evolve due to interactions with other agents in
the same or different groups (cf. [47, 48]). Individuals’ opinions
reflect attitudes towards a specific issue or person (say, political
candidates or some controversial topics such as global warming).
However, many other interpretations are present in the literature.
In psychology, for example, an opinion can be regarded as an ori-
entation towards a particular action, object, or issue (cf. [49]); in
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sociology, it denotes the sets of cultural features of an individual
(cf. [50]) or characterizes the agent’s knowledge skills [51].

In order to make the model more realistic, it is important to
consider time delay effects. It is natural assume that, while one
can consider almost instantaneous the influence among agents
in the same population, a certain time lag appears in the inter-
action among individuals of different populations. A more gen-
eral model would include time delays (eventually smaller) also
in the interactions in the same population. Here, for simplic-
ity, we choose to consider delay effects only in the interactions
among agents of different populations. An analogous analysis
could be performed also in the more general situation with mul-
tiple delays.

Consider two finite sets of N and M agents, respectively, with
N,M €IN, N,M > 2. Without loss of generality, we assume
M < N.Letx, () €IR%i=1, ..., N,be the opinion of the i-th
particle of the first family at time 7 and y,(t) € I RY, i=1,..,M,
be the opinion of the i-th particle of the second family at time
t. We consider that a (small) group of agents of the first family
interacts with another (small) group of the second family with a
time delay appearing as a time needed from an agent of a popula-
tion to receive information from agents of the other one. The time
delay is assumed to be a positive constant, 7 > 0. Given 2,k € I N,
h < M and k < N, the opinions of the two populations evolve
following the Hegselmann-Krause opinion formation model:

d
X0 = ;a,-,-(r)(x,(t) - x,(1))

h
+ Ze,-,-(t)(y,-(t —1)—x;1),t>0,i=1, ...,k
j=1
d .
N0 = jz#;a,.j(z)(xj(z) —x,(). 1>0,i=k+1,...,N,
d
—0(0) = Y by (00,0 = i)

J#

k
+ ) 0O =) =y @0), >0, i=1,....h,
j=1

%y,—([) = éb,.j(z)(yj(z) —y@), t>0.i=h+1,...M,
J#i

with the interaction weights g, (0,120, of the form:

a;; (1) 1= mw(xi(r)vxj(r))v i=1,..,k, j=1,...,N,
. 1 , R
a;(1) = ﬁu/(x,-(t),xj(l)), i=k+1,...,N, j=1,...,N,
(1.2)
and the weights b, (0,120, of the form:
1 .
b(1) 1= ———y"(y;(0,y;®), =1, .. ,h j=1,..,M,
ij _ I J
M+k-1 (1.3)
b,;(0) 1= W _1w*(y,-(t),y,-(t)), i=h+1,...,M,j=1,..,M.

Here, w : IR*XIR? - IR and yw* :IRYxIRY - IR are
continuous, positive and bounded functions. Moreover, the
interaction coefficients ¢;;(r) and #;;(7), for ¢ > 0, among individ-
uals of different populations have the form:

€;(0) 1= ﬁd’(x,-(t),yj(t - 1)),
i=1,....k j=1,....h,
n; (@) 1= ﬁd)*(y,-(t),xj(t - 1)),

i=1,...,h, j=1,..,k,

(1.4)

where ¢ : IR xIRY - IRand ¢* : IRY xI RY - I Rare con-
tinuous, positive, and bounded functions. Note that the differ-
ent normalization factors in the above coefficients correspond,
for each group, to the number of agents involved in the interac-
tion. We emphasize that, in our model, the influence functions
do not necessarily depend on the distance between the agents
as, instead, in most of the related literature. Moreover, we do not
require symmetry or monotonicity assumptions.

Let us denote
A = max {[[y ] or 1¥* | or 1Dl co- 1671 } -
Let us assume the initial conditions:

i=1, ...,k te|-70],
i=k+1,....N,

x;(1) = x(0),
x;(0) = x?,

(1.5)
y(0 =3y, i=1,...,h te€[-1,0],
y(0) =), i=h+1,..,M,
where x(),i=1, ...k, »(),i=1,...,h, are continuous

functions defined on [—z,0], x? €1 R, i=k+1,....N, We
IR, i=h+1,..,M.

For well-posedness results for models (1.1)—(1.5), we refer to clas-
sical texts on functional differential equations [52, 53]. Here, we
will focus on the asymptotic behavior of the solutions. For this
aim, we assume the continuity of the involved influence functions
only. Of course, the continuity alone does not ensure uniqueness.
For solutions to (1.1)-(1.5), we want to prove the convergence to
consensus.

Let us define the diameter of each population as
dy(® = max [x()-x;O dy@:= max ly@)-y,0l

Moreover, let us define the global diameter as
d(r) ;= max {d x®).dy (@), ,-!Elf‘.’fjv,-!l’flf‘.‘.’fM'x"(’) -yl }

Definition 1.1. We say that the solution (x,(1),y;®),i =
1,...,N,j=1,...,M, to system (1.1), with initial condition
(1.5), converges to consensus if

lim d(t) =0

=00
This kind of model can have applications in social sciences, eco-
nomics, politics, and ecology. Indeed, it is reasonable to try reach-
ing a global consensus among individuals of different countries,
or different groups of individuals in the same country, about
important questions such as, for example, ecological behaviors,
climate change’s reasons, and appropriate strategies to reduce
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CO, emissions. The proof of a consensus result for model (1.1)
can be considered as a first insight for more quantitative studies
aiming to design appropriate control strategies.

For other consensus results for opinion formation models on
a network in the presence of time delays, see [54]. However,
we deal here with more general interaction coefficients. In
particular, the influence functions depend on both arguments,
Xis Xjs and not necessarily on their distance. Moreover, we do not
require any lower bounds, Lipschitz continuity, or monotonicity
assumptions.

The rest of the paper is organized as follows. In Section 2,
we introduce some notations and give preliminary lemmas. In
Section 3, we state and prove the consensus result. Finally, in
Section 4, we present some numerical tests validating the theo-
retical results and discuss some possible applications to ecology
and sustainability.

2 | Preliminaries

In this section, we present some preliminary results useful for
studying the consensus behavior.

Firstly, for any fixed a vector v € R?, let us define the following
quantities:

my = min{ mln mln (x ), u) mln (x (0), v),

(2.6)
Jpin nin_ Gi®,v),  min | (y;(0),v) }
and
Mo :=max{ii}l.%l.?(.ktén[—%#x"(t)’U>’i=k1+l}f1.}.(..N<x"(0)’U>’ @
2.7

max, max (y,(0).0).,
i

mﬁ?fyM(y,-(O), v)}-

Note that m, and M, should be my and M. For simplicity of
notation, we omit the dependence on the vector v. The following
estimates hold true.

Lemma2.1. Let (x,(1),y;®), i=1...,N, j=1 ... M, be
a global classical solution of systems (1.1)-(1.5). Then, forall v €
R4, we have that

my < {x,(1),v) < M, (2.8)
and

my < (y,(),v) < M, (2.9)
forallt> -z, i=1,.. .,k j=1,...,h, and for all t >0, i =

k+1,...,N, j=h+1,... M.

Proof. Fix a vector v € R? and let my, M, be the constants
defined in (2.6) and (2.7). By definition of m, and M,, we
have that the inequalities (2.8) and (2.9) are trivially satisfied
forte[-7,0],i=1, ... ,kand j =1, ... ,h Then, we want to
prove (2.8) and (2.9) for ¢ > 0. Let us prove (2.8); (2.9) follows
analogously.

For a fixed parameter ¢ > 0, let us define the following set:

“i={t>0 : (x(s)v)<My+e Vi=1, ... N,

() vy < My+e, Vi=1,...,M, ¥s €[0,1)}.

By continuity, T¢ # §. Let us call S¢ := sup T¢. We want to prove
that S¢ = +oco. Let us suppose by contradiction that S¢ < +oo.
Then,

_max (x,(1),v) < My +e, V1 €10, 5°) (2.10)
=1,...,
and
111§1 max (x ®,v)y=M,+e¢€ (2.11)
1—Se-i=1
Forallz € [0,S° andi =k +1, ... , N, we have

L (x,0.0) = ga,-,(txx,(r) X0, )
J#i

< Dlay; (M, + e — (x,(0),0) (212)
J#i
SAWM, + e —(x;(),v)).

Applying Gronwall’s lemma over ¢ € [0, 5¢), we find

(x;(1), vy < e (x;(0),v) + (M, + €)(1 — e™™) 213
SMy+e—ee™ < My+e—ee™™ .

forallt € [0,S¢) andi =k + 1, ... , N. Therefore, we deduce that
L -AS© €
=k13ta'>.(' ‘N(x,-(t), V) < M, +e¢e—ee , Vt € (0,59).

Consider now ¢ € [0, S¢)and i =1, ... , k. Then, we have

L (x/0,0) = X, 0,0 = x,0),0)

J#i
h
+ Z%’(’)()ﬁ(f — 1) —x;(1), v)
i=1
< ¥ a, (M + € — (x,0).v) (2.14)

J#i
h
+ e (DM + € = (x,(1), 0))
j=1
<SAWM, + e — (x;(1),0)).
Therefore, we can find analogously that
_I}laxk(x,-(t), vy < My + e —ee™5, vt €0, 5°).
=1, ...,
Then, we have that

_ IlnaxN(x,.(t), v) < My + ¢ —ee™™5, vt € [0, 59).
i=1,...,

Passing to the limit for r — §¢~, we find

lu.sp max (x(t) vy < My+e—ee™ < My +e,
=S5
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and this gives a contradiction. Then, we have that S¢ = +c0.
Hence, by arbitrarily of ¢, we have that

_max_ (x;(t),v) < Mo, V120, v € R
=1,...,

Therefore, we have that
(x, (0, 0) <My, V12> -1, i=1, ..,k

and

(x,(),v) < My, Vi >0, i=k+1, ... ,N.

In order to prove the other inequality, we observe that, by the
proven estimate,

- (X,—(t), v) = (xi(t)v -v)

< max{ max max (x ®),—v),
. kte[—-1,0 i=

max YN(x,-(O), —v),

max max (y,(t) v), max
. hte[—-1 i=h

0, —u>}
- o {,-J%??.r.‘,k,é%’_lf,‘m("f(t)’ oh . min ) (xi(0).0),

mln mln (y,(t) u) min
i=1,... hte[-1,0 +1,...,

300, u)} =-
(2.15)
This concludes the proof. O

The above lemma allows us to deduce a bound on the states.

Lemma 2.2. Let (x;(®,y;®), i=1...,N, j=1,...,M, be
a global classical solution of systems (1.1)-(1.5). Then,

X0 <Cp Ly, <Cy (2.16)
Vit>-—r,fori=1,...,k, j=1,...,h,andVt >0, fori =k +1,

N, j=h+1, ..., M,where C, is given by

C, := max{ max max |x;(f)], max |[x;(0)],
0 {:‘:1,...,/«5[4.0]| ol i=k+1.....N| Ol

max max max (0 .
j=1,... ht€[-7 IyJ(s)I h+1,...,M|yf( )|}

Proof. We prove the first inequality of (2.16). The second one
for |yj(t)|, j=1,...,M, follows analogously. For i =1, ... ,N
and t > —7, if |x;(r)| =0, the result is trivial. Let us suppose
|x;(*)] > 0 and define the vector

_ xi(t)
B |x,-(l‘)| '

Then, applying (2.8) and the Cauchy-Schwarz inequality, we get

lx; (O] = (x;(1), v) < M,

= max{ max max (x;(f),v), max (x;(0),v),
{i:l.....kte[—r.0]< i >i=k+1,...,N< /0, v)

max max (y,(t) u)
i=1,... hte[—

_max (3,00, v) }

< . )

< max {l_=r{?§$_klern[3>_<0]IX,(t)lIvl,‘_=k1+l}aX_N|x,(0)||U|,

M|y,<0)||v|} =G,
(2.17)

being v a unit vector. So, the first inequality of (2.16) is proven. O

max max s||v max
j=1, ... h€[-t |yf( I | j=h+1, ...,

Remark 2.3. From Lemma 2.2, since the influence functions
yw and y* are continuous, we deduce that

W(xi(t)’xj(t)) >y, = min w(z;,z,) >0,

121 1,12, 1<Cy
, . (2.18)
vy, y,(0) 2wy = min  y¥(z,2,) >0,
121 1,12, 1<Cy
for each t >0, i,j=1,...,N and [,r=1, ... , M. Moreover,

since the functions ¢ and ¢* are continuous too, again, we
deduce that

BOc,(D,y,(t—T) 2o 1= min_ (z,,2,) > 0,

[z1]:]2,1<C

(2.19)
0,0, x,.(t—1) > P 1= zy,25) > 0,
PO 5= D)2 g 1= min §' (@, 2)
foreacht >0, i,r=1,... ,kand j,/ =1, ... ,h.
From Remark 2.3, we can define the positive constant
T = min {y,, v, bo. O, (2.20)

Now, fix v € RY and let m,, M, be as in (2.6) and (2.7), respec-
tively. Since, up to changes of influence function, system (1.1)
is invariant by translation, without loss of generality, we may
assume

0<my<M,.

Inspired by [34], we can prove the next lemma. Note that [34]
deals with the Hegselmann-Krause model with all-to-all con-
nection; namely, each agent is influenced and influences any
other agent. In our model, we have four different agents’ groups:
two populations and, in each population, leaders and nonlead-
ers. This requires finer and tricky analysis: Our estimates can
be deduced through careful arguments involving the different
agents’ groups in the appropriate order.

Lemma24. Let (x;(1),y;(t), with i=1,....N and j=

1, ..., M, be a global classical solution of systems (1.1)-(1.5).
Then, fort € [57,67], we have

r r
mg + 71(M0 —mg) < (x;(1),v) < My — 71(M0 —mo) (2:21)
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and
l—‘1 l—‘1
my + 7(MO —mg) < (y;(0),v) < M, — 7(M0 —my) (2.22)
for a suitable constant T'; € (0,1).

Proof.  Let us proceed by steps.

Step 1: Suppose that Le {k+1,...,N} exists such that
(x,(0),v) = m,. Then, since |(x,(?), v)| < 2AM,, VYt > 0, we have
that

M, + my,

my < (xp(0),v) < , 1€[0,0],

where o is a positive number such that

M —
o <min{ 7, 220 (2.23)
aAM,

Consideri € {k+1, ... ,N}\ {L} andr € [0, c]. Then,

d
—{x(0),0) = ;a,-,-(txx,(r) —x,(1), 0)
J#L

+a; (O{x, (1) = x; (1), v)
< Y a, (M, — (x,(1), 0))

J#i
JEL

+ aiL(’)(@ = (x;(0), U>)

= (O —a; @) (M — (x;(),

<;au(t) aIL( )>( 0 (xl(t) U>) (224)
+ aiL(O(@ - (x®, U)>

S (A = a, ()M, = (x,(1),0))

+ am(ﬂ(@ - <xi(t)7 U))

M. —
= A(M, — (x,(0), ) — a,-L(r)OTm"

M, —
§<AMO_L07%

N1 5 ) — Ax;(®),v).

Integrating over [0, f] with ¢ € [0, o], we find

(3,0, 0) < eM(x,(0),0) + (M0 I B bk )(1 —ey,

Taking t = o in the above inequality, we can find

—Ac 1 1—‘MO_””O
(x(0).0) < My = (1= M) g ==
Denoting
- 1 r my
L= —e )=t (1- 7~ 225
_i=0-e )Z(N—l)A< Mo) (2.25)

we have the inequality

(x,(0), 0y <A —6YHM,, Vie {k+1,...,N}\{L} (2.26)

Consider now ¢ € [o, 67].
d —
—{x0,0) = Y, 0,0 = x,(0),v)
J#i
<AM, - (x;(H),v)), Vie{k+1, ... ,N}\{L}.
(2.27)
Integrating over [o, f] with ¢ € [0, 67], we have
(x,(0),0) <M x,(0), 0) + My(1 — =)
<e M= — M, + My(1 — e M)
=M,(1—6Le™)
<My(1-68e®),

Then,

(x,(1), v) < My(1 — 5L e6M),
(2.28)
Vie{k+1,..,N}\{L}, vVt € [o,67].

Consider now i € {1, ... ,k} and fixi; e {k+1, ... ,N} \ {L}.
Taking ¢ € [0, 67], we have

< (x0.0) = ;a,-,-(rxx,-(r) — x,(1).)

h
+ Y ey (0t = 1) = x,0).v)
j=1
+a;, (O(x; (1) = x;(1), v)

< <Zaij(t) — a4, (f)>(Mo = (x;(),0))

J#i
h
+ mA(Mo —{x;(1),v))
+ a, (N(My(1 = 81e™™) — (x,(1), v))
N-1
< mA(Mo —(x;(0),v))
h
+ mA(Mo —(x;(0,v))
—— L rmte
N+h-1
— _ 1 T 6en) _
_AMO<1 T S ) Alx, (1), 0).
(2.29)

Integrating over [o, f] with ¢ € [o, 67], we find

(x,(0),v) < ™M x,(0), v)

1 r 1, —67A —A(t—0)
M, (1— ) ) 1-
M\l g At )Ame )
1 ' _6a —A(i=0) )
< S — .
—M°<1 Nrxroial-¢ d-em)
(2.30)
Shrinking to t € [27, 67], we find that
1 r 1 —67A —At
@.0) <Mp(1- ——— 5 1= ),
(5@.0) < My(1 - g pele i —e ™).
vie (1, ... ,k}.

Using the state i; € {k+1, ... ,N}\ {L}, we can find an upper
bound for i, too. Indeed, for 7 € [o,67], analogous to (2.27),
we obtain
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7 710200 = T (5,0 = 2,000 + 01, 5,0 = 3, 0.0)
J#iL

< AM0<1 __1 Ia e*ﬁAf) ~ Alx, (1), 0).

N-1A "~
(2.32)
Integrating over [c, 1] with 7 € [o, 67], we find
(x(0,0) <e M (x; (0). 0)
1T (2.33)
M, (1 _ _51 —6/\1’) 1— —A(t—0) .
M1 gy )d e

Shrinking to t € [27, 67], we have the estimate

(x, (1), 0) < M0<1 - ﬁ %(ﬂe—ﬁma - e_AT)) (2.34)

Consider now i € {1, ... ,h} and fix i, € {1, ... ,k}. Taking r €
[37,67], we have

L (3,0,0) =X b, 00,0 = 90, 0)

J#i

k
+ Dy (O(x;(t = 1) = y,(0),v)
P

+ 1, ((x, 0 = 7) = y, (D), v)

M -1
S o7 MM, - (0,0
k
+ <2’7ij(t) — M, (t)>(M0 —(y;(0,v))
j=1
+ 1, () [M0<1 - ﬁ %5£e—61’/\(1 _ e‘AT))
- (0.0}
1
<AM,|1-
( (N+h—-1)(M +k—1)

(%)ztﬂe’e”‘(l - e’“)) - A{y, (). ).

Integrating over [37, 1], with ¢ € [37, 67], we find that 239
(i), v) <eM0(y,(30),v)
+M°<1_ (N+h—1)1(M+k—1)<%)2
6le (1 - e—AT)>(1 — M)
(2.36)

$M0<1— L <£>2
(N+h—1)(M +k-1)\A

5167611\(1 _ e*/\r)(l _ eA(I3r))>'

Shrinking to ¢ € [47, 67], we find that

1 Iy
(¥:(1), v) SM0<1_ (N+h—1)(M+k—1)<K)

(2.37)
sle oM 1 —e“)2>,w e{1,...,h}.

Finally, consider ie {h+1,..., M} and fix j, € {1, ... ,h}.
Taking ¢ € [47, 67], with analogous computation, we find

d
0.0 = ;b,-,(txy,(t) — (), v)
J#i

+ by, ()y;, () = y,(), v)

1 r\?
5AM°<1 (M -1)(N+h—1)(M +k— 1)(X) (2.38)

518—6‘[/\(1 _ e—/\‘r)2>

— A(y;(),v).

Integrating over [4z, f] with 7 € [47, 67], we have that

(y,-(t), U) < eiA(F‘h’) (y,'(47"), U)

1 ry3
+M°[1_(M—1)(N+h—1)(M+k—1)<K)

51676/\1'(1 _ eAr)2:| (1 _ e*/\(!*‘l‘t’))

SMo[l_ ! (L)
M—-1D(N+h-—1)(M+k—-1\A

51 e—ﬁ/\‘r(l _ e—AT)Z(l _ e—/\(l—4‘r)):| .

Shrinking to ¢ € [57, 67], we find that

1 Ly}
(70, v) < M, [1— (M_l)(N+h—1)(M+k—1)<K)

5£€76AT(1 _ e/\‘r)3:| ,

Vie{h+1,..,M}.

(2.39)
Then, inequality (2.39) holds for all the nonleader of the sec-
ond population, for ¢ € [57,67]. Moreover, one can notice that
the right-hand side of (2.39) is larger than the right-hand side of
(2.37). Thus, the estimate (2.39) holds for all the states of the sec-
ond population. Since the right-hand side of (2.39) is larger than
the one of (2.31) and (2.34), we have that (2.39) holds for all the
states of the first population too, for r € [57, 67].

Step 2: Assume now that L € {1, ... ,k} is such that (x, (s),v) =
m, for some s € [—7,0]. By continuity, then there exists a closed
interval [a, , #, ] C [—7,0] such that
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+

M m,
my < (xp(),0) < % t € lag, fr -

Eventually choosing a smaller ¢ in (2.23), we may assume f; —
a, =o.Consideri € {1, ... ,h}andr € [a; + 7,p, + 7]. Then,

%mmw=§%mmm—maw
J#i

k
+ D, (0x; (= 7) = y, (), )
o

+ 1, (O(x (F = 7) = y;(D), V)
M -1
< mA(Mo - (y,-(t), v))

k
+ < My — ’7iL>(M0 = (¥, v))
j=1

M,
-'_”II'L(I)<ﬂ - <yi(t)’ U>>’

2
and so,
d M -1
E(Y,—(’), v) < mA(Mo = (y:(0,0))
k
k-1 Mom 00D

- H;L(f)(Mo - (y,-(t), U))

M,
+ ’1[L(0<# = (i), U))

M
=Mm—mmm—mm4%@

1
M+k-1

< <AM0 — FMO 2_ mo) - A(Y;(’)’ v).

(2.40)

Integrating (2.40) on [a; + 7,f] witht € [a; + 7, f; + 7], we have
that

(yi(0,0) < e_A('_"L_T)(y,-(aL +17),0)

1 r M, —m, —Al—ay—
+( M, - — 1- 4=y,
( " mrk—1a 2z )¢ )

Putting t = f, + 7 in the equation above, we find

1 M, —my

r “A
L 1— ) (241
Mikio1A 2 47 G4

(B +7)0) < My —

From (2.41), denoting,

2=t L <1 - ﬂ)(l — Aoy (2.42)
XM+ k—DA\ M,

we deduce that

(y,(B, +7),0) <A —6*)M,, Yi € {1, ... ,h} (2.43)

Consider now ¢t € [f; + 7, 67]. Then,

d
Emmw=;%mmm—muw
< 2.44
+ Z’?ij(’)(xj(t_f) —y,(®),0) ( )
Jj=1

SAM, = (y (1), 0)).
Integrating on [f, + 7,t] with t € [f, + 7, 67], we have that

3i0).0) < NPT, + 1), 0) + My (1 — e NP
< efA(rfﬂLfr)(l _ 5E)Mo + M,y(1 — e—A(z—ﬂLfr))
= M, (1 — 62¢7A0)
< My(1 — 6275,
(2.45)

where the last inequality is obtained observing that 7 — f;, — 7 <
67. Then,

(0, 0) < My(1 = §2e°™),
Vie(l, ... ,h}, te[f,+7,67], i€{1, ... h}.
(2.46)
Considernowi € {h+1, ... ,M}andfixi; € {1, ... , h}. Taking
t € [f, + 1,67], we have

d
Emmw=§%mmm—maw
J#iy

+ by, 0)()’;1 @) —y;,(),v)

< <2bij(t) - biil (t)>(MO — <yi(t)’ v)) (2.47)

J#
by, OIM(1 = 8275 = (3,0, 0)]
<AMy[1 - = T2 e | - Al 0,0,

Applying the Gronwall inequality on [f; + 7,] with r € [f, +
7, 67], from (2.47), we find that

(y,-(t), U> < eiA(IiﬂLir)<yi(ﬂ]_ + 1), U)

1 T
M. [1 _ _52 —6TA] 1— —A(t—p,-7)
Mol g e )
1 T 6 —A(—p,—T
SMo[l—ﬁKfSEeeA(l—eA(' B ))]_

Shrinking to ¢ € [27,67], noticing that t — f, — 7 > 7, we have
that

1 T
(yi, 0y <M [1 - Lg2e-6e0(1 — ory),
oom-1A (2.48)

vie{h+1,..,M}.
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Consider now i € {1, ... ,k} and fix i, € {1, ... , h}. Notice that
could be that i, = i,. For t € [27,67], we have

L (x/0),0) = Y a, 03,0 = (0. 0)

J#i

h
+ Y€, (0t = 7) = x,(0). )

+ €, (’)(J’,‘Z(I) —x;(1),v)

<AM, [1 L Tp e*W]

" N+h—1A -
— Ax;(1),v).

Integrating over [27, ] with ¢ € [27, 67], we find

(x,(), vy <72 (x,(20), v)

1 r
+ M <1 1 g —61’A> 1 — e—AG-20)y
o NTaoTa%e )0 )

Shrinking to ¢t € [37, 67], we have

1 r 2 —67A —At
(1,v) <M (1— — =5 1- R
{x,(®).v) 0 N+h-1A -¢ ( ¢ )> (2.49)
Vie{l, ..., k}.

Finally, we consider i € {k+1, ... ,N} and fix i; € {1, ... ,k}.
Taking ¢ € [37, 67], we have

£ (x,(0,0) = Ty 00 = x 0.
iy

+a;, (t)<xi3 ®) — x,(),v)

1 2
SAM"[I_(1\1—1)(N+h—1)<X)

538—61’/\(1 _ e—AT):|

— A{x;(1),v).

Integrating the inequality above over [37,1] for ¢ € [37,67], we
find that

(x,'(t): v) < eﬂ\(rigﬂ)(x,‘(?’f)v v)

_ 1 UN2 o 6eapy A
+M°[1 FoDWEASTR) R >]

(1 = e~N=30)y

Shrinking to r € [47, 67], we finally have that

2
_(N—l)(;f+h—1)<%>

5Ee—6‘rl\(1 _ e—Ar)2)7

(x;(0),v) <M, <1
(2.50)

Vie{k+1,..,N}.

As in the previous case, the estimate (2.50) holds for all the pos-
sible states of the system for ¢ € [57, 67].

Step 3: From Steps 1 and 2, using definitions (2.25) and (2.42), we
have then

(xi(0), 0) < My |1 — ! (£)4x
MO S M0 T AN DM —1)(M +k—1)(N + h—1)\A

—67A —Ac _ ,—A1\3 _ ﬂ
X e 1—-e)Q—-e™) (1 MQ)],

(2.51)
Vie{l,...,N}, t €[57,67],and

(3i(0),0) < Mo |1~ 3 (3)
YOI = 0T T SN I(M —1)(M + k—1)(N + h—1) \A

X e—STA(l _ e—/\l)')(l _ e—AT)3 <1 _ ;”[_Z):l’
(2.52)
Vie{l,...,M}, t € [57,67]. Analogous estimates can be
obtained if m, or M, are attained by scalar products (y;,v),

i=1,...,M.Since
(N=1)(M -1)N+h—-1)(M +k—1) <4N*,

from (2.51) and (2.52), we obtain the second inequalities of (2.21)
and (2.22), respectively, with

1 (DY e e Ao
1 = W(K) e 6A(1—e A)3(1—€ A) (253)

Step 4: Now, we focus on the lower bound in (2.21) and (2.22).

Assume that there exists Re{k+1,...,N} such that
(xg(0),v) = M,. Then, as before, we have that

M, + m,
% < (xg(®,v) < M, t €10,0],

with ¢ as in (2.23). Using similar arguments to the onesin Step 1,
we find that, for r € [57, 67],

1 ry?
(x; (D), vy > my [1+ (M_l)(N+h_1)(M+k—1)<X)

5:-8—6‘[/\(1 _ e—AT)3:| ,

vie{l,..,N},
(2.54)
and

1 Iy’
(3:(1),0) 2 my [1+ (M_l)(N+h_1)(M+k—1)<X)

518—6‘[/\(1 _ e—AT)3:| ,

Viell, .. , M},
(2.55)

1 ._ 1 E _ ,—Aco %_
5 '_—Z(N—I)A(l e )(mo 1> (2.56)

Suppose, instead, that (xz(r),v) = M, for some R € {1, ... ,k}
and for some r € [—7,0]. Then, by continuity, there exists a closed
interval [ay, fz] C [—7,0] such that
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M, + m, 1 L\ o, -
———— < (xz(®,v) £ M, t € [ag, frl- (0, 0) Zmg |1 + m(x) ‘Sie 6eA(] — A2 ||

Viel{l,...,N},
(2.57)
Eventually choosing a smaller ¢ in (2.23) above, we may assume

that f — ag = 0. Arguing analogously to Step 2, we can obtain,
for t € [57,67], and

=5

T T T T T

x trajectory

0 10 20 30 40 50 60 70 80 90 100
ttime
=10

x trajectory

=5
0.1 : : : : : : . ;
> 0.05 —— i
3 g
8 0 : ]
g
*.005f / :
_041 1 1 1 1 Il L Il Il 1 =
0 0 20 30 40 50 60 70 80 9 100
ttime
=10

x trajectory

I L I Il Il 1 L L =

20 30 40 50 60 70 80 90 100
ttime

FIGURE1 | Time evolution of solutions with different time delays, number of agents N = 50, M = 5, number of leaders k = A = 1. [Color figure
can be viewed at wileyonlinelibrary.com|
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1 2 with
(), vy >2my 1+ (_)
0.0y zmo | 1+ RS T A 2 1 Lo etny( Moy (2.59)
(2.58) v ToMrk—pAS € g '
5270 N1 — ™M) Wi e {1 M)
+ ’ v ’ Now, note that the right-hand side of (2.54) and (2.55) is smaller
than the right-hand side of (2.57) and (2.58), and so using
=5
0.01 T T T T T T T T T
>
5 O/ ‘
3]
.% \/\/\)“\-~'—'-
= 0.01 JU -
0.02 | ; ; . ; ; ; i . .
0 20 40 60 80 100 120 140 160 180 200
ttime
=10
0.01 T T T T T T T T T
- \
5 o\ -
A ——
%001 | 1
0.02 [ L L \ 1 \ . L \ .
0 20 40 60 80 100 120 140 160 180 200
ttime
=5
0.01 T T
g 0 l 1
° \ A S e ———
S ' X
Y
= -0.01 { 1
-0.02 g =
0 50 100 150
ttime
=10
0.01 T T
£ P 1
Q :/. . B ———r —
8 O = = —
g
% -0.01 1
-0.02" : :
0 50 100 150

ttime

FIGURE2 | Time evolution of solutions with different time delays, number of agents N = M = 5, number of leaders k = 4, h = 1. [Color figure
can be viewed at wileyonlinelibrary.com|
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definitions (2.56) and (2.59), we have that, for ¢ € [57, 67],

Gei(t),0) = my |1+ ! (£)4x
MO =M ST AN DM - DM + k- DN +h—1)\A

Xe76‘rA(1 _ e*AJ)(l _ e*AT)3<% _ 1)] ,
Mo

Vie{l,...,N},and

i), v) = mg |1 + ! (£)4><
e Er=T0 2N —1)(M —1)(M +k—1)(N + h—1) \ A

xe 01— eTM)(1 - eM)? (ﬂ - 1)]
Mo

Vie {1, ... ,M}. Using definition (2.53), from the last two
inequalities, we obtain the lower bounds in the lemma’s state-
ment. This completes the proof. O

3 | Asymptotic Consensus

In this section, we will show the asymptotic convergence to con-
sensus of solutions to (1.1).

Definition 3.1. For fixed v € R? unit vector, for all n € N,
one can define the quantities M, and m,, as follows:

m_ :=min<{ min min{x,(),v min (x;(6n7),v
" {i:l,...,ktEI,,< A >’i k+1.....N< (6n7), v),

(3.60)

i=rlr,1.1.r.1,hrzréll?<yi(t)’ 0), ™ ‘M(y,-(6m'), v) }’

M, = max{,—i???(_kl}é?(x"(t)’ v), f=k13,a.).(. ,N<x"(6m)’ v),
(3.61)

. (6
i:r{}{i_;{hrtréa}yy,(t), ), _max ,M<y,( nt), v) }

with I, = [(6n — 1)z, 6n7]. Notice that for n = 0, we recover (2.6)
and (2.7).

0.04 |

0.02 |

x trajectory
o
o
N

-004 f

-0.06

0,08 . . . .
0 5 10 15 20 25 30 35 40

ttime

Theorem 3.2. Let (x;(1),y;(1), i=1,...,N, j=1,.... M,
be a global classical solution to system (1.1) with continuous initial
conditions (1.5).Then, (x,(1),y;®), i=1,... N, j=1,... ., M,
achieve an asymptotic consensus in the sense of Definition 1.1.

Proof.  Using (3.60) and (3.61), we define the quantities D, :=
M, — m,. Moreover, let us denote

. 1 E 4e76‘r/\(1 _ e*Ar)S(l _ e*/\on)
T 8NA\A ’

where o, := min {T, JZAI\;" }, for n > 1, and o, = ¢ as in (2.23).
0
Then, I', =T, and T, €(0,1) if M, > m, Now, we use

Lemma 2.4 with ¢ € I,, n € N. For n = 1, we have

_ Iy
Dy =M, —my < Mo = —=(Mg = mo) = g
lﬂ—“’(M =(M, 1-T,)=D,1-T
-5 o — My) = (Mo —my)(1 —1I'yy) = Dy(1 —I'yp).

So, we find that D, < (1 —I'};)D,. Iterating the process of Lemma
2.4, we can find

D,,, <(1-T,,)D,, YneN.
Let us denote o
6(D) :=min {r, m },
so that o, = 6(D,), Vn € N, n > 1. Moreover, let be

4
f' (D) . 1 E e—6‘r/\(1 _ e—/\T)3(1 _ e—AE‘(D))
BT 8N4\A ’

sothatT;, = ';(D,), Vn € N. Therefore, we have
Dn+1 S (1 - f‘(Dn))Dn

Then, {D,},c\ is @ nonnegative and decreasing sequence. Let us
call D the limit of {D,},cx, and passing to the limit as n goes to
+o0 in the above estimate, we find

D <(1-Iy(D)D,

0.04 |

0.02

x trajectory
o
o
N

-0.04

-0.06 77

008 . . . .
0 5 10 15 20 25 30 35 40

ttime

FIGURE 3 | Opinion formation in an ecological discussion: to the left, number of agents N = M = 20, number of leaders k = h = 20; to the right,
number of agents N = M = 20, number of leaders k = 4, h = 20. [Color figure can be viewed at wileyonlinelibrary.com]
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thatis true ifand only if [, (D) < 0. This gives D = 0, and noticing
that,
(X,-([) - xj(t)’ U) < Mn -m, = Dn

foralli,j =1, ... ,N, we have that (x;(r) — x;(1), vy —0ast—
+o0 and for all i,j=1,...,N. The same holds for (y,(t) —
v, vy, with i,j =1, ... , M, and for (x,(r) = y;(0, v), with i =
1,...,Nandj=1, ..., M.

Notice that the result above can be obtained for each unit vec-

tor v € RY. In particular, by considering the canonical basis of

RY, {e,}¢_ ,and taking v = e;, we have that
|(x,-(t) - xj(t)’ eh>| -0,

ast— +oo, forall i,j=1,..., N and h =1, ... ,d. The same
happens to |(y,.(t)—yj(t),eh)|, for all i,j=1,...,M, and to
[(x;(®) —yj(t),e,,)|, foralli=1,...,Nandj=1, ..., M. Then,
the system achieves asymptotic consensus. ]

4 | Numerical Simulations and Application
to Ecology

In this section, we present some numerical tests for the system
(1.1) in the one-dimensional case, that is, d = 1. We consider the
weight functions a;;(r) and b;;(#) defined by

w(r )y =y (r,r') ;=@ (r=r']), r,r' €[0,+00).
Meanwhile, the weight functions ¢;;(r) and #,;;(r) are assumed to
be constant.

In particular, we consider the functions
F(r) 1=V r e [0, +0),

K
L viell,.. .k}, je(l,....h}

€,-j(l‘) = m (4.62)

2 . .
() =—— V¥ 1,...,h 1, ...,k
My(@) 1= e VIE (Lo ) J € (L k),

with K, K, positive constants.

In Figure 1, the top two graphics illustrate a scenario where one
population is larger than the other, yet the influence of the lead-
ers from the smaller population overpowers that of the larger one
(K, > K,). As expected, the larger population tends to converge
towards the consensus of the smaller population. The bottom two
graphics depict a similar scenario but with equal influence from
both sets of leaders (K; = K,). In this case, it is observed that the
larger population pulls the smaller one towards its consensus.

Moving to Figure 2, the top two graphics illustrate a scenario
where the total number of agents in both populations is equal, but
the distribution of leaders differs (k = 4, h = 1). Furthermore,
the solitary leader in the second population holds more influence
than the others (K, > K,). It is noticeable that the system tends
to a consensus closer to the initial average of the population with
only one leader. This is due to the different normalization factors
of the weight functions. In the bottom two graphics of Figure 2,
a similar scenario is presented but with equally strong influence

from leaders on both sides (K; = K,). Here, it is observed that the
consensus converges towards a mean value of the initial states.

In this paper, we used a Hegselmann-Krause type model to
explore social dynamics and opinion formation in a set of two
interacting populations, particularly in the context of discussing
ecology strategies and sustainable development. We conducted
simulations to investigate two different scenarios:

1. Equal influence scenario (Figure 3, left): In this scenario,
all agents are considered equal, meaning the total popula-
tion coincides with the leaders’ subgroup. However, only
one group has a mild influence on the other group (k = h =
N =M, K, =0.3, K, =0). This could represent a situa-
tion with only one group spreading ecological information
on social media.

2. Asymmetric influence scenario (Figure 3, right): In this sce-
nario, one group has a significant influence over a sub-
group of the other population (K; =30, K, =0, k < h).
This could represent a scenario where a community of sci-
entists interacts with a leading group in the other popula-
tion, e.g., a politicians’ group.

We observed that with a fixed time delay (z = 5), consensus is
reached more rapidly in the second scenario. This implies that
exerting a strong influence on decision-makers who in turn influ-
ence the entire population leads to a faster consensus formation.
Therefore, we conclude that the most effective strategy for rais-
ing awareness on ecological topics is to exert a strong influence
on key decision-makers who can influence the entire population.
This highlights the importance of targeting influential individu-
als or groups in shaping public opinion and fostering consensus
on issues, for example, related to ecology and sustainability.
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