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Abstract
We give sharp conditions for global in time existence of
gradient flow solutions to a Cahn–Hilliard-type equa-
tion, with backwards second-order degenerate diffusion,
in any dimension and for general initial data. Our equa-
tion is the 2-Wasserstein gradient flow of a free energy
with two competing effects: the Dirichlet energy and the
power-law internal energy. Homogeneity of the func-
tionals reveals critical regimes that we analyse. Sharp
conditions for global in time solutions, constructed via
the minimising movement scheme, also known as JKO
scheme, are obtained. Furthermore, we study a sys-
tem of two Cahn–Hilliard-type equations exhibiting an
analogous gradient flow structure.
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1 INTRODUCTION

In this manuscript we are interested in the mathematical analysis of the equation

𝜕𝑡𝜌 = − div(𝜌∇(Δ𝜌)) − 𝜒Δ𝜌𝑚, (1.1)
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where 𝑚 ⩾ 1, and its extension to systems. We look for solutions of (1.1) in the set of probability
densities, 𝜌 ∈ 𝐿1+(ℝ

𝑑) ∶= {𝜌 ∈ 𝐿1(ℝ𝑑) ∶ 𝜌 ⩾ 0}, thus setting themass to one in the sequel without
loss of generality. The parameter 𝜒 > 0measures the relative balance between aggregation, mod-
elled by backwards degenerate diffusion, and repulsion, modelled by fourth-order diffusion. The
case of general masses can be reduced to (1.1) with a suitable parameter 𝜒 upon a standard time
rescaling and mass normalisation, cf. Remark 3.1.
Equation (1.1) is related to the classical thin-film equations from lubrication theory, cf. [6, 7,

28, 41, 42, 55] and the references therein. Starting from a conjecture of Hocherman and Rosenau
[42], the authors in [8] study well-posedness and finite-time singularities of Cahn–Hilliard-type
equations, in one spatial dimension on bounded interval with periodic boundary conditions.More
precisely, they analyse the family of equations of the form

𝜕𝑡𝜌 = −(𝜌
𝑛𝜌𝑥𝑥𝑥)𝑥 − (𝜌

𝑚−1𝜌𝑥)𝑥, (1.2)

proving that for nonnegative (weak) solutions, blow-up can only occur for𝑚 ⩾ 𝑛 + 3. The results
in [8, 42] hold for general degenerate mobilities, as in [8, Conjectures 1 and 2]. Afterwards, several
contributions to the analysis of the one-dimensional problem have beenmade. Linear in/stability
of steady states for the one-dimensional periodic problem was analysed in [44, 59]. Using the dis-
sipation of a suitable energy functional, the authors of [46] were able to further characterise the
energy landscape distinguishing between local minima and saddles among periodic steady states.
Stability of droplets steady states with a fixed contact angle for the one-dimensional periodic
problem was further studied in [45].
The critical case𝑚 = 𝑛 + 3 in one dimension is analysed in [66], where blow-up in finite time

can only happen above a certain critical mass identified thanks to a sharp Sz. Nagy inequality;
cf. [53, 62]. Existence of self-similar blow-up solutions of (1.2) is explored in [60] for the critical
case𝑚 = 𝑛 + 3. In particular, for 𝑛 = 1, there exists a family of blowing-up symmetric self-similar
solutionswith zero contact angle. Further analysis of one-dimensional self-similar solutions, both
expanding and blowing-up, for the critical cases of (1.2) has been done in [37, 38, 59].
The nonlinear Cahn–Hilliard-type equations (1.1) have also been recently proposed as

approximations of nonlocal aggregation–diffusion models of the form

𝜕𝑡𝜌 = Δ𝜌
𝑠 + div(𝜌∇(𝑊 ∗ 𝜌)), 𝑠 ⩾ 1 (1.3)

by truncation of the Fourier expansion of the interaction potential𝑊; see [5]. This approximation
has been rendered rigorous under certain assumptions on the interaction potential𝑊 in [34].
The connection between aggregation–diffusion and Cahn–Hilliard equations has also been

generalised to systems of aggregation–diffusion equations modelling tissue growth and pattern-
ing due to cell–cell adhesion [25]. The authors in [39] show that cell-sorting phenomena are kept
for the resulting system of equations:

𝜕𝑡𝜌 = −div(𝜌∇(𝜅Δ𝜌 + 𝛼Δ𝜂 + 𝛽𝜌 + 𝜔𝜂)), (1.4a)

𝜕𝑡𝜂 = −div(𝜂∇(𝛼Δ𝜌 + Δ𝜂 + 𝜔𝜌 + 𝜂)). (1.4b)

The parameters in the model are such that 𝛽, 𝜔 ∈ ℝ and the matrix

𝐴 =

(
𝜅 𝛼

𝛼 1

)
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 3 of 49

is positive definite.We extend the theory developed for the one-species case (1.1) to construct solu-
tions to the systems of Equations (1.4). The nonlocal-to-local limit in the context of systems has
also been studied rigorously in [21]. We also mention that different multi-species Cahn–Hilliard
equations are considered in [33, 35, 36] and references therein.
Equation (1.1) can be interpreted as 2-Wasserstein gradient flow of the (extended) energy

functional

𝑚[𝜌] =
⎧⎪⎨⎪⎩
1

2 ∫ℝ𝑑 |∇𝜌(𝑥)|2 d𝑥 − 𝜒𝑚[𝜌], 𝜌 ∈ 𝑎(ℝ𝑑), ∇𝜌 ∈ 𝐿2(ℝ𝑑),
+∞, otherwise,

(1.5)

as already noted in [59], being

𝑚[𝜌] =
⎧⎪⎨⎪⎩
∫ℝ𝑑 𝜌(𝑥) log 𝜌(𝑥) d𝑥, 𝑚 = 1,

1

𝑚 − 1 ∫ℝ𝑑 𝜌
𝑚d𝑥, 𝑚 > 1.

(1.6)

This gradient flow structure was made rigorous for related Cahn–Hilliard equations in [47, 52].
However, the former does not include the second-order backwards diffusion term in (1.1), while
the latter is concerned with more general, density-dependent mobilities.
As for the multi-species case, by defining the free energy functional as

̃ [𝜌, 𝜂] = ∫ℝ𝑑
(
𝜅

2
|∇𝜌|2 + 1

2
|∇𝜂|2 + 𝛼∇𝜌 ⋅∇𝜂 − 𝛽

2
𝜌2 −

1

2
𝜂2 − 𝜔𝜌𝜂

)
d𝑥,

system (1.4) can be written as a 2-Wasserstein gradient flow with respect to the (extended) free
energy functional

 [𝜌, 𝜂] =

{
̃ [𝜌, 𝜂] if (𝜌, 𝜂) ∈ 𝑎(ℝ𝑑)2, (∇𝜌,∇𝜂) ∈ 𝐿2(ℝ𝑑)2
+∞ otherwise.

(1.7)

Our main goal is to show global existence of weak solutions of (1.1) for𝑚 < 𝑚𝑐 ∶= 2 +
2

𝑑
(sub-

critical case) and for 𝑚 = 𝑚𝑐 (critical case) for subcritical mass, 0 < 𝜒 < 𝜒𝑐, by leveraging the
aforementioned gradient flow structure. The critical parameter 𝜒𝑐 is identified by the sharp con-
stant of a suitable functional inequality [49]. The critical exponent 𝑚𝑐 is determined by scaling
arguments using mass-preserving dilations of densities in the energy functional (1.5). Moreover,
we also obtain global existence of weak solutions for the system (1.4) by an analogous approach. In
fact, we employ the (by now) classical variational minimisingmovement scheme, or JKO scheme,
[1, 43] to obtain an approximation of a candidate solution. A crucial step will be to use the flow
interchange technique, developed in [47, 52] to gain suitable regularity. Afterwards, we check that
limits of the variational scheme are indeed weak solutions in any dimension.
Our main result provides sharp conditions on the exponent of backwards diffusion in (1.1) to

ensure global existence of solutions in the natural class of initial data for any dimension compared
to previous literature [47, 48, 59, 66].
The key ingredient to take advantage of the gradient flow structure of (1.1) and system (1.4) is

to have uniform bounds on the competing terms in the free energies (1.5) and (1.7), respectively.
Interestingly, this is reminiscent of similar arguments developed for generalisations of the
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4 of 49 CARRILLO et al.

Patlak–Keller–Segel equation for chemotactic cell movement [10, 19, 24]. Actually, we can draw
a nice parallelism with this well-studied problem. Generalised Patlak–Keller–Segel equations are
of the form (1.3). In particular, let us focus on the power-law kernel

𝑊𝑘(𝑥) =

{|𝑥|𝑘
𝑘

if 𝑘 ≠ 0,
log |𝑥| if 𝑘 = 0.

We find an immediate connection with the problem (1.1). Analogously to the case we are studying
in this work, there exists a critical exponent, 𝑠𝑐 = 1 −

𝑘

𝑑
, also found via mass-preserving dilations

on the corresponding free energy functional which characterises the behaviour of (1.3).
The case 𝑠 > 𝑠𝑐 is the diffusion dominated regime and global well-posedness for (1.3) is

expected, see for instance [10, 15–17, 23, 61]. This is analogous to the case 1 ⩽ 𝑚 < 𝑚𝑐 for (1.1).
As for the range 1 ⩽ 𝑠 < 𝑠𝑐, aggregation-dominated regime for Equation (1.3) — analogous to

the case𝑚 > 𝑚𝑐 for (1.1) — coexistence of blow-up and global existence depending on the initial
data is expected; see [4, 27, 51] for instance.
In the fair competition regime 𝑠 = 𝑠𝑐 — analogous to our critical exponent 𝑚 = 𝑚𝑐 — there

exists a dichotomy between aggregation and diffusion in terms of the initial mass:𝑀, analogous
to our parameter 𝜒. Sharp constants of variants of Hardy–Littlewood–Sobolev type inequalities
determine the critical value of the mass𝑀𝑐 for (1.3), analogously to our critical parameter 𝜒𝑐. We
note that for our fourth-order Cahn–Hilliard-type equation, the crucial functional inequality was
established in [49]; see a limiting case in [50]. In the supercritical mass case,𝑀 > 𝑀𝑐, there exist
solutions that blow up in finite time; see for instance [3, 4, 10, 16, 17]. In the subcritical mass case,
𝑀 < 𝑀𝑐, global existence of solutions is shown and spreading self-similar solutions are expected
to attract the long-time dynamics; see for instance [3, 4, 11, 16, 17, 32].
In the critical case𝑀 = 𝑀𝑐, there are infinitely many stationary states given by the optimisers

of the variants of the HLS inequalities, solutions are globally well-posed blowing-up at infinite
time for bounded second moment initial data if 𝑚 = 1, and local stability of stationary solutions
is expected, see [9, 10, 16, 17, 32, 67].
We will perform a parallel study to nonlinear Keller–Segel equations (1.3) for our family of

Cahn–Hilliard equations (1.1), depending on the critical exponent case𝑚𝑐 and parameter 𝜒.
Finally, we want to emphasise that our work sets the path to many other interesting open ques-

tions. Uniqueness is widely open being the functionals not convex, even in subsets, in any obvious
manner. Existence of minimisers in the subcritical case in the whole space is not clear since we
do not know at present how to bound uniformly in time the second moment or any other quan-
tity controlling escape of mass at infinity. Long-time asymptotics are, in turn, widely open in all
global existence cases. Free boundary problem techniques could help understand if the evolution
leads to compactly supported solutions corresponding to compactly supported initial data. This
conjecture is corroborated by numerical experiments being this another challenging problem. In
the two-species case, we can identify other interesting issues such as sharp segregation for specific
parameter values between the two species not only at steady states but along their evolutions. This
information is important for the applications in mathematical biology [25, 39].
We structure the paper as follows. Section 2 is devoted to the precise statements of the main

theorems together with some preliminary material used in the sequel. We will analyse the exis-
tence of global minimisers of the energy (1.5) following the strategies in [10, 16, 32] in Section 3. In
Section 4we dealwith the coremain result of global existence ofweak solutions to the single Equa-
tion (1.1) in any dimension for generic initial data. Finally, Section 5 focuses on the generalisation
of this approach to the case of systems of the form (1.4).

 1460244x, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12623 by C

ochraneItalia, W
iley O

nline L
ibrary on [12/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 5 of 49

2 MAIN RESULTS AND PRELIMINARIES

We begin by listing themain results covered in this manuscript. First, we study some properties of
the free energy functional 𝑚 and its minimisers. The following theorem summarises the results
proven in Section 3.

Theorem 2.1. Let 𝑚 be as in (1.5). The following hold.

(1) If 1 ⩽ 𝑚 < 2 + 2∕𝑑, then 𝑚 is bounded from below.
(2) If 𝑚 = 2 + 2∕𝑑, then, for the subcritical and critical mass regimes, 𝑚 is bounded from below.

Furthermore, for the critical mass, the infimum is achieved. In the supercritical mass regime,𝑚
is unbounded from below.

(3) If𝑚 > 2 + 2∕𝑑, then 𝑚 is unbounded from below.

Case (1) is proven in Proposition 3.1. Case (2) is a combination of two results. In Proposition 3.2
we show that for 𝜒 ⩽ 𝜒𝑐 the free energy is bounded from below. In Proposition 3.3, we prove that
the infimum is achieved for critical mass and that the free energy is unbounded if 𝜒 > 𝜒𝑐. Finally,
in Proposition 3.5 we show case (3).
Throughout the manuscript, we denote by (ℝ𝑑) the set of probability measures on ℝ𝑑, for

𝑑 ∈ ℕ, and by2(ℝ𝑑) ∶= {𝜌 ∈ (ℝ𝑑) ∶ m2(𝜌) < +∞}, beingm2(𝜌) ∶= ∫
ℝ𝑑
|𝑥|2 d𝜌(𝑥) the second-

order moment of 𝜌. We will use 𝑎(ℝ𝑑) and 𝑎
2
(ℝ𝑑) for elements in (ℝ𝑑) and 2(ℝ𝑑)which are

absolutely continuous with respect to the Lebesgue measure. In order to deal with 𝐿𝑝-regularity,
we set

2∗ ∶=

{
+∞ if 𝑑 = 1, 2,
2𝑑

𝑑−2
if 𝑑 ⩾ 3.

The second result we prove is the existence of weak solutions to (1.1), in the following sense:

Definition 2.1 (Weak solution). A weak solution to (1.1) on the time interval [0, 𝑇], with initial
datum 𝜌0 ∈ 𝑎

2
(ℝ𝑑) such that∇𝜌0 ∈ 𝐿2(ℝ𝑑), is a narrowly continuous curve 𝜌 ∶ [0, 𝑇] → 2(ℝ𝑑)

satisfying the following properties:

(i) 𝜌 ∈ 𝐿∞([0, 𝑇]; 𝐿𝑝(ℝ𝑑)) ∩ 𝐿∞([0, 𝑇];𝐻1(ℝ𝑑)) ∩ 𝐿2([0, 𝑇];𝐻2(ℝ𝑑)), for any 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2,
and for any 𝑝 ∈ [1, 2∗) when 𝑑 = 2;

(ii) for every 𝜑 ∈ 𝐶2𝑐 (ℝ
𝑑) and every 0 ⩽ 𝑠1 < 𝑠2 ⩽ 𝑇 it holds

∫ℝ𝑑 𝜑(𝑥)𝜌(𝑠2, 𝑥) d𝑥 = ∫ℝ𝑑 𝜑(𝑥)𝜌(𝑠1, 𝑥) d𝑥

− ∫
𝑠2

𝑠1
∫ℝ𝑑 (𝜌Δ𝜌Δ𝜑 + Δ𝜌∇𝜌 ⋅∇𝜑) d𝑥 d𝑡

− 𝜒 ∫
𝑠2

𝑠1
∫ℝ𝑑 𝜌

𝑚Δ𝜑 d𝑥 d𝑡.

Theorem 2.2. Assume 1 ⩽ 𝑚 < 2 + 2∕𝑑 or𝑚 = 2 + 2∕𝑑 with subcritical mass𝜒 < 𝜒𝑐 and let 𝜌0 ∈𝑎
2
(ℝ𝑑) be an initial datum such that 𝑚[𝜌0] < +∞. Then there exists a weak solution to (1.1).
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6 of 49 CARRILLO et al.

We extend our results from the one-species case to construct weak solutions to system (1.4), in
the following sense.

Definition 2.2 (Weak solution for the system). A weak solution to (1.4) on the time
interval [0, 𝑇], with initial datum 𝜎0 = (𝜌0, 𝜂0) ∈ 𝑎

2
(ℝ𝑑)2 such that ∇𝜌0,∇𝜂0 ∈ 𝐿2(ℝ𝑑), con-

sists of a pair of narrowly continuous curves 𝜌, 𝜂 ∶ [0, 𝑇] → 2(ℝ𝑑) satisfying the following
properties:

(i) 𝜌, 𝜂 ∈ 𝐿∞([0, 𝑇]; 𝐿𝑝(ℝ𝑑)) ∩ 𝐿∞([0, 𝑇];𝐻1(ℝ𝑑)) ∩ 𝐿2([0, 𝑇];𝐻2(ℝ𝑑)), for any 𝑝 ∈ [1, 2∗], 𝑑 ≠
2, and for any 𝑝 ∈ [1, 2∗) when 𝑑 = 2;

(ii) for every 𝜑, 𝜓 ∈ 𝐶2𝑐 (ℝ
𝑑) and every 0 ⩽ 𝑠1 < 𝑠2 ⩽ 𝑇 it holds

∫ℝ𝑑 𝜑(𝑥)𝜌(𝑠2, 𝑥) d𝑥 = ∫ℝ𝑑 𝜑(𝑥)𝜌(𝑠1, 𝑥) d𝑥

−𝜅 ∫
𝑠2

𝑠1
∫ℝ𝑑 (𝜌Δ𝜌Δ𝜑 + ∇𝜌 ⋅∇𝜑Δ𝜌) d𝑥 d𝑡

−𝛼 ∫
𝑠2

𝑠1
∫ℝ𝑑 (𝜌Δ𝜂Δ𝜑 + ∇𝜌 ⋅∇𝜑Δ𝜂) d𝑥 d𝑡

−
𝛽

2 ∫
𝑠2

𝑠1
∫ℝ𝑑 𝜌

2Δ𝜑 d𝑥 d𝑡 + 𝜔 ∫
𝑠2

𝑠1
∫ℝ𝑑 𝜌∇𝜂 ⋅∇𝜑d𝑥 d𝑡,

∫ℝ𝑑 𝜓(𝑥)𝜂(𝑠2, 𝑥) d𝑥 = ∫ℝ𝑑 𝜓(𝑥)𝜂(𝑠1, 𝑥) d𝑥

− ∫
𝑠2

𝑠1
∫ℝ𝑑 (𝜂Δ𝜂Δ𝜓 + ∇𝜂 ⋅∇𝜓Δ𝜂) d𝑥 d𝑡

−𝛼 ∫
𝑠2

𝑠1
∫ℝ𝑑 (𝜂Δ𝜌Δ𝜓 + ∇𝜂 ⋅∇𝜓Δ𝜌) d𝑥 d𝑡

−
1

2 ∫
𝑠2

𝑠1
∫ℝ𝑑 𝜂

2Δ𝜓 d𝑥 d𝑡 + 𝜔 ∫
𝑠2

𝑠1
∫ℝ𝑑 𝜂∇𝜌 ⋅∇𝜓 d𝑥 d𝑡.

Theorem2.3. Let (𝜌0, 𝜂0) ∈ 𝑎
2
(ℝ𝑑) × 𝑎

2
(ℝ𝑑) be an initial datum such that [𝜌0, 𝜂0] < +∞. Then

there exists a weak solution to (1.4).

The last result is generalised to a wider class of systems allowing for nonlinear self-
diffusion terms.

2.1 Preliminaries

We present the notation and we collect some a priori results that we will use throughout
the manuscript.
A key tool for the analysis is the Wasserstein metric, that is a distance function in the space of

probability measures with finite second-order moments.
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 7 of 49

Definition 2.3 (2-Wasserstein distance). For 𝜇, 𝜈 ∈ 2(ℝ𝑑), we define the 2-Wasserstein distance,2(𝜇, 𝜈), between 𝜇 and 𝜈 as

2(𝜇, 𝜈) ∶= min
𝛾∈Γ(𝜇,𝜈)

{
∫ℝ𝑑×ℝ𝑑 |𝑥 − 𝑦|2 d𝛾(𝑥, 𝑦)

} 1
2

,

where Γ(𝜇, 𝜈) is the set of transport plans between 𝜇 and 𝜈,

Γ(𝜇, 𝜈) =
{
𝛾 ∈ (ℝ𝑑 × ℝ𝑑) ∶ (𝜋𝑥)#𝛾 = 𝜇, (𝜋𝑦)#𝛾 = 𝜈},

and 𝜋𝑥 and 𝜋𝑦 are the projections onto the first and the second variables, respectively.

In the expression above, marginals are the push-forward of 𝛾 through 𝜋𝑖 . For a measure 𝜌 ∈(ℝ𝑑) and a Borel map 𝑇 ∶ ℝ𝑑 → ℝ𝑛, 𝑛 ∈ ℕ, the push-forward of 𝜌 through 𝑇 is defined by

∫ℝ𝑛 𝑓(𝑦) d𝑇#𝜌(𝑦) = ∫ℝ𝑑 𝑓(𝑇(𝑥)) d𝜌(𝑥) for all 𝑓 Borel functions on ℝ𝑑.

We refer the reader to [1, 58, 64] for further details on optimal transport theory and Wasser-
stein spaces.
In order to obtain strong convergence of 𝜌 in 𝐿2([0, 𝑇]; 𝐿2(ℝ𝑑)) we take advantage of a refined

version of the Aubin–Lions lemma for compactness inmeasures, due to Rossi and Savaré. It relies
on two conditions: tightness and weak integral equi-continuity.

Proposition 2.1 [56, Theorem 2]. Let 𝑋 be a separable Banach space and consider

∙ a lower semicontinuous functional  ∶ 𝑋 → [0,+∞] with relatively compact sublevels in 𝑋;
∙ a pseudo-distance g ∶ 𝑋 × 𝑋 → [0,+∞], that is, g is lower semicontinuous and such that
g(𝜌, 𝜂) = 0 for any 𝜌, 𝜂 ∈ 𝑋 with [𝜌] < ∞ and [𝜂] < ∞ implies 𝜌 = 𝜂.

Let 𝑈 be a set of measurable functions 𝑢 ∶ (0, 𝑇) → 𝑋, with a fixed 𝑇 > 0. Assume further that 𝑈 is
tight with respect to 

sup
𝑢∈𝑈 ∫

𝑇

0
[𝑢(𝑡)] d𝑡 < ∞ , (2.1)

and satisfies the weak integral equi-continuity condition

lim
ℎ↓0

sup
𝑢∈𝑈 ∫

𝑇−ℎ

0
g(𝑢(𝑡 + ℎ), 𝑢(𝑡))d𝑡 = 0 . (2.2)

Then𝑈 contains an infinite sequence (𝑢𝑛)𝑛∈ℕ convergent in measure, with respect to 𝑡 ∈ (0, 𝑇), to a
measurable 𝑢̃ ∶ (0, 𝑇) → 𝑋, that is,

lim
𝑛→∞

||{𝑡 ∈ (0, 𝑇) ∶ ‖𝑢𝑛(𝑡) − 𝑢̃(𝑡)‖𝑋 ⩾ 𝛿}|| = 0, ∀𝛿 ⩾ 0 . (2.3)

In addition to the strong convergence given by Proposition 2.1, we will need an 𝐿2 bound on Δ𝜌
to obtain suitable compactness in time and space for∇𝜌 and Δ𝜌. We employ the flow interchange
technique, developed by Matthes, McCann and Savaré in [52] and previously used in [55] — we
also refer the reader to [14, 20, 30, 31] for further details. The idea of the flow interchange consists
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8 of 49 CARRILLO et al.

in considering the dissipation of the free energy 𝑚 along a solution of an auxiliary gradient flow,
and using the evolution variational inequality (EVI) afterwards to obtain the desired estimate.
For the reader’s convenience we recall the definition of 𝜆-flow for a general functional , which
is connected to the EVI.

Definition 2.4 (𝜆-flow). A semigroup 𝑆 ∶ [0, +∞] × 2(ℝ𝑑) → 2(ℝ𝑑) is a 𝜆-flow for a func-
tional  ∶ 2(ℝ𝑑) → ℝ ∪ {∞} with respect to the distance2 if, for an arbitrary 𝜌 ∈ 2(ℝ𝑑), the
curve 𝑡 ↦ 𝑆𝑡𝜌 is absolutely continuous on [0,∞) and it satisfies the EVI

1

2

d+

d𝑡
2
2 (𝑆

𝑡𝜌, 𝜇) +
𝜆

2
2
2 (𝑆

𝑡𝜌, 𝜇) ⩽ [𝜇] − [𝑆𝑡𝜌], (EVI)

for all 𝑡 > 0, with respect to every reference measure 𝜇 ∈ 2(ℝ𝑑) such that [𝜇] < ∞.

As shown in the seminal work by Jordan, Kinderlehrer and Otto [43], the heat equation can be
regarded as a 2-Wasserstein steepest descent of the Boltzmann entropy

[𝜌] =
{∫

ℝ𝑑
𝜌(𝑥) log 𝜌(𝑥) d𝑥, 𝜌 log 𝜌 ∈ 𝐿1(ℝ𝑑).

+∞ otherwise
(2.4)

We mention [1, 58] and the recent [40, Chapter 3.3] for further details. The functional  is 0-
convex along geodesics and it possesses a unique 0-flow, which we denote 𝑆 , given by the heat
semigroup, see, for example, [1, 29, 31]. We will use the heat equation as the auxiliary flow and the
free energy (2.4) as the auxiliary functional.
In order to illustrate the method, let us calculate the dissipation of the Boltzmann entropy

along solutions of our Equation (1.1). For simplicity, we consider 𝑚 = 2, although the method
generalises to other exponents. In this case, a formal computation yields

d

d𝑡 ∫ℝ𝑑 𝜌 log 𝜌 d𝑥 = −∫ℝ𝑑 log 𝜌 div(𝜌∇(Δ𝜌))d𝑥 − 2𝜒 ∫ℝ𝑑 log 𝜌 div(𝜌∇𝜌) d𝑥.

= ∫ℝ𝑑 ∇𝜌 ⋅∇(Δ𝜌) d𝑥 + 2𝜒 ∫ℝ𝑑 |∇𝜌|2 d𝑥.
⩽ −∫ℝ𝑑(Δ𝜌)

2 d𝑥 + 2𝐶,

where the constant 𝐶 > 0 is given in Proposition 3.1. By integrating in time, we obtain

‖Δ𝜌‖2
𝐿2((0,𝑇)×ℝ𝑑)

⩽ [𝜌0] − [𝜌𝑇] + 2𝐶𝑇
⩽ ‖𝜌0‖2𝐿2(ℝ𝑑) − [𝜌𝑇] + 2𝐶𝑇.

It remains to note that [𝜌] can be bounded from below by the secondmoment of 𝜌,m2(𝜌), which
gives the desired 𝐿2 bound on Δ𝜌. Although this formal computation requires further regular-
ity, it illustrates how we may use an auxiliary flow to obtain 𝐻2 estimates for our equation. In
Lemma 4.2, we will make this calculation fully rigorous by considering, instead, the dissipation
of our energy functional 𝑚[𝜌], (1.5), along solutions of the heat equation with suitable initial
data.
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 9 of 49

Remark 2.1. We remind the reader of the following bound for the Boltzmann entropy functional
 ,

[𝜌] = ∫ℝ𝑑 𝜌 log 𝜌 ⩾ −𝐶(1 + m2(𝜌)).

To prove this, let𝑀(𝑥) ∶= (2𝜋)−𝑑∕2 exp
(
−|𝑥|2∕2), and consider the relative entropy

(𝜌|𝑀) ∶= ∫ℝ𝑑 𝜌 log
𝜌

𝑀
d𝑥 .

Jensen’s inequality implies that

(𝜌|𝑀) ⩾ log(∫ℝ𝑑 𝜌𝑀𝑀d𝑥

)
∫ℝ𝑑

𝜌

𝑀
d𝑥 = 0 ,

and thus, we conclude that

0 ⩽ (𝜌|𝑀) = ∫ℝ𝑑 𝜌 log 𝜌 d𝑥 +
𝑑

2
log(2𝜋) +

1

2 ∫ℝ𝑑 |𝑥|2𝜌(𝑥) d𝑥 ,
which implies

∫ℝ𝑑 𝜌 log 𝜌 ⩾
𝑑

2
log(2𝜋) −

1

2
m2(𝜌) .

3 PROPERTIES OF THE ENERGY FUNCTIONAL

The energy 𝑚 plays a crucial role in the analysis of (1.1), as it provides uniform bounds we
hinge on for the construction of weak solutions. Furthermore, in the theory of gradient flows, the
dynamical problem is usually related to energy minimisers via stationary states. This is, indeed, a
valuable advantage of studying Equation (1.1) in the Wasserstein space (2(ℝ𝑑),2). As we will
see below, the Gagliardo–Nirenberg inequality is essential for a thorough study of our problem
as it reveals critical regimes. For the reader’s convenience we recall it in the lemma below, cf. for
instance [13, 54].

Lemma3.1 (Gagliardo–Nirenberg interpolation inequality).Let 𝜃 ∈ [0, 1], 1 ⩽ 𝑝, 𝑞 ⩽ +∞and 1 ⩽
𝑟 < ∞ such that 1

𝑝
= 𝜃

(
1

𝑟
− 1

𝑑

)
+ 1−𝜃

𝑞
. Then, it holds

‖𝑓‖𝐿𝑝(ℝ𝑑) ⩽ 𝐶‖∇𝑓‖𝜃𝐿𝑟(ℝ𝑑)‖𝑓‖1−𝜃𝐿𝑞(ℝ𝑑)
,

where𝐶 denotes a positive constant depending on𝑝, 𝑞, 𝑟, 𝜃, but not on 𝑓. In the case 𝑑 = 2, 𝜃 ∈ [0, 1).

In the proposition below we find a range of exponents for which the free energy 𝑚 is bounded
from below, thus proving Theorem 2.1, case (1). In turn, this implies further regularity for the
density 𝜌 and provides the critical exponent,𝑚𝑐 = 2 + 2∕𝑑.
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10 of 49 CARRILLO et al.

Proposition 3.1 (Lower bound for the free energy and induced regularity). Assume 𝜌 ∈ 𝐿1+(ℝ
𝑑)

and let 1 ⩽ 𝑚 < 2 + 2

𝑑
. Set 𝛼 ∶= 1 +

2
𝑑
(𝑚−1)

2+ 2
𝑑
−𝑚

, for 𝑚 > 1, and 𝛼 ∶= 2, for 𝑚 = 1. The following

properties hold.

(1) Lower bound for the free energy: let ∇𝜌 ∈ 𝐿2(ℝ𝑑), then 𝑚[𝜌] is bounded from below as

𝑚[𝜌] ⩾ −𝐶‖𝜌‖𝛼𝐿1(ℝ𝑑), (3.1)

where 𝐶 = 𝐶(𝑚, 𝑑, 𝜒).
(2) 𝐻1-bound: assume 𝑚[𝜌] < +∞, then the following bound holds

‖∇𝜌‖2
𝐿2(ℝ𝑑)

⩽ 𝐶
(𝑚[𝜌] + ‖𝜌‖𝛼𝐿1(ℝ𝑑)), (3.2)

where 𝐶 = 𝐶(𝑚, 𝑑, 𝜒).
(3) 𝐿𝑝-regularity: assume 𝑚[𝜌] < +∞, then 𝜌 ∈ 𝐿𝑝(ℝ𝑑) for any 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2, and for any

𝑝 ∈ [1, 2∗) when 𝑑 = 2. In particular, there exists a constant 𝐶 = 𝐶(𝑚, 𝑝, 𝑑, 𝜌, 𝜒) > 0 such that

‖𝜌‖𝐿𝑝(ℝ𝑑) ⩽ 𝐶 < +∞. (3.3)

Proof. Step 1: Lower bound for the free energy. Let 1 < 𝑚 < 2 + 2

𝑑
. By applying Gagliardo–

Nirenberg inequality to ‖𝜌‖𝐿𝑚(ℝ𝑑) we find
‖𝜌‖𝐿𝑚(ℝ𝑑) ⩽ 𝐶‖∇𝜌‖𝜃𝐿2(ℝ𝑑)‖𝜌‖1−𝜃𝐿1(ℝ𝑑)

,

where 𝜃 = 2𝑑

𝑑+2

𝑚−1

𝑚
∈ (0, 1). By applying Young’s inequality with 𝑝 = 2

𝑚𝜃
=

1+ 2
𝑑

𝑚−1
> 1 and 𝑝′ its

conjugate, we have

‖𝜌‖𝑚
𝐿𝑚(ℝ𝑑)

⩽

𝜀𝑝‖∇𝜌‖2
𝐿2(ℝ𝑑)

𝑝
+
𝐶𝑚𝑝

′

𝜀𝑝′

‖𝜌‖𝑚(1−𝜃)𝑝′
𝐿1(ℝ𝑑)

𝑝′
.

Therefore, taking any 0 < 𝜀 < (𝑝(𝑚 − 1)∕2𝜒)
1∕𝑝 we obtain the bound

𝑚[𝜌] = 1

2
‖∇𝜌‖2

𝐿2(ℝ𝑑)
−

𝜒

𝑚 − 1
‖𝜌‖𝑚

𝐿𝑚(ℝ𝑑)

⩾

(
1

2
−

𝜒𝜀𝑝

𝑝(𝑚 − 1)

)‖∇𝜌‖2
𝐿2(ℝ𝑑)

−
𝜒𝐶𝑚𝑝

′

𝑝′(𝑚 − 1)𝜀𝑝′
‖𝜌‖𝑚(1−𝜃)𝑝′

𝐿1(ℝ𝑑)
(3.4)

⩾ −𝐶‖𝜌‖𝛼
𝐿1(ℝ𝑑)

,

where 𝐶 = 𝐶(𝑚, 𝑑, 𝜒), and 𝛼 = 𝑚(1 − 𝜃)𝑝′ = 1 +
2
𝑑
(𝑚−1)

2+ 2
𝑑
−𝑚

.

Note that in case of linear diffusion𝑚 = 1, that is, 1[𝜌] as functional, we can argue similarly
by using that

1[𝜌] ⩾ 2[𝜌] ⩾ −𝐶‖𝜌‖2𝐿1(ℝ𝑑).
Note that the first inequality holds because 1[𝜌] ⩽ 2[𝜌], since 𝑥 log 𝑥 ⩽ 𝑥2, for 𝑥 > 0.
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 11 of 49

Step 2:𝐻1-bound. The result follows from (3.4) by noting that𝑚[𝜌] < +∞ and choosing again
0 < 𝜀 < (𝑝(𝑚 − 1)∕2𝜒)

1∕𝑝.
Step 3: 𝐿𝑝-regularity. From the previous case, we have ∇𝜌 ∈ 𝐿2(ℝ𝑑), and thus we can apply

Gagliardo–Nirenberg inequality to obtain

‖𝜌‖𝐿𝑝(ℝ𝑑) ⩽ 𝐶‖∇𝜌‖𝜃𝐿2(ℝ𝑑)‖𝜌‖1−𝜃𝐿1(ℝ𝑑)
⩽ 𝐶 < ∞,

with 𝜃 = 2𝑑

𝑑+2

𝑝−1

𝑝
∈ [0, 1] and 𝑝 ∈ [1, 2∗] for 𝑑 = 1 and 𝑑 ⩾ 3. Note that for 𝑑 ⩾ 3 and 𝑝 = 2∗ we

have 𝜃 = 1. In the case 𝑑 = 2, we need to impose 𝜃 < 1, and 𝑝 ∈ [1, 2∗). □

In the critical exponent case, 𝑚𝑐 = 2 +
2

𝑑
, deriving energy bounds and induced regularity as

in Proposition 3.1 reveals the critical mass

𝜒𝑐 ∶=
𝑚𝑐 − 1

2𝐶𝐺𝑁
, (3.5)

where 𝐶𝐺𝑁 stands for the sharp constant from the Gagliardo–Nirenberg inequality, for 𝑚 = 𝑚𝑐
given by

‖𝜌‖𝑚𝑐
𝐿𝑚𝑐 (ℝ𝑑)

⩽ 𝐶𝐺𝑁‖∇𝜌‖2𝐿2(ℝ𝑑)‖𝜌‖2∕𝑑𝐿1(ℝ𝑑) (3.6)

Remark 3.1 (Criticalmass and the parameter𝜒.). The critical mass in (3.5) is obtained for the sharp
Gagliardo–Nirenberg constant, 𝐶𝐺𝑁 . This value is found in [49], extending to general dimension
[66]. Note that we refer to 𝜒𝑐 as the critical mass since we assume that all densities are probability
measures with unit mass. However, upon rescaling (1.1) using the change of variables

𝜏 = 𝑡∕𝜒
1

𝑚−2 and 𝜌̃ = 𝜌𝜒
1

𝑚−2 ,

Equation (1.1) becomes 𝜕𝜏𝜌̃ = −div(𝜌̃ ∇(Δ𝜌̃)) − Δ𝜌̃ 𝑚. Therefore, one can distinguish between
subcritical, critical and supercritical regimes, in terms of the usualmass ‖𝜌̃‖𝐿1(ℝ𝑑). More precisely,
by denoting𝑀 ∶= ‖𝜌̃‖𝐿1 , the critical mass is

𝑀𝑐 ∶=

(
𝑚𝑐 − 1

2𝐶𝐺𝑁

) 𝑑
2

.

We show that for 𝜒 ⩽ 𝜒𝑐 and 𝑚 = 𝑚𝑐 the free energy is bounded from below, which
covers Theorem 2.1, case (2).

Proposition 3.2. Let𝑚 = 𝑚𝑐,𝜒 ⩽ 𝜒𝑐, and assume 𝜌 ∈ 𝑎(ℝ𝑑),∇𝜌 ∈ 𝐿2(ℝ𝑑). The free energy (1.5)
satisfies the bound

𝑚𝑐[𝜌] ⩾ ‖∇𝜌‖2𝐿2(ℝ𝑑)(12 − 𝜒𝐶𝐺𝑁
𝑚𝑐 − 1

‖𝜌‖ 2𝑑
𝐿1(ℝ𝑑)

)
⩾ 0.

Moreover, if 𝜒 < 𝜒𝑐 and 𝑚𝑐[𝜌] < +∞, then

‖𝜌‖𝐿𝑝(ℝ𝑑), ‖∇𝜌‖𝐿2(ℝ𝑑) < 𝐶,
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12 of 49 CARRILLO et al.

where 𝐶 = 𝐶(𝑚, 𝑑, 𝜒) and 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2, or 𝑝 ∈ [1, 2∗) when 𝑑 = 2. Furthermore, for 𝜒 = 𝜒𝑐,
the optimisers of the Gagliardo–Nirenberg inequality (3.6) are the set of global minimisers of the
free energy.

Proof. From the Gagliardo–Nirenberg inequality (3.6), we can deduce that

𝑚𝑐[𝜌] = 1

2
‖∇𝜌‖2

𝐿2(ℝ𝑑)
−

𝜒

𝑚𝑐 − 1
‖𝜌‖𝑚𝑐

𝐿𝑚𝑐 (ℝ𝑑)

⩾ ‖∇𝜌‖2
𝐿2(ℝ𝑑)

(
1

2
−
𝜒𝐶𝐺𝑁
𝑚𝑐 − 1

‖𝜌‖ 2𝑑
𝐿1(ℝ𝑑)

)
.

In particular, since 𝜒 ⩽ 𝜒𝑐 and ‖𝜌‖𝐿1(ℝ𝑑) = 1, we obtain
𝑚𝑐[𝜌] ⩾ 0.

The last properties are simple consequences of the Gagliardo–Nirenberg inequality (3.6), the
definition of the free energy and 𝜒 < 𝜒𝑐. □

Summarising the previous two propositions, using the Gagliardo–Nirenberg inequality we
showed that the free energy𝑚𝑐[𝜌] is uniformly bounded frombelowwhen the exponent𝑚 is sub-
critical, 1 ⩽ 𝑚 < 𝑚𝑐, or when𝑚 = 𝑚𝑐 and we have subcritical or critical mass, 𝜒 ⩽ 𝜒𝑐. Moreover,
this induces further regularity in the subcritical exponent and critical exponent with subcritical
mass cases. In Section 4, we use this information to prove existence of weak solutions to (1.1).
In order to gain further intuitions on the remaining cases, 𝑚 = 𝑚𝑐 with 𝜒 ⩾ 𝜒𝑐 and 𝑚 > 𝑚𝑐,

we study energy minimisers distinguishing between the two cases.

3.1 Critical exponent case

First, we focus on the critical case given by 𝑚 = 𝑚𝑐 = 2 +
2

𝑑
, and study properties of the free

energy (1.5), following ideas from [10]. This highlights an interesting connection with Patlak–
Keller–Segel sytems [19], and more broadly with aggregation–diffusion equations, as mentioned
in the introduction.
A crucial observation concerns the homogeneity of the energy funcional 𝑚𝑐 : in the criti-

cal case, and for mass-preserving dilations, the aggregation and diffusion terms in the energy
functional (1.5) have the same homogeneity.

Lemma 3.2 (Scaling properties of the free energy). Assume 𝜌 ∈ 𝐿𝑚𝑐(ℝ𝑑) such that ∇𝜌 ∈ 𝐿2(ℝ𝑑).
Let 𝜌𝜆(𝑥) ∶= 𝜆𝑑𝜌(𝜆𝑥), for any 𝑥 ∈ ℝ𝑑, then

‖𝜌𝜆‖𝑚𝑐𝐿𝑚𝑐 (ℝ𝑑) = 𝜆𝑑+2‖𝜌‖𝑚𝑐𝐿𝑚𝑐 (ℝ𝑑), ‖∇𝜌𝜆‖2𝐿2(ℝ𝑑) = 𝜆𝑑+2‖∇𝜌‖2𝐿2(ℝ𝑑),
for all 𝜆 ∈ (0, +∞). In particular,

𝑚𝑐[𝜌𝜆] = 𝜆𝑑+2𝑚𝑐[𝜌].
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 13 of 49

Proof. We have

𝑚𝑐[𝜌𝜆] = 𝜆2𝑑

2 ∫ℝ𝑑 |∇𝜌(𝜆𝑥)|2 d𝑥 − 𝜒𝜆𝑑𝑚𝑐

𝑚𝑐 − 1 ∫ℝ𝑑 𝜌
𝑚𝑐 (𝜆𝑥) d𝑥

=
𝜆𝑑+2

2 ∫ℝ𝑑 |∇𝜌(𝑥)|2 d𝑥 − 𝜒𝜆𝑑(𝑚𝑐−1)

𝑚𝑐 − 1 ∫ℝ𝑑 𝜌
𝑚𝑐 (𝑥) d𝑥

= 𝜆𝑑+2𝑚𝑐[𝜌] ,
since 𝑑(𝑚𝑐 − 1) = 𝑑 + 2. □

Next, we study the infimum of the free energy 𝑚𝑐 . Let us define 𝜇𝜒 ∶= inf𝜌∈ 𝑚𝑐[𝜌], where
 = {𝜌 ∈ 𝑎(ℝ𝑑) ∩ 𝐿𝑚𝑐(ℝ𝑑) ∶ ∇𝜌 ∈ 𝐿2(ℝ𝑑)}.

The next result completes Theorem 2.1, case (2).

Proposition 3.3 (Infimum of the free energy).We have

𝜇𝜒 =

{
0 if 𝜒 ∈ (0, 𝜒𝑐] ,
−∞ if 𝜒 > 𝜒𝑐 .

Moreover, for 𝜌 ∈  ,

(𝜒𝑐 − 𝜒)‖∇𝜌‖2𝐿2(ℝ𝑑) ⩽ (𝑚𝑐 − 1)𝑚𝑐[𝜌]
𝐶𝐺𝑁

⩽ (𝜒𝑐 + 𝜒)‖∇𝜌‖2𝐿2(ℝ𝑑), (3.7)

where the critical mass 𝜒𝑐 is defined in (3.5) and 𝐶𝐺𝑁 is the sharp constant in the Gagliardo–
Nirenberg inequality (3.6). In particular, the infimum is not achieved for 𝜒 < 𝜒𝑐, and there exists
a minimiser in  for 𝜒 = 𝜒𝑐 .

Proof. Let 𝜌 ∈  . By Gagliardo–Nirenberg inequality (3.6),
𝑚𝑐[𝜌] ⩾ ‖∇𝜌‖2𝐿2(ℝ𝑑)(12 − 𝜒𝐶𝐺𝑁

𝑚𝑐 − 1
‖𝜌‖2∕𝑑

𝐿1(ℝ𝑑)

)
= ‖∇𝜌‖2

𝐿2(ℝ𝑑)
(𝜒𝑐 − 𝜒)

𝐶𝐺𝑁
𝑚𝑐 − 1

,

and also

𝑚𝑐[𝜌] ⩽ 1

2
‖∇𝜌‖2

𝐿2(ℝ𝑑)
+

𝜒

𝑚𝑐 − 1
‖𝜌‖𝑚𝑐

𝐿𝑚𝑐 (ℝ𝑑)

⩽ ‖∇𝜌‖2
𝐿2(ℝ𝑑)

(𝜒𝑐 + 𝜒)
𝐶𝐺𝑁
𝑚𝑐 − 1

,

which gives (3.7).
Case I: 𝜒 ⩽ 𝜒𝑐. We first show 𝜇𝜒 = 0. From (3.7) we see that 𝜇𝜒 ⩾ 0. Let 𝑢𝜀(𝑥) = 𝜀𝑑𝑢(𝜀𝑥), where

𝑢 ∈  . Then, 𝑢𝜀 ∈  and by Lemma 3.2, we have ‖∇𝑢𝜀‖𝐿2(ℝ𝑑) = 𝑂(𝜀𝑑∕2+1). Hence, by sending
𝜀 ↓ 0 in (3.7) we obtain 𝜇𝜒 = 0.
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14 of 49 CARRILLO et al.

Next note that if 𝜒 < 𝜒𝑐 the inequality in (3.7) is strict and the infimum cannot be achieved.
When the mass is critical, 𝜒 = 𝜒𝑐, we exploit [49], where equality in the Gagliardo–Nirenberg
inequality is proven for a nonnegative radial symmetric function that can be chosen in  . In
particular, we have a minimiser for 𝑚𝑐 . Moreover, all minimisers coincide with scalings of this
fixed profile, that is, the set of global minimisers is given by the optimisers of the Gagliardo–
Nirenberg inequality (3.6).
Case II:𝜒 > 𝜒𝑐. The arguments presentedhere are inspired by [65]. Fix 𝛿 ∈ (𝜒𝑐∕𝜒, 1). Due to the

Gagliardo–Nirenberg inequality, there exists a nonzero function 𝜌∗ ∈ 𝐿𝑚𝑐(ℝ𝑑)with∇𝜌∗ ∈ 𝐿2(ℝ𝑑)
such that

𝐶𝐺𝑁𝛿 ⩽
‖𝜌∗‖𝑚𝑐

𝐿𝑚𝑐 (ℝ𝑑)‖∇𝜌∗‖2
𝐿2(ℝ𝑑)

‖𝜌∗‖2∕𝑑
𝐿1(ℝ𝑑)

⩽ 𝐶𝐺𝑁 ; (3.8)

for instance 𝜌∗ could be chosen as the optimiser of the Gagliardo–Nirenberg inequality (3.6) for
the critical exponent𝑚𝑐. Now let 𝜆 > 0, and consider the function 𝜌𝜆(𝑥) = 𝜆𝑑𝜌∗

(
𝜆‖𝜌∗‖1∕𝑑

𝐿1(ℝ𝑑)
𝑥
)
.

It is easy to check 𝜌𝜆 ∈  . From Lemma 3.2, (3.8) and the definition of the critical mass (3.5), we
obtain

𝑚𝑐[𝜌𝜆] = 𝜆𝑑+2‖𝜌∗‖𝐿1(ℝ𝑑)
⎡⎢⎢⎣
‖∇𝜌∗‖2

𝐿2(ℝ𝑑)
‖𝜌∗‖2∕𝑑

𝐿1(ℝ𝑑)

2
−
𝜒‖𝜌∗‖𝑚𝑐

𝐿𝑚𝑐 (ℝ𝑑)

𝑚𝑐 − 1

⎤⎥⎥⎦
=
𝜆𝑑+2

2
‖𝜌∗‖2∕𝑑−1

𝐿1(ℝ𝑑)
‖∇𝜌∗‖2

𝐿2(ℝ𝑑)

⎡⎢⎢⎣1 −
2𝜒

𝑚𝑐 − 1

‖𝜌∗‖𝑚𝑐
𝐿𝑚𝑐 (ℝ𝑑)‖𝜌∗‖2∕𝑑

𝐿1(ℝ𝑑)
‖∇𝜌∗‖2

𝐿2(ℝ𝑑)

⎤⎥⎥⎦
⩽
𝜆𝑑+2

2
‖𝜌∗‖2∕𝑑−1

𝐿1(ℝ𝑑)
‖∇𝜌∗‖2

𝐿2(ℝ𝑑)

(
1 −

𝜒

𝜒𝑐
𝛿

)
.

Owing to the choice of 𝛿 and taking the limit 𝜆 → +∞ we obtain 𝜇𝜒 = −∞. □

3.1.1 Self-similarity

In the critical case𝑚 = 𝑚𝑐 = 2 +
2

𝑑
we may assume the self-similar ansatz

𝜌(𝑥, 𝑡) = 𝑡−𝑎𝑢(𝑥𝑡−𝑏) . (3.9)

Mass conservation gives the usual relation between the exponents 𝑎 = 𝑏𝑑. Moreover, assuming
(3.9) is a solution of (1.1), we obtain

𝑎𝑢 + 𝑏∇𝑢(𝑧) ⋅ 𝑧 = div(𝑢∇(Δ𝑢(𝑧))) + 𝜒Δ𝑢(𝑧)𝑚𝑐

with

𝑏 =
1

𝑑 + 4
, 𝑎 = 𝑏𝑑.
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 15 of 49

In particular, we obtain the equation

div(𝑢∇(Δ𝑢(𝑧))) + 𝜒Δ𝑢(𝑧)𝑚𝑐 − 𝑏 div(𝑧𝑢) = 0,

which is the equation for steady states of the corresponding evolution problem

𝜕𝑡𝑢 = −div(𝑢∇(Δ𝑢(𝑧))) − 𝜒Δ𝑢(𝑧)𝑚𝑐 + 𝑏 div(𝑧𝑢). (3.10)

The above evolution PDE is (at least formally) a 2-Wasserstein gradient flow of the energy

[𝑢] = 𝑚𝑐[𝑢] + 𝑏

2 ∫ |𝑧|2𝑢(𝑧) d𝑧.
For this energy, one can prove existence of minimisers using the direct method of calculus of
variations. The main advantage with respect to the minimisation of 𝑚 is the presence of the
additional term, fundamental for the compactness of the minimising sequence, as we will see
also in Proposition 4.1. As the proof of the latter proposition applies to a wider range of exponents,
including𝑚 = 𝑚𝑐, we postpone this proof to Section 4, below that of Proposition 4.1.

Proposition 3.4 (Existence of minimisers for ). Given 𝜒 < 𝜒𝑐, the functional  ∶ 𝑎(ℝ𝑑) →
[−∞,+∞] admits minimisers in the set {𝑢 ∈ 𝑎(ℝ𝑑) ∶ ∇𝑢 ∈ 𝐿2(ℝ𝑑), m2(𝑢) < ∞}.

A natural question to ask is whether one can characterise energy minimisers, in the spirit of
[10, 17, 18], and check if these are steady states of Equation (3.10). In turn, one would be able to
characterise self-similar profiles for (1.1).
As mentioned in Remark 4.4, Equation (3.10) admits weak solutions arguing as in Section 4.

Studying the long-time behaviour of solutions to (3.10) is also another interesting openproblemwe
leave to future investigation, as well as a thorough study of energy minimisers for the subcritical
case𝑚 < 𝑚𝑐.

3.2 Supercritical exponent case

We study the infimum of the free energy 𝑚 when 𝑚 > 𝑚𝑐, that is, it is supercritical. As before,
we define the set

 = {𝜌 ∈ 𝑎(ℝ𝑑) ∩ 𝐿𝑚(ℝ𝑑) ∶ ∇𝜌 ∈ 𝐿2(ℝ𝑑)},
andwe prove that the free energy is not bounded frombelow. This is, indeed, Theorem2.1, case (3).

Proposition 3.5 (Infimum of the free energy). Assume𝑚 > 𝑚𝑐 . Then

inf
𝜌∈ 𝑚[𝜌] = −∞.

Proof. Given 𝜌 ∈  , we define 𝜌𝜆(𝑥) ∶= 𝜆𝑑𝜌(𝜆𝑥), for any 𝑥 ∈ ℝ𝑑. Note that 𝜌𝜆 ∈  . Then, we
have

𝑚[𝜌𝜆] = 𝜆𝑑+2

2
‖∇𝜌‖2

𝐿2(ℝ𝑑)
−
𝜒𝜆𝑑(𝑚−1)

𝑚 − 1
‖𝜌‖𝑚

𝐿𝑚(ℝ𝑑)
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16 of 49 CARRILLO et al.

= 𝜆𝑑+2
[
𝑚[𝜌] − 𝜒𝜆𝑑(𝑚−𝑚𝑐) − 1

𝑚 − 1
‖𝜌‖𝑚

𝐿𝑚(ℝ𝑑)

]
.

Let us note that for any 𝜆 big enough

𝑚[𝜌] − 𝜒𝜆𝑑(𝑚−𝑚𝑐) − 1

𝑚 − 1
‖𝜌‖𝑚

𝐿𝑚(ℝ𝑑)
< 0 .

Therefore, by letting 𝜆 → +∞, 𝑚[𝜌𝜆] → −∞, obtaining the desired result. □

Finally, we briefly discuss on finite-time blow-up of classical solutions for the supercritical
regimes. This shows that our main global in time existence results in Theorem 2.2 for (1.1) are
sharp. Our arguments are based on the computation for the evolution of the second-ordermoment
m2(𝜌) as classically done in Keller–Segel models [10, 11, 17, 32, 49]. We assume the solutions are
classical solutions such that the following computations using integration by parts are allowed.
More precisely, one can find that

d

d𝑡
m2(𝜌) = 2∫ℝ𝑑 𝑥 ⋅ (𝜌∇(Δ𝜌)) + 𝜒∇𝜌𝑚) d𝑥

= −2𝑑 ∫ℝ𝑑 𝜌Δ𝜌 d𝑥 − 2∫ℝ𝑑(𝑥 ⋅∇𝜌)Δ𝜌 d𝑥 − 2𝑑𝜒 ∫ℝ𝑑 𝜌
𝑚 d𝑥

= (𝑑 + 2)∫ℝ𝑑 |∇𝜌|2 d𝑥 − 2𝑑𝜒 ∫ℝ𝑑 𝜌
𝑚 d𝑥

= 2(𝑑 + 2)

[
𝑚[𝜌] − 𝜒

(
1

𝑚𝑐 − 1
−

1

𝑚 − 1

)‖𝜌‖𝑚
𝐿𝑚(ℝ𝑑)

]
, (3.11)

where we used that

∫ℝ𝑑(𝑥 ⋅∇𝜌)Δ𝜌 d𝑥 = −∫ℝ𝑑 ∇(𝑥 ⋅∇𝜌) ⋅∇𝜌 d𝑥

= −∫ℝ𝑑 |∇𝜌|2 d𝑥 − ∫ℝ𝑑 𝑥 ⋅ 𝐷2𝜌∇𝜌 d𝑥

= −∫ℝ𝑑 |∇𝜌|2 d𝑥 − 1

2 ∫ℝ𝑑 𝑥 ⋅∇|∇𝜌|2 d𝑥
=

(
𝑑

2
− 1

)
∫ℝ𝑑 |∇𝜌|2 d𝑥 .

We observe that this computation could be made rigorous for the solutions constructed in Theo-
rem 2.2 by using the flow interchange technique with a suitable auxiliary flow [52], in the same
spirit as in Proposition 4.2. A short-time existence of solutions in the super critical exponent is
expected as in [26] but it is not a trivial question for the variational scheme below.
Note that for the critical case𝑚 = 𝑚𝑐, (3.11) reduces to

d

d𝑡
m2(𝜌) = 2(𝑑 + 2)𝑚𝑐[𝜌] .

In particular, by using Proposition 3.3we obtain that the secondmoment is non-decreasing in time
for the subcritical and critical mass regimes, 𝜒 ⩽ 𝜒𝑐. In the supercritical mass regime, by using
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 17 of 49

the above equation and that free energy 𝑚𝑐[𝜌] is unbounded from below, see Proposition 3.3,
the authors of [49] are able to show that any solution to (1.1) with an initial datum 𝜌0 satisfying[𝜌0] < 0, has a finite-time blow-up in the 𝐿𝑚𝑐 -norm.
A similar argument also works in the supercritical exponent case. If𝑚 > 𝑚𝑐 then

d

d𝑡
m2(𝜌) ⩽ 2(𝑑 + 2)𝑚[𝜌] ⩽ 2(𝑑 + 2)𝑚[𝜌0] < 0 ,

for an initial datumwith 𝑚[𝜌0] < 0, which can be chosen by Proposition 3.5. If the initial second
moment is finite, then there exists some time 𝑡∗ > 0 such thatm2(𝜌(𝑡

∗)) = 0, implying that such
solutions can only exist locally in time.
Our main results are also summarised in Figure 1, where we plot numerical solutions to (1.1)

in one spatial dimension and for different values of the exponent 𝑚 and the mass parameter 𝜒.
These are based on the finite-volume scheme presented in [2]. In particular, we observe that for
subcritical exponent, solutions evolve towards a compactly supported steady state while the free
energy stays bounded from below. For critical exponent with subcritical mass, we also note that
the free energy is bounded by zero from below, but in this case solutions tend to the self-similar
profile mentioned in the previous sections. By plotting the solution in self-similar variables, this
scaling is numerically verified. Finally, we observe finite-time blow-up for critical exponent with
supercritical mass, and for supercritical exponent. In both cases, the free energy is unbounded
from below.

4 EXISTENCE OFWEAK SOLUTIONS VIA THE JKO SCHEME

Once we understood the properties of the free energy (1.5) we study existence of weak solutions
of (1.1). The variational structure of Equation (1.1) allows to construct a candidate approximating
solution by means of the so-called JKO scheme or minimising movement, cf. [1, 43]. For a fixed
𝜏 > 0, we define the following sequence recursively:

𝜌0𝜏 ∶= 𝜌0,

𝜌𝑘+1𝜏 ∈ argmin
𝜌∈(ℝ𝑑)

{2
2
(𝜌, 𝜌𝑘𝜏 )

2𝜏
+ 𝑚[𝜌]

}
, given 𝜌𝑘𝜏 , 𝑘 ⩾ 0.

(4.1)

First, we prove the above scheme is well defined, which is not immediate due to the negative
component in the energy functional, or destabilising term. Let us fix 𝜌 ∈ 𝑎

2
(ℝ𝑑) and define the

functional

𝑚 ∶ (ℝ𝑑)⟶ ℝ

𝜌 ↦
2
2
(𝜌, 𝜌)

2𝜏
+ 𝑚[𝜌].

Proposition 4.1. Let 𝜌 ∈ 𝑎
2
(ℝ𝑑) and 1 ⩽ 𝑚 < 2 + 2

𝑑
or𝑚 = 2 + 2

𝑑
with subcritical mass, that is,

𝜒 < 𝜒𝑐. The functional 𝑚 admits minimisers in the set {𝜌 ∈ 𝑎(ℝ𝑑) ∶ ∇𝜌 ∈ 𝐿2(ℝ𝑑)}. Moreover,
𝜌 ∈ 𝐿𝑝(ℝ𝑑) for any 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2, and for any 𝑝 ∈ [1, 2∗) when 𝑑 = 2.
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18 of 49 CARRILLO et al.

(a)

(b)

(c)

(d)

F IGURE 1 Numerical solutions to (1.1) in one spatial dimension for different values of𝑚 and 𝜒, and decay
of the free energy 𝑚[𝜌] as a function of time.
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 19 of 49

Existence of minimisers is based on the direct method of calculus of variations, as we prove
below.

Remark 4.1. Note that2
2
(𝜌, 𝜌) and ‖∇𝜌‖2

𝐿2(ℝ𝑑)
are lower semicontinuous with respect to weak

convergence in (ℝ𝑑) and 𝐿2(ℝ𝑑), respectively. However, the negative terms in the free energy,
−

1

𝑚 − 1
‖𝜌‖𝑚

𝐿𝑚(ℝ𝑑)
and − ∫ℝ𝑑 𝜌 log 𝜌 𝑑𝑥,

are both upper (and not lower) semicontinuous with respect to the weak convergence in 𝐿𝑚(ℝ𝑑).
In particular, our functional𝑚 cannot be weakly lower semicontinuous.

Proof Proposition 4.1. We split the proof into three parts.
Step 1: Boundedness from below andminimising sequence. Taking into account the definition

of the free energy functional (1.5), we look for minimisers 𝜌 ∈ 𝑎(ℝ𝑑) such that ∇𝜌 ∈ 𝐿2(ℝ𝑑),
otherwise the functional is infinite. Due to (3.1) we have the bound from below

𝑚[𝜌] ⩾ 𝐶, (4.2)

which implies 𝑚[𝜌] ⩾ 𝐶. Boundedness from below ensures we can consider a minimising
sequence, 𝜌𝑛, for which we also know𝑚 ⩽ 𝐶. Since the functional 𝑚 is bounded from below,
we obtain the bound for the second-order moment

m2(𝜌𝑛) ⩽ 22
2 (𝜌𝑛, 𝜌) + 2m2(𝜌) = 4𝜏𝑚[𝜌𝑛] − 4𝜏𝑚[𝜌𝑛] + 2m2(𝜌)

⩽ 𝐶𝑇
(
1 + m2(𝜌)

)
,

(4.3)

for a different constant 𝐶.
Step 2: Lower semicontinuity and compactness. First we comment on the lower semicontinuity

of𝑚 with respect to a suitable convergence, that is,

lim inf
𝑛→∞

𝑚[𝜌𝑛] ⩾ 𝑚[𝜌].

FromRemark 4.1 we inferwe cannot have lower semicontinuitywith respect toweak convergence
in all terms, but we have it with respect to the convergence

∇𝜌𝑛 ⇀ ∇𝜌 in 𝐿2(ℝ𝑑),{
𝜌𝑛 → 𝜌 in 𝐿𝑚(ℝ𝑑) if 1 < 𝑚 ⩽ 2 + 2

𝑑
,

𝜌𝑛 log 𝜌𝑛 → 𝜌 log 𝜌 in 𝐿1(ℝ𝑑) if𝑚 = 1.

Let us note that (3.2) combined with (4.2) implies that 𝜌𝑛 and ∇𝜌𝑛 are uniformly bounded on
𝐿𝑚(ℝ𝑑) and 𝐿2(ℝ𝑑), respectively, as 𝜌𝑛 is a minimising sequence.
Step 2a: Strong 𝐿𝑚 convergence of 𝜌𝑛. If 1 < 𝑚 < 2 + 2

𝑑
or𝑚 = 2 + 2

𝑑
with 𝜒 < 𝜒𝑐, since

‖𝜌𝑛‖𝐿𝑚(ℝ𝑑) ⩽ 𝐶, (4.4)

by Banach–Alaoglu theorem, up to pass to a subsequence,

𝜌𝑛 ⇀ 𝜌 weakly in 𝐿𝑚(ℝ𝑑). (4.5)
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20 of 49 CARRILLO et al.

Taking into account (4.2)–(4.4), we can restrict to the set

𝑚 ∶=
{
𝑓 ∈ 𝑎(ℝ𝑑) ∶ m2(𝑓), ‖∇𝑓‖𝐿2(ℝ𝑑), |𝑚[𝑓]| ⩽ 𝐶}.

Furthermore, from (3.3), if 𝑓 ∈ 𝑚, then

‖𝑓‖𝐿𝑝(ℝ𝑑) ⩽ 𝐶, (4.6)

for all 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2, and for any 𝑝 ∈ [1, 2∗) when 𝑑 = 2;.
Next, we prove that 𝑚 is relatively compact in 𝐿𝑚(ℝ𝑑) by means of Kolmogorov–Riesz–

Fréchet theorem [12, Corollary 4.27]. In particular, we first show the uniform continuity estimate:‖𝑓(⋅ + ℎ) − 𝑓(⋅)‖𝐿𝑚(ℝ𝑑) → 0 as |ℎ|→ 0+. We distinguish two cases:𝑚 = 2 and𝑚 ≠ 2.
Case I:𝑚 = 2. Let us take

∫ℝ𝑑 |𝑓(𝑥 + ℎ) − 𝑓(𝑥)|2d𝑥 = ∫ℝ𝑑
|||||∫

1

0

d

d𝑠
(𝑓(𝑥 + 𝑠ℎ)) d𝑠

|||||
2

d𝑥

= |ℎ|2 ∫ℝ𝑑
|||||∫

1

0
∇𝑓(𝑥 + 𝑠ℎ) d𝑠

|||||
2

d𝑥

⩽ |ℎ|2 ∫ℝ𝑑 ∫
1

0

||∇𝑓(𝑥 + 𝑠ℎ)||2 d𝑠 d𝑥 → 0,

since ‖∇𝑓‖𝐿2(ℝ𝑑) ⩽ 𝐶 for every 𝑓 ∈ 𝑚.
Case II:𝑚 ≠ 2. We use 𝐿𝑝 interpolation and apply Case I afterwards. If 1 < 𝑚 < 2,

‖𝑓(⋅ + ℎ) − 𝑓(⋅)‖𝐿𝑚(ℝ𝑑) ⩽ ‖𝑓(⋅ + ℎ) − 𝑓(⋅)‖ 2−𝑚𝑚𝐿1(ℝ𝑑)‖𝑓(⋅ + ℎ) − 𝑓(⋅)‖ 2𝑚−2𝑚

𝐿2(ℝ𝑑)

⩽
(
2‖𝑓‖𝐿1(ℝ𝑑)) 2−𝑚𝑚 ‖𝑓(⋅ + ℎ) − 𝑓(⋅)‖ 2𝑚−2𝑚

𝐿2(ℝ𝑑)
→ 0.

If 2 < 𝑚 < 2 + 2

𝑑
or 𝑚 = 2 + 2

𝑑
with subcritical mass, by using a different 𝐿𝑝 interpolation we

obtain

‖𝑓(⋅ + ℎ) − 𝑓(⋅)‖𝐿𝑚(ℝ𝑑) ⩽ ‖𝑓(⋅ + ℎ) − 𝑓(⋅)‖𝑚−1𝑚𝐿2(𝑚−1)(ℝ𝑑)‖𝑓(⋅ + ℎ) − 𝑓(⋅)‖ 1
𝑚

𝐿2(ℝ𝑑)

⩽
(
2‖𝑓‖𝐿2(𝑚−1)(ℝ𝑑))𝑚−1𝑚 ‖𝑓(⋅ + ℎ) − 𝑓(⋅)‖ 1

𝑚

𝐿2(ℝ𝑑)
→ 0,

and the convergence follows from (3.3) given that 2(𝑚 − 1) < 2∗.
In order to prove uniform integrability at infinity we first use Holder’s inequality to show that

∫ℝ𝑑∖𝐵𝑅 𝑓(𝑥)
𝑚 d𝑥 ⩽

1

𝑅2𝛿

(
∫ℝ𝑑 |𝑥|2𝑓(𝑥) d𝑥

)𝛿(
∫ℝ𝑑 𝑓(𝑥)

𝑚−𝛿
1−𝛿 d𝑥

)1−𝛿
.

Now 𝛿 ∈ (0, 1) can be chosen so that the exponent 𝑝 ∶= 𝑚−𝛿

1−𝛿
satisfies 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2, or 𝑝 ∈

[1, 2∗) when 𝑑 = 2. Hence, by (3.3), ‖𝑓‖𝐿𝑝(ℝ𝑑) is uniformly bounded. In particular, by taking the
𝑅 → +∞ limit, and using that 𝑓 ∈ 𝑚 has uniformly bounded second moments we obtain the
uniform integrability at infinity.
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 21 of 49

Then,𝑚 is relatively compact in 𝐿𝑚(ℝ𝑑) and combining it with (4.5) we obtain

𝜌𝑛 → 𝜌 in 𝐿𝑚(ℝ𝑑). (4.7)

If𝑚 = 1, since 1[𝜌] ⩾ 2[𝜌] we have that1 ⊆ 2. From here, we recover (4.6), and (4.7) for
𝑚 = 2. We show 𝜌𝑛 log 𝜌𝑛 → 𝜌 log 𝜌 in 𝐿1(ℝ𝑑) via an extended version of Lebesgue’s dominated
convergence theorem [57, Chapter 4, Theorem 17]. Note that strong convergence in 𝐿2(ℝ𝑑) implies
that, up to a subsequence,

𝜌𝑛 log 𝜌𝑛 → 𝜌 log 𝜌 a.e. in 𝑥 ∈ ℝ𝑑.

Furthermore, it is easy to check the majorant |𝜌𝑛(𝑥) log 𝜌𝑛(𝑥)| ⩽ 𝜌2𝑛(𝑥) + 𝜌 12𝑛 (𝑥), for any 𝑥 ∈ ℝ𝑑.
We claim that 𝜌2𝑛 + 𝜌

1
2
𝑛 → 𝜌2 + 𝜌

1
2 strongly in 𝐿1(ℝ𝑑). Since 1 ⊆ 2 it is enough to show 𝜌

1
2
𝑛 →

𝜌
1
2 strongly in 𝐿1(ℝ𝑑). Applying Jensen’s inequality for concave functions we have 𝜌

1
2
𝑛 ∈ 𝐿

1(ℝ𝑑),
while continuity of the square root function ensures

𝜌
1
2
𝑛 (𝑥) → 𝜌

1
2 (𝑥) a.e. in 𝑥 ∈ ℝ𝑑.

By applying Fatou’s lemma,

lim inf
𝑛→∞ ∫ℝ𝑑 𝜌

1
2
𝑛 𝑑𝑥 ⩾ ∫ℝ𝑑 𝜌

1
2 d𝑥 , (4.8)

and concavity implies,

lim sup
𝑛→∞ ∫ℝ𝑑 𝜌

1
2
𝑛 d𝑥 ⩽ ∫ℝ𝑑 𝜌

1
2 d𝑥. (4.9)

Combining (4.8) and (4.9) we infer

lim
𝑛→∞∫ℝ𝑑 𝜌

1
2
𝑛 𝑑𝑥 = ∫ℝ𝑑 𝜌

1
2 d𝑥.

Applying the extended dominated convergence theorem we obtain

𝜌𝑛 log 𝜌𝑛 → 𝜌 log 𝜌 in 𝐿1(ℝ𝑑).

Step 2b: Weak 𝐿2 convergence of ∇𝜌𝑛. Given that ∇𝜌 is bounded in 𝐿2(ℝ𝑑), from Banach–
Alaoglu theorem we obtain that up to a subsequence,

∇𝜌𝑛 ⇀ ∇𝜌 weakly in 𝐿2(ℝ𝑑).

Note that the limit is ∇𝜌, which can be checked by testing ∇𝜌 against a smooth and compactly
supported test function, and using the convergence 𝜌𝑛 → 𝜌 in 𝐿𝑚(ℝ𝑑) that we proved in the
previous step.
Step 3: Existence of minimisers. Due to the Weierstrass criterion for the existence of

minimisers, cf., for example, [58, Box 1.1],𝑚 has at least one minimiser in𝑚. □
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22 of 49 CARRILLO et al.

As mentioned in Section 3.1.1, the proof of Proposition 3.4 can be obtained by adapting the
previous one to the functional  ∶ 𝑎(ℝ𝑑) → ℝ given by

[𝑢] = 𝑚𝑐[𝑢] + 𝑏

2 ∫ |𝑧|2𝑢(𝑧) d𝑧.
Proof of Proposition 3.4. Boundedness from below follows from Gagliardo–Nirenberg inequality
and nonnegativity of the additional term in [𝑢], as noted in Proposition 3.2. For a minimis-
ing sequence {𝑢𝑛}𝑛∈ℕ, since 𝜒 < 𝜒𝑐 we derive the following bounds, again as a consequence of
Gagliardo–Nirenberg, cf. Proposition 3.2:

‖𝑢𝑛‖𝐿𝑝(ℝ𝑑) ⩽ 𝐶, ‖∇𝑢𝑛‖𝐿2(ℝ𝑑) ⩽ 𝐶, m2(𝑢𝑛) ⩽ 𝐶,

for any 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2, and for any 𝑝 ∈ [1, 2∗) when 𝑑 = 2; the constant 𝐶 = 𝐶(𝑚𝑐, 𝑝, 𝑑, 𝜒) >
0. Kolmogorov–Riesz–Fréchet theorem provides relatively compactness in 𝐿𝑚𝑐(ℝ𝑑) for {𝑓 ∈
𝑎(ℝ𝑑) ∶ m2(𝑓), ‖∇𝑓‖𝐿2(ℝ𝑑), |[𝜌]| ⩽ 𝐶}, arguing as in Proposition 4.1. For the sake of complete-
ness, we point out the additional term is lower semicontinuous with respect to the weak-𝐿2
convergence by applying a cut-off and monotone convergence Theorem — choosing 𝑝 = 2 we
inferweak-𝐿2 convergence of 𝑢𝑛 from the above uniformbounds. Proceeding as in Proposition 4.1,
and for 𝜒 < 𝜒𝑐, we can show existence of minimisers in {𝑢 ∈ 𝑎(ℝ𝑑) ∶ ∇𝑢 ∈ 𝐿2(ℝ𝑑),m2(𝑢) <

+∞}. □

Proposition 4.1 guarantees the sequence is well defined, as we can solve theminimisation prob-
lem in (4.1). Next, we set up the approximating solution to (1.1). Let𝑇 > 0, and consider𝑁 ∶=

[
𝑇

𝜏

]
.

We define the curve 𝜌𝜏 ∶ [0, 𝑇] → (ℝ𝑑) as the piecewise constant interpolation
𝜌𝜏(𝑡) ∶= 𝜌

𝑘
𝜏 , 𝑡 ∈ ((𝑘 − 1)𝜏, 𝑘𝜏], (4.10)

where 𝜌𝑘𝜏 is defined in (4.1). We can prove convergence of this piecewise interpolation to a
continuous curve with respect to the 2-Wasserstein distance.

Lemma 4.1 (Narrow convergence and discrete uniform estimates). Let 𝜌0 ∈ 𝑎
2
(ℝ𝑑) such that

𝑚[𝜌0] < +∞ and 1 ⩽ 𝑚 < 2 + 2

𝑑
or𝑚 = 2 + 2

𝑑
with subcritical mass𝜒 < 𝜒𝑐 . There exists an abso-

lutely continuous curve 𝜌̃ ∶ [0, 𝑇] → 2(ℝ𝑑) such that, up to a subsequence,𝜌𝜏(𝑡)narrowly converges
to 𝜌̃(𝑡), uniformly in 𝑡 ∈ [0, 𝑇].
Moreover, we obtain the following discrete uniform bounds:

sup
𝑘
‖∇𝜌𝑘𝜏‖𝐿2(ℝ𝑑) ⩽ 𝐶1(𝑚[𝜌0] + ‖𝜌0‖𝛼𝐿1(ℝ𝑑))1∕2 < +∞; (4.11)

sup
𝑘
‖𝜌𝑘𝜏‖𝐿𝑝(ℝ𝑑) ⩽ 𝐶2 < +∞; (4.12)

m2(𝜌
𝑘
𝜏 ) ⩽ 2m2(𝜌0) + 4𝑇(𝑚[𝜌0] + 𝐶), (4.13)

for constants 𝐶1 = 𝐶1(𝑚, 𝑑, 𝜒) > 0 and 𝐶2 = 𝐶2(𝑚, 𝑝, 𝑑, 𝜌0, 𝜒) > 0, for any 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2 and
any 𝑝 ∈ [1, 2∗) when 𝑑 = 2.
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 23 of 49

Proof. By construction of the sequence we have

𝑚[𝜌𝑘𝜏 ] ⩽
2
2
(𝜌𝑘𝜏 , 𝜌

𝑘−1
𝜏 )

2𝜏
+ 𝑚[𝜌𝑘𝜏 ] ⩽ 𝑚[𝜌𝑘−1𝜏 ]. (4.14)

In particular, this gives

sup
𝑘

𝑚[𝜌𝑘𝜏 ] ⩽ 𝑚[𝜌0] < +∞,

which together with (3.2) and (3.3) implies that ‖∇𝜌𝑘𝜏‖𝐿2(ℝ𝑑) and ‖𝜌𝑘𝜏‖𝐿𝑝(ℝ𝑑) are uniformly
bounded in 𝑘 and 𝜏 for 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2, or 𝑝 ∈ [1, 2∗) when 𝑑 = 2. Hence we obtain (4.11) and
(4.12).
Next, by summing up over 𝑘 in (4.14) and using that the free energy is bounded from below,

(3.1), we deduce

𝑗∑
𝑘=𝑖+1

2
2
(𝜌𝑘𝜏 , 𝜌

𝑘−1
𝜏 )

2𝜏
⩽ 𝑚[𝜌𝑖𝜏] − 𝑚[𝜌𝑗𝜏] ⩽ 𝑚[𝜌0] + 𝐶. (4.15)

Therefore the 2-Wasserstein distance between 𝜌0 and 𝜌𝜏(𝑡) is uniformly bounded. Indeed, for 𝑡 ∈
((𝑗 − 1)𝜏, 𝑗𝜏],

2
2 (𝜌0, 𝜌𝜏(𝑡)) ⩽ 𝑗

𝑗∑
𝑘=1

2
2 (𝜌

𝑘
𝜏 , 𝜌

𝑘−1
𝜏 ) ⩽ 2𝑗𝜏(𝑚[𝜌0] + 𝐶) ⩽ 2𝑇(𝑚[𝜌0] + 𝐶).

Furthermore, we obtain second-ordermoments are uniformly bounded on compact time intervals
[0, 𝑇] since

m2(𝜌𝜏(𝑡)) ⩽ 2m2(𝜌0) + 22
2 (𝜌0, 𝜌𝜏(𝑡)) ⩽ 2m2(𝜌0) + 4𝑇(𝑚[𝜌0] + 𝐶).

Let us now prove equi-continuity. Consider 0 ⩽ 𝑠 < 𝑡 such that 𝑠 ∈ ((𝑖 − 1)𝜏, 𝑖𝜏] and 𝑡 ∈ ((𝑗 −
1)𝜏, 𝑗𝜏]. Using Cauchy–Schwarz inequality and (4.15) we have

2(𝜌𝜏(𝑠), 𝜌𝜏(𝑡)) ⩽

𝑗∑
𝑘=𝑖+1

2(𝜌
𝑘
𝜏 , 𝜌

𝑘−1
𝜏 )

⩽

(
𝑗∑

𝑘=𝑖+1

2
2 (𝜌

𝑘
𝜏 , 𝜌

𝑘−1
𝜏 )

) 1
2 |𝑗 − 𝑖| 12

⩽ (2(𝑚[𝜌0] + 𝐶)) 12
(√|𝑡 − 𝑠| +√𝜏).

(4.16)

Thus, 𝜌𝜏 is
1

2
-Hölder equi-continuous up to a negligible error of order

√
𝜏. Therefore, by a refined

version of the Ascoli–Arzelà Theorem [1, Proposition 3.3.1], we obtain that 𝜌𝜏 admits a subse-
quence narrowly converging to a limit 𝜌̃ as 𝜏 → 0+, uniformly on [0, 𝑇]. Moreover, using the
uniform bound (4.13) and that | ⋅ |2 is lower semicontinuous and bounded from below, we obtain
that the limiting curve 𝜌̃ has bounded second-order moments,

m2(𝜌̃(𝑡)) ⩽ lim inf
𝜏↓0

m2(𝜌𝜏(𝑡)), ∀𝑡 ∈ [0, 𝑇]. □

The bounds (4.12) and (4.11) imply weak convergence of the interpolation 𝜌𝜏 to a probability
density 𝜌̃ with regularity provided below.
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24 of 49 CARRILLO et al.

Proposition 4.2 (Weak convergence). Let 𝜌0 ∈ 𝑎
2
(ℝ𝑑) such that 𝑚[𝜌0] < +∞ and 1 ⩽ 𝑚 < 2 +

2

𝑑
or 𝑚 = 2 + 2

𝑑
with subcritical mass 𝜒 < 𝜒𝑐. The piecewise interpolation 𝜌𝜏 in (4.10) is such that

𝜌𝜏 ∈ 𝐿
∞([0, 𝑇]; 𝐿𝑝(ℝ𝑑)) ∩ 𝐿∞([0, 𝑇];𝐻1(ℝ𝑑)), for any 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2 and 𝑝 ∈ [1, 2∗) when 𝑑 =

2. In particular, the limit 𝜌̃ belongs to 𝐿∞([0, 𝑇]; 𝐿𝑝(ℝ𝑑)) ∩ 𝐿∞([0, 𝑇];𝐻1(ℝ𝑑)) and

𝜌𝜏 ⇀ 𝜌̃ in 𝐿2([0, 𝑇];𝐻1(ℝ𝑑)).

Proof. From (4.12) in Lemma 4.1 we have

‖𝜌𝜏‖𝐿∞([0,𝑇];𝐿𝑝(ℝ𝑑)) = sup
𝑡∈(0,𝑇)

‖𝜌𝜏(𝑡)‖𝐿𝑝(ℝ𝑑) = sup
𝑘
‖𝜌𝑘𝜏‖𝐿𝑝(ℝ𝑑) < +∞,

for 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2 and 𝑝 ∈ [1, 2∗) when 𝑑 = 2. Analogously, from (4.11) we obtain ∇𝜌𝜏 ∈
𝐿∞([0, 𝑇]; 𝐿2(ℝ𝑑)). In particular, for any compact time interval [0, 𝑇] with 𝑇 > 0, we have‖𝜌𝜏‖𝐿2([0,𝑇];𝐻1(ℝ𝑑)) ⩽ 𝐶 uniformly in 𝜏 and the weak convergence follows from Banach–Alaoglu
theorem. Regularity of the limit follows from standard arguments. □

The uniform-in-𝜏 𝐿∞([0, 𝑇];𝐻1(ℝ𝑑)) estimate allows us to obtain strong convergence of 𝜌𝜏 via
a refined version of the Aubin–Lions lemma due to Rossi and Savaré — cf. Proposition 2.1.

Proposition 4.3 (Strong convergence of 𝜌𝜏). Let 𝜌0 ∈ 𝑎
2
(ℝ𝑑) such that 𝑚[𝜌0] < +∞ and

1 ⩽ 𝑚 < 2 + 2

𝑑
or 𝑚 = 2 + 2

𝑑
with subcritical mass 𝜒 < 𝜒𝑐. The sequence 𝜌𝜏 converges, up to a

subsequence, strongly to the curve 𝜌̃ in 𝐿2([0, 𝑇]; 𝐿2(ℝ𝑑)) for every 𝑇 > 0.

Proof. We apply Proposition 2.1 to a subset 𝑈 = {𝜌𝜏}𝜏⩾0 for 𝑋 = 𝐿2(ℝ𝑑) and g ∶=2, the
2-Wasserstein distance. Further, we consider the functional  ∶ 𝐿2(ℝ𝑑) → [0, +∞] defined by

[𝜌] =
{‖𝜌‖2

𝐻1(ℝ𝑑)
+ ∫

ℝ𝑑
|𝑥|2𝜌(𝑥) d𝑥 𝜌 ∈ 2(ℝ𝑑) ∩ 𝐻1(ℝ𝑑),

+∞ otherwise.

Note that2 is a distance on the proper domain of . Indeed, if [𝜌] < ∞ then 𝜌 ∈ 2(ℝ𝑑). Lower
semicontinuity of  follows from standard arguments — see for instance [14].
Next, let 𝐵𝑐 = {𝜌 ∈ 𝐿2(ℝ𝑑) ∶ [𝜌] ⩽ 𝑐} be a sublevel of . We note that 𝐵𝑐 ⊂ 2(ℝ𝑑) ∩ 𝐻1(ℝ𝑑)

and thus we can apply Kolmogorov–Riesz–Fréchet theorem [12, Corollary 4.27] as in the proof of
Proposition 4.1 to obtain that𝐵𝑐 is relatively compact.Hencewehave is an admissible functional.
The tightness condition (2.1) follows from the uniform-in-𝜏 second-order moment and

𝐿∞([0, 𝑇];𝐻1(ℝ𝑑)) bounds for 𝜌𝜏 given in (4.13) and Proposition 4.2. The integral equi-continuity
condition (2.2) can be seen from the Hölder equi-continuity of 𝜌𝜏, proved in Lemma 4.1. More
precisely, for ℎ > 𝜏 we have

∫
𝑇−ℎ

0
2(𝜌𝜏(𝑡 + ℎ), 𝜌𝜏(𝑡))d𝑡 ⩽ ∫

𝑇−ℎ

0
𝐶
(√

ℎ +
√
𝜏
)
d𝑡 ⩽ 2𝐶𝑇

√
ℎ,

for a constant 𝐶 > 0 independent of 𝜏 and ℎ. If instead, ℎ < 𝜏, we can write

∫
𝑇−ℎ

0
2(𝜌𝜏(𝑡 + ℎ), 𝜌𝜏(𝑡))d𝑡 ⩽ ℎ

𝑁−1∑
𝑘=0

2(𝜌
𝑘+1
𝜏 , 𝜌𝑘𝜏 )

⩽ ℎ
√
𝑁

𝑁−1∑
𝑘=0

2
2 (𝜌

𝑘+1
𝜏 , 𝜌𝑘𝜏 ) ⩽ 𝐶ℎ

√
𝑇,

where 𝐶 > 0 is the constant defined in (4.15).
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 25 of 49

Hence we can apply Proposition 2.1 to obtain that there exists a subsequence, that we label
by 𝜏 ↓ 0, such that 𝜌𝜏 converges in measure to 𝜌̃, as in (2.3), where 𝑋 ∶= 𝐿2(ℝ𝑑). Let us denote
by 𝐴𝛿(𝜏) ∶= {𝑡 ∈ (0, 𝑇) ∶ ‖𝜌𝜏(𝑡) − 𝜌̃(𝑡)‖𝑋 ⩾ 𝛿}, which vanishes as 𝜏 → 0. Owing to (4.12) and
Proposition 4.2 we can prove (see, for example, [22, Proposition 4.3])

lim sup
𝜏→0

‖𝜌𝜏 − 𝜌̃‖2𝐿2([0,𝑇];𝐿2(ℝ𝑑)) ⩽ 𝛿𝑇1∕2,
hence strong convergence in 𝐿2([0, 𝑇]; 𝐿2(ℝ𝑑)) since 𝛿 is arbitrarily small. □

4.1 Flow interchange

The strong convergence of the sequence 𝜌𝜏 obtained in Proposition 4.3 is not enough to pass to
the limit in the Euler–Lagrange equation associated to (4.1) and arrive to a weak formulation
of our equation. We use the heat equation as auxiliary flow to obtain uniform bounds on the
Hessian of the sequence {𝜌𝜏}𝜏; cf. Section 2. More precisely, we exploit that the heat equation is a
2-Wasserstein gradient flow of the entropy functional [𝜌] = ∫ 𝜌 log 𝜌 d𝑥.
In the following, for 𝜇 ∈ 2(ℝ𝑑) such that [𝜇] < ∞, we denote by 𝑆𝑡𝜇 the solution at time 𝑡

of the heat equation for an initial value 𝜇 at 𝑡 = 0. Furthermore, we also define the dissipation of
𝑚 along 𝑆 by

𝐷𝑚[𝜌] ∶= lim sup
𝑠↓0

{𝑚[𝜌] − 𝑚[𝑆𝑠𝜌]
𝑠

}
.

Remark 4.2. Given some initial datum 𝜇0 ∈ (ℝ𝑑) the solution of the heat equation, 𝑆𝑡𝜇0, can be
written as the convolution of the heat kernel 𝐺𝑡 with the initial condition, that is,

𝑆𝑡𝜇0 = 𝐺𝑡 ∗ 𝜇0 = (4𝜋𝑡)−𝑑∕2 ∫ℝ𝑑 𝑒
−|𝑥−𝑦|2∕4𝑡d𝜇0(𝑦).

As a consequence, 𝑆𝑡𝜇0 ∈ 𝐶∞
(
(0, +∞) × ℝ𝑑

)
. Moreover, for solutions of the heat equation we

can integrate by parts to obtain the well-known equality

∫ℝ𝑑 |Δ𝑆𝑡𝜇0|2 d𝑥 = ∫ℝ𝑑 |𝐷2𝑆𝑡𝜇0|2 d𝑥 . (4.17)

We are now ready to prove an 𝐻2 bound for 𝜌𝜏.

Lemma4.2 (𝐻2 uniformbound).Let 𝜌0 such that𝑚[𝜌0] < +∞, and 1 ⩽ 𝑚 < 2 + 2

𝑑
or𝑚 = 2 + 2

𝑑
with subcritical mass 𝜒 < 𝜒𝑐 . The piecewise interpolation 𝜌𝜏 constructed in (4.10) is such that 𝜌𝜏 ∈
𝐿2([0, 𝑇];𝐻2(ℝ𝑑)). In particular, we obtain the uniform-in-𝜏 bound

‖Δ𝜌𝜏‖2𝐿2([0,𝑇];𝐿2(ℝ𝑑)) ⩽ 𝑑‖𝐷2𝜌𝜏‖2𝐿2([0,𝑇];𝐿2(ℝ𝑑)) ⩽ 𝐶,
where 𝐶 = 𝐶(𝑚, 𝑑, 𝜌0, 𝑇) > 0.
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26 of 49 CARRILLO et al.

Proof. For all 𝑠 > 0, we consider 𝑆𝑠𝜌𝑘+1𝜏 . Then, by the definition of the scheme (4.1) and of 𝜌𝑘+1𝜏 ,
we have the inequality

1

2𝜏
2
2 (𝜌

𝑘
𝜏 , 𝜌

𝑘+1
𝜏 ) + 𝑚[𝜌𝑘+1𝜏 ] ⩽

1

2𝜏
2
2 (𝜌

𝑘
𝜏 , 𝑆

𝑠𝜌𝑘+1𝜏 ) + 𝑚[𝑆𝑠𝜌𝑘+1𝜏 ],

from which we obtain

𝜏
𝑚[𝜌𝑘+1𝜏 ] − 𝑚[𝑆𝑠𝜌𝑘+1𝜏 ]

𝑠
⩽
1

2

2
2
(𝜌𝑘𝜏 , 𝑆

𝑠𝜌𝑘+1𝜏 ) −2
2
(𝜌𝑘𝜏 , 𝜌

𝑘+1
𝜏 )

𝑠
.

By taking the lim sup as 𝑠 ↓ 0 we obtain

𝜏𝐷𝑚[𝜌𝑘+1𝜏 ] ⩽
1

2

d+

d𝑡

||||𝑡=02
2 (𝜌

𝑘
𝜏 , 𝑆

𝑡𝜌𝑘+1𝜏 ) ⩽ [𝜌𝑘𝜏 ] − [𝜌𝑘+1𝜏 ], (4.18)

where in the last inequality we use the (EVI), as 𝑆 is a 0-flow; cf. Definition 2.4. Note that

𝐷𝑚[𝜌𝑘+1𝜏 ] = lim sup
𝑠↓0

{𝑚[𝜌𝑘+1𝜏 ] − 𝑚[𝑆𝑠𝜌𝑘+1𝜏 ]

𝑠

}

= lim sup
𝑠↓0 ∫

1

0

(
−
d

d𝑧

||||𝑧=𝑠𝑡𝑚[𝑆𝑧𝜌𝑘+1𝜏 ]

)
d𝑡.

(4.19)

From this point of the proof, we distinguish between two cases.
Case I: 1 < 𝑚 < 2 + 2

𝑑
or 𝑚 = 2 + 2

𝑑
with subcritical mass 𝜒 < 𝜒𝑐 Let us compute the time

derivative:

d

d𝑡
𝑚[𝑆𝑡𝜌𝑘+1𝜏 ] = − ∫ℝ𝑑 |Δ𝑆𝑡𝜌𝑘+1𝜏 |2d𝑥

−
𝜒𝑚

𝑚 − 1 ∫ℝ𝑑(𝑆
𝑡𝜌𝑘+1𝜏 )𝑚−1Δ𝑆𝑡𝜌𝑘+1𝜏 d𝑥.

(4.20)

Therefore, combining (4.18), (4.19) and (4.20) we obtain

𝜏 lim sup
𝑠↓0 ∫

1

0

(
∫ℝ𝑑 |Δ𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2 d𝑥 + 𝜒𝑚

𝑚 − 1 ∫ℝ𝑑(𝑆
𝑠𝑡 𝜌𝑘+1𝜏 )𝑚−1Δ𝑆𝑠𝑡 𝜌𝑘+1𝜏 d𝑥

)
d𝑡

⩽ [𝜌𝑘𝜏 ] − [𝜌𝑘+1𝜏 ].

By applying Young’s inequality we have

∫ℝ𝑑 |Δ𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2 d𝑥 + 𝜒𝑚

𝑚 − 1 ∫ℝ𝑑(𝑆
𝑠𝑡 𝜌𝑘+1𝜏 )𝑚−1Δ𝑆𝑠𝑡 𝜌𝑘+1𝜏 d𝑥

⩾ ∫ℝ𝑑 |Δ𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2 d𝑥 − 𝜒𝑚

𝑚 − 1 ∫ℝ𝑑 |(𝑆𝑠𝑡 𝜌𝑘+1𝜏 )𝑚−1||Δ𝑆𝑠𝑡 𝜌𝑘+1𝜏 | d𝑥
⩾
1

2 ∫ℝ𝑑 |Δ𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2 d𝑥 − 𝜒2𝑚2

2(𝑚 − 1)2 ∫ℝ𝑑 |𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2(𝑚−1) d𝑥 ,
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 27 of 49

which gives

𝜏

2
lim inf
𝑠↓0 ∫

1

0 ∫ℝ𝑑 |Δ𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2 d𝑥 d𝑡
⩽ [𝜌𝑘𝜏 ] − [𝜌𝑘+1𝜏 ] + 𝜏

𝜒2𝑚2

2(𝑚 − 1)2
lim sup
𝑠↓0 ∫

1

0 ∫ℝ𝑑 |𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2(𝑚−1) d𝑥 d𝑡.
In order to take the 𝑠 ↓ 0 limit in the above expression, first we note that, in view of Remark 4.2,

we can write ‖Δ𝑆𝑠𝑡 𝜌𝑘+1𝜏 ‖𝐿2(ℝ𝑑) = ‖𝐷2𝑆𝑠𝑡 𝜌𝑘+1𝜏 ‖𝐿2(ℝ𝑑). Since the auxiliary flow is the heat equa-
tion with initial datum 𝜌𝑘+1𝜏 ∈ 𝐻1(ℝ𝑑), we have 𝑆𝑡𝜌𝑘+1𝜏 → 𝜌𝑘+1𝜏 in 𝐿2(ℝ𝑑) as well as ∇𝑆𝑡𝜌𝑘+1𝜏 →

∇𝜌𝑘+1𝜏 in 𝐿2(ℝ𝑑) as 𝑡 ↓ 0— by noting that ∇𝑆𝑡𝜌𝑘+1𝜏 is a solution to the heat equation with initial
datum ∇𝜌𝑘+1𝜏 ∈ 𝐿2(ℝ𝑑). By the weak lower semicontinuity of the𝐻1 seminorm we have

lim inf
𝑠↓0 ∫

1

0 ∫ℝ𝑑 |𝐷2𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2 d𝑥 d𝑡 ⩾ ∫ℝ𝑑 |𝐷2𝜌𝑘+1𝜏 |2 d𝑥 . (4.21)

Next, we focus on the term involving ‖𝑆𝑠𝑡 𝜌𝑘+1𝜏 ‖𝐿2(𝑚−1)(ℝ𝑑) and distinguish between two cases,
depending on the value of 𝑚. We apply Young’s convolution inequality to 𝑆𝑠𝑡 𝜌𝑘+1𝜏 = 𝐺𝑠𝑡 ∗ 𝜌

𝑘+1
𝜏 ,

as noted in Remark 4.2.
If 3

2
⩽ 𝑚 < 2 + 2

𝑑
or 𝑚 = 2 + 2

𝑑
with subcritical mass, then 1 ⩽ 2(𝑚 − 1) < 2∗ and, by (3.3),

𝜌𝑘+1𝜏 ∈ 𝐿2(𝑚−1)(ℝ𝑑). Furthermore, we have

‖𝑆𝑠𝑡 𝜌𝑘+1𝜏 ‖𝐿2(𝑚−1)(ℝ𝑑) ⩽ ‖𝐺𝑠𝑡‖𝐿1(ℝ𝑑)‖𝜌𝑘+1𝜏 ‖𝐿2(𝑚−1)(ℝ𝑑) = ‖𝜌𝑘+1𝜏 ‖𝐿2(𝑚−1)(ℝ𝑑).
In particular, we obtain

lim sup
𝑠↓0 ∫

1

0 ∫ℝ𝑑 |𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2(𝑚−1) d𝑥 d𝑡 ⩽ ∫ℝ𝑑 |𝜌𝑘+1𝜏 |2(𝑚−1) d𝑥 .
If 1 < 𝑚 < 3

2
, we use that the function | ⋅ |2(𝑚−1) is concave and apply Jensen’s inequality to

find

∫ℝ𝑑 |𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2(𝑚−1) d𝑥 ⩽ ||||∫ℝ𝑑 𝑆𝑠𝑡 𝜌𝑘+1𝜏 d𝑥
||||2(𝑚−1) = ‖𝐺𝑠𝑡 ∗ 𝜌𝑘+1𝜏 ‖2(𝑚−1)

𝐿1(ℝ𝑑)

⩽ ‖𝐺𝑠𝑡‖2(𝑚−1)𝐿1(ℝ𝑑)
‖𝜌𝑘+1𝜏 ‖2(𝑚−1)

𝐿1(ℝ𝑑)
= ‖𝜌𝑘+1𝜏 ‖2(𝑚−1)

𝐿1(ℝ𝑑)
,

when

lim sup
𝑠↓0 ∫

1

0 ∫ℝ𝑑 |𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2(𝑚−1) d𝑥 d𝑡 ⩽ ||||∫ℝ𝑑 𝜌𝑘+1𝜏 d𝑥
||||2(𝑚−1).

As a consequence,

𝜏

2 ∫ℝ𝑑 |𝐷2𝜌𝑘+1𝜏 |2 d𝑥 ⩽ [𝜌𝑘𝜏 ] − [𝜌𝑘+1𝜏 ] + 𝜏
𝜒2𝑚2

2(𝑚 − 1)2
‖𝜌𝑘+1𝜏 ‖2(𝑚−1)

𝐿𝑞(ℝ𝑑)
,

with 𝑞 = 2(𝑚 − 1) for 3
2
⩽ 𝑚 < 2 + 2

𝑑
or𝑚 = 2 + 2

𝑑
with subcritical mass, and 𝑞 = 1 for 1 < 𝑚 <

3

2
. By summing up over 𝑘 from 0 to 𝑁 − 1, considering that 𝑥 log 𝑥 ⩽ 𝑥2 and Remark 2.1, we
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28 of 49 CARRILLO et al.

recover, further using Jensen’s inequality for concave functions for 𝑞 = 1,

1

2
‖𝐷2𝜌𝜏‖2𝐿2([0,𝑇];𝐿2(ℝ𝑑)) ⩽ [𝜌0] − [𝜌𝑁𝜏 ] + 𝜒2𝑚2

2(𝑚 − 1)2

𝑁−1∑
𝑘=0

𝜏‖𝜌𝑘+1𝜏 ‖2(𝑚−1)
𝐿𝑞(ℝ𝑑)

⩽ ‖𝜌0‖2𝐿2(ℝ𝑑) + 𝐶(1 + m2(𝜌
𝑁
𝜏 ))

+
𝜒2𝑚2

2(𝑚 − 1)2𝑇2(𝑚−1)−1
‖𝜌𝜏‖2(𝑚−1)𝐿𝑞([0,𝑇];𝐿𝑞(ℝ𝑑))

,

which is uniformly bounded, due to Lemma 4.1. In particular, we also obtain

‖Δ𝜌𝜏‖𝐿2([0,𝑇];𝐿2(ℝ𝑑)) ⩽√𝑑‖𝐷2𝜌𝜏‖𝐿2([0,𝑇];𝐿2(ℝ𝑑)) ⩽ 𝐶(𝑚, 𝑑, 𝜌0, 𝜒, 𝑇).
Case II:𝑚 = 1. Let us compute the time derivative

d

d𝑡
1[𝑆𝑡𝜌𝑘+1𝜏 ] = −∫ℝ𝑑 |Δ𝑆𝑡𝜌𝑘+1𝜏 |2 d𝑥

− 𝜒 ∫ℝ𝑑 Δ𝑆
𝑡𝜌𝑘+1𝜏 (1 + log 𝑆𝑡𝜌𝑘+1𝜏 ) d𝑥

= −∫ℝ𝑑 |Δ𝑆𝑡𝜌𝑘+1𝜏 |2 d𝑥
+ 𝜒 ∫ℝ𝑑 ∇𝑆

𝑡𝜌𝑘+1𝜏 ⋅∇ log 𝑆𝑡𝜌𝑘+1𝜏 d𝑥 .

(4.22)

By combining (4.18), (4.19) and (4.22), we obtain

𝜏 lim sup
𝑠↓0 ∫

1

0

(
∫ℝ𝑑 |Δ𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2 d𝑥 − 𝜒 ∫ℝ𝑑 ∇𝑆

𝑠𝑡 𝜌𝑘+1𝜏 ⋅∇ log 𝑆𝑠𝑡 𝜌𝑘+1𝜏 d𝑥

)
d𝑡

⩽ [𝜌𝑘𝜏 ] − [𝜌𝑘+1𝜏 ] .

Similar to the previous case, we obtain

𝜏 lim inf
𝑠↓0 ∫

1

0 ∫ℝ𝑑 |Δ𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2 d𝑥 d𝑡
⩽ [𝜌𝑘𝜏 ] − [𝜌𝑘+1𝜏 ] + 𝜒𝜏 lim sup

𝑠↓0 ∫
1

0 ∫ℝ𝑑 ∇𝑆
𝑠𝑡 𝜌𝑘+1𝜏 ⋅∇ log 𝑆𝑠𝑡 𝜌𝑘+1𝜏 d𝑥 d𝑡

= [𝜌𝑘𝜏 ] − [𝜌𝑘+1𝜏 ] + 𝜒𝜏 lim sup
𝑠↓0

([𝜌𝑘+1𝜏 ] − [𝑆𝑠𝜌𝑘+1𝜏 ]
)
,

where we recognised the third term as the Fisher information functional for solutions of the heat
equation. Next, using well-known properties of the heat equation and the estimates in Lemma 4.1
we have

lim sup
𝑠↓0

([𝜌𝑘+1𝜏 ] − [𝑆𝑠𝜌𝑘+1𝜏 ]
)
⩽ 𝐶,
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 29 of 49

for a constant 𝐶 independent of 𝑘. By summing up over 𝑘 from 0 to 𝑁 − 1, and using (4.17) and
(4.21) again we obtain

‖𝐷2𝜌𝜏‖2𝐿2([0,𝑇];𝐿2(ℝ𝑑)) ⩽ [𝜌0] − [𝜌𝑁𝜏 ] + 𝜏𝑁𝐶,
and in particular, Δ𝜌𝜏 is uniformly bounded in 𝐿2([0, 𝑇]; 𝐿2(ℝ𝑑)). □

Proposition 4.4 (Strong convergence of ∇𝜌𝜏). Let 𝜌0 be such that 𝑚[𝜌0] < +∞, and 1 ⩽ 𝑚 <

2 + 2

𝑑
or𝑚 = 2 + 2

𝑑
with subcritical mass 𝜒 < 𝜒𝑐 . Up to a subsequence, the sequence 𝜌𝜏 ∶ [0, 𝑇] →

2(ℝ𝑑) converges strongly to the curve 𝜌̃ in 𝐿2([0, 𝑇];𝐻1(ℝ𝑑)).
Proof. First note that due to Lemma 4.2, 𝐷2𝜌𝜏 ⇀ 𝐷2𝜌̃ in 𝐿2([0, 𝑇]; 𝐿2(ℝ𝑑)). The limit can be
uniquely identified by integrating against a smooth and compactly supported test function and
using the convergence ∇𝜌𝜏 ⇀ ∇𝜌̃ in 𝐿2([0, 𝑇]; 𝐿2(ℝ𝑑)); cf. Proposition 4.2. Next, we claim strong
convergence of 𝜌𝜏 in 𝐿2([0, 𝑇];𝐻1(ℝ𝑑)) follows from the strong convergence in 𝐿2([0, 𝑇]; 𝐿2(ℝ𝑑)),
cf. Proposition 4.3, and the fact that ‖𝜌𝜏‖𝐿2([0,𝑇];𝐻2(ℝ𝑑)) is uniformly bounded in 𝜏, as given
in Lemma 4.2.More precisely, usingGagliardo–Nirenberg (for the gradient) andCauchy–Schwarz
inequalities, we obtain

∫
𝑇

0
‖∇𝜌𝜏(𝑡) − ∇𝜌̃(𝑡)‖2𝐿2(ℝ𝑑) d𝑡
⩽ 𝐶 ∫

𝑇

0
‖𝐷2𝜌𝜏(𝑡) − 𝐷2𝜌̃(𝑡)‖𝐿2(ℝ𝑑)‖𝜌𝜏(𝑡) − 𝜌̃(𝑡)‖𝐿2(ℝ𝑑) d𝑡

⩽ 𝐶‖𝐷2𝜌𝜏 − 𝐷2𝜌̃‖𝐿2([0,𝑇];𝐿2(ℝ𝑑))‖𝜌𝜏 − 𝜌̃‖𝐿2([0,𝑇];𝐿2(ℝ𝑑)).
The result is obtained by using that the norms ‖𝐷2𝜌𝜏‖𝐿2([0,𝑇];𝐿2(ℝ𝑑)) and ‖𝐷2𝜌̃‖𝐿2([0,𝑇];𝐿2(ℝ𝑑)) are
uniformly bounded in 𝜏—Lemma 4.2. □

The strong convergence of ∇𝜌𝜏 allows us to improve the result of 𝜌𝜏 given by Proposition 4.3
via interpolation inequalities. In particular, we obtain the integrability exponent needed to pass
to the limit 𝜏 → 0 in the weak formulation.

Corollary 4.1 (Higher integrability). Assume 1 < 𝑚 < 2 + 2

𝑑
or 𝑚 = 2 + 2

𝑑
with subcritical mass

𝜒 < 𝜒𝑐. Then, the sequence 𝜌𝜏 ∶ [0, 𝑇] → 2(ℝ𝑑) converges strongly, up to subsequence, to the curve
𝜌̃ in 𝐿𝑚([0, 𝑇]; 𝐿𝑚(ℝ𝑑)) for every 𝑇 > 0.

Proof. The proof is based on that of Proposition 3.1. For 1 < 𝑚 < 2 + 2

𝑑
, by applying Gagliardo–

Nirenberg and Hölder inequalities we obtain

∫
𝑇

0
‖𝜌𝜏(𝑡) − 𝜌̃(𝑡)‖𝑚𝐿𝑚(ℝ𝑑) d𝑡
⩽ 𝐶 ∫

𝑇

0
‖∇𝜌𝜏(𝑡) − ∇𝜌̃(𝑡)‖𝑚𝜃𝐿2(ℝ𝑑)‖𝜌𝜏(𝑡) − 𝜌̃(𝑡)‖𝑚(1−𝜃)𝐿1(ℝ𝑑)

d𝑡 (4.23)

⩽ 𝐶‖∇𝜌𝜏 − ∇𝜌̃‖𝑚𝜃𝐿2([0,𝑇];𝐿2(ℝ𝑑))(∫ 𝑇

0
‖𝜌𝜏(𝑡) − 𝜌̃(𝑡)‖𝛼𝐿1(ℝ𝑑) d𝑡)

𝑚(1−𝜃)
𝛼

,
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30 of 49 CARRILLO et al.

where 𝜃 = 2𝑑

𝑑+2

𝑚−1

𝑚
∈ (0, 1) and𝛼 = 1 +

2
𝑑
(𝑚−1)

2+ 2
𝑑
−𝑚

. The result follows from the strong convergence of

∇𝜌𝜏 and by noting that the second term is uniformly bounded in 𝜏 due to the narrow convergence
of 𝜌𝜏 given in Lemma 4.1, being 𝜌𝑡 and 𝜌 probability densities.
In the critical case𝑚 = 𝑚𝑐 = 2 +

2

𝑑
, (4.23) gives

∫
𝑇

0
‖𝜌𝜏(𝑡) − 𝜌̃(𝑡)‖𝑚𝐿𝑚(ℝ𝑑) d𝑡
⩽ 𝐶 ∫

𝑇

0
‖∇𝜌𝜏(𝑡) − ∇𝜌̃(𝑡)‖2𝐿2(ℝ𝑑)‖𝜌𝜏(𝑡) − 𝜌̃(𝑡)‖ 2𝑑𝐿1(ℝ𝑑) d𝑡 ,

⩽ 𝐶‖∇𝜌𝜏 − ∇𝜌̃‖2𝐿2([0,𝑇];𝐿2(ℝ𝑑))‖𝜌𝜏(𝑡) − 𝜌̃(𝑡)‖ 2𝑑𝐿∞([0,𝑇];𝐿1(ℝ𝑑)),
where the second term is uniformly bounded in 𝜏 by Lemma 4.1 and Proposition 4.2. Again, the
result follows from the strong convergence of ∇𝜌𝜏. □

4.2 Consistency of the scheme

The results from the previous subsection ensure we can prove that 𝜌̃ is a weak solution of (1.1) in
the sense of Definition 2.1. This subsection completes the proof of Theorem 2.2.

Proof of Theorem 2.2. We prove the theorem by showing that the sequence 𝜌𝜏 ∶ [0, 𝑇] → 2(ℝ𝑑)
converges, up to a subsequence, to a weak solution 𝜌̃ of (1.1). Let us focus on two consecutive steps
in the JKO scheme, 𝜌𝑘𝜏 and 𝜌

𝑘+1
𝜏 , and consider the perturbation 𝜌𝜀 = 𝑃𝜀

#
𝜌𝑘+1𝜏 given by𝑃𝜀 = id + 𝜀𝜁,

where 𝜁 is a vector field 𝜁 ∈ 𝐶∞𝑐 (ℝ
𝑑; ℝ𝑑) and 𝜀 ⩾ 0. From the definition of the scheme we have

1

2𝜏

(2
2
(𝜌𝑘𝜏 , 𝜌

𝜀) −2
2
(𝜌𝑘𝜏 , 𝜌

𝑘+1
𝜏 )

𝜀

)
+

𝑚[𝜌𝜀] − 𝑚[𝜌𝑘+1𝜏 ]

𝜀
⩾ 0. (4.24)

As we want to let 𝜀 → 0 and recover the Euler–Lagrange equation of the minimisation
problem (4.1), we examine each term in (4.24).
Step 1: Wasserstein distance terms. We consider, in view of Brenier’s Theorem, the optimal map

 between 𝜌𝑘𝜏 and 𝜌
𝑘+1
𝜏 (see, for example, [58, 63, 64]), so that

2
2 (𝜌

𝑘
𝜏 , 𝜌

𝑘+1
𝜏 ) = ∫ℝ𝑑 |𝑥 −  (𝑥)|2𝜌𝑘𝜏 (𝑥) d𝑥 .

Moreover, from the definition of the Wasserstein distance, we also have

2
2 (𝜌

𝑘
𝜏 , 𝜌

𝜀) ⩽ ∫ℝ𝑑 |𝑥 − 𝑃𝜀( (𝑥))|2𝜌𝑘𝜏 (𝑥) d𝑥
= ∫ℝ𝑑 |𝑥 −  (𝑥) − 𝜀𝜁( (𝑥))|2𝜌𝑘𝜏 (𝑥) d𝑥
=2

2 (𝜌
𝑘
𝜏 , 𝜌

𝑘+1
𝜏 ) − 2𝜀 ∫ℝ𝑑(𝑥 −  (𝑥)) ⋅ 𝜁( (𝑥))𝜌𝑘𝜏 (𝑥) d𝑥 + 𝑂(𝜀2) .
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 31 of 49

Consequently,

2
2
(𝜌𝑘𝜏 , 𝜌

𝜀) −2
2
(𝜌𝑘𝜏 , 𝜌

𝑘+1
𝜏 )

2𝜏𝜀
⩽ −

1

𝜏 ∫ℝ𝑑(𝑥 −  (𝑥)) ⋅ 𝜁( (𝑥))𝜌𝑘𝜏 (𝑥) d𝑥 + 𝑂(𝜀) . (4.25)

Step 2: Aggregation terms. We use the area formula [1, Section 5.5] and that det∇𝑃𝜀(𝑥) = 1 +
𝜀div 𝜁(𝑥) + 𝑂(𝜀2). For the case 1 < 𝑚 < 2 + 2

𝑑
or𝑚 = 2 + 2

𝑑
with subcritical mass, we obtain

∫ℝ𝑑(𝜌
𝜀)𝑚 d𝑥 = ∫ℝ𝑑

(
𝜌𝑘+1𝜏

det∇𝑃𝜀

)𝑚
det∇𝑃𝜀 d𝑥

= ∫ℝ𝑑(𝜌
𝑘+1
𝜏 )𝑚

(
1 − 𝜀(𝑚 − 1)(div 𝜁) + 𝑂(𝜀2)

)
d𝑥 .

Thus, we find

−
1

𝑚 − 1 ∫ℝ𝑑
(𝜌𝜀)𝑚 − (𝜌𝑘+1𝜏 )𝑚

𝜀
d𝑥 = ∫ℝ𝑑(𝜌

𝑘+1
𝜏 )𝑚(div 𝜁) d𝑥 + 𝑂(𝜀) .

For the case𝑚 = 1 we have that

∫ℝ𝑑 𝜌
𝜀 log(𝜌𝜀) d𝑥 = ∫ℝ𝑑

𝜌𝑘+1𝜏

det∇𝑃𝜀
log

(
𝜌𝑘+1𝜏

det∇𝑃𝜀

)
det∇𝑃𝜀 d𝑥

= ∫ℝ𝑑 𝜌
𝑘+1
𝜏 log 𝜌𝑘+1𝜏 − 𝜌𝑘+1𝜏 log

(
1 + 𝜀div 𝜁 + 𝑂(𝜀2)

)
d𝑥.

Therefore,

−∫ℝ𝑑
𝜌𝜀 log 𝜌𝜀 − 𝜌𝑘+1𝜏 log 𝜌𝑘+1𝜏

𝜀
d𝑥 = ∫ℝ𝑑

𝜌𝑘+1𝜏 log
(
1 + 𝜀div 𝜁 + 𝑂(𝜀2)

)
𝜀

d𝑥,

and taking the limit in 𝜀 we obtain

− lim
𝜀→0 ∫ℝ𝑑

𝜌𝜀 log 𝜌𝜀 − 𝜌𝑘+1𝜏 log 𝜌𝑘+1𝜏

𝜀
d𝑥 = ∫ℝ𝑑 𝜌

𝑘+1
𝜏 (div 𝜁) d𝑥.

In particular,

− lim
𝜀→0

𝑚[𝜌𝜀] − 𝑚[𝜌𝑘+1𝜏 ]

𝜀
= ∫ℝ𝑑(𝜌

𝑘+1
𝜏 )𝑚(div 𝜁) d𝑥, (4.26)

holds for every 1 ⩽ 𝑚 < 2 + 2

𝑑
or𝑚 = 2 + 2

𝑑
with subcritical mass.

Step 3: Diffusion terms. We use the definition of push-forward and the area formula to obtain

∫ℝ𝑑 |∇𝑃#𝜌𝑘+1𝜏 (𝑥)|2 d𝑥 = ∫ℝ𝑑
||||||∇
(

𝜌𝑘+1𝜏

det∇𝑃𝜀
◦(𝑃𝜀)−1

)
(𝑥)

||||||
2

d𝑥

= ∫ℝ𝑑
||||||∇(𝑃𝜀)−1(𝑥)∇

(
𝜌𝑘+1𝜏

det∇𝑃𝜀

)(
(𝑃𝜀)−1(𝑥)

)||||||
2

d𝑥
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32 of 49 CARRILLO et al.

= ∫ℝ𝑑
||||||∇(𝑃𝜀)−1(𝑃𝜀(𝑥))∇

(
𝜌𝑘+1𝜏

det∇𝑃𝜀

)
(𝑥)

||||||
2||det∇𝑃𝜀(𝑥)|| d𝑥

= ∫ℝ𝑑
||||||(∇𝑃𝜀(𝑥))−1∇

(
𝜌𝑘+1𝜏

det∇𝑃𝜀

)
(𝑥)

||||||
2||det∇𝑃𝜀(𝑥)|| d𝑥 .

Next, we observe that (∇𝑃𝜀)−1 = I𝑑 − 𝜀∇𝜁 + 𝑂(𝜀2), with I𝑑 the identity matrix. Hence, we have

∫ℝ𝑑 |∇𝑃#𝜌𝑘+1𝜏 |2d𝑥 = ∫ℝ𝑑
||||∇𝜌𝑘+1𝜏 − 𝜀(𝜌𝑘+1𝜏 ∇(div𝜁) + ∇𝜁∇𝜌𝑘+1𝜏 +

1

2
(div𝜁)∇𝜌𝑘+1𝜏 )

||||2d𝑥 + 𝑂(𝜀2),
and, in particular,

1

2 ∫ℝ𝑑
|∇𝑃#𝜌𝑘+1𝜏 |2 − |∇𝜌𝑘+1𝜏 |2

𝜀
d𝑥

= −∫ℝ𝑑
(
𝜌𝑘+1𝜏 ∇(div 𝜁) ⋅∇𝜌𝑘+1𝜏 + (∇𝜁∇𝜌𝑘+1𝜏 ) ⋅∇𝜌𝑘+1𝜏 +

1

2
div 𝜁|∇𝜌𝑘+1𝜏 |2)d𝑥

+ 𝑂(𝜀).

(4.27)

Step 4: Letting 𝜀 → 0. Let us perform again the same computation for 𝜀 ⩽ 0. Then, we consider
𝜁 = ∇𝜑 and compute the limit 𝜀 → 0. By taking into account (4.25)–(4.27), we have that

1

𝜏 ∫ℝ𝑑(𝑥 −  (𝑥)) ⋅∇𝜑( (𝑥))𝜌𝑘𝜏 (𝑥) d𝑥

= −∫ℝ𝑑
(
𝜌𝑘+1𝜏 ∇(Δ𝜑) ⋅∇𝜌𝑘+1𝜏 + (𝐷2𝜑∇𝜌𝑘+1𝜏 ) ⋅∇𝜌𝑘+1𝜏 +

1

2
Δ𝜑|∇𝜌𝑘+1𝜏 |2)d𝑥

+ 𝜒 ∫ℝ𝑑(𝜌
𝑘+1
𝜏 )𝑚Δ𝜑 d𝑥 .

(4.28)

Next, we rewrite the left-hand side of (4.28) by considering a Taylor expansion of 𝜑 on  (𝑥). Since
𝜌𝜏 is Holder continuous, (4.16), we have

∫ℝ𝑑(𝑥 −  (𝑥)) ⋅∇𝜑( (𝑥))𝜌𝑘𝜏 (𝑥) d𝑥 = ∫ℝ𝑑 𝜑(𝑥)
[
𝜌𝑘𝜏 (𝑥) − 𝜌

𝑘+1
𝜏 (𝑥)

]
d𝑥 + 𝑂(𝜏) .

Let 0 ⩽ 𝑠1 < 𝑠2 ⩽ 𝑇 be fixed with,

ℎ1 =
[ 𝑠1
𝜏

]
+ 1 and ℎ2 =

[ 𝑠2
𝜏

]
.

By summing with respect to 𝑘 in (4.28), we obtain

∫ℝ𝑑 𝜑(𝑥)𝜌
ℎ2+1
𝜏 (𝑥) d𝑥 − ∫ℝ𝑑 𝜑(𝑥)𝜌

ℎ1
𝜏 (𝑥) d𝑥 + 𝑂(𝜏)
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 33 of 49

=

ℎ2∑
𝑗=ℎ1

𝜏 ∫ℝ𝑑
(
𝜌
𝑗+1
𝜏 ∇(Δ𝜑) ⋅∇𝜌𝑗+1𝜏 + (𝐷2𝜑∇𝜌

𝑗+1
𝜏 ) ⋅∇𝜌𝑗+1𝜏 +

1

2
Δ𝜑|∇𝜌𝑗+1𝜏 |2)d𝑥

− 𝜒

ℎ2∑
𝑗=ℎ1

𝜏 ∫ℝ𝑑(𝜌
𝑗+1
𝜏 )𝑚Δ𝜑 d𝑥 .

Using the definition of the piecewise constant interpolation 𝜌𝜏 and integration by parts,
cf. Remark 4.3, this is equivalent to

∫ℝ𝑑 𝜑(𝑥)𝜌𝜏(𝑠2, 𝑥) d𝑥 − ∫ℝ𝑑 𝜑(𝑥)𝜌𝜏(𝑠1, 𝑥) d𝑥 + 𝑂(𝜏)

= ∫
𝑠2

𝑠1
∫ℝ𝑑

(
𝜌𝜏∇(Δ𝜑) ⋅∇𝜌𝜏 + (𝐷

2𝜑∇𝜌𝜏) ⋅∇𝜌𝜏 +
1

2
Δ𝜑|∇𝜌𝜏|2)d𝑥 d𝑡

− 𝜒 ∫
𝑠2

𝑠1
∫ℝ𝑑 𝜌

𝑚
𝜏 Δ𝜑 d𝑥 d𝑡

= −∫
𝑠2

𝑠1
∫ℝ𝑑 (𝜌𝜏Δ𝜌𝜏Δ𝜑 + Δ𝜌𝜏∇𝜌𝜏 ⋅∇𝜑)d𝑥 d𝑡 − 𝜒 ∫

𝑠2

𝑠1
∫ℝ𝑑 𝜌

𝑚
𝜏 Δ𝜑 d𝑥 d𝑡.

(4.29)

By combining Lemma 4.2, Proposition 4.3, Proposition 4.4 and Corollary 4.1 we can pass to the
limit in (4.29) as 𝜏 → 0+, and recover a weak solution. □

Remark 4.3. Assume 𝜌 ∈ 𝐻2(ℝ𝑑) and 𝜑 ∈ 𝐶3
0
(ℝ𝑑) — this is indeed not a restriction as 𝜁 ∈

𝐶∞𝑐 (ℝ
𝑑; ℝ𝑑). Using integration by parts several times, we have

∫ℝ𝑑
(
𝜌∇𝜌 ⋅∇(Δ𝜑) + ∇𝜌 ⋅ (𝐷2𝜑∇𝜌) +

1

2
Δ𝜑|∇𝜌|2) d𝑥

= −∫ℝ𝑑 𝜌Δ𝜌Δ𝜑 d𝑥 +
1

2 ∫ℝ𝑑
(
2∇𝜌 ⋅ (𝐷2𝜑∇𝜌) − Δ𝜑|∇𝜌|2) d𝑥

= −∫ℝ𝑑 𝜌Δ𝜌Δ𝜑 d𝑥 + ∫ℝ𝑑
(
∇𝜌 ⋅ (𝐷2𝜑∇𝜌) + ∇𝜑 ⋅ (𝐷2𝜌∇𝜌)

)
d𝑥

= −∫ℝ𝑑 (𝜌Δ𝜌Δ𝜑 + Δ𝜌∇𝜌 ⋅∇𝜑) d𝑥 .

Remark 4.4. We observe that the addition of an external potential to the energy 𝑚, thus
to (1.1), even nonlocal, does not bring further difficulties to our strategy under minimal regularity
assumptions. Indeed, the above proof can be integrated with previous results, for example, [43,
52].

5 EXTENSION TO SYSTEMS OF TWO INTERACTING SPECIES

In this section, we extend the one-species theory to study system (1.4) and prove existence of weak
solutions. First, we obtain some basic properties of the free energy functional, defined in (1.7), we
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34 of 49 CARRILLO et al.

recall here for the reader’s convenience:

 [𝜌, 𝜂] =

{
̃ [𝜌, 𝜂] if (𝜌, 𝜂) ∈ 𝑎(ℝ𝑑)2, (∇𝜌,∇𝜂) ∈ 𝐿2(ℝ𝑑)2,
+∞ otherwise,

being

̃ [𝜌, 𝜂] = ∫ℝ𝑑
(
𝜅

2
|∇𝜌|2 + 1

2
|∇𝜂|2 + 𝛼∇𝜌 ⋅∇𝜂 − 𝛽

2
𝜌2 −

1

2
𝜂2 − 𝜔𝜌𝜂

)
d𝑥.

We remind the reader the parameters in the model are such that 𝛽, 𝜔 ∈ ℝ and the matrix

𝐴 =

(
𝜅 𝛼

𝛼 1

)
is assumed to be positive definite.

Remark 5.1. Throughout this section we restrict to the case 𝜌, 𝜂 have both mass equal to 1. Our
result holds true when ∫ 𝜌 𝑑𝑥 = ∫ 𝜂 𝑑𝑥 = 𝑀 ≠ 1 up to changing variables as

𝜏 = 𝑀𝑡, 𝜌̃ = 𝜌∕𝑀, 𝜂 = 𝜂∕𝑀.

If the masses are different we consider the Wasserstein distance between measures with given
mass for each species and the corresponding distance on the product space.

Proposition 5.1 (Lower bound for the free energy and induced regularity). Assume (𝜌, 𝜂) ∈
𝑎(ℝ𝑑)2. The following properties hold.
(1) Lower bound for the free energy: let ∇𝜌,∇𝜂 ∈ 𝐿2(ℝ𝑑), then  [𝜌, 𝜂] is bounded from below as

 [𝜌, 𝜂] ⩾ −𝐶
(‖𝜌‖2

𝐿1(ℝ𝑑)
+ ‖𝜂‖2

𝐿1(ℝ𝑑)

)
, (5.1)

where 𝐶 = 𝐶(𝜅, 𝛼, 𝛽, 𝜔, 𝑑) > 0.
(2) 𝐻1-bound: assume  [𝜌, 𝜂] < +∞, then the following bound holds

‖∇𝑓‖2
𝐿2(ℝ𝑑)

⩽ 𝐶
(2[𝑓] + ‖𝑓‖2𝐿1(ℝ𝑑)), for 𝑓 ∈ {𝜌, 𝜂} (5.2)

where 𝐶 = 𝐶(𝑑) > 0.
(3) 𝐿𝑝-regularity: assume [𝜌, 𝜂] < +∞, then 𝜌, 𝜂 ∈ 𝐿𝑝(ℝ𝑑) for any 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2, and for any

𝑝 ∈ [1, 2∗) when 𝑑 = 2. In particular, there exists a constant 𝐶 = 𝐶(𝑝, 𝑑, 𝑓) > 0 such that

‖𝑓‖𝐿𝑝(ℝ𝑑) ⩽ 𝐶 < +∞, for 𝑓 ∈ {𝜌, 𝜂}. (5.3)

Proof. Step 1: Lower bound for the free energy. By using Cauchy–Schwarz and Young inequalities
we obtain

 [𝜌, 𝜂] = ∫ℝ𝑑
(
𝜅

2
|∇𝜌|2 + 1

2
|∇𝜂|2 + 𝛼∇𝜌 ⋅∇𝜂 − 𝛽

2
𝜌2 −

1

2
𝜂2 − 𝜔𝜌𝜂

)
d𝑥

⩾ ∫ℝ𝑑
(
𝜅

2
|∇𝜌|2 + 1

2
|∇𝜂|2 − |𝛼||∇𝜌||∇𝜂| − 𝛽 + |𝜔|

2
𝜌2 −

1 + |𝜔|
2

𝜂2
)
d𝑥
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 35 of 49

⩾ ∫ℝ𝑑
(
𝜅 − |𝛼|𝜀

2
|∇𝜌|2 + 1 − |𝛼|𝜀−1

2
|∇𝜂|2 − 𝛽 + |𝜔|

2
𝜌2 −

1 + |𝜔|
2

𝜂2
)
d𝑥.

Since thematrix𝐴 is positive definite, 𝜅 − 𝛼2 > 0we can choose 𝜀 ∈ (|𝛼|, 𝜅|𝛼| ) so that 1 − |𝛼|𝜀−1 >
0 and 𝜅 − |𝛼|𝜀 > 0. Hence, we obtain

 [𝜌, 𝜂] ⩾ (𝜅 − |𝛼|𝜀)2[𝜌] + (1 − |𝛼|𝜀−1)2[𝜂], (5.4)

where we implicitly have two different values of 𝜒 in the two energies, depending on the param-
eters of the system. This is not an issue as we are in the subcritical exponent case, 𝑚 = 2. The
energy is, therefore, bounded from below, and the result follows from the one-species case (3.1).
Step 2: 𝐻1-bound and 𝐿𝑝-regularity. Given  [𝜌, 𝜂] < +∞, then (5.4) implies 2[𝜌],2[𝜂] <

+∞. The results follow from the one-species case (3.2), (3.3). □

5.1 The JKO scheme

Analogously to the problem for the one-species case, we can use the JKO scheme to construct an
approximation to a candidate of a solution.

Remark 5.2. For the sake of completeness we specify the notation for the 2-Wasserstein distance
in the product space. Let 𝜎1 = (𝜌1, 𝜂1) ∈ 2(ℝ𝑑)2 and 𝜎2 = (𝜌2, 𝜂2) ∈ 2(ℝ𝑑)2. The 2-Wasserstein
distance between 𝜎1 and 𝜎2 is denoted as

𝑑2𝑊(𝜎1, 𝜎2) =2
2 (𝜌1, 𝜌2) +2

2 (𝜂1, 𝜂2) . (5.5)

Furthermore, note that for 𝜎 = (𝜌, 𝜂) ∈ 2(ℝ𝑑)2,m2(𝜎) = m2(𝜌) + m2(𝜂).

As in the one-species case, we consider the following recursive scheme, for 𝜎0 ∈ 2(ℝ𝑑)2.
∙ Let 𝜏 > 0 and set 𝜎0𝜏 ∶= 𝜎0 = (𝜌0, 𝜂0).
∙ Given 𝜎𝑘𝜏 = (𝜌

𝑘
𝜏 , 𝜂

𝑘
𝜏 ) ∈ (ℝ𝑑)2 for 𝑘 ⩾ 0, choose

𝜎𝑘+1𝜏 = (𝜌𝑘+1𝜏 , 𝜂𝑘+1𝜏 ) ∈ argmin
𝜎∈(ℝ𝑑)2

{
𝑑2
𝑊
(𝜎, 𝜎𝑘𝜏 )

2𝜏
+  [𝜎]

}
. (5.6)

We start checking that the scheme (5.6) is well defined. Let us fix 𝜎̄ = (𝜌̄, 𝜂) ∈ 𝑎
2
(ℝ𝑑)2 and

define the functional

∶ (ℝ𝑑)2 ⟶ ℝ

𝜎 ⟼
𝑑2
𝑊
(𝜎, 𝜎)

2𝜏
+  [𝜎].

Proposition 5.2. Let 𝜎 ∈ 𝑎
2
(ℝ𝑑)2. The functional  admits a minimiser in the set{

𝜎 = (𝜌, 𝜂) ∈ 𝑎(ℝ𝑑)2 ∶ ∇𝜌,∇𝜂 ∈ 𝐿2(ℝ𝑑)}.
Again, we employ the direct method of calculus of variations and the results from the one-

species case; cf. Proposition 4.1.
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36 of 49 CARRILLO et al.

Proof. Step 1: Boundedness from below. Analogously to Proposition 4.1 we note that

[𝜎] ⩾ 𝐶.

This ensures that we can consider a minimising sequence {𝜎𝑛}𝑛, where 𝜎𝑛 = (𝜌𝑛, 𝜂𝑛), satisfying:

m2(𝜌𝑛) + m2(𝜂𝑛) ⩽ 𝐶𝑇(1 + m2(𝜌) + m2(𝜂)).

Step 2:  is lower semicontinuous. Repeating the argument in Proposition 4.1 we know that,
up to a subsequence,

∇𝜌𝑛 ⇀ ∇𝜌 and ∇𝜂𝑛 ⇀ ∇𝜂 in 𝐿2(ℝ𝑑), (5.7a)

𝜌𝑛 → 𝜌 and 𝜂𝑛 → 𝜂 in 𝐿2(ℝ𝑑). (5.7b)

Next, we write

∇𝜌𝑛 ⋅∇𝜂𝑛 =
𝛼

2
|||∇(𝜌𝑛 + 𝛼−1𝜂𝑛)|||2 − 𝛼

2
|∇𝜌𝑛|2 − 1

2𝛼
|∇𝜂𝑛|2.

Note that 𝜌𝑛 + 𝛼−1𝜂𝑛 → 𝜌 + 𝛼−1𝜂 and also ∇(𝜌𝑛 + 𝛼−1𝜂𝑛) ⇀ ∇𝜌 + 𝛼−1∇𝜂 in 𝐿2(ℝ𝑑). By using
the lower semicontinuity of the𝐻1 seminorm and that 𝜅 − 𝛼2 > 0, we obtain

lim inf
𝑛→+∞ ∫ℝ𝑑

(
𝜅

2
|∇𝜌𝑛|2 + 1

2
|∇𝜂𝑛|2 + 𝛼∇𝜌𝑛 ⋅∇𝜂𝑛) d𝑥

= lim inf
𝑛→+∞ ∫ℝ𝑑

(
𝜅 − 𝛼2

2
|∇𝜌𝑛|2 + 𝛼2

2
|||∇(𝜌𝑛 + 𝛼−1𝜂𝑛)|||2

)
d𝑥

⩾ ∫ℝ𝑑
(
𝜅 − 𝛼2

2
|∇𝜌|2 + 𝛼2

2
|||∇(𝜌 + 𝛼−1𝜂)|||2

)
d𝑥

= ∫ℝ𝑑
(
𝜅

2
|∇𝜌|2 + 1

2
|∇𝜂|2 + 𝛼∇𝜌 ⋅∇𝜂) d𝑥 .

In order to deal with the other terms involved in the free energy, the quadratic terms follow from
the convergence (5.7). In order to deal with the last term, we now claim that

𝜌𝑛𝜂𝑛 → 𝜌𝜂 in 𝐿1(ℝ𝑑).

This follows from

‖𝜌𝑛𝜂𝑛 − 𝜌𝜂‖𝐿1(ℝ𝑑) ⩽ ‖𝜂𝑛(𝜌 − 𝜌𝑛)‖𝐿1(ℝ𝑑) + ‖𝜌(𝜂 − 𝜂𝑛)‖𝐿1(ℝ𝑑)
⩽ ‖𝜂𝑛‖𝐿2(ℝ𝑑)‖𝜌 − 𝜌𝑛‖𝐿2(ℝ𝑑) + ‖𝜌‖𝐿2(ℝ𝑑)‖𝜂 − 𝜂𝑛‖𝐿2(ℝ𝑑) → 0 .

Step 3: Existence of minimisers follows then from the Weierstrass criterion, cf., for example,
[58, Box 1.1]. □
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 37 of 49

Let 𝑇 > 0, and consider 𝑁 ∶=
[
𝑇

𝜏

]
. We define the curve 𝜎𝜏 ∶ [0, 𝑇] → (ℝ𝑑)2 as the piecewise

constant interpolation

𝜎𝜏(𝑡) = 𝜎
𝑘
𝜏 , 𝑡 ∈ ((𝑘 − 1)𝜏, 𝑘𝜏], (5.8)

where 𝜎𝑘𝜏 = (𝜌
𝑘
𝜏 , 𝜂

𝑘
𝜏 ) is defined in (5.6). In the following, we prove the two-species analogous of

Lemma 4.1, Proposition 4.2 and Proposition 4.3.

Lemma 5.1 (Narrow convergence and discrete uniform estimates). Let 𝜎0 ∈ 𝑎
2
(ℝ𝑑)2 such that

 [𝜎0] < +∞. There exists an absolutely continuous curve 𝜎̃ ∶ [0, 𝑇] → 2(ℝ𝑑)2 such that, up to a
subsequence, 𝜎𝜏(𝑡) narrowly converges to 𝜎̃(𝑡), uniformly in 𝑡 ∈ [0, 𝑇].
Moreover, we obtain the following discrete uniform bounds:

sup
𝑘
‖∇𝜌𝑘𝜏‖𝐿2(ℝ𝑑) + sup

𝑘
‖∇𝜂𝑘𝜏‖𝐿2(ℝ𝑑) ⩽ 𝐶1 < +∞ , (5.9)

sup
𝑘
‖𝜌𝑘𝜏‖𝐿𝑝(ℝ𝑑) + sup

𝑘
‖𝜂𝑘𝜏‖𝐿𝑝(ℝ𝑑) ⩽ 𝐶2 < +∞ , (5.10)

m2(𝜎𝜏(𝑡)) ⩽ 2m2(𝜎0) + 4𝑇 ( [𝜎0] + 𝐶) , (5.11)

for𝑝 ∈ [1, 2∗], 𝑑 ≠ 2 and 𝑝 ∈ [1, 2∗)when 𝑑 = 2. The constants𝐶1 > 0 and𝐶2 > 0 are independent
of 𝑘 and 𝜏.

Proof. The proof works analogously to the one from Lemma 4.1. By construction of the sequence
we obtain that

 [𝜎𝑘𝜏 ] ⩽
𝑑2
𝑊
(𝜎𝑘𝜏 , 𝜎

𝑘−1
𝜏 )

2𝜏
+  [𝜎𝑘𝜏 ] ⩽  [𝜎𝑘−1𝜏 ], (5.12)

and, in particular,

sup
𝑘

 [𝜎𝑘𝜏 ] ⩽  [𝜎0] < +∞.

This combined with (5.2) and (5.3) implies that ‖∇𝜌𝑘𝜏‖𝐿2(ℝ𝑑), ‖∇𝜂𝑘𝜏‖𝐿2(ℝ𝑑) and ‖𝜌𝑘𝜏‖𝐿𝑝(ℝ𝑑),‖𝜂𝑘𝜏‖𝐿𝑝(ℝ𝑑) are uniformly bounded in 𝑘 and 𝜏 for 𝑝 ∈ [1, 2∗], 𝑑 ≠ 2 and 𝑝 ∈ [1, 2∗) when 𝑑 = 2.
From here we recover (5.9) and (5.10).
Summing up over 𝑘 in (5.12), we obtain that

𝑗∑
𝑘=𝑖+1

𝑑2
𝑊
(𝜎𝑘𝜏 , 𝜎

𝑘−1
𝜏 )

2𝜏
⩽  [𝜎𝑖𝜏] −  [𝜎

𝑗
𝜏] ⩽  [𝜎0] + 𝐶, (5.13)

where the last inequality holds because the free energy is bounded from (5.1). Therefore, the
distance 𝑑𝑊 between 𝜎0 and 𝜎𝜏(𝑡) is uniformly bounded, as for 𝑡 ∈ ((𝑗 − 1)𝜏, 𝑗𝜏],

𝑑2𝑊(𝜎0, 𝜎𝜏(𝑡)) ⩽ 𝑗

𝑗∑
𝑘=1

𝑑2𝑊(𝜎
𝑘
𝜏 , 𝜎

𝑘−1
𝜏 ) ⩽ 2𝑗𝜏( [𝜎0] + 𝐶) ⩽ 2𝑇( [𝜎0] + 𝐶).

Furthermore, this last inequality combined with the triangular inequality for the 2-Wasserstein
distance gives us that second-order moments are uniformly bounded on compact time intervals
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38 of 49 CARRILLO et al.

[0, 𝑇]:

m2(𝜎𝜏(𝑡)) ⩽ 2m2(𝜎0) + 2𝑑
2
𝑊(𝜎0, 𝜎𝜏(𝑡)) ⩽ 2m2(𝜎0) + 4𝑇( [𝜎0] + 𝐶).

We can now prove equi-continuity. Consider 0 ⩽ 𝑠 < 𝑡 ⩽ 𝑇 such that 𝑠 ∈ ((𝑖 − 1)𝜏, 𝑖𝜏] and 𝑡 ∈
((𝑗 − 1)𝜏, 𝑗𝜏]. Then, combining Cauchy–Schwarz inequality with (5.13) we have

𝑑𝑊(𝜎𝜏(𝑠), 𝜎𝜏(𝑡)) ⩽

𝑗∑
𝑘=𝑖+1

𝑑𝑊(𝜎
𝑘
𝜏 , 𝜎

𝑘−1
𝜏 )

⩽

(
𝑗∑

𝑘=𝑖+1

𝑑2𝑊(𝜎
𝑘
𝜏 , 𝜎

𝑘−1
𝜏 )

) 1
2 |𝑗 − 𝑖| 12

⩽ (2( [𝜎0] + 𝐶))
1
2

(√|𝑡 − 𝑠| +√𝜏). (5.14)

From here we obtain that 𝜎𝜏 is
1

2
-Holder equi-continuous up to a negligible error of order

√
𝜏.

Thus, using the refined version of the Ascoli–Arzelà theorem [1, Proposition 3.3.1], it follows that
𝜎𝜏 admits a subsequence narrowly converging to a limit 𝜎̃ = (𝜌̃, 𝜂) ∈ (ℝ𝑑)2 as 𝜏 → 0+, uniformly
on [0, 𝑇]. Furthermore, using that | ⋅ |2 is lower semicontinuous and the uniform bound (5.11), we
obtain that the limiting curve 𝜎̃ is such that

m2(𝜎̃(𝑡)) ⩽ lim inf
𝜏↓0

m2(𝜎𝜏(𝑡)) ⩽ 𝐶 . □

Proposition 5.3 (Weak convergence). Let 𝜎0 ∈ 𝑎
2
(ℝ𝑑)2 such that  [𝜎0] < +∞. The piecewise

interpolation 𝜎𝜏 constructed in (5.8) is such that 𝜎𝜏 ∈ 𝐿∞([0, 𝑇];𝐻1(ℝ𝑑))2. In particular, the limit 𝜎̃
belongs to 𝐿∞([0, 𝑇];𝐻1(ℝ𝑑))2 and

𝜎𝜏 ⇀ 𝜎̃ in 𝐿2([0, 𝑇];𝐻1(ℝ𝑑))2.

Proof. From (5.9) in Lemma 5.1 we have

‖𝜌𝜏‖𝐿∞([0,𝑇];𝐻1(ℝ𝑑)) = sup
𝑡∈(0,𝑇)

‖𝜌𝜏(𝑡)‖𝐿2(ℝ𝑑) = sup
𝑘
‖𝜌𝑘𝜏‖𝐻1(ℝ𝑑) < +∞ ,

and analogously for 𝜂𝜏. In particular, for any compact time interval [0, 𝑇] with 𝑇 > 0, we have‖𝜌𝜏‖𝐿2([0,𝑇];𝐻1(ℝ𝑑)) + ‖𝜂𝜏‖𝐿2([0,𝑇];𝐻1(ℝ𝑑)) ⩽ 𝐶 uniformly in 𝜏 and the weak convergence follows
from Banach–Alaoglu theorem. Regularity of the limit follows from standard arguments. □

Proposition5.4 (Strong convergence of𝜎𝜏).Let𝜎0 ∈ 𝑎
2
(ℝ𝑑) such that [𝜎0] < +∞. The sequence

𝜎𝜏 ∶ [0, 𝑇] → 2(ℝ𝑑)2 converges, up to a subsequence, strongly to the curve 𝜎̃ in 𝐿2([0, 𝑇]; 𝐿2(ℝ𝑑))2
for every 𝑇 > 0.

Proof. We apply Proposition 2.1 to a subset 𝑈 = {𝜎𝜏}𝜏⩾0 for 𝑋 = 𝐿2(ℝ𝑑)2 ang g ∶= 𝑑𝑊 defined in
(5.5). Similar to the one-species case, we consider the functional  ∶ 𝐿2(ℝ𝑑)2 → [0, +∞] defined
by

[𝜌, 𝜂] =

{‖𝜌‖2
𝐻1(ℝ𝑑)

+ ‖𝜂‖2
𝐻1(ℝ𝑑)

+ m2(𝜌) + m2(𝜂) 𝜌, 𝜂 ∈ 2(ℝ𝑑) ∩ 𝐻1(ℝ𝑑),
+∞ otherwise.
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 39 of 49

Note that 𝑑𝑊 is a distance on the proper domain of . Indeed, given 𝜎 = (𝜌, 𝜂), if [𝜎] < +∞
then 𝜎 ∈ 2(ℝ𝑑)2. As in Proposition 4.3, the functional  is lower semicontinuous from standard
arguments [14] and has relatively compact subsets from Kolmogorov–Riesz–Fréchet theorem [12,
Corollary 4.27].
Proving that  and 𝑑𝑊 satisfy the tightness and integral equi-continuity conditions in

Proposition 2.1 can be done as in the one-species case by using arguments analogous to
those in Proposition 4.3. Tightness follows from the uniform-in-𝜏 second-order moment and
𝐿∞([0, 𝑇];𝐻1(ℝ𝑑)) bounds for 𝜎𝑘𝜏 given in Lemma 5.1. Equi-continuity is a consequence from the
Hölder equi-continuity of 𝜎𝜏 proved in Lemma 5.1. □

5.2 Flow interchange

As in the one-species case we can obtain𝐻2 bounds for 𝜌 and 𝜂 using the flow interchange tech-
nique. In order to do so, we consider the decoupled system of heat equations as an auxiliary
flow {

𝜕𝑡𝜇1 = Δ𝜇1 ,

𝜕𝑡𝜇2 = Δ𝜇2 ,
(5.15)

and the auxiliary functional

[𝜇1, 𝜇2] =

{∫
ℝ𝑑
[𝜇1 log 𝜇1 + 𝜇2 log 𝜇2] d𝑥, 𝜇1 log 𝜇1, 𝜇2 log 𝜇2 ∈ 𝐿

1(ℝ𝑑);

+∞ otherwise.

For any 𝜇 = (𝜇1, 𝜇2) ∈ 2(ℝ𝑑)2 such that [𝜇] < ∞, we denote by 𝑆𝑡

𝜇 ∶= (𝑆𝑡


𝜇1, 𝑆

𝑡

𝜇2) the solu-

tion at time 𝑡 > 0 to system (5.15) for an initial value 𝜇. Furthermore, we define the dissipation of
 along the flow 𝑆 as

𝐷 [𝜎] ∶= lim sup
𝑠↓0

{
 [𝜎] −  [𝑆𝑠


𝜎]

𝑠

}
,

where 𝜎 denotes 𝜎 ∶= (𝜌, 𝜂) ∈ (ℝ𝑑)2.
Lemma 5.2 (𝐻2 uniform bound). Let 𝜎0 such that  [𝜎0] < +∞. The piecewise interpolation 𝜎𝜏
in (5.8) is such that 𝜎𝜏 ∈ 𝐿2([0, 𝑇];𝐻2(ℝ𝑑))2. In particular, we obtain the uniform bound

‖𝐷2𝜌𝜏‖2𝐿2([0,𝑇];𝐿2(ℝ𝑑)) + ‖𝐷2𝜂𝜏‖2𝐿2([0,𝑇];𝐿2(ℝ𝑑)) ⩽ 𝐶,
where 𝐶 > 0 is independent of 𝜏.

Proof. We proceed analogously to the one-species case. Note that 𝜎𝜏 ∈ 𝐿2([0, 𝑇];𝐻1(ℝ𝑑))2 by
Proposition 5.3. For all 𝑠 > 0, we consider 𝑆𝑠


𝜎𝑘+1𝜏 = (𝑆𝑠


𝜌𝑘+1𝜏 , 𝑆𝑠


𝜂𝑘+1𝜏 ). Then, by the definition

of the scheme (4.1) and of 𝜎𝑘+1𝜏 , we have the inequality

1

2𝜏
𝑑2𝑊
(
𝜎𝑘𝜏 , 𝜎

𝑘+1
𝜏

)
+ 

[
𝜎𝑘+1𝜏

]
⩽
1

2𝜏
𝑑2𝑊
(
𝜎𝑘𝜏 , 𝑆

𝑠

𝜎𝑘+1𝜏

)
+ 

[
𝑆𝑠

𝜎𝑘+1𝜏

]
,
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40 of 49 CARRILLO et al.

from which we obtain

𝜏

[
𝜎𝑘+1𝜏

]
− 

[
𝑆𝑠

𝜎𝑘+1𝜏

]
𝑠

⩽
1

2

𝑑2
𝑊

(
𝜎𝑘𝜏 , 𝑆

𝑠

𝜎𝑘+1𝜏

)
− 𝑑2

𝑊

(
𝜎𝑘𝜏 , 𝜎

𝑘+1
𝜏

)
𝑠

.

By taking the lim sup as 𝑠 ↓ 0 and considering the definition of the distance 𝑑𝑊 , we obtain

𝜏𝐷 [𝜎
𝑘+1
𝜏 ] ⩽

1

2

d+

d𝑡

||||𝑡=0𝑑2𝑊(𝜎𝑘𝜏 , 𝑆𝑡𝜎𝑘+1𝜏 ) ⩽ [𝜎𝑘𝜏 ] − [𝜎𝑘+1𝜏 ], (5.16)

where in the last inequality we use the (EVI), as 𝑆 is a 0-flow, cf. Definition 2.4.
The dissipation of  along the flow 𝑆 can be written as

𝐷 [𝜎
𝑘+1
𝜏 ] = lim sup

𝑠↓0

{
 [𝜎𝑘+1𝜏 ] −  [𝑆𝑠


𝜎𝑘+1𝜏 ]

𝑠

}

= lim sup
𝑠↓0 ∫

1

0

(
−
d

d𝑧

||||𝑧=𝑠𝑡 [𝑆𝑧𝜎𝑘+1𝜏 ]

)
d𝑡.

(5.17)

Let us calculate the time derivative:

d

d𝑡
 [𝑆𝑡


𝜎𝑘+1𝜏 ] = − ∫

(
𝜅|Δ𝑆𝑡


𝜌𝑘+1𝜏 |2 + |Δ𝑆𝑡


𝜂𝑘+1𝜏 |2 + 2𝛼Δ𝑆𝑡


𝜌𝑘+1𝜏 Δ𝑆𝑡


𝜂𝑘+1𝜏

)
d𝑥

+ ∫
(
𝛽|∇𝑆𝑡


𝜌𝑘+1𝜏 |2 + |∇𝑆𝑡


𝜂𝑘+1𝜏 |2 + 2𝜔∇𝑆𝑡


𝜌𝑘+1𝜏 ⋅∇𝑆𝑡


𝜂𝑘+1𝜏

)
d𝑥.

By applying Young’s inequality, we obtain

−
d

d𝑡
 [𝑆𝑡


𝜎𝑘+1𝜏 ] ⩾ ∫ℝ𝑑

(
(𝜅 − |𝛼|𝜀)|Δ𝑆𝑡


𝜌𝑘+1𝜏 |2 + (1 − |𝛼|𝜀−1)|Δ𝑆𝑡


𝜂𝑘+1𝜏 |2) d𝑥

− ∫ℝ𝑑
(
(𝛽 + |𝜔|)|∇𝑆𝑡


𝜌𝑘+1𝜏 |2 + (1 + |𝜔|)|∇𝑆𝑡


𝜂𝑘+1𝜏 |2) d𝑥, (5.18)

where 𝜀 can be chosen such that 𝜅 − |𝛼|𝜀 > 0 and 1 − |𝛼|𝜀−1 > 0. Therefore, combining (5.16),
(5.17) and (5.18) we obtain

𝜏 lim inf
𝑠↓0 ∫

1

0 ∫ℝ𝑑
(
(𝜅 − |𝛼|𝜀)|Δ𝑆𝑠𝑡


𝜌𝑘+1𝜏 |2 + (1 − |𝛼|𝜀−1)|Δ𝑆𝑠𝑡


𝜂𝑘+1𝜏 |2) d𝑥 d𝑡

⩽ 𝜏 lim sup
𝑠↓0 ∫

1

0 ∫ℝ𝑑
(
(𝛽 + |𝜔|)|∇𝑆𝑠𝑡


𝜌𝑘+1𝜏 |2 + (1 + |𝜔|)|∇𝑆𝑠𝑡


𝜂𝑘+1𝜏 |2)d𝑥d𝑡

+ [𝜎𝑘𝜏 ] − [𝜎𝑘+1𝜏 ].

Next, we recognise ∇𝑆𝑠𝑡

𝜎𝑘+1𝜏 as the solution of the system of heat equations with initial data

∇𝜎𝑘+1𝜏 ∈ 𝐿2(ℝ𝑑)2. Hence, ∇𝑆𝑠𝑡

𝜎𝑘+1𝜏 → ∇𝜎𝑘+1𝜏 in 𝐿2(ℝ𝑑)2 as 𝑠 ↓ 0. In particular,

lim sup
𝑠↓0 ∫

1

0 ∫ℝ𝑑 |∇𝑆𝑠𝑡 𝜎𝑘+1𝜏 |2 d𝑥 d𝑡 = ∫ℝ𝑑 |∇𝜎𝑘+1𝜏 |2 d𝑥.
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 41 of 49

Moreover, by well-known properties of the heat equation and the weak lower semicontinuity of
the𝐻1 seminorm we have

lim inf
𝑠↓0 ∫

1

0 ∫ℝ𝑑 |Δ𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2 + |Δ𝑆𝑠𝑡

𝜂𝑘+1𝜏 |2 d𝑥 d𝑡

= lim inf
𝑠↓0 ∫

1

0 ∫ℝ𝑑 |𝐷2𝑆𝑠𝑡 𝜌𝑘+1𝜏 |2 + |𝐷2𝑆𝑠𝑡

𝜂𝑘+1𝜏 |2 d𝑥 d𝑡

⩾ ∫ℝ𝑑 |𝐷2𝜌𝑘+1𝜏 |2 + |𝐷2𝜂𝑘+1𝜏 |2 d𝑥 .
Thus we have found

𝜏‖𝐷2𝜌𝑘+1𝜏 ‖2
𝐿2(ℝ𝑑)

+ 𝜏‖𝐷2𝜂𝑘+1𝜏 ‖2
𝐿2(ℝ𝑑)

⩽ 𝐶
(
[𝜎𝑘𝜏 ] − [𝜎𝑘+1𝜏 ]

)
+ 𝐶

(
𝜏‖∇𝜌𝑘+1𝜏 ‖2

𝐿2(ℝ𝑑)
+ 𝜏‖∇𝜂𝑘+1𝜏 ‖2

𝐿2(ℝ𝑑)

)
,

for a constant𝐶 = 𝐶(𝜅, 𝛼, 𝛽, 𝜔) independent of 𝜏. By summing up over 𝑘 from0 to𝑁 − 1we obtain
the desired𝐻2 bound by using Lemma 5.1 since we have

‖𝐷2𝜌𝜏‖2𝐿2([0,𝑇];𝐿2(ℝ𝑑)) + ‖𝐷2𝜂𝜏‖2𝐿2([0,𝑇];𝐿2(ℝ𝑑))
⩽ 𝐶
(
[𝜎0] − [𝜎𝑁𝜏 ]

)
+ 𝐶

(‖∇𝜌𝜏‖2𝐿2([0,𝑇];𝐿2(ℝ𝑑)) + ‖∇𝜂𝜏‖2𝐿2([0,𝑇];𝐿2(ℝ𝑑))). □

The obtained𝐻2 bound allows us to obtain a two-species analogous of Proposition 4.4.

Proposition 5.5 (Strong convergence of∇𝜎𝜏). Let 𝜎0 such that  [𝜎0] < +∞. Up to a subsequence,
the sequence 𝜎𝜏 ∶ [0, 𝑇] → 2(ℝ𝑑)2 converges strongly to the curve 𝜎̃ in 𝐿2([0, 𝑇];𝐻1(ℝ𝑑))2.
Proof. The result follows by applying Proposition 4.4 to ∇𝜌𝜏 and ∇𝜂𝜏 together with the uniform
𝐻2 bound derived in Lemma 5.2. □

5.3 Consistency of the scheme

Now we are ready to prove that 𝜎̃ = (𝜌̃, 𝜂) is a weak solution of the problem (1.4) in the sense of
Definition 2.2. This subsection completes the proof of Theorem 2.3.

Proof of Theorem 2.3. We prove the theorem by showing that the sequence 𝜎𝜏 ∶ [0, 𝑇] → 2(ℝ𝑑)2
converges, up to a subsequence, to aweak solution 𝜎̃ of (1.4).Wewill prove only the consistency for
the first Equation (1.4a). The case (1.4b) will work analogously. Let us fix two consecutive steps in
the JKO scheme 𝜎𝑘𝜏 = (𝜌

𝑘
𝜏 , 𝜂

𝑘
𝜏 ), 𝜎

𝑘+1
𝜏 = (𝜌𝑘+1𝜏 , 𝜂𝑘+1𝜏 ), and consider the perturbation 𝜎𝜀 = (𝜌𝜀, 𝜂𝑘+1𝜏 )

where 𝜌𝜀 = 𝑃𝜀
#
𝜌𝑘+1𝜏 given by 𝑃𝜀 = id + 𝜀𝜁, where 𝜁 is a vector field 𝜁 ∈ 𝐶∞𝑐 (ℝ

𝑑; ℝ𝑑), and 𝜀 ⩾ 0. By
applying the definition of the scheme we obtain

1

2𝜏

(
𝑑2
𝑊
(𝜎𝑘𝜏 , 𝜎

𝜀) − 𝑑2
𝑊
(𝜎𝑘𝜏 , 𝜎

𝑘+1
𝜏 )

𝜀

)
+

 [𝜎𝜀] −  [𝜎𝑘+1𝜏 ]

𝜀
⩾ 0. (5.19)
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42 of 49 CARRILLO et al.

We proceed now to analyse each one of the terms in (5.19).
Step 1: Wasserstein distance terms. We first realise that

𝑑2
𝑊
(𝜎𝑘𝜏 , 𝜎

𝜀) − 𝑑2
𝑊
(𝜎𝑘𝜏 , 𝜎

𝑘+1
𝜏 )

2𝜏𝜀
=

2
2
(𝜌𝑘𝜏 , 𝜌

𝜀) −2
2
(𝜌𝑘𝜏 , 𝜌

𝑘+1
𝜏 )

2𝜏𝜀
. (5.20)

Therefore, Step 1 of the proof of Theorem2.2 applies to this case. Let  be the optimalmap between
𝜌𝑘𝜏 and 𝜌

𝑘+1
𝜏 , then

𝑑2
𝑊
(𝜎𝑘𝜏 , 𝜎

𝜀) − 𝑑2
𝑊
(𝜎𝑘𝜏 , 𝜎

𝑘+1
𝜏 )

2𝜏𝜀
⩽ −

1

𝜏 ∫ℝ𝑑(𝑥 −  (𝑥)) ⋅ 𝜁( (𝑥))𝜌𝑘𝜏 (𝑥)d𝑥 + 𝑂(𝜀).
Step 2: Self-aggregation and self-diffusion terms. As in the one-species case; cf. Theorem 2.2,

we have

−∫ℝ𝑑
(𝜌𝜀)2 − (𝜌𝑘+1𝜏 )2

𝜀
= ∫ℝ𝑑(𝜌

𝑘+1
𝜏 )2(div 𝜁) d𝑥 + 𝑂(𝜀) (5.21)

and

1

2 ∫ℝ𝑑
|∇𝜌𝜀|2 − |∇𝜌𝑘+1𝜏 |2

𝜀
d𝑥

= −∫ℝ𝑑
(
𝜌𝑘+1𝜏 ∇(div 𝜁) ⋅∇𝜌𝑘+1𝜏 + (∇𝜁∇𝜌𝑘+1𝜏 ) ⋅∇𝜌𝑘+1𝜏

+
1

2
div 𝜁|∇𝜌𝑘+1𝜏 |2) d𝑥 + 𝑂(𝜀).

(5.22)

Step 3: Cross-interaction terms. For the second-order term we use the area formula to obtain

∫ℝ𝑑
𝜌𝜀(𝑥) − 𝜌𝑘+1𝜏 (𝑥)

𝜀
𝜂𝑘+1𝜏 (𝑥) d𝑥 = ∫ℝ𝑑 𝜌

𝑘+1
𝜏 (𝑥)

𝜂𝑘+1𝜏 (𝑃𝜀(𝑥)) − 𝜂𝑘+1𝜏 (𝑥)

𝜀
d𝑥

= ∫ℝ𝑑 𝜌
𝑘+1
𝜏 (𝑥)∇𝜂𝑘+1𝜏 (𝑥) ⋅ 𝜁(𝑥) d𝑥 + 𝑂(𝜀).

(5.23)

Similarly, for the fourth-order term, we use the fact that ∇𝜂𝑘+1𝜏 (𝑃𝜀(𝑥)) = ∇𝜂𝑘+1𝜏 (𝑥) +

𝜀𝐷2𝜂𝑘+1𝜏 (𝑥)𝜁(𝑥) + 𝑂(𝜀2), and argue as in the one-species case to obtain

∫ℝ𝑑
∇𝜌𝜀 − ∇𝜌𝑘+1𝜏

𝜀
⋅∇𝜂𝑘+1𝜏 d𝑥

= −∫ℝ𝑑
(
𝜌𝑘+1𝜏 ∇(div 𝜁) ⋅∇𝜂𝑘+1𝜏 + ∇𝜌𝑘+1𝜏 ⋅ (∇𝜁∇𝜂𝑘+1𝜏 )

−∇𝜌𝑘+1𝜏 ⋅ (𝐷2𝜂𝑘+1𝜏 𝜁)
)
d𝑥 + 𝑂(𝜀).

(5.24)

Step 4: Taking the limit 𝜀 → 0. Analogously to the one-species case we perform the same compu-
tation for 𝜀 ⩽ 0 and we take again 𝜁 = ∇𝜑. If we consider 𝜀 → 0, and thanks to (5.20)–(5.24), we
have

1

𝜏 ∫ℝ𝑑(𝑥 −  (𝑥)) ⋅∇𝜑( (𝑥))𝜌𝑘𝜏 (𝑥) d𝑥
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 43 of 49

= −𝜅 ∫
(
𝜌𝑘+1𝜏 ∇(Δ𝜑) ⋅∇𝜌𝑘+1𝜏 + (𝐷2𝜑∇𝜌𝑘+1𝜏 ) ⋅∇𝜌𝑘+1𝜏 +

1

2
Δ𝜑|∇𝜌𝑘+1𝜏 |2) d𝑥

− 𝛼 ∫
(
𝜌𝑘+1𝜏 ∇(Δ𝜑) ⋅∇𝜂𝑘+1𝜏 + ∇𝜌𝑘+1𝜏 ⋅ (𝐷2𝜑∇𝜂𝑘+1𝜏 ) − ∇𝜌𝑘+1𝜏 ⋅ (𝐷2𝜂𝑘+1𝜏 ∇𝜑)

)
d𝑥

+
𝛽

2 ∫ (𝜌𝑘+1𝜏 )2Δ𝜑 d𝑥 − 𝜔 ∫ 𝜌𝑘+1𝜏 ∇𝜂𝑘+1𝜏 ⋅∇𝜑d𝑥. (5.25)

As in the one-species case, and using the Holder continuity of 𝜌𝜏, (5.14), we have

∫ℝ𝑑(𝑥 −  (𝑥)) ⋅∇𝜑( (𝑥))𝜌𝑘𝜏 (𝑥) d𝑥 = ∫ℝ𝑑 𝜑(𝑥)
[
𝜌𝑘𝜏 (𝑥) − 𝜌

𝑘+1
𝜏 (𝑥)

]
d𝑥 + 𝑂(𝜏) .

Let 0 ⩽ 𝑠1 < 𝑠2 ⩽ 𝑇 be fixed with

ℎ1 =
[ 𝑠1
𝜏

]
+ 1 and ℎ2 =

[ 𝑠2
𝜏

]
.

By summing on (5.25) and using the definition of piecewise interpolation, we obtain

∫ℝ𝑑 𝜑(𝑥)𝜌𝜏(𝑠2, 𝑥) d𝑥 − ∫ℝ𝑑 𝜑(𝑥)𝜌𝜏(𝑠1, 𝑥) d𝑥 + 𝑂(𝜏)

= 𝜅 ∫
𝑠2

𝑠1
∫ℝ𝑑

(
𝜌𝜏∇(Δ𝜑) ⋅∇𝜌𝜏 + (𝐷

2𝜑∇𝜌𝜏) ⋅∇𝜌𝜏 +
1

2
Δ𝜑|∇𝜌𝜏|2) d𝑥 d𝑡

+ 𝛼 ∫
𝑠2

𝑠1
∫ℝ𝑑

(
𝜌𝜏∇(Δ𝜑) ⋅∇𝜂𝜏 + ∇𝜌𝜏 ⋅ (𝐷

2𝜑∇𝜂𝜏) − ∇𝜌𝜏 ⋅ (𝐷
2𝜂𝜏∇𝜑)

)
d𝑥d𝑡

−
𝛽

2 ∫
𝑠2

𝑠1
∫ℝ𝑑 𝜌

2
𝜏Δ𝜑 d𝑥 d𝑡 + 𝜔 ∫

𝑠2

𝑠1
∫ℝ𝑑 𝜌𝜏∇𝜂𝜏 ⋅∇𝜑d𝑥 d𝑡. (5.26)

Integrating by parts in the first two terms after the equality, as in Remarks 4.3 and 5.3, we obtain

∫ℝ𝑑 𝜑(𝑥)𝜌𝜏(𝑠2, 𝑥) d𝑥 = ∫ℝ𝑑 𝜑(𝑥)𝜌𝜏(𝑠1, 𝑥) d𝑥 + 𝑂(𝜏)

− 𝜅 ∫
𝑠2

𝑠1
∫ℝ𝑑 (𝜌𝜏Δ𝜌𝜏Δ𝜑 + Δ𝜌𝜏∇𝜌𝜏 ⋅∇𝜑) d𝑥 d𝑡

− 𝛼 ∫
𝑠2

𝑠1
∫ℝ𝑑 (𝜌𝜏Δ𝜂𝜏Δ𝜑 + Δ𝜂𝜏∇𝜌𝜏 ⋅∇𝜑) d𝑥 d𝑡

−
𝛽

2 ∫
𝑠2

𝑠1
∫ℝ𝑑 𝜌

2
𝜏Δ𝜑d𝑥d𝑡 + 𝜔 ∫

𝑠2

𝑠1
∫ℝ𝑑 𝜌𝜏∇𝜂𝜏 ⋅∇𝜑d𝑥d𝑡.

By combining Proposition 5.4, Lemma 5.2 and Proposition 5.5 we can pass to the limit as 𝜏 → 0+,
and, in this way, recover a weak solution. As aforementioned, an analogous argument for the
species 𝜂 can be repeated to obtain (1.4b). □
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44 of 49 CARRILLO et al.

Remark 5.3. Assume 𝜌, 𝜂 ∈ 𝐻2(ℝ𝑑) and 𝜑 ∈ 𝐶3
0
(ℝ𝑑). Using integration by parts, we have

∫ℝ𝑑
(
𝜌∇Δ𝜑 ⋅∇𝜂 + ∇𝜌 ⋅ (𝐷2𝜑∇𝜂) − ∇𝜌 ⋅ (𝐷2𝜂∇𝜑)

)
d𝑥

= −∫ℝ𝑑 𝜌Δ𝜂Δ𝜑 d𝑥 + ∫ℝ𝑑
(
∇𝜌 ⋅ (𝐷2𝜑∇𝜂) − ∇𝜌 ⋅ (𝐷2𝜂∇𝜑) − Δ𝜑∇𝜌 ⋅∇𝜂

)
d𝑥

= −∫ℝ𝑑 𝜌Δ𝜂Δ𝜑 d𝑥 + ∫ℝ𝑑
(
∇𝜌 ⋅ (𝐷2𝜑∇𝜂) + ∇𝜑 ⋅ (𝐷2𝜌∇𝜂)

)
d𝑥

= −∫ℝ𝑑 (𝜌Δ𝜂Δ𝜑 + Δ𝜂∇𝜌 ⋅∇𝜑) d𝑥 .

5.4 Extension to generalised self-diffusion systems

In this subsection we remark that, taking advantage of the one- and two-species cases, we can
generalise the existence theory to the following system with nonlinear self-diffusion terms

𝜕𝑡𝜌 = −div
(
𝜌∇

(
𝜅Δ𝜌 + 𝛼Δ𝜂 +

𝛽

𝑚1 − 1
𝜌𝑚1−1 + 𝜔𝜂

))
, (5.27a)

𝜕𝑡𝜂 = −div
(
𝜂∇

(
𝛼Δ𝜌 + Δ𝜂 + 𝜔𝜌 +

1

𝑚2 − 1
𝜂𝑚2−1

))
, (5.27b)

where 1 ⩽ 𝑚1,𝑚2 < 2 +
2

𝑑
. As before, the parameters in the model are such that 𝛽, 𝜔 ∈ ℝ and the

matrix

𝐴 =

(
𝜅 𝛼

𝛼 1

)
,

is positive definite. In this case, we consider

̃𝑚1,𝑚2
[𝜌, 𝜂] = ∫ℝ𝑑

(
𝜅

2
|∇𝜌|2 + 1

2
|∇𝜂|2 + 𝛼∇𝜌 ⋅∇𝜂 − 𝜔𝜌𝜂)d𝑥

−
𝛽

𝑚1
𝑚1[𝜌] − 1

𝑚2
𝑚2[𝜂],

where 𝑚 is the entropy defined in (1.6). The system of equations above can be written as a 2-
Wasserstein gradient flow with respect to the (extended) free energy functional

𝑚1,𝑚2
[𝜌, 𝜂] =

{
̃𝑚1,𝑚2

[𝜌, 𝜂] if (𝜌, 𝜂) ∈ 𝑎(ℝ𝑑)2, (∇𝜌,∇𝜂) ∈ 𝐿2(ℝ𝑑)2,
+∞ otherwise.

We can obtain the following lower bound for the free energy:

𝑚1,𝑚2
[𝜌, 𝜂] = ∫ℝ𝑑

(
𝜅

2
|∇𝜌|2 + 1

2
|∇𝜂|2 + 𝛼∇𝜌 ⋅∇𝜂 − 𝜔𝜌𝜂) d𝑥

−
𝛽

𝑚1
𝑚1[𝜌] − 1

𝑚2
𝑚2[𝜂]
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COMPETING EFFECTS IN FOURTH-ORDER AGGREGATION-DIFFUSION PDES 45 of 49

⩾ ∫ℝ𝑑
(
𝜅

2
|∇𝜌|2 + 1

2
|∇𝜂|2 − |𝛼||∇𝜌||∇𝜂| − |𝜔|

2
𝜌2 −

|𝜔|
2
𝜂2
)
d𝑥

−
𝛽

𝑚1
𝑚1[𝜌] − 1

𝑚2
𝑚2[𝜂]

⩾ ∫ℝ𝑑
(
𝜅 − |𝛼|𝜀

4
|∇𝜌|2 − |𝜔|

2
𝜌2
)
d𝑥

+ ∫ℝ𝑑
(
1 − |𝛼|𝜀−1

4
|∇𝜂|2 − |𝜔|

2
𝜂2
)
d𝑥

+ ∫ℝ𝑑
𝜅 − |𝛼|𝜀

4
|∇𝜌|2 d𝑥 − 𝛽

𝑚1
𝑚1[𝜌]

+ ∫ℝ𝑑
1 − |𝛼|𝜀−1

4
|∇𝜂|2 d𝑥 − 1

𝑚2
𝑚2[𝜂].

Therefore, since we can take 𝜀 such that 𝜅 − |𝛼|𝜀, 1 − |𝛼|𝜀−1 > 0, it follows that
𝑚1,𝑚2

[𝜌, 𝜂] ⩾ 𝐶
(2[𝜌] + 2[𝜂] + 𝑚1[𝜌] + 𝑚2[𝜂]

)
. (5.28)

In particular, for 1 ⩽ 𝑚1,𝑚2 < 2 +
2

𝑑
, the free energy is bounded from below. Furthermore, (5.28)

gives the basic estimates that we used for the existence of the one- and two-species cases. Since
the cross-interacting terms are kept as in (1.4) and the new terms with exponents𝑚1 and𝑚2 have
already been treated on the one-species case, our previous results can be easily generalised to
obtain existence for the problem (5.27).
In addition to that, using a scaling argument, we can show that the free energy is unbounded

from below if 𝑚1 > 2 +
2

𝑑
, or equally 𝑚2 > 2 +

2

𝑑
. Without loss of generality we state the result

for𝑚1. A thorough analysis of more general systems, as well as the other cases for the exponents,
will be object of further investigation, as it is beyond the purpose of the current manuscript.

Proposition 5.6. Assume𝑚1 > 𝑚𝑐 and denote

 ∶=
{
(𝜌, 𝜂) ∈ 𝑎(ℝ𝑑)2 ∩ 𝐿𝑚1(ℝ𝑑) × 𝐿𝑚2(ℝ𝑑) ∶ ∇𝜌,∇𝜂 ∈ 𝐿2(ℝ𝑑)}.

Then

inf
(𝜌,𝜂)∈ 𝑚1,𝑚2

[𝜌, 𝜂] = −∞,

Proof. Given (𝜌, 𝜂) ∈  we define 𝜌𝜆(𝑥) ∶= 𝜆𝑑𝜌(𝜆𝑥), for any 𝑥 ∈ ℝ𝑑 and any 𝜆 ∈ (0, +∞). Note
that (𝜌𝜆, 𝜂) ∈  . Then, we have

𝑚1,𝑚2
[𝜌𝜆, 𝜂] =

𝜅

2
𝜆𝑑+2‖∇𝜌‖2

𝐿2(ℝ𝑑)
− 𝜆𝑑(𝑚1−1)

𝛽

𝑚1(𝑚1 − 1)
‖𝜌‖𝑚1

𝐿𝑚1 (ℝ𝑑)

+
1

2
‖∇𝜂‖2

𝐿2(ℝ𝑑)
−

1

𝑚2
𝑚2[𝜂]

+ ∫ℝ𝑑 𝛼𝜆
𝑑∇𝜌(𝜆𝑥) ⋅∇𝜂(𝑥) d𝑥 − ∫ℝ𝑑 𝜔𝜆

𝑑𝜌(𝜆𝑥)𝜂(𝑥) d𝑥
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= 𝜆𝑑+2
(
𝜅

2
‖∇𝜌‖2

𝐿2(ℝ𝑑)
− 𝜆𝑑(𝑚1−𝑚𝑐)

𝛽

𝑚1(𝑚1 − 1)
‖𝜌‖𝑚1

𝐿𝑚1 (ℝ𝑑)

)
+
1

2
‖∇𝜂‖2

𝐿2(ℝ𝑑)
−

1

𝑚2
𝑚2[𝜂]

+ ∫ℝ𝑑 𝛼𝜆
𝑑∇𝜌(𝜆𝑥) ⋅∇𝜂(𝑥) d𝑥 − ∫ℝ𝑑 𝜔𝜆

𝑑𝜌(𝜆𝑥)𝜂(𝑥) d𝑥.

Therefore, if we take 𝜌 and 𝜂 such that 𝜆 × supp(𝜌) ∩ supp(𝜂) = ∅ for big enough 𝜆 it follows that
𝑚1,𝑚2

[𝜌𝜆, 𝜂] → −∞ when 𝜆 → +∞; for instance we could consider the support of 𝜌 to be an
annulus and that of 𝜂 to be a ball. □
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