
CAptLang: A Language for Context-aware and
Adaptable Business Processes

A. Bucchiarone, C. Antares Mezzina, and M. Pistore

Fondazione Bruno Kessler
via Sommarive 18, 38123 Trento, Italy

[bucchiarone,mezzina,pistore]@fbk.eu

ABSTRACT
Run-time adaptability is a key feature of dynamic business
environments, where the processes need to be constantly re-
fined and restructured to deal with context changes. In this
paper, we present CAptLang, a language to model context-
aware and adaptable business processes where the main fea-
ture is the possibility of leaving the handling of extraor-
dinary or improbable situations to run time. We present
CAptLang with its formal syntax and semantics. More-
over we show how its semantics have been used to guide
the implementation of a Java-based business processes exe-
cution engine, component of the ASTRO-CAptEvo adapta-
tion framework.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Syntax,Semantics

Keywords
Language, Business Processes, Adaptation, Context-awareness

1. INTRODUCTION
Modern business processes often operate in dynamic, open
and non-deterministic environments. This means that the
execution context is volatile, and the outcome of some ac-
tivities is not completely controllable. In addition to this,
the set of business policies is also changing dynamically. Dy-
namic context changes or undesirable outcome of some ac-
tivities may often cause abnormal termination of the process
and prevent the achievement of the business goals. The so-
lution might be the run time modification (or adaptation)
of the process instances so that they can properly react to
such extraordinary situations.

One way to have a business process adaptable is to con-
sider a priori all the cases in which the process can deviate
from the normal behaviour (i.e., Exception Handling [6]). In
this way, it is possible to completely characterize the reac-
tion of the system at design time as the activities (or even

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
VaMoS’13, January 23-25, 2013, Pisa, Italy.
Copyright 2013 ACM 978-1-4503-1541-8/13/01 ...$15.00.

sub-processes) implementing the recovery behaviour. This
specification may be performed by extending standard lan-
guages (e.g., BPEL) with the adaptation-specific tools [8,
12], using a set of predefined adaptation rules [5, 11], using
aspect-oriented approaches [4, 9], or modelling and manag-
ing business process variants [7]. However, in many situa-
tions, such approaches fail to completely solve the problem
of adaptation. First, for complex processes the variety of
variants that require specific recovery actions may be too
large for the designers to consider, making the adaptation
hard to define, implement, and revise. Still, unexpected sit-
uations and changes may occur at run time, requiring the
adaptation to be performed even if the concrete case (and
its handling) has not been anticipated at design time. To
deal with such situations, the languages to manage adapt-
able business processes should be much more dynamic and
flexible, so that the process can recover from critical devi-
ations without defining them a priori. In order to address
this problem, in this paper we present CAptLang, a lan-
guage to model context-aware and adaptable business pro-
cesses where the main feature is the possibility of leaving the
handling of unusual or unexpected situations to runtime, in-
stead of analyzing all cases at design time and embedding the
corresponding adaptation activities in the business process
model [2]. We show its own syntax and operational seman-
tics. The latter have been used to guide the implementation
of a java-based business processes execution engine, compo-
nent of the ASTRO-CAptEvo adaptation framework [13].

The rest of the paper is structured as follows: Section 2
presents the motivating scenario used to present the po-
tentiality of CAptLang; Section 3 is devoted to introduce
the syntax and semantics of the language, while Section 4
demonstrates how the semantics has been used to guide the
implementation of Java-based execution engine able to run
business processes modelled using CAptLang. Section 5 con-
cludes the paper suggesting some directions for future works.

2. MOTIVATING SCENARIO
The scenario is based on the operation of the sea port of
Bremen, Germany [1], where nearly 2 million new vehicles
are handled each year; the business goal is to deliver them
from a manufacturer to a dealer. Each car, depending on
its brand, model and specific order, needs to follow certain
customizable procedures during the delivery process (as il-
lustrated in Figure 1). Cars arrive by ship and are unloaded
and unpacked at a certain terminal area. Each ship is able
to approach and leave a gate interacting with the landing
manager, which is in charge of coordinating and controlling
the landing procedure for all the ships in the port. Once

a car is unpacked to a terminal, a communication is estab-
lished with the storage manager to book a place at storage
facilities. The storage place is located in one of the available
storage areas, each having its own parking procedure and
suitable for a specific car type (e.g., covered/guarded areas
for luxury cars). Once a stored car is ordered by a retailer,
it continues its way towards the delivery. In particular, cars
are treated at dedicated treatment areas (such as washing,
painting, equipment, repairing) according to the details in
the order. When a car is ready to be delivered, it is assigned
to an available delivery gate and truck. The latter is respon-
sible for loading a limited number of cars and deliver them
to the dealer.

Figure 1: Process Chain of the Car Logistics Sce-
nario [1].

The goal is to develop an application (the Car Logistics Sys-
tem, CLS) to support the management and operation of the
port as described above, where numerous actors (i.e., cars,
ships, gates, managers, trucks, treatment areas, etc.) need
to cooperate in a synergic manner respecting their own pro-
cedures and business policies. The system needs to deal with
the dynamicity of the scenario, both in terms of the vari-
ability of the actors’ procedures (customizable processes),
and of the exogenous context changes affecting its opera-
tion. Customization means that different brands and mod-
els of cars should be treated in a similar but customizable
way. Moreover new car models, having specific requirements
and procedures, must be easily integrated in the applica-
tion. Similarly, the application needs to flexibly deal with
changes in the procedures of external entities such as ships
and trucks. Finally, the application needs to promptly im-
plement changes in international regulations and laws.

The CLS operation is modelled through a set of entities
(e.g., ships, cars, gates, managers, etc..), each specifying
its behaviour through a business process. Unlike traditional
business processes (e.g., BPEL), where they are static de-
scriptions of the expected run-time operation, we define dy-
namic business processes that are refined at run time ac-
cording to the operational environment of the system (i.e.,
context model). In addition to the classical workflow lan-
guage constructs (e.g., input, output, data manipulation ac-
tivities, complex control flow constructs), we add the possi-
bility to relate the process execution to the system context
by annotating activities with preconditions, postconditions
and compensations.

Preconditions constrain the activity execution to specific
context configurations, and are used to catch violations in
the expected behaviour and trigger run time adaptation.
Postconditions indicates states of the system context that
should be reached when a process activity is executed and
are used to automatically reason on the consequences of pro-
cess adaptations. Moreover, we introduced the possibility of
specifying abstract activities within processes. An abstract
activity is defined at design time in terms of the goal it

needs to achieve, expressed as context configurations to be
reached, and is automatically refined at run time into an
executable process considering the current context config-
uration, the goal to reach and using a precise adaptation
mechanisms (see [3]).

3. CAptLang: FORMAL SYNTAX AND SE-
MANTICS

Types, identifiers, operations and variables. We assume
the existence of the following denumerable infinite mutually-
disjoint sets: the set L of model types, the set of instance
identifiers I, the set of operation O and the set of variables
V. We let (together with their decorated versions): h, l, k to
range over L; t, s to range over I; o to range over O and x, y to
range over V. Moreover, we assume the existence of a set of
assumptions g on (some properties of) the context, written
in a suitable logic G (such as the one used in [10]) and by
abusing of the notation we will also indicate G as the set of
context assumption and we let g and its decorated versions
to range over G. For the sake of simplicity we let this logic
G undefined, since we just want to focus on the semantics
of the language. To this end, we assume the existence of a
predicate C |= g indicating the fact that a certain context C
satisfies the assumption g (or that g holds in C), and C 6|= g
when C does not satisfy g. Expressions e are left unspecified
but we require that contain, at least, variables and simple
values, e.g. integers and strings, and primitive operators on
these values.

Syntax. The syntax of CAptLang is depicted in Figure 2.
Basic activities b can be an invocation snd l o indicating an
invocation of an operation o belonging to a model of type
l, or an invocation receipt rcv o. Structured activities a are
made of basic activities or scoped activities [g1, b, g2] indi-
cating the fact that b should be executed only if precondition
g1 and postcondition g2 are satisfied in the current context.
A business process P can be the null process 0, a struc-
tured activity a, a compensable activity a÷ g indicating the
fact that if the action a is executed then its compensation g
should be saved and eventually used in case of adaptation,
an abstract activity (g), a fail 〈g〉 indicating an adaptation
need since the condition g is violated 1 , a value assignment
x := e, a concatenation P ;Q of processes, a pick (or exter-
nal choice)

∑
j∈J rcv oj ;Pj or a conditional (internal choice)

if(e) {P} {Q}. A deployment D, can be either a model
instance (shortened as instance) t l{µ ` P , Q}c, an instan-
tiating operation start l, an invocation message 〈t, o〉 or a
parallel composition D1 ‖ D2. An instance t l{µ ` P , G}c
represents the fact that the instance t of type l is executing
the process P . µ is the local store of the process, used to
evaluate all the expressions e of P . To this end we indicate ∅
as the empty store and ◦ the concatenating operator among
stores recursively defined as follows:

(µ ◦ µ′)(x) =

{
µ′(x) if x ∈ dom(µ′)
µ(x) otherwise

where dom(µ) represents the domain of store µ. G is a list
of compensations and c is the correlation set of the instance.
We indicate with ε the empty list and :: the concatenation
operator among lists. Hence when writing g :: G we will
point out that g is the head of the list and G the tail.

1Fails 〈g〉 are generated at runtime, hence it should be
avoided their use at design time.

b ::= snd l o | rcv o Basic Activities

a ::= b | [g1, b, g2] Structured Activities

P,Q ::= 0 | a | a÷ g | (g) | 〈g〉 | x := e | P ;Q |
∑
j∈J

rcv oj ;Pj | if(e) {P1} {P2} Business Processes

D,E ::= t l{µ ` P , G}c | start l | 〈t, o〉 | D ‖ E Deployments

M,N ::= lJP K | M,N Models

h, l, k ∈ L t, s ∈ I o ∈ O x, y ∈ V g, g1, g2 ∈ G

Figure 2: Syntax of CAptLang

(P.Out) snd l o
!〈l,o〉−−−→ 0 (P.In) rcv o

?o−→ 0

(P.Sc)
b
α−→ 0

[g1, b, g2]
〈g1,α,g2〉−−−−−−→ 0

(P.Cmp)
a
α−→ 0

a÷ g α÷g−−−→ 0

(P.Pre)
α ∈ {(g), 〈g〉, x := e}

α
α−→ 0

(P.Seq)
P

α−→ P ′

P ;Q
α−→ P ′;Q

(P.Pick)

∑
j∈J

rcv oj ;Pj
?oi−−→ Pi

(P.Nil) 0;P
τ−→ P

(P.T) if(e) {P} {Q} e−→ P (P.F) if(e) {P} {Q} e−→ Q

Figure 3: Process Execution

A correlation set is a set of mappings {l ↪→ t}, from models
to instances, indicating that, for a specific instance s, all the
invocations of operations o of kind l should be addressed to
the instance t. Correlations among instances are established
at run-time. Since communications (operations invocation)
among instances is asynchronous, a message of the form 〈t, o〉
models the invocation of the operation o to the instance t. A
model lJP K represents the forge that will be used at runtime
to create instances of type l. In other words models are static
entities and instances represent their runtime instantiations.

We assume that all the model types are unique. We denote
with P the set of processes and D the set of deployments.
We let (together with their decorated version) P,Q to range
over P and D,E to range over D.

Operational Semantics. We now define the operational
semantics of CAptLang which describes the behaviour of
programs (written in the language) in a mathematically rig-
orous way. Operational semantics of CAptLang is expressed
via a reduction relation 7→, which is a binary relation over
deployments (7→⊂ D ×D), and a structural congruence re-
lation ≡, which is a binary relation over deployments (≡⊂
D × D). We define deployment contexts as “deployments
with a hole •”, given by the following grammar:

D ::= • | D ‖ D | D ‖ D

A congruence on deployments is an equivalence relation R
that is closed for deployment contexts:

DRE =⇒ D[D]RD[E]

Structural congruence ≡ is defined as the smallest congru-
ence on deployments that satisfies following axioms:

D1 ‖ D2 ≡ D2 ‖ D1 (D1 ‖ D2) ‖ D3 ≡ D1 ‖ (D2 ‖ D3)

These rules deal with the commutativity and associativity
of the parallel operator ‖ on deployments.

We use a layered approach to devise the reduction relation
of CAptLang. To this end we define three relation: the

first one as a labelled transition system (LTS) on processes
(that we call process execution), expressing all the possible
behaviours of processes. We then constrain processes be-
haviour to a particular context, and this is expressed via an-
other LTS called context aware execution. Finally the main
relation (called instance execution) is expressed as a reduc-
tion relation and it is in charge of regulating the execution
of instances.

The reduction relation 7→ is defined as the smallest binary
relation on deployments satisfying the rules of Figure 5.
Rules are given as judgements of the form C,M D 7→ D′

indicating that the reduction D 7→ D′ is allowed under a
certain context C and model M . This kind of judgements
allows to abstract away from reductions details concerning
the modelling or the evolution of the context C and the
model M . Reduction 7→ exploits a LTS over pairs P × G,

written
α−⇁, which obeys to the rules in Figure 4. Relation

−⇁ represents the execution of a process P under a context
C. Hence rules are given in form of judgement of the form

C P,G
α−⇁ P ′, G′ indicating that the process P can do

the action α under the context C. Relation −⇁ exploits a

LTS over processes, written
α−→, which obeys to the rules in

Figure 3. All the rules in Figure 3 are quite straightforward
as they just transform a prefix into a label. Said otherwise,
relation −→ tell us what a process can potentially do.

Let us now comment of rules of Figure 4. For lack of space
we just report rules dealing with compensations, other cases
with no compensations uses similar rules with the difference
that there is no need to add the compensation to G. A
scope [g1, b, g2] can be handled in three different cases: if
both g1 and g2 hold (rule C.Scp) then the internal activity
b is allowed to execute; if just g1 holds (rule C.Post) then b
is executed but the resulting process is annotated with the
fact that postcondition g2 is not satisfied. If precondition
does not hold (rule C.Pre then b is not executed and the
process is annotated with the fact that precondition g1 does
not hold. Rules C.Act deals with (process) action different
from a scope.

(C.Scp)
P
〈g1,α,g2〉÷g−−−−−−−−→ P ′ C |= g1 C |= g2

C P,G
α−⇁ P ′, g :: G

(C.Post)
P
〈g1,α,g2〉÷g−−−−−−−−→ P ′ C |= g1 C 6|= g2

C P,G
α−⇁ 〈g2〉;P ′, g :: G

(C.Pre)
P
〈g1,α,g2〉÷g−−−−−−−−→ P ′ C 6|= g1

C P,G
τ−⇁ 〈g1〉;P,G

(C.Act)
P

α÷g−−−→ P ′ α 6= 〈 , , 〉
C P

α−⇁ P ′, g :: G

Figure 4: Context Aware Execution

(I.Snd)
C P,G

!〈l1,o〉−−−−⇁ P ′, G′ {l1 ↪→ s} ∈ c
C,M t l{µ ` P , G}c 7→ t l{µ ` P ′ , G′}c ‖ 〈o, s〉

(I.New)
C P,G

!〈l,o〉−−−⇁ P ′, G′ {l ↪→ s} 6∈ c lJQK ∈M fresh(s) c′ = c ∪ {l ↪→ s}
C,M th{µ ` P , G}c 7→ t l{µ ` P ′ , G′}c′ ‖ 〈o, s〉 ‖ s l{∅ ` Q , ε}{h↪→t}

(I.Rcv)
C P,G

?o−⇁ P ′, G′

C,M t l{µ ` P , G}c ‖ 〈o, t〉 7→ t l{µ ` P ′ , G′}c
(I.Int)

C P,G
τ−⇁ P ′, G′

C,M t l{µ ` P , G}c 7→ t l{µ ` P ′ , G′}c

(I.Store)
C P,G

x:=e−−−⇁ P ′, G′

C,M t l{µ ` P , G}c 7→ t l{µ ◦ [x := e] ` P ′ , G′}c
(I.Start)

lJQK ∈M fresh(t)

C,M start l 7→ t l{∅ ` Q , ε}∅

(I.If-T)
C P,G

e−⇁ P ′, G′ µ |= e

C,M t l{µ ` P , G}c 7→ t l{µ ` P ′ , G′}c
(I.If-F)

C P,G
e−⇁ P ′, G′ µ 6|= e

C,M t l{µ ` P , G}c 7→ t l{µ ` P ′ , G′}c

(I.Need)
C P,G

α−⇁ P ′, G′ α ∈ {(g), 〈g〉} adapt(C,P ′, α,G′) = (Q,G1)

C,M t l{µ ` P , G}c 7→ t l{µ ` Q , G1}c

(I.Ctx)
C,M D 7→ D′

C,M D[D] 7→ D[D′]
(I.Eqv)

D ≡ E C,M E 7→ E′ E′ ≡ D′

C,M D 7→ D′

Figure 5: Instance execution

Finally we can comment on rules of 7→ depicted in Figure 5.
By looking at rule I.Snd we can see that communication, or
operations invocation, is asynchronous. When a process P
of a certain instance l invokes an operation (using the label
!〈l1, o〉) then it is checked whether the instance contains a
correlation for the model type l1. If it is the case, then a
message of the form 〈o, s〉 is released. Let us note that ac-
cording to the correlation {l1 ↪→ s} the message is sent to
the instance s. Hence we can say that the communicating
partners of an instance are determined at run-time. If an
instance invokes an operation of a certain type l for which
it has no correlation, then a new instance of model type
l has to be created (if it exists in the model M). This is
done by rule I.New. Let us note that the correlation set of
the invoking instance is enriched with the new correlation
{l ↪→ s}, and that to the new instance is given as correlation
set the correlation {h ↪→ s} where s and h are respectively
the identifier and type of the invoking instance. Moreover, a
message 〈o, s〉 is created, with s the identifier of the new cre-
ated instance of type l. Naturally the new instance is created
with an empty ∅ local store and an empty ε compensations
list. Let us note the use of the function fresh(s) assures
that the identifier of the new created instance is unique.
Rule I.Rcv just allows an instance to consume a message
addressed to it. Rule I.Int deals with internal non-visible
actions of instances. Rule I.Store deals with expressions
produced by an instance. A deployment of the form start l
has the effect of creating a new instance of type l. This is

done by rule I.Start. Rules I.If-T and I.If-F deal with
conditional processes. To this end we override the defini-
tion of |= to work also on stores µ and expressions e. Rule
I.Need deals with adaptation need. When a process of an
instance produces a need of the form 〈g〉, in case of a con-
dition violated, or (g), in case of a refinement need, then
the adaptation function adapt is asked to find a solution to
the adaptation problem. The adaptation problem is a tuple
of the form (C,P ′, α,G) indicating the context in which the
need has to be handled, the process that raised the need, the
need itself and eventually the list of compensation that the
process saved. All these information are used by the adap-
tive function which returns the adapted process and the new
list of compensations. Then the adapted process, along with
new the compensation list, take the place of the old process
and list that raised the need. The adaptation function im-
plements several adaptation mechanisms and strategies as
described in [3]. Rules I.Ctx and I.Eqv deal respectively
with the closure of 7→ under deployment contexts and struc-
tural congruence.

4. PROCESS ENGINE IMPLEMENTATION
The goal of this section is to present the Process Engine
component of the ASTRO-CAptEvo framework [13]. It has
been implemented using the operational semantics defined
in section 3 and provides a set of functionalities that we are
going to explain in detail. As we can see in Figure 6, it
is part of the Execution Layer and is in charge of (i) exe-

cuting the context-aware and adaptable business processes
modelled using CAptLang, (ii) detecting execution problems
and triggering adaptation by passing necessary information
to the adaptation layer, and (iii) adapting the process in-
stance according to the solution produced by the adaptation
layer.

Figure 6: ASTRO-CAptEvo Architecture.

To execute process instances, the Process Engine respects
the semantics rules presented in Figures 3, 4 and 5. At the
same time it implements the semantics rules to detect sit-
uations that require process adaptation (see rule I.Need of
Figure 5 and rules C.Pre, C.Post of Figure 4). Once one of
the previous situation is detected, then the adaptation prob-
lem (see rule I.Need2) is passed to the Adaptation Layer.
TheProcess Engine is also able to suspend process execu-
tion, executes adaptation processes received by the Adapta-
tion Layer and resume instances after that an adaptation
is applied. To see the entire framework in action, applied
to the CLS scenario, one can download the complete demo
or the video of a live demonstration at: www.astroproject.
org/captevo.

5. CONCLUSION
CAptLang is a language to model context-aware and adapt-
able business processes. It is equipped with a well-defined
operational semantics. The language has been introduced to
model and run adaptable business processes taking into ac-
count context information, and its operational semantics has
been used to guide the implementation of the Process En-
gine component of the ASTRO-CAptEvo framework. The
CAptLang operational semantics has been defined to man-
age single and decentralized adaptation problems giving the
responsibility at each entity to solve its associated adap-
tation goal and using its own adaptation techniques (i.e.,
adaptation layer). We plan to extend the semantics in order
to coordinate also the various adaptation solutions, coming
from the different entities, to prevent situations like con-
flicts, oscillations and race conditions and guaranteeing the
reachability of the common goal. At the same time we want
to extend the set of possible adaptation needs adding situ-
ations where a process need to be adapted due to its corre-
lation with other processes in the system.

The execution of CAptLang business process instances re-

2In the rule I.Need the function adapt represents the Adap-
tation Layer.

sults in a set of adapted process variants instantiated on the
same process model but dynamically restructured to handle
specific contexts. Process evolution exploits the information
on process variants to identify the best performing recurring
adaptations and adopt them as general solutions in the pro-
cess model. However, process variants are strictly related to
specific execution contexts and cannot be adopted as general
solutions. In the future we want to extend the CAptLang op-
erational semantics to support also context-aware evolution
of business processes based on process instance execution
and adaptation history.

6. REFERENCES
[1] F. Böse and J. Piotrowski. Autonomously controlled

storage management in vehicle logistics applications of
rfid and mobile computing systems. International
Journal of RT Technologies: Research an Application,
1(1):57–76, 2009.

[2] A. Bucchiarone, A. Lluch-Lafuente, A. Marconi, and
M. Pistore. A formalisation of adaptable pervasive
flows. In WS-FM, pages 61–75, 2009.

[3] A. Bucchiarone, A. Marconi, M. Pistore, and H. Raik.
Dynamic Adaptation of Fragment-based and
Context-aware Business Processes. In ICWS 2012,
pages 33–41, 2012.

[4] A. Charfi and M. Mezini. AO4BPEL: An
Aspect-oriented Extension to BPEL. In Proc.
WWW’07, pages 309–344, 2007.

[5] M. Colombo, E. di Nitto, and M. Mauri. SCENE: A
Service Composition Execution Environment
Supporting Dynamic Changes Disciplined Through
Rules. In Proc. ICSOC’06, pages 191–202, 2006.

[6] R. de Lemos and A. B. Romanovsky. Exception
handling in the software lifecycle. Comput. Syst. Sci.
Eng., 16(2):119–133, 2001.

[7] A. Hallerbach, T. Bauer, and M. Reichert. Capturing
variability in business process models: the Provop
approach. Journal of Software Maintenance,
22(6-7):519–546, 2010.

[8] D. Karastoyanova, A. Houspanossian, M. Cilia,
F. Leymann, and A. P. Buchmann. Extending BPEL
for Run Time Adaptability. In Proc. EDOC’05, pages
15–26, 2005.

[9] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and
F. Casati. An Aspect-Oriented Framework for Service
Adaptation. In Proc. ICSOC’06, pages 15–26, 2006.

[10] U. D. Lago, M. Pistore, and P. Traverso. Planning
with a language for extended goals. In AAAI/IAAI,
pages 447–454, 2002.

[11] I. Lanese, A. Bucchiarone, and F. Montesi. A
Framework for Rule-based Dynamic Adaptation. In
Proc. TGC 2010, pages 284–300, 2010.

[12] A. Marconi, M. Pistore, A. Sirbu, H. Eberle,
F. Leymann, and T. Unger. Enabling Adaptation of
Pervasive Flows: Built-in Contextual Adaptation. In
Proc. ICSOC/ServiceWave, pages 445–454, 2009.

[13] H. Raik, A. Bucchiarone, N. Khurshid, A. Marconi,
and M. Pistore. Astro-captevo: Dynamic
context-aware adaptation for service-based systems. In
SERVICES, 2012.

