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Abstract
We study the problem of designing a resilient data structure maintaining a tree under
the Faulty-RAM model [Finocchi and Italiano, STOC’04] in which up to δ memory
words can be corrupted by an adversary. Our data structure stores a rooted dynamic
tree that can be updated via the addition of new leaves, requires linear size, and
supports resilient (weighted) level ancestor queries, lowest common ancestor queries,
and bottleneck vertex queries in O(δ) worst-case time per operation.

Keywords Level ancestor queries · Lowest common ancestor queries · Bottleneck
vertex queries · Resilient data structures · Faulty-RAM model · Dynamic trees

1 Introduction

Due to a diverse spectrum of reasons, ranging from manufacturing defects to charge
collection, the data stored in modern memories can sometimes face corruptions, a
problem that is exacerbated by the recent growth in the amount of stored data. Tomake
mattersworse, even a singlememory corruption can cause classical algorithms anddata
structures to fail catastrophically. One mitigation approach relies on low-level error-
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correcting schemes that transparently detect and correct such errors. These schemes
however either require expensive hardware or employ space-consuming replication
strategies. Another approach, which has recently received considerable attention [1–
7], aims to design resilient algorithms and data structures that are able to remain
operational even in the presence of memory faults, at least with respect to the set of
uncorrupted values.

In this paper we tackle the problem of designing resilient data structures that store
a dynamic rooted tree T while answering several types of queries. More formally, we
focus on maintaining a tree that initially consists of a single vertex (the root of the
tree) and can be dynamically augmented via the AddLeaf(v) operation that appends
a new leaf as a child of an existing vertex v.1 It is possible to query T in order to obtain
information about its current topology. We consider the following well-known query
types:

(Weighted) Level Ancestor Queries: Given a vertex v and an integer k, the query
LA(v, k) returns the k-parent of v, i.e., the vertex at distance k from v among the
ancestors of v. In the weighted version of the problem each vertex of the tree T
is associated with a small (polylogarithmic) positive integer weight, and a query
needs to report the closest ancestor u of v such that the total weight of the path
from v to u in T is at least k.2

Lowest Common Ancestor Queries: Given two vertices u, v, the query LCA(u, v)

returns the vertex at maximum depth in T that is simultaneously an ancestor of
both u and v.
Bottleneck Queries: In this problem, each vertex has an associated integer weight
and, given two vertices u, v, a BVQ(u, v) query reports the minimum/maximum-
weight vertex in the path between u and v in T .3 When T is a path, the above
problem can be seen as a dynamic version of the classical range minimum query
problem which asks to answer RMQ(i, j) queries reporting the minimum element
between the i-th and the j-th element of a (static) input sequence [11].

For all of the above problems, linear-size data structures are known for the non-
resilient case, i.e., on the unit-cost RAM model with a word size of �(log n), where
n is the maximum number of vertices in the tree [9, 12]. These data structures support
both the AddLeaf and the query operations in constant worst-case time. It is then
natural to investigate what can be achieved for the above problem when the sought
data structures are required to withstand memory faults.

To precisely capture the behaviour of resilient algorithms, one needs to employ
a model of computation that takes into account potential memory corruptions. To
this aim, we adopt the faulty-RAM model introduced by Finocchi and Italiano in [1].
This model is similar to the classical RAM model except that all but O(1) memory
words can be subject to corruptions that alter theirs contents to an arbitrary value, and

1 In the literature this setting is also called incremental or semi-dynamic to emphasize that arbitrary inser-
tions and deletions of tree vertices/edges are not supported. In this paper, unless otherwise specified, we
follow the terminology of [8] by considering dynamic trees that only support insertion of leaves.
2 We inherit the restriction on vertex weights from [9], whose data structure we use in our constructions.
3 It is easy to see that this also captures the well-known bottleneck edge query variant [10], in which weights
are placed on edges instead of vertices.
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that cannot be detected by the algorithm. The overall number of corruptions is upper
bounded by a parameter δ and such corruptions are chosen in a worst-case fashion
by a computationally unbounded adversary. We consider a word size of �(log n). A
more detailed description of the faulty-RAM model can be found in Sect. 2.

A simple error-correcting strategy based on replication provides a general scheme
for obtaining resilient versions of any classical non-resilient data structure at a cost
of a �(δ) blowup in both the time needed for each operation and the size of the data
structure. This space overhead is undesirable, especially when δ can be large. For
the above reason, the main goal in the area is obtaining compact solutions with a
particular focus on linear-size data structures [1–6, 13, 14]. However, for linear-size
data structures, even δ = ω(1) corruptions can be already sufficient for the adversary
to irreversibly corrupt some of the stored elements [13]. The solution adopted in
the literature is that of suitably relaxing the notion of correctness by only requiring
queries to answer correctly with respect to the portions of the data structure that
are uncorrupted. Notice that this is not easy to obtain since corruptions in unrelated
parts of the data structure can still misguide the execution of a query (see [13] for a
discussion).4

1.1 Our Results

We design a data structure maintaining a dynamic tree that can be updated via the
addition of new leaves, and supports resilient (weighted) LA, LCA, and BVQ queries.

Our data structure stores each vertex of the current tree T in a single memory word
of�(log n) bits.Wewill say that a vertex v is corrupted if thememoryword associated
with v has been modified by the adversary. A resilient query is required to correctly
report the answer when no vertex in the tree path between the two vertices explicitly or
implicitly defined by the query is corrupted. For example, a LA(v, k) query correctly
reports the k-parent u of v whenever every vertex in the unique path from u to v in T
is uncorrupted.

We deem our notion of resilient query to be quite natural since, in any reasonable
representation of T , the adversary can locally corrupt the parent-children relationship
and hence change the observed topology of T . See Fig. 1 for an example.

Our data structure occupies linear (w.r.t. the current number of nodes) space, and
supports the AddLeaf operation and the LA, BVQ, and LCA queries in O(δ) worst-
case time. For weighted LA queries, the above bound on the query time holds as long
as δ = O(polylogn). No constraint on δ is required for BVQ, LCA, and unweighted
LA queries.

We point out that our solution is obtained through a general vertex-coloring scheme
which is, in turn, used to “shrink” T down to a compact tree Q of size O(n/δ) that
can be made resilient via replication. Each edge of Q represents a path of length δ

between two consecutive colored nodes in T . If no corruption occurs, this coloring

4 For example, the authors of [13] consider the problem of designing linear-size resilient dictionaries and
adopt a notion of resilient search that requires the search procedure to answer correctly w.r.t. all uncorrupted
keys (see Sect. 1.2 for a more precise definition). Notice how the classical solutions based on search trees
do not meet this requirement since a single unrelated corruption can destroy the search path leading to the
sought key.
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(a) (b) (c)

Fig. 1 Illustration of resilient LA queries. The current tree T logically maintained by the data structure
is depicted in (a). In this example, each vertex maintains a reference to its parent in T . In (b) some of
the parent-child relationships have been altered by the adversary by corrupting the nodes highlighted in
red. Since the algorithm cannot distinguish corrupted memory words from uncorrupted ones, its (defective)
view of T is shown in (c). Nevertheless, a resilient data structure must still be able to correctly answer
queries involving uncorrupted paths. For example, the query LA(v, k) is required to answer correctly for all
(meaningful) values of k since the path from v to the root is uncorrupted, while query LA(w, k) is required
to answer correctly for k ≤ 2. Since u is corrupted, the query LA(u, k) is allowed to answer incorrectly
regardless of the value of k (Color figure online)

scheme is regular and will color all vertices having a depth that is a multiple of δ.
While it is possible for corruptions to locally destroy the above pattern, our coloring
is able to automatically recover as soon as we move away from the corrupted portions
of the tree. We feel that such a scheme can be of independent interest as a useful tool
to design other resilient data structures involving dynamic trees.

We leave the problem of understanding whether, similarly to other resilient data
structures [4, 13], one can prove a lower bound of �(δ) on the time needed to perform
AddLeaf operation and/or to answer our queries.

1.2 RelatedWork

1.2.1 Non-resilient Data Structures

Before discussing the known results in our faulty memory model, we fist give an
overview of the closest related results in the fault-free case. Since the landscape of
data structures that answer queries on dynamic trees is vast and diverse, we will focus
only on the best-known data-structures capable of answeringLA,BVQ, orLCA queries.

As far as LA queries are concerned, the problem has been first formalized in [15]
and in [8]. Both papers consider the case in which the tree T is static and show how
to build, in linear-time, a data structure that requires linear space and that answers
queries in constant worst-case time (albeit the hidden constant in [15] is quite large).
A simple and elegant construction achieving the same (optimal) asymptotic bounds
is given in [16]. In [8], the dynamic version of the problem was also considered:
the authors provide a data structure supporting both LA queries and the AddLeaf
operation in constant amortized time. The best known dynamic data structure is the
one of [9], which implements the above operations in constant worst-case time. This
data structure also supports constant-time BVQ queries and constant-time weighted LA
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querieswhen the vertexweights are polylogarithmically bounded integers.5 Moreover,
the solution of [9] also provides amortized bounds for the problem of maintaining a
forest of n nodes under link operations and LA queries. Here a link operation is a
more general update than AddLeaf since it allows for the addition of a new edge that
connect any two vertices in different trees of the forest. In this case, a sequence of m
operations requires O(mα(m, n)) time, where α is the inverse Ackermann function.

Regarding BVQ queries with integer weights, in addition to the solution discussed
above (which supports leaf additions and queries in constant-time), [18] shows how
to also support leaf deletions using O(1) amortized time per update and constant
worst-case query time.

The problem of answering LCA queries is a fundamental problem which has been
introduced in [19]. In [20], Harel and Tarjan show how to preprocess in linear time
any static tree in order to build a linear-space data structure that is able to answer LCA
queries in O(1) time. The case of dynamic trees is also well-understood: it is possible
to simultaneously support (i) insertions of leaves and internal nodes, (ii) deletion of
leaves and internal nodes with a single child, and (iii) LCA queries, in constant worst-
case time per operation [12].

1.2.2 Resilient Data Structures

As already mentioned, the Faulty-RAMmodel has been introduced in [1] and used in
the context of resilient data structures in [2] where the authors focused on designing
resilient dictionaries, i.e., dynamic sets that support insertions, deletions, and lookup of
elements. Here the lookup operation is only required to answer correctly if either (i) the
searched key k is in the dictionary and is uncorrupted, or (ii) k is not in the dictionary
and no corrupted key equals k. The best-known (linear-size) resilient dictionary is
provided in [3] and supports each operation in the optimal O(log n + δ) worst-case
time, where n is the number of stored elements. The Faulty-RAM model has also
been adopted in [4], where the authors design a (linear-size) resilient priority queue,
i.e., a priority queue supporting two operations: insert (which adds a new element
in the queue) and deletemin. Here deletemin deletes and returns either the minimum
uncorrupted value or one of the corrupted values. Each operation requires O(log n+δ)

amortized time, while �(log n + δ) time is needed to answer an insert followed by a
deletemin.

The Faulty-RAMmodel has also been adopted in the context of designing resilient
algorithms. We refer the reader to [5] for a survey on this topic.

A resilient dictionary for a variant of the Faulty-RAM model in which the set of
corruptible memory words is random (but still unknown to the algorithm) has been
designed in [7].

In a broader sense, problems that involve non-reliable computation have received
considerable attention in the literature, especially in the context of sorting and search-
ing. See for example [21–27].

5 If we do no require the vertex weights to be polylogarithmically bounded, then the lower bound for the
predecessor problem apply. See [17] and the discussion in [9].
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1.3 Structure of the Paper

The paper is organized as follows. Section 2 introduces the used notation and formally
defines the Faulty-RAMmodel. It also briefly describes the error-correcting replication
strategy mentioned in the introduction. For technical convenience, in Sects. 3 and 4
we describe our data structure for LA queries only. This allows us to introduce all the
ideas behind the more general coloring scheme discussed above. As a warm up, we
first consider the simpler case in which the tree T is static and is already known at
construction time (Sect. 3), and we then tackle the dynamic version of the problem
(Sect. 4) for which we give our main result. The description of how to modify our data
structure to handle the other types of queries can be found in Sect. 5.

2 Preliminaries

2.1 Notation

Let T be a rooted tree. For each node6 v ∈ T , we denote with parent(v) the parent
of v. If π is a path, we denote by ‖π‖ its length, i.e., the number of its edges. Given
any two nodes u, v, we denote by dT (u, v) the length of the (unique) path between u
and v in T . Moreover, if π traverses u and v, we denote by π [u : v] the subpath of
π between u and v, endpoints included. We will use round brackets instead of square
brackets to denote that the corresponding endpoint is excluded (so that, e.g., π(u : v]
denotes the subpath of π between u and v where u is excluded and v is included).

2.2 Faulty MemoryModel

We now formally describe the Faulty-RAM model introduced by Finocchi and Ital-
iano in [1]. In this model the memory is divided in two regions: a safe region with
O(1) memory words, whose locations are known to the algorithm designer, and the
(unreliable) main memory. An adaptive adversary can perform up to δ corruptions,
where a corruption consists in instantly modifying the content of a word from the main
memory. The adversary knows the algorithm and the current contents of the memory,
has an unbounded computational power, and can simultaneously perform one or more
corruptions at any point in time. The safe region cannot be corrupted by the adversary
and there is no error-detection mechanism that allows the algorithm to distinguish the
corrupted memory locations from the uncorrupted ones.

Without assuming the existence of O(1) words of safe memory, no reliable com-
putation is possible: in particular, the safe memory can store the code of the algorithm
itself, which otherwise could be corrupted by the adversary.

As observed in [13] (and already mentioned in the introduction), there is a simple
strategy that allows any non-fault tolerant data structure on the RAM model to also
work on the Faulty-RAM model, albeit with a multiplicative �(δ) blow-up in its
time and space complexities. Essentially, such a solution implements a trivial error-

6 We use the terms “node” and “vertex” interchangeably.
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correcting mechanism by simulating each memory word w in the RAM model with
a set W of 2δ + 1 memory words in the Faulty-RAM model: writing a value x to w

means writing x to all words inW , and readingw means computing the majority value
of the words in W (which can be done in O(δ) time, and O(1) space using the safe
memory region and the Boyer-Moore majority vote algorithm [28]). We refer to such
technique as the replication strategy.

3 Warming Up: LAQueries in Static Trees

In order to introduce our ideas, in this sectionwe showhow to build a simplified version
of our resilient data structure when the tree T cannot be dynamically modified. Our
simplified data structure requires linear space and answers level-ancestor queries in
O(δ) time. As opposed to our dynamic data structure, in this special case the tree T
must be known in advance and hence we need to initialize our data structure from
an input tree T . For simplicity, we assume that no corruptions occur while our data
structure is being built.

3.1 Description of the Data Structure

Let T be a rooted tree with n nodes. To define the data structure for T , we need to
divide the nodes of T into two sets: the black nodes and the white nodes. We define
the set of black nodes to ensure that its cardinality is O(n/δ): a node v in T is black
if we simultaneously have that (i) its depth in T is a multiple of δ, and (ii) the subtree
of T rooted in v has height at least δ − 1. A node v in T is white if it is not black. We
notice that for each black node v in T there are at least δ distinct nodes (i.e., all the
vertices in the path from v to any vertex having depth δ − 1 in the subtree of T rooted
at v), thus implying that the total number of black nodes in T is at most n/δ.

If we define a relation of parenthood for the black nodes of T , we can define a new
black tree Q in which each vertex v is associated with a black vertex v of T . The
parent of v in Q is the vertex u corresponding to the lowest black proper ancestor u
of v in T . See Fig. 2 for an example.

Our data structure stores the (colored) tree T , as described in the following, along
with an additional data structure DQ that is able to answer LA queries on Q. The tree
T is stored as an array of records, where each record is associated with a vertex of
T , occupies �(log n) bits, and is stored in a single memory word. The memory word
associated with a node v stores:

• a pointer pv to parent(v), if any. If v is the root of T then pv = null;
• a pointer qv to the corresponding node v in Q, if any. If no such node exists, i.e.,
if v is white, then qv = null.

Moreover we maintain, for each vertex v of Q, a pointer to the corresponding
vertex v of T as satellite data. The data structure DQ is the resilient version of any
(non-resilient) data structure that is capable of answering LA queries on static trees in
constant time and requires linear space (see, e.g., the data structure in [16]).
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Algorithm 1:Answers a level ancestor query LA(v, k) in the special case of static
trees.
1 if k ≤ 2δ then return climb(v, k);

2 Climb up the tree T from v for 2δ nodes searching a black node;
3 if the previous procedure did not find a black node then return error;

4 v′ ← the black node found in the previous procedure;
5 d ← distance between v′ and v; k′ ← k − d;
6 u′ ← LAQ(qv′ , �k′/δ�);
7 krest ← k′ − �k′/δ� · δ;
8 return climb(u′, krest);

As we observed before, any data structure can be made resilient with a multiplica-
tive �(δ) blow-up in its time and space complexities using the replication strategy
described in Sect. 2. In our case, since the number of vertices in Q is O(n/δ), the final
space required to store DQ is O(n) and the query time becomes O(δ). Notice that,
in spite of the (at most δ) memory corruptions performed by the adversary, the data
structure DQ always returns the correct answer to all possible LA queries on Q. We
will denote by LAQ(v, k) the level-ancestor query on Q, which returns the vertex of T
corresponding to the k-parent of v in Q (if no corruptions occur in T then LAQ(v, k)
is exactly the δk-parent of v in T ).

3.2 The Resilient Level-Ancestor Query

In this section we show how to implement our resilient LA query. We start by defining
a routine that will be useful in the sequel: if v is a node of T and i is a non-negative
integer, we denote by climb(v, i) a procedure that returns the vertex reached by a
walk on T that starts from v and iteratively moves to the parent of the current vertex i
times.When the procedure encounters a vertexuwith pointer pu = null that has to be
followed,climb(v, i) reports that the root has been reached. Notice thatclimb(v, i)
requires O(i) time and, whenever no corrupted vertices are encountered during the
walk, it correctly returns the i-parent of v. Although the climb(·, ·) procedure could
immediately be used to answer an LA query, doing so requires �(n) time in the worst
case. To improve the query time we use the data structure DQ described above and
we distinguish between short and long LA(v, k) queries depending on the value of k.

Short queries, i.e., queries LA(v, k) with k ≤ 2δ, are handled by simply invoking
climb(v, k) and, from the above observation, it follows that this is a resilient query.
For longer queries the idea is that of locating a nearby black ancestor of v, performing
an LAQ query on Q to quickly reach a black descendant u′ of the k-parent w of v such
that d(u′, w) ≤ δ, and finally using the climb procedure once more to reach w from
u′. See Algorithm 1.

During the execution of our resilient query algorithm we always ensure that all
followed pointers are valid. Since we are dealing with a static tree T , we can handle
invalid pointers (e.g., pointers pv that do not refer to some node of T ) simply by
halting thewhole query procedure and reporting an error. A slightlymore sophisticated
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Fig. 2 Left: A static tree T that has been colored according to the scheme in Sect. 3 for δ = 3. Right:
the corresponding black tree Q. We also show the path climbed while answering the query LA(v, k) with
k = 8. In this case d = 3, �k′/δ� = 1 and krest = 2. Notice how Q is used to quickly reach u′ from v′

handling of invalid pointers will be used to tackle the dynamic case. An example LA
query is given in Fig. 2.

The correctness of the above algorithm immediately follows from the fact that,
when no vertex between v and the k-parent of v is corrupted, v must have a black
ancestor at distance at most 2δ and from the fact that the replication strategy ensures
that all queries on Q are always answered correctly.7

To show that Algorithm 1 answers an LA query in O(δ) time, we notice that the
climb operations in lines 1 and 8 require time O(δ), and so does line 2. Moreover,
the query to DQ (line 6) can also be performed in O(δ) time as discussed above.

4 LAQueries in Dynamic Trees

In this section we provide our main result for LA queries. In Sect. 5, we show how our
ideas can be extended to also handle weighted LA, BVQ, and LCA queries.

4.1 Description of the Data Structure

Some of the key ideas behind our data structure for LA queries in dynamic trees are
extensions of the ones used for the static case. Namely, the n nodes of T are colored
with either black or white, the set of black nodes has size O(n/δ), and it corresponds
to the vertex set of an auxiliary black forest Q. Ideally, in absence of corruptions, Q is
exactly the black tree as defined in the static case, namely the tree in which the parent
of each (black) node v in Q is the vertex u associated with the lowest black proper
ancestor u of v in T .

Moreover, we would still like the vertices of T having a depth that is a multiple of
δ to be colored black, similarly to the static case. However, we can no longer afford
to maintain such a rigid coloring scheme since the tree is now being dynamically
constructed via successive AddLeaf operations, and the corruptions of the adversary

7 Here the distance of 2δ is essentially tight as it can be seen, e.g., by considering a tree T consisting of a
path of length 2δ − 2 rooted in one of its endpoints. The only black vertex of T is the root. Notice how the
vertex u at depth δ is white since the subtree of T rooted in u has height δ − 2.
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might cause vertices to become miscolored. We however ensure that such a regular
coloring pattern will be followed by the portions of T that are sufficiently distant from
the corruptions. This allows us to answer LA queries using a strategy similar to the
one employed for the static case.

Our data structure stores the following information: The record of a node v main-
tains, in addition to the pointer pv to its parent and to the pointerqv to the corresponding
node v in Q (if any), an additional field flagv . Intuitively, flagv can be thought of as
a Boolean value in {⊥,
}. The initial value of a flag is ⊥ and we say that the flag
is unspent. Spending a flag means setting it to 
. We will spend δ of these flags to
“pay” for the creation of a new black node. Spent flags will also signal the presence
of a nearby black ancestor.

For technical reasons, if flagv is unspent, we allow for it to be additionally annotated
with a pair (x, i) where x is (the name of) a node and i is an integer. In practice this
amounts to setting flagv to (x, i), which is logically interpreted as⊥. Such an annotated
flag is still unspent. This provides an additional safeguard against corruptions that may
occur during the execution of our leaf insertion algorithm (see Sect. 4.2).

The node records are stored into a dynamic arrayA, whose current size n is kept in
the safe region of memory. This array supports both elements insertions and random
accesses in constant worst-case time.8

The pointer pv is then the index (in {0, . . . , n − 1}) of the record corresponding to
the parent of v in A. Initially, A only contains the root r of T at index 0. Moreover,
we will always store new leaves at the end ofA so that, in absence of corruptions, the
index of a vertex v in A is always smaller than the index of any of its descendants.
As a consequence, whenever we observe the index stored in pointer pv is greater
than or equal to the index of v itself, we know that v must have been corrupted by
the adversary. We say that the pointers pv such that pv ≥ v are invalid (notice that
a corrupted pointer is not necessarily invalid). We find convenient to use the above
fact to simplify the handling of corrupted vertices: whenever we encounter an invalid
pointer pv we treat it as being equal to 0, i.e., an invalid pointer pv always refers to
the root r of T . This rule also applies to any read pointer, including those accessed by
the climb(·, ·) procedure already defined in Sect. 3.

Then the (possibly corrupted) contents of A, at any point in time, induce a noisy
tree T whose root is r , and the parent of each vertex v �= r is the vertex pointed by pv

according to the above rule. Clearly, T and T coincide when there are no corruptions.
Moreover, we store a resilient data structure DQ that, in addition to the already-

defined LAQ(v, k) query, also supports the following additional operations in O(δ)

time.

NewTreeQ(v): Given a vertex v of T , it creates a new tree in the forest Q con-
sisting of a single vertex v associated to v, and it returns a pointer to v.

8 The standard textbook technique which handles insertions into already full array by moving the current
elements into a new array of double capacity already achieves O(1) amortized time per insertion. With
some additional technical care, the above bound also holds in the worst case. The idea is to distribute the
work needed to move elements into the new array over the insertions operations that would cause the current
array to become full (it suffices to move 2 elements per insertion). Using this scheme, at any point in time,
each element is stored into a single memory word.
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AddLeafQ(u, v): Given a vertex u of Q, and a vertex v of T , it creates a new
vertex v associated to v as a child of u in Q. Finally, it returns a pointer to the
newly added vertex v.

This data structure DQ is the resilient version, obtained using the replication strat-
egy, of the linear-size data structure that supports both the AddLeaf operation and
LA queries in constant time [9]. Notice that DQ always returns the correct answer
to all possible LA queries on Q. Moreover, once we ensure that the number of ver-
tices that become black (and hence the size of Q) is always O(n/δ), we have that the
(resilient) data structure DQ requires O(n) space (this will be shown formally in the
proof Theorem 1).

4.2 The AddLeafOperation

Before describing our implementation of the AddLeaf operation, it is useful to give
some additional definitions. We say that v is near-a-black in a tree T̃ if there exists
some k ∈ {1, 2, . . . , δ} such that the k-parent of v in T̃ is black. Moreover, we say
that v is black-free in T̃ if no k-parent of v in T̃ for k ∈ {1, 2, . . . , 2δ − 1} is black.

The procedure AddLeaf(xpar ) takes a vertex xpar of T as input and adds a new
child x of xpar to T (see Algorithm 2). The record corresponding to new vertex x
is appended at the end of the dynamic array A. For simplicity we will assume that,
during the execution of AddLeaf(xpar ), the record of vertex x is never corrupted by
the adversary. This can be guaranteed without loss of generality since a (temporary)
record for x can be kept in safe memory and copied back to A (which is stored in the
unreliable main memory) at the end of the procedure.

Our algorithm consists of a first discovery phase and possibly of a second additional
execution phase. The aim of the discovery phase is that of deciding whether a white
ancestor of xpar should be colored black following the insertion of x . A necessary
condition for this to happen is that the flags of the δ closest proper ancestors of x are
unspent. The discovery phase is also responsible of locating the node to recolor and
of determining the corresponding black ancestor that becomes its parent in Q (if any).
The execution phase takes care of the actual recoloring, updates Q accordingly, and
spends the δ unspent flags to “pay” for the creation of the new vertex in Q.

More precisely, the discovery phase of Algorithm 2 explores the current tree by
climbing δ levels of T from the newly inserted node x , reaching a vertex y, and
checking during the process that all the flags associated with the traversed nodes are
unspent. If any of these flags is spent, we immediately return from theAddLeaf(xpar )
procedure without performing the execution phase. Otherwise, the algorithm climbs
2δ − 1 further levels from y to determine whether y appears to be black-free or near-
a-black. In the latter case, it keeps track of the distance � from y to the closest black
proper ancestor y′ of y that is encountered. If y is black-free or near-black we move
on to the execution phase, otherwise we return from the AddLeaf(xpar ) procedure
(without performing the execution phase). A technical detail of the discovery phase is
the following: while climbing from xpar to y, the generic i-th unspent flag is annotated
with (x, i) (possibly overwriting any existing previous annotation) andwill be checked
by the execution phase. Recall that these flags remain unspent.
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The execution phase once again climbs δ levels of T staring from x , with the goal of
changing the color of an existing white vertex to black (hence creating a corresponding
black node in Q). This is guaranteed to happen unless the annotations of the unspent
flags of the vertices in the path from xpar to y set during the discovery phase reveal
that one such vertex has been corrupted in the meantime. The creation of a new black
vertex in Q is “paid for” by spending these δ unspent flags (i.e., setting to
 the flags of
the vertices in the path from xpar to y). The position of the new black vertex depends
on whether y was near-a-black or black-free. If y was near-a-black, then the vertex
y′ discovered in the first phase is the δ-parent of the new black vertex x ′, and a new
leaf x ′ is appended to y′ in Q. Otherwise, if y was black-free, then y becomes black
and a new tree containing a single vertex y is added to Q. Notice that, if a vertex b
is colored black during the AddLeaf operation, the execution phase always spends
flagb.

4.3 Analysis of the Data Structure

In this section we analyze our data structure. The core of the analysis is to show that
the AddLeaf operation in Algorithm 2 guarantees that in T , if we are sufficiently
distant from all the corrupted vertices, the black nodes are regularly distributed. The
formal property is stated in Lemma 5.We first need to prove some auxiliary properties.
In Fig. 3 we give an example that shows that, even in an uncorrupted path, if we are
not sufficiently distant from corruptions, the black nodes can form irregular patterns
in the path.

The following lemma shows that if the flag of a vertex w appears to be spent, then
either there must be a nearby black ancestor ofw, unless a nearby corruption occurred.
See Fig. 4a.

(a) (b) (c) (d)

Fig. 3 An examplewith δ = 5 showing that an uncorrupted pathπ (depicted in blue) can exhibit an irregular
pattern of black vertices (d). Situation (a) can be reachedwhen the adversary corrupts r by setting flagr = 

before the insertions of the other nodes take place. To obtain (b), the adversary can set flagu = flagv = 
,
thus corrupting u and v before u and v’s descendants are inserted. If the adversary sets flagu and flagv back
to ⊥ before x , y, and z are inserted (in this order), we arrive in configuration (c) in which b1, b2, and b3
have been colored black. Inserting the remaining vertices yields (d) (Color figure online)
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Algorithm 2: AddLeaf(xpar ): Adds a new leaf x as a child of vertex xpar in T .
Returns a reference to x .
1 Add a new record x at the end ofA; px ← xpar ; flagx ← ⊥; qx ← null;

// Discovery Phase
// Check the flags of the lowest δ proper ancestors of x

2 y ← x ;
3 for i = 1, . . . , δ do
4 if y = r then return x ; // The root r was reached
5 y ← py ;
6 if flagy = 
 then return x ; // Return immediately if a spent flag is found

7 flagy ← (x, i); // Annotate flagy

// Check whether y is near-a-black.
// � will store the distance to the closest black
// ancestor y′ of y, if any

8 y′ ← y; � ← 0; near_black ← false;
9 while � < δ and y′ �= r and near_black = false do

10 y′ ← py′ ; � ← � + 1;

11 if y′ is black then near_black ← true;

// If y is not near-a-black, check whether it is black-free
12 if near_black = false then
13 z ← y′;
14 for δ − 1 times do
15 if z = r then break;
16 z ← pz ;
17 if z is black then return x ;

// Execution Phase. Node y was either near-a-black or black-free
// Acquire the flags of the lowest δ proper ancestors of x

18 z ← x ;
19 for i = 1, . . . , δ do
20 if z = r then return x ;
21 z ← pz ;
22 if flagz �= (x, i) then return x ; // Check the annotation of flagz
23 if near_black = true and i = � then
24 x ′ ← z ; // y′ is the δ-parent of x ′

25 flagz ← 
; // Spend flagz

26 if near_black = true then
27 qx ′ ← AddLeafQ(qy′ , x ′);
28 else
29 qy ← NewTreeQ(y);

30 return x ;

Lemma 1 Let w and z be two nodes such that z is the δ-parent of w in T and such
that no node in the path π from z to w in T has been corrupted. If flagw = 
, then
there exists a black node in π(z : w].

Proof Let x be the node whose insertion in T caused flagw to be set to
. Moreover, let
P be the path of length δ from x to y traversed in the discovery phase of Algorithm 2
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in lines 2–7. Similarly, let P ′ be the path from x to y traversed in the execution phase
of Algorithm 2 in lines 18–25.

Clearly, P ′ containsw. Moreover, ifw is the i-th node traversed in P ′, then flagw =
(x, i) in the execution phase and (since w is uncorrupted), flagw was set to (x, i) in
the discovery phase. As a consequence, w is also the i-th node in P and P[w : y] =
P ′[w : y]. Hence, y is at distance δ − i ≤ δ − 1 from w in P (and in T ) showing
that z is a proper ancestor of y. Therefore all nodes in P ′[w : y] are uncorrupted, and
the loop in in lines 18–25 of Algorithm 2 is executed to completion. This ensures that
the execution phase will color a node b black. We distinguish two cases depending on
whether y was observed to be near-a-black or black-free in the discovery phase.

If y is black-free, then b is exactly y and the claim follows. Otherwise, y is near-a-
black and the discovery phase computed the distance � between y and its closest black
proper ancestor. If � ≥ i , then Algorithm 2 colors a vertex in P[w : z) = π [w : z)
black. Otherwise, if � < i , the discovery phase observed that the �-parent y′ of y was
black. Since i ≤ δ, y′ lies in π [y : z). �

Next lemma shows that an uncorrupted path of length at least 3δ must contain a
black vertex.

Lemma 2 Let x and z be nodes in T such that z is the 3δ-parent of x in T and such
that no node in the path π from x to z in T has been corrupted. Then, there exists a
black node w in π [z : x).
Proof Since no vertex in π has been corrupted, the path π must also belong to the
noisy tree T . In the rest of the proof we assume that π [z : x) contains no black nodes
and show that this leads to a contradiction.

Let y be the δ-parent of x in π and let tx be the time at which the AddLeaf(·)
operation that adds x to T is invoked. We know that, at time tx , there exists no node w

in π [y : x) such that flagw = 
 since otherwise Lemma 1 would immediately imply
the existence of a black node in π [z : w] contradicting the initial assumption. Then,
the invocation of Algorithm 2 that inserts x also performs its execution phase.

Moreover, y must be black-free at time tx , and hence it is colored black during such
a phase (refer to the pseudocode of Algorithm 2, and recall that a black-free node is not
near-a-black). Since y is not corrupted it must still be black, leading to a contradiction.

�
To provide an intuition of the role of next lemma, consider an uncorrupted path π

of length between δ and 2δ with a black vertex z on top. While the vertex y at distance
δ from z would also be colored black in the static case (since each uncorrupted path
contains a black vertex every δ levels), this is not necessarily true in our dynamic
data structure. Nevertheless, when the only back vertex in π is z, all flags associated
with the descendants of y in π are guaranteed to be unspent. In some sense, the data
structure is preparing to recolor the missing black vertex. This will happen once δ

unspent flags are available. See Fig. 4b.

Lemma 3 Let x and z be two nodes in T such that: z is an ancestor of x in T , no node
in the path π from z to x in T has been corrupted, and δ ≤ ‖π‖ < 2δ. We have that,
immediately after vertex x is inserted, if the only black vertex in π is z then all the
nodes w in π at distance at least δ from z in T are such that flagw �= 
.
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(a) (b) (c) (d)

Fig. 4 a Graphical representation of the proof of Lemma 1, for δ = 5. b, c, d Representations of the
statements of Lemma 3, Lemma 4, and Lemma 5, respectively

Proof Since no vertex in π has been corrupted, the path π must also belong to the
noisy tree T . In what follows, we prove that, immediately after vertex x is inserted,
the existence of a nodew between x and z in π such that dT (w, z) ≥ δ and flagw = 

leads to a contradiction. Indeed, since flagw = 
, Lemma 1 implies the existence of
a black node in π(z : w], and this contradicts the fact that z is the only black node in
π [z : x]. �

The next technical lemma is about the time at which the vertices of a long uncor-
rupted path become black. This will be instrumental to prove Lemma 5. See Fig. 4c.

Lemma 4 Let u and v be two nodes in T such that u is an ancestor of v, dT (u, v) ≥ 3δ
and no node in the path π from v to u in T has been corrupted. Let y (resp. x) be the
node in π at distance 2δ (resp. 3δ) from u in π . Let t ′v (resp. t ′x ) be the time immediately
after the vertex v (resp. x) is inserted. If the node y is black at time t ′v , then there exists
a node w′ in π [y : x] that is black at time t ′x .
Proof Since no vertex in π has been corrupted, the path π must also belong to the
noisy tree T . In the rest of the proof we assume towards a contradiction that y is black
at time t ′v , yet there are no black nodes in π [y : x] at time t ′x .

Let z be the δ-parent of y in π . Let t y be the time immediately before y is colored
black. At time t y there are only two possible scenarios:

Scenario 1: At time t y , the node y is black-free;
Scenario 2: At time t y , the node z is the only black node in T in π [z : y].
We denote with tx the time immediately before vertex x is inserted in T and we

consider the two scenarios separately. Notice that t y refers to a later time than tx since
y is white at time t ′x by hypothesis. We split scenario 1 into two additional subcases:

Subcase 1.1: at time tx all the nodes w in π [y : x) are such that flagw �= 
;
Subcase 1.2: at time tx there is a node w in π [y : x) such that flagw = 
.

We start considering subcase 1.1. Since t y follows tx , and y is black-free at time t y ,
vertex ymust also be black-free at time tx . Then, during the insertion of x , Algorithm 2
colors y black yielding a contradiction.
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We now analyze subcase 1.2. Since flagw = 
, Lemma 1 implies the existence of a
black node b in π [w, z) and, since we assume that there are no black nodes in π [y : x],
b is in π(z : y). This shows that y cannot be black-free at time t y and contradicts the
hypothesis of scenario 1.1.

We now consider Scenario 2, which we subdivide into three subcases:

Subcase 2.1: at time tx all the nodes w in π [y : x) are such that flagw �= 
 and z
is white;
Subcase 2.2: at time tx all the nodes w in π [y : x) are such that flagw �= 
 and z
is black;
Subcase 2.3: at time tx there is a node w in π [y : x) such that flagw = 
.

We start by handling subcase 2.1. For the initial assumption, and for definition of
this case, we have that there are no black nodes in π [z : x] at time tx . Since z is colored
black at some time t z following tx , we know that the δ − 1 nodes ancestor of z are
not black at time tx , since this is incompatible with the fact that z will become black.
Since π is not corrupted, we know that y is black-free in T at time tx . This implies
that y is colored black during the insertion of x in T , and hence y is black at time t ′x
contradicting our hypotheses.

We proceed by analyzing subcase 2.2. At time t y all nodes in π [z : y], except for
z, are white and hence the same is true at time tx . Since z is black at time tx and
flagw �= 
 for all nodes w in π [y : x), the AddLeaf procedure adding x will color
y black. Hence y is black at time t ′x . This is a contradiction.

We now consider subcase 2.3. Together with Lemma 1, flagw = 
 implies the
existence of a black node b in π(z : w]. Since we assume all the nodes in π [y : x] to
be white, the black node b is in π(z, y), contradicting the hypothesis of scenario 2. �

Now, we are ready to prove our main property about the pattern of black vertices
discussed at the beginning of this section. See Fig. 4d.

Lemma 5 Let u and v be two nodes in T such that u is an ancestor of v, the distance
between u and v is at least 7δ, and no node in the pathπ fromu to v has been corrupted.
Let ũ be the node at distance 5δ from u in π and let ṽ be the node at distance δ from
v in π . Then there is a black node w∗ in π [ũ : v] such that:

• The distance between w∗ and ũ is at most δ.
• A generic node in π [w∗ : ṽ] at distance d from w∗ is black iff d is a multiple of δ.
Moreover, if w is a black vertex in π(w∗, ṽ] and w is the associated black vertex
in Q, the parent of w in Q corresponds to the δ-parent of w in π .

Proof Since no vertex in π has been corrupted, the path π must also belong to the
noisy tree T . Then, Lemma 2 ensures that, at any time following the insertion of ũ
in T , there exists a black ancestor y of ũ such that dπ (y, ũ) ≤ 3δ. Such a vertex y
is the δ-parent of some vertex x in π . We denote by u′ the 2δ-parent of y in π and
by t ′x the time immediately after x is inserted. Since the length of π [u′ : v] is at least
3δ and y must be black when v is inserted, we can invoke Lemma 4 to conclude that
there exists a node in π [y : x] that is black at time t ′x . We choose w0 as the closest
ancestor of x that is black at time t ′x . Moreover, for i = 1, . . . ,

⌊‖π [w0 : v]‖/δ⌋ we
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let wi be the unique vertex at distance δi from w0 in π [w0, v]. Finally, let t ′i be the
time immediately after the insertion of wi into T .

Wewill prove by induction on i ≥ 1 that (i) at time t ′i , all verticesw0, w1, . . . , wi−1
are black; (ii) from time t ′i onward, all vertices in π [w0, wi ] that do not belong to
{w0, w1, . . . , wi } are white.

We start by considering the base case i = 1. Regarding (i), we know that w0 is
black at time t ′x , and hence w0 is also black at time t ′1 (which cannot precede t ′x ).
Regarding (ii), by our choice of w0 we know that at time t ′x , the only black vertex in
π [w0, x] is w0. Moreover, Algorithm 2 can only color a node b black if none of the
δ − 1 lowest proper ancestors of b is black. This implies that no vertex in π(w0, w1)

will be colored black.
We now assume that the claim is true up to i ≥ 1 and prove it for i + 1. We first

argue that the following property holds: (*) at time t ′i+1 all vertices in π(wi : wi+1) are
white. Indeed, suppose towards a contradiction that there exists some black vertex b in
π(wi : wi+1) at time t ′i+1. When b was colored black, either its δ-parent b′ was black
or b was black-free. In the former case we immediately have a contradiction since
b′ must be a vertex of π(wi−1, wi ) but all such vertices are white by the induction
hypothesis. In the latter case b must have been colored black after the insertion of wi

but, by the induction hypothesis, we know that from time t ′i onwards wi−1 is black.
This contradicts the hypothesis that b was black-free.

Next, we prove (i). Suppose towards a contradiction that wi is white at time t ′i+1.
Then, using (*) and the induction hypothesis, we can invoke Lemma 3 on the subpath
ofπ betweenwi−1 and the parent ofwi+1 to conclude that all nodesw inπ [wi : wi+1)

are such that flagw �= 
. Hence, during the insertion of wi+1, Algorithm 2 reaches
line 7 and checks whetherwi is near-a-black. Since this is indeed the case, a new black
vertex is created in π [wi : wi+1), providing the sought contradiction. Let wi (resp.
wi−1) be the vertex in Q associated with wi (resp. wi−1). Notice that this argument
also shows that, at time t ′i+1, wi is a child of wi−1 in Q since wi becomes black after
time t ′i and not later than time t ′i+1, when wi−1 was already black.

To prove (ii) it suffices to notice that, by inductive hypothesis, we only need to
argue about the nodes in π(wi : wi+1). From (*) we know that these nodes are white
at time t ′i+1, while (i) ensures that wi is black at time t ′i+1. Then, a similar argument
to the one used in the base case shows that Algorithm 2 will never color any node in
π(wi : wi+1) black (as long as the nodes in π remain uncorrupted). This concludes
the proof by induction.

Let w′ be the node at distance δ from ũ in π [ũ : v]. Notice that w0 belongs to
π [u : w′]. If w0 lies in π(ũ : w′], we can choose w∗ = w0. Otherwise, w0 is an
ancestor of ũ and, from (i) and (ii), there is exactly one black vertex b in π(ũ : w′]
and we choose w∗ = b. �

4.4 LAQueries

Lemma 5 suggests a natural query algorithm. The query procedure is similar to the
one for static case. When k ≤ 7δ we climb in T the nodes of the path from v to the
k-parent of v in a trivial way. Otherwise, Lemma 5 ensures that if no vertex in the path
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Algorithm 3: Answers a level ancestor query LA(v, k) in dynamic trees.
1 if k ≤ 7δ then
2 return climb(v, k);

3 ṽ ← climb(v, δ);
4 Climb up the tree T from ṽ for up to δ nodes searching a black node;
5 if the previous procedure did not find a black node then
6 return error;

7 v′ ← a black node found in the previous procedure;
8 d ← distance between v′ and v;
9 k′ ← k − d − 5δ;

10 u′ ← LAQ(qv′ , �k′/δ�);
11 krest ← k′ − �k′/δ� · δ + 5δ;
12 return climb(u′, krest) ;

P from v to its level ancestor in T was corrupted by the adversary, then every other
δ-th vertex of P is colored black except, possibly, for an initial subpath of length δ

and for a trailing subpath of length 5δ. The query procedure explicitly “climbs” these
portions of P and queries DQ to quickly skip over its remaining “middle” part. The
pseudo-code is given in Algorithm 3.
We are now ready to prove the main theorem of this section.

Theorem 1 Our data structure requires linear space, supports the AddLeaf opera-
tion in O(δ) worst-case time, and can answer resilient LA queries in O(δ) worst-case
time.

Proof The correctness of the query immediately follows from Lemma 5. Moreover,
the time required to perform an AddLeaf or an LA operation is O(δ) since in both
cases O(δ) vertices of T are visited and a single O(δ)-time operation involving DQ

is performed.
We now discuss the size of our data structure. Clearly, the space used to store the

array A of all records is O(n). We only need to argue about the size of DQ . Recall
that DQ is the resilient version, obtained using the replication strategy, of the data
structure of [9] that requires linear space and takes constant time to answer each LA
query and to perform each AddLeaf operation. In order to show that DQ requires
O(n) space we will argue that the number of black vertices is O( n

δ
). As consequence

we have that the size of DQ is O(n).
To bound the number of vertices in Q, notice that in order to add a new vertex

to Q we need to spend δ flags that were previously unspent. Moreover, a spent flag
never becomes unspent unless the adversary corrupts the record of the corresponding
node (by using one of its δ corruptions). As a consequence the nodes in Q are at most
(n + δ)/δ = O(n/δ). �
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5 HandlingWeighted LA, LCA, and BVQQueries

5.1 Weighted LAQueries

In this section we show how to handle weighted LA queries when δ and the weights of
the nodes are polylogarithmically-bounded positive integers. Recall that, the answer
to a weighted LA query LA(v, k) is the deepest ancestor u of v in T such that the total
weight of the vertices in the path from u to v in T is at least k. The record of each node
v stores, along with the fields described in Sect. 4, an additional field containing the
weight of v. To store Q we use a resilient data structure DQ that maintains a forest of
rooted trees in which every vertex has an associated weight. DQ is also able to answer
weighted LA queries on Q in O(δ) time. For technical convenience we assume that a
weighted level-ancestor query LAQ(v, k) in Q reports the vertex u of minimum depth
among the ancestors of v such that the total weight of the vertices in the path between u
and v (endpoints included) in Q is at most k. This data structure is the resilient version,
obtained using the replication strategy, of the one in [9] which answers weighted LA
queries in constant time when vertex weights are polylogarithmically-bounded.

We modify Algorithm 2 in two ways: (i) during the discovery phase, we keep track
of the total weightW of the vertices between x (included) and the closest black proper
ancestor y′ of y (y′ excluded); (ii) during the execution phase, we keep track of the total
weight W ′ of the vertices between x (included) and x ′ (excluded). Recall that when a
vertex x ′ becomes black in the execution phase of Algorithm 2 since y was observed to
be near-a-black in the discovery phase, the corresponding vertex x ′ is added to Q via
the AddLeafQ operation on line 27. To handle weighted LA queries, we also need to
assign aweight the the new vertex x ′. Specifically, we choose this weight to beW−W ′.
Notice that, in the absence of corruptions, W − W ′ is exactly the total weight of the
vertices in path between x ′ (included) and y′ (excluded). Moreover, when a vertex y
becomes black in the execution phase of Algorithm 2 because it was observed to be
black-free in the discovery phase, we set the weight of the corresponding node y in Q
to the weight of y in T .9

We now describe how to answer a queryLA(v, k).We start by optimistically assum-
ing that the (unweighted) distance between v and the sought vertex is short. We do so
by climbing (up to) 10δ levels from v while keeping track of the total weight of the
traversed vertices. We stop at and return the first encountered vertex for which such a
weight is at least k.

If the above procedure is unable to locate the sought vertex, we proceed as follows.
We climb δ levels from v, and we then search for a nearby black node b among the
closest δ proper ancestors of the reached vertex. During this process, we keep track
of the total weight W of the traversed nodes between v (included) and b (excluded).
Let b be the vertex in Q that is associated with b. We now perform an LAQ(b, k −W )

query DQ to find the shallowest ancestor b
′
of b such that the overall weight W ′ of

9 Notice that, in absence of corruptions, the weight assigned to a vertex in Q is always positive and
polylogarithmically-bounded since so is δ. The above property might not be true when the observed values
are corrupted but we artificially enforce it by constraining weights to be in this range. This also applies to
weights read by the query algorithm explained in the following.
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the vertices in the path between b
′
and b in Q is at most k − W . Let b′ be the node of

T that is associated to b
′
. Finally, we iteratively climb from b′ towards its ancestors

until we reach a vertex u such that the total weight of the path between b′ (excluded)
to u (included) is at least k −W −W ′. We then return u. As we argue below, this final
climbing procedure requires at most 6δ steps in the absence of corruptions. Therefore,
if this threshold is exceeded we immediately stop the query and report an error.

We now discuss the correctness of the query. Let u∗ be the deepest ancestor of v in
T such that the total weight between v and u∗ is at least k, and assume that the path
π between u∗ and v is uncorrupted. To prove that the query procedure is correct it is
sufficient to show that (i) the vertex b′ belongs π , and (ii) the (unweighted) length of
π [u∗ : b′] is at most 6δ.

To see (i), assume by contradiction that b′ is not in π , and let b1 be the deepest
ancestor of b in Q such that the vertex in T corresponding to the parent b2 of b1 in Q
does not belong to π . Let b2 be the vertex in T associated to b2 (vertex b2 must exists
since we assumed that b′ is not in π ). As a consequence, since π is uncorrupted, the
total weight of the path in Q between b1 (excluded) and b is equal to the total weight
of π(b1, b]. Moreover, the weight of b1 in Q is at least the total weight of π [u∗ : b1].
This implies that W ′ must be strictly greater than k − W since b2 has weight at least
1. This is a contradiction.

It remains to prove (ii). Since the number of vertices of π is at least 10δ, we invoke
Lemma 5 to conclude that b′ must be at distance at most 6δ from u∗. Indeed, if this
was not the case, then the δ-parent of b′ would be black and would belong to π , which
implies that b

′
could not be the vertex returned by the query on DQ .

5.2 BVQQueries

To support BVQ queries, the record of each node v stores the weight of v andmaintains
an additional field depthv that intuitively keeps track of the depth of v in T . Initially,
when T is first built and consists only of the root r , we set depthr = 0. Whenever a
new node v is appended as a child of u via the AddLeaf operation, we set depthv =
depthu + 1.

To store Q we use a resilient data structure DQ thatmaintains a forest of rooted trees
which can be updated by adding leaves in O(δ) time per operation. DQ is also able
to answer (unweighted) LA and BVQ queries on Q in O(δ) time. This data structure
is the resilient version, obtained using the replication strategy, of the one in [9] which
answers both LA and BVQ queries in constant time.

Moreover, we slightly modify the execution phase of Algorithm 2 in the case in
which y was observed to be near-a-black in the discover phase. In this scenario a vertex
x ′ becomes black, and a corresponding vertex x ′ is added to Q via the AddLeafQ

operation on line 27. In our modification, we additionally climb the path from x ′
(included) to y′ (excluded) while keeping track of the vertex w′ of minimum weight
among the encountered nodes. We assign the weight of w′ to x ′ in Q and we store a
reference to w′ as (replicated) satellite data attached to x ′. When instead the vertex
that becomes black is y since y was observed to be black free during the discovery

123



Algorithmica

phase, we assign weight +∞ to the corresponding black node y in Q (in this case y
is the root of a new tree in Q, and no satellite data is needed).

We now describe how to answer a BVQ(u, v) query. In particular, we only need
to consider the case in which u is an ancestor of v since we can always perform an
LCA(u, v) query (we will show how to handle LCA queries later in this section) to find
the lowest common ancestor z of u and v in T and then return the minimum of the two
bottleneck queries BVQ(z, u) and BVQ(z, v) which satisfy the above requirement.

Hence we assume that no corrupted vertex exists in the path π from u to v in T and
we start by computing the quantity d = depthu − depthv . Notice that, while depthu
(and depthv) might not contain the actual depth of u (and v) in T , due to a corruption
in some ancestor of u, the value of d always matches the distance between u and v in
T , i.e., the length of π .10

If d < 10δ, we answer the query using the trivial algorithm BVQ(u, v) that climbs
the path π one edge at a time from v to u and returns the vertex of minimum weight
encountered in the process. Clearly this algorithm is resilient and requires O(δ) time.
Otherwise, we use a strategy similar to the one used for LA queries in Algorithm 3.
We climb δ levels from v, and we then search for a nearby black node b among the δ

ancestors of the reached vertex. During this process, we keep track of the node w1 of
minimum weight among those we encounter. Next, we perform an LA query on DQ

to find the black node b′ that is (�d/δ� − 7)-parent of b (Lemma 5 ensures that this
vertex exists and is black). Finally, we climb from b′ to u in O(δ) time and keep track
of a node w2 having minimum weight among those encountered during the process.
The answer to BVQ(u, v) is the vertex of minimum weight between w1, w2, and the
node returned by a bottleneck vertex query BVQ(b′, b) in Q.

5.3 LCAQueries

In this section we show how to handle an LCA(u, v) query. We first discuss the rough
idea of our solution. Intuitively, we use two separate approaches to manage long and
short queries, respectively. We say that a query is short if at least one of u and v is
at a distance of at most 10δ from the lowest common ancestor w of u and v in T ,
and long otherwise. As we will show, short queries can be easily answered using a
combination of LA queries and a procedure similar to the climbing strategy of Sect. 3.
Hence, the main technical difficulty lies in handling long queries. To get an intuition
of our approach, consider the case in which both u and v are black vertices and there
are no corruptions. Let y′ be the LCA of u and v in Q and consider the first vertex
a (resp. b) in the unique path from y′ to u (resp. v) in Q. Then, w is also the lowest
common ancestor of a and b in T , and y′ is an ancestor of w (see Fig. 5). We can
hence reduce the long query LCA(u, v) to the short query LCA(a, b).

However, in presence of corruptions, the nodes in the path between y′ (included)
and w (excluded) in T might be corrupted, and this could prevent us from discovering
the “right” nodes a and b. For example, this can happen when the vertices u and v

10 The adversary could cause the values stored in depthu or depthv to overflow. However, with some
additional technical care (by interpreting these fields as unsigned integers in modular arithmetic) one can
always recover d.
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Fig. 5 a A representation of the
topological relationship between
significant vertices used to
answer an LCA query in T , as
discussed in Sect. 5.3. b The
corresponding black tree Q

(a) (b)

belong to different trees in Q. Nevertheless, with some technical care, we can ensure
that at least one of a and b is the root of the corresponding tree in Q, and the associated
vertex in T (i.e., either a or b) is a close descendant of w. This will suffice to reduce
to the case of a short LCA query.

We now formally describe our data structure for LCA queries. The record of each
node v stores, along with the fields described in Sect. 4, a field depthv managed as
discussed for the BVQ query, and an additional field cbav which intuitively stores a
pointer to the vertex in Q associated with the closest black ancestor of v in T . When
v is inserted cbav is unset, and it will be possibly set during the execution phase of
some later AddLeaf operation. Similarly to flagv , we allow a field cbav that is unset
to be annotated with a pair (x, i), where x is a vertex that is being inserted and i is the
observed distance between x and v.

To store Q we use a resilient data structure DQ that maintains a forest of rooted
trees which can be updated by adding leaves in O(δ) time per operation. DQ is also
able to answer LA and LCA queries on Q in O(δ) time. This data structure can be built
as combination of the resilient versions (obtained through the replication strategy) of
the data structures in [9, 12] which answer LA and LCA queries in constant time.

We modify both the discovery and the execution phases of Algorithm 2. Recall
that in the discovery phase the algorithm locates the δ-parent y of x , and the closest
black proper ancestor y′ of y, if any. In our modification, when we traverse a generic
ancestor z of the inserted vertex x , we check cbaz . If cbaz is unset, we annotate it
with (x, i) where i is the observed distance between x and z (possibly overwriting
any previous annotation). Moreover, we also store qy′ in a variable y′ in safe memory.
In the execution phase, we only need to handle the case in which y appeared to be
near-a-black during the discovery phase. In this case, let x ′ be the vertex such that y′
is the δ-parent of x ′ (see line 24). We extend the for loop of line 18 in order to reach y′.
We still check and spend the encountered flags only for the fist δ vertices, as before.
In addition, for each vertex z at distance i from x , such that z is in the path between
x ′ (included) and y′ (excluded), we check that cbaz is either set to y′ or it is unset
and (correctly) annotated with (x, i). In the latter case, we set cbaz to y′. If neither
of the previous conditions is met (i.e., cbaz is set to some vertex other than y′ or it
is unset and incorrectly annotated) we are in an exceptional situation and cbaz is left
unaltered.
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Finally, we modify line 27 in which x ′ is colored black via the addition of a corre-
sponding vertex x ′ to Q. Our modification is as follows: if we are not in an exceptional
situation, we proceed as before and we add x ′ as child of y′ in Q. Otherwise, in the
exceptional situation, we add x ′ as a new root in Q.

Before describing how to answer an LCA query, we argue that the above modi-
fications guarantee stronger structural properties than the ones given in Sect. 4. In
particular, we start by showing that Lemma 5 still holds. First of all, notice that our
modifications do not affect vertex colors. Hence, we only need to show that the parent-
child relationships between black vertices in Q are preserved. Since the only way to
alter these relationships is for an exceptional situation to happen during the execution
of AddLeaf that colors some node x ′ black, we only need to show that no exceptional
situation can arise when a (sufficiently deep) vertex of an uncorrupted path becomes
black. This is proven in the following lemma.

Lemma 6 Let π be an ancestor-descendant path in T of length at least 2δ, and let x ′
be the deepest vertex of π . If x ′ is black and no vertex in π has been corrupted, then
the execution of AddLeaf that colored x ′ black did not encounter an exceptional
situation.

Proof Let x be the node whose insertion in T causes x ′ to be colored black, and let
tx the time immediately before x is inserted in T . In the rest of the proof, we assume
that the execution of AddLeaf inserting x in T is in an exceptional situation, and we
prove that this leads to a contradiction.

Since we are in an exceptional situation, at time tx the δ-parent y′ of x ′ must be
black and all the other nodes in π(y′ : x ′) must be white. Let y′ = qy′ . Then, the
exceptional situation was caused by a node w in π(y′ : x ′] such that cbaw = z and
z �= y′. Let z be the node in T that is associated with vertex z and notice that z �= y′
implies z �= y′. Since no vertex in π is corrupted, the existence of w implies the
existence of an ancestor z of w which is black at time tx and such that d(z, w) ≤ δ

(see Fig. 6a). By hypothesis, all the nodes in π(y′ : x ′) are white at time tx , and hence
z �= y′ must be a proper ancestor of y′. Node z satisfies the following conditions:
(i) d(y′, z) ≤ δ − 1 (since d(w, z) ≤ δ), and (ii) y′ was white when cbaw was set
to z (since cbaw = z and no vertex in π is corrupted). This implies that, when y′
was colored black, there was a black node z such that d(y′, z) ≤ δ − 1 and this is a
contradiction. �

We now prove a structural property that will be exploited in the query procedure.
More precisely, let us assume that we need to answer a long LCA(u, v) query, that the
path π between u and v in T is uncorrupted, and letw be the lowest common ancestor
of u and v. We use the vertices u and v to pinpoint two new vertices in Q, respectively
named a and b (and their corresponding vertices a, b in T ). We define a (resp. b) as
the value z at the end of the following algorithm: we first climb δ levels from u (resp.
v) in T and then we search for the closest black proper ancestor of the current vertex
(Lemma 5 ensures that such a black vertex exists and is at distance at most δ). We
initialize z as the vertex in Q corresponding to such an ancestor. Next, we iteratively
move from the current vertex z to its parent until we reach the first vertex that is either
the root of its tree, or has a parent whose corresponding vertex z in T does not lie in
π(w : u] (resp. π(w : v]).
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(a) (b)

Fig. 6 a Graphical representation of the proof of Lemma 6, for δ = 4. b Graphical representation of the
proof of Lemma 7, for δ = 5. Here we are considering a long query LCA(u, v) and the path from u to v is
uncorrupted. Notice how Lemma 7 still holds even if the parent of w is corrupted, causing the subsequent
invocations of the AddLeaf procedure to observe two different (sub)paths from w to y′

We prove the following lemma.

Lemma 7 The distance betweenw and a (resp. b) in T is at most 6δ. Moreover, if both
a and b have a parent in Q, then such parents coincide.

Proof The bound on the distance between w and a (resp. b) in T immediately follows
from Lemma 5, hence in the rest of the proof we focus on showing that the parents of
a and b (if they exist) must coincide.

Assume, w.l.o.g., that a was inserted in Q before b, and let y′ be the parent of a
in Q. Notice that, when a was colored black, the corresponding AddLeaf operation
inserted vertex a as a child of y′. Hence, the black vertex y′ in T corresponding
to y′ was observed to be an ancestor of both a and w (by the choice of a) in the
discovery phase. As a consequence, the execution phase ensured that the value of
cbaw was exactly y′ (as otherwise the AddLeaf operation would have encountered
an exceptional situation and a would have been a root of a tree in Q). Analogously,
the AddLeaf operation that colored b black was not in an exceptional situation and,
by the definition of b, we know that w lies in the (observed) path between b and its
(observed) δ-parent z. Since w is uncorrupted, and the above operation successfully
checked that cbaw matched qz , we can conclude that qz = y′. Hence, the parent of b
in Q is y′. See Fig. 6b for an example. �

We are now ready to describe how to answer an LCA(u, v) query. We first describe
a simple resilient naive strategy to answer LCA(u, v) queries. This strategy always
returns an answer when the query is short and π is uncorrupted, while it might be
inconclusive when the query is long or some vertex of π is corrupted. If an answer
is provided and π is uncorrupted, then the returned vertex will always be the LCA w

between u and v.
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Let k be the difference between the depth of v and the depth of u.11 We describe
the case k ≥ 0 (the case k < 0 is symmetric). We perform an LA(v, k) query to find
the k-parent v′ of v. Notice that, in absence of corruptions on π , the distance between
w and u is the same as the distance between w and v′. We now iteratively perform
the following steps. We check whether v′ = u and, if this is the case, we answer the
query by reporting v′ as the sought lowest common ancestor. Otherwise, we move u
and v′ to their respective parents and repeat. If the parent of u or v does not exist or
we are unable to answer the query within 10δ iterations, we stop the above procedure
and say that the naive strategy is inconclusive.

We now need to handle the case in which the naive strategy is inconclusive, we
hence assume that π is uncorrupted and that the query LCA(u, v) is long. Let u′ (resp.
v′) be a black ancestor of u (resp v) computed as follows. We first climb δ levels from
u (resp. v) and then climb again in order to reach the first black proper ancestor of the
current vertex. Notice that, by Lemma 5, u′ (resp. v′) is at distance at most 2δ from u
(resp. v).

Let u′ and v′ be the vertices in Q corresponding to u′ and v′, respectively. We
perform an LCA query in Q to find the lowest common ancestor y′ of u′ and v′, if any.
We assume also that, if such a vertex exists, this query is able to return the two vertices
ã and b̃ of Q such that ã (resp. b̃) lies in the path between y′ and u′ (resp. between y′
and v′) in Q, and y′ is the parent of both ã and b̃.12 Notice that from Lemma 7, it must
be a = ã and b = b̃. If y′ exists, we return the outcome of the naive LCA strategy
on a and b, where a (resp. b) is the black vertex in T corresponding to a (resp. b).
Lemma 7 ensures that the vertices a and b are close descendants of w, and hence the
naive query correctly finds w.

It remains to handle the case in which there is no LCA between v′ and u′ in Q, i.e.,
u′ and v′ belong to different trees of Q. In this case, we let a′ (resp. b′

) be the root
of the tree in Q that contains u′ (resp. v′). From Lemma 7, it must be that a′ = a or
b

′ = b (possibly both). In this case, we inspect the fields depthu′ , depthv′ , deptha′ and
depthb′ and we consider the vertex among a′ and b′ that appears to be deeper in T .13

W.l.o.g., let a′ be such vertex and let ka′ be the observed difference in levels between
u′ and a′. We check that ka′ is non-negative and that LA(u′, ka′) = a′. If the above
condition is met, we use the naive strategy to answer an LCA query between a′ and v′
and return the resulting vertex (notice that this cannot be inconclusive). Otherwise, if
ka′ < 0 or the answer to LA(u′, ka′) was not a′, we must have b′ = b and we return
the vertex found by using the naive strategy to answer the short LCA query between
b′ and u′.

11 Similarly to the case of BVQ queries, this value can be recovered from depthv and depthu .
12 It is easy to support such a query with a constant number of LCA and LA queries on Q.
13 In order to carefully manage possible overflows and corruptions, this can be done by first recovering the
difference 	v′,u′ between depthv′ and depthu′ , the difference 	u′,a′ between depthu′ and deptha′ , and the
difference 	v′,b′ between depthv′ and depthb′ . Then, it suffices to compare 	u′,a′ + 	v′,u′ with 	v′,b′ .
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