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Abstract
Distance measures provide the foundation for many popular algorithms in Machine Learning and Pattern Recognition. Differ-
ent notions of distance can be used depending on the types of the data the algorithm is working on. For graph-shaped data, an 
important notion is the Graph Edit Distance (GED) that measures the degree of (dis)similarity between two graphs in terms 
of the operations needed to make them identical. As the complexity of computing GED is the same as NP-hard problems, it 
is reasonable to consider approximate solutions. In this paper, we present a QUBO formulation of the GED problem. This 
allows us to implement two different approaches, namely quantum annealing and variational quantum algorithms, that run 
on the two types of quantum hardware currently available: quantum annealer and gate-based quantum computer, respectively. 
Considering the current state of noisy intermediate-scale quantum computers, we base our study on proof-of-principle tests 
of their performance.

Keywords  Graph edit distance · Quantum annealing · Variational quantum algorithms

1  Introduction

The Graph Edit Distance (GED) (Sanfeliu and Fu 1983; Gao 
et al. 2010) represents one of the most common dissimilarity 
measures used in Pattern Recognition and Image Processing 
(Conte et al. 2003; 2004). It has been successfully applied to 
many real-world tasks such as image recognition, handwrit-
ten digit recognition, face and face expression recognition 
(Filatov et al. 1995; Wiskott et al. 1997; Kisku et al. 2010; 
Mengoni et al. 2021; Neuhaus and Bunke 2004), and has 
applications in a variety of areas from computer vision and 
bioinformatics (Zaslavskiy 2010) to cognitive science (Mhe-
ich et al. 2015), and hardware security (Fyrbiak et al. 2020). 
It has also been used in Machine Learning in order to define 
more powerful kernels for support vector machines (Bellet 

et al. 2011), and in combination with kernel machines for 
pattern recognition (Neuhaus and Bunke 2007; Mengoni and 
Di Pierro 2019).

In general, the notion of edit distance (originally intro-
duced for strings and then extended to graphs and general 
structured data) is given in terms of the operations that must 
be performed on a pair of data in order to make them identi-
cal, and represents a quantitative estimate of their dissimi-
larity. For example in pattern recognition it measures the 
strength of the distortions that have to be applied to trans-
form a source pattern into a target pattern. As computing the 
edit distance is essentially to search for the best (in terms of 
cost) set of operations in the space of all possible ones, the 
problem is intrinsically a combinatorial optimization prob-
lem and its complexity depends on the structure of the data 
in the search space. When data are graphs, calculating the 
edit distance becomes easily inefficient as the complexity 
of the search space grows exponentially with the number 
of nodes of the graphs. In fact, the GED problem is an NP-
hard optimization problem (Zeng et al. 2009), which makes 
exact approaches impossible to use for large graphs. This 
makes the study of approaches that give near-optimal results 
in reasonable time an urgent and essential one, also in the 
light of the practical impact of the GED problem. It is there-
fore of great importance to discuss and analyze in this con-
text the feasibility of quantum approaches. Many classical 
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algorithms have been proposed up to now (Gao et al. 2010), 
which however cannot be straightforwardly translated to the 
quantum setting.

In this paper we introduce a formulation of the GED 
problem as a Quadratic Unconstrained Binary Optimization 
(QUBO) problem, and show that this offers a common base 
for a direct implementation of the problem on both quan-
tum and classical hardware, thus making it easy to compare 
the performances of various approaches. Our formulation 
is based on a quantified version of the graph isomorphism 
problem, where the expected answer is the actual number of 
operations that are needed to make two graphs isomorphic, 
rather than “yes” or “no”.

The quest for optimization algorithms that can run on 
noisy intermediate-scale quantum (NISQ) computers is a 
very timely topic, as well as a challenging task (Preskill 
2018; Alexeev et al. 2021; Martina et al. 2022). The two 
main quantum strategies that have been proposed to tackle 
optimization tasks are Quantum Annealing (QA) (Kadowaki 
and Nishimori 1998; Silva et al. 2020; Asproni et al. 2020) 
and the circuit-based variational approaches. In this paper 
we will assess the suitability of quantum annealing and two 
variational algorithms, i.e., Variational Quantum Eigen-
solver (VQE) (Peruzzo et al. 2014) and Quantum Approxi-
mate Optimization Algorithms (QAOA) (Farhi et al. 2014), 
on finding an approximate solution of the GED problem.

Moreover, we will give a concise comparative study of 
their performance with respect to a specific classical algo-
rithm, namely Simulated Annealing, which makes use of 
the same QUBO formulation of the problem as the quantum 
strategies.

1.1 � The quantum strategies

The QA approach can be seen as the quantum analogue of 
the classical simulated annealing optimization algorithm 
(Kirkpatrick et al. 1983), and essentially consists in using a 
specific search procedure for finding the state of minimum 
energy of spin systems studied in statistical mechanics, e.g., 
the Ising model in a random field (Kadowaki and Nishi-
mori 1998). In the quantum case the fluctuations needed to 
scan the energy landscape are provided by a field that allows 
quantum tunneling, in contrast to the simulated annealing 
where the fluctuations are thermal (Hauke et al. 2020). While 
QA is based on the adiabatic model of quantum computa-
tion, VQE and QAOA are hybrid quantum-classical algo-
rithms implemented on circuit-based quantum computers. 
This approach has been tested in several proof-of-principle 
experiments for real-world optimization (e.g., scheduling) 
problems (Vikstål et al. 2020; Bengtsson et al. 2020).

Both kinds of approaches share a common physical 
ground, since they are both implemented by means of a total 
Hamiltonian that is composed by two non-commuting terms, 

H0 and H1, such that [H0, H1] = H0 H1 − H1 H0 ≠  0. This 
Hamiltonian has the form

where λ(t) is a control function that is valued in the interval 
[0, 1] and allows us to switch between the two terms. In 
fact, assuming that the computation time is in the interval 
[0, τ], one can initialize the system into the ground state of 
H0, imposing λ(0) = 0, and tune the control parameter until 
reaching λ(τ) = 1. If the variation of λ(t) is such that the 
hypotheses of the adiabatic theorem (Kato 1950) are satis-
fied, both algorithms can be viewed as prefatory approaches 
for full adiabatic quantum computation (Albash and Lidar 
2018). Moreover, the gates composing the QAOA can be 
seen as a Suzuki-Trotter decomposition (Mbeng et al. 2019) 
of the unitary evolution stemming from a Hamiltonian as 
defined in Eq. (1).

Another common aspect of QA and QAOA is that their 
performance significantly depends on heuristics for the 
choice of the annealing schedule and parameter initializa-
tion, respectively.

By defining the problem of calculating the GED as a 
Quadratic Unconstrained Binary Optimization (QUBO) 
problem, we are able to experiment both on quantum anneal-
ers, such as the D-Wave Systems Inc. machines, and on 
quantum circuits via variational algorithms such as VQE 
and QAOA. We introduce a QUBO formulation of GED 
that is inspired by the one presented in Calude et al. (2017) 
for the Graph Isomorphism problem, i.e., the computational 
problem of determining whether two finite graphs are iso-
morphic. Our formulation exploits the fact that GED can be 
seen as a quantitative generalization of graph isomorphism, 
which requires a “counting” phase while checking the nodes/
edges in each of the graphs. This allows us to obtain a quan-
titative answer to the optimization problem rather than just a 
yes/no answer as in the case of graph isomorphism. This also 
explains why the GED problem is far more complex than 
graph isomorphism, for which it was recently shown that the 
problem is solvable in quasi-polynomial time (Babai 2016).

Our strategy is to use the QUBO formulation across all 
the platforms: classical, quantum annealers and gate-based 
quantum computers. This formulation of the problem, which 
is common for all the platforms, allows their smooth com-
parison and the identification of the most suitable one. The 
NISQ devices that we use to run the QUBO formulation 
of GED are the D-Wave System quantum annealer and the 
IBM circuit-based quantum computer. This will contribute 
to assess the actual power of NISQ devices for real-world 
problems. A benchmark of quantum optimization algorithms 
on satisfiability and max-cut problems has been introduced 
in Willsch et al. (2020). In contrast to that work, we analyze 
the GED problem, which requires a more involved QUBO 

(1)H = (1 − �(t))H0 + �(t)H1,
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formulation and therefore a larger number of qubits. Moreo-
ver, we consider a broader class of quantum algorithms and 
include also classical algorithms in our comparison.

This paper is structured as follows. In Section 2 we intro-
duce the notion of graph edit distance, and in Section 3 its 
QUBO formulation. Section 4 is devoted to the classical 
approaches developed to compute GED, while in Section 5 
we discuss the methods we employ in our experiments on 
both quantum annealer and circuit-model quantum com-
puter. In Section 6 we present the results of our experiments 
and provide a comparison among the different strategies. 
Finally, in Section 7 we discuss our results in the light of 
the currently available technologies and we address some 
open questions.

2 � Graph edit distance

A graph G = (V, E) consists of a finite, non-empty set 
of vertices V of cardinality |V | = n, and a set of edges 
E = {{u, v} ∣ u, v ∈ V} ⊆ V × V  of cardinality |E|≤ n2. The 
graph is undirected if each edge is described by an unordered 
pair of vertices, directed otherwise. In an undirected graph, 
the number of edges is at most n(n + 1)/2 or, by excluding 
self-loops (edges starting and ending in the same vertex), 
n(n − 1)/2.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomor-
phic, denoted by G1 ≅ G2, if there exists a bijection (1-to-1 
mapping) π between the vertex sets of G1 and G2 satisfying 
the property of edge-preserving (Fortin 1996), i.e., {u, v}∈ 
E1 ⇔ {π(u), π (v)}∈ E2. The graph isomorphism problem is 
the problem of establishing the exact matching of two graphs 
(Fortin 1996). The inexact matching is the more general case 
where there is a difference between two graphs, and a meas-
ure of this difference quantifies “how much” the two graphs 
are (dis)similar. An important graph similarity measure is 
the graph edit distance (GED) (Sanfeliu and Fu 1983; Gao 
et al. 2010), whose value is the total cost of “transform-
ing” one graph into the other, thus making them isomorphic. 
Clearly, when two graphs are isomorphic, the GED between 
them is zero.

The GED problem is a NP-hard optimization problem, 
i.e., intuitively, it is at least as hard as the hardest problems 
in NP. This means that it is computationally more expensive 
than graph isomorphism for which a recent result shows that 
it is possible to find a solution in quasi-polynomial time 
(Babai 2016).

A graph edit operation is a mapping from the set of 
graphs to itself. The most common edit operations on a 
graph G = (V, E) are listed in Table 1, where we also specify 
the part of the graph which they act on (Vertex or Edge 
set), and the condition of their applicability (Constraint). 
Specifically, these operations can be performed provided 

that they do not insert a pre-existing vertex/edge, or delete 
a non-existing vertex/edge; it must also be guaranteed that 
before deleting a vertex, each edge starting or ending into 
that vertex must be deleted.

A graph edit path P is a composition of graph edit opera-
tions and the number of these operations defines the length, 
ℓ(P), of the path. The graph edit distance between two 
graphs G1 and G2 can be defined as

A more fine-grained definition of GED can be found in Blu-
menthal and Gamper (2020), where labelled graphs are con-
sidered, so that each graph edit operation might contribute 
to the graph edit distance with a different weight. For our 
purpose, it is sufficient to consider the case of unlabelled 
graphs, which allows us to keep our implementation simpler. 
In particular, in the calculation of the GED we will assume 
that each edit operation has cost 1. This implies that the 
length of an edit path effectively corresponds to the number 
of operations composing it, which is a reasonable estimate of 
the complexity of the calculation. An example of calculation 
of GED is shown in Fig. 1.

3 � QUBO formulation of GED

The graph matching problem can be encoded as a linear 
optimization problem (Almohamad and Duffuaa 1993; Jus-
tice and Hero 2006) or a quadratic optimization problem 
(Vogelstein et al. 2015; Calude et al. 2017). We show here 
how the second approach can be extended to inexact graph 
matching, and precisely to the GED problem. The idea is 
to reformulate GED as a Quadratic Unconstrained Binary 
Optimization (QUBO) problem, a class of problems that is 
well known in multivariate optimization. As the name sug-
gests, a QUBO problem is defined in terms of a quadratic 
function of binary variables xi, which is unconstrained or, 
more precisely, with constraints replaced by penalty terms 
and encoded within a matrix Q representing the objective 
function (Kochenberger et al. 2014). The task is to find the 
value x∗ such that

(2)GED(G1,G2) = min
P
{�(P) ∣ P(G1) ≅ G2}.

Table 1   Main operations composing a graph edit path

Operation Vertex set Edge set Constraint

Insert node v V ∪{v} No changes v∉V 
Delete node v V ∖{v} No changes v ∈ V,∄uv ∈ E
Insert edge uv No changes E ∪{uv} uv∉E
Delete edge uv No changes E ∖{uv} uv ∈ E 
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where xi ∈{0, 1} for any of the n entries of x, and Q is an 
n × n upper triangular real valued matrix with elements qi,j 
encoding the data specification.

QUBO problems are NP-hard problems (Pardalos and 
Jha 1992) and share a similar structure and the same com-
putational complexity with spin glass Ising models. This 
similarity allows for an almost immediate implementation 
of QUBO objective functions into the adiabatic model of 
quantum computation.

A QUBO formulation of the GED problem can be given 
as follows. Given two graphs G1 = (V1, E1) and G2 = (V2, 
E2) we shall assume that the number of vertices is the same 
in both graphs, that is |V1| = |V2| = n . This is without loss 
of generality; in fact, if G1 has k = |V1| − |V2| > 0 vertices 
more than G2, we build an auxiliary graph G′

2
 by adding k 

isolated vertices to G2; then, we calculate he GED between 
G1 and G′

2
 , and finally add k to the given value for consider-

ing the k insertion node edit operations. The formulation 
requires n2 variables, each denoted by xi,j, with xi,j = 1 if and 
only if the i th vertex of G1 is mapped to the j th vertex of G2.

We define the dual path of P as the path, P̃ , where any 
deletion operation becomes an insertion operation and vice 
versa. If a bijection π corresponds to a graph edit path P such 

(3)�
∗ = argmin

�

�
TQ�,

that P(G1) ≅ G2, we can partition P in two edit paths P1 and 
P2, where P1 has only insertion operations and P2 only dele-
tion operations. Then

 Clearly, �(P1) + �(P2) = �(P1) + �(P̃2) = �(P) . Intuitively, 
the process is illustrated by the example reported in Fig. 2.

Considering the two assumption stated above, we can 
define the cost of a bijection π as

where π(E) = {{π(i), π(j)} ∣ {i, j} ∈ E}. For a given bijection 
π, the value of cost (π) is equal to the number of edges occur-
ring in E1 and not in E2 plus the number of edges present in 

P(G1) ≅ G2 if and only if P1(G1) ≅ P̃2(G2).

(4)����(�) = |E1 ⧵ �
−1(E2)| + |E2 ⧵ �(E1)|

Fig. 1   Solution of an instance of GED problem. (a) Initial graphs. (b) 
The edit path P consisting of four edit operation (insertion of {3, 5}, 
deletion of {3, 4},{4, 5}, deletion of vertex 4) is such that P(G1) ≅ 
G2. Moreover ℓ(P) is the GED since no shorter path exists that makes 
the graphs isomorphic

Fig. 2   Equivalence between the standard and the insertion-only defi-
nition of GED between G1 and G2, with GED= 2. (a) The bijection 
used to calculate the GED, π(i) = i∀i ∈ [1,5]. (b) A graph edit path 
P, |P| = 2 , such that P(G1) ≅ G2 according to π. The insertion is 
denoted by a green dashed line and the deletion by a red dashed line. 
(c) Paths P1 and P2 such that |P1| + |P2| = 2 and P1(G1) ≅ P2(G2) 
according to π. The only insertion operations are denoted by a green 
dashed line
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E2 but not in E1. The assumption that the graphs have the 
same number of vertices guarantees that a bijection exists.

We can now define the GED as:

The QUBO formulation of our problem is composed by 
two parts: a hard constraint Qh, whose function is to add a 
penalty if the solution x does not represent a bijection (in 
that case, x is not a solution for GED) and a soft constraint 
Qs, which introduces a penalty for any edge mismatch as in 
Eq. (4).

The hard constraint reads as

and ensures the validity of the solution (i.e., x corresponds 
to a bijection). Whenever the i th vertex of G1 is mapped to 
zero or more than one vertices of G2, the (a) term of Eq. (6) 
is greater than zero. The (b) term of Eq. (6) is greater than 
zero, when the j th vertex of G2 is the image of none or more 
than one vertices of G1.

The soft constraint is

with

 and

 where

The term Qs counts how many edges are not preserved 
by the bijection π implied by x. In particular, the Ri, j counts 
the arcs {i,j} in G1, {π(i), π(j)} missing in G2. The Si′,j′ terms 
counts the arcs {i�, j�} in G2, {�−1(i� ), �−1(j�)} missing in 
G1. We prove now that the term 

∑
i, j∈E1

Ri, j(x) is equivalent 
to the term |E1 ⧵ �

−1(E2)|:

(5)GED(G1,G2) = min
�

����(�).

(6)

Qh(x) =
∑

0≤i<n

�
1 −

�

0≤j<n

xi,j

�2

�������������������
(a)

+
∑

0≤j<n

�
1 −

�

0≤i<n

xi,j

�2

�������������������
(b)

(7)
Qs(x) =

∑
{i,j}∈E1

Ri,j(x)

+
∑

{i�,j�}∈E2

Si�,j� (x)

Ri,j(x) =
∑

0≤i�<n

xi,i�
∑

0≤j�<n

xj,j� (1 − e
(2)

i�,j�
)

Si�,j� (x) =
∑

0≤i<n

xi,i�
∑

0≤j<n

xj,j� (1 − e
(1)

i,j
)

e
(k)

i,j
=

{
1, {i, j} ∈ Ek

0, {i, j} ∉ Ek

.

where eij is one iff arc {i, j}∈ E2. The procedure to iden-
tify Si′, j′ is equivalent. The complete formulation reads:

where the choice of parameter λh, λs decides the weight of 
each penalty term.

If we set λh ≫ λs we are guaranteed that all valid solu-
tions, i.e., all those having null hard constraint contribution, 
have lower cost than any non-valid solutions. For graphs of 
n vertices, we can choose

to ensure that the contribution of the soft constraint λs Qs (x) 
to the total QUBO problem is always smaller than the con-
tribution of hard one λh Qh (x). This is because n2 is the cost 
of the worst case, i.e., when one graph is complete and the 
other one empty.

If the maximum cardinality of edges is |E| = m < n2, then 
Eq. (9) becomes λh > m λs.

4 � Classical and quantum approaches to GED

Many classical algorithms for the GED problem exist 
(Blumenthal and Gamper 2020; Blumenthal et al. 2020). 
Clearly, given the computational complexity of GED, all 
known exact algorithms run in exponential time. A widely 
used approach is based on the A* search algorithm (Abu-
Aisheh et al. 2015). A different approach is to consider clas-
sical heuristics that run in polynomial time in the size of the 
input; however, they are not all suitable to treat QUBO prob-
lems. The two most common approaches are either based on 
reduction GED problem to LSAPE (Linear Sum Assignment 
Problem with Error-Correction) (Bougleux et al. 2017) or 
based on local search (Hoos and Tsang 2006).

A different approach is the Simulated Annealing (SA) 
heuristic (Kirkpatrick et al. 1983). This is a probabilistic 
algorithm that minimizes multivariate binary objective func-
tions and can be used to solve QUBO problems. Due to its 
physical background discussed later in Section 5, it can be 
compared with the approaches presented in the following 
sections. SA can be seen as taking a random walk in the 
solution space according to a Markov chain parametrized 

�E1 ⧵ �
−1(E2)�

=
∑

{i, j}∈E1

(1 − e�(i),�(j))

=
∑

{i, j}∈E1

�
xi,�(i)xj,�(j)(1 − e�(i),�(j))

�

=
∑

{i, j}∈E1

�
∑
i�≤n

xi, i�
∑
j�≤n

xj, j� (1 − ei�,j� )

�

=
∑

{i, j}∈E1

Ri, j(x)

(8)Q�h,�s
(x) = �hQh(x) + �sQs(x)

(9)𝜆h > n2𝜆s,

Page 5 of 21     24



Quantum Machine Intelligence (2022) 4:24

1 3

by a temperature parameter T (McGeoch 2014). We choose 
SA as classical counterpart in our comparison because it can 
straightforwardly be used to solve QUBO problems.

4.1 � Simulated annealing

SA works as shown in Algorithm 2 in Appendix B. When 
starting the algorithm the temperature T is high, and solu-
tions with higher energy are accepted with a probability 
that follows the Boltzmann distribution. The temperature 
decreases exponentially and SA has fewer chances to accept 
high energy solutions. When the temperature is zero, SA 
works in a gradient-descent fashion and will converge to a 
local minima. SA is restarted many times (shots), each from 
a different point of the state space chosen randomly. Finally, 
the energy of the solution is the single, lowest energy found 
in all the shots.

4.2 � Quantum annealing

Quantum Annealing (QA) (Apolloni et al. 1989; Kadowaki 
and Nishimori 1998) is a meta-heuristic search algorithm 
that can be used to tackle QUBO problems. This optimiza-
tion technique finds its roots in a problem mutuated by sta-
tistical physics, namely the search of the minimum-energy 
state of a spin system exhibiting a glassy phase (Mézard 
et al. 1987).

We briefly recall the notation and the physics underly-
ing a class of spin systems, hereafter referred to as Ising-
like model. The aim is to clarify the connection between 
the unconstrained quadratic problems and the search of the 
ground state of such a class of models.

Let us introduce a classical spin variable si that can take 
values ± 1. The function describing the energy of a system of 
N interacting spin disposed over a d −dimensional discrete 
lattice is the Hamiltonian:

where the 〈i, j〉 denotes that the sum is over all the first 
neighboring sites, the Ji,j are the couplings between two sites 
of the lattice and hi is the external magnetic field acting on 
each spin.

A quantum version of the Hamiltonian in Eq. (10) is 
obtained replacing suitably the binary variable si with an ad 
hoc Pauli matrix ��

i
 with α = {x, y, z}:

The problem of finding the ground state of a Hamilto-
nian describing an Ising Spin Glass problem is NP-hard and 

(10)H(s) = −
�

⟨i,j⟩
Ji, jsisj −

�

i

hisi

(11)H(�) = −
�

⟨i,j⟩
Ji,j�

z

i
�z

j
−

N�

i=1

hi�
x.

how it relates to the solution of many NP-hard is reported 
in Lucas (2014).

The QUBO problem is closely related to the problem of 
finding the ground state of a Hamiltonian written in terms of 
spin variable, upon introducing the transformation:

Originally, QA was introduced in Apolloni et al. (1989) 
as a quantum-inspired, classical algorithm. In contrast to 
the SA in which the fluctuations to explore the energy land-
scape are provided by the temperature parameter T, quan-
tum annealing uses a transverse field coefficient λ(t) called 
tunneling coefficient that modulates the two terms of the 
Hamiltonian as in Eq. (1).

The quantum annealing uses the term H0 usually referred 
to as the transverse field Hamiltonian that does not com-
mute with the term H1 in which the optimization problem is 
encoded. The non-commutativity of the two terms provides 
the fluctuations necessary to exploit the quantum tunneling, 
and allows us to escape from the local minima by tunneling 
through hills in the solution landscape (McGeoch 2014). 
Typically, when the quantum hardware is used, the system 
is in a superposition of all possible state, with probability 
amplitudes depending on H(t).

Quantum annealers usually have a certain number of 
qubits which are connected according to a given topology. 
Logically, any QUBO variable is mapped to a qubit. Physi-
cally, it is possible that two variables linked by a quadratic 
term Ji, j are not connected. This requires us to find a minor 
embedding (Choi 2008), thus a mapping of variables to 
physical qubits such that variables bound by quadratic terms 
are located to adjacent qubits. If this is not possible, addi-
tional qubits are required to represent a single variable. For 
this reason, to each variable is assigned one logical qubit but 
this can be mapped to more than one physical qubit. The task 
of finding a minor embedding consists in searching a minor 
of the graph associated with the hardware topology which is 
isomorphic to the one associated with the QUBO problem. 
Minor embedding is currently solved using heuristics, avail-
able on the D-Wave Ocean library.

It may happen that the physical qubits associated with a 
single logical qubit are prepared in different states: some in 
s = − 1 and others in s = + 1. This phenomenon is called 
chain break and is resolved in post-processing using either 
majority vote technique (the logical qubit has the most fre-
quent value in the physical qubits assignment) or energy 
minimization (the logical qubit has the value that minimize 
the energy). The latter requires multiple evaluation of the 
formulation).

(12)xi ↔
1 + �z

i

2
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4.3 � Variational quantum algorithms

We can use the QUBO formulation to solve the GED prob-
lem also on gate-based quantum computers, via Variational 
Hybrid algorithms, which are based on both classical and 
quantum resources.

We define a parametric quantum circuit (PQC), that 
depends on an ansatz for the values of the parameters 
� = (�1, ...,�M

)  (Fig.  3). The number of parameters M 
depends on the architecture of the circuit and the number 
of qubits n (which are equivalent to the variables of the 
QUBO problem). For example, we can choose rotational 
gates which naturally depends on a set of rotation angles. 
As a shorthand we denote the composition of unitary gates 
composing the PQC by U(�) , and the final state of such a 
circuit by U(�)�0⟩⊗n = �Ψ(�)⟩ . Then we compute the expecta-
tion value of the problem Hamiltonian HC:

Such Hamiltonian is related to the QUBO formulation by 
Eq. (12). The value E(�) corresponds to the cost function 
which has to be minimized and the minimization stage is 
performed classically.

Examples of this kind of algorithms are the variational 
quantum eigensolver (VQE) (Peruzzo et al. 2014) and the 
quantum approximate optimization algorithm (QAOA) 
(Farhi et al. 2014). They are mostly used to find the ground 
state of the Hamiltonian of nonintegrable spin systems 
(McClean et al. 2016), which is indeed a minimization task.

The Variational Quantum Eigensolver (VQE) is inspired 
by the Variational Principle (Peruzzo et  al. 2014; Wil-
son et al. 2021) and it has found its most groundbreaking 
application in chemical-physics simulation (Kandala et al. 
2017; Chiesa et al. 2019; Crippa et al. 2021; Huembeli et al. 
2022). The structure of the variational algorithm depends 
on the choice of an ansatz. Here, we consider the ansatz 
EfficientSU2, which sufficiently approximate the solution 
space as shown in Funcke et al. (2021).

The circuit implementing it is shown in Fig. 4, and its 
construction is detailed in Algorithm 3 in Appendix A.

(13)E(�) = ⟨Ψ(�)�HC�Ψ(�)⟩.

The Quantum Approximate Optimization Algorithm 
(QAOA) recently introduced in Farhi et al. (2014), Vikstål 
et al. (2020), Bengtsson et al. (2020), and Zhou et al. (2020) 
is an application of VQE. The ansatz must respect a particu-
lar structure which depends on the Hamiltonian defining the 
problem.

5 � Experimental setup

We consider a set of graphs with a number of vertices rang-
ing from three to nine, and we randomly generate the graphs 
following the procedure explained in Batagelj and Brandes 
(2005). The procedure needs as inputs the number of vertices 
n and the probabilities p of generating edges in the graph. 
For all the configurations labelled by the number of vertices 
n ∈{3, 4,..., 9}, we generate four graphs G1, G2, G3, G4 with 
edge probabilities p1 = 0.1, p2 = 0.33, p3 = 0.66, p4 = 0.99. 
This means that graph G1, generated with probability p1, 
will contain a small number of edges while the graph G4 is 
almost always a complete graph.

We proceed now to exactly compute the GED (Gi, Gj) 
with i, j = 1, 2, 3, 4 for each number n of vertices by means 
of the A* algorithm (Abu-Aisheh et al. 2015). Note that this 
is feasible only for small-sized graphs due to the exponential 
worst-case complexity of the algorithm. Any computational 
run has four inputs: the first graph Gi, the second graph Gj 
and the parameters λh, λs of Eq. (8). We iterate the runs over 
all possible pairs of graphs with the same number of verti-
ces, including the pair of a graph with itself.

The formulation shown in Eq. (8) requires to set some 
values for parameters λh,  λs > 0. Experimental results, 
obtained by running SA on all pairs of values λh = 1 and λs 
∈{1/i∣i = 1,...,10}∪{0.05,0.01} on graphs up to 9 vertices, 
show that the actual best value for λs fulfilling Eq. (8) would 
be λs < λh/81 ≈ 0.012. Our choice of setting λh = 1 and λs 
= 0.1 is a compromise between the need to fulfill Condition 
(9) — which is valid for small λs — and the need to avoid 

Fig. 3   Parametric quantum circuit

Fig. 4   Circuit for the variational ansatz used for VQE algorithm 
defined on n = 3 qubits. The structure can be repeated p times and the 
number of parameters 𝜃  is 2pn 
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values, �s ≃ 0, which are so low as to make the soft con-
straint irrelevant.

We have run SA 1000 times, and kept the lowest energy 
solution x̃ . For each run we have calculated the exact GED 
s and the approximated one s̃ . As the absolute error |s − s̃| , 
grows with the problem size, we have introduced another 
quantity called the relative difference, which is defined as

and lies in the range [0, 1]. The results of our experiments 
are shown in Table 2. They suggest that the best values are 
those with λs ∈ [1/4, 1/10]. Choosing values of λh and λs, 
such that the condition (9) is satisfied, ensures the exist-
ence of a valid solution; however, this is only a sufficient 
condition. In fact, we have strong numerical evidences that 
valid solutions exist also for other choices of parameters, for 
which a constraint linking λh and λs is still an open question. 
It is arguable that the best choice of parameters for SA will 
not necessary be the best one for quantum annealers and 
QAOA. However, notice that this choice is guided by the 
considerations explained above. The results of the experi-
ments shown in Table 2 empirically show the effectiveness 
of our choice.

The experimental setup is based on state-of-the-art, freely 
available software. This approach facilitates reproducibility 
and avoids reinventing the wheel issues, e.g., bugs, non-
standard implementations. As argued in Mauerer and Scher-
zinger (2022), reproducibility is a serious issue in quantum 
science. We have addressed the problem by releasing the 
code in github.​com/​incud/​Graph​EditD​istan​ce. However, 
quantum annealer-based experiments require the access to 
D-Wave machines which is available through the cloud.

5.1 � Classical approaches

The exact calculation of GED is performed through the A* 
algorithm (Abu-Aisheh et al. 2015) implemented in Net-
workX (Hagberg et al. 2008), while as heuristic we use the 
SA implementation provided by D-Wave Ocean SDK.

(14)Δ =

{
0, s = s̃
|||

s̃−s

max{s,s̃}

||| , s ≠ s̃

The control parameters in this implementation are set as 
follows. The temperature is initialized at Tstart = M∕ log 2 
and decreases exponentially to Tend = m∕ log 100 , where M 
and m are an upper bound and a lower bound of the solu-
tions, respectively. The (absolute value of the) smallest entry 
of the QUBO matrix is the lower bound m. The sum of the 
(absolute value of the) entries of the QUBO matrix is the 
upper bound M.

Another implementation of SA is the one provided within 
the GEDLib library (Blumenthal et al. 2019) and its Python 
wrapper GEDLibPy 1. The comparison between this and 
the one provided by D-Wave is reported in Appendix B and 
shows that the results are comparable. We have also tested 
other state-of-the-art heuristics that are not based on QUBO 
formulation; however, in general SA is the best performing 
(see Appendix B). However, we will rule out these heuris-
tics from our comparison with the quantum algorithms and 
restrict ourselves only to methods specifically designed for 
QUBO problems.

5.2 � D‑Wave quantum annealers

For our experiments we have used three different, (fully) 
quantum annealers from hardware company D-Wave: (i) 
D-Wave 2000Q; (ii) D-Wave Advantage 1.1; (iii) D-Wave 
Leap Hybrid Solver. We recall briefly their different 
characteristics.

D-Wave 2000Q has 2041 qubits and uses Chimera topol-
ogy having 5974 couplers (physical connections between 
qubits) (D-Wave Systems Inc 2020a). D-Wave Advantage 
1.1 has 5436 qubits and uses a Pegasus topology having 
37440 couplers (D-Wave Systems Inc 2020b). Chain breaks 
are resolved using majority vote, which is the cheapest 
technique and is the one suggested by the hardware vendor. 
D-Wave Leap Hybrid Solver is not a quantum annealer but 
a hybrid classical-quantum software whose configurations 
are fully managed by D-Wave and it is not customizable.

Table 2   Average relative 
difference for the experiments 
with λh = 1, λs ∈{1/i∣i = 1,..., 
10}∪{0.05, 0.01} with respect 
to the number of vertices n 

Values of λs 

n 1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 0.1 0.05 0.01

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.52 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
6 0.53 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.54 0.32 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.09
8 0.48 0.48 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.15
9 0.62 0.50 0.38 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.09 0.24

1  https://​github.​com/​Ryurin/​gedli​bpy
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Both D-Wave 2000Q and Advantage allow us to set 
the configuration of the annealing process, controlled by 
a parameter s that grows monotonically from 0 to 1. The 
parameter is defined as s = t/τ, where τ is the annealing 
time. For a specified annealing time the evolution proceeds 
linearly in t.

Due to the enhanced topology, it is expected to find more 
compact embedding with the latter hardware (McGeoch and 
Farré 2020).

Any GED computation runs on both machines with the 
following configurations:

1.	 default configuration (DC): the annealing time is 20 μs, 
the annealing process proceeds linearly;

2.	 configuration Short Time (ST): the annealing time is 1 
μs, the annealing process proceeds linearly;

3.	 configuration Long Time (LT): the annealing time 500 
μs, the annealing process proceeds linearly;

4.	 configuration Pause Middle (PM): annealing schedule is

(a)	 in the first 5 μs, s grows from 0 to 0.45,
(b)	 in the following 94 μs, s remains constant,
(c)	 in the last 1 μs, s grows from 0.45 to 1.

	   According to Marshall et al. (2019), the performance 
of pausing within the annealing schedule depends 
uniquely on the length of the pause (longer is better) 
and are independent of the annealing process before and 
after the pause.

A run is the number of times the annealing is restarted. 
We have tried each configuration with a different number of 
runs: ST with 104, DC with both 103 and 104, the others with 
103 and we have kept only the lowest energy result.

We expect that the long time configuration might outper-
form those having shorter annealing time, due to the pos-
sibility of exploring the energy landscape widely. However, 
for longer times decoherence effects due to noise may arise 
and there is still no direct control of it. This increases the 
probability of errors.

We also expect the PM configuration to outperform the 
default configuration, due to the previous evidences suggest-
ing that pausing the schedule in the middle of the process 
improves the performances (Marshall et al. 2019; Passarelli 
et al. 2019; Chen and Lidar 2020).

5.3 � Variational quantum algorithms

We used the implementation of VQE and QAOA available 
on the Qiskit IBM platform (IBM 2021).

We briefly recall the construction of the circuit imple-
menting the QAOA as in Farhi et al. (2014) and in Fig. 5 
we plot the circuit used to tackle the GED problem. The 

circuit has as input the state |+〉⊗n where n is the number 
of variables of the QUBO problem. Such state is obtained 
from |0〉⊗n by applying the Hadamard gate to each qubit. The 
QAOA ansatz is constructed by repeating p times two uni-
tary operation UC(γ), UB(βs). The whole ansatz will depend 
on 2p parameters γ1, β1,..., γ2p, β2p ∈ [−π, π]. The first uni-
tary operator is defined to be UC(�) = exp{−i�HC} where HC 
is the problem Hamiltonian and depends on our input. The 
mapping between the QUBO formulation and the Hamilto-
nian formulation is detailed in Eq. (12). The second unitary 
operator is called mixing Hamiltonian and is defined to be 
UB(�) = exp{−i�HB} , where HB =

∑
i�

x
i
 . Note that the two 

Hamiltonians HC, HB must not commute to have not trivial 
results. The circuit gives as output the state

The expectation value represents the energy (cost) asso-
ciated with a particular choice of parameters and must be 
minimized:

and we stress that the above equation is Eq. (13) rewritten for 
the QAOA case. Finally, the task of the classical optimiza-
tion is to find the optimal variational parameters such that:

We perform 2048 runs with randomly initialized parameters, 
then the classical optimization is performed using the algo-
rithm COBYLA (Powell 1994). 2 The construction of QAOA 
ansatz is detailed in Algorithm 4 in Appendix A.

(15)��, �⟩ = UB(𝛽p)UC(𝛾p)⋯UB(𝛽1)UC(𝛾1)�+⟩⊗n.

(16)E(�, �) = ⟨�, ��HC��, �⟩,

(17)(�∗, �∗) = argmin
�,�

E(�.�)

Fig. 5   Scheme of the QAOA circuit for n = 3 qubits. The variational 
ansatz is repeated twice. The number of parameters is fixed to 2p (and 
does not depends on n)

2  There are evidences that in the statevector simulation COBYLA 
slightly outperforms the other optimizers (Pellow-Jarman et al. 2021).
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6 � Numerical results

Our analysis takes into account the number of vertices n, 
the hardware and its configurations. We evaluate the perfor-
mance of each algorithm, illustrated in Appendix A, using 
three different measures: the average of the relative differ-
ence Δ, the average of success probability, and the aver-
age of high-quality probability. The relative difference was 
defined in Eq. (14); the success probability is defined as 
the percentage of experimental results having Δ = 0, and 
the high-quality probability is defined as the percentage of 
results having Δ ≤ 0.2.

All experiments uses the QUBO formulation shown in 
Eq. (8) with parameters λh = 1, λs = 0.1, which are optimal 
according to the preliminary analysis in Table 2. The choice 
of these values enforces the hard constraint, maximizing the 
chances of reaching a valid solution.

We summarized our results in Figs. 6, 7 and 8. All the 
numerical results are reported in Appendix B.

6.1 � Resource usage

The resources exploited by the quantum annealer can give 
us useful information about the performance of our opti-
mization tasks implemented over different configurations. 
We focus on the number of logical qubits, i.e., the number 
of variables of the problem, and physical qubits, i.e., the 
number of qubits needed to encode the problem by means of 
the minor embedding procedure. We consider the maximum 
length of the chain, that is the maximum number of physi-
cal qubits needed to encode a single logical qubit, and the 
chain strength that measures the strength of the interaction 
between physical qubits belonging to the same chain.

As shown in Table  3, the number of logical qubits 
depends uniquely on the graph size. The other resources 
depend on both the topology of the quantum annealer and 
the quality of the software performing the minor embedding 
(which is the same for both versions of the hardware). It 
is evident that D-Wave Advantage produces much smaller 

Fig. 6   Comparison of the performance of the many configurations of 
quantum annealers as function of n the number of vertices of a pair of 
graphs. Plots (a)-(b)-(c) compare configurations of D-Wave 2000Q, 
while (d)-(e)-(f) compares Advantage hardware. Plots (a)–(d) show 
the relative difference, (b)–(e) the success probability, (c)–(f) the high 

quality probability. The error bars represent the standard deviation. 
Legend: SA is simulateed annealing, D1 is annealing 1μs × 104 runs, 
D20 is annealing 20μs × 104 runs, D21 is annealing 20μs × 103 runs, 
D500 is annealing 500μs × 103 runs, D100 is annealing 100μs paused 
in the middle and × 103 runs
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embedding; as shorter chains lead to fewer errors, and in fact 
we obtain more accurate solutions.

Then, we have quantified the resources required for vari-
ational algorithms. In Table 4 we report the number of qubits 
which is exactly to the number of variables. Since there is 
no need of minor embedding, the number of physical qubits 
corresponds to the number of logical ones. We also report 
the number of parameters to be trained by the classical opti-
mizer, the depth, i.e., the maximum number of gates on one 
qubit, and the size, i.e., the total number of gates (see Childs 
et al. 2019 for a more formal definition of the notions of size 
and depth of a circuit).

To have a good estimation of resources, we transpile the 
circuit in terms of single-qubits rotations U3 and CNOT 
gates.

We immediately see that in general VQE requires much 
more parameters than QAOA, although it depends mostly 
on the choice of the variational form. In general, this should 
lead to longer classical optimization phase.

We were able to run experiments with graphs up to 5 
vertices, since larger instance requires much more compu-
tational power for the simulation, which was not available to 
us. The number of required gates suggests that this approach 
is not feasible on NISQ hardware due to the low gate fidel-
ity and decoherence errors. Thus, we have performed the 
calculation on error-free simulators.

6.2 � Comparing quantum annealers

We identify the best performing configuration for all the 
quantum annealers, and then compare their performance 
with the simulated annealer. Figure 6 compares the differ-
ent configuration of D-Wave 2000Q and Advantage 1.1. For 
both quantum annealer versions we see that:

•	 configurations having 10000 runs perform significantly 
better than configurations with 1000 runs;

•	 the annealing time that minimizes the relative difference 
is τ ≥ 20μs. Shorter values return inaccurate solutions, 
and larger values have similar performance but are costly.

•	 the introduction of the pause in the annealing process 
does not improve the performance.

In Fig. 7 we compare the two versions of the quantum 
annealer, i.e., the D-Wave 2000Q and the D-Wave Advan-
tage. We compared both versions in their best performing 
configuration, that is 20μs of annealing time and 104 runs, 
even though for some values of n other configurations might 
slightly outperform this one. For most instances, the per-
formance of D-Wave Advantage is better than the one of 
D-Wave 2000Q, but the gap between the two is quite small. 
The anomalous case (n = 7) in which the average values of 
the metrics used seem to suggest that D-Wave 2000Q shows 
a better performance is related to numerical fluctuations. 
However, taking the experimental error into consideration, 
the conclusions drawn for the other cases are still valid. 
The few cases (n = 7) where D-Wave 2000Q shows better 
performances are explained by the experimental error, as 
shown by the error bars. However, this fact slightly contrasts 
our expectation of better performance of D-Wave Advan-
tage suggested by its more compact minor embedding (less 
physical qubits used).

Both quantum annealers perform worse than SA. Moreo-
ver, SA in general performs better than any other classical 
algorithm tested (results in Appendix B). We can state the 
superior performances of classical hardware compared to the 
current quantum annealers, for the GED problem.

It is important to notice that Hybrid Annealer D-Wave 
Leap has performance close to the SA, even without 
ever outperforming it. The significance of this finding is 

Fig. 7   Comparison of the performance of SA and the different ver-
sions of quantum annealers. (a) shows the average relative difference, 
(b) shows the success probability, (c) shows the high-quality prob-
ability. The error bars represent the standard deviation. Legend: SA is 

simulated annealing, D2000 is D-Wave 2000Q having annealing time 
20μs × 104 runs, ADV is D-Wave Advantage 1.1 having annealing 
time 20μs × 104 runs, LEAP is D-Wave Leap
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weakened by the opaque internal working of D-Wave Leap, 
which might be perform SA itself.

Finally, we have identified which configuration promises 
the best tradeoff between quality of the solution and total 
annealing time. This observation is relevant because the cost 
of using a quantum annealer is proportional to the amount 
of time used by the machine.

We measure the time to solution (TTS) as

 for both D-Wave 2000 and D-Wave Advantage. It measures 
how much time in seconds is required on a quantum annealer 
to find a high-quality solution. In the literature you can find 

TTS =
# of runs × annealing time per run

high-quality probability

also different definitions of TTS (Ohzeki et al. 2019; Ara-
mon et al. 2019), all representing the same concept. The 
results are shown in Table 5. Our experiments show that hav-
ing the shortest annealing time with a large number of runs 
gives the best tradeoff in terms of TTS. For n = 9 vertices 
no experiment found any high-quality solution thus was not 
possible to estimate such probability.

6.3 � Comparing variational algorithms

Figure 8 shows the comparison of the performance of VQE, 
QAOA, and SA. Considering the current state of NISQ 
devices, we have tested the variational approach on instances 
of GED with graphs having at most 5 vertices (thus our 

Table 3   Average resource usage 
for quantum annealers. Legend: 
n number of vertices, L logical 
qubits, P physical qubits, CL 
maximum chain length, CS 
chain strength

D-Wave 2000 D-Wave Advantage

n L P CL CS L P CL CS

3 9 22 3 1.44 9 11 2 1.44
4 16 65 5 1.76 16 33 3 1.76
5 25 175 9 2.03 25 77 4 2.03
6 36 377 14 2.27 36 159 6 2.27
7 49 711 21 2.48 49 296 9 2.48
8 64 1226 28 2.68 64 506 12 2.68
9 81 1474 28 2.84 81 832 16 2.87

Table 4   Average resource usage 
for variational algorithms. 
Legend: n number of vertices, Q 
number of qubits, P parameters, 
D depth, S size

VQE QAOA

p = 1 p = 3 p = 1 p = 3 

n Q P D S P D S P D S P D S

3 9 36 17 54 72 37 144 2 40 96 6 88 258
4 16 64 31 152 128 65 424 2 79 272 6 119 792
5 25 100 49 350 200 101 1000 2 125 638 6 187 1876
6 36 144 71 702 288 145 2034 2 183 1220 6 275 3606
7 49 196 97 1274 392 197 3724 2 257 2109 6 385 6255
8 64 256 127 2144 512 257 6304 2 329 3625 6 494 11259
9 81 324 161 3402 648 325 10044 2 423 5535 6 635 16263

Table 5   Time To Solution 
for the two hardware 
configurations, measured in 
seconds. Legend: n number of 
vertices. A: 1μs per run × 10k 
runs, B: 20μs per run × 10k 
runs, C: 20μs per run × 1k runs, 
D: 500μs per run × 1k runs, E: 
100μs per run × 1k runs with 
paused annealing

D-Wave 2000Q D-Wave Advantage

n A B C D E A B C D E

3 0.01 0.20 0.02 0.50 0.10 0.01 0.20 0.02 0.50 0.10
4 0.01 0.20 0.02 0.50 0.10 0.01 0.20 0.02 0.50 0.10
5 0.01 0.23 0.02 0.57 0.12 0.01 0.23 0.02 0.57 0.11
6 0.03 0.25 0.04 0.72 0.14 0.01 0.23 0.04 0.57 0.18
7 0.05 0.80 0.08 1.61 0.32 0.03 0.80 0.11 2.00 0.32
8 0.17 0.45 0.33 1.14 0.32 0.02 0.45 0.17 8.33 1.67

24     Page 12 of 21



Quantum Machine Intelligence (2022) 4:24

1 3

circuit uses 25 qubits). For these small dimensions, the clas-
sical approach leads to much better solutions. In particular, 
no variational approaches are able to find an exact solution 
for instances having n ≥ 4 vertices.

Increasing the number of repetitions may marginally 
improve the performances: VQE with p = 3 outperforms 
VQE with p = 1 for any choice of n, while for QAOA the 
configuration with p = 1 performs equal or better than the 
one with p = 3. Theoretically, in the limit of p → ∞ , the 
probability of success is guaranteed to be 1 (see Farhi et al. 
2014). However, increasing the number of layers becomes 
really costly in terms of the evaluation of the expectation 
value of the cost Hamiltonian. In fact, the dimensions of the 
parameter search space scales, when no a priori symmetries 
are known, as [−π, π]p × [−π, π]p. To gain insight into the 
low performances of the QAOA algorithm we consider the 
energy landscape of the associate Hamiltonian of the QUBO 
formulation of the GED of two graphs having four vertices 
and with p = 1. For the case considered, the Hamiltonian 
HC has a discrete spectrum with 88 eigenenergies, whose 
ground state is degenerate.

We report the energy landscape obtained in Fig. 9, where 
it is clear that the Hamiltonian does not have a unique global 
minima, leading to a low performance of the optimization 
technique provided by the QAOA for the QUBO formulation 
of the GED problem.

7 � Concluding remarks

Complex systems are nowadays ubiquitous in science. Very 
useful models for these systems are typically defined by rep-
resenting them as graphs, i.e., collections of pairwise con-
nected nodes. The nodes constitute the elementary “units” 
of the problem, while the edges take into account their 
interaction. Each edge can also be associated with a label 

Fig. 8   Performance of vari-
ational algorithms to compute 
the GED for graphs with n 
vertices. In (a) we plot the mean 
relative difference, while in (b) 
we plot the success solution 
probability and in (c) the high-
quality solution probability. The 
acronyms refer to the different 
algorithms as follows (the error 
bars represent the standard 
deviation): V1 is VQE with p 
= 1, V3 is VQE with p = 3, Q1 
is QAOA with p = 1, and Q3 is 
QAOA with p = 3

Fig. 9   Energy Landscape given by Eq.  (16) for a Hamiltonian refer-
ring to a pair of graphs with N = 4. Due to the symmetry of the sys-
tem we have plotted the landscape only in the relevant range [0, π] × 
[0, π]
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representing some quantitative or qualitative information. 
This versatility of the graph structures makes them a power-
ful tool in the most heterogeneous fields of research.

In this paper we have addressed the problem of quantita-
tively estimating the degree of similarity between a pair of 
graphs via the Graph Edit Distance. Computing GED is a 
task that requires the exploration of a space of solutions that 
is exponential in the size of the input graphs. It is therefore 
reasonable to consider approximate approaches to the prob-
lem, which are able to achieve acceptable approximations 
of the exact solution. We have thus investigated whether the 
resources offered by the quantum hardware currently avail-
able are plausible candidates to tackle this task. Our proof-
of-principle analysis has had a twofold aim: on one side we 
have shown how to practically implement the computation of 
GED on both a quantum annealer and a gate-based quantum 
computer, and subsequently we have compared the results of 
running the same GED algorithm on the two types of hard-
ware. Based on our results, the quantum annealer seems to 
be today a better platform for optimization problems written 
as QUBO problems.

We remark that, concerning the variational approach, we 
have used noiseless simulators to have a first insight into the 
feasibility of evaluating the GED with NISQ devices. Nowa-
days, the development of the gate-based quantum hardware 
as well as the specific software for optimization algorithms 
is still in its infancy. In this work we have reported some 
preliminary evidences that the main variational algorithms 
may not be suited for the type of problems as the one we 
have addressed in this paper. Overall, we are confronted with 
two contrasting aspects of the currently available resources. 
On one hand, classically simulating a quantum computer 
is expensive although it does not suffer from problems 
related to quantum physical resources, namely qubits and 
unitary gates acting for a sufficiently long time (Mandarino 
et al. 2018). On the other hand these quantum computa-
tional resources are very limited so as to make it impossi-
ble to exploit their full potential. However, we surmise that 
these detrimental effects will be overcome when quantum 
hardware with enough resources to allow error-correction 
schemes as a barrier against noise will be available. Another 

problem with variational algorithms is that it is necessary to 
guess the right encoding of the problem into the parameter-
ized cost function that is evaluated using a quantum com-
puter. This is a challenging but crucial task for the success 
of the solution scheme, together with the choice of the best 
classical optimizer for the parameter training phase. We sur-
mise that a crucial step allowing for better performances of 
the variational quantum strategies will be achievable with 
algorithms approaching a higher order in the Suzuki-Trotter 
expansion combined with a low depth of the corresponding 
circuit.

In this direction, it was recently proposed a Quantum 
Natural Gradient Descent algorithm (Stokes et al. 2020; 
Gacon et al. 2021), which seems to offer enhanced per-
formance by considering statistical information about 
the quantum circuit such as geometrical methods based 
on the Quantum Fisher Information (Abbas et al. 2021). 
Another seemingly promising strategy is to combine the 
two approaches that we have studied in this paper, namely 
using the quantum annealing to get preliminary results that 
can then be used to initialize a variational algorithm, as 
put forward for the case of the QAOA in Sack and Serbyn 
(2021). However, to the best of our knowledge, there are 
no available platforms allowing for a combined use of both 
types of quantum hardware.

We believe that the algorithms and the benchmarking 
of quantum annealers and gate-based quantum computers 
that we have presented in this paper can also be exploited 
for machine learning tasks. In fact, the algorithms we have 
devised in our implementations could be profitably incorpo-
rated in machine learning algorithms that deal with graph 
data, to obtain quantum algorithms that are more efficient 
than the standard classical machine learning strategies.

Appendix : A. Algorithm

In this Appendix we present the algorithms that we have 
implemented for creating our benchmark.

Algorithm 1 is used to construct the QUBO matrix that 
represents the QUBO formulation of the GED problem.
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Algorithm 2 represents how the Simulating Annealing 
procedure we have used works.

Algorithm 3 constructs the parametric quantum circuit 
needed to run the VQE algorithm.
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Algorithm 4 constructs the parametric quantum circuit 
needed to run the QAOA algorithm.

Fig. 10   Average relative difference (lower is better), Legend: V: num-
ber of vertices, B1: Branch, B2: Branch Fast, B3: Branch Tight, B4: 
Branch Uniform, B5: Branch Compact, P1: Partition, H1: Hybrid, 
R1: Ring, A1: ANCHOR_AWARE_GED, W1: Walks, I1: IPFP, B6: 

BIPARTITE, S1: SUBGRAPH, N1: NODE, R2: RING_ML, B7: 
BIPARTITE_ML, R3: REFINE, B8: BP_BEAM, SA: Simulated 
Annealing (GEDLib implementation, not D-Wave’s) H2: HED, S2: 
STAR​

Appendix : B. Detailed results

Figures 10, 11 and 12 compare the performances of classi-
cal heuristics. All these approaches are detailed explained 
in Blumenthal and Gamper (2020).

Figure 10 contains the Average relative difference, as 
defined in Section 5 by Eq. (14).

Figure 11 contains the Average success probability, as 
defined in Section 6, which is the percentage of runs having 
null relative difference over all runs.

Figure 12 contains the Average high-quality probability, 
as defined in Section 6, which is the percentage of experi-
ments having results with relative difference ≤ 0.2.

Figures 13, 14 and 15 compare the performances of simu-
lated annealing, quantum annealing, variational algorithms.

Figure 13 contains the Average relative difference, as 
defined in Section 5 by Eq. (14).

Figure 14 contains the Average success probability, as 
defined in Section 6, which is the percentage of runs having 
null relative difference over all runs.
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Fig. 11   Average Success probability (higher is better), Legend: 
V: number of vertices, B1: Branch, B2: Branch Fast, B3: Branch 
Tight, B4: Branch Uniform, B5: Branch Compact, P1: Partition, H1: 
Hybrid, R1: Ring, A1: ANCHOR_AWARE_GED, W1: Walks, I1: 

IPFP, B6: BIPARTITE, S1: SUBGRAPH, N1: NODE, R2: RING_
ML, B7: BIPARTITE_ML, R3: REFINE, B8: BP_BEAM, SA: Simu-
lated Annealing (GEDLib implementation, not D-Wave’s) H2: HED, 
S2: STAR​

Fig. 12   Average high-quality (< 20%) probability (higher is better), 
Legend: V: number of vertices, B1: Branch, B2: Branch Fast, B3: 
Branch Tight, B4: Branch Uniform, B5: Branch Compact, P1: Par-
tition, H1: Hybrid, R1: Ring, A1: ANCHOR_AWARE_GED, W1: 

Walks, I1: IPFP, B6: BIPARTITE, S1: SUBGRAPH, N1: NODE, R2: 
RING_ML, B7: BIPARTITE_ML, R3: REFINE, B8: BP_BEAM, 
SA: Simulated Annealing (GEDLib implementation, not D-Wave’s) 
H2: HED, S2: STAR​

Fig. 13   Average relative difference (lower is better). Legend: V: num-
ber of vertices, SA: Simulated Annealing (D-Wave’s implementa-
tion), D1: annealing 1μs × 104 runs, D20: annealing 20μs × 104 runs, 

D21: annealing 20μs × 103 runs, D500: annealing 500μs × 103 runs, 
D100: annealing 100μs paused in the middle, × 103 runs, p: number 
of repetition of the variational form
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Figure 15 contains the Average high-quality probability, 
as defined in Section 6, which is the percentage of experi-
ments having results with relative difference ≤ 0.2.
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