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Summary

In the last twenty years, wildfires have grown in size and frequency. The risk of
wildfires is mainly caused by the lack of proper fuel management, the abandonment
of rural lands, and the growing number of people living in urban settlements in
the proximity of wildland vegetation. The effect of a wildfire on the environment
can be long-lasting; therefore it is important to identify and quantify the risks of
a wildfire in a territory to adopt adequate preventive countermeasures. Choosing
between alternative prevention strategies in a such complex scenario, need the in-
tegration of science and management. This thesis focuses on the design of models
and algorithms useful in the context of fire preparedness measures and addresses
the problem of the coordination of multi-robot systems for wildfire monitoring and
intervention. We present a graph model able to evaluate the risk of fire in a territory
considering the probabilities of fire ignition and propagation in a certain area. To
prove the usability of the model, we applied it to a territory in the North of Corsica,
an island of the Mediterranean area exposed to a high risk of wildfires due to dry and
hot weather during summer. This case study constitutes a proof of concept show-
ing how the model can be applied practically. The graph model incorporates data
relevant to wildfire management from various sources like past fires and the result
of software fire simulations. The outcome of the model is a risk cartography that
associates the risk of fire to an area and localizes areas prone to a higher risk. Fire
managers can then concentrate their budget and efforts to plan preventive strate-
gies to reduce the risk in such areas. We also present a prototype of an easy to use
web-application designed for fire and risk managers. It includes maps and built-in
algorithms to help the planning and the evaluation of fire preventive strategies, like
for example the installation of firebreaks. Firebreaks consist of a strip of land in
which the fuel is removed. As a result, fire propagation beyond them is blocked or
slowed down. Firebreaks are effective preparedness measures but they have a high
economic and environmental impact, so their positioning must be planned. We de-
fine the firebreak location problem, to address the optimal positioning of firebreaks,
study its complexity and present some cases solvable in polynomial time as well as
heuristics. We then study algorithmic aspects of the coordination of multi-robotic
systems. Robot technology has advanced quickly, assisting humans in increasingly
complicated tasks. The development of robots able to operate in forest environments
can help in tasks like firefighting and fire prevention by land monitoring. Robots
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can monitor a land at high risk of fire by collecting pictures, videos, and acquiring
data with various sensors, like, for example, smoke and thermal cameras. During a
wildfire, multiple drones can cover vast areas and obtain supplementary views of a
fire scene while reaching places that are not accessible or hazardous for humans. Au-
tonomous, multi-robot systems can cooperate and self-organize providing a robust
alternative to application-specific robots. However, the cooperation of multi-robotic
systems is a challenging coordination task requiring algorithmic solutions. We ad-
dress the problem from a theoretical point of view and present algorithms for the
coordination of a group of robots. We solve different variations of the pattern forma-
tion problem. This is a fundamental problem in robotics in which robots must agree
on their role and coordinate to place according to a given formation. Autonomous
robots, able to arrange themselves into formation, could help in fire-extinguishing
operations. Then, we introduce MOBLOT , a new model for swarm and modular
robotics, in which robots can cluster to create bigger computational units called
molecular robots. MOBLOT allows us to model a swarm divided into sub-groups
of robots that deploy and move in formation. These sub-groups can be employed
for various goals, like patrolling, searching, and providing radio connections for fire-
fighters. Adopting this new model, we study the solution to the pattern formation
problem in a modular and hierarchical way, both in the Euclidean plane and on grid
graphs.
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Introduction

Wildfires are extreme phenomena that have a devastating impact on the environment
and human activities. People’s and animals’ lives are in danger while the burnt veg-
etation takes decades to grow back. In the last years, wildfires are becoming more
frequent and catastrophic, even in areas previously deemed as low risk. Recent
vast wildfires registered in Chile (2017), Portugal (2017), Greece (2018), Califor-
nia (2017, 2018, 2020), Oregon (2020), Australia (2009, 2019-2020), Sweden (2014,
2018), Brazil (2020) and UK (2018) are only some examples. The possible causes
include the decline of traditional rural systems, the reduction of resources allocated
to forest management [138], the lack of proper wildfire protection measures [113],
and the extreme weather events. These wildfires caused damage to social, economic,
and environmental systems [135] pushing countries to increase their capacity to sup-
press fire [20] and to prepare specific security managers. Wildfire managers must
take decisions quickly with incomplete knowledge of events, a limited budget, and
huge amounts of data to analyze. Recent studies [106, 109] outline the need to
improve the tools to support decision-making and effective planning of interven-
tions. The coordinated action of firefighters and fire managers [106] is crucial to
managing fire disasters effectively. Technologies such as mathematical models pre-
dicting fire spread and resource allocation tools help support efficient and accurate
decision-making [106]. Fire management involves planning preparedness measures
to mitigate the fire risk and deploying intervention actions to suppress a fire to pro-
tect people, cities, and natural resources. There is a growing necessity to integrate
these two processes.

In this thesis, we propose mathematical models and computational algorithms to
support managers in planning fire preparedness solutions and to support firefighters
during the intervention phase. This work has been developed under the European
project Geospatial-based Environment for Optimisation Systems Addressing Fire
Emergencies (GEO-SAFE). The project built a research network connecting sci-
entists from Europe, Australia, and firefighting agencies. Its main goals were the
development of innovation in the efficient management of wildfires and the pro-
motion of the exchange of knowledge among researchers and domain-based experts
from a wide range of disciplinary fields, guaranteeing the best up-to-date methods.
Among the objectives, a key one is to provide a way to measure the risk of fire in a
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territory and to develop risk cartography. These require the development of models
and efficient algorithms for fire prevention integrating preparedness activities with
fire suppression actions. The models proposed under GEO-SAFE, apply probabilis-
tic, combinatorial, and optimization methods to wildfire management. Optimization
problems deal with simultaneous constraints on resources like, for example, the level
of risk and budget, while efficient algorithms deal with theoretical limitations due to
the hardness of problems. Therefore the study of specific cases typical of the context
of wildfire management becomes relevant. Among the fire preventive actions, forest
and land management are crucial to mitigate the spread of fire or to reduce the
frequency of the incidents. In the first part of the thesis, we propose preparedness
strategies to mitigate the risk of fire. We apply graph theory to model wildfire prop-
agation in a territory and to measure the risk of fire in a territory. Graphs allow us
to represent a landscape divided into areas while maintaining the adjacency between
areas. The connectivity between areas helps in understanding the fire propagation
paths and the planning of preparedness interventions to limit the damage of fires
when they occur.
Successively, we focus on problems related to the construction of firefighting lines.
A firebreak is a belt of land in which all the vegetation and organic matter are
removed, to prevent or slow down fire from expanding towards populated areas and
important buildings while providing access ways to firefighters [23, 114]. Firebreaks
can be natural or constructed. Mountain crests, rivers, lakes, or creeks are a natural
barrier to the spread of fire. Roads and cultivated fields can also work as firebreaks.
The construction of firebreaks is a laborious and expensive activity. Firebreaks are
typically between 3 and 20 meters broad, but their width depends on the type of
fuel available on the site and the wind speed. In extreme cases, they can be even
wider. Consequently, they have a high landscape and ecological impact and require
periodic maintenance. To function properly, firebreaks require the vegetation level
to be as low as possible [21, 23]. For all these reasons, it is impossible to create
firefighting lines everywhere. So far, deciding the location of firebreaks remains an
empirical process based on the statistical analysis of past fires and expertise practice.
We formulate the Firebreak Location problem to address the optimal location
of firebreaks within a territory to minimize a risk function under budget constraints.
Due to the hardness of the problem, we study variations with different assumptions
providing solutions for specific graph topologies and providing heuristic approaches.
We validate the graph model on the landscape of Cap Corse, the peninsula in the
North of Corsica island to prove the usability of the solution. We estimate the model
parameters with the aid of software fire simulators. We visualize the results on
geographical risk maps to give an intuitive and easy view of the areas with increased
wildfire risk. We integrate maps and implemented algorithms in a prototype web
application designed to support fire managers and decision-makers. The application
allows end-users to visualize data about wildfire management and interact with built-
in algorithms. Users can also simulate the installation of a fire preventive measure
and see the effect in terms of risk reduction.
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In the second part of the thesis, we focus on algorithms to coordinate a group of
autonomous robots, like drones, that could be useful in wildfire management to
support firefighters during the intervention phase and in monitoring tasks. Among
the tasks that robots can accomplish, they can collect data [132] with various sen-
sors like thermal cameras, smoke, humidity, or temperature sensors. For example,
aerial robots could patrol a land at high risk of fire and collect detailed pictures or
videos [82] to integrate information coming from satellites. Moreover, robots could
be employed in fire monitoring [107] and provide information during fire suppression
operations.
For these and other use cases, we present algorithms to place robots in a forma-
tion with given characteristics without the help of external supervision and a new
model to move a group of robots in formation. This line of research follows from the
studies on this topic presented during the GEO-SAFE project to solve the problem
of gathering a group of robots in a chosen location [35, 41]. In case of a wildfire,
a team of drones employed in firefighting operations could meet at the location
where a fire broke out. While designing mobile robots, there are decisive aspects
to consider, one of them being the algorithmic aspects of their coordination. This
thesis focuses on models and algorithms to coordinate a group of autonomous robots
that collaborate without centralized control. Each robot should have the minimal
necessary capabilities needed to solve a task. The idea is to design a system that
is robust to loss of memory, and lack of communication and resilient to temporary
disruptions. Such robots might help in critical scenarios like a wildfire in which
communication systems may be unavailable or compromised. The research of dis-
tributed agents, (often called robots) is twenty years long [73] and draws inspiration
from the collective behavior shown by some animals and insects, like the flocking
of birds or the spooling of fishes, the foraging of bees and ants. In these swarms,
each group element has limited abilities compared to the complex behavior shown
by the entire colony. Each animal or insect behaves according to local rules, while
collective behavior emerges by interacting with the environment. The coordination
of distributed robots is a challenging algorithmic task. We propose a solution for
the arbitrary pattern formation problem in which robots, moving on grids, must
be able to organize into a formation having any geometric shape assigned to them
in input. As an example, robots could arrange themselves into formation to carry
out fire-extinguishing operations or to monitor the land. Successively, we propose
a distributed algorithm to solve the geodesic mutual visibility problem. This prob-
lem asks to place robots so that they are geodesic mutually visible: each couple of
robots has a shortest path in which no other robot resides. The study is motivated
by the fact that mutual visible robots can reach any other robot along a shortest
path without collision. We present the first results achieved for robots disposed
on the vertices of a tree. Then, we introduce MOBLOT , a novel model in the
context of theoretical swarm robotics in which robots can cluster to create bigger
computational units called molecular robots inspired by the chemical paradigm in
which atoms combine to make molecules. This model divides a set of robots into
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subgroups, places each subgroup in formation, and moves the subgroup as a whole
while staying in formation. These subgroups can cooperate to accomplish a shared
goal or can be assigned different tasks. One possible application could be molecu-
lar robots supporting humans during a fire disaster. Robots could be divided into
groups and employed for various goals, like patrolling, searching, and providing ra-
dio connections for firefighters. We present, under MOBLOT a variation of the
pattern formation problem in which robots organize in formation hierarchically. We
also apply theMOBLOT model for robots moving on grids that are often used in
industrial applications for robot navigation.
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Part I

Fire spread and risk mitigation

1



Outline

Graphs are very abstract concepts that allow modeling a wide range of settings.
They are also the primary tool to investigate the properties and structure of net-
works. Fundamental elements composing a graph are a set of elements, represented
by vertices, and a set of connections represented by edges between the vertices. In
a social network, vertices represent people while edges represent the interactions
or friendships between them. In a communication network, vertices may repre-
sent computers while edges represent the possibility to exchange messages. We use
graphs to represent a territory divided into areas. Each area corresponds to a vertex,
while edges represent the adjacency between the areas and the possibility that a fire
propagates to its neighbors. Fire spreading can be modeled as a propagation phe-
nomenon over networks. These phenomena have been investigated for a long time
in the fields of social science [80, 93] and epidemics [137]. Marketing studies the
dynamics of diffusion of rumors in networks to model the adoption of a new product
or an innovation in a community. In a network of contacts, the social interaction
between friends and colleagues is decisive for the diffusion of innovations or ideas. If
people trust their close contacts, they will likely believe their opinions. Information
is said to go viral when it starts somewhere in a network and then quickly spreads
on a global scale. Gifting a product to a subset of influential people in a social
network can lead to a cascade effect in which friends recommend it to friends. One
studied problem in viral marketing is how to choose the seeding set of influential
people to maximize the diffusion of a product under budget constraints [93]. In
the inverse problem, one may want to reduce the diffusion phenomenon in a net-
work like the spreading of a disease in a population or of malicious software in a
communication network, or in our case, fire in a territory. Two problems in these
contexts are the CuttingEdge problem [95] and the Contamination Minimiza-
tion problem [99]. They have very similar objectives to the Firebreak Location
problem and consist in removing a fixed number of edges to minimize the risk. Tong
et al. [133] consider removing a fixed number of edges to minimize the maximum
eigenvalue in the final graph, given the assumption that the spreading risk relates to
the largest eigenvalue of the adjacency graph. They demonstrate the NP-hardness
of the problem and provide heuristics. Planarity is important in our case but, it is
not considered in most studies aiming to control the spread of information. Indeed,
the most natural case of fire spreading is to consider fire spreading from one area to

2
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an adjacent area [2]: if each area is connected, then the resulting graph is planar.
Modeling the landscape as a fire spread network is a classical approach to address
fuel management problems (see, e.g., [31, 59, 69, 97, 105, 110, 120, 124]) or other
fire emergency problems (see, e.g., [57, 58]). Russo et al. [124] model the terrain as
a lattice where each node may burn, and fire propagation is a random walk from a
starting vertex on fire. They use graph metrics like centrality statistics to identify
vertices that contribute the most to fire spreading: these are the vertices where fuel
reduction solutions should be applied. A few other combinatorial problems use a
similar fire-spreading graph in a wildfire management context. The Fuel Man-
agement problem aims to schedule fuel reduction in the landscape to reduce the
risk of spread [110]. Mahmoud et al. use an approach based on directed graphs and
develop a decision tool to evaluate scenarios and to estimate the physical parame-
ters that regulate the spread of fire [105]. Here we apply graph theory to model a
landscape and apply models for diffusion phenomena to fire spread.
In Chapter 1, we introduce the graph model that allows describing the spread of fire.
Then, we formulate the Firebreak Location problem to address the optimal location
of firebreaks in a landscape to minimize a risk function under budget constraints.
Successively, we study the complexity of the problem on planar graphs. We present
an efficient polynomial time algorithm on tree topology. We present the Infinite
Windy Firebreak Location problem, a variation of the Firebreak Location
problem defined on infinite graphs, and study some cases solvable in polynomial
time.
In Chapter 2 we apply heuristics methods useful for practical applications. We study
a particular case of the Firebreak Location problem in which all the areas have the
same probability to burn. We show that, when the probabilities of ignition are equal,
the Firebreak Location problem can be reduced to the k-Graph Partition
problem that consists in removing a fixed number of edges to split a graph in k
connected components of balanced size. We test this technique on the geographical
area of the North of Corsica. We validate the graph theoretical model by applying
it to the landscape of Cap Corse a peninsula in the North Of Corsica. We describe
how to compute the model quantities like the extension of the areas and estimate the
probabilities of ignition for each area and the probabilities of spread for each edge.
This case study proves the usability of the model. Then, we present a prototype web
application designed to offer an effective view of data to target end-users, wildfire,
risk managers, and fire agencies.



Chapter 1

The firebreak location problem

In this chapter, we propose a graph model to describe the spread of fire and to
provide a way to compute fire risk within a territory. We formulate the Firebreak
Location problem to address the optimal location of firebreaks in a landscape to
minimize a risk function under budget constraints then we study the complexity
of the problem on planar graphs. Due to the hardness of the problem, we look
for cases solvable in polynomial time and study variations of the Firebreak Lo-
cation problem on graph topologies like trees and grid graphs. We model the
territory as a graph where vertices correspond to areas subject to fire with a certain
ignition probability, and edges represent the possibility of fire spreading from one
area to another. Directed edges model situations in which fire spreads in mainly
one preferred direction, or in both with different probabilities because of dominant
wind directions during the year. The construction of a firebreak is modeled as an
edge cut that reduces the graph connectivity. Each edge has also associated a cost
representing the cost of the edge removal. The Firebreak Location problem
aims to identify the best positions for firebreaks that minimize the risk and respect
budget constraints. Section 1.1 introduces the main notations (Subsection 1.1.1),
the general problem (Subsection 1.1.2) and summarizes the related work (Subsec-
tion 1.1.3). Section 1.2 contains the main results concerning the computational
complexity while Appendix A contains all the proofs, whereas Section 1.3 studies
a polynomially solvable case on trees. In Section 1.4 we adapt the model for the
Windy Firebreak Location problem, on infinite undirected graphs and intro-
duce the Infinite Windy Firebreak Location problem. The land is modeled
as an infinite graph and the goal is to find a cut system that allows the fire to be
contained limiting the risk. Given an infinite graph, we assume that a fire ignites in
a subset of vertices and propagates to the neighbors. The goal is to select a subset
of edges to remove to contain the fire and avoid burning more than a finite part of
the graph. Infinite graphs can be seen as a theoretical model of very large lands and
then the problem is motivated by preventing a wildfire from escaping, i.e., becoming
out of control. A conclusive discussion is then included in Section 1.5.

4
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1.1 The model and the Firebreak Location Problem

In the following section we introduce the main notations, then in Section 1.1.2 we
formalize the graph model and introduce the Firebreak Location problem. The
risk function and the firebreak location problem are related to similar approaches
in the literature. In Section 1.1.3 we delve into the related works by comparing the
risk function with the well-known Independent Cascade model [93] and the firebreak
location problem with a selection of problems involving the removal of edges in a
graph.

1.1.1 Main notations

In what follows we consider all graphs to be finite. Let G = (V,E) be a directed
graph (or digraph); a directed edge e = {x, y} ∈ E between vertices x, y ∈ V is
denoted as e = xy.
A symmetric digraph is also called undirected graph where two edges xy, yx are
replaced with a single undirected edge. When no ambiguity occurs, this undirected
edge is denoted as xy (or yx). A mixed graph has directed and undirected edges.
As a consequence, all graph notions not specifically restricted to directed or to
undirected graphs are defined for mixed graphs and then are valid for directed and
for undirected graphs as well. In a mixed graph, a path needs to respect edge
orientation if it includes directed edges.

Given a mixed graph G = (V,E) and two vertices u, v ∈ V , u G→ v means that there
is a path from u to v in G (we say that v is reachable from u in G). For any set of
vertices V ′ ⊂ V , rG(V ′) = {v ∈ V, ∃u ∈ V ′, u

G→ v} is the set of vertices reachable
from V ′ in G.
By G′ ≤ G, we mean that G′ = (V,E ′), E ′ ⊂ E is a partial graph of G. For any
edge set H ⊂ E, we denote by GH the partial graph (V,E \H) obtained from G by
removing edges in H. Given a set V ′ ⊂ V , G[V ′] denotes the subgraph induced by
V ′ and any graph G′′ = (V ′′, E ′′), V ′′ ⊂ V,E ′′ ⊂ E is called partial subgraph of G.
For any k ≥ 2, Pk = a1 . . . ak is a path on k vertices a1, . . . , ak and edges aiai+1,
i = 1, . . . k− 1. P2 is a single edge. The extremities of the path are the two vertices
of degree 1. Paths can be either undirected or directed from a1 toward ak. A cycle
Ck is obtained from a Pk by adding an edge between its extremities; if it is directed,
then the added edge is aka1.
A mixed graph is called planar if it can be drawn in the 2-dimension plane without
crossing edges. Such a drawing is called planar embedding. Given an undirected
graph G, a subdivision of G is obtained by replacing edges uv by a path Pk, k ≥ 2
(we add k − 2 intermediate vertices). This transformation preserves planarity. Kp,
p ≥ 1 denotes an undirected clique on p vertices and Kp,q, p, q ≥ 1, denotes a
complete bipartite graph with respectively p and q vertices on each side. It is well-
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known that K3,3 is not planar and consequently, containing (as partial subgraph) a
subdivision of K3,3 is a certificate of non-planarity.
All graph-theoretical terms not defined here can be found in the book of Diestel [64].
For complexity concepts, we refer the reader to the work of Garey and Johnson [77].

1.1.2 Model and Problem formalization

We are given a mixed graph where vertices are subject to burn and edges represent
potential fire spread from one vertex to an adjacent one. Fire ignitions may occur
on some vertices. The objective is to select a set of edges, called cut system, to
be blocked (removed) within a budget constraint to reduce the induced risk, as
described below.
When an edge between two vertices is “treated” (blocked) (typically installing a
firebreak corridor) the fire is blocked in both directions. For this reason, a treatment
between vertices x and y is modeled as the removal of edges xy and yx, if they exist.
To this end, we define a cut system as a subset H of E satisfying:

[(xy ∈ H) ∧ (yx ∈ E)]⇒ (yx ∈ H).

An instance is defined by a mixed graph G = (V,E), called (fire) spreading graph:
every edge e = xy ∈ E is assigned a probability of spread (in one direction if the
edge is directed) πs(e) and a cost κ(e) seen as the cost to cut xy and yx in case both
edges exist. In this case, it is convenient in expressions to allocate half of the cost
to xy and a half to yx, making κ just a symmetric function.
Every vertex v ∈ V is assigned a value φ(v) and a probability of ignition πi(v). The
total value φ(V ′) of a subset V ′ ⊂ V is defined as φ(V ′) =

∑︁
v∈V ′ φ(v). The cost of

E ′ ⊂ E is: κ(E ′) =
∑︁

e∈E′ κ(e).
Given a partial graph GS ≤ G and a set I ⊂ V of ignited vertices, the induced loss
is:

λ(GS, I) = φ(rGS
(I)). (1.1)

To evaluate the risk associated with H, we randomly select a set I ⊂ V of vertices in
the probability space V = (V, πi) and a set ES ⊂ (E \H) of edges in the probability
space EH = (E \ H, πs), thus defining a random graph GS = (V,ES) ≤ GH . Both
random choices are independent.
The probability of a set I ⊂ V is:

πi(I) =
∏︂
v∈I

πi(v)×
∏︂
v/∈I

(1− πi(v)). (1.2)

Similarly, the probability of GS is:
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Figure 1.1: An example of a territory modeled with a graph. Nodes represent
subareas with an ignition probability πi(v) while edges represent possible fire spread
with an associated spreading probability πs(e).

πs(GS) =
∏︂
e∈ES

πs(e)×
∏︂
e/∈ES

(1− πs(e)) (1.3)

Then, the risk associated with the cut system H is defined as follows:

ρ(GH) =
∑︂
I⊂V

∑︂
GS≤GH

πi(I)πs(GS)λ(GS, I). (1.4)

Definition 1.1.1. Firebreak Location
Instance: a mixed graph G = (V,E); for every edge e ∈ E a probability of spread
πs(e) and a cost κ(e) (if xy and yx are in E, then κ(xy) = κ(yx)); for every vertex
v ∈ V , a value φ(v) and a probability of ignition πi(v). A total budget B and a total
risk R.
Question: is there a cut system H ⊂ E such that κ(H) ≤ B and ρ(GH) ≤ R?
We denote such an instance (G, πs, πi, κ, φ,B,R).

From now, each time we mention a graph, it is a mixed graph unless differently
stated. If we consider the optimization version instead of the decision version, then
the threshold R is not part of the instance but becomes the objective to minimize.
The particular case where all probabilities of spread are equal to 1 is called Windy
Firebreak Location. Corresponds to considering that, without any intervention
of firefighters, the fire will eventually spread. In this case, the definition of the
problem can be simplified: we can directly define it on a mixed graph, stating that,
two opposite edges xy and yx are always seen as an undirected edge. Then, the cost
κ(e) to remove an undirected edge e = xy corresponds to the cost to remove xy and
yx.
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Definition 1.1.2. Windy Firebreak Location
Instance: a mixed graph G = (V,E); for every edge e ∈ E a probability of spread
πs(e) = 1 and a cost κ(e); for every vertex v ∈ V , a value φ(v) and a probability of
ignition πi(v). A total budget B and a total risk R.
Question: is there a cut system H ⊂ E such that κ(H) ≤ B and ρ(GH) ≤ R?
We denote such an instance (G, πs = 1, πi, κ, φ,B,R).

Also, the definition of risk (Equation 1.4) can be simplified as stated in the following
lemma. For a vertex x ∈ V we denote by px the probability that x burns. For any
cut system H, we denote by Ux,H = {t ∈ V, t

GH→ x} be the set of vertices t such that
there is a path from t to x in GH . Note that x ∈ Ux,H .

Proposition 1.1.3. Let us consider an instance of Windy Firebreak Location
on a graph G, a cut system H and a vertex x; then:

ρ(GH) =
∑︂
x∈GH

px · φ(x), where px = 1−
∏︂

t∈Ux,H

(1− πi(t)).

Proof. Using Equation 1.3 we have πs(GH) = 1 and ∀GS ≤ GH , GS ̸= GH , πs(GS) =
0. The expression of px is then a direct application of Equations 1.2 and 1.3 taking
into account that the fire certainly spreads through connected components. Then,
the expression of ρ(GH) is an immediate consequence of Equation 1.4 taking into
account that, in the second sum, only the terms with GS = GH are not null.

The risk associated with a vertex x equals the probability that x burns multiplied
by its value, px · φ(x). The total risk is the sum of the risks associated with each
vertex. ρ(GH) cannot be computed in polynomial-time for general instances, as out-
lined in Section 1.1.3. As a consequence, Firebreak Location is not necessarily
in NP if P ̸= NP . Proposition 1.1.3 implies that the objective value of Windy
Firebreak Location can be computed in polynomial time. Let us remark that
ρ(G) is calculable in polynomial time when k log∆ ∈ O(log log n), where k is the
maximum length of a path between two vertices and ∆ is the maximum vertex de-
gree in the graph. Under these conditions, the number of nodes that can affect the
probability of burning is O(∆k). The number of edges involved is therefore O(∆2k)
and a brute-force algorithm has to test O(2∆

2k
) realizations of the fire propagation

on the subgraph, for each burning vertex of the graph. Imposing a polynomial time
for this operation, we obtain 2∆

2k ∈ O(nt), for a constant t, and hence – applying
two times the logarithmic operator – we have k log∆ ∈ O(log log n).
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1.1.3 Background and related works

Diffusion models. Here we report the fundamental characteristics of two diffusion
models: the independent cascade and the linear threshold. The Independent Cas-
cade model (IC) [93] describes the interaction between particle systems [67], then
was investigated in the context of marketing [80], and was also used to model the
spread of influence in social networks [93] or the spread of a disease [137]. Given
a weighted graph G = (V,E), the IC model is as follows: each edge e = uv has
a weight pe ∈ [0, 1] that is the probability that the edge e propagates an object
(e.g., news, contagion) from vertex u to v. The diffusion process unfolds in discrete
time steps. A vertex becomes active when it adopts an innovation, reacts to a viral
marketing campaign or it gets infected. Each “active” vertex has a single chance to
propagate the object to each of its susceptible neighbors with a probability of success
puv. The attempts are independent random events. When an attempt succeeds, the
targeted vertex becomes “active”, then, at the next step, is considered for possible
further propagation.
Linear Threshold (LT) model [130] is another paradigm to model the spread of
information in a social network. Given a directed weighted graph G = (V,E), each
edge e = uv has a weight bu,v ∈ [0, 1] and each vertex v has an activation threshold
θv chosen in the interval [0, 1] uniformly at random. The process unfolds in discrete
time steps. An inactive vertex becomes active if the sum of the weights of its active
incoming neighbors exceeds θv. The diffusion process ends when there are no new
active vertices.
The risk ρ(GH) corresponds, in the IC model, to the propagation process modeled for
the case of fire. Active vertices correspond, in our model, to be on fire. The primary
difference with our model is the probability of ignition of vertices, while in the IC
model, one vertex or a group of them is active at the beginning of the process. We
could remove the probabilities of ignition by (i) introducing a vertex f (i.e., the fire)
with φ(f) = 0, (ii) adding for each vertex v ∈ V an edge e = fv with πs(e) = πi(v)
and κ(e) =∞, and then (iii) removing the probabilities of ignition. However, such a
transformation does not necessarily preserve properties of the graph, like planarity,
relevant while modeling a territory.
Computing the risk ρ(GH) is #P-hard in general graphs [30] and #P-complete
in planar graphs [117], even with binary probabilities of ignition. Approximating
ρ(GH) can be done as discussed by Kempe et al. in the unweighted case in [93], by
providing an ε-approximation (approximation scheme) under some assumptions. To
our knowledge, computing an approximated value in the general case is still open.
Furthermore, Maehara et al. propose an algorithm that can be used to compute the
exact value of ρ(GH) [104].
Two problems aimed to limit the diffusion of information in a network are the Cut-
tingEdge problem [95] and the Contamination Minimization problem [98, 99].
Their objectives, similarly to Firebreak Location, consist in removing a fixed
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number of edges to minimize the expected number of activated vertices. The former
problem uses the LT model while the latter has been studied under both IC and
LT models. A greedy approach guarantees a constant approximation ratio for the
CuttingEdge problem [95]. Some greedy heuristics are considered for the Con-
tamination Minimization problem [99] but, to our knowledge, no constant ap-
proximation is known. The main difference with Firebreak Location, excluding
the diffusion model, is that the two problems are unweighted, with equal activation
and there is no value associated with vertices or cost associated with edges. More-
over in Firebreak Location, the removal of one directed edge also removes the
inverse edge if present, while both problems remove only directed edges. Blocking
adversarial information in social networks is also studied in [90] as an interaction
between a network defender whose aim is to limit the spread of misinformation, and
an attacker whose goal is instead to maximize its diffusion. The problem is modeled
as a Stackelberg game where the defender first chooses a set of nodes to block, and
then the attacker selects a set of seeds to spread negative information from. Given
the complexity of the problem, heuristic algorithms are applied. Another technique
to contrast the spread of misinformation consists in placing monitors on the net-
work, to detect misinformation [18, 142]. We conclude this section by mentioning a
few problems in fire emergency management posed on the fire spreading graph and
consequently, for which planar instances are relevant.
Russo et al. [124] model the terrain as a lattice (obtained by tessellation), where each
vertex may burn. Centrality statistics are used to identify vertices in which deploy
fuel reduction interventions. The difference with our model is twofold: first, fire-
breaks are placed on vertices, not on edges; this changes the combinatorial structure
of the problem. Their model can be turned into ours by substituting every vertex
x with two vertices x+, x− linked by one directed edge from x+ to x− in such a
way that all other edges adjacent to x+ (respectively, x−) are entering (respectively,
exiting) edges. The cost system could impose that only these edges can be part of
a cut. On the other hand, in the undirected case, our model could be expressed as
a vertex-based model in the line graph with vertex set as the edges of the original
graph and edges between two vertices representing adjacent edges. However, in this
case, the spread of fire in the original graph cannot be easily represented by the
spread in the obtained graph. Secondly, the objective function is not directly linked
to the risk we use in this work.
A few other combinatorial problems use a similar fire-spreading graph in a wildfire
management context. The Fuel Management problem aims to schedule fuel re-
duction [110]. The instance is similar to Firebreak Location; the main difference
is that treating a zone (prescribed burning or harvesting) corresponds to removing
all edges adjacent to the related vertex, which makes this problem vertex-based. A
second difference is that a vertex, removed from the graph, may reappear after a
few years with the natural growth of the vegetation. The objective is to schedule
preventive treatments over a long period. To our knowledge, most approaches to
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solving Fuel Management use integer linear formulations for which it is hard
to exploit planarity. Nevertheless, Demange and Tanasescu consider a multi-period
Fuel Management problem from a graph optimization perspective [59]. The
problem is reduced to a Vertex Cover problem and is shown to be NP-hard
on planar graphs. Planarity is then exploited to derive an asymptotic polynomial
approximation scheme.

1.2 Complexity results for planar instances

Many different hardness’s notions have been developed depending on the kind of
problems: the most popular notions are NP-completeness and NP-hardness fully
explained in [77].
The majority of NP-hardness results are for general instances; however, an accurate
evaluation of the computational complexity of the considered model generally de-
mands more restrictive hardness results for restricted classes of instances relevant
to the application. The challenge is then to show to which extent the problem re-
stricted to these classes of instances is still hard. For a hardness result, the more
restricted the class of instances the stronger the result. General hardness results may
not be relevant if the instances emerging from the application have strong structural
properties that can be used to solve the model efficiently.
In Section 2.2 we show that, when all probabilities of ignition are equal, Windy
Firebreak Location in an undirected graph can be reduced to the k-Graph
Partition problem that consists in removing a fixed number of edges to split a
graph in k connected components of balanced size. This argument allows us to
prove the NP-hardness of Windy Firebreak Location in any class of graph
where k-Graph Partition is NP-hard and in particular in unit-disk graphs [68].
To our knowledge, the complexity of k-Graph Partition is not known in restricted
classes of planar graphs that are the most natural case for our problem in the context
of wildfire management. In our case, the graph represents the adjacency of zones
in the considered territory, and consequently, the case of planar graphs and even
with very low vertex degrees seems particularly relevant. As said before, ρ(G) is
computable in polynomial time and it is possible to show that the problem is in NP.
The general case is much harder: computing ρ(G) has been shown #P-hard [30] and
#P-complete in planar graphs [117].
We investigate the complexity of Windy Firebreak Location in restricted pla-
nar instances that are natural in a real context. For completeness, we report the
reduction in Appendix A as published in [1]. Table 1.1 summarizes all the complex-
ity results for finite graphs. We first study a restricted version of Planar Max
2SAT that is used for our main reduction. We define the problem and prove its
NP-completeness. Then, we prove that Windy Firebreak Location is hard on
stars if edge costs and vertex values can be any integer.
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Firebreak Location
Graph (V,E) ∆ πs πi κ φ B R Complexity Reference

general NP-hard Prop. 1.2.1

Windy Firebreak Location
Graph (V,E) ∆ πs πi κ φ B R Complexity Reference

unit-disk 1 uniform 1 NP-C [2]
star 1 0/1 NP-C Prop. 1.2.1

bipartite planar 4 1 1 1 NP-C Th. 1.2.2
subgrid 4 1 1 0/1 NP-C Prop. 1.2.3

grid 4 1 0/1 0/1 NP-C Prop. 1.2.3
trees (Algo. 1) 1 0/1 1 1 poly opt O(|V | ·B2) Th. 1.3.1

trees 1 0/1 N poly opt O(|V | ·B2) Th. 1.3.2

Table 1.1: Results presented for finite graphs— Note: poly stands for O(Poly(|V |)),
opt states that we find the minimum risk value, an empty cell means that any value
is acceptable.

Proposition 1.2.1. Partition polynomially reduces to Windy Firebreak Lo-
cation on stars.

Successively, we show that Windy Firebreak Location is NP-complete in bipar-
tite planar graphs of degree at most 5 in the polynomially bounded case, i.e., with
vertex values and edge costs bounded by a polynomial function. We use a reduction
from the restricted version of Planar Max 2SAT. Finally, we use self-refinements
to show that the problem remains NP-complete in bipartite planar graphs of degree
at most 4 and with all values of vertices and costs of edges equal to 1. Here we
report the main results.

Theorem 1.2.2. Windy Firebreak Location is NP-complete in bipartite planar
graphs of maximum degree 4 with all vertex values and edge costs equal to 1.

Proposition 1.2.3. Windy Firebreak Location is NP-complete if:

• the graph is a subgrid with binary vertex values and unitary edge costs;

• the graph is a grid with binary vertex values and edge costs.

It is worth noting that the results concerning the bound on the degrees are relevant
when the territory is divided into adjacent areas forming a grid. In this case, the
underlying graph has vertex degrees at most four.
In the next section, we identify a case solvable in polynomial time for the WINDY
FIREBREAK LOCATION problem.
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1.3 Windy Firebreak location in Trees

The hardness results in the previous section motivate the question of identifying
some cases solvable in polynomial time for Firebreak Location. In particular, as
seen in Proposition 1.2.1, Windy Firebreak Location is hard on trees (even on
stars) if edge costs and vertex values can be any integer. Since Windy Firebreak
Location revealed to be hard in restricted cases and since its complexity with
binary probabilities of ignition is still open, it seems to us relevant to start with
this case. In this section, we present a polynomial algorithm that solves Windy
Firebreak Location with all edge costs and vertex values equal to 1 in a general
tree with a subset of burning vertices. The algorithm outputs the maximum number
of vertices that can be saved and the corresponding cut system.
Given a tree T = (V,E), we consider an instance (T, πs, πi, κ, φ,B) of the Fire-
break Location problem (optimization version) where:

• πs(e) = 1, for each e ∈ E (this is an instance of Windy Firebreak Loca-
tion);

• πi(v) = 1, for v ∈ V ′ ⊆ V ; and πi(v) = 0 for v ∈ V \ V ′;

• κ(e) = 1, for each e ∈ E;

• φ(v) = 1, for each v ∈ V ;

• a given budget B.

We devise a polynomial time algorithm that computes a cut system H ⊂ E such
that κ(H) ≤ B minimizing the risk, which is equivalent to maximizing the number
of saved vertices.
Given an instance (T, πs = 1, πi, κ, φ,B) of the optimization version of Windy
Firebreak Location, where T is a tree, we choose a vertex as the root, and
orient edges from the root to the leaves. For every vertex, we define an order of its
children and then we number the vertices v0, . . . , v|V |−1 in post order. Let Ti be the
subtree rooted in the vertex vi that includes only vertices that are descendant of vi
in T . By property of the post order, if Ti is a subtree of Tj, then i < j. Given a cut
system H, we denote with πo(v) the probability, in GH , that a vertex burns in the
final setting. πo(v) = 0 if the vertex v does not burn in the solution or πo(v) = 1 if
the vertex v burns in the final setting.
Input: A tree T , a set of vertices V ′ ⊂ V such that πi(v) = 1 for v ∈ V ′, πi(v) = 0
for v /∈ V ′ and a budget B.
Output: A cut system H ⊂ E of cost at most the given budget B and maximizing
the number of vertices v such that πo(v) = 0.
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1.3.1 Algorithm description

The algorithm computes an optimal solution using two nested dynamic programming
processes. The main dynamic programming process computes an optimal solution
for each subtree starting from the leaves and following a post-order visit. At each
step, the algorithm computes an optimal solution for a subtree Ti using solutions for
the subtrees induced by the children of vi (already computed due to the post-order
visit), using a second dynamic programming process. The procedure continues until
an optimal solution is computed for the whole tree.
In a more formal way, given the tree T = (V,E) and a vertex r as the root, the
algorithm visits and numbers the vertices in post-order from v0 to v|V |−1 (v|V |−1 ≡ r).
Given a vertex vi, we denote with vij the j-th children of vi (in the chosen ordering
of children of each vertex) and, by definition of the post-order, if j < j′, then
ij < ij′ < i.
The algorithm then builds two tables (see Figure 1.2). For both tables, rows and
columns are numbered starting from zero.

Table A

Table A (main dynamic programming process) has |V | rows and B + 1 columns. It
contains, for each row i and each budget b ∈ {0, . . . , B}, the number of vertices of
Ti that can be saved for two different scenarios - if vi burns and if vi does not burn
- in the final setting, and, for each case, a corresponding cut system of b edges in Ti.
If vi ∈ V ′, then only the case where vi burns is taken into account. So, every entry
in the table is a 4-tuple Ai,b = (f+, f−, H+, H−) related to the subtree Ti, rooted
in vi and for a given budget b. f+ is the optimal value when vertex vi burns (i.e.,
πo(vi) = 1), f− is the optimal value when vertex vi is not burning in the final setting
(i.e., πo(vi) = 0), H+ and H− are optimal cut systems associated with f+ and f−,
respectively. In what follows, we respectively denote by Ai,b,f+ , Ai,b,f− , Ai,b,H+ , and
Ai,b,H− the four components of Ai,b.
Algorithm 1 builds Table A. It is straightforward: a root is chosen at line 2, a
post order visit is executed at line 3, each row of Table A is filled using procedure
TableST (see Algorithm 2 described below) at lines 4–5. Once the values for Table
A are computed for all the subtrees Ti, the element in the last row and column
contains an optimal solution for both possible states of the root r (i.e., burns or
does not burn).
An optimal solution for the problem is then the maximum between these two values,
with the corresponding cut system. It is returned at lines 6–9.
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Algorithm 1 Optimal Tree Cut
Input: instance I = (T,1, πi, κ, φ,B) of Windy Firebreak Location with

πi(v) ∈ {1, 0}.
Output: (optimal cut system H, the number of saved vertices)

1: procedure TableA(I)
2: pick a vertex r as the root
3: let v0, v1, . . . , r = v|V |−1 the vertices of T visited in post-order from r
4: for i = 0, 1, . . . , |V | − 1 do
5: Ai ← TableST(T ,A,vi,B)
6: if A|V |−1,B,f− > A|V |−1,B,f+ then
7: return (A|V |−1,B,H− , A|V |−1,B,f−)
8: else
9: return (A|V |−1,B,H+ , A|V |−1,B,f+)

Table ST

Table ST (auxiliary dynamic programming process) is built for each subtree Ti

rooted in vi to compute the i-th row of Table A using row i− 1. Each row of Table
ST stores, for each possible budget b ∈ {0, . . . , B}, solutions (value and cut system)
for some subtrees of Ti if vi burns and, when vi /∈ V ′, if it does not burn. Table
ST has k + 1 rows, where k is the number of children of vi, and B + 1 columns.
The first row stores solutions (optimal value and a related cut system) for the root
vi without descendants (so, a single vertex). If k > 0, then each row j > 0 is
filled with solutions for the subtree T j

i obtained by connecting to vi the subtrees
Ti1 , . . . , Tij . The last row then corresponds to Ti. Each column b of Table ST
corresponds to the budget used for the related subtree. Note that the last row of
Table ST for vertex i is the i-th row of Table A. Like in Table A, every entry in
Table ST is a 4-tuple STj,b = (f+, f−, H+, H−), for subtree T j

i and budget b. We
use the same abbreviated notation as for Table A, respectively denoting STj,b,f+ ,
STj,b,f− , STj,b,H+ , and STj,b,H− the four components of STj,b.
The values of row j > 0 of Table ST for subtree Ti are computed as follows. The
root vi of subtree Ti can either burn or not if vi /∈ V ′ and certainly burns if vi ∈ V ′,
and the same occurs for vertex vij , root of Tij . So, when completing the j-th row
of Table ST for Ti, we have at most four possible combinations. The case where a
vertex does not burn is only considered if this vertex has a probability of ignition 0
(i.e., it is not in V ′). Two of these cases are concordant (i.e, vi and vij both burn
or both do not burn), then no cut is needed between them, and two of them are
discordant (one of vi and vij is burning and one is not) so the edge connecting them
must be cut in any feasible solution. Note that −∞ is used as value to state that
there is no related feasible solution. This is the case when vi is in V ′ and is stated
not burning in the combination under analysis.
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More precisely, Algorithm 2 implements the procedure for Table ST. For each budget
b ∈ {0, . . . , B}, the first row is filled with values (0, 1, ∅, ∅) if πi(vi) = 0 (i.e., vi is
not burning) and (0,−∞, ∅, ∅) if πi(vi) = 1 (i.e., vi is burning).
If vi is not a leaf, then the subsequent rows are computed considering the edge be-
tween vertex vi and the latest added vertex vij . To compute STj,b,f+ (vi burns in the
final setting), for budget b, we consider the latest added vertex vij and distinguishing
the two possible cases whether vij burns or not.

1. both vi and vij burn. The algorithm finds the maximum value obtained by
allocating x and b− x budget on T j−1

i and Tij for x ∈ {0 . . . b} and summing
the values of STj−1,b,f+ with Aij ,b,f+ (lines 9–11);

2. vi burns and vij does not burn. In any feasible solution, we must cut the edge
vivij and allocate the remaining b − 1 budget on the two subtrees. So, we
distribute x and b− x− 1 budget on the two subtrees and pick the maximum
values between the sums of STj−1,b,f+ with Aij ,b−1−x,f− (lines 13–14). If the
value computed in this case is greater than the value computed in the previous
one, then the solution is updated and edge vivij is added to the cut-system
H+ (lines 15–17).

The best value obtained in cases 1 and 2 corresponds to the correct value for STj,b,f+

assuming that values of STj−1,b,f+ , Aij ,b,f+ and Aij ,b,f− are correct.
To compute STj,b,f− now, the algorithm evaluates the two cases in which vi does
not burn in the final setting and vij either burns or not. This case is similar to the
previous one with the possible outputs computed at lines 20–22 for the discordant
case, lines 23–28 for the concordant one. When table ST is completed, the last row
contains the values of the solution for subtree Ti, for all varying budgets (line 29).
Figure 1.2 shows an example of a tree with eight vertices, two of them burning
(vertices 3 and 7). For simplicity, the tables do not include the related cut systems,
but only the number of saved vertices. The top table depicts the solutions computed
for T0, for each possible budget, as stored in Table ST. The values 0 and 1 in “0/1”
correspond to the number of vertices saved when vertex v0 burns and does not burn,
respectively. Note that these values are not affected by the budget because they refer
to a leaf of T (and consequently, the related subtree has no edge). These values fill
the first row of Table A. The center of Figure 1.2 shows Table ST for the subtree
T3: all possible subtrees to inspect are in the first column, and the solutions – for
all budget values – are in the subsequent columns. When Table ST is complete, its
last row represents an optimal solution for T k

i , i.e., the whole subtree Ti, for the
possible states of vi, and then this row is copied into Table A at row i. Finally, the
bottom of Figure 1.2 corresponds to Table A, which shows that the optimal value
is the maximum between 4 and −∞. The value 4 then states that four vertices can
be saved by applying the associated cut system (i.e., that cuts the edges v3v0, v3v1,
and v7v6).
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Algorithm 2 Procedure for table ST
Input: Tree T , table A, vertex vi and budget B
Output: optimal solutions for the subtree Ti, for each budget b up to B

1: procedure TableST(T ,A,vi,B)
2: let (vi1 , vi2 , . . . , vik) be the children of vertex vi
3: if πi(vi)=1 then
4: ST0,b ← (0,−∞, ∅, ∅) ∀ b ∈ {0, 1, . . . , B}
5: else
6: ST0,b ← (0, 1, ∅, ∅) ∀ b ∈ {0, 1, . . . , B}
7: for j = 1, 2, . . . , k do
8: for b = 0, 1, . . . , B do
9: z ← argmax

x∈{0,...,b}
{STj−1,x,f+ + Aij ,b−x,f+} ▷ vij and vi both burn

10: STj,b,f+ ← STj−1,z,f+ + Aij ,b−z,f+

11: STj,b,H+ ← STj−1,z,H+ ∪ Aij ,b−z,H+

12: if (πi(vij) = 0) ∧ (b ≥ 1) then ▷ vi burns, vij not, budget ≥ 1
13: z′ ← argmax

x∈{0,...,b−1}
{STj−1,x,f+ + Aij ,b−1−x,f−}

14: m′ ← STj−1,z′,f+ + Aij ,b−1−z′,f−

15: if m′ ≥ STj,b,f+ then
16: STj,b,f+ ← m′

17: STj,b,H+ ← STj−1,z′,H+ ∪ Aij ,b−1−z′,H− ∪ {(vi, vij)}
18: if πi(vi) = 0 then ▷ vi does not burn
19: if b ≥ 1 then ▷ vij burns, budget ≥ 1
20: z ← argmax

x∈(0,...,b)
{STj−1,x,f− + Aij ,b−1−x,f+}

21: STj,b,f− ← STj−1,z,f− + Aij ,b−1−z,f+

22: STj,b,H− ← STj−1,z,H+ ∪ Aij ,b−1−z,H+ ∪ {(vi, vij)}
23: if πi(vij) = 0 then ▷ vij does not burn
24: z′ ← argmax

x∈(0,...,b)
{STj−1,x,f− + Aij ,b−x,f−}

25: m′ ← STj−1,z′,f− + Aij ,b−z′,f−

26: if m′ ≥ STj,b,f− then
27: STj,b,f− ← m′

28: STj,b,H− ← STi−1,z′,H− ∪ Aij ,b−z,H−

29: return STk
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Table ST of subtree T0
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saved vertices
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Table A

T

T2

T1

T0

B

0/1

0/1

0/10/1

0/1 0/1 0/1

0/1

0/10/10/10/1

T3

Table ST of subtree T3

T

v3

0 1 2 3

0/-∞ 2/-∞ 3/-∞ 4/-∞

0/-∞ 1/-∞ 2/-∞ 3/-∞

Table A

T
B

T0

T1

T2

T3

T4

T5

T6

T7

B

OPT=max{4,−∞} = 4

H = (v0v3, v1v3, v6v7)

0 1 2 3

0 1 2 3

0 1 2 3

0/-∞ 1/-∞ 2/-∞ 3/-∞

0/-∞ 0/-∞ 0/-∞ 0/-∞

0/-∞ 1/-∞ 1/-∞ 1/-∞

0/-∞ 1/-∞ 2/-∞ 2/-∞

0/-∞ 1/-∞ 2/-∞ 3/-∞

Figure 1.2: Different phases of the computation of an optimal cut system H for a
tree T with πi(3) = πi(7) = 1 and a budget B=3. At the top, the figure shows how
to compute Table A from Table ST . Table ST is shown for subtrees T0 and T3. At
the bottom right, the figure shows the completed Table A. The optimum solution,
that is the maximum number of vertices that can be saved from fire, is found in
the last row and column of Table A. The optimum cut system H is computed by
Algorithm 1 but is not represented in the picture. At the bottom left, the figure
shows the tree T in which the edges from the cut system H are removed.
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1.3.2 Algorithm correctness and computational complexity

We complete the section with two cases solvable in polynomial time on trees. First,
Theorem 1.3.1 directly uses Algorithm 1. Then, we sketch how to generalize it to
the case of any vertex value and polynomially bounded integral edge costs, which
leads to our last result, Theorem 1.3.2.

Theorem 1.3.1. Algorithm 1 correctly computes an optimal solution for an instance
I = (T,1, πi,1,1, B) of Windy Firebreak Location where T = (V,E) is a tree
and πi(v) ∈ {1, 0}. The computational time is O(|V | ·B2).

Proof. We prove the correctness by induction on the rank in post order. For each
leaf vi of T , Algorithm 1 correctly computes the values of Ai by calling Algorithm 2.
The only instructions executed are from line 3 to line 6, since vi has no children.
This proves the base step but also, later in the algorithm, the correctness of the
values Ai,b for any leaf vi.
Now, given a vertex vi that is not a leaf (in particular i > 0, we assume by induction
hypothesis that an optimal solution is computed for each subtree Ti1 , . . . , Tik rooted
at vertices vi1 , . . . , vik , children of vi and for each budget b = 0, . . . , B. These values
are stored in Aij , for each j = 1, . . . , k (in particular in each row ij of Table A).
We prove by induction on j = 0, . . . , k that the values STj,b,f+ , b = 0, . . . , k are
correct.
For T 0

i , that is the subtree consisting of vertex vi only, an optimal solution for each
possible budget b = 0, . . . , B is computed from line 3 to line 6, and stored in ST0,b.
Now, assume that STj−1,b = (f+, f−, H+, H−) is correctly computed for the subtree
T j−1
i , for each possible b and j ∈ {1, . . . , k}. The discussion in Section 1.3.1 justifies

that the line j of Table ST is then properly filled in. By induction, it shows that
the line k of Table ST will be properly filled in by Algorithm 2. Since T k

i is the
subtree Ti, it completes the proof of the induction step that Algorithm 1 correctly
fills Table A in. This completes the proof of correctness.
Regarding the computational complexity, the execution time of Algorithm 2 is dom-
inated by the instruction at line 9 that requires O(B) time. Since it is repeated
k(B + 1) times, Algorithm 2 requires O(k ·B2) time, where k is the number of chil-
dren for the vertex into consideration. Algorithm 2 is called for each vertex of the
tree by Algorithm 1. Then, the overall computational complexity of Algorithm 1
is O(|E| · B2) and since T is a tree, O(|E|) = O(|V |), and hence the complexity is
O(|V | ·B2), which completes the proof.

We can assume B ≤ n − 2 since for a larger budget we can cut all edges. So, the
complexity of Algorithm 1 is dominated by O(n3).
For simplicity of the presentation we have described Algorithm 2 with unitary edge
costs and vertex values. However, it can easily be generalized to take into account
the vertices’ weights and the edges’ costs as follows.
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In the case of generic vertices’ weights, Algorithm 2 has to calculate the sum of the
weights of the vertices that do not burn, instead of the number of saved vertices, for
each subtree. The only required change is in line 6, where ST0,b should be initialized
to (0, φ(vi), ∅, ∅).
With respect to the edges’ costs, the Algorithms can be generalized if costs are
integer. To this aim, Algorithm 2 should be changed when a cut is needed on the edge
e, between vi and the root of Tij . If the cost is c = κ(e), then the Algorithm should
calculate the optimal solutions for a remaining budget b−c (instead of b−1), if b ≥ c.
For instance, the condition in line 12 should be changed to (πi(vij) = 0) ∧ (b ≥ c),
and line 13 to z′ ← argmaxx∈{0,...,b−c}{STj−1,x,f+ + Aij ,b−c−x,f−}. Similar changes
should be applied to lines 14, 17, 19–22.
Algorithm 1 remains unchanged and the overall complexity O(|V | ·B2) is the same
but, this time, we can only assume B<

∑︁
κ(e) for integral values of edge costs. So,

the overall process is polynomial only for polynomially bounded integral edge costs
and pseudo-polynomial otherwise.
These considerations lead to the following theorem.

Theorem 1.3.2. There exists an algorithm that correctly computes an optimal so-
lution for an instance I = (T = (V,E),1, πi, κ, φ,B) of Windy Firebreak Lo-
cation where T is a tree, κ(e) ∈ N, ∀e ∈ E and πi(v) ∈ {1, 0}. Its computational
complexity is polynomial in |V | if B = O(Poly(|V |)) or κ(e) = O(Poly(|V |)).
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1.4 The Infinite windy firebreak location problem

In this section, we adapt the model for the Windy Firebreak Location prob-
lem, on infinite undirected graphs and introduce the Infinite Windy Firebreak
Location problem. The land is modeled as an infinite graph and the goal is to find
a cut system that allows the fire to be contained limiting the risk. Given an infinite
graph, we assume that a fire ignites in a subset of vertices and propagates to the
neighbors. The goal is to select a subset of edges to remove to contain the fire and
avoid burning more than a finite part of the graph. Infinite graphs can be seen as a
theoretical model of very large lands and then the problem is motivated by prevent-
ing a wildfire from escaping, i.e., becoming out of control. In Section 1.4.3 we prove
that Infinite Windy Firebreak Location is coNP-complete in restricted cases
and we look for cases solvable in polynomial time. We show that Infinite Windy
Firebreak Location polynomially reduces to Min Cut for certain classes of
graphs like infinite grid graphs and polyomino-grids, a generalization of grids.

1.4.1 Main notations

Here we introduce some notation used in the following sections. Unless otherwise
stated, all graphs are infinite and undirected. Note that in an infinite graph, paths
are finite and rays are the infinite counterpart. So, an infinite graph is connected if
every two vertices are linked by a (finite) path.
Let G = (V,E) be an (infinite) undirected graph, for any edge set H ⊂ E, we denote
by GH = G \ H the partial graph (V,E \ H) obtained from G by removing edges
in H. Given a set V ′ ⊂ V , G[V ′] denotes the subgraph induced by V ′ and any
graph G′′ = (V ′′, E ′′), V ′′ ⊂ V,E ′′ ⊂ E will be called partial subgraph of G. All
graph-theoretical terms not defined here can be found in [64].

1.4.2 Problem formalization

The undirected case corresponds to the assumption that all directions of wind are
possible. Since the model is meant to be used for fire prevention over a long period
of time and not for the response phase, this assumption makes perfect sense. In the
finite case, the Windy Firebreak Location problem is defined as selecting a cut
system H ⊂ E that minimizes the risk for GH under a budget constraint. In this
section, we will consider that all edge costs are equal and thus, the constraint will
be |H| ≤ B.
In an infinite graph with probabilities of spread all equal to 1 (windy case), we
consider only finite cut systems and a finite number of vertices with a positive
probability of ignition. Then, all definitions can be easily extended and two cases
are to be considered.
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First, if all vertices with a positive probability of spread are in finite connected
components of GH , then the risk is finite and immediately computable as the risk
associated with the finite graphs consisting in the union of connected components
that include at least one vertex of positive probability of ignition. The rest of
the graph does not induce any risk. In the second case where there is an infinite
connected component of GH with a vertex of positive probability of ignition, the
risk becomes infinite as vertex values have been assumed positive integers. Then, a
natural question is whether there is a cut system satisfying a budget constraint and
guaranteeing a finite risk. This is the problem we address here. Since this problem
does not change with binary probabilities of ignition, we make such assumption. So,
the problem is formally defined as follows:

Infinite Windy Firebreak Location
Instance: an undirected infinite graph G = (V,E) defined by a finite
string of length at most n; a finite subset ˜︁V , |˜︁V | ≤ n, of initially burning
vertices. A total budget B ≤ n.
Question: is there a cut system H ⊂ E such that |H| ≤ B and such that
the vertices in ˜︁V are in finite connected components of GH (the fire can
be contained)?

We will denote such an instance (G, ˜︁V ,B) and call n the size of G.

1.4.3 The complexity of Infinite Windy Firebreak Location

To our knowledge, there have been very few attempts to extend the definition of
complexity for the case of combinatorial problems defined on infinite graphs. Among
these attempts, [27] considers instances that are defined with incomplete informa-
tion. Here, we adopt a completely different perspective by considering finitely repre-
sented infinite graphs. This means that we assume a finite encoding of each instance.
Then, through a given encoding scheme, the problem becomes a finite combinatorial
problem in common sense. The size of an instance is then the length of the finite
string representing it or any polynomial function of this length. This gives us the
possibility to refer to the classical complexity theory to analyze the intractability of
problems on finitely represented infinite graphs. In this process, however, we need to
be careful that different encoding schemes lead to different problems with, possibly,
different complexity [76], as the example in the next section will show.
Here, we give some evidence of the hardness of Infinite Windy Firebreak Lo-
cation, even on a very simple class of finitely represented infinite graphs. The
graphs we consider are constituted by a finite star with non-crossing infinite rays
(called infinite tail) attached to some leaves of the star. For such a graph, we denote
o as the center of the star. Only the center o has a probability of ignition equal to 1
and all other vertices have a probability of ignition equal to 0.
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A trivial finite representation is by listing the neighbors of o and indicating those that
have an infinite tail. So, a natural representation is a boolean vector of dimension n,
where n is the number of neighbors of the center o and 1 entries correspond to infinite
tails. With this representation, a reasonable size of such an instance is the degree
of o. Within this encoding scheme, the problem is trivially polynomially solvable:
the size of a minimum cut is the number of neighbors of o with an infinite tail. We
can also represent such an instance as two numbers, the number of neighbors of o
with an infinite tail and the number of neighbors of o without an infinite tail. The
related size is then the number of bits required to represent these numbers; it is a
logarithm of the previous size and the problem remains clearly polynomial within
this representation.
We now propose a subclass of these instances with an alternative representation.
Assume that we have a finite set X of size n and a boolean function f : 2X → {0, 1}
computable in polynomial time with respect to n, where 2X is the set of subsets of
X. The neighborhood of o is 2X and only those neighbors x such that f(x) = 1
have an infinite tail. Since we can decide in polynomial time whether a neighbor of
o has an infinite tail, it is reasonable to define n as the size of the graph. The center
o is still the only vertex on fire at the start (˜︁V = {o}) and B polynomially bounded
in the size n. We denote by S the set of these instances with this representation.

Proposition 1.4.1. Infinite Windy Firebreak Location restricted to in-
stances in S is coNP-complete.

Proof. Note first that this particular case of Infinite Windy Firebreak Loca-
tion is in coNP. Consider indeed an instance (G, ˜︁V = {o}, B) in S: G is a star with
center o defined from a set X of size n and a boolean function f . It is a no-instance
if and only if we have B + 1 different neighbors of o with an infinite tail. Given
B + 1 neighbors of o, x0, . . . , xB we can check in polynomial time whether they are
all different and whether ∀i ∈ {0, . . . , B}, f(xi) = 1.
We consider an instance I of SAT, known to be NP-complete, with a set X of n
variables and m clauses. Without loss of generality, we can assume m ≤ n: we
indeed just can add to X m artificial variables and one clause including all of them.
We associate to it the graph G obtained by linking the center o with all truth
assignments (in one-to-one correspondence with 2X). For any truth assignment x,
f(x) = 1 if and only if all clauses are satisfied; f is computable in polynomial time.
We also add to o an infinite ray that does not cross any tail. We then consider the
instance I ′ = (G, ˜︁V = {o}, B = 1) of Infinite Windy Firebreak Location. I ′

can be defined in polynomial time with respect to n and is an instance in S. It is a
no-instance if and only if I is a yes-instance. This concludes the proof.

Note that, in the class of instances S, only one vertex - the center - has a non-zero
probability of ignition. If we do not require this property, then exactly the same



1.4. THE INFINITE WINDY FIREBREAK LOCATION PROBLEM 24

proof can be applied on graphs consisting of 2|X| disjoints components, each being
either a single vertex or a ray.

1.4.4 Some cases solvable in polynomial time

The hardness results in the previous section motivate the question of identifying
some cases solvable in polynomial time for Firebreak Location. Since Infinite
Windy Firebreak Location and Windy Firebreak Location revealed to be
hard in restricted cases and since the complexity of Windy Firebreak Location
with binary ignition probabilities is still open, it seemed to us relevant to start with
this case. We identified two cases solvable in polynomial time and possibly the
methods could be extended to other cases. For some graph classes including grids,
the infinite version of Windy Firebreak Location turns to be polynomial since
it reduces to Min Cut. Roughly speaking, it means that deciding whether we can
contain the fire (i.e., deciding whether at least a finite risk can be guaranteed) instead
of minimizing the risk is polynomial. This case is also interesting since it is not
impacted by restrictions on the vertex values, edge costs and ignition probabilities.
So, it is enough to consider the case where all these parameters are binary.

Infinite Windy Firebreak Location in Infinite Grids

In this subsection, we identify a class of Infinite Windy Firebreak Location
instances that are polynomially solvable. Complexity considerations for Infinite
Windy Firebreak Location will refer to n assumed to be at least |˜︁V | + B, as
the size of the instance, where ˜︁V is the set of vertices with a positive probability
of ignition. Note that the problem is not changed if we assume all probabilities of
ignition equal to 1 in ˜︁V (and 0 elsewhere).
We outline two properties of infinite graphs that are in particular satisfied by var-
ious versions of infinite grids. In an infinite connected graph G = (V,E) and any
subgraph G[V ′] of G, we call escaping edges from G[V ′] any edge between V ′ and
an infinite connected component of G[V \ V ′]. We call ball centered on vertex x and
of radius K ∈ N in G the set of vertices {y ∈ V, d(x, y) ≤ K}.

Polynomial growth property:
The first property, called polynomial growth property states that the car-
dinality of balls for the minimum path distance (all edge lengths are 1)
is polynomial with respect to the radius. It expresses that the graph has
a “polynomial expansion” around any vertex. This property was first
introduced in [128].
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Expansion property:
On the contrary, the second property, called expansion property, ex-
presses that the graph always expands around vertices: there is an in-
tegral polynomial function L such that, for any value B, any finite sub-
graph with more than L(B) vertices has at least B + 1 escaping edges.

We are interested in graphs satisfying both properties. Then, the same polynomial
function can be used to describe the properties, as outlined in the following remark:

Remark 1.4.2. If an infinite graph G satisfies the polynomial growth and the ex-
pansion properties, then there is a polynomial function L such that:

(i) ∀x ∈ V, ∀K ∈ N, |{z, d(x, z) ≤ K}| ≤ L(K);

(ii) Any finite connected subgraph of size more than L(B) has at least B+1 escaping
edges.

Proof. Indeed, both properties are still valid if we replace the polynomial function
with a larger one. We conclude by noticing that the maximum between two poly-
nomial functions is a polynomial function.

About graphs satisfying the polynomial growth and expansion properties

As outlined by the following lemmas, these two properties are satisfied in many
classes of infinite graphs that are natural in our application context.
Infinite grids correspond to the simplest illustration. Let a double ray be the graph
P = (Z, E) with E = {{i, i+ 1} : i ∈ Z}. The infinite grid is then defined as the
Cartesian product P × P . It is a non-directed graph.

Lemma 1.4.3. The infinite grid satisfies the polynomial growth property and the
expansion property.

Proof. It satisfies the polynomial growth property: for any vertex x of the infinite
grid and any integer K, we have: |{z, d(x, z) = K}| = 4K and consequently, each
ball of radius K has cardinality 1 + 2K(K + 1).
It is also easy to verify that the infinite grid satisfies the expansion property. In [85]
it is proved that the minimum possible perimeter of a polyomino with p tiles is
2
⌈︁
2
√
p
⌉︁
. The adjacency graph (or dual graph) of a polyomino, where tiles are

associated with vertices and tiles adjacency corresponds to vertex adjacency, is a
finite subgraph of the infinite grid. Conversely, every finite subgraph of the grid
is the adjacency graph of a polyomino. Several polyominoes may have isomorphic
adjacency graphs. However, we can choose the embedding of the adjacency graph
in the grid that preserves the orientation: two adjacent tiles one of the right of
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(respectively above) the other correspond to two vertices in the grid with the same
relative position. Then, the correspondence is one-to-one up to a translation and the
external perimeter of the polyomino corresponds to the number of escaping edges of
the corresponding subgraph of the infinite grid. So, the result of [85] is equivalent
to say that a finite subgraph of the infinite grid with p vertices has at least 2

⌈︁
2
√
p
⌉︁

escaping edges. Choosing p = (B+1)2

16
ensures at least B + 1 escaping edges. So, in

the infinite grid we can choose for instance L(B) =
⌈︂
B(B+2)

16

⌉︂
. This concludes the

proof.

It is straightforward to verify that, if an infinite graph satisfies the polynomial growth
property, then any partial subgraph also does. Indeed, balls of the partial subgraph
are always contained in balls of the original graph.
More work is required to analyze the expansion property in a subgraph. When con-
sidering infinite subgraphs of an infinite graph represented by a finite string, we will
only consider removing a finite number of vertices to ensure that the new graph can
also be represented by a finite string. Then, it will be natural to consider that the
description of the removed vertices is part of the description of the subgraph and
consequently, the size of the subgraph is at least the number of removed vertices.
This leads to the surprising fact that the size does not decrease but may increase
when taking a subgraph. Since Infinite Windy Firebreak Location is de-
fined in infinite graphs, we will not consider finite subgraphs of an instance as a
new instance. With these definitions, the expansion property is also transferred to
subgraphs.

Lemma 1.4.4. If an infinite graph of finite maximum degree ∆ satisfies the ex-
pansion property for a polynomial function L, then any induced subgraph obtained
by removing a finite set V ′ of vertices also satisfies the expansion property for the
polynomial function L′ : B ↦→ L(B +∆|V ′|).

Proof. Consider an infinite graph G = (V,E) of finite maximum degree ∆ satisfying
the polynomial expansion property for the polynomial function L and let V ′ be a
finite subset of V . We prove that G[V \ V ′] also satisfies the polynomial expansion
property. Consider a finite subgraph G′′ = G[(V \ V ′) ∩ V ′′] of G[V \ V ′] with not
more than B escaping edges in G[V \V ′]. Then, G′′ has at most B+∆|V ′| escaping
edges in G since each vertex of V ′ cannot induce more than ∆ new escaping edges.
As a consequence, G′′ is of order at most L(B+∆|V ′|). Since |V ′| and ∆ are constant
for a fixed subgraph, L′ is a polynomial function for the variable B. This completes
the proof.

Finally, we outline that, adding edges between vertices at bounded distance also
preserves both properties. Adding edges to an infinite graph corresponds to the
union of two infinite graphs on the same vertices. If both graphs are represented by
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finite strings, then so does the union and the size of the union can be set as the sum
of sizes of the two infinite graphs.

Lemma 1.4.5. Let G be an infinite graph of size n that satisfies the polynomial
growth and the expansion properties. Let G′ be obtained from G by adding edges
between vertices at distance at most S for a constant S. Then, G′ satisfies the
polynomial growth and the expansion properties.

Proof. Using Remark 1.4.2, we suppose that G satisfies both properties for the same
polynomial function L.
Two vertices at distance K in G′ are at distance at most S ×K in G. So, a ball of
radius K in G′ is of cardinality at most L(S ×K), which is a polynomial in K.
For the expansion property, we consider, for some B, a finite set of vertices, V ′, with
|V ′| > L(B). In G, there are more than B escaping edges and thus, this is true as
well in G′, which completes the proof.

Using Lemmas 1.4.3 and 1.4.5, we deduce in particular that infinite grids with all
diagonals ((x, y), (x+ 1, y + 1)) , ((x, y), (x+ 1, y − 1)) or a finite number of them
satisfy both properties and can be represented by a finite string.
We conclude this section with a generalization of infinite grids that satisfy both
properties. Consider any tiling of the two dimensional plan with polyominoes of
size at most S unit-squares, for a fixed constant S and that can be represented by
a finite string. Then, we call Polyomino-grid the adjacency graph of the different
polyominoes in such a tiling. It is an infinite graph represented by a finite string
and the length of this string is the size of this graph. Usual grids correspond to the
case S = 1. A wall is a case where S = 2.

Proposition 1.4.6. Polyomino-grids satisfy the polynomial growth property and the
expansion property.

Proof. Given a polyomino-grid G and the related tiling of the plan, partitioning each
polyomino associated with a vertex in at most S unit-squares leads to the regular
tiling with squares. Given two vertices x and y, and two squares sx and sy in the
polyomino associated with x and y, respectively. Then, in the infinite grid, the
vertices associated with sx and sy are at distance at most S×K. As a consequence,
the cardinality of a ball of radius K in G is at most the cardinality of a ball of radius
S × K in the infinite grid. As a consequence, using Lemma 1.4.3, G satisfies the
polynomial growth property.
Suppose now a finite connected subgraph G′ of G with p vertices. Partitioning as
previously each polyomino into at most S unit-square leads to a connected polyomino
with at least p and at most p × S squares, thus a connected subgraph G′′ with at
least p and at most p× S vertices in the infinite grid. Using Lemma 1.4.3, there is
a polynomial function L such that, if, for B ∈ N, p > S × B, then the number of
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escaping edges in G′′ is greater than S × B. Each escaping edge in G′ corresponds
to at most S escaping edges in G′′ and consequently, the number of escaping edges
in G′′ is greater than B, which concludes the proof.

Lemma 1.4.4 ensures that removing a finite number of vertices from a polyomino-grid
does not affect the two properties. Lemma 1.4.5 ensures we can add edges between
vertices at a bounded distance. The resulting classes of graphs are relevant as a fire
spread network in wildfire emergency context. Polyomino-grids appear naturally as
adjacency graphs of areas of similar surface in a landscape, removing some vertices
allows to represent zones where the fire will not spread (like lakes) and adding edges
between vertices that are close allows to represent spread by ember in some areas.
In the next section, we outline that Infinite Windy Firebreak Location can
be solved in polynomial time in polyomino-grids.

A case solvable in polynomial time for Infinite Windy Firebreak Location

We then denote GG the class of Windy Firebreak Location instances of the
form I = (G[V \ V ′], B), where G is a finitely represented connected infinite graph
of finite degree ∆ and where ∆, |V ′|, |˜︁V | and B are bounded by the size of I.
Note that G[V \ V ′] may have finite connected components. However, we do not
change the nature of I by adding to V ′ all vertices of a finite connected component
of G[V \ V ′]. We just need to remark that the sum of cardinalities of these finite
connected components is polynomial and that these components can be computed
in polynomial time with respect to n:

Lemma 1.4.7. Denote C the set of vertices of all the finite connected components
of G[V \ V ′]; C is finite of cardinality at most L (∆× |V ′|) and can be listed in
polynomial time with respect to n.

Proof. Since G is connected, any escaping edge from G[C] in G is adjacent to V ′ and
consequently, their number is at most ∆ × |V ′|. This implies, using the expansion
property, that |C| ≤ L (∆× |V ′|). Since all connected components of G[C] are adja-
cent to V ′ and the maximum degree is ∆ (a constant), C can be listed using Breadth
First Search from each vertex x ∈ V ′. If the search reveals a connected component of
at least L (∆× |V ′|)+1 vertices, then it is an infinite connected component and the
search from x is stopped. In all, the complexity is O (|V ′| ×∆× L (∆× |V ′|)).

So, given Lemma 1.4.7, we can assume that G[V \ V ′] has only infinite connected
components. This requires increasing the size of the new instance to max(n, |V ′| +
|C|) but this does not affect whether algorithms are polynomial or not.

Theorem 1.4.8. Consider a connected infinite graph G of finite maximum degree
that satisfies the expansion property and the polynomial growth property. Then,
Infinite Windy Firebreak Location is polynomial on the class GG.
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Proof. Using Remark 1.4.2, we assume that the same polynomial function L is used
in the polynomial growth property and the expansion property. We denote ∆ as
the maximum degree of G. We reduce Infinite Windy Firebreak Location
on GG to the problem of finding a minimum capacity (s, t)-cut, denoted Min Cut,
in a transportation network N of polynomial size w.r.t. n, the size of G. Since Min
Cut is polynomially solvable [74], it will complete the proof.

Consider I = (G[V \V ′], ˜︁V ,B), a Infinite Windy Firebreak Location instance
of size n, where |V ′| ≤ n, |˜︁V | ≤ n, and B ≤ n.
As seen before, we assume that G[V \ V ′] has only infinite connected components.
We then consider the set V ′′ = {x ∈ V, d(x, ˜︁V ) ≤ L(B + ∆|V ′|)}, where d denotes
the distance in G. We then consider the infinite graph G[V \ (V ′ ∪ V ′′)] and denote
V ′′′ the set of vertices of all finite connected components of G[V \ (V ′ ∪ V ′′)].
We define the transportation network N by adding to G[(V ′′ ∪ V ′′′) \ V ′] a source s

and all edges sx, x ∈ ˜︁V . Similarly, we add a vertex t and all edges from any vertex
incident to an escaping edge from G[(V ′′ ∪ V ′′′) \ V ′] in G[V \ V ′] to t. All edges
in N incident to s or t have capacity B + 1. All edges of G[(V ′′ ∪ V ′′′) \ V ′] have
capacity 1. With this capacity system, a (s, t)-cut of capacity at most B cannot
include any edge incident to s or t.
By definition, V ′′ = ∪x∈˜︁V {z, d(x, z) ≤ L(B + ∆|V ′|)} and consequently, using the
polynomial growth property of L, |V ′′| ≤ |˜︁V | × L (L(B +∆|V ′|)), which is polyno-
mially bounded w.r.t. n. In addition, V ′′ can be listed in polynomial time using
Breadth First Search from each vertex in ˜︁V . Lemma 1.4.7 (replacing V ′ with V ′∪V ′′)
guarantees that |V ′′′| ≤ L (∆× (|V ′|+ |V ′′|)), which is polynomial, and V ′′′ can be
listed in polynomial time. We deduce that N is of polynomial order at most

|˜︁V | × L (L(B +∆|V ′|)) + L
(︂
∆×

(︂
|V ′|+ |˜︁V | × L(L(B +∆|V ′|))

)︂)︂
+ 2,

which is polynomial w.r.t. n as a composition of polynomial functions. In addition,
N can be computed in polynomial time since G is represented in polynomial time
and V ′′ ∪ V ′′′ and V ′ can be listed in polynomial time.
We then claim that:

There is, in N , a (s, t)-cut of capacity at most B if and only if I is
positive,

which will conclude the proof.
Assume first there is a (s, t)-cut of capacity at most B and denote (Xs, Xt) the
two parts:{s} ∪ ˜︁V ⊂ Xs; similarly, t and all vertices incident to t in N are in Xt.
The number of edges between Xs and Xt in G is at most B. It corresponds to a
cut system H. Any path in G[(V ′′ ∪ V ′′′) \ V ′] from ˜︁V to Xt includes at least one
edge from H. Consider a vertex x ∈ ˜︁V and the related connected component Cx
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in G[V \ V ′] \H. Consider, in G[V \ V ′], a ray starting from x. Since V ′′ ∪ V ′′′ is
finite, this ray gets out V ′′ ∪ V ′′′ and let z+ be the first vertex from x along this ray
such that z+ /∈ (V ′′ ∪ V ′′′). Let z− be the vertex just before z+. The corresponding
path from x to z− is in (V ′′ ∪ V ′′′) \ V ′ and, by definition of V ′′′, the edge z−z+ is
escaping from G[(V ′′ ∪ V ′′′) \ V ′] in G[V \ V ′]. So, z− ∈ Xt and consequently the
path from x to z− includes at least one edge from H. This means that any ray from
x in G[V \V ′] crosses an edge from H. This holds for any x ∈ ˜︁V ; H is a cut system
that allows containing the fire and I is positive.
Assume conversely that I is positive and let H be a cut system with at most B
edges that allows to contain the fire. Consider as previously a vertex x ∈ ˜︁V and the
related connected component Cx in G[V \V ′] \H. Cx has at most B escaping edges
and consequently, using Lemma 1.4.4, we have |Cx| ≤ L(B +∆|V ′|). In particular,
the diameter of Cx is at most L(B+∆|V ′|)−1. Consequently, edges in H are edges
of G[V ′′] and moreover, all paths from ˜︁V to t in N cross at least one edge of H. It
means that H is a (s, t)-cut in N , which concludes the proof.

Using Proposition 1.4.6, we deduce:

Corollary 1.4.9. Infinite Windy Firebreak Location can be solved in poly-
nomial time in polyomino-grids.

From an instance I = (G[V \V ′], ˜︁V ,B) of Infinite Windy Firebreak Location,
we build the network N and use a minimum cut algorithm to solve Infinite Windy
Firebreak Location, using Theorem 1.4.8. The minimum cut algorithm runs in
O(nm2) [74] in a graph with n vertices and m edges. Then the complexity is of order
O ((|V ′′|+ |V ′′′|)3∆2) ⊂ O ((|V ′′|+ |V ′′′|)5), where |V ′′| = |˜︁V | × L (L(B +∆|V ′|)),
|V ′′′| = L

(︂
∆×

(︂
|V ′|+ |˜︁V | × L(L(B +∆|V ′|))

)︂)︂
and ∆ is the maximum degree of

the graph G[V \ V ′].

1.5 Concluding remarks

In this chapter, we studied the computational complexity of Firebreak Loca-
tion and its restricted version Windy Firebreak Location. Both problems are
motivated by a wildfire management context. We focused on specific instances, in
particular low-degree planar graphs, relevant for practical application. We proved
that Windy Firebreak Location is still NP-complete in bipartite planar graphs
of maximum degree 4 and unitary vertex values and edge costs. On the other hand,
we proved that Windy Firebreak Location is polynomial on trees with polyno-
mially bounded edge costs and binary probabilities of ignition.
The hardness results motivate studying the approximation properties of the prob-
lem and identifying new classes of instances solvable in polynomial time. Altogether
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these results would help better understand the problem. We introduced the Infi-
nite Windy Firebreak Location problem. The land is modeled as an infinite
graph, and the goal is to find a cut system that allows the fire to be contained, lim-
iting the risk. Infinite graphs can be seen as a theoretical model of very large lands.
The problem is motivated by preventing a wildfire from escaping, i.e., becoming out
of control. We showed that the problem is coNP-complete in restricted cases. This
motivates the search for cases solvable in polynomial time. We outlined two proper-
ties of infinite graphs: the polynomial growth property and the expansion property.
These are satisfied by various versions of infinite grids, as well as a generalization
called Polyomino-grids. Polyomino-grids naturally represent a land with areas of
similar surfaces and also allow representing fire spread by embers by adding edges
between close areas. We showed that in these cases Infinite Windy Firebreak
Location is polynomial and reduces to the problem of finding a Min Cut in a
transportation network for graphs satisfying both the polynomial growth property
and the expansion property.



Chapter 2

Model validation and heuristics

Given the computational complexity of Firebreak Location, heuristics methods
are the most appropriate to handle it for practical applications. The hardness results
motivate studying the approximation properties of the problem and identifying new
classes of instances solvable in polynomial time. In this chapter, we describe a heuris-
tic algorithm that computes the risk for each vertex and the total risk of the graph.
This algorithm is implemented in the web application presented in Section 2.4, while
in Section 2.2 we present a particular case of the Firebreak Location problem in
which all the probabilities of ignition can be considered equivalent. In Section 2.3,
we present the model validation. We instantiate the graph model on the territory
of Cap Corse, the peninsula of Corsica island to prove the usability of the model.
We partition the peninsula of Cap Corse into adjacent areas connected by edges.
Then, we estimate the probabilities of ignition using data on historical fires and we
estimate the probabilities of spread by running several fire simulations. We show
data directly on geographical maps for an intuitive understanding of the areas with
a higher risk of fire. Finally, in Section 2.4, we present a prototype web applica-
tion. The goal is to give a tool to target end-users, i.e. fire and risk managers, to
effectively visualize data about wildfire and to simulate interactively risk mitigation
interventions, quantifying their effect, in terms of risk reduction, before deployment.

32
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2.1 Approximated risk calculation

Risk computation, in the general case, is #P-hard, and its approximability is still an
open problem. In this subsection, we then describe a heuristic algorithm to compute
the risk, adapted from [136, 137].
The algorithm first adds a universal vertex f that represents the fire. Then, it
connects f to all nodes of the original graph. The probability of spread for each
of these edges is then defined equal to the probability of ignition of the connected
node, i.e., given node e from f to v, πs(e) = πi(v).
Given this new graph, the algorithm uses discrete time and starts at time t0. At
the time t0, only node f is burning. Then, for each edge e between f and node v,
the algorithm compares the probability of spread πs(e) to a uniformly distributed
random number r ∈ [0, 1), so to simulate a possible ignition in v. Accordingly, we
consider that a fire starts in v, and then v is burnt, if r < πs(e). Then, t = t + 1.
At the time t, the algorithm takes into account all nodes v′ that were reached by
fire at time t − 1. Then, for each edge e between v′ and v, where v is a non-burnt
node, similarly as above, the algorithm compares the probability of spread πs(e) to
a uniformly distributed random number r ∈ [0, 1), so to simulate the possible spread
from v′ to v. The algorithm ends when no new nodes are burnt.
Such a process is iterated until the standard deviation of the number of burnt nodes
becomes lower than a certain threshold. The chosen threshold ϵ is such that the
following inequality is satisfied:

2 · xα/2 ·
√︃

S2
N(t)

N
< ϵ (2.1)

where N is the current iteration number, S2
N(t) is the estimate variance of the

number of burnt nodes, 1 − α is the confidence level, and xα/2 is chosen so that∫︁ xα/2

−∞ g(t)dt = 1 − α/2, where g(t) is the Gaussian standard density. Basically, the
inequality aims at calculating the confidence intervals for the number of burnt nodes.
At the end of all the required iterations:

– the probability of burning for each node v is calculated as the number of times
that v burned, divided by the number of iterations;

– the risk for each node v is calculated as the probability of burning for v,
multiplied by the node value ω(v);

– the risk is calculated as the sum of all risks associated to each node v.
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2.2 Partitioning problem

In this section, we consider the particular instance of Firebreak Location in
which all the probabilities of ignition are equal to a fixed value p, all the vertices
have the same value, all ignition events are independent, the graph is symmetric
(if xy ∈ E, then yx ∈ E) and probabilities of spread are all set to one. This
setting can model a large uniform territory divided in subareas of approximately the
same dimension and with no specific predominant wind direction during the year.
Moreover, we investigate the propagation phenomenon in the worst case that is when
the fire ignited in a vertex of the graph certainly propagates to the adjacent nodes
(probabilities of spread all equal to 1). As in the general problem, the spreading of
fire can be mitigated with the construction of firebreaks modeled by the suppression
of connections in the graph. The goal is always to identify a subset H of edges to
be cut under a budget constraint. Under this setting, if a fire starts on a node (i.e.,
in an area), then only the corresponding connected component in G \H will burn.

2.2.1 Minimizing the worst case scenario for a single fire

We are first interested in the problem of minimizing the maximum number of nodes
that may burn if only one node ignites. This corresponds to mitigating the worst-case
scenario with a single fire. From a graph perspective, the objective is to minimize
the maximum number of nodes in a connected component after suppression of the
cut H. Suppose we fix the number k of connected components of G \ H, then,
without the budget constraint, the maximum size of the k connected components
is minimized if all connected components have the size

⌊︂
|V |
k

⌋︂
or
⌈︂
|V |
k

⌉︂
. Then, the

problem reduces to the following graph partition problem:

k-Graph Partition
Instance: A non-directed graph G = (V,E); for every edge e ∈ E a cost
κ(e); an integer k ≤ |V |.
Solution: A cut system H ⊂ E such that G \ H has k connected com-
ponents all of size

⌊︂
|V |
k

⌋︂
or
⌈︂
|V |
k

⌉︂
.

Objective: Minimize κ(H).

Note that in a non-directed graph, a cut system is just any set of non-directed edges.

2.2.2 Minimizing the total risk

Under our settings, the risk ρ(GH) of a cut system H ⊂ E is proportional to the
expected number of burned nodes. In this part, we give evidence that, for a small
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probability of ignition and without budget constraint, minimizing the total risk for
a graph fragmented into k components leads to the same solution as above. More
precisely, we consider a cut system H that fragments the graph into k ≥ 2 connected
components of cardinality x1, . . . , xk and then, we justify that a balanced solution
with all connected components of the same size is near optimal.
In the case where all xis are integers and under the assumptions we made, the
expected number of burned nodes is

R(x1, . . . , xk) =
k∑︂

i=1

xi(1− (1− p)xi) (2.2)

and the variables xis satisfy the constraint

k∑︂
i=1

xi = |V |. (2.3)

We use a continuous optimization argument, relaxing the constraints that xis are
integers into xi > 0, i = 1, . . . , k. In addition, if xis are positive integers and satisfy
Equation 2.3, then we have xi ≤ |V |−k+1 < |V |−k+2, i = 1, . . . , k. We then show
that, for small p, the solution (xi =

|V |
k
)i=1,...,k minimizes R(x1, . . . , xk) among all

(x1, . . . , xk) satisfying the constraint 2.3. Even though it does not give formal proof
for the discrete case, it supports strong evidence that a balanced fragmentation is
optimal. In particular, in a relatively large graph, this approximation is perfectly
justified.
To simplify expressions, we denote p̄ = 1− p, the unique probability of non-ignition

in a single area. Note that, using this relation, we have R(x1, . . . , xk) = |V |−
k∑︁

i=1

xip̄
xi

and consequently, our relaxed optimization problem is equivalent to:

(Pk) :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max R̄(x1, . . . , xk) =
k∑︁

i=1

xip̄
xi

s.t.
k∑︁

i=1

xi = |V |

xi < |V | − k + 2 i = 1, . . . , k
xi > 0 i = 1, . . . , k.

Proposition 2.2.1. For any integer 2 ≤ k ≤ |V |, if p ≤ 1− e−
2

|V |−k+2 ,
then (xi =

|V |
k
)i=1,...,k is an optimal solution of (Pk).

Proof. Assume p ≤ 1− e−
2

|V |−k+2 < 1, so p̄ > 0.
We denote f(x) = xp̄x = xex ln p̄. The function f is infinitely derivable. Its first
derivative is f (1)(x) = p̄x(1+x ln p̄) and its second derivative is f (2)(x) = (ln p̄)p̄x(2+
x ln p̄).
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We then consider the Lagrangian function

L(x1, . . . , xk, λ) = R̄(x1, . . . , xk) + λ

(︄
k∑︂

i=1

xi − |V |

)︄
.

Denote x∗ = |V |
k

and note that[︁
xi = x∗, i = 1, . . . , k, λ = −p̄x∗

(1 + x∗ ln p̄)
]︁

is a critical point for the Lagrangian L (all partial derivatives are 0). In addition
note that, since p ≤ 1− e−

2
|V |−k+2 , f (2)(x) < 0 for any x in the domain of (Pk) (note

that ln(p̄) < 0) and consequently, (xi, . . . , xk) ↦→ L(x1, . . . , xk, λ) is concave as sum
of concave functions. Thus, the considered critical point is the only optimal solution
of (Pk) [100].

Note that the threshold slightly increases with k and consequently, if p ≤ 1− e−
2

|V | ,
it satisfies the condition for any k ≥ 2. Note as well, it is near linear in 1

|V | for large

values of |V | since, in this case, 1 − e−
2

|V | ∼ 2
|V | but this approximation is accurate

even for moderate values of |V |, as outlined in the Table 2.1. In many cases, it will
be relevant to limit a priori the size of each part and in this case, the threshold
is higher. For instance, if we impose xi <

|V |
2
, i = 1, . . . , k, the threshold becomes

1 − e−
4

|V | . Table 2.1 gives values of the threshold for different values of p between
10 and 200.

|V | 1− e−
2

|V | 1− e−
2

|V |−k+2 1− e−
2

|V |−k+2 1− e−
4

|V | 2
|V |

k=3 k=5
10 18.13% 19.93% 24.85% 32.97% 20.00%
20 9.52% 9.99% 11.10% 18.13% 10.00%
30 6.45% 6.66% 7.14% 12.48% 6.67%
40 4.88% 5.00% 5.26% 9.52% 5.00%
50 3.92% 4.00% 4.17% 7.69% 4.00%
60 3.28% 3.33% 3.45% 6.45% 3.33%
70 2.82% 2.86% 2.94% 5.55% 2.86%
80 2.47% 2.50% 2.56% 4.88% 2.50%
90 2.20% 2.22% 2.27% 4.35% 2.22%
100 1.98% 2.00% 2.04% 3.92% 2.00%
150 1.32% 1.33% 1.35% 2.63% 1.33%
200 1.00% 1.00% 1.01% 1.98% 1.00%

Figure 2.1: Some values of the threshold with different assumptions
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2.2.3 How to use k-Graph Partition

Note that, under the conditions of Proposition 2.2.1, the minimum expected number
of burned nodes for a graph fragmented into k components is R(x∗, . . . , x∗) = |V |(1−
p̄

|V |
k ) and that this value decreases if k increases. Similarly, the maximum number⌈︂
|V |
k

⌉︂
of burned nodes decreases in k. Whichever criteria we choose, a possible

approach for our original problem with a budget B is to compute, or approximate,
the optimal value κ∗(k) of k-Graph Partition for incremented values of k ≥ 2 and
then choose k∗ = max{k, κ∗(k) ≤ B}. If, for the second criteria (expected number
of burned vertices) the threshold for p (see Table 2.1) still seems reasonable, then
we select the obtained solution as an approximation of original problem.
Even though the conditions to apply this strategy are quite restrictive, it provides
a general solution independent of the probability of ignition p as far as it is small
enough. When the probability of ignition is hard to evaluate, in particular on lands
with a low fire history but now at risk due to climate change or recent changes in the
environment, such a simplified model independent of the probability can be useful
compared to a more sophisticated model based on poor quality data. In addition,
the fact that the proposed solution jointly optimizes both criteria lends additional
credence to it and motivates addressing the k-Graph Partition problem. In what
follows, we investigate a possible heuristic to solve k-Graph Partition and use it
on a study case in Corsica (France).

2.2.4 Strategy to solve k-Graph Partition

Given a graph G = (V,E) with weight κ(e) for each edge e ∈ E and positive integers
U ≤ |V | and Y , determining whether there is a partition of V in two disjoint sets
V1, V2, such that |V1| ≤ U , |V2| ≤ U and the sum of the weights of the edges between
V1 and V2 is no more than Y is an NP-complete problem. In addition, this hardness
result still holds if U = |V |/2 (i.e., we want to obtain two perfectly balanced subsets
of nodes) and κ(e) = 1 for all e ∈ E [77]. As a consequence, the restriction of
2-Graph Partition where ∀e ∈ E, κ(e) = 1 is NP-hard. To our knowledge, the
hardness of k-Graph Partition in planar graphs is still open but there is strong
evidence that it might be hard for this class [68].
Given the hardness of the problem, partitioning the graph in balanced components
can be addressed using heuristics. One of the most efficient techniques is multi-level
partitioning [92]. It is carried out in three phases. The first phase, called coarsening,
iteratively reduces the size of the graph by grouping together nodes that are close.
This algorithm generates a sequence of graphs starting with the original graph and
where each graph in the sequence is a coarsened versions of the previous graph.
The second phase, called partitioning, starts when the coarsened graph is small
enough and can be easily split into k parts using an exhaustive search or other exact
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Figure 2.2: Summary of multi-level partitioning algorithms on a weighted graph.
From the left, the figure shows the coarsening phase in which close nodes are grouped
together; in the center, the smaller graph is partitioned; on the right is shown the
third phase of the algorithm in which the graph step by step grows back to the
original size and the value of the cut is improved. In the last step, the green cut,
representing the refinement phase, is an improvement of the red cut.

algorithm. In the third phase, called uncoarsening and refinement, the obtained
partition is iteratively projected backwards on the previous graph in the sequence
and improved, at each step, using a local search.

2.2.5 Multi-level partitioning simulations and results

We have tested this technique on the geographical area of the North of Corsica (see
Figure 2.3). For this example, we have used the METIS library that proposes an
implementation of a multi-level partitioning algorithm [92]. The land is represented
with a graph of 236 nodes and has been partitioned into an increasing number of
balanced components. The plot was obtained with a probability of ignition πi =
0.0084 that is the threshold probability for k = 2 parts. The results are shown in
Figure 2.3: the red plot shows the risk and the black plot shows the related cost for
partitions with an increasing number k of parts (horizontal axis).
The overall risk decreases exponentially (function k ↦→ n(1 − (1 − p)k) when the
number of parts increases while the related cost increases accordingly. The risk
decreases very fast for partitions into relatively few parts and even a small number
of parts can lead to a significant decrease in the overall risk. On the contrary,
partitioning the land into many parts does not provide a significant additional benefit
since the risk function becomes quickly very flat as the number of parts increases.
Meanwhile, in this instance, the cost of the firebreaks is nearly proportional to the
number of parts.
Therefore there must be a trade-off between a low value of risk and the cost of fire-
breaks (installation, maintenance and land consumption). The simulation provides
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Figure 2.3: Application of a multilevel partitioning algorithm on the North of Corsica
(France). On the left: the reduced risk and related cost depending on the number
of parts; on the right: the result of partitioning into three parts.

also a possible operative tool for decision-making. In fact, given a budget B, plots
allow to find the maximum number of achievable parts and the related reduction of
risk compared to the initial state. The slope of the risk function for this budget is
also a good indicator of the expected impact of increasing or reducing the budget.
Note in the example the apparently erratic behavior of the cost plot that corre-
sponds to the value of the computed partition. Without the balanced constraint,
the optimal cost should always increase with the number of parts while this is not
necessarily the case with balanced partitions. However, in the present case, this be-
havior can mostly be attributed to the error between the heuristic solution and an
optimal one. The regular increase of the cost for a relatively small number of parts
is an indicator of a better expected behavior of the algorithm and more interestingly,
this occurs in the most interesting zone in terms of risk reduction. This illustrates
the interest of the approach from an operational point of view.
Figure 2.3 shows a 3-partition for the geographical area of North of Corsica obtained
with the multilevel partitioning algorithm. This example shows as well the limit of
the approach using k-Graph Partition, mostly due to the underlying hypotheses.
When applied on a large land, it will induce solutions with very long firebreaks that
may rapidly become impossible to set-up. Meanwhile, in our example, assuming in
the worst case that the full land in one part may burn neither represents a possible
practical outcome, nor an acceptable one. This approach per se is more suitable for
small landscapes. However, in a large and non homogeneous landscape as North of
Corsica, it is still a useful indicator taking into account that natural barriers like
mountain crests can act as long firebreaks at reasonable costs.
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2.3 Graph model validation

In this section, we validate the graph model by applying it to Cap Corse, the penin-
sula to the North of Corsica Island. We estimate the model variables using data on
historical fires and fire simulations. We validate the values by comparing them to the
relevant characteristics of the territory, like the orography and the type of vegeta-
tion. Corsica has a high risk of fires due to climate conditions, warm and dry during
summer, and due to the large extension of forests that can burn easily. Aware of
these risks, firefighters, risk managers, as well as researchers in Corsica are engaged
in finding solutions to face the threat of fire. Therefore there are public databases
of historical fires and a web-based fire simulator, called ForeFire [70], particularly
tailored to the territory. Our idea is to take advantage of this rich availability of
open data and the simulator. These are the reasons why we locate our simulations
in Corsica. Moreover, this graph model has been proposed and discussed with a
fire agency in Corsica (France) during the European project GEO-SAFE. We firstly
introduce some terminology in Section 2.3.1 and list software tools in Section 2.3.2
and the data sources in Section 2.3.3. Successively we introduce the case study and
give some information about Cap Corse in Section 2.3.4. Then, we focus on the
model set-up in Section 2.3.5 and explain how to identify areas in the territory, how
to estimate the probabilities of ignition for each area and the probabilities of spread
for each edge, and how we run the simulations in Section 2.3.6. Finally, we discuss
the results.

2.3.1 Fundamental concepts

Here follows some basic terminology used in the rest of the section.

Land Cover. Land cover is a physical description of the earth’s surface acquired
with remotely sensed imagery. It identifies the materials which cover the ground,
like grass, trees or waters leading to the classification into different categories like
the type of vegetation, trees, bushes, and urban areas. A variety of image pre-
processing and processing algorithms are used to map the different patterns. These
algorithms detect changes at diverse spatial scales using machine learning techniques
and statistical analysis.

Elevation Maps. Digital elevation model (DEM) files are a digital representation
of topographic elevation in a form of a raster image. Each picture element represents
a feature’s elevation (Z) at its location (X and Y). Digital Elevation Models show the
elevation of features like valleys, mountains, and landslides, not including vegetation
or buildings.

Watersheds. A natural partitioning of the territory can be achieved through
watersheds. Watersheds are pieces of land that collect rainfalls and snow melts into
streams of water. These streams are then collected into water bodies, like rivers,
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and eventually reach the sea but can also be absorbed by the soil. Watersheds can
vary in size, as little as a lake, or extend for hundreds of square miles. Dividing
the territory into watersheds is a rational strategy for defining areas related to their
natural resources, as opposed to a segmentation based on administrative borders
that do not consider the ecosystem or wildlife habitat. Watershed boundaries are
also a natural barrier to the spread of fire, and that is why firebreaks are often
located on them. Long fire barriers can be obtained by taking advantage of natural
obstacles to fire diffusion, like mountain ridges. The segmentation of the land with
watersheds is used, for example, by the Spanish forestry service [129]. See Figure 2.4
for reference. The size of each watershed depends on the topography of the land. It
can be as little as a single stream of water, but bigger watersheds can be achieved
by grouping smaller ones. The size of watersheds must be chosen carefully as a
function of the processed information. The level of segmentation must be tailored
to territory characteristics avoiding excessive or coarse segmentation.

Figure 2.4: An example of the segmentation of the land by watersheds. The map is
from Cordoba, Spain.

2.3.2 Software tools

In this section, we list the software tools we use for the model set-up.

Quantum Gis. (QGIS) is an open-source geographic information system (GIS)
application that allows the analysis, elaboration and visualization of geospatial data.

ForeFire. is a software fire simulator [70] for the territory of Corsica. Fire simula-
tors estimate fire propagation, given a starting point of ignition. Many simulators
incorporate physical parameters like the type and moisture of fuel, topography, and
weather conditions like wind, temperature, and humidity. All these parameters in-
fluence fire propagation. The simulation results can help the planning of intervention
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measures to extinguish a fire. ForeFire is a software library available under the GPL
open-source license. It is a discrete event simulator modeling the evolution of the
fronts of fire over a wide area and at high resolution. The fire front is the contour
of the burning area that expands in each of its points. ForeFire simulates a fire
taking into account parameters like the temperature, wind direction, and intensity.
It outputs, at each simulation step, the extent of the land affected by the fire as a
GIS polygon feature. A polygon is an object that encloses an area represented as
a series of x and y coordinate pairs. The simulation runs on the hypothesis of free
fire propagation, without the intervention of firefighters. ForeFire is a web-server
that can be queried with REST APIs. To access ForeFire, we developed a com-
plete toolchain according to the client-server architecture. The client is a computer
running a custom Python program that sends queries to ForeFire and processes the
answers. Due to the complex system, it is worth checking the output of the whole
toolchain in a simple test. We show the burned area in relation to different wind in-
tensities and directions. In particular, we select two ignition points: one located in a
relatively flat area and another one in a mountainous area. On the left of Figure 2.5
is shown the ignition point in yellow, chosen in a relatively flat area. In the first sim-
ulation, we set the wind blowing toward the South at four different wind intensities,
2, 4, 8, and 16 meters per second. The burned areas grow in the South direction as
wind speed increases, as expected. The simulation is repeated setting wind blowing
toward the North. Figure 2.5.right shows the results of the simulations. Burned
areas are represented superimposed and with different colors. The darkest colors
correspond to the highest wind speed. Smaller inside areas correspond to wind at
a lower speed. As expected, areas grow toward the North direction and increase in
dimension as wind intensity increases. The simulations are repeated for an ignition
point located in the mountains. The results are shown in Figure 2.6. The simulation
output behaves similarly to the previous one but, here we can see the guiding effect
of the mountain crests that are not crossed by the fire.
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Figure 2.5: Left: the chosen ignition point in yellow on a relatively flat area. Middle:
the result of simulations with the wind blowing South. Right: results of simulations
with the wind blowing North. Simulations are carried out with increasing wind
speeds.

Figure 2.6: Left: the chosen ignition point in yellow on a mountainous area. Middle:
polygons resulting from simulations with the wind blowing South. Right: results of
simulations with the wind blowing North. Simulations are carried out with increas-
ing wind speeds.
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2.3.3 Data sources

In this section, we list the data used for the model set-up and the subsequent analysis.
We use DEM files of Corsica from Copernicus [66] European project with a resolution
of 25 meters, sourced from Open-Dem website [10].
Data on historical fires that occurred in Corsica from the year 1973 to 2020 come
from Promethee [116], a public Forest fires database for the Mediterranean area in
France. Every entry reports the administrative area from which a fire ignited and an
approximate location in the DFCI grid which is a geographical grid system used in
France by the actors of the Defense of Forests Against Fires (DFCI). The territory
is divided into a square grid. Each square has a side of 100 km and it’s further
divided into smaller squares until squares have a side of 2 km. We assigned a fire
to the nearest centroid of the DFCI grid. For 38% of the data is also available a
description of the cause of the fire that is, arson in 35% of the cases.
We use ESRI land cover maps derived from ESA Sentinel-2 imagery at 10m res-
olution [91]. Maps provide a classification of the surface of the earth, including
vegetation types, bare surface, water, cropland, and built areas. We list the class
definitions used in [91] and relevant for our analysis.

• Trees: any significant clustering of tall ( 15 feet or higher) dense vegetation,
typically with a closed or dense canopy; examples: wooded vegetation, clusters
of dense tall vegetation within savannas, plantations, swamp or mangroves
(dense/tall vegetation with ephemeral water or canopy too thick to detect
water underneath).

• Flooded vegetation Areas of any type of vegetation with obvious inter-
mixing of water throughout a majority of the year; seasonally flooded area
that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves,
emergent vegetation, rice paddies and other heavily irrigated and inundated
agriculture.

• Crops Human planted/plotted cereals, grasses, and crops not at tree height;
examples: corn, wheat, soy, fallow plots of structured land.

• Built-area human made structures; major road and rail networks; large ho-
mogeneous impervious surfaces including parking structures, office buildings
and residential housing; examples: houses, dense villages/towns/cities, paved
roads, asphalt.

• Bare-ground Areas of rock or soil with very sparse to no vegetation for
the entire year; large areas of sand and deserts with no to little vegetation;
examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans,
dried lake beds, mines.
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• Range-land open areas covered by homogenous grasses with little to no taller
vegetation; wild cereals and grasses with no obvious human plotting (i.e., not
a plotted field); examples: natural meadows and fields with sparse to no tree
cover, open savanna with few to no trees, parks/golf courses/lawns, pastures.
Mix of small clusters of plants or single plants dispersed on a landscape that
shows exposed soil or rock; scrub-filled clearings within dense forests that are
clearly not taller than trees; examples: moderate to sparse cover of bushes,
shrubs and tufts of grass, savannas with very sparse grasses, trees or other
plants.
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2.3.4 Cap Corse in Corsica: a case study

Figure 2.7: A 3d elevation model of the peninsula of Cap Corse, Corsica.

Cap Corse is a peninsula 40 kilometers long and 10 to 15 kilometers wide located
in the North of Corsica. The Serra mountain range extends across the length of the
peninsula, from the Serra di Pignu (960 m) in the north to the mountain Castellu
(540 m) in the south. The highest peak is 1324 m tall, but also other peaks exceed
1000 m; the coasts are very steep.

Figure 2.8: The peninsula of Cap Corse, located at the North of Corsica.

The vegetation is mostly Mediterranean scrub up to 900 m. At higher heights, we
find broad-leaved trees, mostly chestnut, and coniferous trees. Analyzing the ESRI
land cover map [91] and according to the identified classes, we found that the 57%
of the land is covered by trees, 32,3% is range-land, 2,6% is crops, and 2,8% is built
area.
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Figure 2.9: On the left, a 3d elevation model of the peninsula of Cap Corse, colors
represent land cover, on the right the distribution of land classes in percentage.

2.3.5 The graph model set-up

In this section, we delve into the model set-up.

Vertex. As a first step, we partition the land into watershed areas, each of them
representing a vertex v in our graph. We use DEM (Digital Elevation Model) maps
and Quantum GIS (QGIS) [119] to compute the extension of watersheds. We par-
tition the territory of Cap Corse into 34 watersheds and we assign an id to each of
them. See Figure 2.10 for reference. To estimate a value φ(v) for each vertex, we
should take into consideration the main characteristics of the area like the type of
fuel and the presence of valuable assets like for example forests or cities. This estima-
tion requires the involvement of both wildfire managers and administrative people.
As a first approximation, we estimate the value of each vertex as proportional to
the area.
The probabilities of ignition associated to each vertex of the graph are evaluated
using data on historical fires from Promethee [116]. We assigned a fire to the nearest
centroid of the DFCI grid. To estimate the probabilities of ignition, we count the
number of fires that hit a watershed. Given a node v ∈ V and the set of all recorded
historical fires Fv that hit the area identified by node v, the probability of ignition
for v is estimated as πi(v) =

|Fv |
|F | , where F is the set of all recorded fires.

Table 2.1 reports the estimated probabilities of ignition πi(v) and in Figure 2.11 the
probabilities are embedded on the map. In Figure [46], the ignition probabilities are
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Figure 2.10: An elevation map of Cap Corse partitioned into 34 watersheds. Num-
bers corresponds to watershed ids, red lines are water streams.

represented visually with color tones varying from white to red. White corresponds
to the lowest value of probability, and the darkest tones of red to the highest value
of probability. Only 38% of the data on historical fires report a classification by
the cause of the fire, and 35% of fires were classified as arson. Figure 2.12, shows a
close-up of the map where the probabilities of ignition are higher over the land cover
map. Confronting the values of the ignition probability with the land cover map,
we can see that the areas with the highest probability of ignition contain urbanized
and cultivated areas.

Edge. To estimate the probabilities of spread, we use ForeFire [70] to simulate
a fire from an ignition point. We then analyze the spread of fire on the neighbor
watersheds.
We choose the points of ignition (samples) uniformly at random. Each simulation
outputs an area burnt by the fire, encoded in JSON format [88]. Figure 2.13 shows
an example of the result of a simulation. A point of ignition is represented in yellow
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Figure 2.11: The estimated probabilities of ignition reported on the map. Num-
bers into circles correspond to catchment ids. Numbers inside rectangles are the
estimated probabilities of ignition. On the left: land cover; on the right: a visual
representation of the probabilities values in tones of red. Dark red corresponds to
the highest value.

while the red area is a polygon that represents the extension of the fire in the
simulated time. We intersect the area resulting from the simulation with the map of
watersheds to compute the number of times in which a fire ignited in a watershed,
spreads in one of its adjacent neighbors. Even if the fire spreads to a greater distance
(for example, two hops neighbors), we observe only the one-hop neighbors of the
watershed. In Figure 2.13, a fire ignites in watershed 34 and expands in the North
direction in six other watersheds: 9, 24, 32, 1, 7, 26. Only 9, 24, and 23 are one-hop
neighbors, others are at a greater distance.
To estimate the spread probability from watershed wi to watershed wj, we collect
the number of Xij positive cases in which a fire spreads from wi to wj in a group of
ni simulations from ni ignition points. Xij is a binomial random variable and the
sample proportion pij can be expressed as follows: pij = Xij/ni. The variance of pij
is pij ·(1−pij)

ni
and the standard error equals the square root of the variance. Therefore
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Figure 2.12: The map shows the areas with the highest probabilities of ignition.

the standard error is computed as follows:√︄
pij · (1− pij)

ni

As the size of the sample increases, the standard error decreases, and - as a conse-
quence - the precision in the estimation of the spread probability increases. Accord-
ingly, we add ignition points until the standard error becomes - for each watershed
- less than a defined threshold, or we reach a maximum number of iterations. In
our simulations, the threshold is 0.05, and the number of iterations varies between
10 and 50. The estimation of the cost for each edge, that corresponds to the in-
stallation of a firebreak requires the involvement of many stakeholders and depends
on the orography of the territory, access ways, and other parameters that must be
taken into account. As a first approximation, we evaluate the cost of a firebreak
installation as proportional to the length of the boundary shared by two neighbor
watersheds.
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v πi(v) v πi(v)
1 0,025 18 0,056
2 0,008 19 0,049
3 0,017 20 0,072
4 0,058 21 0,005
5 0,015 22 0,009
6 0,014 23 0,023
7 0,022 24 0,008
8 0,002 25 0,038
9 0,009 26 0,002
10 0,010 27 0,019
11 0,027 28 0,036
12 0,049 29 0,122
13 0,021 30 0,012
14 0,013 31 0,013
15 0,002 32 0,052
16 0,137 33 0,029
17 0,013 34 0,012

Table 2.1: The table shows the estimated probabilities of ignition πi(v) for the 34
watersheds. v is the watershed id.

2.3.6 Simulations and results

The simulation toolchain comprises a local client and the remote server ForeFire.
The local client has been instructed to query the remote server with a fixed wind
direction blowing from North-West to South-East. This is the dominant wind di-
rection during summer in Corsica as told by fire agencies.
The ignition points are chosen uniformly at random for each watershed. The simu-
lation proceeds in time steps, each one representing 20 minutes of simulated time.
We set up a simulated time of 6 hours of free fire propagation before the intervention
of the firefighting organizations. The local client collects the resulting polygons and
computes the spread graph as explained in the previous paragraph. Figure 2.15
shows the resulting spread graph. Each watershed is identified by an id while each
edge has an associated probability of spread. We notice that probabilities of spread
are higher on edges pointing to neighbors located relative South rather than those
located relative North, in accordance with the wind direction that we set. It is
evident that the mountain range crossing the peninsula acts as a natural firebreak
blocking the spread of fires across them. Figure 2.14 is a close-up of the spread
graph, represented over the relief map. Examples of edges with a zero probability of
spread crossing the mountain range are (11, 21), (33, 11), (11, 33), (22, 11), (11, 22),
(12, 22), (13, 22), (5, 13), (13, 5), (5, 15). Fires ignited in one of these watersheds do
not spread over the neighbors located beyond the mountain range. Figure 2.15.right
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Figure 2.13: On the left a 2d view of the outcome of a simulation. On the right the
corresponding 3d view. The point of ignition is represented in yellow, the surface in
red represents the burnt area.

shows ignition points over the land cover map. Points are color-coded with tones
of red to represent the total extension of each fire resulting from the simulations,
expressed in hectares.

Figure 2.14: A close-up of the graph resulting from the simulations over the relief
map. Mountain Crests block fire spreading.

Figure 2.15.right, shows big fires in the valleys on the east side of the peninsula
covered by forests. Fires ignited on coasts and covered by a range-land type of
fuel, often result in small fires either because coasts are steep or because the fuel is
made of homogeneous grasses with no taller vegetation. A fire ignited on the top
of mountains has a small extension. Indeed mountains around 1000 m high, do not
have tall trees on the peaks. Medium-size fires are located in the South-West of Cap
Corse in which the fuel consists of cultivated fields, while smaller fires are on the
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South-East Coasts in highly urbanized areas where the natural vegetation is low.
In this simulation data are coherent with the fuel type and with the wind direction.
These simulations are a proof of concept to show a method to estimate the model
elements like the probabilities of ignition and the probabilities of spread, and how
to define the watersheds. Further evaluations are needed to estimate the value for
each area and estimate the cost for each firebreak. The simulation confirms that
wind intensity and direction have a large impact on the spread graph. Therefore it
is reasonable to run simulations with different wind conditions according to seasonal
changes.

Figure 2.15: On the left: the spread graph resulting from the simulations. La-
bels inside circles are watershed ids, labels inside rectangles are estimated ignition
probabilities related to watersheds, and labels on edges are the estimated spread
probabilities. On the right: the ignition points over the land cover map. Points
represent, in tones of red, the extent of the burned area in ha.
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2.4 The web application

The web application is a prototype, we are developing to support decision-makers
and stakeholders to design wildfire preventive measures. The application shows the
data through risk maps and allows the user to interact with built-in algorithms in
a user-friendly interface. The application implements algorithms to compute the
burning probabilities and the risk, to solve the firebreak location problem using a
greedy approach described in Section 2.1 as well as the partitioning problem. The
system includes a relational database [94] to store data while interactive maps are
elaborated using the Leaflet library [12].

2.4.1 The interface

The interface presents the available functionalities in a menu bar at the top. Each
option corresponds to a visualization of a different kind of wildfire data, represented
on geographical maps. The “Ignition probability map” shows the ignition prob-
abilities on the map of Cap Corse. Figure 2.16 shows the territory divided into
watersheds. Each watershed is colored with a shade of red, from white to dark red,
meaning low to high probabilities. A legend at the bottom shows the color-scale cor-
respondence. Once a watershed is selected (or hovered with the mouse), a pop-up
menu visualizes the value of the probability of ignition.

Figure 2.16: A screenshot of the application. A view of the “Ignition probability
map”.

The “Value map” allows the user to click over a watershed and visualize the associ-
ated value.
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The “Link map” shows the adjacency between the watersheds with a directed graph.
When a link is clicked, a pop-up menu shows the starting watershed, the end wa-
tershed and the associated probability of spread. See Figure 2.17 for reference.

Figure 2.17: A screenshot of the application. A view of the “Link map”.

By clicking on the “Risk map” menu option, the web app invokes the engine to
compute the risk using the algorithm described in Section 2.1. At the end of the
calculation, each watershed is colored in increasing tones of red (from the lower to
the higher risk, respectively). The application implements also the algorithm to
address the partitioning problem using the multi-level partitioning algorithm when
the probabilities of ignition are equal and all the vertices have the same value as
described in Section 2.2.5. The web app also enables registered users to evaluate
what-if scenarios. In particular, fire managers can simulate the installation of a
firebreak and see the corresponding reduction of the risk. Once an edge is selected,
the popup window that opens on the top-right of the map allows you to either edit
the related information or remove the selected edge. To implement this functionality,
the web app keeps a copy of the original graph and compares the effects of any
change with the original one. The removal of both directed edges between two
watersheds corresponds to the installation of a firebreak. Once done, by clicking on
the “Risk reduction map” option, the risk map for the original and modified graphs
are computed. Then, the web app shows graphically the simulated risk reduction
with green tones, the darker the green, the higher the risk reduction. Figure 2.18
shows the interface of the “Risk reduction map” after the removal of a few edges
from the graph, the map shows the corresponding risk reduction.
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Figure 2.18: A screenshot of the application. A view of the “Risk reduction map”.

2.5 Concluding remarks

In this chapter, we studied heuristic approaches for the Firebreak Location prob-
lem relevant to practical applications. We showed a heuristic algorithm to compute
the risk and we presented a variation of Firebreak Location in which a uniform
territory is partitioned in subareas of approximately the same dimension using fire-
breaks. We tackled the problem with multilevel graph partitioning and showed that
separating the territory even into a few partitions may lead to a significant fire risk
reduction.
We validated the modeling of a landscape as a graph by applying it to the territory
of Cap Corse. We estimated the probabilities of ignition with data about historical
fires and estimated the probabilities of spread using a software fire simulator. This
case study constitutes a proof of concept that shows how the model can be applied
practically. The results of the simulation are in accordance with the wind direction
and fuel type and confirm that wind intensity and direction have a large impact on
the spread graph, therefore it is reasonable to run simulations with different wind
conditions according to seasonal changes. Finally, we presented a prototype of a web
application that enables users to instantiate, visualize and modify the underlying
graph, calculate the fire risk, and simulate the effect of the application of preventive
measures like firebreaks in an easy-to-use interface.
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Outline

Robot technology has advanced quickly, assisting humans in increasingly compli-
cated tasks. The development of robots able to operate in forest environments can
help in tasks like firefighting and fire prevention by land monitoring. For example,
in a scenario of a forest fire ignition, a timely intervention can avoid an uncontrolled
spread of fire and the loss of acres of vegetation. Drones can monitor the evolution
of the front of a fire with onboard infrared and visual cameras. Multiple drones can
cover big areas and obtain supplementary views of a fire scene [107]. In a search and
rescue scenario, robots can inspect the scene of a fire and locate survivors [103, 122].
After the wildfire, robots can collect data about the damage caused by the fire.
These robots, equipped with tools to extinguish a fire, can be the first line of defense
by protecting the lives of firefighters and helping them to reach areas that are not
accessible or hazardous for humans; when equipped with smoke sensors and thermal
cameras, robots can locate a fire better than humans. Robots are employable in
forest environments [112] for tasks like wildfire firefighting [121], data collection [132],
fire monitoring [107], and forest pruning [111]. A multi-robot system was developed
to detect combustible materials and remove them [47]. In [82] drones, equipped with
thermal cameras, perform the tracking of wildlife in forests or open areas.
These are very challenging tasks for a robot, different from one another. In forests,
robots move in unstructured contexts, with limited bandwidth and poor visibility.
Wildfires make the task even more dangerous. A robot can be damaged while doing
its job or its task can change over time. Will this robot be adaptable or will it be
necessary to re-design it? Two opposite robot design approaches are single-purpose
robots and swarming robots. In the first case, a specialized robot solves a specific
task. Mobile robots can be very complex systems that require the integration of
different expertise to keep them working. An alternative design approach is to use
simple robots, much less specialized in their features but, able to cooperate to do
a task. Each robot could have sensors, a microcontroller, batteries, and means
of locomotion. Robots act as a team to do their task by implementing collective
behavior. Swarm robotics draws inspiration from biological systems. Many animals
show a collective behavior: migrating birds that flock in formation, bees colonies,
and fishes that shoal together so there are fewer chances to be captured by predators.
In all these cases, a group is made of similar individuals that behave autonomously,

58



59

implement simple actions, and interact with the environment. The group, taken as
a whole, shows intelligent behavior. Animals cooperate to reach goals like searching
for food or defending themselves from predators. The single animal is not able to
finalize these goals by himself, the group instead, solves difficult problems. The goal
of swarm robotics is to design robots so that they can cooperate to do different
tasks. There are many potential advantages of a swarm of robots compared to
single-purpose robots. Natural swarms show some desirable features for artificial
systems, like versatility, scalability, and robustness. The group of robots is made
of simple, identical individuals, that can be cheap and can be mass-produced. If
one fails, it can be easily replaced, more difficult is instead to repair a broken part
of a stand-alone robot. These robots are autonomous and act independently: the
system is thus decentralized. There is no central entity giving directions to robots.
In fact, as the number of entities increases, centralized control cannot be efficient
or scalable. The coordination of a multi-robot system in risky firefighting contexts
cannot rely on direct communication between robots or with a central node because
requires sharing information in real-time and with limited bandwidth. Therefore
autonomous swarms, in which robots do not communicate directly could be more
efficient [16]. Many studies focus on the design of multi-robot systems employed
in fire-fighting tasks [11, 19, 86, 87]. The distributed computing paradigm offers a
reliable solution that allows the designing of a system that self-organizes and adapts
to environmental changes. However, the coordination of distributed group robots
poses big design challenges. The first challenge is to adopt a theoretical framework
in which the main features can be modeled and studied. The second challenge is
posed by the design of distributed algorithms taking into account robots’ abilities
and deciding if a task is feasible. The third challenge is to deploy algorithms on
physical robots with all the problems arising in terms of choice of robots, protocols,
reliability, cyber-security, interface with humans, and so on. The advantage of a
theoretical approach is the opportunity to focus on the algorithmic issues that are
difficult to address if the research starts from experimentation with robots. In this
thesis, we follow a theoretical approach and we focus on the design of algorithms for
distributed robots under the hypothesis of the OBLOT [73] model in which robots
are modeled as distributed agents. Like in a swarm, OBLOT robots have minimal
capabilities, do not communicate directly and are able to move in some environments
like the Euclidean plane or discreet spaces like grid graphs. Grids can be interpreted
as a discretization of the plane in which the movements of the robots are quantized
and the system has a unit of measurement. A territory can be divided into areas
and robots move from one area to another. If areas are squares and adjacent the
result is a grid, otherwise, in general, is a graph.
In Chapter 3 we recall the main features of the OBLOT model in a cohesive section
as it is the underlying model of the algorithms presented on graphs in Chapter 3 and
the model that we extend in Chapter 4. We then present the solution to different
variations of the pattern formation problem that asks to a group of robots to reach
final positions according to a geometric shape given in input. Patterns can be given
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in input to robots in many ways, such as a set of points in an ideal coordinate
system, as a set of composition rules in terms of relative positions to other robots,
or in terms of a property that the robot configuration must meet. We present a
distributed algorithm that solves the arbitrary pattern formation for robots moving
on tessellation graphs, and a distributed algorithm to solve the geodesic mutual
visibility problem. This problem asks to place robots so that they are geodesic
mutually visible: each couple of robots has a shortest path in which no other robot
resides. The study is motivated by the fact that mutual visible robots can reach any
other robot along a shortest path without collision. We present the first results we
achieved for robots disposed on the vertices of a tree.
In Chapter 4 we introduceMOBLOT a novel model in theoretical swarm robotics
in which robots cluster to form complex computational units, called molecular robots
inspired by the chemical paradigm in which atoms combine to make molecules. Once
clustered, these robots move in a coordinated way as a new computational entity.
MOBLOT is an extension of the OBLOT model and allows us to model a swarm
of robots that can be divided into subgroups. Furthermore, we present the matter
formation problem in which robots use a hierarchical approach to solve the pattern
formation problem. We present a case study and then, we apply the MOBLOT
model to robots moving on the square grid graphs.



Chapter 3

Robot pattern formation under the
Oblot model

Pattern formation is a fundamental problem in swarm robotics. The task calls
for a distributed algorithm that guides a group of robots to reach final positions
according to a geometric shape given in input. In this chapter, we present distributed
algorithms for the solution of two different pattern formation problems.
We adopt for robots the well-investigated OBLOT model [73] in which robots are
equipped with very limited capabilities. Robots do not have memory and are anony-
mous, and autonomous, without the ability to communicate directly. The rationale
behind this choice is to understand what are the minimum abilities required for
robots to solve a task and to design a system that is resilient and robust. When
robots do not communicate directly but draw information from the context, there
is no way to hack the communication protocol. If a robot does not use its working
memory and it switches off, due to temporary malfunction, it can recompute the
information about the state of the system just by looking at the surrounding envi-
ronment. Autonomous robots can make decisions on their own; with no centralized
control, there is no single point of failure. A lot of swarm robotics tasks can be
modeled under OBLOT like the flocking, the patrolling, the gathering [45] in which
robots need to choose a location and meet there. This problem has been investi-
gated during the GEO-SAFE project [34, 41] and can model a group of drones that
identifies a fire scene and gather at that point.
The Pattern Formation(PF) has been extensively studied under the OBLOT
model [4, 33, 37, 40, 72, 115, 131]. Given a team of robots R and a geometric pattern
F expressed in terms of (a multi set of) points in an ideal coordinate system, the
goal is to design a distributed algorithm A that guides robots to form the pattern,
if possible. As usually robots do not have access to a global coordinate system, a
pattern is declared formed as soon as robots are disposed similarly to the input
pattern, that is regardless of translations, rotations, reflections and uniform scaling.
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In the following Section 3.1, we recall the fundamental features of the OBLOT
model used as the underlying model in the presented algorithms. Then, in Sec-
tion 3.2 we explain the methodology used to design the distributed algorithms. We
follow a decomposition approach introduced in [44]. Section 3.3 presents a resolution
algorithm for the arbitrary pattern formation problem for robots moving on regu-
lar tessellation graphs. Section 3.4 presents a resolution algorithm for the geodesic
mutual visibility problem for robots moving on trees.

3.1 The Oblot model

A robot with minimal capabilities is the reference model for research in theo-
retical swarm robotics. As mentioned, one well investigated model is certainly
OBLOT [73]. We model the distributed agents that move on some environments
according to OBLOT . In this section, we describe its main features. A robotic
system within OBLOT is represented by a set R = {r1, r2, . . . , rn} of n entities,
called robots, that live and operate in a connected spatial universe U ⊆ Rd, d ≥ 1,
in which they can move. Robots are considered to be dimensionless, i.e. as points
in Rd. This hypothesis corresponds to considering the extension of a robot as neg-
ligible for the space in which it moves. When two robots occupy the same location
at the same time, we say a multiplicity occurs.
Robots are considered equipped with minimal capabilities.

• identical: they are indistinguishable by their external appearance;

• anonymous: they are not identifiable with an id during the computation;

• autonomous: there is no centralized control or external supervision;

• homogeneous: they all run the same deterministic algorithm;

• silent: they do not communicate directly with other robots;

• oblivious: they have no memory of past events;

• disoriented: each robot has its own local coordinate system - LCS, whose
origin always coincides with the robot’s position; the coordinate systems of
different robots might have all different orientations, unit of length and hand-
edness.

A robot has a visibility range ν, equal for all robots. It measures how far robots
can observe U . They see other robots in within the visibility range determining
their positions expressed in its own LCS. The visibility is said to be limited if
ν ̸=∞, unlimited otherwise. A robot is equipped with multiplicity detection if
it can detect if a point is occupied by one, or more than one robot; the multiplicity
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detection is said to be strong if it allows to detect the exact number of robots on
the same point, weak otherwise.

Communication. The communication between distributed agents can be of two
types. When agents communicate directly (or explicitly) there is a communication
channel through which agents send and receive messages to other agents. Communi-
cation can be also indirect or implicit when is mediated by the environment. Agents
do not share messages but they acquire information from the environment. This
type of communication is called stigmergic in swarm robotics, and it mimics the
behavior of certain animals that, intentionally or not, leave a sign of their passage
in the environment. That information is then exploited by others. Examples are
animal footprint marks left on the ground or the traces of pheromones that ants
leave going back to the nest to signal a route to a source of food or the waggle dance
performed by bees to indicate the direction and distance to patches of flowers yield-
ing to nectar. In OBLOT robots interact only by observing the environment and
having a view of the position of all the other robots. Therefore the communication
is stigmergic.
Each robot behaves according to a sequence of four states: Wait, Look, Compute,
and Move.

• Look. The robot activates its sensors and observes U within its visibility range
ν and gets a snapshot of the positions of all other robots, and their coordinates
relative to its own local LCS. Since each robot is subject to a local coordinate
system, it is based on relative angles and positions of robots. We will call the
view of a robot the data structure containing all the information deductible
by a robot during its Look phase.

• Compute. The robot performs a local computation according to a deterministic
algorithm A (we also say that the robot executes A). The algorithm is the
same for all robots, and the result of the Compute phase is a destination point
along with a path to reach it.

• Move. The robot goes to the computed path; if the destination is the current
location, the robot stays still, performing a nil movement.

• Wait. When a robot is in wait we say it is inactive.

Robots repeat indefinitely these four steps. Such states form a computational
cycle of a robot. The movements of the robots make the system evolve toward the
next state.
Robots are oblivious: when a cycle ends they forget everything. When they wake
up from the wait state, it’s like the first time they are active because they have
no access to information acquired in past cycles. A robot can rely only on the
information captured during the look phase to understand the state of advancement
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Figure 3.1: The execution model of computational cycles for each of FSync, SSync,
SAsync, and Async robots. The inactivity of robots is implicitly represented by empty
time periods.

of an algorithm. This also means that the actions of the robots do not depend
on past cycles. In this sense, the system is robust to memory failures. A robot
perceives any configuration as if it were an initial configuration. A robot must be
able to compute a move from it so that the system does not end in an inconsistent,
unpredicted state from which the system cannot recover.

3.1.1 Varying the components of the system

We just listed the minimal capabilities of the robots in the OBLOT model, however,
each of the assumptions can be weakened depending on the scenario we want to
model and on the task of robots. Given a task, the goal is to determine what are
the minimum capabilities needed by the robots to perform it. Sometimes we need
to relax some of the assumptions presented in Section 3.1 to fulfill a task like for
example allowing unlimited visibility if the task is not achievable only with limited
visibility.

Time scheduler. Robots’ behavior is defined by the repetition of the Look-
Compute-Move cycle. Assumptions made on the duration of the robots’ cycle and
the time at which robots are activated have a great impact on the capabilities of the
robots. A time scheduler decides at which time robots are activated following one
of these four different models:
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• Fully-synchronous (FSync): the activation of the robots is logically divided
into global rounds; all the robots are activated in every round, start the cycle
simultaneously and execute it synchronously. It corresponds to the hypothesis
that robots share a common clock.

• Semi-synchronous (SSync): it differs from the FSync scheduler for the fact
that in each round, not all the robots are activated whiles others are in Wait
state. The choice of which robots are activated in a given round is assumed
to be made by the time scheduler.

• Semi-Asynchronous (SAsync): Robots are activated independently. Like in
FSync or SSync, the duration of each phase is assumed to be always the
same. Differently from FSync or SSync, two activated robots can be in
different phases even though phases are synchronized.

• Asynchronous (Async): The robots are activated independently from others
and each phase of the cycle is finite but can have an unpredictable duration.
In other words, robots do not have a common notion of time. Moreover, since
the Look phase is instantaneous a robot cannot perceive if other robots are
moving or not. As a result, computations can be made based on totally
obsolete observations, taken arbitrarily far in the past. As a robot starts
moving, the configuration of robots might be different from the one perceived
during the look phase.

In schedulers different from FSync, it is necessary to guarantee that the time sched-
uler is fair: for every robot r and time t, there exists a time t′ ≥ t at which r is
activated; that is, every robot is activated infinitely often.
Clearly, the four synchronization schedulers induce the following hierarchy (see,
e.g. [43, 53, 60]): FSync robots are more powerful (i.e., they can solve more tasks)
than SSync robots, that in turn are more powerful than SAsync robots, that
in turn are more powerful than Async robots. This simply follows by observing
that the adversary can control more parameters in Async than in SAsync, and it
controls more parameters in SAsync than in SSync and FSync. In other words,
protocols designed for Async robots also work for SAsync, SSync and FSync
robots. On the contrary, any impossibility result stated for FSync robots also
holds for SSync, SAsync and Async robots.

Orientation. In general, robots are assumed to be disoriented: each of them has its
own LCS and its unit of measure. It is possible to customize the system by assuming
that all robots agree on the direction and orientation of k axes (1 ≤ k ≤ d). If robots
have chirality, they agree on a cyclic orientation (e.g., clockwise) of the plane.

Movements. An external mobility scheduler controls the movement of a mobile
robot. The scheduler determines how quickly the robot moves toward its destination
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point, and it may even stop its movement before it arrives. Two variants can be de-
fined: rigid (or unlimited) mobility, where all robots always reach their destinations
when performing Move; non-rigid, where the distance traveled within a move is nei-
ther infinite nor infinitesimally small. More precisely, even if the mobility scheduler
can stop a robot before it reaches its destination, there exists an unknown constant
δ > 0 such that if the destination point is closer than δ, the robot will reach it,
otherwise the robot will be closer to it of at least δ.

Extent. Robots are viewed as points, in the standard model, i.e., they are di-
mensionless. This property can be changed by assuming robots with a physical
dimension, that is, entities with an extent. These robots are called solid (or fat as
in [13, 29, 48]) and are viewed as opaque circular disks of fixed diameter (hence they
are assumed to have a common unit distance).

Memory, Appearance and Communication. Robots can be endowed with a
persistent and externally visible state variable, called visible light, that can assume
values from a finite set of colors. The light can be set in each cycle by the robot at
the end of its Compute operation. It is externally visible because its color at time t
is visible to all robots in its visibility radius that perform a Look operation at that
time. It is persistent because the variable is not automatically reset at the end of
a cycle. The color a robot sees is used as input during the computation. Luminous
robots can be seen as robots having persistent information used to remember and
communicate. Moreover, color affects the appearance of a robot, only robots having
the same color are identical.

Adversary. The mobility scheduler as well as the time scheduler are both managed
by an ideal adversary. Such schedulers are completely out of the control of the
robots. This does not imply that the environment is centralized, but rather that
any event is possible. However, the occurrence of an event is not just thought as a
random process, since otherwise one may infer some properties with high probability.
The adversarial technique, instead, is a way to keep in mind the worst-case scenario.

Algorithm. Regardless of the adversary, the activations of the robots determine
specific ordered time instants. Let R(t) be the configuration observed by some
robots at time t during their Look phase, and let {ti : i = 0, 1, . . .}, with ti < ti+1,
be the set of all time instances at which at least one robot takes the snapshot R(ti).
Since the information relevant for the computing phase of each robot is the order in
which the different snapshots occur and not the exact time in which each snapshot
is taken, then, without loss of generality we can assume ti = i for all i = 0, 1, . . ..
It follows that an execution of an algorithm A from an initial configuration R is
a sequence of configurations E : R(0), R(1), . . ., where R(0) = R and R(t + 1) is
obtained from R(t) by moving some robots according to the result of the Compute
phase as implemented by A. Moreover, given an algorithm A, there exist many
different executions from R(0) depending on the activation and the movement of
the robots, controlled by the adversary.
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Symmetric configurations and Symmetricity

Let d() be the function computing the Euclidean distance between points in the
plane, and let φ any map from points to points in the plane: φ is called an isometry
if d(φ(a), φ(b)) = d(a, b) for any a, b ∈ R2. Examples of isometries in the plane
are rotations and reflections. An isometry φ is a rotation if there exists a unique
point x such that φ(x) = x (and x is called center of rotation); it is a reflection if
there exists a line ℓ such that φ(x) = x for each point x ∈ ℓ (and ℓ is called axis of
symmetry).
An isometry φ may induce an isometry for a configuration of robots: if a robot r is
mapped into a robot r′ then φ maps the location of r into the location of r′. This im-
plies that a multiplicity of k ≥ 1 robots is always mapped into a multiplicity with the
same value. The isometries for configurations are the identity, rotations, reflections
and their compositions. If R admits only the identity, then R is said asymmet-
ric, otherwise it is said symmetric (i.e., R admits rotations or reflections). Any
configuration that admits a multiplicity is symmetric.
In a symmetric configuration R, consider any subset of pairwise symmetric robots:
such robots are in fact equivalent as their symmetry gives no rise to any means for
an algorithm to distinguish among them. This is better explained in the following
remark.

Remark 1. Let R be a symmetric configuration. It can be observed that there exists
a set of local coordinate systems for robots located in R that is symmetric with respect
to the center of R or to an axis of symmetry. Hence, if we consider any subset R′

of pairwise equivalent robots in R, being the robots identical and homogeneous, then
any move planned by any algorithm A for any robot in R′ will be applied to all the
robots in R′. It follows that the adversary may force all the robots in R′ to perform
symmetric movements and hence it results to be impossible to break the symmetry
among the robots in R′.

Consider now a symmetric configuration R composed of asynchronous robots. Ac-
cording to Remark 1, no algorithm can avoid that two (or more) equivalent robots
in R start the computational cycle simultaneously. In such a case, there might oc-
cur a so called pending move, that is, one of the two robots performs its entire
computational cycle while the other has not started or not yet finished its Move
phase. Formally, a robot r aims to perform a pending move in a configuration R(t),
if at time t robot r is active, has taken a snapshot R(t′) ̸= R(t) with t′ < t, and is
planning to move or is moving with a non-nil trajectory. Clearly, any other robot
r′ is not aware whether r aims to perform a pending move, that is it cannot deduce
such information from the snapshot acquired in the Look phase. This fact greatly
increases the difficulty to devise algorithms for Async robots in symmetric configu-
rations. All these difficulties are overcomed if an algorithm is able to produce always
stationary configurations: a configuration R(t) is called stationary if there are
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(b)(a) (c)

Figure 3.2: Examples of symmetricity of a set of points P . In (a), P is partitioned in
regular 2-gons and ρ(P ) = 2; in (b), the maximum m for which there is a partition of P
into regular polygons is four and ρ(P ) = 4; in (c), P can only be partitioned in 1-gons,
thus ρ(P ) = 1.

no pending robots in R(t). When an algorithm moves a robot at a time, then the
obtained configuration is stationary by definition.

Symmetricity. Let P be a set of points in the Euclidean plane, C(P ) be the
smallest circle enclosing all the points in P , and c(P ) be the center of C(P ). We
consider a decomposition of P into regular m-gons with a common center, where one
point forms a regular 1-gon with an arbitrary center, and two points form a regular 2-
gon with the center being the midpoint. Then, we consider the maximum value of m.
In [131], this maximum value m is called the symmetricity of P and it is denoted by
ρ(P ). Accordingly, given a set P with n points, the concept of symmetricity induces
a unique partition P = {P1, P2, . . . , Pk} of P into k subsets, where each subset Pi

forms a ρ-gon and k = n/ρ(P ). When ρ(P ) > 1 the symmetricity represents the
rotational symmetry of P , and the center of the symmetry coincides with c(P ). See
Figure 3.2 for some examples about ρ(P ). In Figure 3.2.(a), P can be partitioned
either into six 1-gons or into three 2-gons, therefore the maximum value of m in
which P can be partitioned equals two, therefore m = 2 and the symmetricity
ρ(P ) = 2. In Figure 3.2.(b), P can be partitioned into 8/m regular m-gons for
m = 1, 2, 4 and ρ(P ) = 4. In Figure 3.2.(c), the only regular partition of P is into
nine 1-gons, because the central node does not belong to any m-gons with m > 1,
therefore ρ(P ) = 1. All the above concepts and notation can be directly applied to
any configuration by considering the points in the plane occupied by the robots in
R. Hence, we can use notation as c(R) and C(R) and the concept of symmetricity
of R as well (i.e., ρ(R) corresponds to the symmetricity of the points in the plane
occupied by all robots in R).
A symmetric configuration R with ρ(R) = 1 (cf. Figure 3.2.c) can be modified into
an asymmetric one by moving the central robot away from c(R).
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Robots moving on graphs

Configurations. The topology where robots are placed on is represented by a
simple, undirected, and connected graph G = (V,E), with vertex set V and edge
set E. A function λ : V → N represents the number of robots on each vertex
of G, and we call C = (G, λ) a configuration whenever

∑︁
v∈V λ(v) is bounded and

greater than zero. A vertex v ∈ V such that λ(v) > 0 is said occupied, unoccupied
otherwise. A multiplicity occurs in any vertex v ∈ V such that λ(v) > 1.

Movements. At most one edge can be traversed during the Move phase. The robot
either stays on the vertex where it currently resides (performs a nil movement)
or moves to a vertex among those at one hop distance. Movements on a graph
are always considered instantaneous. From that follows that robots are always on
vertices and never on edges during Look phases. Hence, robots cannot be seen while
moving, but only at the moment they may start moving or when they arrive. The
rationale behind this assumption is that the graph may model a communication
network, whereas robots model software agents.

Symmetric configurations. Two undirected graphs G = (V,E) and G′ = (V ′, E ′)
are isomorphic if there is a bijection φ from V to V ′ such that {u, v} ∈ E if and
only if {φ(u), φ(v)} ∈ E ′. An automorphism on a graph G is an isomorphism from
G to itself, that is a permutation of the vertices of G that maps edges to edges and
non-edges to non-edges. The set of all automorphisms of G, under the composition
operation, forms a group called automorphism group of G and denoted by Aut(G).
If |Aut(G)| = 1, that is G admits only the identity automorphism, then G is said
asymmetric, otherwise it is said symmetric. Two distinct vertices u, v ∈ V are
equivalent if there exists an automorphism φ ∈ Aut(G) such that φ(u) = v.
The concept of graph automorphism can be extended to configurations in a natural
way: (1) two configurations C = (G, λ) and C ′ = (G′, λ′) are isomorphic if G and G′

are isomorphic via an isomorphism φ and λ(v) = λ′(φ(v)) for each vertex v in G; (2)
an automorphism of a configuration C = (G, λ) is an isomorphism from C to itself,
and (3) the set of all automorphisms of C forms a group under the composition
operation that we call automorphism group of C and denote as Aut(C). Moreover,
if |Aut(C)| = 1 we say that C is asymmetric, otherwise it is symmetric. Two distinct
robots r and r′ in a configuration (G, λ) are equivalent if there exists φ ∈ Aut(C)
that makes equivalent the vertices in which they reside. Note that λ(u) = λ(v)
whenever u and v are equivalent. Moreover, if u and v are equivalent, a robot r
cannot distinguish its position at vertex u from robot r′ located at vertex v = φ(u).
As a consequence, no algorithm can distinguish between two equivalent robots.



3.2. THE METHODOLOGY ADOPTED FOR ALGORITHM DESIGN 70

3.2 The methodology adopted for algorithm design

The coordination of distributed agents is a challenging algorithmic task because the
capabilities of the robots are reduced to a minimum. For example, while attempting
to guide a set of robots to form a geometric shape, the lack of agreement on a global
coordinating system makes it hard for robots to agree on the target positions. More-
over, in the Async setting, some robots move while others perform another phase.
As a result, robots may fail to recognize the stage reached by the algorithm, and
this incorrect detection may make it impossible to finalize the algorithm. Given a
configuration of robots, a distributed algorithm moves the robots to reach a final
configuration having some properties. The only information robots have access to
is the view of the position of the other robots. As robots move and their posi-
tion change, the system can potentially assume an exponential number of different
configurations. Robots must be able to recognize the stage of the algorithm just
watching the configuration of robots.
The distributed algorithms presented in this thesis are designed following a hierar-
chical decomposition introduced by Cicerone et al. in [44]. Each problem is divided
into sub-problems easy enough to be tackled by a group of OBLOT robots. The
decomposition approach allows to prove the correctness of each phase. Given a
problem Π we characterize when it is potentially solvable, and for all these input
configurations we design a resolution algorithm A. The strategy is to divide Π into
independent sub-problems called tasks Ti. Each task will bring the robots into an
intermediate configuration. The topological features of a configuration of robots are
described as a predicate that consists of variables combined in Boolean logic. A
predicate Pi is defined for each of the tasks Ti and it is a precondition to the execu-
tion of the corresponding task. Predicates must be mutually exclusive. Each robot
evaluates the predicates during the Compute phase until it finds one that is true.
When a robot finds that a predicate Pi is true, it knows that the corresponding task
must be performed. Each task has also an associated move mi. A move identifies
a subset of robots S to move and describes their trajectory. In the move phase the
robots in S perform move mi. The design of the preconditions is difficult because it
must guarantee two main properties: it has to identify unique topological features
for each task, and these don’t have to vary during the movements of the robots and
until a task is completed, and we must be sure that a robot is able to compute each
of the variables which compose a predicate given the information acquired during
the look phase. Suppose a robot is stopped by the adversary during the execution
of its move, when the robot starts a new LCM cycle, it evaluates again the precon-
ditions, and if it has the same outcome, it will perform the same move. Predicates
are defined by:

• basic variables that capture metric/topological/numerical/ordinal aspects of
the input configuration which are relevant for the used strategy and that can
be evaluated by each robot on the basis of its view;
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• composed variables that express the pre-conditions of each task Ti.

A formal approach requires that predicates must guarantee some properties:

• Prop1: each Pi must be computable on the configuration perceived in each Look
phase;

• Prop2: Pi ∧ Pj = false, for each i ̸= j;

• Prop3: for each possible perceived configuration there must exists a predicate
Pi evaluated as true.

Each task can be accomplished only when its precondition is fulfilled. For the sake
of simplicity, denote as prei the precondition defined for Ti for each 2 ≤ i ≤ n with n
the total number of tasks and define pre1 = true. Then, Pi can be formally defined
as follows:

Pi = prei ∧ ¬
⋁︂
j>i

prej. (3.1)

Equation 3.1 assumes the ordering of the tasks. The first precondition evaluated
by the robots is the last one pren, if it’s false, then pren−1 ∧ ¬pren is evaluated.
If all the preconditions up to pre2 are evaluated false, then task T1 is performed
on an input configuration. Given a configuration of robots at time t, if each of the
robots performs the compute phase they must be able to recognize the same task
to perform, in other words they must agree on the task. When a task Ti completes,
we say the algorithm transitions from a task Ti to task Tj if there exists an input
configuration and an execution of the algorithm that generates such a transition.
The set of all the transitions of A are defined in the transition graph in which V is
the set of tasks Ti and E is the set of directed edges (Ti, Tj) if exists a transition
from Ti to task Tj. Tasks, preconditions, moves and transitions will be summarized
in a table.
The methodology proposed in [44] allows us to prove formally the correctness of an
algorithm by proving that all the following properties hold:

H1: The algorithm never generates unsolvable configurations.

H2: The movement of each robot is collision-free.

H3: For each task Ti, the transitions from Ti to any other task are “exactly” those
declared in the transition graph.

H4: Each transition in a graph occurs after a finite number of cycles. This means
that the generated configurations can remain in the same task only for a finite
number of cycles.

All these properties must be proved for each transition or move.
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3.3 Arbitrary patterns on tessellation graphs

We consider the Arbitrary Pattern Formation (APF ) problem. Given a set R of
robots, each one located at a different vertex of an infinite regular tessellation graph,
we design a distributed algorithm that guides the robots to form any specific but
arbitrary geometric pattern given in input.
So far, under the OBLOT model, the APF problem has been investigated only on
the regular square grids. Grids are a natural discretization of the Euclidean plane.
Other notable regular tessellations are triangular and hexagonal grids. In particular,
the triangular grid is the most general in terms of possible symmetries and trajec-
tories. We present an algorithm for APF when the initial configuration of robots is
asymmetric and the considered topology is any regular tessellation graph. The al-
gorithm is first described in detail with respect to the triangular grid, then we revisit
the algorithm with respect to both the square and the hexagonal grids, pointing out
any possible deviations required with respect to the specific graph classes. Robots
are modeled according to the OBLOT model (e.g., [73]), asynchronous and en-
dowed with global strong multiplicity detection. As robots move on graphs,
in the Move phase at most one edge can be traversed. Initially, robots are inactive,
but once the execution of an algorithm A starts - unless differently specified - there
is no instruction to stop it, i.e., to prevent robots to enter their LCM cycles. Then,
the termination property for A can be stated as follows: once robots have reached
the required goal through A, from there on robots can perform only the nil move-
ment. We assume that cycles are performed according to the weakest Asynchronous
scheduler (Async) (cf. [22, 36, 37, 40, 54, 72, 79]).
The activation of the robots determines specific ordered time instants. Let C(t) be
the configuration observed by some robots at time t during their Look phase, and let
{ti : i = 0, 1, . . .}, with ti < ti+1, be the set of all time instances at which at least one
robot takes the snapshot C(ti). Since the information relevant for the computing
phase of each robot is the order in which the different snapshots occur and not
the exact time in which each snapshot is taken, then without loss of generality we
can assume ti = i for all i = 0, 1, . . .. Then, an execution of an algorithm A from
an initial configuration C is a sequence of configurations E : C(0), C(1), . . ., where
C(0) = C and C(t + 1) is obtained from C(t) by moving some robot according to
the result of the Compute phase as implemented by A. This definition of execution
works also for the other schedulers. Moreover, given an algorithm A, in Async
(but also in SAsync and SSync) there exists more than one execution from C(0)
depending on the activation of the robots (which depends on the adversary).
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Previous work

A restricted version of APF has been first solved in [65] for robots moving on the Eu-
clidean plane. The algorithm requires at least n ≥ 4 asynchronous robots equipped
with chirality and, the possible patterns cannot have multiplicities. In particular,
the configurations from which the proposed algorithm could output any pattern are
the so-called leader configurations. These are configurations of robots (including
some symmetric ones) in which it is possible to elect a leader. In [26, 139], authors
remove these restrictions using randomization techniques. APF is solved through
a deterministic algorithm for robots without chirality allowing patterns with multi-
plicities in [37]. Further investigations of APF in the Euclidean plane referring to
slightly different models can be found in [25, 71]. When multiplicities are allowed in
output patterns, the degenerate case of point formation, Gathering, is included in
APF . The gathering problem has been fully characterized in [45]. A hybrid environ-
ment where robots move in the Euclidean plane but can accomplish the gathering
task only at predetermined points has been studied in [36]. APF has been recently
addressed in [24] for robots moving on graphs, and in particular, on an infinite
square grid. The initial configurations are asymmetric and the output patterns can-
not have multiplicities, therefore gathering is not included. Gathering on infinite or
finite square grids has been fully characterized in [52, 63], also considering the min-
imization of the overall traveled distances. All the results for the gathering problem
achieved so far, for general graphs or specific graph topologies are in [39, 42].

Outline

The next section defines the problem formally and introduces the notation used in
the designed algorithm, called Aform . Section 3.3.3 provides a high-level description
of Aform . Section 3.3.4 formalizes the algorithm and provides the correctness. Since
all the details are given for the triangular grid, in Section 3.3.5, we revisit the
algorithm for both the square and the hexagonal grids. Section 3.3.6 highlights
some final remarks.

3.3.1 Problem definition and basic notation

Configurations on tessellation graphs.
In this work, we consider G as an infinite graph generated by a plane tessellation.
A tessellation is a tiling of a plane with polygons without overlapping. A regular
tessellation is a tessellation that is formed by just one kind of regular polygon of side
length 1 and in which the corners of polygons are identically arranged. According
to [83], there are only three regular tessellations, and they are generated by squares,
equilateral triangles or regular hexagons (see Figure 3.3). An infinite lattice of a
regular tessellation is a lattice formed by taking the vertices of the regular polygons
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Figure 3.3: Part of regular plane tessellations.

in the tessellation as the points of the lattice. A graph G is induced by the point
set S if the vertices of G are the points in S and its edges connect vertices that are
distance 1 apart. A tessellation graph of a regular tessellation is the infinite graph
embedded into the Euclidean plane induced by the infinite lattice formed by that
tessellation [89]. We denote by GS (GT and GH , respectively) the tessellation graphs
induced by the regular tessellations generated by squares (equilateral triangles and
regular hexagons, respectively). A function λ : V → N represents the number
of robots on each vertex of G. We call C = (G, λ) a configuration where G ∈
{GS ,GT ,GH} and whenever

∑︁
v∈V λ(v) is bounded and greater than zero. A vertex

v ∈ V such that λ(v) > 0 is said occupied, unoccupied otherwise and A multiplicity
occurs in any vertex v ∈ V such that λ(v) > 1.

Definition 1. Given a graph G ∈ {GS ,GT ,GH}, any line parallel to any edge of G
is called canonical direction. The smallest angle formed by the available canonical
directions is called the canonical angle.

According to Definition 1, in GS there are just two canonical directions and the
canonical angle is of 90◦. In both GT and GH there are three canonical directions
and the canonical angle is of 60◦.

Concerning the configurations addressed in this work, any C = (G, λ), with G ∈
{GS ,GT ,GH}, admits only two types of automorphisms: reflections, defined by an
axis of reflection that acts as a mirror; rotations, defined by a center and an angle of
rotation. The axes of reflection are of two types: the ones of the considered regular
polygons and those coincident with any side of the regular polygons. The centers of
possible rotations are only on specific points of the regular polygons: on the center,
on one vertex, or on the middle point of a side. The rotation angle is specific of each
given tessellation graph.
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3.3.2 Problem formalization

A configuration C = (G, λ), with G = (V,E), is initial if both the following condi-
tions hold: (1) each robot is idle and placed on a different vertex, that is λ(v) ≤ 1
for each v ∈ V ; (2) C is asymmetric. The set containing all the initial configurations
is denoted by I.
The goal of the APF problem is to design a distributed algorithm A that guides the
robots to form a fixed arbitrary pattern F starting from any configuration C = (G, λ)
such that G ∈ {GS ,GT ,GH} and C ∈ I. The pattern F is a multi set of vertices,
given in any coordinate system, indicating the corresponding target vertices in the
tessellation graph G. It constitutes the input for all robots. Due to the absence of
a common global coordinate system, the robots decide that the pattern is formed
when the current configuration becomes “similar” to F with respect to translations,
rotations, and reflections. The problem can be formalized as follows: an algorithm A
solves the APF problem for an initial configuration C if, for each possible execution
E : C = C(0), C(1), . . . of A, there exists a finite time instant t∗ > 0 such that C(t∗)
is similar to F and no robot moves after t∗, i.e., C(t) = C(t∗) holds for all t ≥ t∗.

Notation

Here we introduce some concepts and notation used in the algorithm. Given a
configuration C = (G, λ), we use R = {r1, r2, . . . , rn} to denote the set containing
all the n robots located on G (we recall that robots are anonymous and such a
notation is used only for the sake of presentation). The distance d(u, v) between
two vertices u, v ∈ V is the number of edges of a shortest path connecting u to v.
We extend the notion of distance to robots: d(ri, rj) denotes the distance between
the two vertices in which the robots reside. Symbol D(r) is used to denote the sum
of distances of r ∈ R from any other robot, that is D(r) =

∑︁
ri∈R d(r, ri).

Given a set of points P in the plane, mbr(P ) represents the minimum bounding
rectangle of P , that is the rectangle enclosing all the points in P and fulfilling the
following properties: (1) its sides are all parallel to the Cartesian axes, and (2) each
pair of its parallel axes are as close as possible. According to the definition, we get
that mbr(P ) is unique.
This definition of a minimum bounding rectangle can be easily extended to a set of
robots R placed on the tessellation graph GS where the canonical directions are just
two, and they can naturally play the role of the Cartesian axes. Unfortunately, it
does not work when R is placed on tessellation graphs such as GT or GH . To gen-
eralize it, we move to the concept of bounding parallelogram bp(R), defined as any
parallelogram enclosing all robots, with sides parallel to two of the three available
canonical directions, and with each pair of parallel sides as close as possible. Since
GT or GH admit three canonical directions, it can be observed that the bound-
ing parallelogram of R is not unique. In fact, there are three possible bounding
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D C
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r1 (3)

AB′′ B′

CD

Figure 3.4: Filled circles represent robots, empty circles represent elements of
a pattern F . (left) An initial configuration C with n = 6 robots. It shows
that bp(R) is not unique in GT . The red parallelogram generates the LSS .
The leading corner is A and the leading direction is AB. The unique LSS is
ℓ = (0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0). Robot r1 has maximum sum of dis-
tances, with value D(r1) = 13. (right) A possible pattern F to be formed. The
number close to a vertex refers to a multiplicity. Since F is symmetric, there are
two (equivalent) mbp(F ).

parallelograms (e.g., see Figure 3.4).
Given any bp(R), we denote by H (bp(R)) and Mf(bp(R)), with H (bp(R)) ≤ Mf(bp(R)),
the width and height of bp(R), respectively. Similarly, H (bp(F )) and Mf(bp(F )) are
used to denote the same values with respect to bp(F ).
Let bp(R) be any bounding parallelogram of R. We associate a sequence of integers
to each canonical corner of bp(R) (e.g., corners A and C in Figure 3.4). The sequence
associated with a canonical corner A is defined as follows. Scan the finite grid
enclosed by bp(R) from A along h(bp(R)) (say, from A to B) and sequentially all
grid lines parallel to AB in the same direction. For each grid vertex v, put λ(v) in the
sequence. Denote the obtained sequence as s(AB). Being h(bp(R)) = w(bp(R)) in
the example, from A it is also possible to obtain the sequence s(AD), and hence four
sequences can be defined in total, two for the corner A and two for the corner C. If
any two of these sequences are equal, then it implies that the configuration admits
a (reflectional or rotational) symmetry. We denote by LSS the lexicographically
smallest sequence. It is unique by definition.
The canonical corner from which a LSS starts is called the leading corner ; the
canonical direction from the leading corner used to create the LSS is called the
leading direction. The LSS of a given bp(R) is denoted by ℓ(bp(R)), or simply by ℓ
when bp(R) can be inferred by the context.

Definition 2. Let C = (G, λ) be a configuration with G ∈ {GS ,GT ,GH} and set of
robots R. A minimum bounding parallelogram mbp(R) is defined as any bounding
parallelogram bp(R) with h(bp(R)) minimum, and with minimum LSS in case of
ties.
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It can be easily observed that any asymmetric configuration admits exactly one
mbp(R) whereas symmetric configurations admit multiple mbp(R)’s. However, the
LSS ’s associated to such mbp(R)’s are all the same.

3.3.3 Algorithm description

In this section, we provide a high-level description of the algorithm Aform to solve
APF for any initial configuration C = (GT , λ) of n Async robots endowed with the
global strong multiplicity detection and with all the minimal capabilities recalled in
Section 3.1. We assume n ≥ 3, since for n = 1 the APF problem is trivial and for
n = 2 we get that C is symmetric and hence not initial. Concerning the pattern F ,
it might contain multiplicities.

The strategy

Following this approach explained in Section 3.2, APF is initially divided into four
sub-problems denoted as Reference System (RS ), Partial Pattern Formation (PPF ),
Finalization (Fin), and Termination (Term). Some of these sub-problems are further
refined until the corresponding tasks can be suitably formalized according to the
assumed capabilities of the robots. This leads to the following decomposition:

• Reference System (RS = How to embed F on GT ). This sub-problem addresses
one of the main difficulties arising from the general pattern formation problem:
the lack of a unique embedding of F on GT that allows each robot to uniquely
identify its target (the final destination in the pattern). In particular, RS
moves or matches a minimal number of robots into specific positions so that
they form a common reference system for any other robot. These robots are
called guards. The reference system implies a unique mapping from robots to
targets, keeping the mapping during the movements of robots. In our strategy
RS is further divided into three sub-problems denoted as RS 1a, RS 1b, and
RS 2. These sub-problems are associated with three tasks named T1, T2, and
T3, respectively. The first two are devoted to placing the first guard, denoted
as r1, whereas the third fixes the position of a second guard denoted as rn.
Once the two guards reach their positions, the reference system is given by
two lines passing through the vertices occupied by the guards and forming a
canonical angle between them. When the reference system is created, all the
robots, except the guards, result to be located in a specific quadrant called
Q−.

• Partial Pattern Formation (PPF = How to form part of F ). This sub-problem
is associated with task T4, and it activates only once RS is solved. It forms
a pattern similar to F by using robots in R′′ = R \ {r1, rn}. Thanks to
the common reference system, all robots agree on the embedding of F on a
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Figure 3.5: (left) Visualization of task T1 concerning the initial movement of r1
(cf. configuration C in Figure 3.4). (right) Visualization of task T2 concerning the
final destination of r1. Once r1 stops, all the items necessary to define the reference
system can be settled (cf., Remark 2).

quadrant denoted as Q+ that is different from Q−. During the task, all the
n− 2 robots in R′′ move from Q− to Q+. Robots move one at a time so that
there are no collisions.

• Finalization (Fin = How to move r1 and rn so that F is formed). The final-
ization task activates when the guards are the only robots not well positioned
according to F . While the guards r1 and rn move, the common reference sys-
tem is lost. However, we can guarantee that robots always detect that they
are in the finalization phase. The two robots reach their targets and complete
the pattern F . Fin is divided into three tasks: T5 is for the movement of rn,
whereas T6 and T7 relates to the movement of r1.

• Termination (Term). Robots need to recognize that the pattern is complete
and that further movements are not required. Only nil movements are al-
lowed and it is impossible to switch to any other task. Task T8 relates to the
termination phase.

In the rest of the section, we detail each task.

Task T1. It selects a robot denoted as r1 (the first guard) such that D(r1) is max-
imum (cf., Figure 3.4). In case of ties, r1 has the minimum position in ℓ(mbp(R))
– recall that the input configuration is asymmetric and hence mbp(R) is unique.
Let R′ = R \ {r1}, during this task r1 moves through any shortest path toward the
closest vertex that satisfies the following Boolean variable:

• g1 = there exists a unique line parallel to a canonical direction passing through
r1 and each bp(R′).

Note that, when g1 holds we identify the unique line passing through r1 and each
bp(R′) as the line induced by g1.
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Task T2. In this task, we assume variable g1 true, holding at the end of the task T1

– this is a precondition to perform T2. The goals of this task are: (1) to move r1 so
that its position defines the X-axis, (2) to identify a second guard rn.
When the task starts, r1 is the robot r such that D(r) is maximum whereas the
second guard rn is identified as follows:

• Let L be the line induced by g1. It can be observed that there are exactly two
distinct bp(R′)’s with sides parallel to L. Let L1 and L2 be the two lines parallel
to L shared by the two bp(R′)’s (cf., Figure 3.5). Denote the two bp(R′)’s as
P ′ and P ′′, and denote as S ′ (S ′′, respectively) the side of P ′ (P ′′, respectively)
which lies neither on L1 nor on L2 and is further from r1. In particular, P ′

(P ′′, respectively) is the parallelogram having the canonical angle formed by
the intersection of S ′ (S ′′, respectively) and L1 (L2, respectively) – the red
parallelogram in Figure 3.5. Denote as r′n (r′′n, respectively) the robot on S ′

(S ′′, respectively) closest to L1 (L2, respectively). The second guard useful to
define the reference system is selected between r′n and r′′n.

Robot r1 considers the line L′
1 ( L′

2, respectively) defined as L1 ( L2, respec-
tively) but referred to R′ \ {r′n} ( R′ \ {r′′n}, respectively ) instead of R′. Then
r1 selects the closest line between L′

1 and L′
2 (it arbitrarily selects one of the

two in case of ties). Without loss of generality, assume that r1 selects L′
1.

According to this choice, r1 promotes r′n to be rn, that is the second guard
(symmetrically, if r1 selects L2, then r′′n is promoted).

After computing the second guard, the robots have enough information to identify
a common reference system, as stated in the following remark.

Remark 2. After computing the second guard, robots have sufficient information
to compute a common reference system. In fact, the line between L′

1 and L′
2 selected

by r1 defines the X-axis, and this axis must be intended as directed from r1 to all
the other robots; all vertices in the half-plane containing robots in R′ are considered
with negative Y -coordinates. The second guard rn is induced by the line between L′

1

and L′
2 selected by r1 (as described above). The line passing through rn, intersecting

the X-axis, and forming a canonical angle in the first quadrant defines the Y -
axis. Finally, the intersection between the two axes defines the origin of the system
denoted as O. In this reference system, the first quadrant is denoted as Q+, while
the third quadrant is denoted as Q−.

The target of r1 (rn, respectively) is on the X-axis (Y -axis, respectively) at a dis-
tance from the origin, ensuring that the configuration stays asymmetric during the
subsequent PPF task. Robots compute the distance as follows:

• Let R∗ be the (possibly empty) subset of robots of R′′ lying in Q−, P∗ be the
parallelogram bp(R∗) having the directions parallel to the X- and Y -axes, and
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Figure 3.6: Visualization of Task T3 is about the placing of guard rn = r6. Notice
the embedding Fe in Q+ (cf., Definition 3) of the pattern represented in Figure 3.4
and the ordering of all robots in R′′ according to the lexicographic order of the
coordinates of the vertices in which they reside.

let ∆ = max{w(P∗), w(mbp(F ))}.1

The target of r1 is the closest vertex on the X-axis, at least at a distance 3∆ from
the origin. The trajectory is any shortest path to the target. At the and of the
task T2, variable g1 still holds and that the movement of r1 makes the following
additional variables, true:

• hp′′ = all the robots in R′′ are in the same half-plane with respect to the line
induced by g1.

• dr1 = d(r1, O) ≥ 3∆.

Task T3. This task brings rn to a target recognizable in the subsequent tasks and
during the partial pattern formation phase. As a precondition, we assume all the
variables holding true at the end of the task T2: g1, hp′′, and dr1.
According to the precondition, robots can use Remark 2, but now the X-axis is
directly defined as the direction induced by g1. Robots identify both guards and
re-compute the common reference system. At this point, rn performs the task by
moving along the Y -axis (cf., Figure 3.6) toward the closest vertex (0, y) such that
the following variable holds:

• gn = rn is at a vertex (0, y), with 2∆ ≤ y < d(r1, O).
1This definition of ∆ is given for R′′ instead of R′ so that it is used in the subsequent tasks T3,

T4, and T5.
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The next additional remark states how robots can re-compute the common reference
system in subsequent tasks.

Remark 3. At the end of Task T3, i.e., when both the guards are in place, each
robot can recognize the reference system: the two guards can be detected according
to function D(), since r1 and rn have the largest and second largest value of D(),
respectively; if g1 holds, the induced line defines the X-axis directed from r1 to all
the other robots; the Y -axis is the line passing through rn, intersecting the X-axis,
directed from the intersection toward rn, and forming a canonical angle in the first
quadrant. Finally, the fact that the two guards are in place is verified relying on the
value of ∆, since Q− (which contains all robots in R′′) is identified.

Task T4. This task solves the “Partial Pattern Formation” sub-problem. It forms
the pattern F with robots in R′′ = R \ {r1, rn}. All the n− 2 robots in R′′ initially
located in the quadrant Q− move in the quadrant Q+. This task activates only when
RS is completed. The precondition for task T4 requires that g1, gn, and dr1 are all
true.
This task is accomplished only if the robots in R′′ have a common reference system
obtained as described in Remark 3. Then, all robots have to agree on the target
positions in Q+. To this aim, F is embedded into GT according to the following
definition.

Definition 3 (Embedding of the pattern). Fe is the set of vertices in Q+ obtained
by embedding F on the graph so that the following conditions hold: (1) the leading
corner of mbp(F ) is mapped onto the origin O, and (2) the leading direction of
mbp(F ) coincides with the positive direction of the Y -axis.

An example of Fe is shown in Figure 3.6. Once the robots agree on Fe, the main
difficulties in this task are to preserve the reference system (induced by guards r1
and rn) and to avoid undesired collisions during the movements. To avoid collisions,
robots are moved one at a time according to a schedule induced by the following
definitions:

• Vertices in Fe are ordered according to the lexicographic order of their coordi-
nates expressed with respect to the formed X- and Y -axes. Hence, from now
on we denote Fe as the multiset2 {f1, f2, . . . , fn}, where i ≤ j if and only if
the coordinates of fi precede those of fj. Similarly for robots in R′′: they are
ordered according to the lexicographic order of the coordinates of the vertices
in which they reside and R′′ = {r2, r3, . . . , rn−1}.

• Vertices f1 and fn are not used during the resolution of PPF since they are
considered as the final targets for the guards. In particular, in the last part of
the resolution algorithm, r1 will be moved in f1 and rn will be moved in fn.

2Recall that F may contain multiplicities.
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Figure 3.7: Visualization of the configuration at the end of task T4 (cf., Fig-
ure 3.6). Gray (black, white, respectively) circles represent unmatched robots
(matched robots, unmatched targets, respectively), while integers close to matched
robots refer to multiplicities.

• A vertex fi ∈ Fe, 2 ≤ i ≤ n− 1, is called the largest unmatched target if it is
unoccupied whereas fj is occupied for each i < j < n.

• A robot ri ∈ R′′, 2 ≤ i ≤ n − 1, is called largest unmatched robot if fi is the
largest unmatched target. Note that there is always a shortest path between
ri and fi without other robots.

Algorithm Aform moves robots in R′′ in order, moving each time the largest un-
matched one toward the largest unmatched target in Fe. The trajectory of a moving
robot is any shortest path leading to its target.

• rpf = there exists a vertex v in Q− such that the largest unmatched robot ri
is on a shortest path from v to fi, and each robot rj, j < i, is in Q−.

At the end of the task, variable g1 still holds, and so also the following additional
variables:

• hp′ = all the robots in R′ are in the same half-plane with respect to the line
induced by g1;

• pfn = there exists an embedding of F such that all robots in R′′ are similar
to F \ {f1, fn}.

Task T5. This task is the first associated with the “Finalization” sub-problem. In
particular, it moves rn toward fn. All the variables holding at the end of the task
T4 are g1, hp′, dr1, and pfn.
Robot rn moves from the Y -axis straightly along the canonical direction parallel to
the X-axis until a vertex with the same X-coordinate of fn is reached, and then
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it directly proceeds toward the target (cf. Figure 3.7). The movement of rn can
take many LCM cycles therefore we define a new variable that checks the correct
positioning of rn:

• hrn = point fn = (x, y) and robot rn = (x′, y′), with x′ ≤ x and y′ > y.

Checking variable hrn requires a reference system. However, it is not calculable
in the same way as in previous tasks since rn is moving (i.e., guards are not in
place anymore). Since pfn holds, the reference system can be deduced from the
embedding. In particular:

Remark 4. During Task T5, each robot can recognize the formed reference system:
r1 can be detected according to function D() since it has the largest value of D(); if
g1 and hp′ hold, the induced line defines the X-axis directed from r1 to all the other
robots; from mbp(F ) it is possible to check whether its leading corner placed on a
vertex v on the X-axis makes f2, . . ., fn−1 matched, hence defining rn; the Y -axis is
assumed as the canonical direction passing through v and forming a canonical angle
in the first quadrant which contains all robots in R′; finally, knowing r1 and rn and
Q− it is possible to compute ∆ and hence check whether dr1 holds.

Once rn reaches fn, variables g1, dr1 still hold and a new variable becomes true:

• pf1 = pattern F \ {f1} formed.

Tasks T6 and T7. When T6 starts after the end of T5, variables g1, dr1, and pf1

are true. Therefore, n− 1 robots reached their targets except for one robot, r1, far
enough from others to induce one direction toward the remaining robots. r1 must
finalize the pattern F by moving toward its target. During tasks T6 and T7, both
guards are no longer in place so the common reference system is lost. In particular,
the origin O of the system is not defined, and hence dr1 cannot be evaluated.
However, the algorithm moves r1 so that the following variable remains valid during
T6:

• dr1′ = the distance between r1 and the other robots guarantees that
d(r1,mbp(F )) ≥ 3w(mbp(F )).

In particular, task T6 moves r1 toward a target vertex t so that the following prop-
erties hold: (1) dr1′ remains true, and (2) in task T7, starting from t, robot r1 reach
its final target f1 by moving straightly along one canonical direction.

Even though in both T6 and T7, the reference system is not available, robots can
take advantage of the position of r1 and of the other robots to finalize the pat-
tern correctly. In particular, when T6 starts, variables g1, dr1′, and pf1 hold and,
accordingly, robots can compute the following data:
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r1

(1)f1
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Figure 3.8: Visualization of the configuration at the end of task T5 (cf., Fig-
ure 3.7). Gray (black, white, respectively) circles represent unmatched robots
(matched robots, unmatched targets, respectively), while integers near matched
robots refer to multiplicities.

• let U be the direction induced by variable g1. Let L1 and L2 be the lines
parallel to U , closest to each other, and enclosing R′ = R \ {r1};

• consider the smallest parallelogram P1 (P2, respectively) such that: encloses
the whole set R, has the longest sides on L1 and L2, it admits the height
equal to h(mbp(F )) and it determines a corner O1 (O2, respectively) at the
intersection vertex with the shortest side that passes through r1, that admits
a canonical angle;

• compute sP1 (sP2, respectively) as the sequence of integers associated with O1

(O2 respectively) such that r1 is met as the first robot.

For example, P1 and P2 correspond to the red and blue parallelograms shown in
Figure 3.8, respectively. According to such data, robots verify whether the current
configuration is coherent with task T6 by performing the following check:

• at least one parallelogram between P1 and P2 must be coherent with the n− 1
elements of F already matched. The last values of sP1 (or sP2) coincide with
the sequence ℓ(mbp(F )) except for one value corresponding to f1 (the vertex
to be matched by r1). It is valid for both sP1 and sP2 when there is a reflection
axis for F \ {f1} parallel to the direction U .

We denote by ℓFf1 the sequence of integers obtained from ℓ(mbp(F )) by decreasing
by one the first non-zero element,3 and by df the position in ℓ(mbp(F )) of such an
element. The check can be done by formalizing variable pf1:

• pf1 = there exists s ∈ {sP1, sP2} such that s = s′ + ℓFf1 , for some s′ made of
only 0’s and just one 1 in position dr1 and dr1 < df .

3ℓFf1 denotes the sequence ℓ(mbp(F )) by ignoring f1.
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Referring to the example shown in Figure 3.8, variable pf1 is made true by the se-
quence obtained from the vertex O2. In fact, sP2 = (1, 0, 0, 021, 1, 3, 1), ℓ(mbp(F )) =
(0, 0, 1, 0, 0, 0, 1, 3, 1), dr1 = 1 and df = 3.
During T6, robot r1 moves along the shortest side of the parallelogram associated
with the string s (cf. the definition of pf1) to increase position dr1 . The movement
ends when dr1 = df . When it happens,T6 ends, and task T7 begins and the following
variable holds:

• qf1 = sequence ℓ(mbp(R)) guarantees that ℓ(mbp(R)) = ℓ′ + ℓFf1 , for some ℓ′

made of only 0’s and just one 1 in position dr1 and dr1 = df .

When qf1 holds, all robots know that r1 can complete the pattern by going straight
toward its target. The difficulties arise from the possible symmetries formed during
the last movement of r1. The algorithm always produces asymmetric configurations
during tasks T1, . . . , T6, thanks to the positioning of r1. When r1 is very close to
its target, symmetries may imply that more than one robot identifies itself as r1,
while r1 can detect more than one vertex as its target f1. However, we show that
the configuration has at most a reflection axis, with r1 on that axis, and does not
prevent the pattern completion.

3.3.4 Algorithm formalization and correctness

As introduced in Section 3.2 , the proposed algorithm Aform is based on a strategy
that decomposes the APF problem into tasks T1, T2, . . . , T8. All the needed basic
variables useful for Aform have been already defined in Sections 3.3.3. If we assume
that prei is the composed variable that represents the pre-conditions of Pi, for each
1 ≤ i ≤ 8, then predicate Pi can be defined as follow:

Pi = prei ∧ ¬(prei+1 ∨ prei+2 ∨ . . . ∨ pre8). (3.2)

This definition leads to the following remark:

Remark 5. Predicates Pi fulfill Property Prop2. This is directly implied by Eq. 3.2

Before addressing the remaining properties Prop1 and Prop3, we formalize all the
basic variables, the pre-conditions for each task, and, as a consequence, all the
predicates. All the necessary basic variables are summarized in Table 3.1. Table 3.2
is organized as follows: the first two (general) columns refer to the hierarchical
decomposition of the algorithm, the third column associates tasks names to sub-
problems, and the fourth column defines precondition prei for each task Ti. These
preconditions are defined according to Equation 3.2. The fifth column of Table 3.2
contains the name of the move used in each task (we denote as mi the move used in
task Ti). Details for each move, are given in Table 3.3. Unless otherwise specified,
each trajectory is any shortest path to the target.



3.3. ARBITRARY PATTERNS ON TESSELLATION GRAPHS 86

var definition rationale

g1 ∃ a unique line parallel to a canonical direction
passing through r1 and each bp(R′)

guard r1 is partially placed

gn rn is at a vertex (0, y), with 2∆ ≤ y < d(r1, O) guard rn is placed

dr1 d(r1, O) ≥ 3∆ guard r1 is at a desired distance
from the origin

dr1′ d(r1,mbp(F )) ≥ 3w(mbp(F )) robot r1 is at a desired distance
from the pattern

hp′ let L be the line induced by g1; all robots in R′

are in the same half-plane with respect to L
all robots in R′ are in the same
half-plane with respect to the
line induced by g1

hp′′ let L be the line induced by g1; all robots in R′′

are in the same half-plane with respect to L
all robots in R′′ are in the same
half-plane with respect to the
line induced by g1

hrn fn = (x, y) and rn = (x′, y′), with x′ ≤ x and
y′ > y

guard rn is on the right path to
its target

rpf ∃ a vertex v in Q− such that the largest un-
matched robot ri is on a shortest path from v to
fi, and each robot rj , j < i, is in Q−.

all the unmatched robots are
correctly positioned with respect
to PPF

pf1 ∃ s ∈ {sP1, sP2}: s = s′ + ℓFf1 , for some s′ made
of only 0’s and just one 1 in position dr1 and
dr1 < df

pattern F \ {f1} formed

pfn ∃ embedding of F such that all robots in R′′ are
similar to F \ {f1, fn}

pattern F \ {f1, fn} formed

qf1 ℓ(mbp(R)) = ℓ′ + ℓFf1 , for some ℓ′ made of only
0’s and just one 1 in position dr1 and dr1 = df

guard r1 can complete the pat-
tern by going straight toward its
target

s R and F are similar pattern F formed

Table 3.1: The basic Boolean variables used to define all the tasks’ preconditions.
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problem sub-problem task precondition move

APF

RS

RS 1a T1 true m1

RS 1b T2 g1 m2

RS 2 T3 g1 ∧ hp′′ ∧ dr1 m3

PPF T4 g1 ∧ dr1 ∧ gn ∧ rpf m4

Fin

Fin1 T5 g1 ∧ hp′ ∧ dr1 ∧ hrn ∧ pfn m5

Fin2 T6 g1 ∧ dr1′ ∧ pf1 m6

Fin3 T7 qf1 m7

Term T8 s nil

Table 3.2: Algorithm Aform for APF . The algorithm works as follows: if if a robot
detects that predicate Pi holds, (where Pi depends on preconditions as defined in
Eq. 3.2), it recognizes that task Ti must be performed and hence performs move mi.

Table 3.2 leads to the following remark:

Remark 6. Algorithm Aform fulfills Property Prop3. This is implied by pre-condition
pre1 and predicates Pi.

Computability of the predicates: property Prop1

In this section, we explain how algorithm Aform can compute each predicate Pi,
showing that property Prop1 holds.
According to the definition of Pi given in Eq. 3.2, in the Compute phase, each robot
evaluates predicates (for the perceived configuration C and the pattern F ) starting
from P8, in reverse order until it finds a true pre-condition. In case all pre-conditions
pre8, pre7, . . . , pre2 are evaluated false, then task P1 is performed.
pre8 require checking whether C and F are similar. For the evaluation of pre7,
robots need to compute variable qf1, which depends on mbp(R) and mbp(F ). Pre-
condition pre6 require the computation of g1, dr1′, and pf1. g1 requires r1, identi-
fied according to function D(). In all tasks, T1, . . . , T6, r1 corresponds to the robot
r such that D(r) is maximum. dr1′ require r1 and mbp(F ) and pf1 is computable
as shown in Section 3.3.3 starting from the direction U induced by variable g1, U
and mbp(F ) to determine the sequences sP1 and sP2, and the positions dr1 and df .
Pre-condition pre5 = g1 ∧ hp′ ∧ dr1 ∧ hrn ∧ pfn is evaluated as follows: g1 can be
evaluated once r1 is recognized with the function D(), and hp′ can be detected once
the direction induced by variable g1 is known. Now, as described in Remark 4, by
using g1 and hp′, the common reference system can be recognized by each robot and
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move definition

m1 r1 moves toward the closest vertex so as g1 holds

m2 r1 moves toward the closest vertex on X-axis at distance at least 3∆ from the
origin

m3 rn moves toward vertex (0, y), with 2∆ ≤ y < d(r1, O)

m4 the largest unmatched robot in R′′ moves toward the largest unmatched target
in Fe

m5 rn first moves along a path that maintains fixed the y coordinate until its x
coordinate coincides with that of fn - then, it moves toward fn

m6 if both sP1 and sP2 satisfy pf1 then let s be the lexicographically minimum one.
Then, robot r1 moves along the shortest side of the parallelogram associated
with s so as to increase dr1

m7 robot r1 in position dr1 moves toward f1

Table 3.3: Moves associated to tasks. It is assumed that each robot not involved in
mi performs the nil movement.

with it, both dr1 and hrn can be evaluated. Finally, variable pfn can be checked
with a combinatorial approach.
All variables of pre-condition pre4 = g1 ∧ dr1 ∧ gn ∧ rpf, except for rpf can be
evaluated according to Remark 3. rpf can be verified as stated by the definitions
introduced in Section 3.3.3. Pre-condition pre3 = g1 ∧ hp′′ ∧ dr1 is evaluated as
follows: g1 is computed with the function D(), then Remark 2 is used to recognize
the common reference system. Given the reference system, both hp′′ and dr1 can
be evaluated. Finally, to check pre2 = g1, robot r1 is identified with the function
D().

Correctness

In this section, we formally prove that algorithm Aform solves the APF problem
on the tessellation graph GT . To this end, let IA be the set containing all the
configurations taken as input or generated by Aform .
According to properties Prop2 and Prop3, all tasks’ predicates P1, P2, . . ., P8 used by
the algorithm are defined to make a partition of IA. Together with Prop1, for each
possible configuration provided to Aform , the algorithm can evaluate each predicate
and determine the task to perform.
Correctness can be assessed by proving that all the following properties hold:

H1: Aform does not generate multiplicities nor symmetric configurations (unless F
is formed or its formation is not prevented);
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H2: from any class Ti, 2 ≤ i ≤ 8, no class Tj with j < i can be reached;

H3: from any class Ti, 1 ≤ i ≤ 7, another class Tj with j > i is always reached
within a finite number of LCM cycles.

Since properties H1, H2 and H3 must be proved for each transition/move, then in
the following we provide a specific lemma for each task.

Lemma 1. From an initial configuration C belonging to class T1∩IA the algorithm
Aform eventually leads to a configuration C ′ in a class Ti, i > 1.

Proof. In this task, algorithm Aform selects a robot, denoted as r1 (the first guard),
such that D(r1) is maximum and, in case of ties, the robot that has the minimum
position in ℓ(mbp(R)).
(Property H1). Since D(r1) is maximum, while r1 moves away from the other robots,
it cannot meet any other robot and D(r1) increases. Then, r1 is repeatedly selected.
Note that, if by m1 a symmetric configuration is created then it must admit an axis
of reflection where r1 lies – as this is the only robot defining D(r1).
(Property H2). Since as we are going to show the subsequent H3 holds, we have that
any other class can be reached.
(Property H3). Robot r1 always decreases the distance toward its target, within a
finite number of LCM cycles, unless other predicates become true, g1 becomes true
and the configuration is not in T1 anymore.

Lemma 2. From a configuration C belonging to class T2 ∩ IA the algorithm Aform

eventually leads to a configuration C ′ in a class Ti, i > 2.

Proof. Here r1 lies between two parallel directions L1 and L2 enclosing each possible
bp(R′) and moves toward the closest one (toward any of them in case of ties) along
a canonical direction.
(Property H1). Robot r1, when moving toward its target, cannot meet any other
robot, nor move on any axis of symmetry because the only possible one should be
at the same distance from L1 and L2 and parallel to them. However, by moving to
the closest Li, i ∈ {1, 2}, r1 never crosses an axis.
(Property H2). Move m2 does not affect predicate g1, that is no obtained configu-
ration can belong to T1.
(Property H3). Robot r1 always decreases the distance toward Li, then within a
finite number of LCM cycles, unless other predicates become true, hp′′∧dr1 becomes
true (cf. Section 3.3.3) and the configuration is not in T2 anymore.

Lemma 3. From a configuration C belonging to class T3 ∩ IA the algorithm Aform

eventually leads to an asymmetric configuration C ′ in Ti, i > 3.
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Proof. During this task, guard r1 is already placed, that is g1 ∧ hp′′ ∧ dr1 holds.
(Property H1). Due to the positioning of r1, the configuration can be symmetric
only when all robots are collinear (along the formed X-axis). Regardless of when
this symmetry is formed, during this task, rn is always detectable. When it leaves
the X-axis, the configuration becomes asymmetric and remains so until the second
guard ends its trajectory. According to m3, along with its movement rn does not
meet any other robot. Since the distances from O of the two guards are different,
the configuration cannot admit rotations or reflections as long as the guards are idle.
(Property H2). Move m3 does not affect predicates g1, hp′′ and dr1, therefore any
obtained configuration cannot belong to T1 nor to T2.
(Property H3). Robot rn always decreases the distance toward its target along the
Y -axis, then within a finite number of LCM cycles, unless other predicates become
true, gn becomes true. In any case, the configuration is not in T3 anymore.

Lemma 4. From any configuration C belonging to class T4∩IA the algorithm Aform

eventually leads to a configuration C ′ in T5.

Proof. (Property H1). Since guards r1 and rn are placed, the same considerations
of Lemma 3 hold, that is the configuration cannot admit reflections nor rotations
during this task. Multiplicities can be created but only if required by F .
(Property H2). During the whole task, predicate s is false as guards remain placed.
Hence, also predicates g1, dr1, gn and rpf are not affected by m4, that is the
obtained configuration cannot belong to T1, T2, and T3.
(Property H2). While the task is performed, either the number of matched robots
increases or the distance of one robot from its target decreases, then in a finite
number of moves all robots excluding r1 and rn will be matched. As already de-
scribed in Section 3.3.3, at the end of this task g1 ∧ hp′ ∧ dr1 ∧ hrn ∧ pfn holds,
that is C ′ belongs to T5 and no other task can be reached because the guards remain
placed.

Lemma 5. From any configuration C belonging to class T5∩IA the algorithm Aform

eventually leads to a configuration C ′ in Ti, i > 5.

Proof. During this task, guard r1 remains placed.
(Property H1). As rn moves toward its final target, the arisen configurations cannot
admit reflections nor rotations as there are no other robots equivalent to r1 due to g1

and dr1. A reflection (as well as a multiplicity, respectively) can occur only at the
end of the task if all robots are collinear (if fn requires a multiplicity, respectively)
but this can be managed by Aform as we are going to see in the next lemma devoted
to T6.
(Property H2). Before rn reaches its target, g1∧ hp′ ∧ dr1∧ hrn∧ pfn remains true,
while predicates pf1 and s remain false, that is the configuration remains in T5.
Once rn reaches fn, predicate g1 ∧ dr1′ ∧ pf1 becomes true.
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f ′1
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Figure 3.9: An example of the only possible symmetry that can arise during task
T6.

(Property H3). After each move, rn decreases its distance from fn, that is within a
finite number of LCM cycles the task ends and, unless other predicates become true,
the obtained configuration C ′ belongs to T6.

Lemma 6. From a configuration C belonging to class T6 ∩ IA the algorithm Aform

eventually leads to a configuration C ′ in T7.

Proof. During this task, guard r1 moves so as to make dr1 = df1 .
(Property H1). During this phase, the algorithm does not generate any multiplicity
since g1 ∧ dr1′ ∧ pf1 remains true and then r1 is sufficiently far from any other
robot. Regarding symmetries (cf. Figure 3.9), the only symmetric configuration
possible is the one with an axis parallel to the direction induced by g1, and f1 can
be on the axis or not. In the first case, the whole pattern is symmetric; when r1
reaches the axis then dr1 = df1 holds and predicate qf1 becomes true. Otherwise the
final pattern is asymmetric and there are two possible embeddings and two possible
targets for r1, f1 and its equivalent point f ′

1 with respect to the axis of symmetry.
One of the two is reachable by r1 without crossing the axis. Consider the two half
planes determined by the line that makes g1 true: the targets f1 and f ′

1 may lie in
the same half plane or not. In the first case only one among the sequences sP1 and
sP2 satisfies the condition in pf1 because in one of them dr1 > df1 . Then r1 moves
towards f1 and when it reaches the height of f ′

1 predicate qf1 becomes true and the
configuration is in T7. When r1 lies between f1 and f ′

1, both the sequences sP1 and
sP2 satisfy the condition in pf1 and move m6 chooses the smaller one since sP1 and
sP2 must be different because r1 is not on the axis. Robot r1 increases its height to
align with the target until dr1 = df1 and the configuration is in T7.
(Property H2). Before r1 reaches the height of its target, g1 ∧ dr1′ ∧ pf1 remains
true, and when dr1 = df1 , qf1 holds, hence C ′ is in T7. Clearly C ′ cannot belong to
T8.
(Property H3). The absolute difference between dr and df decreases by one at each
move until dr1 = df1 so that move m6 is applied only a finite number of times.
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Figure 3.10: An example in which r1 becomes equivalent to another robot r′1 respect
to an axis of 0◦ while moving toward f1.

Lemma 7. From a configuration C belonging to class T7 ∩ IA the algorithm Aform

eventually leads to a configuration C ′ in T8.

Proof. During this task, guard r1 straightly moves toward its target. Since qf1

holds it is possible to derive the embedding of the pattern from ℓ(mbp(F )) and
consequently the X and Y axis that we refer to the proof.
(Property H1). We show that while r1 moves toward f1 no reflections, no rotations,
no multiplicities can be created that prevent the finalization of the task. In par-
ticular, we first show no reflection can admit a robot equivalent to r1 (hence, if a
reflection is created, then r1 must be on the axis of symmetry, and we show this
happens only if F \ {f1} is symmetric respect to that axis). Then, we show that no
rotations are possible. Finally, concerning the multiplicities, r1 can make one only
once f1 is reached.

About reflections. Regarding reflections we have to analyze possible axis of reflection
at 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, with respect to the X-axis in clockwise direction.
Moreover, we distinguish between two cases: when r1 becomes equivalent to another
robot of the configuration and when r1 goes on an axis of symmetry.
Firstly, we analyze the case of a reflection at 0◦ when r1 becomes equivalent to
another robot r′1 while moving toward f1 (see Figure 3.10). Now consider the other
possible bp ′(F ) having two sides parallel to the X-axis and shared with the chosen
bp(F ). One side of bp ′(F ) passes through r′1 and the reading from this side is lower
than the reading of bp(F ) from the origin. Then the embedding chosen was not
coherent with the definition, a contradiction.
For the cases of reflections at 30◦ and 60◦ the supposed robot r′1 equivalent to r1,
would lie outside the embedding of mbp(F ).
Regarding the case of a reflection at 90◦, that is a reflection perpendicular to the
X-axis, r1 becomes equivalent to another robot r′1 while moving toward its target
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Figure 3.11: An example in which r1 becomes equivalent to another robot r′1 respect
to an axis of 90◦ while moving toward f1.

(see Figure 3.11). Now consider the other possible bp ′(F ) having two sides parallel
to the X-axis and shared with the chosen bp(F ). As in the case of a reflection at
0◦, one side of bp ′(F ) passes through r′1 and the reading from this side is lower than
the reading of bp(F ) from the origin. Then the embedding chosen was not coherent
with the definition, a contradiction.
Regarding the case of a reflection at 120◦, the reflectional axis is parallel to the Y -
axis, and r1 becomes equivalent to another robot r′1 while moving toward its target.
The axis of symmetry must be between O and the half of the longest side of bp(F ).
We now compare the reading of bp(F ) from O with the reading of bp(F ) starting
from the corner at the opposite angle of 60◦ respect to O, call it P . The first column
read from P has at most one robot, r′1 equivalent to r1, then as many empty columns
as those found from r1 to the Y -axis in mpb(R), until a first robot specular to the
one read from O. Since the number of empty columns read from P is greater than
the one read from O, the reading from P is lower than the reading from O hence a
contradiction.
In case of a reflection axis at 150◦, the Y -axis reflects on the X-axis, then there is no
possible robot r′1 in the configuration that can be equivalent to r1 when approaching
to its target.
In what follows, we analyze the case when R \ {r1} forms an axis of symmetry.
Consider the case of a reflection at 0◦. If the pattern is symmetric respect to that
axis, f1 is on the axis, and r1 reaches the axis and proceeds along the axis without
breaking the symmetry, by following the trajectory specified by move m7. If the
pattern is asymmetric, then there are two possible embedding of F on R \ {r1} and
then there must be another target f ′

1 equivalent to f1 obtained by reflecting the
embedding such that the trajectory computed by the move of r1 does not cross the
axis (see Lemma 6). According to move m7, actually robot r1 moves to f ′

1 to finalize
the task.
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Figure 3.12: Robot r1 on a reflection axis of 30◦ and the equivalent parallelograms
P and P ′.

In case of a reflection axis of 30◦, r1 goes towards that axis and when it lands
on it there two equivalent parallelograms P = mbp(R) and its reflection P ′ (see
Figure 3.12). Let l(P ) and l(P ′) the readings of the two parallelograms. These
sequences are equivalent and they both find r1 as the first robot. In each sequence
r1 is univocally determined and it can move respect to either P or P ′ toward f1 or
f ′
1, respectively. As r1 moves away from the axis, there is a unique mbp(R) until r1

reaches its target.
It is easy to see that when moving r1 cannot go on an axis of 60◦, 90◦, and 120◦

before reaching its target.
Regarding to axes of 150◦, r1 could go on such an axis only if f1 is under the reflection
axis, but to be symmetric with such an axis the pattern should have the longest side
laying on the Y -axis and this is not coherent with the embedding.

About rotations. The minimal possible angle of rotation is 60◦ and its multiples
120◦ and 180◦, clockwise and anti-clockwise. The convex hull of any configuration
with rotational symmetry with angle of rotation of 60◦ is an hexagon. Assuming that
such a configuration is formed when r1 is approaching its target, a part of the convex
hull should be in the quadrant where r1 lies. Then the embedding of the pattern
is not positioned according to the rule that the shorter side of the parallelogram is
parallel to the Y -axis (cf., Definition 3). With the same arguments we can exclude
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rotations of 120◦. Regarding to rotations of 180◦, let us assume that r1 creates such
a symmetry when approaching its target. The embedding Fe is done by construction
in such a way that the sequence of integers read from the origin is smaller than the
one read from the corner P = (xp, yp) at the opposite angle of 60◦. The first column
read from P must have a single robot r′1, symmetric to r1, because this column
matches the one with r1.
By hypothesis, the pattern sequence read from O must be lower than the one read
from P , then the first column cannot have more than one target and in particular
this target must be at the same distance from O than r′1 from P , because r1 is
moving horizontally. Reading the configuration forward from P , there must be a
sequence of columns of zeros, at least one, each corresponding to an empty column
read from r1 to the Y -axis, that is empty. In turn, this corresponds to a sequence of
columns of zeros in the pattern read from O, because by hypothesis must be lower
than the one read from P . Then, by rotation, these columns correspond to more
empty columns in the configuration read from P . Continuing, we would have only
empty columns between r1 and r′1, contradicting the hypothesis that the robots are
at least three.
In conclusion, when moving r1 does not create any rotation or reflection with a
robot becoming equivalent to r1. The two cases in which r1 creates a symmetric
configuration is when it is on an horizontal axis and it moves along that axis or
when is on a 30◦ axis and in this situation r1 can always break the symmetry.
To conclude the proof of H1, we also need to ensure that r1 is always recognized
until reaching f1. In fact, as long as r1 is sufficiently far away from the other robots
it is easily recognizable according to its distance from O. When r1 is close to the
other robots is still always recognizable. In fact the parallelogram mbp(R) is unique
(apart from the case in which r1 is on an axis of symmetry at 0◦ and 30◦) and it
can’t be a square due the position of r1 then there are two sequences of integers
associated to the canonical corners of the mbp(R). The minimal one finds r1 as the
first robot; in fact if there were another robot playing the role of r1 in the minimal
reading that reading would be a palindrome to the first sequence and that means
that the configuration is symmetric. Since the algorithm doesn’t create symmetric
configurations, such palindrome reading cannot exists and then r1 is unique. If r1
lies on an axis, there are two parallelograms equivalent to mbp(R) but the sequence
of integers associated with these parallelograms finds r1 as the first robot, then again
r1 is uniquely identified.
(Property H2). During the movement of r1, predicate qf1 remains true because
n−1 robots are already matched, they all stay still and r1 straightly moves towards
its target along the direction of the longest side of mbp(F ). This implies that the
sequence ℓ(mbp(R)) keeps its structure given by the concatenation of a subsequence
ℓ′ made of only 0s and just one 1 in position dr1 and a subsequence ℓFf1 that encodes
the position of the robots already matched. When r1 reaches its target ℓ(mbp(R)) =
ℓ(mbp(F )) and the configuration is in T8.
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(Property H3). After each move, r1 decreases the distance from f1 while the se-
quence ℓ′ gets smaller by a number of 0s equal to the shorter side of mbp(R) until
ℓ(mbp(R)) = ℓ(mbp(F )). This implies that within a finite number of LCM cycles s

becomes true and C ′ belongs to T8.

Remark 7. We have shown that in fact algorithm Aform manages not only asym-
metric configurations but also some leader configurations where only one robot has
to move and it is recognizable as one of the two guards r1 or rn.

Theorem 1 (Correctness). Let C = (GT , λ) be any initial configuration with n ≥
3 Async robots, and let F be any pattern (possibly with multiplicities) such that
|F | = n. Then, Aform is able to form F starting from C.

Proof. What we are going to show is that if all three properties H1, H2 and H3 hold,
then for each possible execution of Aform there exists a time t∗ such that C(t∗) is
similar to F and C(t) = C(t∗) for any time t ≥ t∗. This implies that the statement
holds.
Assume that C is provided as input to Aform . According to properties Prop1, Prop2
and Prop3, there exists a single task (say Ti) to be assigned to robots with respect to
C. According to H1, any configuration generated from Ti (say C ′) can be provided
as input to Aform . Moreover, by H2 and H3, we can consider C ′ belonging to some
class (say Tj) different from Ti. According to this analysis, we can say that C ′ will
evolve during the time by changing its membership from class to class according to
the forward transitions defined by Lemmas 1–6. Although the execution of Aform is
infinite, property H3 assures that any task is completed within a finite number of
LCM cycles, apart for T8 that will be reached within finite time t∗. Moreover, as the
only movement allowed in T8 is the nil one, then the reached configuration will not
change anymore.

3.3.5 Algorithm extension to graphs GS and GH

In this section, we briefly discuss how algorithm Aform can be extended to solve the
APF problem for asymmetric configurations defined on GS or GH .
Our algorithm uses a few geometric concepts, such as bounding parallelogram, grid
line, shortest path, moving along a line, and quadrant. Moving from GT to GS

all these concepts remain valid and the canonical directions reduce to two, and
consequently bp(R) is unique. Moves do not need any changes. Since predicates
are independent of the underlying graph, there is no need to change them. Hence
the algorithm Aform remains the same, and the proof of correctness still holds while
considering the variations due to the reduction of the canonical directions.
Moving to hexagonal grids, GH is considered as a subgraph of GT in which the
center of the hexagons corresponds to removed vertices. By assuming the “presence”
of the missing nodes and edges in relation to GT , most of the geometric concepts
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introduced are still valid except for “movement along a line”. A robot cannot move
along a line but it needs to move along the edges of successive hexagons. For
instance, in tasks T1 and T2, Aform requires that r1 reaches the target via shortest
paths, without assuming other constraints. So, even in GH the moves m1 and m2

remain valid. Conversely, during T3, rn moves along the Y -axis according to Aform .
In this case, we need to specify how a similar movement can be realized since there
are missing edges of GT . In the next subsection, we revise the algorithm and give
the details of the changes needed to extend Aform to hexagonal grids.

Hexagonal grid graphs

GH is considered as a sub graph of GT in which the center of the hexagons corre-
sponds to removed vertices. The basic concepts defined for GT naturally extend to
GH . In particular:

• the distance function between two vertices u and v in GH is the length of a
shortest path connecting u and v in GT ;

• canonical directions in GH are the directions of the edges incident to a single
vertex, the same introduced in GT . Given the canonical directions, we consider
the same definition for a mpb as in GT . Given a vertex v and an oriented line
L passing through v toward a canonical direction, vertex v can be classified in
one of these three types:

– type 0: if v is not in GH ;

– type 1: if v has an edge following the orientation of L;

– type 2: otherwise.

The type of a leading corner is determined by the reading in the same direction
that originates the sequence of mbp(F ).

• the sequence of integers associated to a configuration of robots is the same as
defined for GT placing a zero in the sequence in correspondence of a vertex in
GT but not in GH .

Further concepts will be introduced in the following description of the algorithm. In
the hexagonal graph, to go toward a direction, a robot either moves to the adjacent
vertex if there is an edge connecting the two or it moves along the edges of the next
hexagon ahead. Therefore a robot moves alternatively straight or diverting its path.
As a result, the movement of a robot is enclosed in a band that is tall half the height
of an hexagon while moving toward a direction (cf. Figure 3.13). Given a robot and
three canonical directions, there are two bands for each direction, the band selected
each time by the robot is specified in a task when needed.
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Figure 3.13: Robot r6 moving in a band during task T3.

• Task T1: During this task, robot r1 moves away from the other robots until
predicate g1 becomes true. For hexagonal grids predicate g1 is updated as
follows:
g1 : r1 is at a vertex such that exists a unique direction in which at least one
of the lines passing through r1 or one of its neighbors encounters each bp(R′).

• Task T2: In this task, r1 moves at a distance 3∆ from the origin. The origin
here is redefined since it can be a vertex of GT not in GH . Given r1 and rn,
let R′′ be R′′ = R \ {r1, rn}. Let L be the line that forms a canonical angle
with X passing through a robot in R′′ and farthest from r1. The origin is
defined as the first vertex encountered from the intersection of L and the X-
axis, having the same type of the leading corner of mbp(F ) read by following
the orientation of the Y -axis.

• Task T3: In this task, rn moves toward its target through any shortest path
while keeping outside mpb(R′′) also during a detour.

• Task T4: In this task, n − 2 robots reach their target one by one. This task
develops in the same way as in GT .

• Task T5: In this task, guard rn goes towards its target fn. While moving
parallel to the X-axis, rn moves in any band that keeps at least 2∆ distance
from the X-axis. While moving parallel to the Y -axis, rn moves in the band
farthest from r1. Predicate hrn is updated as follows:
hrn : fn = (x, y) and rn = (x′, y′), with x′ ≤ x+ 1 and y′ > y

• Task T6: In this task, r1 moves parallel to the shortest side of the parallelogram
mbp(R) as to increase dr. During the movement r1 moves in any band that
keeps at least 3Mf(mbp(F )) distance from mbp(F ). We say that r1 is in line
with its target if dr = df or dr − 1 = df since r1 is moving within a band, so
predicate qf1 updates as follows:
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qf1 : ℓ(mbp(R)) = ℓ′ + ℓFf1 , for some ℓ′ made of only 0’s and just one 1 in
position dr and (dr = df ∨ dr − 1 = df ).

• Task T7: In this task, r1 moves towards its target and in case of detours it
moves in the direction such that ℓ(mbp(R)) decreases.

The same proofs of correctness given in Section 3.3.4 for GT apply for GH .

3.3.6 Concluding remarks

We provided an algorithm that solves the APF problem for asynchronous robots
moving on any regular tessellation graphs (i.e., triangular, square, and hexagonal
grids) as a discretization of the Euclidean plane. As a relevant improvement, com-
pared to previous results, our algorithm works for any tessellation graph and also
admits patterns with multiplicities. As a possible limitation, our algorithm assumes
only asymmetric configurations as input.
For robots moving in the Euclidean plane, APF can be solved if and only if a leader
configuration is provided as input [38]. Leader configurations form a superset of all
the asymmetric configurations since they are defined as those configurations in which
it is possible to elect a leader robot. They contain symmetric configurations in which
a leader robot is located in the center of symmetry or on an axis of symmetry. In the
Euclidean plane, the robots are assumed to be able to execute accurate movements in
any direction and by any amount, even by infinitesimally small amounts. Therefore,
even in densely crowded situations, a leader robot can always maneuver to leave
the center or the axis, and thus break the symmetry. Of course, in graphs this
simple strategy cannot be applied as the movements of the robots are restricted
to the neighborhood (e.g., consider the case of a rotational configuration defined
on GS with a robot on the center of rotation and all its four neighbors occupied).
Hence, it may happen that the leader cannot move without causing a multiplicity
which might prevent the formation of the final pattern. As a consequence, before
moving the leader, a resolution strategy should make “enough space” around the
leader. This topic has been recently investigated in [33] for configurations defined
on GS or GT . As a natural extension of our work, it would be interesting to check
whether the strategy proposed in [33] can be combined with Aform . If possible, it
would characterize the APF problem on both GS and GT . However, from a first
attempt, the composition of the two algorithms is not straightforward, mainly due
to the occurrence of possible pending moves.
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3.4 The Geodesic mutual visibility problem on trees

One of the basic tasks for mobile robots, intended as points in the plane, is cer-
tainly the requirement to achieve a placement so as no three of them are collinear.
Furthermore, during the whole process, no two robots must occupy the same posi-
tion concurrently, i.e., collisions must be avoided. This is known as the Mutual
Visibility problem. The idea is that, if three robots are collinear, the one in the
middle may obstruct the reciprocal visibility of the other two.
Mutual Visibility has been largely investigated in recent years in many forms, sub-
ject to different assumptions. We introduce the Geodesic Mutual Visibility
problem (GMV, for short): starting from a configuration composed of robots lo-
cated on distinct vertices of an arbitrary graph, within finite time the robots must
reach, without collisions, a configuration where they all are in geodesic mutual visi-
bility. Robots are in geodesic mutual visibility if they are pairwise mutually visible,
and two robots on a graph are mutually visible if there is a shortest path (i.e., a
“geodesic”) between them along which no other robots reside. This new problem can
be thought of as a possible counterpart to the Mutual Visibility for robots mov-
ing in a discrete environment. While this concept is interesting by itself, its study is
motivated by the fact that robots, after reaching a GMV condition, e.g., can com-
municate in an efficient and “confidential” way, by exchanging messages through the
vertices of the graph that do not pass through vertices occupied by other robots
or can reach any other robot along a shortest path without collision. Concerning
the last motivation, in [15] it is studied the Complete Visitability problem of
repositioning a given number of robots on the vertices of a graph so that each robot
has a path to all others without visiting an intermediate vertex occupied by any
other robot. In that work, the required paths are not the shortest paths and the
studied graphs are restricted to infinite square grids and infinite hexagonal grids,
both embedded in the Euclidean plane. Recently, the geodesic mutual visibility has
been investigated in [62] from a pure graph-theoretical point of view in order to
understand how many robots, at most, can potentially be placed within a graph G
in order to guarantee GMV. Such a number of robots has been denoted by µ(G).
For instance, within a path P only two robots can be placed, i.e., µ(P ) = 2, whereas
for a ring R, µ(R) = 3. In a general graph G, it turns out to be NP-complete to
compute µ(G), however for a tree T , it has been proven that µ(T ) = ℓ(T ), with ℓ(T )
being the number of leaves of T .
After formally defining the problem of achieving GMV, starting from a configuration
of robots disposed on general graphs, we focus on tree topologies. Given a tree T
with ℓ(T ) leaves, we first consider the extreme case of n = ℓ(T ) robots disposed on
ℓ(T ) different vertices of T and we look for a distributed algorithm that makes robots
moving to achieve GMV without collisions. Depending on the tree, the solution to
the GMV problem is not unique, but an algorithm that moves robots to occupy all
the leaves of T always solves the problem. We design a deterministic algorithm,
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identical for all the robots, that solves initial configurations when considering the
very weak setting of semi-synchronous robots without lights. For the initial
configurations, where each vertex is occupied by at most one robot, we assume the
absence of critical vertices. Intuitively, a vertex v is said to be critical if two or more
equivalent robots must pass through v in order to reach a leaf, hence potentially
colliding in v. The formal definition of critical vertex will be given successively. We
then provide the necessary modifications to the algorithm for solving the general
case with n ≤ ℓ(T ).
Furthermore, we provide an extended discussion about the configurations admitting
critical vertices as well as for the asynchronous or synchronous settings. In fact, the
difficulties arising in such contexts deserve deep investigation and attention. How-
ever, we provide challenging ideas, strategies and observations in order to stimulate
future research.

Outline

Section 3.4.1 formalizes the GMV problem, introducing also useful notation such
as the formal definition of critical vertex; Section 3.4.2 describes the proposed res-
olution algorithm, Section 3.4.5 discusses the complexity of the designed algorithm
by providing a lower bound for GMV; Section 3.4.6 shows challenging scenarios to
highlight difficulties arising when critical vertices are admitted; finally, Section 3.4.7
poses interesting future work directions.

3.4.1 Problem formulation

The topology where robots are placed on is represented by a simple and connected
graph G = (V,E). A function λ : V → N gives the number of robots on each vertex
of G, and we call C = (G, λ) a configuration whenever

∑︁
v∈V λ(v) is bounded and

greater than zero. We introduce the Geodesic Mutual Visibility (GMV, for
short) problem:

- Given a configuration C = (G, λ) in which each robot lies on a different vertex
of a graph G, design a deterministic distributed algorithm working under the
LCM model that, starting from C, brings all robots on distinct vertices – without
generating collisions – in order to obtain the geodesic mutual visibility, that is
there is a geodesic between any pair of robots where no other robots reside.

As described in the introduction, we study GMV in the context of trees. In the rest
of this section, we provide the necessary concepts.
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GMV on trees

Given a configuration C = (T, λ), a vertex v of T such that λ(v) > 0 is called
occupied, unoccupied otherwise. If λ(v) ≥ 2, there is a multiplicity in v. Given a
vertex v, if v is occupied by a robot r, we often denote v also as vr. Notation ℓ(T )
is used to represent the number of leaves of T . As usual, N(v) denotes the set of
all adjacent vertices of a vertex v. Assuming N(v) = {v1, v2 . . . , vk}, the removal
of v from T creates k subtrees, each denoted as T (v, vi) and assumed rooted at vi,
i = 1, 2, . . . , k. If e = (v1, v2) is an edge of T , the removal of e from T creates
two subtrees, each denoted as T (e, vi) and assumed rooted at vi, i = 1, 2. In each
removal operation, the obtained subtrees are called complete subtrees of T . These
removal operations are now used to provide some additional definitions.

Definition 4. Let C = (T, λ) be a configuration, and T ′ be a complete subtree of T
obtained by a removal operation. T ′ is overloaded if the number of robots in T ′ is
greater than the number of leaves of T in T ′.

Figure 3.14 shows three configurations where the complete subtrees of vertex v with
robots are overloaded subtrees.

Definition 5. Let C = (T, λ) be a configuration. An edge e = (v1, v2) of T is
considered oriented from v1 to v2 if the complete subtree T (e, v1) is overloaded. A
path P = (v1, v2, . . . , vk) of T is considered oriented if all its edges are oriented
toward the same endpoint, i.e., either v1 or vk. P is considered partially-oriented if
all the oriented edges (if any) are oriented toward the same endpoint.

Consider again Figure 3.14. All the given configurations are represented according
to the edge orientation described in the above definition. In each case, the path
from vr1 to any unoccupied leaf is oriented, whereas the path from any occupied leaf
to any unoccupied leaf is partially-oriented.

Definition 6. Let C = (T, λ) be a configuration, and v be a vertex of T . Vertex v is
critical if its removal generates at least two overloaded complete subtrees T (v, v1) and
T (v, v2) such that (T (v, v1), λ) and (T (v, v2), λ) are isomorphic. In such a case, these
subtrees are called critical-subtrees. Vertex v is potentially-critical if its removal
generates at least two overloaded complete subtrees and all such generated subtrees
are pairwise non-isomorphic.

As an example, vertex v in the configuration given in Figure 3.14.(a) is critical
(in fact, (T (v, vr1), λ) and (T (v, vr2), λ) are isomorphic and both overloaded). In
Figure 3.14.(b), instead, vertex v is potentially-critical as it is non-critical but the two
sub-trees below it are both overloaded. The term potentially-critical is motivated
by the observation that when moving robots from an overloaded subtree toward
unoccupied leaves, the performed move could transform the vertex from potentially-
critical to critical (and this, as it will be clarified in Section 3.4.6, could generate
unsolvable configurations).
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Figure 3.14: Examples of configurations. Occupied vertices are represented in black.

Definition 7. Let C = (T, λ) be a configuration, where T = (V,E) is a tree. C is
initial if it contains n ≤ ℓ(T ) robots, each one lying on a different vertex – that is,
λ(v) ≤ 1 for each v ∈ V – and C does not contain critical vertices. C is final if it
contains n robots each one lying on a distinct leaf of T .

According to this definition, the specific version of GMV addressed in this work can
be defined as the problem of transforming an initial configuration into a final one.
Notice that a final configuration has always robots positioned on the leaves, and this
ensures that GMV is solved even if the problem definition does not require such a
property. In particular, given an initial configuration C, a deterministic distributed
algorithm A resolves GMV if for any execution E : C = C(t0), C(t1), . . . of A, there
exists a time instant t∗ ≥ 0 such that C(t∗) is final and no robots move after t∗, i.e.,
C(t) = C(t∗) holds for all t ≥ t∗. Given a configuration C = (G, λ), we say that
GMV is solvable from C if and only if there exists a resolving algorithm for C. We
will prove the following result:

Theorem 2. Let C = (T, λ) be an initial configuration composed of n ≤ ℓ(T ) SSync
robots, then GMV is solvable from C.

Actually, we will provide the formal proof of the above theorem by considering the
extreme case with n = ℓ(T ) robots (cf., Theorem 3). Successively, we give the
necessary modifications for the general case with n ≤ ℓ(T ).
In general, the solvability of many algorithmic problems defined for robots moving
in a discrete or continuous environment is strongly influenced by symmetries in the
input configuration, and therefore by the presence of pairwise equivalent robots. It
is important to note that in this first work in which we deal with GMV, we consider
symmetric configurations, but only those without critical vertices. In Section 3.4.6,
we provide an extensive discussion in which we motivate how the presence of critical
vertices makes solving GMV particularly difficult, if not even impossible.



3.4. THE GEODESIC MUTUAL VISIBILITY PROBLEM ON TREES 104

3.4.2 A resolving algorithm for GMV

In this section, we provide a distributed algorithm along with its correctness proof,
that is a proof for Theorem 2.

Further notation and definitions

In the following, given an initial configuration C = (T, λ), we denote by R =
{r1, r2, . . . , rℓ(T )} the set of robots in C.4

The center of a graph is the set of all vertices that minimize the maximal distance
from other points in the graph. It is well known that the center of a tree is a
set containing one vertex or two adjacent vertices [127]. The provided algorithm
requires that each robot identifies a single vertex as the center, denoted as c(T ). To
this aim, when the center of T is a single vertex v, then each robot assumes c(T ) = v;
when the center is {v1, v2} and e = (v1, v2) is oriented toward vi, then each robot
assumes c(T ) = vi; when the center is {v1, v2} and e = (v1, v2) is non-oriented, each
robot located in the subtree T (e, vi) assumes T = T (e, vi) and c(T ) = vi, i = 1, 2,
that is like running the algorithm concurrently in two distinct instances.
In the following, given an initial configuration C, we denote by P(C) the set con-
taining all the partially-oriented paths from c(T ) to some unoccupied leaf of T , if
any. We will show that P(C) ̸= ∅ for each initial configuration C where GMV is
not yet solved.

Definition 8. Let C = (T, λ) be an initial configuration. R′(C) is the set containing
any robot r ∈ R such that:

• r is on a vertex of a path P ∈ P(C) leading to an unoccupied leaf l;

• r is the closest robot to l among the robots on vertices of P ;

• the subpath of P is oriented from vr to l.

For each edge e = (u, v) of T , let s(e) be the minimum number of robots that
have to pass through e to solve GMV on C. Formally, if e is not oriented, then
s(e) = 0; if e is oriented from u to v, then s(e) is the difference between the number
of robots on the vertices of T (e, u) and the number of leaves of T in T (e, u). For a
partially-oriented path P , s(P ) =

∑︁
e∈P s(e).

4We recall that we are first considering the extreme case of n = ℓ(T ) robots and that the robots
are anonymous. The notation is used only for the sake of presentation, hence no algorithm can
take advantage of the names of elements in R.
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The view of robots

In the algorithm, sometimes we need to distinguish among robots having some prop-
erties (e.g., minimum distance from unoccupied leaves). To this purpose, we use the
so-called view of a robot. The view of each robot is elaborated during the Compute
phase, starting from the snapshot perceived during the Look phase. In particular,
we consider an approach similar to that used in [28, 108] to determine isomorphisms
among trees. In particular, a robot r can associate a unique string to the tree
rooted in the vertex vr where it resides, keeping trace of the presence/absence of
a robot in a vertex by associating 1 or 0, respectively. Moreover, parentheses are
inserted into the strings to track the relationship between one node and its children
recursively. For example, the string associated with the vertex vr1 in Figure 3.15
is (1(1(1)(0))(0(1))(0)) , obtained by lexicographically ordering the strings recur-
sively associated with the roots of its subtrees. The lexicographic order assumes
“(” < “)” < “1” < “0”. Since the string associated with vr2 is (1(1(0(1))(0))(1)(0)),
then we say that the view of robot r1 is smaller than the view of robot r2. Notice
that two equivalent robots have the same view (i.e., are associated with the same
string). In conclusion, each robot can compute the view of all robots, determine the
robot(s) with minimum view, and also determine whether there is any symmetry in
the observed configuration.

vr1 (0)

(1(1(0(1))(0))(1)(0))

(1(0(1))(0))

(0)

(1)

(1)

(0)(1) (0)

(1(1(1)(0))(0(1))(0))

(1) (0(1))

(0(1)) (1(1)(0))

vr2vr1

vr2

Figure 3.15: Examples of views associated with different robots/vertices.

Description of the algorithm

The provided algorithm for solving GMV from each initial configuration C is called
MoveToLeaf and is described in Algorithm 3. Essentially, we can assume that, during
the LCM-cycle, each robot first computes a snapshot of the current configuration (in
the Look phase), and then executes MoveToLeaf (in the Compute phase). In the
Move phase, the moving robot performs the move as specified in MoveToLeaf.
The strategy behind algorithm MoveToLeaf is the following. At line 2, the set R′(C)
is computed. If such a set is not empty, then there are robots on partially-oriented
paths from c(T ) towards unoccupied leaves which can be brought to target by moving
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Algorithm 3 MoveToLeaf
Input: Initial configuration C = (T, λ).
1: compute the view of C
2: compute R′(C)
3: if R′(C) ̸= ∅ then
4: move m1: each robot r ∈ R′(C) of minimum view moves toward one of its closest

unoccupied leaves along a path P ∈ P(C) toward one of such leaves
5: else
6: let S = DetermineMovingRobots(C)
7: if S ≠ ∅ then
8: move m2: let (v, vr) be the key in S, with r of minimum view, r moves to v

them along oriented paths. This case can be observed in Figure 3.16, where robots
r1 and r2 belong to R′(C). In this situation, the algorithm preliminarily moves
these robots (cf. move m1 at Line 4) until a configuration C1 in which R′(C1) = ∅
is generated.

Algorithm 4 DetermineMovingRobots
Input: Initial configuration C = (T, λ).
1: let S be an empty map
2: compute P(C)
3: for all P ∈ P(C) do
4: let l be the leaf where P leads
5: let v be the vertex on P closest to l such that there exists an edge e = (u, v)

oriented toward v with u not in P
6: for all occupied vertex vr ∈ T (v, u) do
7: if the path P (v, vr) = (v ≡ v0, v1, v2, . . . , vt ≡ vr) is oriented toward v then
8: let S[(v, vr)] = (s((v0, v1)), s((v1, v2)), . . . , s((vt−1, vr))
9: let S ′ be the submap of S containing the lexicographically minimal sequences

of S
10: return S ′

Successively, since R′ is empty, MoveToLeaf calls procedure DetermineMovingRobots
at Line 6, the routine described in Algorithm 4. Assume that a robot r (located on
some non-leaf vertex vr) can move along an oriented path P to reach a vertex v that
belongs to any partially-oriented path in P(C). DetermineMovingRobots associates
a priority to r according to the integers s(e) assigned to each edge e of P (an example
of this assignment is shown in Figure 3.16). In this way, a sequence of integers is as-
signed to robots, and the robot with the lexicographically smallest sequence is then
moved by MoveToLeaf along an oriented path toward a path in P(C). Notice that,
if the configuration has vertices equivalent to v, equivalent robots can be selected
and moved concurrently (but remember that their activation is decided by the ad-
versary). We remark that the priority based on the integer sequences is an essential
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part of the strategy as it avoids to perform “bad moves” that could transform ver-
tices from potentially-critical to critical thus generating unsolvable configurations.
For instance, the rightmost sequence represented in Figure 3.16, it can be observed
that the lexicographically smallest sequence (3, 3, 1, 1) is associated to the only robot
that can reach v without creating critical vertices and following a path in P(C).
By considering again the current scenario, it follows that MoveToLeaf calls
DetermineMovingRobots to select one robot (and its equivalent robots) to be moved
toward a partially-oriented path from c(T ) to unoccupied leaves. When this path is
reached by a robot, set R′ turns out to be not empty and hence move m1 is applied
again to lead that robot on an unoccupied leaf. The whole process is repeated until
a final configuration is created.

4

2 1

4 4
3

1

v

vr

1

4

2 1

1 1

3

2 1

1 1

3

2 1

1 1

c(T )r1
r2

5

T1 T2

Figure 3.16: A schematic representation of an initial configuration C elaborated
by MoveToLeaf. The triangles represent two subtrees denoted as T1 and T2 and
containing unoccupied leaves. The dashed and curved lines represent paths. In the
discussion it is assumed that the paths from c(T ) to T1 and from c(T ) to T2 belong
to P(C).
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3.4.3 Algorithm correctness

In this section, we prove that MoveToLeaf is a resolving algorithm for GMV from
each initial configuration C. This is achieved by exploiting a series of lemmata
concerning useful properties.

Lemma 8. P(C) ̸= ∅ for each initial and non-final configuration C = (T, λ).

Proof. Since the configuration is non-final, there exists at least one unoccupied leaf.
By contradiction, assume P(C) = ∅. This implies that each path from c(T ) to
an unoccupied leaf has at least one edge oriented toward c(T ). Let P1 be one of
such paths and let e = (v1, v2) be an edge of P1 oriented toward c(T ). Removing
e from T generates the subtrees T (e, v1) and T (e, v2). Without loss of generality
assume that c(T ) is contained in T (e, v1). By definition of oriented edge, in T (e, v1)
the number of robots is strictly less than the number of leaves of T in T (e, v1).
Hence T (e, v1) contains at least an unoccupied leaf l. Let P2 be the path from c(T )
to l. Let then remove one edge oriented toward c(T ) from P2 and consider again
the generated subtree containing c(T ). Repeat this procedure until the generated
subtree T ∗ containing c(T ) has no unoccupied leaf. In T ∗, the number of robots is
strictly less than the number of leaves of T in T ∗, but the number of unoccupied
leaves of T ∗ is zero, a contradiction.

Lemma 9. Let C = (T, λ) be an initial configuration, and let C ′ be the configuration
generated from C by MoveToLeaf according to one execution of move m1. Then, C ′

is still an initial configuration.

Proof. Consider the set R′′ containing all the equivalent robots moved by move m1.
We have to show that the configuration C ′, created after the move of the robots in
R′′, is initial, i.e., it does not contain critical vertices nor multiplicities. By Lemma 8
and definition of R′(C), each robot in R′′ admits a distinct directed path toward
an unoccupied leaf where no other robots lie. Hence, the creation of multiplicities
along such paths is not possible. Let r ∈ R′′ and, by contradiction, let u be a critical
vertex generated after the move of r and the robots equivalent to r in R′′, if any.
Vertex u must be on the path from r to c(T ), otherwise it was a critical vertex even
before the move. Since u is critical, there must be two or more pairwise isomorphic
subtrees created after the move of r. Robot r must be in one of them, say T (u, v).
Since T (u, v) is overloaded, the edge (u, v) must be oriented from v to u. This is
a contradiction since (u, v) belongs to the path from c(T ) to the unoccupied leaf l,
target of r, and this path is partially-oriented from c(T ) to l.

Lemma 10. Let C = (T, λ) be an initial configuration in which R′(C) = ∅. Then,
each P ∈ P(C) does not contain any occupied vertex.

Proof. By contradiction, assume that there exists a path P ∈ P(C), partially-
oriented from c(T ) to an unoccupied leaf l, with some occupied vertices. Let r be



3.4. THE GEODESIC MUTUAL VISIBILITY PROBLEM ON TREES 109

the robot on P closest to l. Denote as P ′ and P ′′ the subpaths of P from c(T ) to vr
and from vr to l, respectively. According to the definition of R′(C), the assumption
R′(C) = ∅ implies that P ′′ is not oriented toward l. Since the number of robots is
equal to ℓ(T ), there must exist an oriented path P ′′′ from vr to an unoccupied leaf
l′ ̸= l. Since P ′ is partially-oriented toward vr, then P ′ and P ′′′ do not share any
edge. Hence, the concatenation of P ′ and P ′′′ forms a partially-oriented path from
c(T ) to l′. A robot in this path (either r or the robot in the path that is closest to
l′) fulfills Definition 8. Hence R′(C) ̸= ∅, against the assumption.

Lemma 11. Let C = (T, λ) be an initial configuration, and let C ′ be the config-
uration generated from C by MoveToLeaf according to one execution of move m2.
Then, C ′ is still an initial configuration.

Proof. Since MoveToLeaf applies move m2 then R′(C) = ∅. By Lemma 10, each
path P ∈ P(C) does not contain robots. Consider the set R′′ containing all the
equivalent robots moved by move m2. We have to show that the configuration C ′,
created after the move of the robots in R′′, is initial, i.e., it does not contain critical
vertices nor multiplicities.
Move m2 selects a pair (v, vr) and moves the robot r toward v. The algorithm moves
all the robots equivalent to r, and then with minimal view, if any. When r is moving
toward v, say from vr to v′ ∈ N(vr), there are two cases in which a critical vertex
can be created:

1. the complete subtree T (v′, vr) becomes isomorphic to another tree T (v′, a),
hence v′ becomes critical;

2. robot r becomes equivalent to a robot r′.

Case 1) Before r moves, T (v′, vr) has one robot more than T (v′, a). Notice that
there must be at least one robot in both the sub-trees. Hence, s((v′, vr)) > s((v′, a))
and then S[(v, vr)] > S[(v, a)]. This implies that a robot in T (v′, a) had to be moved
instead of r.
Case 2) After the move of r on v′, a new critical vertex u is created at the center of the
path Q between v′ and vr′ , with the two incident edges on paths P (v′, u) and P (vr′ , u)
oriented toward u. Moreover, u is the vertex closest to c(T ) among the vertices in
Q. Then u is in the path P (c(T ), v), subpath of P , or in the path P (v, v′). Vertex
u cannot be a vertex of P (c(T ), v), v excluded, due to the orientation of the edges
of P toward an unoccupied leaf. Then, u is a vertex in the path P (v, v′) (extremes
included). Since robots r and r′ are equivalent, we have s(P (v, v′)) = s(P (v, vr′)).
Then, s(P (v, vr′)) is a prefix of s(P (v, vr)) before the move. So, s(P (v, vr′)) <
s(P (v, vr)) and the robot to be moved was r′, indeed.
As for the multiplicities, if r is the only robot moving on v′ ̸= v then no multiplicity
is possible since, by the minimality of s(P (v, vr)), v′ is unoccupied. If r is the only
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robot moving on v′ when v′ = v, then v′ is unoccupied because it is on a path
P ∈ P(C) and, since R′(C) = ∅, by Lemma 10, P has no occupied vertices. If r is
not the only robot moving on v′, then all the robots moving on v′ are equivalent,
and v′ is critical in C, a contradiction since C is an initial configuration.

Theorem 3. Let C = (T, λ) be an initial configuration composed of n = ℓ(T )
SSync robots, then GMV is solvable from C.

Proof. We prove that MoveToLeaf is a resolving algorithm for C. Given s(C) =∑︁
e∈E s(e), it easily follows that GMV is solved from C if and only if s(C) = 0. Let

E : C = C(0), C(1), C(2), . . . be an execution of MoveToLeaf formed by a sequence
of configurations observed at discrete time t = 0, 1, 2, . . .. We have to show that
there exists t∗ ≥ 0 such that C(t∗) ∈ E, s(C(t∗)) = 0, and C(t) = C(t∗) for each
t > t∗.
Assume s(C(0)) > 0, and wlog R′(C(0)) ̸= ∅. This implies that MoveToLeaf ap-
plies m1 to C(0). The resulting configuration C(1) is still initial (cf. Lemma 9)
and s(C(1)) < s(C(0)) because m1 moves robots toward unoccupied leaves along
oriented edges. Hence, by repeatedly applying m1, MoveToLeaf leads to an initial
configuration C(t′), t′ > 0, in which R′(C(t′)) = ∅. In C(t′), MoveToLeaf applies
move m2 and Lemma 11 guarantees that C(t′ + 1) is still initial. In particular: (1)
move m2 moves robot r (along with its equivalent robots), (2) vr belongs to a path
P (v, vr) oriented from vr to v, and (3) r moves along P (v, vr) toward v. This implies
that s(C(t′ + 1)) < s(C(t′)). If in C(t′ + 1) robot r does not reach v, move m2 is
applied again. Assume that at time t′′, for some t′′ > t′ + 1, r reaches v. Since v
is on a path P ∈ P(C(t′′)), by Lemma 10 we get R′(C(t′′)) ̸= ∅ and move m1 is
applied again.
It follows that the execution E is formed by alternating subsequences of configu-
rations in which each subsequence is generated only by move m1 or only by move
m2. Since we have shown that the function s() decreases at each execution of
MoveToLeaf, it is clear that there exists a time t∗ > 0 such that s(C(t∗)) = 0,
R(C(t∗)) = ∅, and the map S is empty. Hence, C(t∗) is final and no further moves
are made. This means that MoveToLeaf is able to solve GMV from C.

3.4.4 General case with n ≤ ℓ(t) robots

So far, the proposed algorithm solves the case with n = ℓ(T ) robots. In this section,
we provide all the details necessary to deal also with n < ℓ(T ) robots. In general,
the strategy will be to add ℓ(T )− n virtual (and static) robots to the configuration
so as to allow the use of the algorithms described before. In particular, the added
virtual robots are used to compute all the directions on the edges of the input tree
in order to define the set of paths P(C). Actually, virtual robots are not used to
compute R′(C) or any other subset involving robots. Of course, for consistency
reasons, all robots must agree about the same locations where to add the virtual
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robots. Moreover, we have to guarantee that such robots do not affect the normal
functioning of the algorithms designed for the case of n = ℓ(T ).
About the location(s) where to add ℓ(T )− n virtual robots, we consider the center
of the input tree T . In particular, if the center of T is a set containing just one
vertex c(T ), then robots can compute the directions of the edges by adding ℓ(T )−n
virtual robots in c(T ). When the center is {v1, v2}, we remind that there exists the
edge e = (v1, v2). Let ni be the number of robots residing in the subtree T (e, vi),
i = 1, 2. Now, if vi is not a leaf of T (e, vi) then set ρi = ℓ(T (e, vi)) − ni, otherwise
set ρi = (ℓ(T (e, vi))− 1)−ni. If ρi > 0, then add ρi virtual robots to vi, for i = 1, 2.
In doing so, we ensure that the role of the virtual robots never changes, so as their
placement.
Consider how the proposed algorithms work. First of all, DetermineMovingRobots
is not affected by virtual robots as by construction c(T ) is never part of the subtree
considered by that algorithm. Concerning Algorithm MoveToLeaf, instead, it would
move robots from c(T ) if the paths to the leaves do not contain robots. Since virtual
robots are not accounted in R′(C), the algorithm would not allow virtual robots
to move. Hence, if Algorithm MoveToLeaf has still robots to move, it proceeds;
otherwise if only virtual robots remain to move then it means GMV has been solved.
By Theorem 3 and the above discussion, we conclude the general Theorem 2 holds.

3.4.5 Time complexity

The time complexity is measured in terms of epochs, where an epoch is the time
duration for all robots to execute at least one complete LCM-cycle since the end of the
previous epoch. For FSync robots, an epoch coincides with a round. For SSync
and Async robots, instead, the duration of an epoch may vary from time to time
and it is unknown, however, by the fairness condition, it is finite.
In what follows, D denotes the diameter of the tree of a given configuration.

Lemma 12. MoveToLeaf requires O(nD) epochs to solve GMV from initial config-
urations composed of n SSync robots.

Proof. The statement simply follows by observing that procedure MoveToLeaf, at
Line 4 or at Line 8, always moves a robot at a time (along with all the robots
equivalent to it) along shortest oriented paths toward a target leaf which might be
of length D.

Lemma 13. GMV requires Ω(n+D) epochs to be solved from initial configurations
composed of n SSync robots.

Proof. Let C = (T, λ) be an initial configuration composed of n SSync robots
r1, r2, . . . , rn. Assume that T is a tree consisting of a path P = (v1, v2, . . . , vn, . . . , vm)
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such that m >> n, along with n − 1 pendant vertices attached to vm. Assume
r1, r2, . . . , rn are disposed on v1, v2, . . . , vn, respectively. This implies that r1 is al-
ready on a target, whereas the remaining n− 1 robots must be moved on the n− 1
leaves connected to vm. In C = C(0), only vn can be moved, otherwise a collision
is created. Let C(1) be the configuration obtained after the move of vn. In C(1),
only robots vn and vn−1 can be moved. By repeating this analysis, we get that each
solving algorithm can move v2 for the first time no earlier than t = n − 2. After
this first movement, v2 requires D− 1 additional epochs to reach its target. At that
time, GMV is solved. This implies that any solving algorithm requires Ω(n + D)
epochs to solve GMV on the assumed initial configuration.

3.4.6 On the difficulties posed by critical vertices

In this section, we illustrate some of the challenges posed by GMV on trees when
critical vertices are allowed. To this aim, we show a few cases of input configurations
with critical vertices that are either unsolvable or require specific strategies within
SSync. Furthermore, we discuss how they can be approached within FSync.

1. Unsolvable configurations. Consider the configuration C1 shown in Fig-
ure 3.14.(a). Vertex v is critical in C1 since (T (v, vr1), λ) and (T (v, vr2), λ) are
isomorphic and both overloaded (in particular, each vertex in these critical-subtrees
is occupied). Notice that, in C1 each resolving algorithm for GMV should move
robots r1 and r2 toward v. However, since r1 and r2 are equivalent, no algorithm
can distinguish between the two subtrees and decide which robot among r1 and r2
should make a step toward the parent vertex v. Hence, each algorithm would create
a collision in v. Since the definition of GMV requires to not incur in collisions, then
GMV results to be unsolvable in C1, as stated in the following claim.

Claim 3.4.1. Let C be an initial configuration in which there is a critical vertex
admitting critical-subtrees having all vertices occupied. Then, GMV cannot be solved
from C even by FSync robots.

In fact, when the conditions of this claim hold, it is clear that if a robot enters (exits
from or moves within) any of the critical-subtrees then a multiplicity is created.
Figure 3.14.(c) shows another unsolvable configuration in which the previous claim
does not apply. Theoretically, if other robots are present, in some cases it is possible
to move them inside critical-subtrees so as to break the symmetry and solve the
problem. GMV cannot be solved from the configuration shown in Figure 3.14.(c)
because there are no robots that can be used to break the symmetry. The following
paragraph presents a deeper analysis.

2. Using leader robots to remove critical vertices. Consider the configuration
shown in Figure 3.17.(a). The vertex v is critical since it has two subtrees, T (v, vr1)
and T (v, vr2) that are isomorphic and overloaded. As in the previous case, it can be
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vr1 vr2
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vr1

Figure 3.17: (a): A configuration with a critical vertex v. The dashed arrows show
the direction proposed for the movement of the robots in order to solve GMV; (b):
the symmetric configuration obtained after the one on the left with a new proposed
movement; (c): the configuration made asymmetric.

observed that r1 and r2 cannot move directly on v otherwise they would collide. By
observing that T (v, vr1) and T (v, vr2) are not completely occupied - as it happens
in Figure 3.14.(a), a resolving strategy could move a robot inside one of the two
isomorphic subtrees in order to break the symmetry and hence transforming v from
critical to potentially-critical.
In fact, the robot rl (which can be elected as a “leader” since it has no equivalent
robots) can move toward v while r1 and r2 move downward. As we are in SSync (but
the approach seems to be effective also in Async), such moves do not necessarily
happen concurrently. In particular, if for instance r1 moves before r2, then the
algorithm may let robots wait for r2 to move.
After that, as in Figure 3.17.(b), rl can move toward one of the two symmetric
subtrees, hence breaking the symmetry, and thus obtaining the configuration in
Figure 3.17.(c). In so doing, the critical vertex v actually becomes potentially-
critical. From there, r2 can freely move toward a leaf, and afterward rl and r1 in
turn can reach their destination leaves, solving GMV.
Notice that the proposed strategy clearly requires (1) the presence of a leader robot
outside the two isomorphic subtrees, and (2) that the involved isomorphic subtrees
admit at least one unoccupied vertex where the leader robot can enter to break the
symmetry. This leads to the following claim:

Claim 3.4.2. Let C be an initial configuration in which there is a critical vertex but
no leader robots. Then, GMV cannot be solved from C even by FSync robots.

Figure 3.18.(a) shows a more general case with respect to Figure 3.17 since v has
more than two isomorphic critical-subtrees. A resolution strategy moves a leader
robot rl inside one of the critical-subtrees see Figure 3.18.(a) and then the algorithm
creates a configuration on other critical-subtrees so that to be different from any
other configuration created on the first subtree during the emptying of the subtree.
In particular in Figure 3.18.(a), rl moves inside the first subtree making it different
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Figure 3.18: (a): A symmetric configurations with more than two isomorphic over-
loaded subtrees. Vertex v is critical, rl is a leader robot, rl moves inside the first
subtree (b): robots of other subtrees, move toward v, (c): the first subtree can be
emptied. (d): v is critical and rl is the only robot that can act as leader. The robots
on the leaves move up, then rl moves toward v.

from all the other subtrees. In Figure 3.18.(b), robots r2, . . ., rn and the ones on the
leaves cautiously move one step toward v making the subtrees different from any
configuration that might be created by the first subtree in the successive movements.
In Figure 3.18.(c), rl and r1 move out of the subtree. Then all the robots that
previously moved toward the root make a step back to their starting position. From
here, the strategy can be repeated to move all the robots in the overloaded subtrees
toward the leaves.
However a variation of the configuration of Figure 3.18.(a), shown in Figure 3.20.(a)
is unsolvable in SSync. Even though a leader robot is present, it is not possible
to move the robots in the other two subtrees so as to generate a configuration
different from each configuration generated in the first subtree during its emptying.
In fact, the robots on the leaves cannot move. Other unsolvable configurations can
be generated when the leader robot cannot move, as shown in Figure 3.20.(c).
In any case, in order to solve GMV from a configuration C with a critical vertex
v, it is necessary to solve the sub-problem EmptyRoots defined as follows: if v
is critical, T (v, v1), T (v, v2), . . . , T (v, vk) are pairwise isomorphic critical-subtrees of
v, and v1, v2, . . . , vk are occupied, then each resolving algorithm for GMV must be
able to transform C in to a configuration C ′ in which v1, v2, . . . , vk are all unoccu-
pied. This is necessary so that a leader robot can move onto one of them in order
to break the symmetry among the critical-subtrees. Notice that the only way to
solve EmptyRoots is moving robots located in vi downward to the corresponding
critical-subtrees T (v, vi), i = 1, . . . , k.
Sometimes solving EmptyRoots implies the movement of other robots (see Fig-
ure 3.19.(a)), in other cases EmptyRoots cannot be solved (see Figure 3.19.(b)).
In Figure 3.19.(a), if the robot on vr2 moves downward as first move, the configu-
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vr2
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Figure 3.19: Both figures show configurations in which GMV requires solving the
sub-problem EmptyRoots. (a) A solvable configuration where the preliminary
move of r1 upward followed by the move of r2 downward maintains the difference
between the subtrees currently rooted in vr2 . (b) An unsolvable configuration.

ration becomes unsolvable; in fact, the vertex left by r2 becomes a critical vertex
being the two subtrees (below such a vertex) isomorphic and overloaded. Moreover,
EmptyRoots must be solved for these two critical-subtrees as well, as this cannot
be done without incurring in collisions. On the other hand, the configuration of the
Figure 3.19.(a), can be solved by first moving robot r1 upward and then moving r2
downward. The movement of r1 makes the left subtree of vr2 different from the one
on its right. On the contrary, the configuration shown in Figure 3.19.(b) is unsolv-
able because it is not possible to design a preliminary move in order to differentiate
the subtrees of v′r2 before moving r2 downward.
We conjecture that deciding whether the sub-problem EmptyRoots can be solved
could require exploring a very large number of possible moves (even an exponential
number).

3. For GMV, FSync robots are more powerful.
Consider the configuration of Figure 3.20.(a). Since r2 and r3 are pairwise equivalent
robots, it is not reasonable to let them both move concurrently. Instead, as shown in
Figure 3.20.(b), rl and r1 can move concurrently toward v (we recall the reader that
here we assume FSync robots). From there, rl can move toward a leaf whereas r1
can start playing the role previously played by rl, i.e., it can move downward toward
another subtree and grab another robot outside to make its role. In general, if there
were n−1 critical-subtrees, by repeating this strategy, all the robots can be correctly
moved to the leaves. Notice that this strategy cannot be implemented in SSync
since from the configuration shown in Figure 3.20.(b) the adversary could move only
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Figure 3.20: Three figures referring to symmetric configurations solvable in FSync
but not in SSync.

rl back to v creating a loop in the algorithm or only r1, creating a multiplicity with
rl.
As an additional example, consider the configuration shown in Figure 3.20.(c). It
represents a case in which there is a critical vertex v because of exactly two critical-
subtrees and it is possible to elect a leader. We have already discussed a similar case
in which the leader robot can move within one critical-subtree to break the symmetry
and hence to solve GMV. We now show that here the problem cannot be solved
in SSync but it is solvable in FSync. In fact, in SSync, by moving rl or the two
equivalent robots r1 and r2 would make the three subtrees all isomorphic. Hence, in
any case v remains critical and the obtained configuration does not contain anymore
leader robots. Instead, in FSync, the simultaneous movement of r1, r2 and rl, as
shown in the figure, allows to solve the problem. In fact, while rl moves toward v,
both r1 and r2 can move downward, and the achieved configuration becomes similar
to that in Figure 3.17, where the leader robot can enter in a critical-subtree to
break the symmetry. Clearly, the combined movement described cannot be applied
in SSync.

3.4.7 Concluding Remarks

We have introduced the Geodesic Mutual Visibility problem for robots moving
along the edges of a graph, and in particular on trees. Robots are rather weak, as
they are SSync. The only restriction imposed to the initial configuration is the
absence of critical vertices.
We have proposed a deterministic and distributed algorithm to solve GMV on trees.
Furthermore, we have provided an extensive discussion about challenging directions
for future research.



Chapter 4

The Moblot model

In this chapter, we introduceMOBLOT , a new theoretical model for swarm robotics
that extends OBLOT by introducing the concept of molecular robots. While in-
heriting many characteristics from the OBLOT model, MOBLOT extends it by
allowing robots to cluster and create bigger computational units, called molecular
robot. The goal is to model new scenarios and give new insights and algorithms for
classical problems. A pattern defines the shape of a molecular robot. When robots
reach relative positions that fit the pattern, from that moment on, they move to-
gether in formation, giving rise to a molecular robot. Once formed, a molecular
robot is a new computational entity that moves and accomplishes new tasks, one
of them can be pattern formation, at a higher hierarchical level, or it can be any
other task. Three main reasons brought to the genesis of the MOBLOT model.
The first reason is to model robots moving in formation, allowing the partition of
a swarm into subgroups of robots. These subgroups can cooperate to accomplish
a shared goal or can be assigned different tasks. One possible application could
be molecular robots supporting humans during a fire disaster. Robots could be
divided into groups and employed for various goals, like patrolling, searching, and
providing radio connections for firefighters. The second reason is to introduce and
exploit concepts such as modularity and hierarchy in swarm robotics under the as-
sumptions of the OBLOT model in the solution of the pattern formation problem.
Robots could assemble into intermediate structures (molecular robots) and then, as
building blocks, molecular robots could assemble into big constructions. Such struc-
tures may have the potential flexibility to be reconfigured if goals or environmental
conditions change. In this way, it would be possible to create advanced surfaces
or high-tech materials. The third reason is to define a general model able also to
describe modular robotics, in which robots are made of physically interconnected
modular units. If fact, molecular robots can emulate modular robots by modifying
the shape of their final configuration.
The inspiration for MOBLOT comes from chemistry, in which atoms combine to
make molecules. Once bonded, molecules acquire new properties compared to single
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Figure 4.1: A conceptual representation of robots and a molecular robot

atoms. In many cases, molecules can further bond into more complex structures
held together by intermolecular forces. One example is water, in which molecules
are linked by hydrogen bonds. Molecules bond according to local composition rules,
such as the angle and distance between molecules. In this way, molecular structures
can scale at any dimension without defining the position of every single molecule.
The molecular robots can be guided to form any shape defined according to the
properties of the composition. We will use this molecular chemical paradigm to
define the matter formation (MF) problem. MF is an extension of the Pattern
Formation problem: given a team of robots, a set of formable molecules, and a
geometric pattern made of molecules in an ideal coordinate system (not known to
the robots nor the molecules), the goal is to provide an algorithm that guides robots
to form molecules and the final pattern, if possible. Within MOBLOT , MF is a
representative problem, like PF is for OBLOT . Hence, it is worth considering MF
to investigate the new characteristics of the MOBLOT model. We provide the
necessary conditions for the solvability of MF based on the ‘amount of symmetries’
of the initial configuration of robots. We show how molecules can break certain
symmetries that are not solvable in OBLOT . As an example, we consider a case
study ofMOBLOT , derived from the general MF, providing a resolution distributed
algorithm and proving its correctness. Moreover, we apply the MOBLOT model
on square grids as in industrial applications, robots often are constrained to move
on grid routes. To this aim, we present the Tetris-like pattern formation, an MF
problem defined on grids, giving it full characterization.

Outline of the chapter. The chapter is organized as follows. The next sections
introduce the MOBLOT model and the general Matter Formation problem. In
Section 4.3, we define a case study concerning a specific matter formation prob-
lem that shows the characteristics of the MOBLOT model. In Section 4.3.1, we
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formalize the problem and give a first overview of the resolution strategy. In Sec-
tion 4.3.2, we provide details of the resolution algorithm. In Section 4.3.3, we for-
malize and prove the correctness of the algorithm. In Section 4.3.4, we compare
the OBLOT and MOBLOT models. In Section 4.4, we apply the MOBLOT
model to synchronous robots moving on a square grid; in Section 4.5, we intro-
duce the molecular pattern formation problem (MPF for short) and introduce the
concepts for its formalization, then we state a necessary condition for its feasibility.
In Section 4.6 we introduce Tetris-Like MPF (TL-MPF for short), as a particular
version of the MPF problem.

Background and related work

The robotics research is extensive, covering both computer science and engineer-
ing fields. Studies span the design, construction, operation, and use of robots. In
particular, we relate to two sub-fields: modular robotics (e.g., see [32]) and swarm
robotics (e.g., see [17, 125]). Modular robots are made of interconnected identical
modules that allow the robot to recover from failures or change its shape to adapt
to a specific task or the environment (e.g. see [141]). The main goal is to obtain
robotic systems that are reconfigurable according to tasks, affordable since made
up of simple modules that can be mass produced and robust. In case of failures,
modules are replaceable with lower costs compared to the cost of replacing a part
of an application-specific robot. However, at present, a modular robot could be less
effective compared to robots designed for specific tasks. This concept was intro-
duced in the late 1980s as cellular robotic systems by T. Fukuda, later physically
realized in the CEBOT modular robot by Fukuda and Kawauchi [75]. Since then,
the field is now called modular robotics, and various robotic architectures have been
developed [14, 134].
On the opposite, in swarm robotics systems, robots are fully autonomous mobile
units (e.g., Kilobot [123]). The interaction among robots leads to a desired collec-
tive behavior. Representative models in swarm robotics are the well-investigated
Amoebot model [56, 61], and the more recent models Silbot [50, 51], and Pair-
bot [96]. These formal models, allow us to analyze algorithms rigorously, providing
new theoretical findings, useful also in practice. Practically speaking, the technology
required to implement algorithms designed within OBLOT does not rely on special
sensors or actuators so cheap hardware can be used. An example of real robots
can be found in [126]. In [118], standard educational robots under OBLOT solve
the Gathering problem. They bring robots close to each other as much as possible.
Similarly, [55] deals with the Gathering of robots moving on a ring.
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Our results

We formally define the new MOBLOT model. MOBLOT extends OBLOT as
the models coincide when a molecule is made of a single robot.
AsMOBLOT represents an extension of OBLOT , we introduce the Matter Forma-
tion (MF) problem as a natural extension to the classical Pattern Formation problem
studied within OBLOT . We establish a necessary condition for its solvability that
relies on symmetricity. Molecules can resolve the symmetry-breaking issue in cases
unsolvable within OBLOT . Furthermore, we present a case study of an MF prob-
lem by specifying the formable molecules as well as their hierarchical composition
rules. The considered problem later called HexMF, has been selected to highlight
the symmetry-breaking abilities of the robots not present within OBLOT . We then
provide a resolution distributed algorithm for HexMF. To this respect, we show
how the formal methodology thought for OBLOT in [44] works in theMOBLOT
environment with molecules as well as with robots.

4.1 The model

Self-organizing structures are very common in the physical world. Atoms combine
to form molecules, and they combine to form molecular structures. We use this
matter formation paradigm to present theMOBLOT model.
In a MOBLOT system, composed by a set R = {r1, r2, . . . , rn} of n robots, the
smallest units correspond to the robots of the OBLOT model. As in nature there
exist different types of atoms, in MOBLOT this can be modeled by one of the
variants of OBLOT , in which robots are colored [102]. Each robot corresponds
to an atom. Colors, taken from a finite set, specify the kind of atom the robot
represents.
For example, to form a pattern with the shape of the molecule of water, white and
red robots correspond to hydrogen and oxygen atoms, respectively.
In a MOBLOT system, the algorithmic task for robots is to form molecules. A
molecule µ is specified by a fixed pattern defined for the same universe U where
the robots move. For instance, the water molecule is composed of two white robots
and one red robot, where the white robots form a 104.5◦ angle with the red robot,
and each red -white pair is at a distance of about 0.096 nm (cf. Figure 4.2).
Let the minimal ball enclosing a molecule µ, B(µ), and its diameter diam(B(µ)).
We assume B(µ) to represent the extent of molecule µ. Various shapes, different
from the ball, can be defined.
We denote asM = {µ1, µ2, . . . , µm} the set containing all kinds of formable molecules.
We impose some constraints for the model to be fair enough and as general/weak
as possible. The first one is a displacement constraint for robots in any initial
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Figure 4.2: A representation of the H2O molecule.

configuration:

C1: In any initial configuration R, each pair of robots is at distance greater than
D = max{diam(B(µ)) | µ ∈M}.

This constraint avoids the accidental formation of molecules in an initial configura-
tion.
Assume that an algorithm A can form some molecules starting from a configuration
R of robots. In the MOBLOT model, we assume that each robot r, performing
the Look phase at time t, can detect the robots and formed molecules µ. r perceives
both B(µ) and the robots inside the ball, that is B(µ) is “transparent”. According to
the ability to perceive possible formed molecules, and being the molecules expressed
as fixed patterns, robots are implicitly assumed to share a common unit of length
(for measuring distances, angles, and so on).
A molecule µ forms as soon as robots are in place for the pattern µ; there are also
some additional molecule formation constraints:

C2: In B(µ), there are only the robots necessary to form µ suitably placed according
to the pattern defining µ;

C3: For each µ′ already formed or that could be formed at the same time of µ, then
B(µ) ∩B(µ′) = ∅;

C4: Assume a robot r moves along a trajectory τ toward a target t and there is a
position p ̸= t along τ such that a molecule µ forms as r in on p; if µ fulfills
all constraints, it can be formed so r stops at p and the molecule forms;

C5: As soon as a molecule µ forms, each robot forming µ is no longer an independent
computational unit (i.e., it stops executing its algorithm and acts as a part of
the molecule).
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Remark 8. Constraints C2 and C3 avoid ambiguities during molecule formation.
Consider a molecule formed by two robots at a distance of D. As a first scenario,
if three robots move synchronously to reach the vertices of an equilateral triangle
with side D concurrently, then by constraints C2 and C3, none of the three possible
molecules forms. Another scenario is two robots placed at a distance of 2D and a
third one moving between them, at a distance of D from both robots. Even in this
case, molecules do not form. However, as one of the two external robots moves, a
molecule forms with the two stationary robots.

Remark 9. Robots, moving toward each other without forming any molecules, may
collide. If that happens, no algorithm can guarantee to separate them anymore. As
the robots are identical and occupy the same location, the adversary can prevent them
from making different moves. Therefore, any algorithm must avoid collisions (i.e.,
undesired multiplicities) among robots.

A molecule is a new computational entity that is solid and with a physical dimension.
A molecule can move along any trajectory and also rotate around its center.1 Since
it is solid, any other element in U (robot or molecule) can touch the external surface
of B(µ) – but cannot penetrate inside. That leads to a movement constraint for
the model:

C6: If the trajectory of a moving robot r intersects B(µ), for some molecule µ,
then r stops its movement when it reaches the boundary of B(µ). Similarly, a
moving molecule µ stops, as soon as it touches any robot r or molecule.

The algorithm receives in input the types of molecule in M and the pattern of the
matter defined in a general way according to adjacency properties. These rules
define molecules’ placement with respect to each other. Accordingly, the final form
may vary. See Figure 4.3 for reference. Molecules may form matter by assembling
in one among many possible patterns. We use the symbol F to denote the set
containing all the possible patterns describing the matter.

4.2 The Matter Formation problem

Patter formation(PF) is one of the most general and studied problems under the
OBLOT model.
We now recall the characterization about formable patterns in the OBLOT model
when robots share a common chirality, hence according to the notion of symmetricity.

1These are basic assumptions. However, shapes or movements are changeable to suit a specific
application.
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Theorem 4. [131] Let R be an initial configuration of n ≥ 3 robots and F be a
pattern. F is formable from R by FSync or SSync robots with chirality if and only
if ρ(R) divides ρ(F ).

This result states that the solvability of the PF problem highly depends on the
symmetricity of both R and F , even for FSync robots.
Similarly to PF, the general Matter Formation (MF) problem in theMOBLOT
model can be defined as follows: given a team of robots R, a set of molecules M,
and a set F of possible patterns describing the matter to form with the molecules
inM, the goal is to design a distributed algorithm A that works for each robot and
molecule so that eventually they form any pattern in F , if possible. Formally, A
solves MF if for each execution E : R = R(0), R(1), R(2), . . ., there exists a time
instant t′ > 0 such that R(t′) is similar to some F ∈ F and R(t) = R(t′) for each
time t ≥ t′.

We now provide a necessary condition for the solvability of the MF problem. We
assume that the spatial universe U in which robots and molecules move is the Eu-
clidean plane (even though it is extendable to higher dimensions or different en-
vironments). Let R, M, and F be the elements forming an instance of MF, and
assume the general case in which R is composed by colored robots. A symmetry for
R is an isometry φ for R (cf. Section 3.1.1) that preserves the color of robots. A
symmetry for F ∈ F is an isometry for all the robots involved in F that preserves
the molecules, that is if {ri1 , ri2 , . . . , rit} is the set of robots forming a molecule
µ ∈ F , then robots in {φ(ri1), φ(ri2), . . . , φ(rit)} form a molecule equal to µ. It
follows that rotational symmetries induce to the concept of symmetricity also for F .
As an example, Figure 4.3 shows two patterns where the symmetricity ρ(F ) = 1 (on
the left side where also ρ(R) = 1) and ρ(F ) = 3 (on the right side where ρ(R) = 6),
respectively. We denote with ρ(R) and ρ(F ) respectively, the symmetricity of a
configuration of (possibly non-identical) robots, and the symmetricity of a matter
pattern to form. We denote with ρ(µ), with µ ∈ M, the symmetricity of the set of
robots that form µ. Moreover, for a given pattern F ∈ F , let Mol(F ) denote the
set of molecules that form F . Clearly, Mol(F ) ⊆M.

We are now ready to provide a necessary condition for solving the MF problem.

Theorem 5. Let R be an initial configuration of robots, given an instance of MF,
if there exists an algorithm A able to form the matter, i.e., a pattern F ∈ F , then

1. ρ(R) divides ρ(F ), or

2. there exists µ ∈Mol(F ) such that ρ(R) divides ρ(µ).

Proof. Assume that A can form F without molecules (i.e., all the molecules are
formed at the same time and disposed to form the matter; formally, there exists a
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time t > 0 such that R(t) is similar to F and no molecule is formed in R(t′) for each
t′ < t). In this case, by Theorem 4, we get that property (1) holds.
In what follows we assume that A must create and move some molecules to form F .
We also assume ρ(R) > 1, otherwise, both properties (1) and (2) are trivially verified.
For each possible execution E : R = R(0), R(1), . . . of A, according to Remark 1,
the adversary may force ρ(R(0)) pairwise equivalent robots to move synchronously.
Let R(t), t > 0 be the first configuration containing molecules.
If R(t) contains more than one molecule, according to the synchronous moves and
to the symmetricity of R, then (i) in R(t) there are ρ(R(0)) molecules, (ii) the
molecules in R(t) are all equal, and (iii) ρ(R(t)) = ρ(R(0)). Then, from R(t)
on, each move planned by A may be forced by the adversary to maintain at least
the same symmetricity ρ(R(0)) until F is formed. Then ρ(R(0)) divides ρ(F ) and
property (1) holds.
If R(t) contains just one molecule µ, then it must be formed around the center of the
configuration. Even in this case, the adversary forces ρ(R(0)) equivalent robots to
move synchronously, and then ρ(µ) must be a multiple of ρ(R(0)), therefore property
(2) holds.

This theorem shows that if an algorithm A can form some pattern F ∈ F , when
the first condition does not hold, A must create a molecule µ in the center of the
configuration and then move it to modify its symmetricity. This solution is similar
to the one used in OBLOT to create an asymmetric configuration given a symmetric
one with symmetricity 1.
Theorem 5 can be seen as the property of ‘conservation’ of the symmetry: the initial
symmetry either is still present in the final pattern or is encapsulated in at least one
molecule composing the final pattern.
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4.3 A Matter Formation case study

In this section, we define a case study designed to explore all the necessary conditions
of Theorem 5 and we introduce and solve a specific matter formation problem. To
this end, in Section 4.3.1 we formalize the problem, motivate its study, and give
a first overview of the resolution strategy. In Section 4.3.2, we provide a detailed
description of the algorithm along with a running example. Finally, in Section 4.3.3,
we give both a formalization and the correctness for the provided algorithm.

Figure 4.3: (left) matter composed of 6 molecules; (right) Matter constructed in concentric
“rings”. The picture shows three full levels of the matter. The inner core is formed by three
molecules in the center, the second layer is composed of nine molecules all around the inner
core. The external ring is composed of fifteen molecules. The hexagonal grid emphasizes
the relative positions of the molecules composing the matter.

4.3.1 Problem formalization

(Hexagonal Matter Formation), (HexMF) is a specific variant of the general MF
problem. In HexMF, we assume identical and Async robots endowed with chirality,
which is a common handedness. We remind that robots also share a common unit
of measure and are aware of the quantity D necessary to form molecules. HexMF
considers a single type of molecule composed of just two robots. Formally:

• M = {µ}, where µ is defined by two robots at a fixed distance D.

Remark 10. For simplicity, in any initial configuration, the mutual distance for
each pair of robots is at least 2D. This hypothesis guarantees that a robot won’t
make unwanted molecules while moving in a trajectory between two points.

In the HexMF problem, not only robots, but also molecules are assumed to be
identical, Async, and endowed with chirality.

Matter composition rules. We consider a hexagonal tessellation, which is a reg-
ular tiling of the Euclidean plane in which three hexagons meet at each vertex. This
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tessellation induces a ‘tessellation graph’, which is an infinite graph embedded into
the Euclidean plane induced by the vertices and sides of the hexagons forming the
tessellation [89]. The tessellation graph, induced by any hexagonal tessellation, is
called hexagonal grid and denoted as GH . We consider the matter formed when
each molecule is disposed on some edges of a hexagonal grid of side D (see Fig-
ure 4.3). According to the general definition of matter given in Section 4.1, we now
specify the adjacency property for the molecules.
Consider one hexagon of GH as the core of the matter where three non-adjacent
edges of the hexagon correspond to three places where the molecules should lie.
These edges form the “first level” of the matter.
Then, the six hexagons surrounding the core, represent where the “second level” of
matter would be formed. That is the non-adjacent edges of the second level, not
shared with the first level and parallel to those where the first three molecules are
posed, correspond to the second level of edges where molecules are placed to form
the matter, as soon as the first level is full.
The i-th level is formed by the non-adjacent edges of the hexagons surrounding the
(i− 1)-th level, not shared with the (i− 1)-th level and parallel to those where the
molecules of the (i− 1)-th level are posed. Figure 4.3 (right) shows three complete
levels of the matter. Actually, as in Figure 4.3.left, the last level of the matter can
be not fully occupied.
It follows that F contains all the patterns of molecules that satisfy the above def-
inition of matter. The matter that we defined, looks like a “polycyclic aromatic
hydrocarbon”, which is a chemical compound containing only carbon and hydrogen
and composed of multiple aromatic rings [9].

To complete the definition of HexMF, we assume that any initial configuration (i.e.,
configurations considered as input for the problem) consists of a set R of robots, with
|R| = 2m, m > 3. The goal is to design a distributed algorithm A that works for
each robot and molecule so that eventually m molecules are arranged as an element
F ∈ F . We remark that is the responsibility of A to coordinate the molecules, once
formed, to recognize the hexagonal grid GH embedded into the plane. Of course,
this task is difficult because both robots and molecules do not share a common
reference system.

Motivations. We present the HexMF problem to show the capabilities of the
MOBLOT model. To this end, we have defined the problem so that it constitutes
a minimal and, yet well-defined, example to explore all the conditions of Theorem 5.
In fact, for each specific matter F contained in F , either ρ(F ) = 1 or ρ(F ) = 3.
Moreover, given the unique molecule µ defined in HexMF, then ρ(µ) = 2. Hence,
according to the necessary conditions expressed by Theorem 5, we get that any initial
configuration R from which HexMF is solvable must guarantees that the following
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relationship holds:
1 ≤ ρ(R) ≤ 3. (4.1)

According to Theorem 5, assume that there exists an algorithm A able to solve
HexMF starting from any configuration R fulfilling the relationship in Equation 4.1.
If ρ(R) = 1, then the first condition of Theorem 5 applies regardless of the matter
F to be formed. When ρ(R) = 2, the second condition of Theorem 5 holds since, in
this case, robots can form just a single occurrence of µ, and then this molecule could
be used to “reduce” the total symmetry of the configuration to 1. Then, starting
from the obtained configuration with symmetricity 1, any pattern F in F compatible
with the size of R could be formed. Note that, in OBLOT , if ρ(R) = 2 then only
configurations such that ρ(F ) = 2k can be realized.
Finally, when ρ(R) = 3, the first condition of Theorem 5 holds again. In this case,
Remark 1 applies, and therefore the adversary can force three robots at a time
to move synchronously; of course, this necessarily leads to having three molecules
formed at the beginning. It follows that a pattern F with ρ(F ) = 3 is the only
pattern that A could create.

Overview of the resolution strategy. Here we provide a high-level description
of FormHexMatter, the algorithm designed for solving the HexMF problem.
Even though constraint C1 holds, according to Remark 10, robots can be very close
to each other to create molecules correctly. To have enough space for movements,
the algorithm moves almost all robots onto a circle C∗ having a sufficiently large
radius. To define C∗, we need a center, known to all robots. Therefore, one or three
molecules (depending on ρ(R)) are formed around c(R). The reference point for C∗ is
given by the “center” of the configuration of the formed molecules. By keeping these
initial molecules still, the center of C∗ stays fixed during the movements of the robots
and all the remaining robots can reach C∗. Successively, some molecules are formed
on C∗. Then, the internal molecules move to the first level of the hexagonal grid to
initialize the matter; c(C∗) helps define a unique embedding of the hexagonal grid
GH on the plane, becoming the center of the hexagonal grid. Later, the algorithm
proceeds, by repeating the following two steps: molecules on C∗ are added to the
formed matter; then, new molecules are formed on C∗.

4.3.2 The resolution algorithm

In this section we detail the resolution algorithm. In particular, we firstly give
some general notation and data structures, then we describe how the methodology
proposed in [44] is used to break down the general problem into a set of well-defined
tasks where each task can be performed by robots/molecules, and finally we provide
the formalization of FormHexMatter.

General notation. Here we summarize general concepts and notation used by
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the algorithm. Given any configuration R, the algorithm often uses circles on the
plane, centered in c(R). For any defined circle C, we use r(C) to denote its radius.
Consider any configuration R composed of robots located in distinct points of the
plane, by CR

1 , C
R
2 , C

R
3 , . . ., we denote all the circles centered on c(R) such that, on

each of them, is located at least one robot of R. Such circles generate a partition
of R where each set of the partition contains all the robots located on the same
circle. Such circles are ordered according to their radius: given two circles CR

i and
CR

j , i < j if and only if r(CR
i ) < r(CR

j ). Cm is defined as the circle of radius D/2

centered in c(R). Each half-line starting from c(R) is called ray of C(R).
Often, n robots in R are ordered by their distance from c(R). That generates a
partial ordering; when we say “the distance from c(R) identifies exactly k robots”,
for any 1 ≤ k < n, we mean that such distance allows us to order the robots as
follows: ri1 ≤ ri2 ≤ . . . ≤ rik < rik+1

≤ rik+2
≤ . . . ≤ rin .

We denote by Mol the set containing all the molecules formed in a configuration
and by Mat ⊆ Mol the subset of molecules forming the matter. According to the
MOBLOT model, robots can directly detect Mol during the Look phase, whereas
Mat depends on the resolution algorithm.

Robots’ view. The view of a robot is a data structure used by the algorithm
FormHexMatter in which each robot encodes the information acquired during the
Look phase and refers to the configuration perceived to its LCS. Sometimes, a robot
needs to evaluate the view of other robots. Therefore the view should not depend
on the current LCS, as this might be completely different from cycle to cycle and
from robot to robot. Therefore, the view should exploit only the information equally
perceived by all robots, like relative distances and angles among robots’ positions.
It follows that, in a symmetric configuration, some robots are having the same view.

Given two distinct points u and v in the Euclidean plane, let line(u, v) denote
the straight line passing through these points and let (u, v) ([u, v], respectively)
denote the open (closed, respectively) segment containing all points in line(u, v)
that lies between u and v. The half-line starting at point u (but excluding the
point u) and passing through v is denoted by hline(u, v). We denote by ∢(u, c, v)
the angle centered in c obtained by rotating clockwise hline(c, u) until overlapping
hline(c, v). The angle ∢(u, c, v) is measured from u to v in a clockwise direction and
the measurement is always positive.
Let P be a generic set of points not including c = c(P ). For p ∈ P , we denote by
V (p) the view of P computed from p. That is a sequence of pairs (angle, distance)
defined as follows: first (0, d(c, p)) then, in order from the farthest to the closest
point to c, all pairs (0, d(c, p′)) for any p′ ̸= p in hline(c, p), and successively all pairs
(∢(p, c, p′), d(c, p′)) arising from all other rays processed in clockwise order and points
p′ from the farthest to the closest ones to c, for each ray. Strings, associated with
all points in P , can be ordered lexicographically. If p = c(P ) then p is said the
point in P of minimum view, otherwise any p = argmin{V (p′) : p′ ∈ P} is said of
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problem sub-problem task

HexMF

FIM
FIM 1 T1

FIM 2 T2

MRA T3

FM1 T4

IM
IM 1 T5

IM 2 T6

FM2 T7

MM T8

MD T9

Table 4.1: The hierarchical decomposition of HexMF into tasks.

minimum view in P . These definitions naturally extend to any configuration R of
robots and to any set of robots forming pattern F ∈ F as well. If r is a robot in R,
by V (r) we mean the view obtained from the point in which r is located. Moreover,
observe that, as we are dealing with robots endowed with chirality, the clockwise
direction used in the definition of the view is well-defined.

It follows that, in any symmetric configuration R, symmetric robots have the same
view. Whereas, if R is asymmetric, each robot can be associated with a unique view.

Description of the algorithm. The algorithm has been designed according to
the methodology proposed in [44].
Following this approach and according to the overview of the strategy described in
Sec. 4.3.1, HexMF is initially divided into the following sub-problems and tasks (cf.
Table 4.1):

• Formation of the Initial Molecules, shortly denoted as FIM . This task builds
the first molecules defining the center of C∗. It is associated with two distinct
tasks, depending on the symmetricity of the configuration. In particular, Task
T1 activates when symmetricity is either 1 or 2 (sub-problem FIM 1), while T2

activates when symmetricity is 3 (sub-problem FIM 2).

• Move Robots Away, shortly denoted as MRA. It corresponds to task T3, which
moves all robots (not included in the initial molecules) on C∗ to make enough
space to construct matter in the center.

• Forming Molecules (auxiliary case), shortly denoted as FM1 . It corresponds
to task T4. It constructs some molecules on C∗ before “matter initialization” by
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using the initial molecules located on the center of C∗. This tasks guarantees
that center of C∗ remains fixed. It is considered an auxiliary task exploited
to guarantee the correct evolution of the algorithm from T3 to the subsequent
tasks. The movement of molecules formed in FIM , without the preliminary
construction of molecules on C∗, may modify the definition of C∗.

• Initialization of the Matter, IM for short. This sub-problem starts building
matter by moving the molecules formed during Tasks T1 or T2. According
to whether there are one or three molecules inside C∗, this sub-problem is
subdivided into Task T5 or Task T6, respectively.

• Forming Molecules, FM2 for short. In this sub-problem, new molecules on C∗

are formed It is associated with Task T7.

• Moving Molecules, MM for short. This sub-problem moves the molecules from
C∗ (through tasks T4 or T7) toward their target inside the circle, to construct
the matter. It is associated with Task T8.

• Matter Done, MD for short. Molecules have to detect that matter has been
formed, hence no more movements are required. Task T9 is designed for this
purpose.

In the remainder of the section, we provide details for each task. In particular, we
highlight the computation made by robots/molecules and formalize the outcoming
moves.

Task T1: Formation of one initial molecule

During task T1, two robots denoted as r1 and r2 are identified and moved to form
an initial molecule close to the center c(R). Such robots move differently according
whether c(R) is occupied or not. The resulting move is denoted as m1 and formalized
as follows.

• Move m1:

– If there is a robot r on c(R), then r radially moves toward Cm in any
direction that does not meet any robot (we recall that Cm is the circle of
radius D/2 centered in c(R)).

– If c(R) is not occupied, two robots r1 and r2 are selected and moved to
form an initial molecule.
Let r1 be the robot closest to c(R) (of minimum view in case of ties), ℓ1
be the line passing through r1 and c(R), ℓ2 be the line orthogonal to ℓ1
and passing through c(R), H1 and H2 be the half-planes defined by ℓ2
with r1 contained in H1. Associate to each robot a pair (d1, d2), where d1



4.3. A MATTER FORMATION CASE STUDY 131

L

C∗

p1p2

Ttrajectories A

Figure 4.4: Configurations belonging to tasks T1 (left) and T3 (right). Since R contains
12 robots, in the configuration belonging to T3 the radius of C∗ should be of at least 12D;
in the figure the relative distances are not respected in favor of readability.

is the distance from c(R) and d2 is the distance from ℓ1, and consider such
pairs as lexicographically ordered. Now, consider the set S containing all
robots different from r1 and with minimum associated pair (d1, d2). If S
has robots in H2, then select r2 as the robot in H2 with minimum view,
otherwise r2 is the robot in H1 with minimum view.
The selected robots r1 and r2 move as follows: if r1 is not on Cm, it moves
radially on Cm, when r1 is on Cm, r2 moves radially toward Cm. Since
r1 and r2 reduce their distance while moving toward Cm eventually a
molecule with robots r1 and r2 is formed. The distance 2D between each
robot in any initial configuration guarantees there is no chance to form
any other molecule except the one between r1 and r2 while they move.

According to the definition of r1 and r2, when the symmetricity of the initial con-
figuration is 2, then r1 and r2 result to be antipodal (as in Figure 4.4.left). In this
case, the two robots are equivalent and they move concurrently toward each other
(it can be observed that the molecule is finally formed even in case of asynchronous
moves).

Task T2: Formation of three initial molecules

During task T2, three robots denoted as r1, r2, and r3 are identified and moved
toward the other three robots denoted as r′1, r′2, and r′3 to form three initial and
distinct molecules. The moving robots are selected among the most internal robots
of C(R), so the resulting molecules will be close to the center c(R).
Two perform this task on an initial configuration R, robots must recognize that
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ρ(R) = 3. Unfortunately, due to possible asynchronous movements, before the re-
quested molecules are formed, some intermediate configurations with symmetricity
different from three can be created and hence observed by some robots. This ob-
servation imposes to provide robots with some pre-conditions that allows them to
correctly recognize not only the initial but also each possible intermediate configu-
ration created during the task execution.
Since the algorithm considers two different strategies for creating the molecules, two
different Boolean pre-conditions are defined.

iM3′: It is considered true when all the following properties hold (cf. Figure 4.5):

1. the distance from c(R) identifies exactly r1, r2, r3;

2. if R′ = R \ {r1, r2, r3}, then ρ(R′) = 3x, x > 0;

3. at least one robot among r1, r2, r3 is not part of a molecule;

4. the rays passing through r1, r2, r3, respectively, and rotating clockwise,
meet three robots r′1, r′2, r′3 on CR′

1 at 120o each other;

5. r1, r2, and r3 are on the same circle or their projections on CR′
1 coincide

with r′1, r′2, r′3, respectively.

iM3′′: It is considered true when all the following properties hold (cf. Figure 4.6):

1. CR
1 contains more than three robots;

2. there exist r1, r2, r3 on CR
1 such that: their distance to the next (clock-

wise) robots is minimum and their rotation toward the next (clockwise)
robots generates a configuration R′ with ρ(R′) = 3;

3. at least one robot among r1, r2, r3 is not part of a molecule.

The resulting move is denoted as m2 and formalized as follows.

• Move m2:

– If iM3′ holds, robots r1, r2, and r3 first rotate clockwise along CR
1 without

ever reaching distance D from the next robot, until they are all aligned
with r′1, r′2 and r′3 lying on CR′

1 . If they reach such an alignment with-
out creating molecules, then they move radially toward r′1, r′2 and r′3,
respectively, until forming three molecules.

– If iM3′′ holds, then robots r1, r2, and r3 rotate clockwise along the circle,
until three molecules are formed.

Note that when applying the move, the same pre-condition between iM3′ and iM3′′

that was true at the beginning of the task remains valid until the task is completed.
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Figure 4.5: (left) configuration in T2 where pre-condition iM3′ holds; (right) configuration
obtained at the end of T2 and belonging to T3.

Task T3: Moving robots away

The only molecule formed in T1 or the three molecules formed in T2 are used in
this task to detect a center from which C∗ is identified. Let R be a configuration
obtained after task T1 or T2. Circle C∗ is defined as follows:

• In case only one molecule µ is formed in R, then C∗ is the circle with the
same center as the ball B(µ), including all the robots, with radius given by
the integer

ρ1 = min{d | d ≥ 2mD ∧ d is a multiple of 2m}

admitting an annulus A delimited by C∗ and by a circle of radius r(C∗)− 3D
where at most one robot resides.

• In case three molecules are formed and are included in a minimum enclosing
circle C of radius x, then C∗ is the circle with the same center as C, including
all the robots, with radius given by the integer

ρ3 = min{d | d ≥ 2mD + x ∧ d is a multiple of 2m}

admitting an annulus A delimited by C∗ and by a circle of radius r(C∗)− 3D
where at most three robots reside, one for each sector of C∗ (the partition into
sectors of the area enclosed by C∗ is defined later in this section, just before
the formal definition of move m3).

The annulus used in this definition can be observed in Figure 4.4.right.
The aim of this task is to move all the robots not forming molecules so that the
following property holds:
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Figure 4.6: (left) configuration in T2 where pre-condition iM3′′ holds; (right) the configu-
ration obtained at the end of T2 and belonging to T3.

FarC: All robots (excluding those forming molecules) are correctly positioned on
C∗.

Task T3 is characterized by the following pre-condition.

cM: It is considered true when all the following properties hold:

1. ¬iM3′

2. ¬iM3′′

3. |Mol| = 1 or (|Mol| = 3 and ρ(Mol) = 3)

4. ¬FarC

In particular, Properties cM. 1 and cM. 2 ensure that the initial molecules have been
already formed, Property cM. 3 assures that the formed molecules have the right
symmetricity, and Property cM. 4 states that the task is not yet completed.

to move the robots on C∗, we need to define a suitable set T of target points on
C∗. Figure 4.4.right provides an example of the following concepts and notation
necessary to define T . When |Mol| = 1, let L be the line passing through c(C∗) and
orthogonal to the segment between the two robots forming the molecule, and let
P = {p1, p2} with p1 and p2 being the intersections of L with C∗. When |Mol| = 3
instead, let L1, L2 and L3 be the radii of C∗ passing through the center of each
molecule, then P = {p1, p2, p3} with p1, p2 and p3 being the intersections of L1, L2

and L3, respectively, with C∗. The set T is defined by all the points at a distance
multiple of πr(C∗)/m from points in P in the clockwise direction on C∗. Being C∗

of radius multiple of 2m, the points of T are 2m, including those in P , and are
equally distributed on C∗.



4.3. A MATTER FORMATION CASE STUDY 135

L

C∗

Lp2 p1

Figure 4.7: Configurations in tasks T4 (left) and T5 (right). Note that in T4, the robots
that move are those on p1 and p2.

The area enclosed by C∗ can be partitioned into ρ(Mol) sectors as follows: when
ρ(Mol) = 3 the sectors are defined by the radii L1, L2 and L3; when ρ(Mol) = 2
they are defined by the half-lines forming L; finally, when ρ(Mol) = 1, the whole
area inside C∗ forms just one sector.
The resulting move to lead all the robots on the target in T is denoted as m3 and
formalized as follows.

• Move m3:

– Robots are moved on C∗ so as to not create undesired molecules. For
each sector, and in a coordinated 3-steps way, the robot furthest from
c(C∗) is first moved radially until distance 3

2
D from C∗ (that is in the

exact middle of A), then it rotates clockwise until being on the radius of
C∗ passing through the first unoccupied target, and finally moves radially
to the target.

Note that there might be at most three robots moving concurrently. The use of
annulus A is to be sure that the moving robots do not create molecules accidentally
while moving. In fact, the width of A is 3D and robots move in the middle of A,
that is at a distance of at least 1.5D from any other robot.

Task T4: Forming molecules - auxiliary case

The task is needed when T3 is finished and the matter can be formed (through the
subsequent tasks). In particular, T4 can be thought as an auxiliary task exploited to
guarantee the evolution of the system from T3 to T5 or T6. In fact, the formation of
the matter without creating the molecules handled by T4 may result in a modification
of the definition of C∗.
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We now introduce some additional notation. Let Mol′ be the set of molecules
inside C∗. We recall that in the description of task T3 there are defined points
p1 and p2 on C∗ when |Mol′| = 1, whereas such points became p1, p2, and p3
when |Mol′| = 3. Now, if |Mol′| = 1, let X = {r1, r2} be the first two robots
that are met from p1 and p2, respectively, in the clockwise direction. Conversely, if
|Mol′| = 3, let X = {r1, r2, r3} be the first three robots that are met from p1, p2,
and p3, respectively, in the clockwise direction. Once X is defined, let R+ = R \X.
Figure 4.7.left shows a configuration processed by Task T4

This notation can now be used to define the pre-condition that characterizes task
T4.

nM1: It is considered true when all the following properties hold:

1. |Mat| = 0

2. |Mol′| = 1 or |Mol′| = 3

3. FarC

4. the number of molecules on C∗ is less than ρ(R+)

The move performed in this task is denoted as m4 and formalized as follows.

• Move m4:

– If |X| = 3 or (|X| = 2 and ρ(R+) = 2), then all robots in X rotate clock-
wise, otherwise among r1 and r2 the farthest from L rotates clockwise.

According to this move, one, two or three molecules are formed on C∗ depend-
ing on the possible initial symmetry deduced from ρ(R+). These molecules, along
with the positioning of the other robots on C∗, allow the movement of the internal
molecules to create the core of the matter made by either one or three molecules.
Figure 4.7.right shows a configuration obtained at the end of Task T4 when ρ(R) = 2.

Tasks T5: One molecule initializes the matter

This task is devoted to “initializing the matter” by correctly positioning the unique
molecule formed in task T1. Concretely, an embedding of the hexagonal grid GH

into the plane is defined, and the unique molecule located close to the center of C∗

is moved on an edge of the first level of GH . In previous tasks, C∗ was identified by
robots by using the internal molecules formed during T1 or T2. Now, after moving
the internal molecule, C∗ is recognized as the circle containing all the robots not
forming molecules and two robots forming one molecule and with radius equal to ρ1
(for ρ1 see Section 4.3.2). Given this definition, internal molecules can freely move
without changing the identification of C∗.
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Figure 4.8: Movement of molecules in Task T6.

A preliminary embedding of GH is given by matching its center with the center
of C∗. The exact embedding will be defined once the molecule µ is moved to a
position consistent with the first level of GH . Figure 4.7.right provides an example
of a configuration where this task must be applied.

This task is applied only when the following pre-condition holds.

nM2: It is considered true when all the following properties hold:

1. |Mat| = 0

2. FarC

3. 2 ≤ |Mol| ≤ 3: 1 or 2 molecules are on C∗ and 1 internal

4. the number of molecules on C∗ no less than ρ(R)

All these properties remain valid during the movement of µ, while the first one
becomes false as soon as µ reaches the target. The move performed in this task is
denoted as m5 and formalized as follows.

• Move m5:

– The unique internal molecule µ radially moves along L until reaching a
position consistent with the first level of the defined embedding of GH .

Note that if the initial configuration was admitting symmetricity equal to 2, after
T5 the configuration becomes asymmetric. This symmetry breaking is impossible in
the OBLOT model.
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Tasks T6: Three molecule initialize the matter

This task is similar to T5, but here three molecules instead of one are used to “ini-
tialize the matter”. As in the previous task, C∗ is recognized as the circle containing
all the robots not forming molecules along with six robots forming three molecules,
and with radius equal to ρ3 (for ρ3 see Section 4.3.2). Given this definition, internal
molecules can freely move without changing the identification of C∗. Again GH

is embedded by matching its center with the center of C∗. The exact embedding
will be defined once the molecules are located close to the center of GH in a posi-
tion consistent with the first level of GH . Figure 4.8.left provides an example of a
configuration where this task must be applied.

This task is applied only when the following pre-condition holds.

nM3: It is considered true when all the following properties hold:

1. 0 ≤ |Mat| < 3

2. FarC

3. |Mol| = 6: 3 molecules are on C∗ and 3 internal

All these properties remain valid during the movement of the three internal molecules,
while the first one becomes false as soon all the moving molecules reach the target.
The move performed in this task is denoted as m6 and formalized as follows.

• Move m6:

– The three internal molecules first rotate clockwise with respect to their
center until the rays of C∗ passing through their centers become orthogo-
nal to the segments joining the two robots forming each molecule. Then,
they radially move until reaching the right positioning to become part of
the matter with respect to c(C∗).

Once this task ends, the matter is suitably initialized and the configuration admits
a symmetricity of three.

Task T7: Forming new molecules

This task forms new molecules on C∗ that later will be moved to grow the matter. It
starts when the matter is composed of at least three molecules and no new molecules
on C∗ exist. The difficulty here is mainly due to detecting how many molecules on
C∗ need to be formed and selecting and moving the robots to form new molecules
on C∗.
For this aim, we refer again to the lines L1, L2, and L3 introduced in the description
of task T3 (cf. Section 4.3.2), and to the points p1, p2, and p3 induced by such lines
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Figure 4.9: Configurations in tasks T7 (left) and T8 (right).

on C∗. In the move planned for this task, the algorithm selects the robots r1, r2 and
r3 as the first three robots met from p1, p2, and p3, respectively, in the clockwise
direction.
The move performed in this task is denoted as m7 and formalized as follows.

• Move m7:

– If the matter is currently composed by at least three molecules and the
first three robots r1, r2, r3 met from p1, p2, and p3, respectively, in the
clockwise direction, are distinct and ρ(R \ {r1, r2, r3}) = 3, then r1, r2
and r3 rotate along C∗ until creating three molecules. In any other case,
the robot on C∗ closest to the successive one in the clockwise direction,
with minimum view in case ot ties, rotates along C∗ until forming a new
molecule.

This move builds either one or three molecules on C∗. We conclude by observing
that this task is applied only when the following pre-condition holds.

M1: It is considered true when all the following properties hold:

1. FarC

2. |Mat| > 0

3. |Mol \Mat| < 3

All these properties remain valid during the movement of the robots in C∗, while
the third one becomes false if three molecules are formed on C∗. In Section 4.3.3,
we will see that even though M1 may remain true once T7 is over, the subsequent
Task T8 has a higher priority, so it will be responsible to correctly detect such an
occurrence (see, e.g. Figures 4.9 and 4.10).
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Figure 4.10: Two successive configurations belonging to task T8.

Task T8: Moving molecules

This task moves all the molecules – previously formed on C∗ through tasks T4 or T7

– to grow the matter. As in the previous task, here we still refer to the three lines
L1, L2, and L3 introduced in the description of task T3, and to the points p1, p2, and
p3 induced by such lines on C∗. Hence, robots r1, r2 and r3 are defined as the first
three robots on C∗ met from p1, p2, and p3, respectively, in the clockwise direction.
Here the algorithm exploits an extension of the notion of symmetricity, since this
notion is also applied to the matter formed so far. In particular, by ρ(Mat) we
denote the symmetricity of the molecules already embedded in the hexagonal grid
GH . For instance, in Figure 4.10 ρ(Mat) = 1, in Figure 4.9 ρ(Mat) = 3, in Figure 4.3
ρ(Mat) = 1 and ρ(Mat) = 3 on the left and right side, respectively.

T8 is applied when the following pre-condition holds in the observed configuration.

M2: It is considered true when both the following properties 1 and 2 hold:

1. |Mat| > 0

2. The following does not hold: there are three molecules on C∗ and |Mol′ \
Mat| > 0.

3. One of the following properties holds:

(a) |Mol \Mat| > 0 and ρ(Mat) = 1

(b) |Mol \Mat| = 1 and ρ(Mat) = 3 and ρ(R \ {r1, r2, r3}) = 1

(c) |Mol \Mat| = 3.

Concerning Property 1, it is required to be sure that the matter has been previously
correctly initialized. Moreover, it stays true during the whole task since it is not
affected by the move (the matter can only increase).
Concerning Property 2, it is responsible for recognizing whether T6 is over (i.e., all
the three molecules inside C∗ have been moved to correctly initialize the matter)
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or not. In fact, as it will be clarified in Section 4.3.3, since the precondition of T8

is evaluated before that of T6, here it is necessary to test whether there are three
molecules on C∗ and, at the same time, there are molecules internal to C∗ (i.e.,
molecules in Mol′) which are not yet correctly added to the current matter. If this
condition holds, then it is clear that T6 is not completed.
Let us now consider Property 3. This is due to the fact that, similarly to T6, in the
algorithm this pre-condition is evaluated before that of T7 and hence it is responsible
of recognizing whether T7 is over (i.e., no more molecules must be formed on C∗) or
not. It is based on three different sub-properties:

• Property 3a captures configurations where there are molecules on C∗ and
ρ(Mat) = 1. If T8 is just starting, then there are one or two molecules on
C∗, no more molecules must be formed on C∗ and T8 can proceed; otherwise,
ρ(Mat) = 1 could be due to some molecule just added and also in this case it
is correct to start again T8 (it may happen that there are other two molecules
to be moved).

• Property 3b captures configurations where there is one molecule on C∗ and
ρ(Mat) = 3. Condition ρ(R\{r1, r2, r3}) = 1 allows the algorithm to recognize
that the current configuration must not be processed by T7 (no more molecules
to be created on C∗). Hence, the unique molecule on C∗ must be added to the
matter.

• Property 3c is simple: here there are three molecules on C∗, and since T7

builds at most three molecules, it is evident that T8 must be started.

The move performed in this task is denoted as m8 and formalized as follows.

• Move m8:

– Each molecule moves toward the closest available position of the last level
of the matter not yet filled, in the clockwise direction in case of ties, while
possibly rotating with respect to its center (e.g., see Figure 4.10).

Task T9: Matter done

It refers to the requirement of letting molecules to detect the matter has been formed,
hence no more movements are required. The corresponding precondition is defined
as follows:

Mf: All robots form molecules and matter is completed

Clearly, only nil movements are allowed and it is not possible to switch to any other
task (e.g., see Figure 4.3).
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4.3.3 Algorithm formalization and correctness

FormHexMatter is the algorithm designed to solve the HexMF problem. It is based
on a strategy that decomposes HexMF into tasks T1, T2, . . . , T9. Tasks have been
detailed throughout Section 4.3.2. For each task we have provided a detailed de-
scription for (1) the concept and notation specifically needed by the task, (2) the
pre-condition that must be verified to accomplish the task, and (3) the move per-
formed by robots/molecules for accomplishing the task. For the sake of convenience,
Table 4.2 summarizes all the Boolean variables introduced to define the tasks’ pre-
conditions.
According to the algorithm design methodology introduced in [44] and recalled in
Section 3.2, we state the following lemma.

Lemma 14. Predicates Pi fulfill both Properties Prop2 and Prop3.

Proof. Prop2 is directly implied by Equation 3.1. Prop3 is implied by pre-condition
pre1 and predicates Pi.

Table 4.3 formalizes the proposed algorithm: the first two (general) columns recall
the hierarchical decomposition, the third column associates tasks names to sub-
problems, and the fourth column defines precondition prei for each task Ti. These
preconditions must be used to define each predicate Pi according to Equation 3.1.
The fifth column of Table 4.3 contains the name of the move defined for each task.
The last column specifies the transitions Ti → Tj that can occur from each task Ti,
that is any possible task Tj to be performed on the obtained configurations once Ti

is terminated. For example, the table states that from T4 only transitions T4 → T5

and T4 → T6 can occur.
According to the definitions of Pi given in Equation 3.1, in the Compute phase, each
robot evaluates – with respect to the perceived configuration and the provided input
µ and F – the preconditions starting from P9 and proceeding in the reverse order
until a true precondition is found. In case all predicates P9, P8, . . . , P2 are evaluated
false, then task T1, whose precondition is simply true, is performed.

Predicates evaluation: an example. In this paragraph, we provide an example
of how robots, during the execution of FormHexMatter, detect the task to be per-
formed. For this purpose, we consider distinct initial configurations, those shown in
Figures 4.4.left, 4.5 and 4.6.
The initial configuration in Figure 4.4.left is such that ρ(R) = 2 and belongs to T1.
In fact, since there are no molecules formed, Mf, M2, M1, nM3, nM2, nM1, and cM are
false, that is the configuration is not in T9, . . . T3, respectively. Concerning iM3′′,
circle CR

1 contains only two robots, hence the predicate is false. Concerning iM3′,
the distance from c(R) does not identify exactly three robots, hence the predicate
is false too, that is the configuration is not in T2 and then belongs to T1. During
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prec. var definition
∗ FarC True when all robots (excluding those forming molecules) are correctly positioned on C∗.

pre2
iM3′ True when all the following properties hold:

1. the distance from c(R) identifies exactly r1, r2, r3;
2. if R′ = R \ {r1, r2, r3}, then ρ(R′) = 3x, x > 0;
3. at least one robot among r1, r2, r3 is not part of a molecule;
4. the rays passing through r1, r2, r3, respectively, and rotating clockwise, meet three robots

r′1, r
′
2, r

′
3 on CR′

1 at 120o each other;
5. r1, r2, and r3 are on the same circle or their projections on CR′

1 coincide with r′1, r
′
2, r

′
3,

respectively.

iM3′′ True when all the following properties hold:

1. CR
1 contains more than three robots;

2. there exist r1, r2, r3 on CR
1 such that: their distance to the next (clockwise) robots is

minimum and their rotation toward the next (clockwise) robots generates a configuration
R′ with ρ(R′) = 3;

3. at least one robot among r1, r2, r3 is not part of a molecule.

pre3 cM True when all the following properties hold:
1. ¬iM3′
2. ¬iM3′′
3. |Mol| = 1 or (|Mol| = 3 and ρ(Mol) = 3)
4. ¬FarC

pre4 nM1 True when all the following properties hold:

1. |Mat| = 0
2. |Mol′| = 1 or |Mol′| = 3
3. FarC

4. the number of molecules on C∗ is less than ρ(R+)

pre5 nM2 True when all the following properties hold:

1. |Mat| = 0
2. FarC

3. 2 ≤ |Mol| ≤ 3: 1 or 2 molecules are on C∗ and 1 internal
4. the number of molecules on C∗ is no less than ρ(R)

pre6 nM3 True when all the following properties hold:

1. 0 ≤ |Mat| < 3
2. FarC

3. |Mol| = 6: 3 molecules are on C∗ and 3 internal

pre7 M1 True when all the following properties hold:

1. FarC

2. |Mat| > 0
3. |Mol \Mat| < 3

pre8 M2 True when all the following properties hold:

1. |Mat| > 0
2. The following does not hold: there are three molecules on C∗ and |Mol′ \Mat| > 0
3. One of the following properties holds:

(a) |Mol \Mat| > 0 and ρ(Mat) = 1
(b) |Mol \Mat| = 1 and ρ(Mat) = 3 and ρ(R \ {r1, r2, r3}) = 1
(c) |Mol \Mat| = 3

pre9 Mf Matter formed.

Table 4.2: Summary of all the Boolean variables defined in the description of tasks T1, T2, . . . , T9 (cf. Sec-
tion 4.3.2), used to define the tasks’ preconditions pre2, . . . , pre9.
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problem sub-problem task precondition move transitions

HexMF

FIM
FIM 1 T1 true m1 T3, T4

FIM 2 T2 iM3′ ∨ iM3′′ m2 T3, T4

MRA T3 cM m3 T4

FM1 T4 nM1 m4 T5, T6

IM
IM 1 T5 nM2 m5 T8

IM 2 T6 nM3 m6 T8

FM2 T7 M1 m7 T8

MM T8 M2 m8 T7, T9

MD T9 Mf nil T9

Table 4.3: Algorithm FormHexMatter designed to solve the HexMF problem. To task Ti

has associated a predicate Pi as shown in Equation (3.1). To recognize the task to perform,
each robot evaluates the predicates starting from P9 and proceeding in the reverse order
until a true precondition is found.

T1 the two most internal robots move toward each other according to m1, hence the
same considerations as above hold until their distance reduces to D and a molecule
is formed, see Figure 4.4.right.
The reached configuration in Figure 4.4.right belongs to T3. In fact, Mf is clearly
false, that is the configuration is not in T9. As FarC is false, then M1, nM3, nM2,
and nM1 are false, that is the configuration in not in T7, . . . , T4, respectively. For
the same reason, the embedding of GH cannot be defined and hence |Mat| = 0
and the configuration is not in T8. Concerning iM3′′, circle CR contains only two
robots, hence the predicate is false. Concerning iM3′, the distance from c(R) does
not identify exactly three robots, hence the predicate is false too. Since |Mol| = 1
and not all the robots are on C∗ then cM is true, that is the configuration belongs
to T3. In Figure 4.4 also the trajectories traced by the robots are shown during T3

and the above Boolean values hold until the last robot reaches C∗. In particular, for
iM3′ it is possible that at some point the distance from c(R) identifies exactly three
robots, however, in that case ρ(R′) < 3.
The reached configuration in Figure 4.7.left belongs to T4. In fact, here Mat = ∅,
hence Mf, M2, M1, are false and the configuration is not in T9, T8, nor T7. As
|Mol| = 1 then nM3 and nM2 are false, that is the configuration does not belong to
T6 nor T5. Since |Mat| = 0, FarC is true, |Mol′| = 1 and there are no molecules
on C∗ then nM1 is true and the configuration is in T4. The corresponding move
m4 makes robots on p1 and p2 rotate clockwise on C∗ until forming two molecules.
During the movements, it is possible that one molecule appears before the other but
this does not affect the truth value of the above predicates.
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The reached configuration in Figure 4.7.right belongs to T5. In fact, here Mat = ∅,
hence Mf, M2, M1, are false and the configuration is not in T9, T8, nor T7. As |Mol| = 3
then nM3 is false, that is the configuration does not belong to T6. Since |Mat| = 0,
FarC is true, |Mol| = 3 with 1 or 2 molecules on C∗ and 1 internal, and the number
of molecules on C∗ is no less than ρ(R) then nM2 is true and the configuration is in
T5. Here the internal molecule radially moves along L reaching the side of a hexagon
of side D centered in c(C∗), hence making |Mat| = 1. During the movement, the
truth value of the above predicates is not affected.
The reached configuration in Figure 4.10 belongs to T8. In fact, here Mf is false,
that is the configuration is not in T9. Since |Mat| > 0, |Mol \ Mat| = 2, and
ρ(Mat) = 1, then M2 holds and the configuration is in T8. Move m8 involves the two
external molecules, one by one, and leads them to be part of the matter. During
the movement and after the first molecule arrives, |Mol \ Mat| = 1 and ρ(R \
{r1, r2, r3}) = 1, hence the truth value of the above predicates is not affected.
The reached configuration in Figure 4.9.left belongs to T7. In fact, here Mf is false,
that is the configuration is not in T9. |Mol| \ |Mat| = 0, that is M2 is false the
configuration is not in T8. Since |Mat| > 0, |Mol \ Mat| < 3 and FarC is true
then M1 holds and the configuration is in T7. By alternating tasks T7 and T8 the
final configuration in Figure 4.3.left is achieved. According to precondition Mf, the
final configuration belongs to Task T9, where only the nil movement is performed.
According to Theorem 5, the reached configuration admits symmetricity 1 whereas
the initial configuration of Figure 4.4.left has symmetricity 2. In fact, this is possible
since ρ(µ) = 2.
By considering the configurations shown in Figures 4.5 and 4.6 (both referring to
configurations of symmetricity three) it is also possible to simulate the evaluation of
all the predicates to see that in such configurations P9, P8, . . . , P3 are all false while
P2 holds (thanks to iM3′ and iM3′′, respectively). During the execution of the algo-
rithm, these configurations will be processed by tasks T3 and T4 until reaching the
configuration shown in Figure 4.8. It can be observed that, in such a configuration,
predicates P9, P8, and P7 are all false while P6 holds.

According to the definition of all the Boolean variables given in Section 4.3.2 and
to the above examples, we can make the following remark.

Remark 11. Algorithm FormHexMatter fulfills Property Prop1.

Using the algorithm in the Compute phase. According to Lemma 14 and Re-
mark 11, we get that all properties Prop1, Prop2, and Prop3 hold. As a consequence,
FormHexMatter can be used in the Compute phase as follows:

– if any robot r (or molecule µ) executing algorithm FormHexMatter
detects that predicate Pi holds, then r (or µ) simply performs the move
mi associated with task Ti.
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Correctness

In this section, we formally prove that algorithm FormHexMatter solves the HexMF
problem. According to the methodology proposed in [44] and reported in Section 3.2,
the correctness of the proposed algorithm can be obtained by proving that all the
following properties hold:

H1: The algorithm never generates unsolvable configurations. According to The-
orem 5, this implies that each configuration R(t), t > 0, generated by the
algorithm fulfills ρ(R(t)) ≤ 3.

H2: The movement of each robot is collision-free (cf. Remark 9).

H3: For each task Ti, the transitions from Ti to any other task are “exactly” those
declared in Table 4.3; moreover, all such transitions lead to stationary config-
urations.

H4: Each transition in Table 4.3 occurs after a finite number of cycles. This means
that the generated configurations can remain in the same task only for a finite
number of cycles.

Since these properties must be proved for each transition/move, then in the following
we provide a specific lemma for each task. Property H3 does not directly implies that
robots/molecules “complete” each task in a finite amount of time. In fact, there is a
cycle created by transitions between tasks T7 and T8. Anyway, a final theorem will
assess the correctness of FormHexMatter by making use of all the proved properties
H1–H4 for each task and by also showing that there is a finite number of transitions
between tasks T7 and T8.

Lemma 15. Let R be a stationary configuration in T1. From R, FormHexMatter
eventually leads to a stationary configuration belonging to T3 or T4.

Proof. Let us analyze properties Hi, for 1 ≤ i ≤ 4, separately.

H1: In this task, only configurations with symmetricity of 1 or 2 are processed. In
the particular case in which there is a robot in c(R), that robot is moved away
to create an asymmetric configuration. As a consequence, there are always
two robots r1 and r2 detectable, and such robots are those closest to c(R).
Robots r1 and r2 are moved toward the circle Cm so that exactly one molecule
is created, eventually. Hence, the symmetricity always remains at most 2 until
the end of the task.

H2: There are at most two robots r1 and r2 moving toward Cm. When their re-
ciprocal distance becomes D, if a molecule is formed no collision can occur.
When they are at distance D, a molecule is not formed only if either constraint
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C2 or constraint C3 are not satisfied (cf. Section 4.1). In these cases the two
robots could potentially reach the same point on Cm and collide. However,
condition C2 cannot occur since there are no further robots close to c(R) and
the starting distance between robots is more than 2D. Regarding condition
C3, there should be a third robot r3 at distance D from either r1 or r2 when
d(r1, r2) = D. In this case, it is not difficult to prove that r3 is closer to c(R)
than r2, and this is a contradiction for the definition of r1 and r2.

H3: We show that each configuration generated from R remains in T1 until the mov-
ing robots r1 and r2 have reached their targets. Since R belongs to T1, then the
precondition of Ti, for each i > 1, is false with respect to R. In particular, since
the precondition of T8 is false, then in the considered configuration R there
are no molecules. As a consequence, since all preconditions of T9, T8, . . . , T3

require formed molecules to hold, they remain false until at least a molecule if
formed. Concerning T2, since its precondition is false in R, then it remains as
such during the movements of r1 and r2. In particular, iM3′′ is false because
when the two robots start moving there remain less than 3 robots on CR

1 , and
iM3′′ is incompatible with the kind of movement performed by r1 and r2.

We now show that when r1 and r2 reach their targets, a stationary configu-
ration R′ belonging to either T3 or T4 is generated. In fact, when r1 and r2
reach their targets, preconditions of T9, T8, . . . , T5 do not hold because they
require |Mat| > 0 or |Mol| > 1, against the presence of just one molecule.
The membership R′ depends on FarC only: if FarC is false, then the obtained
configuration is stationary in T3 because there is only one molecule and both
iM3′ and iM3′′ are false for the same reasons above; when FarC holds, since
there are no molecules on C∗, then R′ is a stationary configuration in T4.

H4: As long as the configuration remains in T1, the distance of each moving robot
from Cm decreases. Hence, within a finite number of computational cycles,
the robots create a molecule.

Lemma 16. Let R be a stationary configuration in T2. From R, FormHexMatter
eventually leads to a stationary configuration belonging to T3 or T4.

Proof. Let us analyze properties Hi, for 1 ≤ i ≤ 4, separately.

H1: In this task, there are always three robots detectable, in such a way that with-
out them the configuration admits a symmetricity of 3. The defined move
guarantees that r1, r2, r3 are the closest robots to the targets that accomplish
the task. Moreover, while such robots move, they decrease their distances
from their target and hence they are always distinguishable. It follows that
symmetricity never overcomes 3.
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H2: When iM3′ holds, r1, r2, and r3 rotate clockwise until either they create three
molecules, or they become aligned with robots r′1, r′2, and r′3, respectively,
located on CR

2 . In this second case, they radially move toward r′1, r′2, and
r′3, again creating three molecules. Hence, no collisions are possible. When
iM3′′ holds, r1, r2, r3 rotate clockwise until creating three molecules with three
robots located on CR

1 or CR
2 . Again, since the starting distance between robots

is more than 2D, by such a movement no collisions are possible. Furthermore,
the moving robots cannot meet other molecules along their trajectory as the
configuration did not contain any molecule when the task started.

H3: We show that each configuration generated from R remains in T2 until all the
three moving robots r1, r2 and r3 have reached their targets. Since R belongs
to T2, then the precondition of Ti, for each i > 2, is false with respect to R.
In particular, since the precondition of T8 is false, then there are no molecules
in R. As a consequence, since all preconditions of T9, T8, . . . , T3 require the
presence of molecules to hold, they remain all false until at least one molecule
if formed. Since iM3′ and iM3′′ remain valid until r1, r2, and r3 are all part of
a molecule, then each obtained configuration remains in T2 until one molecule
is formed.
Let R′ be any configuration observed in the interval of time in which one or two
molecules are formed. During such an interval, the following properties hold
in R′: (1) variable FarC is false (this can be easily observed since the center
of the minimum circle enclosing all the formed molecules does not coincide
with c(R), as requested by the definition of C∗), (2) |Mat| = 0 (the formed
molecules are not positioned as the definition of matter requires), and (3)
both iM3′ and iM3′′ remain valid. As a consequence of these properties, R′ is
evaluated as belonging to T2.
Let R′′ be any configuration observed as soon as the three moving robots reach
their targets. R′′ does not belong to T9, T8 and T7 since otherwise |Mat| > 0
(and this is false since the three formed molecules are not relatively positioned
as the definition of matter requires). It does not belong to T6, since it requires
|Mol| = 6 against the only three formed molecules. R′′ is not in T5, since
it requires molecules formed on C∗ against the only three molecules formed
close to c(R). Finally, the membership of R′′ depends on FarC only: if FarC is
false, then R′′ is a stationary configuration in T3 because there are only three
molecules and both iM3′ and iM3′′ are false since r1, r2, and r3 all belong to
molecules; if FarC holds, since there are no molecules on C∗, then R′′ is a
stationary configuration in T4.

H4: As long as the configuration remains in T3, the distance of each moving robot
from its target decreases. Hence, within a finite number of computational
cycles, each moving robot reaches its target.
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Lemma 17. Let R be a stationary configuration in T3. From R, FormHexMatter
eventually leads to a stationary configuration belonging to T4.

Proof. During task T3, we observe the following properties concerning move m3.
In the first part, the robots move radially outward, so the mutual distances of the
robots inside C∗ can only increase. In the second part of the movement, the robots
rotate clockwise on a circle in the center of the ring but remaining within different
sectors; being at a distance greater than D from C∗ and in different sectors, these
robots cannot form molecules either during rotation or during movement toward the
target.
We can now analyze properties Hi, for 1 ≤ i ≤ 4, separately.

H1: As there are one or three molecules defining c(C∗) and as no further molecules
are created according to the above observation, then ρ(R) can be at most 3.

H2: Each moving robot r is tracing a trajectory suitably defined to not incur in
collisions nor create molecules as described in the above observation.

H3: We show that each configuration generated from R remains in T3 until all the
moving robots have reached the targets. In R, pre3 = cM holds whereas prei,
i > 3, does not hold. This implies that FarC is false (derived from cM true)
and |Mat| = 0 (derived from pre8 = M2 false). Since the value of these two
variables is not affected by the robots’ movement, then each configuration R′

obtained before all robots reach the targets does not belong to T9, T8, . . . , T4.
Moreover, since it can be easily observed that cM still holds in R′, then R′

remains in T3.

Let R′′ be the configuration obtained at the time in which all the moving robots
reach the targets. Since the molecules in R did not change their position, then
still |Mat| = 0 in R′′; moreover, non new molecules have been created in R′′.
This implies that R′′ is not in T9, T8, . . . , T5. Finally, since FarC became true
in R′′, then R′′ results to be a stationary configuration in T4.

H4: As long as the configuration remains in T3, the distance of each moving robot
from its target decreases. Hence, within a finite number of computational
cycles, the robot reaches its target.

Lemma 18. Let R be a stationary configuration in T4. From R, FormHexMatter
eventually leads to a stationary configuration belonging to T5 or T6.

Proof. Let us analyze properties Hi, for 1 ≤ i ≤ 4, separately.

H1: During the robots’ movement there are only one or three molecules inside C∗

defining c(C∗), hence ρ(R) can be at most 3.
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H2: Each moving robot r is going along C∗ toward the next closest robot r′ in the
clockwise direction. Hence, conditions C2 and C3 cannot occur since no robots
are in between r and r′ and once d(r, r′) = D a molecule is created.

H3: Let R′ be any configuration observed during the robots’ movement and before
all moving robots reach their targets. In both R and R′ we have |Mat| = 0 (as
remarked in the proofs of the previous lemmas, the molecules inside C∗ are not
positioned as the definition of matter requires). This implies that Mf, M2 and M1

remain false and hence R′ is not in T9, T8, T7. During the movement, predicates
nM2 and nM3 are false due to the non-consistent numbers of molecules inside
and on C∗. Hence, R′ remains in T4.

Let R′′ be the configuration observed as soon as all the moving robots reach
their targets. In R′′ there can be three, two or one molecule on C∗. If three,
it means there are three molecules inside C∗ and predicate nM3 becomes true,
i.e., the configuration is in T6 and it is stationary. If one or two, there is only
one molecule inside C∗ and predicate nM2 becomes true, whereas nM3 is false.
Hence, the configuration is in T5 and it is stationary.

H4: As long as the configuration remains in T4, the distance of each moving robot
from its target decreases. Hence, within a finite number of computational
cycles, each moving robot reaches its target.

Lemma 19. Let R be a stationary configuration in T5. From R, FormHexMatter
eventually leads to a stationary configuration belonging to T8.

Proof. Let us analyze properties Hi, for 1 ≤ i ≤ 4, separately.

H1: As soon as the molecule inside C∗ moves, ρ(R) can only be equal to 1.

H2: Since there is only one molecule inside C∗, no collisions among robots are pos-
sible, when the molecule is moving. Similarly, no other molecules are met.

H3: Let µ be the moving molecule, and let R′ be any configuration observed during
the movement of µ and before µ reaches its target. Of course, |Mat| = 0 in
R′. Hence, both M1 and M2 are false in R′ and hence R′ is not in T9, T8, T7. R′

is not in T6 because nM3 is false (there is only µ inside C∗). Since nM2 remains
true, R′ is in T5.

Let R′′ be the configuration observed as soon as µ reaches the target. In this
configuration we have |Mat| = 1. As a consequence, R′′ is not in T9. M2

holds in R′′ (|Mat| = 1, the matter formed does not admit a rotation, and
|Mol \Mat| > 0). Since there is at least one molecule on C∗, then R′′ results
to be a stationary configuration in T8.
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H4: As long as the configuration remains in T5, the distance of the moving molecule
from its target decreases. Hence, within a finite number of computational
cycles, the molecule reaches its target.

Lemma 20. Let R be a stationary configuration in T6. From R, FormHexMatter
eventually leads to a stationary configuration belonging to T8.

Proof. Let us analyze properties Hi, for 1 ≤ i ≤ 4, separately.

H1: Since there are three molecules on C∗, ρ(R) can only be 1 or 3.

H2: Since there are only molecules moving, collisions among robots cannot occur.
Moreover, by move m6, molecules always move on radial trajectories toward
c(C∗) without ever touching each other.

H3: Let R′ be any configuration observed during the molecules’ movement and be-
fore they all reach their targets. R′ is clearly not in T9 since there are still
molecules to be added to the matter. Moreover, Property 2 in the definition of
M2 is false and hence R′ does not belong to T8. Since there are three molecules
on C∗, then |Mol \Mat| > 3 and hence the last property of M2 does not hold:
hence, R′ is not in T7. Since nM3 is clearly not affected by the movements,
then R′ remains in T6.

Let R′′ be the configuration observed as soon as each molecule reaches its
target. Again, R′′ is not in T9 since there are still molecules to be added to
the matter. M2 is true in R′′ (in fact, |Mol \Mat| = 3), and hence R′′ results
to be a stationary configuration in T8.

H4: As long as the configuration remains in T6, the distance of each moving molecule
from its target decreases. Hence, within a finite number of computational
cycles, each molecule reaches its target.

Lemma 21. Let R be a configuration with |Mat| > 0. Then, ρ(R) can be either 1
or 3.

Proof. By construction, the molecules constituting the first level of the matter are
three at most. If they are less than three then ρ(R) = 1. Else, if they are three,
then ρ(R) cannot be larger than three nor equal to two.

Lemma 22. Let R be a stationary configuration in T7. From R, FormHexMatter
eventually leads to a stationary configuration belonging to T8.

Proof. Let us analyze properties Hi, for 1 ≤ i ≤ 4, separately.
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H1: Follows directly from Lemma 21.

H2: Each moving robot r is going along C∗ toward the next closest robot r′ in the
clockwise direction. Hence, conditions C2 and C3 cannot occur since no robots
are in between r and r′ and once d(r, r′) = D a molecule is created.

H3: Let R′ be any configuration observed during the robots’ movement and before
they all reach their targets. R′ is clearly not in T9 since there are still molecules
to be added to the matter. If only one robot is allowed to move, then M2

remains false until one molecule is created. If three robots are allowed to
move, it means that the matter admits a rotation and ρ(R′ \ {r1, r2, r3}) = 3
while |Mol \Mat| < 3, hence again M2 is false. Summarizing, in both cases
(one or three robots moving) we get that R′ belongs to T7.

Let R′′ be the configuration observed as soon as each robot reaches its target.
Again, R′′ is not in T9 since there are still molecules to be added to the matter.
M2 is true in R′′. In fact, either |Mol \Mat| = 3 or |Mol \Mat| = 1; in the
latter case either the matter does not admit a rotation or ρ(R\{r1, r2, r3}) = 1.
Hence, R′′ is a stationary configuration in T8.

H4: As long as the configuration remains in T7, the distance of each moving robot
from its target decreases. Hence, within a finite number of computational
cycles, the robot reaches its target.

Lemma 23. Let R be a stationary configuration in T8. From R, FormHexMatter
eventually leads to a stationary configuration belonging to T7 or T9.

Proof. Move m8 aims to bring molecules formed on C∗ to join the matter. Hence,
during this task, predicates FarC and |Mat| > 0 remain true. Let us analyze prop-
erties Hi, for 1 ≤ i ≤ 4, separately.

H1: Follows directly from Lemma 21.

H2: Since there are only molecules moving, collisions among robots cannot occur.
Moreover, by move m8, molecules always move on free trajectories.

H3: Let R′ be any configuration observed during the molecules’ movement and be-
fore they all reach their targets. In R′, M2 remains trivially true as long as
|Mol \Mat| = 3. Otherwise M2 remains true since, if |Mol \Mat| = 1, then
there is exactly one molecule inside C∗ and hence ρ(R \ {r1, r2, r3}) = 1; if
|Mol \ Mat| = 2, then |Mat| mod 3 = 2, and hence the matter does not
admit a rotation. It follows that R′ remains in T8.

Let R′′ be the configuration observed as soon as each molecule reaches its
target. In R′′, it can be easily observed M2 becomes false (because |Mol \
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Mat| = 0) and M1 becomes true. Then, if no further robots are on C∗, then
R′′ is a stationary configuration in T9. Otherwise, if there are still robots on
C∗, then R′′ is a stationary configuration in T7.

H4: As long as the configuration remains in T8, the distance of each moving molecule
from its target decreases. Hence, within a finite number of computational
cycles, the molecule reaches its target.

Theorem 6. Let m > 3 be an integer and let R be any initial configuration composed
of |R| = 2m asynchronous robots moving on the plane. If robots in R have a pairwise
distance greater than 2D, then FormHexMatter correctly solves the HexMF problem.

Proof. Lemmata 15-23 ensure that properties H1, H2, H3, and H4 hold for each
task T1, T2, . . . , T9. Then ρ(R(t)), for t > 0, is always less than or equal to 3;
the moves of the robots are all collision-free; all the transitions are those reported
in Table 4.3; and the generated configurations can remain in the same task only
for a finite number of cycles. Lemmata 15-23 also show that from a given task
only subsequent tasks can be reached, or Mf eventually holds (and hence HexMF is
solved). The only exception is the cycle among tasks T7 and T8. However, in this
case, at the end of T8, the number of molecules composing the matter increases,
and since no molecule is moved away from the matter, task T9 is reached from T8

after a finite number of transitions between T7 and T8. This formally implies that,
for each initial configuration R and for each execution E : R = R(0), R(1), R(2), . . .
of FormHexMatter, there exists a finite time t′ > 0 such that R(t′) is similar to
the matter to be formed in the HexMF problem and R(t) = R(t′) for each time
t ≥ t′.

4.3.4 The Moblot model extends Oblot

Exploiting the definition of the HexMF problem provided in the case study, we
can formally prove that MOBLOT is an extension of OBLOT . To this aim, we
first introduce some notation. Given two robot models M1 and M2, inequality
M1 ≥ M2 means that any problem that can be solved in M2 is also solvable in
M1 (i.e., M1 is not less powerful than M2). Inequality M1 > M2 means that
M1 ≥ M2 holds and there exists a problem that can be solved in M1 but not in
M2 (i.e.,M1 is more powerful thanM2). We can prove the following result.

Theorem 7. MOBLOT > OBLOT .

Proof. We first show thatMOBLOT ≥ OBLOT . To this aim, observe that in case
each molecule in M is constituted by a single robot without any extent nor extra
capabilities, thenMOBLOT reduces to OBLOT .
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We now show thatMOBLOT > OBLOT . Consider HexMF, and let I be the set
of all possible instances (R,M,F) for HexMF fulfilling the conditions in Theorem 5.
Let us analyze whether there exists an algorithmA′ defined according to theOBLOT
model and able to solve HexMF for each instance in I. In other words, we are asking
whether A′ is able to form some pattern in F by moving robots from R always as-
suming them as single units, that is without exploiting the capabilities of molecules
in M. It is well known from [131] that “a pattern F cannot be formed from a
configuration R when ρ(R) does not divide ρ(F )”. Since there are configurations
(R,M,F) ∈ I such that ρ(R) = 2 and ρ(F ) ∈ {1, 3} for each F ∈ F , then A′

cannot solve the problem. Hence, HexMF cannot be solved in the OBLOT model.
Consider now FormHexMatter, the algorithm described in Section 4.3.2 and formal-
ized in Section 4.3.3. Theorem 6 shows that FormHexMatter is able to solve HexMF
for each instance in I by suitably exploiting the molecules’ capabilities. In fact, the
molecules have the ability to break the symmetry of the original configuration, pro-
vided that at least one molecule shows this symmetry. In particular, when the first
property of Theorem 5 does not hold but the second does, algorithm FormHexMatter
creates a single molecule close to the center of the configuration and after moves it
to break the initial symmetry.

4.4 The Moblot model on grid graphs

In this section, we apply the MOBLOT model to synchronous robots moving
on a square grid and in what follows, we revise the properties characterizing the
MOBLOT model introduced for robots moving on the Euclidean plane. On grids,
robots and molecules can move along the grid lines and only toward an adjacent grid
point in each step. The investigation on grids-based terrains is motivated by the
fact that they are used in real life robotic navigation systems. From an algorithmic
point of view, the restrictions imposed by the environment on movements make
more difficult to solve problems. We also present an extension of Theorem 5 to
take into account the underlying grid-based environment. A MOBLOT system is
composed by a set R = {r1, r2, . . . , rn} of n robots, that live and operate in graphs.
As chirality is assumed, and we are considering a regular square grid as a field of
movement, the only possible symmetries are rotations of 90 or 180 degrees.
A molecule µ is specified by a fixed pattern defined with respect to the regular
square grid. For instance, in what follows, we consider robots to form a molecule
if they are disposed as a possible polyomino that is a geometric shape composed
connecting squares of the same size orthogonally (i.e., at the edges and not the
corners, cf., Fig. 4.11) [81]. Each square has the same dimensions of the squares of the
grid and it is centered on one of the robots composing the molecule. Once a molecule
is formed, it is assumed to have an extent B(µ) given by the union of the squares of
which a polyomino is composed. Fig. 4.11.left shows a molecule as formed by four
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Figure 4.11: Left: A molecule formed by four adjacent robots; middle The dual
grid, where only the extent of the molecule is shown; right: all possible tetrominoes.
According to their shape, they can be referred to as L, T, J, I, O, S, and Z, respectively

robots whereas Fig. 4.11.middle shows the same molecule represented in the dual
grid, where - for the sake of simplicity - only the extent of the molecule is considered.
By M = {µ1, µ2, . . . , µm} we denote the set containing all kinds of molecules that
can be potentially formed. For example, if the number of squares composing a
polyomino equals five,M is the set of the eighteen possible pentominoes. Regarding
the constrains C1, . . . , C5 defined for theMOBLOT model in Section 4.1, we specify
property C1 for robots moving on grid graphs.

C1: in initial configurations, each pair of robots is at distance not less than 2, where
the distance is the number of edges composing the shortest path connecting
them.

The basic properties of such new entities can still be modeled as in OBLOT systems
(and its variants), with the main exception that a molecule not only can move by
following an edge of the grid but it also may rotate of 90 degrees with respect to
one of the vertices occupied by the robots composing it.
Each type of molecule inM is provided as input to the algorithm, and the algorithm
is responsible to assemble all the molecules so that a more complex structure (i.e.,
the matter) is formed. Also the matter to be formed must be given as input to
robots and it can be defined either as according to some adjacency properties or
by providing a specific pattern made of molecules (cf., Fig 4.12.right). For ease of
the discussion, we refer to the latter case as the Molecular Pattern Formation
(MPF) problem. In MOBLOT , a robot r performing the Look phase is able to
detect not only all the other robots but also any formed molecule µ. We denote by
Mol the set of molecules detected at a given time by a robot r.
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Figure 4.12: Left: a configuration containing only robots with ρ(C) = 4. Right: A
pattern F with ρ(F ) = 2 on the dual grid (colors are used for better viewing only).

4.5 The molecular pattern formation problem

In this section, we first give all the necessary concepts and notation needed to
formalize the MPF problem and then we state a necessary condition for its feasibility.
In the following, we use the term entity when we do not need to distinguish between
robot and molecule.

Configurations. A square tessellation of the Euclidean plane is the covering of
the plane using squares of side length 1, called tiles, with no overlaps and in which
the corners of squares are identically arranged. Let S be the infinite lattice formed
by the vertices of the square tessellation. The graph GS is called grid graph, its
vertices are the points in S and its edges connect vertices that are distance 1 apart.
Let R = {r1, r2, . . . , rn} be the set of robots. The topology where robots are placed
is the grid graph GS = (V,E). A function λ : R→ V maps each robot to the vertex
in GS where the robot is placed. Assume that each robot knows the set of available
molecules M and the set F of possible patterns describing the matter to form. As
said above, during the Look phase, each robot detects in the local coordinate system
both the robots’ positions and the set Mol of already formed molecules. We call
C = (GS , R, λ,Mol) a configuration. Constraint C1 imposes Mol = ∅ in each
initial configuration.

Symmetricity of a configuration. The concept of graph isomorphism intro-
duced in Section 3.1.1 can be extended to configurations in a natural way. Two
configurations C = (GS , R, λ,Mol) and C ′ = (GS

′, R′, λ′,Mol ′) are isomorphic if
there exists an isomorphism φ between GS and GS

′ that can be extended to obtain
a bijection from V ∪R to V ′ ∪R′ such that:

• two robots can be associated by φ only if they reside on equivalent vertices: if
φ(r) = r′ then φ(λ(r)) = λ′(r′);

• it preserves molecules: if µ = {ri1 , . . . , rit} ∈ Mol then {φ(ri1), . . . , φ(rit)} =
µ′ ∈Mol′ and µ′ = µ.
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In this way, analogously to graph automorphism, an automorphism of a configu-
ration C = (GS , R, λ,Mol) is an isomorphism from C to itself, and the set of all
automorphisms of C forms a group under the composition operation that we call
automorphism group of C and denote as Aut(C). Moreover, if |Aut(C)| = 1 we say
that C is asymmetric, otherwise it is symmetric. Two distinct robots r and r′ in
a configuration C are equivalent if there exists φ ∈ Aut(C) such that φ(r) = r′.
Note that, the notion of equivalence also applies to molecules.

Remark 12. Let C = (GS , R, λ,Mol) be a symmetric configuration, A be any
algorithm acting on C, and E be any maximal subset of pairwise equivalent entities
in C. Any move planned by A for an element of E applies to all set E.

As chirality is assumed, it is easy to see that any configuration C defined on GS

admits one type of automorphisms only: rotations. A rotation is an isometry
defined by a center c and a minimum angle of rotation α ∈ {90, 180, 360} working as
follows: if the configuration is rotated around c by an angle α, then a configuration
coincident with itself is obtained. The order of a configuration is given by 360/α. A
configuration is rotational if its order is 2 or 4. The type of center of a rotational
configuration C is denoted by tc(C) and is equal to:

• 1, when the center of rotation is on a vertex of GS (see Fig. 4.12.right repre-
sented by the dual grid);

• 2, when the center of rotation is on a median point of an edge of GS ;

• 3, when the center of rotation is on the center of a square of the tessellation
forming GS (see Fig. 4.12.left).

The symmetricity of a configuration C, denoted as ρ(C), is equal to its order
unless its center is occupied by one entity, in which case ρ(C) = 1. It comes out
that when the configuration is constrained on GS , then ρ(C) ∈ {1, 2, 4}.
We defined ρ() and tc() for any configuration C = (GS, R, λ,Mol) regardless whether
Mol is empty or not. Concerning notation, we use ρ(F ) and tc(F ) to refer to any
configuration forming a pattern F ∈ F . As a special case, we use ρ(µ) and tc(µ)
to refer to robots within a single molecule µ only. Moreover, for a given pattern
F ∈ F , let Mol(F ) denote the set of molecules that form F ; clearly, each molecule
in Mol(F ) also appears inM.

Problem formalization

An execution of an algorithm A from an initial configuration C is a sequence
of configurations E : C(t0), C(t1), . . ., where C(t0) = C and C(tn+1) is obtained
from C(tn) by moving some entities according to the result of the Compute phase
as implemented by A. With respect to the defined MOBLOT model, the MPF
problem on the grid graph can be formalized as follows.
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Definition 9. Given an initial configuration C = (GS , R, λ,Mol = ∅), a set of
moleculesM, and a set F of possible patterns describing the matter to form, the goal
is to design a distributed algorithm A that works for each entity so that eventually
they form some pattern in F , if possible. Formally, A solves the MPF problem for C
if, for each possible execution E : C = C(t0), C(t1), . . . of A, there exists a finite time
instant tn > 0 such that in C(tn) all robots have been assembled into molecules, the
molecules form an element in F , and no entity moves after tn, i.e., C(tk) = C(tn)
for each tk ≥ tn.

Theorem 8. Let C = (GS , R, λ,Mol) be any configuration composed of synchronous
robots and (C,M,F) be an instance of the MPF problem. If there exists an algorithm
A able to form a pattern F ∈ F from C, then one of the following holds:

1. ρ(C) divides ρ(F ) and (ρ(C) > 1⇒ tc(C) = tc(F ));

2. ∃ µ ∈ Mol(F ): ρ(C) divides ρ(µ) and (ρ(C) > 1⇒ tc(C) = tc(µ)).

Proof. Assume that A is able to form F without preliminarily forming molecules
(i.e., there exists a time tn > 0 such that C(tn) is similar to F and no molecule is
formed in C(ti) for each ti < tn). In this case, we have from [131] that property
(1) holds. In what follows we assume that A must create and move some molecules
to form F . We also assume ρ(C) > 1, otherwise both properties (1) and (2) are
trivially verified. Let E : C = C(t0), C(t1), . . . be the execution of the algorithm A,
according to Remark 12, ρ(C(t0)) pairwise equivalent robots move synchronously.
Let C(tk), k > 0, be the first configuration containing molecules.
If C(tk) contains more than one molecule, according to the synchronous moves and
to the symmetricity of C, then (i) in C(tk) there are ρ(C(t0)) molecules, (ii) the
molecules in C(tk) are all equal, (iii) ρ(C(tk)) = ρ(C(t0)), and (iv) the center of
C(t0) and that of the configuration made by the formed molecules coincide. Then,
from C(tk) on, each move planned by A maintains at least the same symmetricity
ρ(C(t0)) and the same type of center until F is formed. Then, ρ(C(t0)) divides ρ(F )
and the center of the formed molecules is maintained. Summarizing, property (1)
must hold.
If C(tk) contains just one molecule µ, then it must be formed around the center of
the configuration so that tc(µ) = tc(C(t0)). Moreover, even in this case A makes
ρ(C(t0)) equivalent robots move synchronously, and hence ρ(µ) must be a multiple
of ρ(C(t0)). To summarize, property (2) must hold.
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4.6 The Tetris-like MPF problem

In this section, we introduce Tetris-Like MPF (TL-MPF for short), a particular
version of the MPF problem. TL-MPF will be used as a case study of theMOBLOT
model to appreciate its facets in grids. In what follows we consider four robots to
form a molecule if they are disposed as a possible tetromino. The set of all formable
molecules,M is composed by the 7 possible tetrominoes, and each kind of tetromino
is denoted by a single character among L, T, J, I, O, S, and Z, according to their
shape, see Fig. 4.11.right. We recall that a tetromino is formed by 4 robots and
that two tetrominoes cannot overlap. We say that two tetrominoes are adjacent
when robots belonging to distinct tetrominoes are adjacent in GS . In TL-MPF,M
contains all the seven tetrominoes, F = {F} (where F is any set of four or more
tetrominoes), and accordingly to the definition of F , the set of initial configurations
consists of configurations in GS having a multiple of 4 and with at least 16 robots.
According to constraint C1, robots are pairwise non-adjacent.
Note that, each initial configuration C with ρ(C) = 1 is necessarily asymmetric. This
implies that, in each initial configuration C, the symmetricity induces a partition of
all the entities in subsets having the following relevant properties: (1) each set has
size equal to ρ(C), and (2) in each set, the entities are pairwise equivalent. Each set
in this partition is called an orbit.
In principle, given an initial configuration C and a pattern F to be formed, it is
possible that no algorithm exists for solving TL-MPF. We now specialize Theorem 8
to provide the definition of potentially-formable patterns from C. According to
ρ(C), we have the following cases:

Corollary 9. Given a configuration C and a pattern F ∈ F , F is potentially-
formable from C if one of the following conditions hold:

1. ρ(C) = 1;

2. ρ(C) = 2 and

(a) tc(C) = tc(F ) and ρ(F ) ∈ {2, 4}, or
(b) tc(C) = 2 and {S, Z, I} ∩Mol(F ) ̸= ∅, or
(c) tc(C) = 3 and O ∈ Mol(F );

3. ρ(C) = 4 and

(a) tc(C) = tc(F ) and ρ(F ) = 4, or
(b) tc(C) = 3 and O ∈ Mol(F ).

In the following, we describe algorithmATL that solves TL-MPF for each pair (C,F ),
where C is an initial configuration and F is potentially-formable from C. This
provides a complete characterization of the feasibility of TL-MPF.
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problem sub-problems task transitions

TL-MPF

MS: Make working Space T1 T2, T3

Forming ρ(C) new Molecules T2 T4

SB: forming one central molecule T3 T4

AM: Adding Molecules to pattern T4 T2, T5

Term: problem Termination T5 -

Table 4.4: The decomposition of TL-MPF into tasks, with SB standing for subprob-
lem Symmetry Breaking by means of the formation of one central molecule.

The algorithm ATL has been designed according to the methodology proposed in [44]
and reported in Section 3.2. Table 4.4 (explained later) shows the decomposition
into tasks for TL-MPF. ATL is responsible for allowing entities to detect which task
must be accomplished in any configuration observed during an execution.
In the next section, we give a description of each task Ti, by including details about
the corresponding move mi and precondition prei. From the definition of the pre-
conditions, it follows that also Prop1 holds.

4.6.1 The resolution algorithm

As shown in Table 4.4, the problem has been decomposed into five tasks. To de-
scribe ATL in detail, some further definitions are required. Let mbr(R) denote the
minimum bounding rectangle of R, that is the smallest rectangle (with sides
parallel to the edges of GS ) enclosing all robots. Note that mbr(R) is unique. By
c(R) we denote the center of mbr(R). Similarly, mbr(F ) is defined for the minimum
bounding rectangle enclosing the molecules forming F . In the following, we use the
term partial-molecule to refer to a pair of adjacent robots that can be later used to
assemble a molecule. Note that, by Property C1, a partial-molecule cannot exist in
initial configurations. We define point-joined-robots, the configuration in which two
robots are aligned along the diagonal of a cell of the grid and their corresponding
monominoes in the dual graph intersect in one point. Mol denotes the set of all the
molecules formed so far; F ′ ⊆ Mol is the set of formed molecules that are already
assembled to form the matter, i.e., a sub-pattern of F .

The view of the robots. robots encode the perceived configuration into a bi-
nary string denoted as LSS(R) (Lexicographically Smallest String) and computed
as follows (cf. [4]). They assign a string to each corner of mbr(R): the grid enclosed
by mbr(R) is analyzed row by row or column by column - the direction is given by
the smallest side of mbr(R) - and 1 or 0 correspond to the presence or the absence,
respectively, of a robot for each encountered vertex. From the 4 corners they get up
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(a) (b) (c) (d) (e)

Figure 4.13: Division of mbr(R) into regions based on shape and ρ(C). The mbr(R)
is shown in blue. Robots with the minimum view are shown in grey only when
needed. In (a): ρ(C) = 2, LSS(R) =0000100 0100010 1010101 0100010 1010101
0100010 0010000; in (b): ρ(C) = 1, LSS(R)=0000010 0001001 0100000 1001010
0010101 1001010 0100101. The mbr(R) is a square and it is partitioned into 2 equal
regions by a line passing through c(R) and parallel to the sides of mbr(R) where
the robots with minimum view reside; In (c): ρ(C) = 2; in (d): ρ(C) = 1, mbr(R)
is a rectangle and it is partitioned into 2 equal regions by a line passing through
c(R) and parallel to the shorter sides; in (e): ρ(C) = 4, then mbr(R) is a square
and hence it is partitioned by using two diagonals.

to 8 different strings, and the lexicographically smaller one is LSS(R). Note that
if two strings obtained from opposite corners along opposite directions are equal,
then the configuration is rotational, otherwise it is asymmetric. The robot(s) with
minimum view is the one with minimum position in LSS(R). The same approach
can be used for F but with strings formed by letters (i.e., if the analyzed vertex is
occupied by a robot forming molecule Z, then Z is inserted in the string, otherwise,
if the vertex is unoccupied, X is inserted).

Tasks T1 - Make Working Space. The goal of this task is to increase the distance
between robots. In fact, in an initial configuration, robots might be too close to
each other (e.g., when robots occupy alternatively the vertices of the grid) and the
movements might cause the formation of undesired partial-molecules. During T1,
according to Remark 12, robots move away from c(R). At the end of the task,
consecutive orbits of robots are at distance at least δ = 2 from each other and there
is also an empty space Q in the center of the configuration that contains at most
the orbit of robots closest to c(R), see Figure 4.16 for an example. The space Q is a
square centered in c(R) and its side is side(Q) = 2S, where S = max{w(F ), h(F )}
and w(F ) and h(F ) are the width and the height, respectively, of mbr(F ). The
fixed distance δ guarantees that robots have enough space for moving and creating
a molecule.
We now provide all details necessary to formalize the move m1. The first necessary
step is that of dividing mbr(R) into regions according to ρ(C), cf. Fig. 4.13. If
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ρ(C) = 4 then mbr(R) is a square and hence it is partitioned by using two diagonals.
If ρ(C) = 2 and mbr(R) is a square, it is partitioned into 2 equal regions by a line
passing through c(R) and parallel to the sides of mbr(R) where the robots with
minimal view reside.2 If ρ(C) = 1 and mbr(R) is a square, it is partitioned into 2
equal regions by a line passing through c(R) and parallel to the side of mbr(R) where
the robot with minimum view resides. If ρ(C) = 1, 2 and mbr(R) is a rectangle, it
is partitioned into 2 equal regions by a line passing through c(R) and parallel to the
shorter sides.
Each robot belongs to one of the formed regions, unless it is on a half-line of the
lines used for partitioning mbr(R); in this case, the robot belongs to the region to
the right of the half-line. Each side ℓ of mbr(R) entirely contained in a region is
said to be “associated with” that region.
When ρ(C) = 2, 4, robots in each region are numbered as follows. Let ℓ be the side
of mbr(R) associated with the region, and v be the leftmost vertex of ℓ. Robots
are numbered starting from v, proceeding along ℓ, then continuing in order with all
the lines parallel to ℓ. By assuming that the region contains t robots, the first met
robot is numbered as rt and the remaining, in order, as rt−1, . . . , r1. It is clear that
the robots in a region all belong to different orbits and therefore the numbering of
robots can be understood as a numbering for the orbits. Hence, orbits are denoted
as Ot, Ot−1, . . . , O1.
When ρ(C) = 1, the two defined regions may have a different number of robots
inside, say t1 and t2. Robots are numbered as in the previous cases in both the
regions, but they are denoted as ṙt1 , ..., ṙ1 in the region containing the robot with
minimum view, and as r̈t2 , ..., r̈1 in the other region. Hence, orbits are denoted as
Ȯ

t1
, Ȯ

t1−1
, . . . , Ȯ

1
, and Ö

t2
, Ö

t2−1
, . . . , Ö

1
. Let Ot, . . . , O1, with t = t1 + t2, such

that Ot = Ȯ
t1
, Ot−1 = Ö

t2 and the remaining orbits Ot−2, . . . , O1 are defined by
keeping orbits from the two regions in an alternating fashion as long as possible.
Let r be a robot in a region associated with a side ℓ, and assume r ∈ Oi: cdQ(O

i)
represents the “current distance” of Oi from Q (that is the distance between r and
the side of Q parallel to ℓ), it is negative if r is inside Q; fdQ(Oi) represents the “final
distance” of Oi from Q, that is the distance that robots on Oi must have when the
orbit is correctly positioned. These functions are formally defined as follows. When
ρ(C) = 2, 4:

• fdQ(O
1) = max{S + 1, cdQ(O

1)}

• fdQ(O
i) = max{fdQ(Oi−1) + δ, cdQ(O

i−1)}, ∀i > 1

When ρ(C) = 1:

• fdQ(O
1) = max{S + 1, cdQ(O

1)}
2If the robot with minimum view is on a corner, it is assumed to reside on the clockwise side

of mbr(R).
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• fdQ(O
i) = max{fdQ(Oi−1) + δ, cdQ(O

i−1)},∀i > 1, i < t− 1

• fdQ(O
t) = fdQ(O

t−1) = max{fdQ(Ot−2) + δ, cdQ(O
t−2)}

Move m1 works as follows: each robot in Oj, for each j > 1, moves perpendicularly
to the side ℓ of mbr(R) which it is associated to, increasing its distance from c(R),
until cdQ(Oj) = fdQ(O

j). Note that the task makes all robots moving concurrently.
By defining the two Boolean variables

• P (k) = each orbit Oi , i > k, is correctly positioned with respect to fdQ();

• Q = square Q is formed with at most one orbit inside,

it can be observed that task T1 ends when both P (1) and Q hold.

Figure 4.14: Left: an initial configuration C of robots with ρ(C) = 4; right: the
subdivision into four regions and the subset of six robots belonging to one region.

Task T2 - Molecules formation. The goal of this task is to create ρ(C) new
molecules to add to the matter F ′ formed so far. Let B′ be a Boolean variable that
is true when one among the conditions 1, 2.a, and 3.a of Corollary 9 hold. In all
these cases, ρ(F ) is a multiple of ρ(C), and when ρ(C) > 1 then C and F have the
same type of center.
To be executed, T2 requires that B′ holds and T1 is completed (i.e., P (1) andQ hold).
If ParMol denotes the number of partial molecules formed, then the precondition of
T2 is the following:

pre2 = B′ ∧ |Mol \ F ′| = 0 ∧ ((P (1) ∧Q) ∨ ParMol = ρ(C)).

In this task, a relevant issue is that robots have to agree on which molecule µ in F
must be formed (in ρ(C) copies).

Definition 10 (Disassembling sequence). Let F be a pattern and ℓ be a side of
mbr(F ) encoded with the minimal string within LSS(F ). Perform the following
iterative process: (1) mark all molecules in F and create an empty ordered list S(F ),
(2) with respect to the marked molecules only, compute the set E of all the molecules
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that can be “extracted” from F through ℓ;3 (3) insert in S(F ) the molecule µ ∈ E
with minimum view, (4) unmark all the molecules belonging to the same orbit of µ,
(5) iterate from (2) until marked orbits exist. The order of the elements belonging
S(F ) constitutes a disassembling sequence for F .

l

1

2

3

1

2

3

JJZOO

JZZOO

JZXZJ

OOZZJ

OOZJJ

Figure 4.15: From left: a pattern F and the side l; the view of robots; the disassembly
sequence. The assembly sequence is OZJ for the first region, ZOJ for the second
one.

For instance, S(F ) = (J, O, Z) for the pattern F shown in Fig. 4.15 (where ℓ coincides
with the left and right sides). The algorithm selects the molecule µ to build by
comparing the formed sub-pattern F ′ with F . According to this comparison, the
algorithm searches for molecules µ′ and µ′′ in F ′ having minimum and maximum
positions in S(F ), respectively; if µ′′ is not the last element in S(F ), then µ is the
next to µ′′ in S(F ), otherwise it precedes µ′ in S(F ). In this way, the disassembling
sequence in S(F ) is used to correctly compose the pattern.
Let O∗

1, O∗
2, O∗

3, O∗
4 be the consecutive orbits closest to c(R) and containing robots

not involved in any molecule. Move m2 works as follows:

• If no partial-molecule is formed, then each robot in O∗
1 moves toward the robot

in O∗
2 belonging to the same region,

• else, each robot closest to c(R), excluding those forming the partial-molecule,
moves toward the partial-molecule within the same region toward a position
adjacent to the partial-molecule and according to molecule µ to be formed.

The configuration obtained after task T2 contains ρ(C) new molecules.

Tasks T3 - Central molecule formation. This task processes the configurations
of robots fulfilling one among the conditions 2.b, 2.c, and 3.b from Corollary 9
defining the patterns F that are potentially-formable from C.

3I.e., when the molecule’s projection on ℓ is not obstructed by any other molecule.
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Q

O1

Figure 4.16: Left: A configuration of robots at the end of the task T1. Consecutive
orbits of robots are at distance at least δ = 2 from each other, Q contains at most
the orbit of robots closest to c(R). Right: A molecule built in the center of the
configuration C.

This task is alternative to T2 as it builds a single molecule µ in the center of C,
usually when it is required to break the symmetry using a molecule. Let B be a
Boolean variable that it is true if one among the conditions 2.b, 2.c, and 3.b from
Corollary 9 holds. Note that T3 activates only when the square Q is formed. Let
PJR be a boolean variable that is true if there exist two point-joined-robots. In
particular, the precondition of T3 is equal to:

pre3 = B ∧ ((P (1) ∧ |Mol| = 0) ∨ (P (2) ∧ (ParMol = 1 ∨ PJR))).

Robots must agree on which molecule in F must be formed as first. It corresponds
to the molecule fulfilling conditions 2.b, 2.c, and 3.b of the definition of potentially-
formable pattern and with the highest position on the disassembling sequence of F .
Four robots belonging to one or two orbits O1, O2 (according whether ρ(C) = 4 or
ρ(C) = 2, respectively) closest to c(R) are selected. µ is embedded on the grid so
that the center of the molecule coincides with c(R).
Move m3 works as follows:

• if ρ(C)=2, then first robots in O1 move toward c(R) until reaching the mini-
mum reciprocal distance, then robots in O2 move toward O1 by suitably form
the desired molecule µ;

• if ρ(C)=4, robots in O1 move toward c(R) until forming µ = O.
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The task ends when all the 4 moving robots reach their targets and the molecule
is built with its center in c(R). At the end of task T3, a new configuration C ′ is
obtained with ρ(C ′) = 1.

Figure 4.17: Left: a configuration after T4, the molecule breaks the symmetry by
moving away from the center. The blue line shows the embedding of the pattern F .
Right: a new molecule is formed.

Task T4 - Molecules aggregation. During this task, the molecules built during
T2 or T3 move to start forming F ′ or to be aggregated to F ′ (created by previous
executions of this task). We define quadrant any of the four areas into which the
square Q is divided by two orthogonal lines parallel to the sides of Q and intersecting
in c(R). To test if the pattern creation has already started, robots check whether
(1) there exists a sub-pattern F ′ in one of the four quadrants, or (2) there exists
a sub-pattern F ′ embedded so that it is centered in c(R). This allows robots to
evaluate the following precondition of T4: pre4 = |Mol \ F ′| > 0.
During this task, ρ(C) can be 1, 2 or 4. To correctly determine the move to be
performed, the algorithm considers four disjoint cases, which are defined according
to ρ(C), F ′, and Mol . (Case 1) ρ(C) = 1, |F ′| = 0, Mol = {µ}, and µ is centered
in c(R). It is clear that the current configuration C has been created in T3. In
this case, m4 breaks the symmetry by simply moving µ away from the center in an
arbitrary direction. In the formed configuration C ′ we have ρ(C ′) = 1, |F ′| = 0,
Mol = {µ}, and µ is no longer centered in c(C ′).
(Case 2) ρ(C) = 1, |F ′| = 0, Mol = {µ}, and µ is not centered in c(R). The
current configuration has been created in T4 (Case 1), or by T2. F is meant to
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be embedded in the quadrant q of Q closest to µ, and m4 moves µ toward the
position in the embedded F corresponding to the minimum position of its shape in
the disassembling sequence S(F ). Concerning how F is embedded into q: let ℓ be
a side of mbr(F ) used in the disassembling sequence (cf. Def. 10), and let c be the
corner of ℓ with larger label; c is mapped on the vertex in q closest to c(R), and
ℓ is mapped on the counter-clockwise internal side of q. This embedding is used
whenever the configuration is asymmetric.
(Case 3) ρ(C) = 1 and |F ′| > 0. In this case, there exists only one molecule µ which
is not part of F ′. Move m4 moves µ toward its target identified by comparing F ′

with the position of µ in the disassembling sequence of F .
(Case 4) ρ(C) > 1 and |Mol \ F ′| = ρ(C). In this case, F ′ is embedded so that it
is centered in c(R). There are exactly ρ(C) molecules which are not part of F ′, and
they must be moved toward their final targets. The final targets are obtained by
comparing F with F ′. During the movements, each molecule remains in the same
region. The last time this task is executed, F is finally formed.

Figure 4.18: Left: the new molecule positioned according to the embedding of F ;
right: the pattern F is completed.

Task T5. It refers to the termination problem i.e., entities recognize the pattern
is formed and no one has to move, pre5 = “F is formed”.

Running example

In this section, we show the effectiveness of algorithmATL with an extended example.
We recall that ATL decomposes the TL-MPF problem into five tasks T1, T2, . . . , T5.
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var definition

P (k) each orbit Oi , i > k, is correctly positioned wrt fdQ()

Q square Q is formed with at most one orbit inside

B one among the conditions 2.b, 2.c, and 3.b of Corollary 9 holds

B′ one among the conditions 1, 2.a, and 3.a of Corollary 9 holds

PJR there exist two point-joined-robots

Table 4.5: The basic Boolean variables used to define all the tasks’ preconditions.

Tables 4.5 and 4.6 summarize all the Boolean variables used to define the tasks’
preconditions and all the preconditions, respectively, for such tasks. A predicate
Pi = prei ∧ ¬(prei+1 ∨ prei+2 ∨ . . . ∨ pre5) is assigned to each task Ti. According
to this definition of the predicates, ATL works as follows: in the Compute phase,
each entity evaluates - wrt the perceived configuration and the provided input - the
preconditions starting from pre5 and proceeding in the reverse order until a true
precondition is found.

We now simulate the running of ATL by starting from the configuration C1 shown
in Figure 4.14.left. As ρ(C) = 4 in C1, Figure 4.14.right shows the subdivision into
four regions and the subset of six robots belonging to one region.

pre definition

pre1 true

pre2 B′ ∧ |Mol \ F ′| = 0 ∧ ((P (1) ∧Q) ∨ ParMol = ρ(C))

pre3 B ∧ ((P (1) ∧ |Mol| = 0) ∨ (P (2) ∧ (ParMol = 1 ∨ PJR)))

pre4 |Mol \ F ′| > 0

pre5 F is formed

Table 4.6: Tasks’ preconditions.

Since in C there are no molecules formed, then pre5 and pre4 are false. P (1) is false
and there is no partial molecule or point-joined robots so pre3 is false. Since B′ is
false, then pre2 is false. As pre1 = true, then P1 = ¬(pre2 ∨ pre3 ∨ pre4 ∨ pre5)
and hence It C1 is in T1.
Move m1 is designed to make both P (1) and Q true. Since ρ(C) = 4, m1 moves all
the robots but the 4 closest to c(R) so as to enlarge the mbr(R). This step ensures
that robots have enough space to form the designed molecules in the successive
tasks. Actually, from C1, both P (1) and Q becomes true as soon as configuration
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C2 is achieved, where exactly 4 robots remain inside the square Q (cf. Figure 4.16).
When this happens, still no molecules are yet formed, that is pre5, pre4 are false.
However pre3 is true: B is true since condition 3.b of Corollary 9 holds and Mol = 0,
hence C2 belongs to T3.
Move m3 moves 4 robots inside Q to form the first molecule of type O in the center of
the configuration. Once this happens, C3 is obtained, pre5 is still false, |Mol \F ′| =
1, pre4 becomes true and hence the configuration is in T4, see Figure 4.16.right.
Move m4 is defined by cases. Since in C3 we have that ρ(C) = 1, |F ′| = 0, Mol =
{µ}, and µ is centered in c(R), then Case 1 applies. As a consequence, m4 breaks the
symmetry by moving the molecule away from the center in an arbitrary direction.
The obtained configuration is still in T4, but now Case 2 applies. In fact, ρ(C4) = 1,
|F ′| = 0, Mol = {µ}, and µ is not centered in c(R)). In this case, F is meant
to be embedded in the quadrant of Q closest to µ, and m4 moves µ toward the
position in the embedded F corresponding to the minimum position of its shape in
the disassembling sequence S(F ). It is easy to observe that it is sufficient a single
LCM cycle to move the molecule in its final destination, as shown in Figure 4.17.left.
The obtained configuration is denoted as C4 and it is still in T4, but now Case 3
applies.
In C4, clearly pre5 is false, |Mol \ F ′| = 0 hence pre4 is false. As ρ(C) = 1, B is
false and so pre3 is, while B′ holds since condition 1 of Corollary 9 holds. Both Q
and P (1) hold, so the configuration is in T2.
Four consecutive orbits of robots are selected, O∗

1, O
∗
2, O

∗
3, O

∗
4. Since ρ(C) = 1 there

is only one robot per orbit. Hence, the robot in O∗
1 moves toward the robot in O∗

2 be-
longing to the same region to form a partial molecule and the configuration is still in
T2. Then, the second condition of move m2 holds, so the robots closest to c(R), ex-
cluding those forming the partial-molecule, move toward the partial-molecule within
the same region in a position adjacent to the partial-molecule (according to molecule
µ to be formed). According to Definition 10, the next molecule to be formed is a Z.
Figure 4.15.right shows the assembling and disassembling sequence of the two regions
of the pattern F (Figure 4.15.left), according to the minimal string associated with
F (Figure 4.15.middle). In particular the assembly sequence of the first region is
OZJ because the algorithm was forced to create a molecule O as first, whereas the
sequence for the second region is ZOJ.
The formation of molecule Z is done as shown in Figure 4.17.right, where configu-
ration C5 is represented.
In C5, pre5 is false, but pre4 is true. In fact, in T4 - Case 3 - the algorithm moves the
new molecule created by T2 toward F ′, positioning it accordingly to the embedding
of F . Once this happens, a new configuration belonging to T2 is obtained, see C6 in
Figure 4.18.left, hence the execution of the algorithm cycles among T2 and T4 until
pattern F is formed, i.e. configuration C7, shown in Figure 4.18.right is achieved,
where clearly pre5 holds.
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4.6.2 Algorithm correctness

In this section, we formally prove that algorithm ATL solves the TL-MPF problem.
According to the methodology proposed in [44], the correctness of the proposed algo-
rithm can be obtained by proving that all the following properties hold:H1,H2,H3,H4.

H1: The algorithm never generates unsolvable configurations. According to Corol-
lary 9, this implies that This implies that, each configuration C(t), t > 0,
generated by the algorithm is potentially-solvable.

H2: The movement of each robot is collision-free.

H3: For each task Ti, the transitions from Ti to any other task are exactly those
declared in Table 4.4.

H4: Each transition in Table 4.4 occurs after a finite number of cycles. This means
that the generated configurations can remain in the same task only for a finite
number of cycles.

Since these properties must be proved for each transition/move, then in the following
we provide a specific lemma for each task. Property H3 does not directly implies
that robots/molecules “complete” each task in a finite amount of time. In fact, there
is a cycle created by transitions between tasks T2 and T4. Anyway, a final theorem
will assess the correctness of ATL by making use of all the proved properties H1–H4

for each task and by also showing that there is a finite number of transitions between
tasks T2 and T4.

Lemma 24. Let R be a configuration in T1. From R, ATL eventually leads to a
configuration belonging to T2 or T3.

Proof. During task T1 robots move away from c(R) to leave a square Q of side 2S
centered in c(R) with at most one orbit inside, while leaving at least δ space between
consecutive orbits. Let us analyze properties Hi, for 1 ≤ i ≤ 4, separately.

H1: By move m1, all the orbits but O1 move farthest from c(R). During the move-
ments, robots move synchronously keeping the same symmetricity of the initial
configuration and the same type of center. The final targets fdQ() reached by
the robots are defined so that each orbit is at a different distance from the
center c(R). Due to the synchronicity of the movements, ρ(C) is maintained
the same along all the movements and after the robots reach their targets.

H2: During task T1, robots increase their distance from c(R) and from other robots
moving in a perpendicular direction with respect to the side of mbr(R) to
which they are associated with. Orbits move all together and the targets for
robots are defined so that the distance between consecutive orbits is at least
δ therefore collisions cannot occur during the movements of the robots.
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H3: We show that each configuration generated from C remains in T1 until all robots
reach their targets. When T1 starts, no molecules are yet formed therefore pre5
is false. During the movements of the robots, no molecules are built so pre4
remains false and the configuration does not belong to T4. Therefore at the
end of T1 the configuration is either in T2 or in T3.

H4: As long as the configuration remains in T1, the distance of each moving robot
from its target decreases. Hence, the task ends within a finite number of
computational cycles.

Lemma 25. Let C be configuration in T2. From C, ATL eventually leads to a
configuration belonging to T4.

Proof. During task T2, ρ(C) new molecules are built. Let us analyze properties Hi,
for 1 ≤ i ≤ 4, separately.

H1: During this task, the algorithm moves ρ(C) orbits of robots and builds ρ(C)
molecules synchronously working by regions. Hence the symmetricity of the
configuration is kept during the execution of T2. If there are only four robots
left and they move to form the last molecule, at least two of these four robots
are on the sides of mbr(R) holding its shape. When the two outermost robots
are on mbr(R), both mbr(R) and the type of center do not change during the
movements of O∗

1 toward O∗
2. When all the four robots are on mbr(R), then

the shape of mbr(R) and the type of center change during the movement of O∗
1.

However the type of center changes only either horizontally or vertically, never
in both directions so it can never coincide with tc(F ), eventually changing
ρ(C). So c(R) ̸= c(F ) during all the execution of T2 and ρ(C) is kept until
the end of the task.

H2: During task T2 the four orbits of robots O∗
1, O∗

2,O∗
3,O∗

4 that are the closest to
c(R) are selected to move. One robot for each region moves at a time. Firstly
the robots from O∗

1 move towards the robots in O∗
2. Note that, at the end

of task T1 the distance between consecutive orbits is at least δ, so the robots
in O∗

1 move in an empty space until they form a partial molecule with the
robots of orbit O∗

2. The partial molecule is built outside Q. Since O∗
3, O∗

4 are
the orbits of robots closest to c(R) not involved in any molecule, they move
toward the partial molecules without any collision with other robots. Their
target is a position adjacent to the partial molecule according to the molecule
µ.

H3: We show that each configuration generated from C remains in T2 until ρ(C)
molecules are built. Since the configuration is in T2, all the preconditions prei
with i > 2 are false. In fact F is not formed so pre5 is false, and since there
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are no molecules that are not part of the pattern until T2 ends, then pre4 is
false. During task T2, ρ(C) can be 1, 2, or 4. If ρ(C) = 1 then one molecule is
built and the movements of the robots never augment the symmetricity of the
configuration (see Property H1 above) hence variable B belonging to pre3 is
always false. If in T2, ρ(C) = 2, 4 then condition 2 of Corollary 9 is false and
the movements of the robots during move m2 cannot change the symmetricity
of the configuration nor the type of center. Therefore variable B′ is false and
does not change its value during the execution of T2, so pre3 is false.

H4: As long as the configuration remains in T2, the distance of each moving robot
from their target decreases. Hence, within a finite number of computational
cycles the task ends and the configuration is in T4.

Lemma 26. Let R be a configuration in T3. From C, ATL eventually leads to a
configuration belonging to T4.

Proof. Let us analyze properties Hi, for 1 ≤ i ≤ 4, separately.

H1: During this task ρ(C) = 2, 4 and one among conditions 2.b, 2.c, 3.b of Corol-
lary 9 holds. One or two orbits of robots closest to c(R) move. During the
movements of ρ(C) robots towards c(R), the symmetricity of C and the type
of center cannot change due to the synchronicity of the moves until the task
is over. When the task ends, a new configuration C ′ is obtained such that
ρ(C ′) = 1. Condition 1 of Corollary 9 holds and the configuration is still
potentially-formable.

H2: Task T3 starts after T1, that is square Q centered in c(R) with at most four
robots inside has been realized. The four robots closest to c(R) move toward
c(R) to build the first molecule. They belong to one or two orbits depending
on ρ(C). There are no other robots between these four and c(R), so no collision
can occur. As soon as they become adjacent, they stop and the molecule is
formed.

H3: The precondition pre4 remains false until the molecule is built. As soon as the
molecule is completed, precondition pre4 becomes true and the configuration
is in T4.

H4: As long as the configuration remains in T3, the distance of each moving robot
from c(R) decreases. Hence, within a finite number of computational cycles,
the robots create a molecule and the configuration is in T4.
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Lemma 27. Let C be a configuration in T4. From R, ATL eventually leads to a
configuration belonging to T2 or T5.

Proof. During this task, the molecules formed during either task T2 or T3 move to
join the pattern F ′. Let us analyze properties Hi, for 1 ≤ i ≤ 4, separately.

H1: If ρ(C) = 1, the pattern F is embedded in a quadrant q of Q. One molecule goes
toward its target in q and ρ(C) cannot increase during the movement. Then,
the configuration remains potentially-solvable by Corollary 9. If ρ(C) = 2, 4,
during the movements of the molecules, c(R) does not change and so does
tc(C), so the conditions 2 and 3 of Corollary 9 still hold.

H2: During this task only molecules move, therefore collisions between robots cannot
happen. When ρ(C) = 2, 4, there is one molecule in each region that goes
toward F ′ that is embedded in the center of c(R). The space between the
molecules µ and F ′ is empty and the molecules move on free trajectories. When
ρ(C) = 1 then one molecule goes toward F ′ that is embedded in a quadrant q
of Q. The quadrant q is big enough to contain F , the space between F ′ and the
molecule µ is empty and the molecule moves on a free trajectory. Therefore no
collision can occur. Note that, as more robots are assembled into molecules the
empty space around Q enlarges. Moreover the disassembly sequence ensures
that molecule can set in place in F without colliding with other molecules.

H3: Precondition pre4 remains true until there are molecules that are not yet part
of the pattern F ′. If there are no robots left then, as soon as the molecules
join the pattern F ′, the pattern F is completed and the configuration is in T5,
otherwise the configuration is in T2.

H4: As long as the configuration remains in T4, the distance of each moving molecule
from F ′ decreases. Hence, within a finite number of computational cycles, the
molecules join the pattern.

Theorem 10. ATL solves the TL-MPF problem for C and F if and only if F is
potentially-formable from C.

Proof of Theorem 10. Lemmata 24-27 ensure that properties H1, H2, H3, and
H4 hold for each task T1, T2, . . . , T5. Then F is always potentially-solvable; the
movements of the robots and molecules are all collision-free; all the transitions are
those reported in Table 4.4; and the generated configurations can remain in the
same task only for a finite number of cycles. Lemmata 24-27 also show that from
a given task only subsequent tasks can be reached, or pre5 eventually holds (and
hence TL-MPF is solved). The only exception is the cycle among tasks T2 and T4.
However, in this case, at the end of T4, the number of molecules composing the
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pattern increases, and since no molecule is moved away from the pattern, task T5

is reached from T4 after a finite number of transitions between T2 and T4. This
formally implies that, for each initial configuration C and for each execution E :
C = C(t0), C(t1), C(t2), . . . of ATL, there exists a finite time tj > 0 such that C(tj)
is similar to the pattern to be formed in the TL-MPF problem and C(tk) = C(tj)
for each time tk ≥ tj.

4.7 Concluding remarks

We proposed MOBLOT , a new theoretical model in the context of the swarm
and modular robotics that extends the OBLOT model. MOBLOT concerns two
levels of computational entities: robots and molecules. Robots can be very weak
entities like in the OBLOT model; molecules are usually more complex entities
with an extent. Ideally, robots and molecules are guided by two different distributed
algorithms: the former is used to form molecules, the latter to manage molecules, e.g.
to assemble them to obtain some complex structure (the matter). Once molecules
have accomplished their first task (e.g., the matter is formed), a new task could be
further approached by molecules, e.g. rearranging (self-reconfigure) their positions
to get a different shape for the matter.
To highlight some potentials of the MOBLOT model, we have introduced the
Matter Formation problem. We have proven the necessary condition to form the
matter. According to Theorem 5, the symmetricity of the initial configuration of
robots must divide either the symmetricity of a molecule or the symmetricity of the
matter to be formed. Interestingly, this implies that the matter could be formed
even when the symmetricity of the input configuration is unrelated to that of the
matter (in such cases, the molecules play a decisive role). To this respect, we have
presented a case study comprising all the conditions of Theorem 5, called HexMF
in which the only formable molecule is made of just two robots.
We have considered theMOBLOT model where robots move along the edges of a
graph. We have focused on the Molecular Pattern Formation (MPF) problem where
the final configuration is composed only of molecules. For MPF, we have proven
a necessary condition for its resolution. As a case study, we have introduced the
TL-MPF problem, where robots move along a square grid and the set of formable
molecules is the set of the seven tetrominoes. We have identified when TL-MPF is
potentially solvable and for all these cases we have provided a resolution distributed
algorithm, hence proving a full characterization.



Conclusions

We proposed mathematical models and computational algorithms useful in the con-
text of wildfire management. We presented models and problems for fire prepared-
ness measures. Results come from the joint work with Marc Demange, Gabriele Di
Stefano, and Pierpaolo Vittorini. Then, we designed algorithms for the coordina-
tion of multi-robotic systems. Results in these topics come from the joint work with
Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. This thesis gave the
main contributions to the following topics.

Main contributions

Modelling. In Chapter 1, we introduced a graph model able to describe the spread
of fire. The model provides a way to compute the probability that an area is set on
fire, even if the fire ignited in a different part of the graph. Then, we formulated
the Firebreak Location problem to address the optimal location of firebreaks in a
landscape to minimize a risk function under budget constraints. Successively, we
studied the complexity of the problem on planar graphs.

Algorithms for cases solvable in polynomial time. Due to the hardness of the
Firebreak Location problem, we looked for cases solvable in polynomial time
and studied the Windy Firebreak Location problem. We presented an efficient
polynomial time algorithm on tree topology: given a tree with a subset of vertices
on fire, the algorithm outputs the maximum number of vertices that can be saved
from a fire.
These results are collected in the paper “A graph theoretical approach to the fire-
break locating problem” published by Theoretical Computer Science journal [1].
We presented the Infinite Windy Firebreak Location problem, a variation
of the Firebreak Location problem defined on infinite graphs. The goal is to
identify a subset of edges to remove to avoid burning more than a finite part of the
graph. We showed that Infinite Windy Firebreak Location polynomially reduces to
the problem of finding a Min Cut in a transportation network for classes of graphs
like infinite grid graphs and polyomino-grids, a generalization of grid graphs.
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These results are collected in the paper “About the infinite windy firebreak location
problem” submitted to journal and currently under review [3].

Heuristics. We also studied a case of the Firebreak Location problem in which all
the areas have the same probability to burn. We showed that, when the probability
of ignition are equal, the Firebreak Location problem can be reduced to the
k-Graph Partition problem that consists in removing a fixed number of edges to
split a graph in k connected components of balanced size. Given the hardness of
the problem, partitioning the graph in balanced components can be addressed using
heuristics. One of the most efficient techniques is multilevel partitioning. We have
tested this technique on the geographical area of the North of Corsica and we showed
that even partitioning the land into a few parts, leads to a significant reduction of
the risk.
These results are collected in the paper “Network theory applied to preparedness
problems in wildfire management” published by Safety Science journal [2].

Model validation. To show the usability of the graph theoretical model, we
presented a case study and applied the model to the landscape of Cap Corse, in
the North of Corsica. We described how to compute the extension of the areas, and
estimate the probabilities of ignition for each area and the probabilities of spread for
each edge. We used open data for the computation of the extension of the areas and
data on historical fires, while we used fire simulations to estimate the probabilities
of spread.

Risk cartography and web-application. We set up the model and we showed
the results on maps. Risk cartography gives an effective visualization of data about
wildfire risk. We presented a prototype web application designed to offer to target
end-users, wildfire, risk managers, and fire agencies an easy-to-use tool. Users can
interact with risk cartography easily without knowing the technical details of the un-
derlying data or how algorithms have been implemented. Users can then concentrate
on the design of preparedness strategies to see their effect before deployment.
These results were presented to the conference Fire Ecology across boundaries: con-
necting science and management, a paper is under preparation.

Robot formation. In Chapter 3, we proposed a solution for the arbitrary pat-
tern formation problem in which robots, must be able to organize according to any
geometric shape given in input.
These results appeared in the proceedings of the conference International Conference
on Distributed Computing and Networking (ICDCN) in 2021 [4] and the extended
paper with the title “Arbitrary pattern formation on infinite regular tessellation
graphs” was published by Theoretical computer Science journal [7].
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Mutual Visibility on trees. We studied the mutual visibility problem for robots
moving on graphs, called Geodesic Mutual Visibility problem (GMV). This
problem asks to place robots so that they are geodesic mutually visible: each couple
of robots has a shortest path in which no other robot resides. The study is moti-
vated by observing that mutually visible robots can reach any other robot along the
shortest path without collision. We have proposed a deterministic and distributed
algorithm to solve GMV on trees.
These results are collected in the paper “The Geodesic Mutual Visibility Problem
for Oblivious Robots: the case of Trees”, published in the proceedings of the confer-
ence International Conference on Distributed Computing and Networking (ICDCN)
2023 [8].

The Moblot model. In Chapter 4 we introduced MOBLOT a novel model in
theoretical swarm robotics in which robots cluster to form bigger computational
units, called molecular robots, inspired by the chemical paradigm in which atoms
combine to make molecules. Once bonded, molecular robots move in a coordinated
way as a new macro entity. MOBLOT allows us to model a swarm of robots
divided into subgroups and modular robotics. Furthermore, we presented the matter
formation problem in which robots first cluster into molecular robots, and then
molecular robots move to form a pattern introducing a hierarchical and modular
approach to solve the pattern formation problem. We have shown thatMOBLOT
extends the well-known OBLOT model [73] and that molecular robots can break
certain symmetries that are not solvable in OBLOT . We presented a case study for
a particular case of matter formation for robots moving on the Euclidean Plane to
illustrate the extended capabilities of the model with respect to OBLOT .
These results are collected in the paper “MOBLOT: molecular oblivious robots”
published in the proceedings of the conference Autonomous Agents and Multiagent
Systems (AAMAS) 2021 [5]. The extended version of the paper has been submitted
to journal and it is currently under review.

Moblot on grids. We applied theMOBLOT model to robots moving on square
grid graphs. Grids can be interpreted as a discretization of the plane in which
the movements of the robots are quantized and the system has a unit of measure-
ment. We modeled the set of formable molecular robots with polyominoes. We
presented and characterized the Tetris-like matter formation problem in which the
set of formable molecules is the set of the seven possible tetrominoes.
These results are collected in the paper “ Molecular robots with chirality on grids”
published in the proceedings of the conference International Symposium on Algo-
rithms and Experiments for Wireless Sensor Networks (ALGOSENSORS) 2022 [6].
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Future work

We addressed problems arising from the context of wildfire management from a
theoretical point of view. Preparedness problems must meet multiple constraints
and the coordination of multi-robot systems is algorithmically challenging. Research
on these topics brings out new questions, opening new possible future directions.
In the first part of the thesis, we studied the Firebreak Location problem and
proved its hardness. We presented cases solvable in polynomial time and some
heuristic solutions. The hardness results motivate further studies to identify new
approximations and new classes of instances solvable in polynomial time. We have
shown how to apply the model to a practical case study. It would be interesting to
collaborate with fire agencies to test the effectiveness of the risk maps in improving
the decision process in fire preparedness interventions. To this aim, the use of the
prototype application would help in evaluating the impact of the prevention actions
before deployment. Moreover, we must involve stakeholders and administrative peo-
ple in the estimation of variables of the model like the value for each watershed and
the cost of each firebreak installation. Indeed, the value estimation must take into
account different points of view and characteristics of the land like the destination
of use (urbanized, cultivated, or protected). Similarly, the estimation of a firebreak
cost must take into account the environmental impact, the orography, the acces-
sibility of the territory, and the type of fuel. Furthermore, the estimation of the
probabilities of ignition could be based not only on past fires, as these data are not
always available but also on the updated status of the fuel type. Cover land maps
classify the materials covering the land surface using Earth observation satellites.
The continuous monitoring from the satellites allows the updating of maps over
time to detect the changes in fuel type. The sizing of watersheds could also, be
adapted to the risk level, allowing the partitioning of areas at higher risks in smaller
watersheds. The simulations would also be enhanced with real-time meteorological
data.

In the second part of the thesis, we studied two cases of pattern formation prob-
lems under the OBLOT model. Firstly we addressed the arbitrary pattern for-
mation problem(APF ) for robots moving on tessellation graphs and starting from
an asymmetric configuration. As a relevant improvement, our algorithm works for
any tessellation graph and admits patterns with multiplicities. This work can be
extended to accept as input also leader configurations. On the Euclidean plane,
APF can be solved if and only if the initial configuration is a leader configuration.
Leaders can be moved to break the symmetry. However, in grids, movements are
restricted to neighbors and this space discretization poses new challenges. The prob-
lem of symmetry breaking on triangular and square grids has been recently solved
in [33]. It would be interesting to check whether the algorithm developed in [33]
can be combined with our Aform algorithm. If possible, this would characterize the
APF problem on both triangular and square grids. It would be also interesting to
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investigate the possibility to form a pattern F with multiplicities when robots do
not perceive multiplicities. Our algorithm uses multiplicity detection only in the
Finalization phase when the two last robots complete the pattern.
Regarding the Geodesic Mutual Visibility problem (GMV), the first open question
is the full characterization within the SSync scheduler. The main difficulty arising
within any of the available schedulers comes from the management of critical vertices.
We have provided some hints about possible strategies, but it is challenging to find
a general one. As we have seen, this is especially evident within FSync. It is also
interesting to study the time complexity of the resolution algorithms because of the
gap between the lower bound and the complexity of the proposed algorithm. As
a wider research area, the geodesic mutual visibility problem could be studied on
other graph topologies or general graphs. Finally, the study of GMV in asymmetric
graphs or grid graphs deserves main attention, even in the Async case.
We introduced MOBLOT , a new model for swarm and modular robotics for the
coordination of robots clustered in groups, called molecular robots. We introduced
the Matter Formation problem that solves fundamental robot problems like pattern
formation in a modular and hierarchical way. There are many directions for the
MOBLOT model. The most natural one is to study a complete characterization
of the general Matter Formation problem. Further studies could address the recon-
figurability of the matter and, at a higher hierarchical level, the matter movement.



Appendix A

Complexity of Windy Firebreak
location in planar instances

In this section, we investigate the complexity of Windy Firebreak Location in
restricted planar instances that are natural in a real context. In Section A.1, we
first study a restricted version of Planar Max 2SAT that is used for our main
reduction. We define the problem and prove its NP-completeness (Proposition A.1.9
and Corollary A.1.10). Then, in Section A.2, we prove that Windy Firebreak
Location is NP-complete in bipartite planar graphs of degree at most 5 in the
polynomially bounded case, i.e., with vertex values and edge costs bounded by a
polynomial function (Proposition A.2.8 and Corollary A.2.9). We use a reduction
from the restricted version of Planar Max 2SAT introduced in the previous sec-
tion. Finally, in Section A.3, we use self refinements to show that the problem
remains NP-complete in bipartite planar graphs of degree at most 4 and with all
values of vertices and costs of edges equal to 1 (Theorem 1.2.2 that is the main
result of Section A). We conclude the section with a refinement in grid graphs with
binary vertex values and edge costs (Proposition 1.2.3).

A.1 A restricted version of Planar Max 2SAT

In this section, we study Restricted Strong Planar Max 2SAT, a restricted
version of Planar Max 2SAT. We define the problem in Paragraph A.1.1. Then,
we prove that Restricted Strong Planar Max 2SAT is NP-complete using a
reduction from a restricted version of Planar 3SAT. We present this starting prob-
lem in Paragraph A.1.2 and present the reduction step-by-step in Paragraphs A.1.3,
A.1.4, A.1.5 and A.1.6. The main result is explained in Paragraph A.1.7.
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A.1.1 Definition of Restricted Strong Planar Max 2SAT

To establish Proposition A.1.9 and Corollary A.1.10, the main results of Section A.1,
we need a restricted version of Max 2SAT, the Maximum 2-Satisfiability problem
(see [77]).
A SAT instance Φ is defined as a set X of n Boolean variables and a set C of m
clauses, each defined as a set of literals: every variable x corresponds to two literals
x (the positive form) and x̄ (the negative form). A k-clause, k ≥ 1, is a clause
containing exactly k literals, all different. To simplify the notation we denote by
(ℓ1, . . . , ℓk) the k-clause with literals ℓi, i = 1, . . . k, without distinction between the
orders in which they are listed. A truth assignment assigns a Boolean value (True
or False) to each variable corresponding to a truth assignment of opposite values for
the two literals x and x̄: x̄ is True if and only if x is False. For a literal ℓ ∈ {x, x̄} we
denote by ℓ̄ its negation: ℓ̄ = x̄ if ℓ = x and ℓ̄ = x if ℓ = x̄. A clause is satisfied if at
least one of its literals is satisfied. The usual SAT problem asks whether there is a
truth assignment satisfying all clauses and 3SAT is the restriction where Φ contains
only 3-clauses. In what follows, we assume that no clause contains two opposite
literals (x and x̄), in which case the clause would be always satisfied.

A Max 2SAT instance is a SAT instance Φ with only 2-clauses, but this time the
aim is to find a truth assignment on X maximizing the number of clauses that are
satisfied.
In planar versions of SAT problems one usually considers the bipartite graph GΦ =
(X ∪ C,E) with an edge xc ∈ E between a variable vertex x ∈ X and a clause
vertex c ∈ C if either x or x̄ appears in the clause c. Planar Max 2SAT is the
restricted version of Max 2SAT when the graph GΦ is planar. An edge xc of GΦ

can be labeled either with the literal x if x ∈ c or x̄ if x̄ ∈ c.
Here, we need a restricted condition of planarity, called strong planarity, ensuring
that there is a planar embedding of GΦ such that, for every variable vertex x, all
the edges incident to x and with the same label can be “grouped” on the same side
given an orientation of the 2 dimensional plane. More formally we use the graph˜︁GΦ obtained from GΦ by replacing variable vertices by a path P3 as follows:

- Every variable x is associated with a path P3 xx
′x̄ with vertices x, x′, x̄

and edges xx′, x′x̄.
- Every clause c is associated with a vertex c.
- There is an edge cx (respectively cx̄) if the literal x (respectively x̄)
appears in the clause c.

A SAT instance Φ will be called strongly planar if ˜︁GΦ is planar.

Note that ˜︁GΦ is still bipartite; moreover if ˜︁GΦ is planar, then GΦ is also planar
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but the converse is not true. Consider for instance the instance Φ0 with vari-
ables X0 = {x, a, b, c, d} and clauses C0 = {(x, a), (x, c), (x̄, b), (x̄, d), (a, b), (b, c),
(c, d), (a, d)}.GΦ0 is planar since it is a subdivision of the graph obtained from a C4

abcd by adding a universal vertex x (a wheel on five vertices). However, ˜︁GΦ0 is not
planar since it contains a subdivision of the complete bipartite graph K3,3 which is
not planar.
Strong Planar Max 2SAT is defined as the restriction of Max 2SAT for which˜︁GΦ is planar; it is a restricted case of Planar Max 2SAT. We then consider the
Restricted Strong Planar Max 2SAT defined as follows (decision version):

Definition A.1.1. Restricted Strong Planar Max 2SAT
Instance: a Max 2SAT instance Φ = (X,C) defined by a set of boolean variables X
and a set of 2-clauses C as well as an integer K ≤ |C| with the following restrictions:

(i): ˜︁GΦ is planar;
(ii): each literal appears in at most 4 clauses (So, ˜︁GΦ is of maximum degree 5).

Question: is there a truth assignment of variables such that at least K clauses are
satisfied?
We denote such an instance by (Φ, K) or (X,C,K).

The decision version of Max 2SAT is known to be NP-complete [78] and moreover,
the reduction preserves planarity [84], thus inducing that the decision version of
Planar Max 2SAT is NP-complete using Planar 3SAT [101]. Unfortunately,
the reduction devised by Garey et al. [78] does not preserve the strong planarity
property and we need to slightly modify and rewrite the argument given by Guibas et
al. [84]. To this aim, we devise a polynomial reduction from the following restricted
version of Planar 3SAT.

A.1.2 The starting problem: a restricted version of Planar
3SAT

The following problem is known as NP-complete [49]:

Definition A.1.2. Restricted Planar 3SAT:
Instance Φ: a set X of boolean variables and a set C of 2-clauses and 3-clauses. The
graph GΦ is planar and every variable x appears in exactly two 2-clauses and one
3-clause. Moreover, x appears once in positive form (literal x) and once in negative
form (literal x̄) in the 2-clauses.
Question: is there a truth assignment to variables that satisfies all clauses?

Consider an instance Φ = (X,C) of Restricted Planar 3SAT (Definition A.1.2).
Denote by C = C2∪C3 where C2 is the set of 2-clauses and C3 is the set of 3-clauses.
Since every variable appears in exactly three clauses, if GΦ is planar, so does ˜︁GΦ.
We describe below how to build from Φ = (X,C) an instance (Φ∗, K) = (X∗, C∗, K)
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of Restricted Strong Planar Max 2SAT (Definition A.1.1) such that Φ is
satisfiable if and only if (Φ∗, K) is satisfiable.
In the transformation, 2-clauses in C2 remain unchanged. In Paragraph A.1.3 we
describe how to transform each 3-clause in C3 with a collection of 14 2-clauses and
we highlight the main properties of this gadget. In Paragraph A.1.4, we describe
the whole instance Φ∗. Then, in Paragraph A.1.5 we use the main property of the 3-
clause gadget to ensure that the reduction is correct. Finally, in Paragraph A.1.6 we
justify that (Φ∗, K) is an instance of Restricted Strong Planar Max 2SAT.

A.1.3 Case of 3-clauses

For every 3-clause c = (ℓ1, ℓ2, ℓ3), where ℓi, i = 1, 2, 3 are literals associated with
variables in X, we proceed in two phases. We first introduce a new variable ac and
replace c with six 2-clauses and four 1-clauses : c is replaced by the set of ten clauses
C ′c = {(ℓ1, ℓ2), (ℓ1, ℓ3), (ℓ2, ℓ3), (ℓ1, ac), (ℓ2, ac), (ℓ3, ac), (ℓ̄1), (ℓ̄2), (ℓ̄3), (āc)}. We use
this set of clauses in Claims A.1.3 and A.1.4 since it makes these claims easier.
Then, for any of these 1-clauses (ℓ) ∈ C ′c, where ℓ is a literal corresponding to a
variable in X, we add a new variable rc and we replace the clause (ℓ) with the set
of two 2-clauses Cℓ

c = {(ℓ, rc), (ℓ, r̄c)}.
We then denote Cc = {(ℓ1, ℓ2), (ℓ1, ℓ3), (ℓ2, ℓ3), (ℓ1, ac), (ℓ2, ac), (ℓ3, ac), (ℓ̄1, r1c ), (ℓ̄1, r̄1c),
(ℓ̄2, r

2
c ), (ℓ̄2, r̄

2
c), (ℓ̄3, r

3
c ), (ℓ̄3, r̄

3
c), (āc, r

a
c ), (āc, r̄

a
c)} the set obtained from C ′c by replac-

ing the 1-clauses with the related pair of 2-clauses with the new r-variables. We
denote R the set of all r-variables added in the treatment of 3-clauses.
We then emphasize the following properties that are useful in the reduction:
Claim A.1.3. For every c ∈ C3, at most seven clauses in C ′c can be simultaneously
satisfied.

Proof. Suppose ac is False, then at most three clauses among (ℓ1, ac), (ℓ2, ac), (ℓ3, ac),
(ℓ̄1), (ℓ̄2) and (ℓ̄3) can be True simultaneously, thus at least three clauses are False.
If ac is True and at least two literals among ℓ1, ℓ2, ℓ3 are True, then at least two
clauses among (ℓ̄1), (ℓ̄2), (ℓ̄3) are False; with (āc), it makes at least three unsatisfied
clauses. Finally, if ac is True and at least two literals among ℓ1, ℓ2, ℓ3 - say without
loss of generality ℓ1, ℓ2 - are False, then the clause (ℓ1, ℓ2) is False and the three
remaining clauses (ℓ1, ℓ3), (ℓ2, ℓ3), (ℓ̄3) cannot be simultaneously satisfied, leaving at
least three unsatisfied clauses in C ′c.
Claim A.1.4. For every c ∈ C3, given any truth assignment of literals ℓ1, ℓ2, ℓ3, if
c is not satisfied then at most six clauses in C ′c can be simultaneously satisfied. If c
is satisfied, then there is a truth assignment of variable ac such that seven clauses
in C ′c are satisfied.

Proof. Suppose c is not satisfied, then either ac is True and the four clauses (ℓ1, ℓ2),
(ℓ1, ℓ3), (ℓ2, ℓ3), (āc) are unsatisfied or ac is False and the six clauses (ℓ1, ℓ2), (ℓ1, ℓ3),
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(ℓ2, ℓ3), (ℓ1, ac), (ℓ2, ac), (ℓ3, ac) are unsatisfied. Suppose now one literal - say ℓ1 -
is True while ℓ2, ℓ3 are False, then choosing ac True leaves only three unsatisfied
clauses (ℓ1̄), (ℓ2, ℓ3) and (āc). Suppose now that ℓ1, ℓ2 are True while ℓ3 is False,
then any truth value for ac leaves only three unsatisfied clauses, (ℓ̄1), (ℓ̄2) and either
(ℓ3, ac) or (āc). Finally if the three literals ℓ1, ℓ2, ℓ3 are True, then choosing ac False
leaves only three unsatisfied clauses, (ℓ̄1), (ℓ̄2) and (ℓ̄3).
All other configurations are symmetrical.

Finally, we have:

Claim A.1.5. For any 1-clause (ℓ) ∈ C ′c, if ℓ is True, then the two 2-clauses in Cℓ
c

are satisfied while if ℓ is False, then any truth assignment for rc satisfies only one
of the two clauses in Cℓ

c .

This last claim means that, when replacing 1-clauses in C ′c with two 2-clauses, the
number of true clauses increases by 4 for any truth assignment.
As a consequence of Claims A.1.3, A.1.4, and A.1.5, any satisfied clause in C3

generates 7+4=11 satisfied clauses in the new instance while unsatisfied clauses in
C generate at most 6+4=10 satisfied clauses in the new instance.

A.1.4 The instance (Φ∗, K)

Putting all together, if we denote by X∗ the new set of variables and by C∗ the new
set of clauses we have:

X∗ = X ∪ {ac | c ∈ C3} ∪R

C∗ = C2 ∪
⋃︂
c∈C3

Cc. (A.1)

To finalize the reduction, we set K = |C2|+11|C3| = |C|+10|C3|. X∗, C∗, K define
the instance (Φ∗, K).
Equation A.1 immediately justifies the following claim:

Claim A.1.6. The construction from (X,C) to (X∗, C∗, K) can be performed in
polynomial time.

In the next paragraph, we show that (Φ∗, K) is satisfied if and only if the instance
Φ is satisfied.
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A.1.5 Validity of the reduction

The above discussion immediately shows:

Claim A.1.7. There is a truth assignment of variables in X satisfying all clauses
in C if and only if there is a truth assignment of variables in X∗ satisfying at least
K clauses in C∗.

Proof. Note that Claims A.1.3 and A.1.5 ensure that at most K clauses can be
simultaneously satisfied in (X∗, C∗).
Assume first there is a truth assignment of variables in X satisfying all clauses in C.
Claims A.1.3, A.1.4 and A.1.5 show that for each satisfied 3-clause c ∈ C3 there is
a truth assignment for the related variable ac inducing 11 satisfied clauses in Cc, for
any truth assignment of variables in R. In all it makes |C2| + 11|C3| = K satisfied
clauses in C∗.
Conversely, consider a truth assignment t of variables in X∗ and consider the induced
truth assignment t′ for variables in X ⊂ X∗. If one clause c0 ∈ C is not satisfied,
then Claims A.1.3, A.1.4 and A.1.5 ensure that at most (|C| − 1) + 10|C3| = K − 1
clauses of C∗ are satisfied. So, if t satisfies at least K clauses in C∗, then all clauses
in C are satisfied by the truth assignment t′.

Finally, we conclude the proof in the next paragraph by showing that (X∗, C∗, K) =
(Φ∗, K) satisfies all properties of Restricted Strong Planar Max 2SAT in-
stances (see Definition A.1.1).

A.1.6 Properties of the constructed instance

In what follows, for notations related to the reduction, the reader is referred to
Paragraphs A.1.3 and A.1.4. This paragraph is dedicated to the following claim:

Claim A.1.8. (X∗, C∗, K) = (Φ∗, K) is an instance of Restricted Strong Pla-
nar Max 2SAT.

Proof. Let us justify that every literal in Φ∗ appears in at most four clauses. Consider
first a variable x ∈ X. In C, each of the two relative literals x and x̄ appears in
one 2-clause in C2: c2,x and c2,x̄, respectively, and either x or x̄ - say without loss
of generality x - appears in one 3-clause c3,x ∈ C3. Then, in C∗, x appears in the
clause c2,x as well as in three 2-clauses in Cc3,x while x̄ appears in three clauses of
C∗: the clause c2,x̄ as well as two clauses (x̄, r), (x̄, r̄) with r ∈ R. Consider now a
variable ac, c ∈ C3: the literal ac appears in three 2-clauses of Cc while āc appears
in two clauses (āc, r), (āc, r̄) with r ∈ R.
Finally, each literal r, r̄ corresponding to variables r ∈ R appears in a single 2-clause
in C∗.
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To conclude the proof, note that ˜︁GΦ∗ is of maximum degree 5 and we need to show
that it is planar. As mentioned previously, ˜︁GΦ is planar since every variable appears
in three clauses in Φ. As described in Paragraphs A.1.3 and A.1.4, ˜︁GΦ∗ is obtained
from ˜︁GΦ in three steps, each preserving planarity.
First, for any 3-clause c = (ℓ1, ℓ2, ℓ3) in C, assume without loss of generality that
the literal ℓ1 appears in the 2-clause (ℓ1, ℓ4) while ℓ̄1 appears in the 2-clause (ℓ̄1, ℓ5).˜︁GΦ has been modified as follows. Remove from ˜︁GΦ the clause-vertex (ℓ1, ℓ2, ℓ3) and
its three incident edges towards the literal-vertices ℓ1, ℓ2 and ℓ3; add a path aca

′
cāc,

new clause vertices (ac, ℓ1), (ac, ℓ2), (ac, ℓ3) and the six edges ac(ac, ℓi), (ac, ℓi)ℓi,
i = 1, 2, 3. Add the three clause-vertices (ℓ1, ℓ2), (ℓ1, ℓ3) and (ℓ2, ℓ3), respectively
and add the six edges (ℓi, ℓj)ℓi, (ℓi, ℓj)ℓj, 1 ≤ i < j ≤ 3. Then, consider a 1-clauses
(ℓ) added for the clause c = (ℓ1, ℓ2, ℓ3): ℓ ∈ {ℓ̄1, ℓ̄2, ℓ̄3, āc}. Denote by ric, i = 1, 2, 3
the r-variable associated with the 1-clause (ℓ̄i), i = 1, 2, 3 and rac the r-variable
associated with the 1-clause (āc). Add in ˜︁GΦ a cycle on 6 vertices for each of these
1-clauses:, ℓ̄i− (ℓ̄i, r

i
c)− ric− r′ic − r̄ic− (ℓ̄i, r̄

i
c)− ℓ̄i for i = 1, 2, 3 and āc− (āc, r

a
c )− rac -

− r′ac − r̄ac − (āc, r̄
a
c)− āc. As illustrated in the figure, this transformation preserves

planarity since the added gadget is planar and all dashed edges linking it to the rest
of the graph can be preserved without crossing other edges.
Since all these two transformations preserve planarity and since ˜︁GΦ is planar, ˜︁GΦ∗

is planar, which completes the proof of Claim A.1.8.

A.1.7 The main result

Finally, we put all together in this paragraph to prove the following proposition:

Proposition A.1.9. Restricted Planar 3SAT polynomially reduces to Re-
stricted Strong Planar Max 2SAT.

Proof. The reduction is described in Paragraphs A.1.3 and A.1.4. Claim A.1.6
ensures it is polynomial. Claim A.1.8 justifies that the constructed instance is an
instance of Restricted Strong Planar Max 2SAT and Claim A.1.7 justifies
that is a reduction from Restricted Planar 3SAT to Restricted Strong
Planar Max 2SAT.

We immediately deduce:

Corollary A.1.10. Restricted Strong Planar Max 2SAT is NP-complete.

Proof. Using Proposition A.1.9 and the fact that Restricted Planar 3SAT (Def-
inition A.1.2) is NP-complete [49], it remains to prove that Restricted Strong
Planar Max 2SAT is in NP. Given a truth assignment, one can decide in O(m+n)
whether it satisfies at least K clauses. This concludes the proof.
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A.2 Hardness of Windy Firebreak location in
planar graphs: the case of polynomially
bounded edge and vertex weights

In the rest of Section A, we consider Windy Firebreak Location. We recall
it is defined on a mixed graph and corresponds to the case where all probabili-
ties of spread are 1. Since Windy Firebreak Location is a particular case
of Firebreak Location, all hardness results for the former apply to the latter.
In Paragraph A.2.1 some preliminary remarks are provided. The remaining para-
graphs are devoted to prove that Windy Firebreak Location is NP-complete
in bipartite planar graphs with polynomially bounded edge costs and vertex
values, using a reduction from Restricted Strong Planar Max 2SAT. Para-
graph A.2.2 shows a property of the main gadget used in the proof, Paragraph A.2.3
provides the details of the reduction, Paragraph A.2.4 explains how to choose the
values of some parameters needed in the reduction and Paragraph A.2.5 concludes
the argument. The main result is stated in the last Paragraph A.2.6.

A.2.1 Preliminary remarks

Firstly note that the computation of ρ is in general ♯P -hard [30], but ρ(GH) is given
in Proposition 1.1.3 when the probability of spread is set to 1 for each edge. Clearly,
this calculation can be performed in polynomial time. This means that given a cut
system H we can check in polynomial time if it is a solution. As a consequence,
contrary to Firebreak Location, Windy Firebreak Location is in NP.

Lemma A.2.1. Windy Firebreak Location is in NP.

Let us also note that, if we allow any value for edge costs and vertex values, then
a simple reduction from Partition shows that Windy Firebreak Location
is NP-complete on stars. We recall that an instance of Partition is a list of n
numbers s1, . . . , sn with

∑︁n
i=1 si = 2S for an integer S. The question is whether

there is a subset A ⊂ {1, . . . , n} such that
∑︁

i∈A si = S. Partition is known to be
NP-complete [77].

Proposition 1.2.1. Partition polynomially reduces to Windy Firebreak Lo-
cation on stars.

Proof. Consider an instance of Partition consisting of n integers s1, . . . , sn with∑︁n
i=1 si = 2S for an integer S.

We build an instance of Windy Firebreak Location as follows: consider, as G,
a star with a center o and n leaves ℓ1, . . . , ℓn. The values are defined as follows:
φ(o) = 0 and φ(ℓi) = si, i = 1, . . . , n and the costs of edges are given by κ(oℓi) =
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si, i = 1, . . . , n. Finally o has probability of ignition 1 and other vertices have
a probability of ignition 0. We choose B = R = S. The construction can be
performed in polynomial time.
With this set-up, a cut system H is defined as H = {oℓi, i ∈ A ⊂ {1, . . . , n}},
κ(H) =

∑︁
i∈A si and ρ(GH) =

∑︁
i/∈A si. This instance of Windy Firebreak Lo-

cation is a yes-instance if and only if there is a set A ⊂ {1, . . . , n} such that∑︁
i∈A si ≤ S = R and

∑︁
i/∈A si ≤ S = R. Since

∑︁
i/∈A si +

∑︁
i∈A si = 2S, the in-

stance of Windy Firebreak Location is a yes-instance if and only if the instance
of Partition in a yes-instance. This completes the proof.

We immediately deduce from Lemma A.2.1 and that Partition is NP-complete [77]:

Corollary A.2.2. Windy Firebreak Location is NP-complete on stars.

Since Partition is weakly NP-complete, the previous reduction does not give any
information about complexity when edge costs and vertex values are polynomially
bounded. We focus on this case for the Windy Firebreak Location problem.
The rest of Section A.2 aims to prove Proposition A.2.8 and Corollary A.2.9 that
establish that Windy Firebreak Location is NP-complete in bipartite planar
graphs with polynomially bounded edge costs and vertex values. The proof is based
on a polynomial time reduction from Restricted Strong Planar Max 2SAT.

A.2.2 A useful property for the main gadget

Here, we outline a technical lemma that is useful for the reduction.

Lemma A.2.3. Let G = (V,E) be a graph consisting of two components isomorphic
to P3. For each u ∈ V , let φ(u) = ν and πi(u) = p if deg(u) = 1, otherwise πi(u) = q
if deg(u) = 2. Let πs(e) = 1 for each e ∈ E. Let H1 be a cut system consisting
of two edges from the same component and let H2 be a cut system of two edges
one from each component. Then ρ(GH2) < ρ(GH1) if 0 < p < 2

3
, 0 ≤ q < 1, and

ρ(GH1)− ρ(GH2) = p(2− 3p)(1− q)ν.

Proof. The initial graph G and the two graphs resulting from the application of the
cut systems H1 and H2 are depicted in Figure A.1. Let us calculate the risks ρ(GH1)
and ρ(GH2), as a direct application of Proposition 1.1.3:

ρ(GH1) = ν(2p+ q) + 3ν(1− (1− p)2(1− q))

ρ(GH2) = 2ν(p+ 2(1− (1− p)(1− q))).

By dividing the risks by the node value ν and then expanding the equations, we
obtain:
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p
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q
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ν1 1 1 1

GH1

GH2

Figure A.1: Graphs G and the two graphs GH1 and GH2 , resulting from the appli-
cation of the cut systems H1 and H2, respectively. Vertices in G (up) are labeled
with their probabilities of ignition (below) p and q and their value ν (above). Edges
in G are labeled with their probability of spread.

ρ(GH1)

ν
= 2p+ q + 3(2p+ q − p2 − 2pq + p2q) = 8p+ 4q − 3p2 − 6pq + 3p2q

ρ(GH2)

ν
= 2(p+ 2(p+ q − pq)) = 6p+ 4q − 4pq.

The difference between the two risks, normalized by ν, is then:

ρ(GH1)

ν
− ρ(GH2)

ν
= 2p− 3p2 − 2pq + 3p2q = p(2− 3p)(1− q).

Such a difference is strictly positive and therefore ρ(GH2) < ρ(GH1) when:

0 < p <
2

3
0 ≤ q < 1.

From now, we assume that 0 < p < 2
3

and 0 ≤ q < 1 to ensure we can apply
Lemma A.2.3.

A.2.3 The reduction

In this paragraph, we describe our polynomial reduction from Restricted Strong
Planar Max 2SAT to Windy Firebreak Location. In the Figures A.2, A.3,
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(a) Variable Path

Vertices have value ν and edges cost s

1 1

lcx

1
2

c′

q

lcy

1
2

(b) Clause Path

Vertices have value ω and edges cost 1

1 1

Figure A.2: The path P3 representing (a) a variable x and (b) a clause c = (lcx, l
c
y)

in an instance of Windy Firebreak Location. The numbers above the edges
correspond to the probabilities of spread. Vertex labels are indicated above the
vertices while their probabilities of ignition are mentioned below.

A.4, A.5, and A.6, vertices are labeled with their name (unless unnecessary for a
good understanding) and the related probability of ignition, when this information
is useful. Edges are labeled with the related probability of spread, when useful. To
simplify the figures, the values of vertices and the costs of edges are not reported but
directly indicated in the text, when relevant. Finally, for a variable z, lz ∈ {z, z̄}
denotes a literal on z.

Let I = (Φ, K), with Φ = (X,C), be an instance of Restricted Strong Planar
Max 2SAT with n variables and m 2-clauses. We build an instance (ΓI ,1, πi, κ, φ,
B,R) of Windy Firebreak Location, starting from (Φ, K) and the related graph˜︁GΦ, as follows.

Variables In ΓI , each variable x is represented in ˜︁GΦ by a path P3 xx′x̄ (see
Figure A.2-a). For each vertex u of these P3 paths, we set πi(u) =

1
2

and φ(u) = ν.
For each edge e of these P3 paths, we set πs(e) = 1 and κ(e) = s. As in ˜︁GΦ, for each
variable x ∈ X, the external vertices of the corresponding P3 represent the literals
x and x̄. We refer to these paths as variable paths.

Clauses As for the clauses, for each vertex c of ˜︁GΦ representing a clause c =
(lcx, l

c
y) ∈ C, there is a path P3 denoted by lcxc

′lcy in ΓI whose external vertices
represent the literals lcx and lcy (see Figure A.2-b). For each vertex u of these P3 paths
we define φ(u) = ω, whereas πi(u) =

1
2

if u is an external vertex of the corresponding



A.2. HARDNESS OF WINDY FIREBREAK LOCATION IN PLANARS 191

˜︁GΦ(a)
x̄ x′ x

c

ȳ y′ y

ΓI(b)
x̄

1
2

x′

1
2

x
1
2

bcx 0

xc

1
2

c′

q
ȳc

1
2

bcȳ0

ȳ
1
2

y′

1
2

y

1
2

Figure A.3: (a) represents the clause (x, ȳ) in ˜︁GΦ. (b) represents how the two
related variable paths and the related clause path are connected in ΓI . Probabilities
of ignition are indicated on vertices in ΓI . Probabilities of spread are all 1, φ(bcx) =
φ(bcȳ) = 1 and κ(xbcx) = κ(xcbcx) = κ(ȳbcȳ) = κ(ȳcbcȳ) = B+1. All other vertex values
and edge costs in ΓI are as in Figure A.2.

P3, πi(u) = q otherwise. For each edge e of these P3s, we set πs(e) = 1 and κ(e) = 1.
We denote these paths as clause paths.

Connection between literals and clauses Variables and clauses are then con-
nected as follows. For each edge clx in ˜︁GΦ, where lx ∈ {x, x̄} is a literal appearing in
c, we introduce a binding vertex bclx in ΓI such that πi(b

c
lx
) = 0 and φ(bclx) = 1. Then,

for each binding vertex bclx , with lx ∈ {x, x̄}, there are two directed edges e1 = lxb
c
lx

and e2 = lcxb
c
lx

in ΓI such that πs(e1) = πs(e2) = 1 and κ(e1) = κ(e2) = B + 1, as
shown in Figure A.2-b. Figure A.3 gives an example of graphs ˜︁GΦ and ΓI when C
includes only the clause c = (x, ȳ). Note that all the probabilities of spread are set
to 1 and then the built instance is a Windy Firebreak Location instance. Note
that the related graph is planar and bipartite of maximum degree 5.
The resulting graph has (3n+ 5m) vertices and (2n+ 6m) edges.
To conclude the construction, we set B = ns + m and R = 2nν + mω

(︁
3
2
+ q
)︁
+

m
(︁
7
4
+ q

8

)︁
− K

8
. Note that, since K ≤ m, we have R > 0.

A.2.4 Choice of parameters and related properties

Our objective is to show that, for certain values of the parameters s, ν, ω and q, I
is satisfiable if and only if there is a cut system H for ΓI such that κ(H) ≤ B and
ρ(ΓI

H) ≤ R. In this paragraph, we determine the parameters and establish their
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main properties.

Choice of s First, we choose s = m+ 1; this ensures:

Claim A.2.4. Any cut system H for ΓI such that κ(H) ≤ B has at most n edges
from the variable paths.

Proof. This is due to the choice of B: if H has n + 1 cuts on the variable paths,
then κ(H) ≥ (n+ 1)s = ns+ s > ns+m = B.

Choice of ν We set ν = 8m
(︁
5
2
ω + 2

)︁
.

Then, the choices of s and ν guarantee the following claim:

Claim A.2.5. Any cut system H for ΓI such that κ(H) ≤ B and ρ(ΓI
H) ≤ R uses

n cuts on the edges of the variable paths, one for each variable. The related induced
cost is ns and the induced risk is 2nν.

Proof. We assume that ni variable paths have i cuts for i = 0, 1, 2: n0+n1+n2 = n
and the related number of cuts is n1 + 2n2. Note first that, if at most n cuts are
performed on variable paths, then n2 ≤ n0 and then, Lemma A.2.3 ensures that,
while n2 > 0, pairing one variable path with two cuts with one with no cut and
transferring one cut from the former to the latter allows to reduce the risk without
changing the number of cuts used on the n variable paths.
Assume first that no more than n− 1 cuts are performed on variable paths. Then,
n0 ≥ n2 + 1 and the previous remark ensures that the smallest contribution to the
total risk induced by vertices from variable paths is obtained for n2 = 0, with still
n0 ≥ 1. Then, Proposition 1.1.3 ensures that the related contribution to the risk is
(n − n0)ν

(︁
1
2
+ 2

(︁
1− (1

2
)2
)︁)︁

= 2ν(n − n0) for the (n − n0) variable paths with one
cut and a contribution of 3n0ν(1− (1

2
)3) = 21

8
n0ν for the n0 remaining paths with

no cut. So, since n0 ≥ 1, the contribution to the total risk induced by the variable
paths is at least (2(n− 1) + 21

8
) · ν.

(︃
2(n− 1) +

21

8

)︃
· ν = 2nν + 10m+

25

2
mω

≥ 2nν +
5

2
mω + 2m

≥ 2nν +mω

(︃
3

2
+ 1

)︃
+ 2m

> 2nν +mω

(︃
3

2
+ q

)︃
+m

(︃
7

4
+

q

8

)︃
− K

8

> R.
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where the strict inequality comes from q < 1.
So at least n cuts are performed on variable paths to ensure a risk no more than R.
Claim A.2.4 induces that exactly n cuts are performed on variable paths.
We now need to guarantee that the n cuts are distributed exactly as one for each
variable path. We now have n0 = n2 and Lemma A.2.3 shows that the risk induced
by the variable paths decreases with n0. If n0 = 1, then Proposition 1.1.3 shows
that this risk is 2νn+ 1

2

(︁
2− 31

2

)︁ (︁
1− 1

2

)︁
ν = 2nν + ν

8
.

In this case, using a similar argument as before, the risk is at least:

2nν +
ν

8
= 2nν +m

(︃
5

2
ω + 2

)︃
= 2nν +mω

(︃
3

2
+ 1

)︃
+ 2m

> 2nν +mω

(︃
3

2
+ q

)︃
+m

(︃
7

4
+

q

8

)︃
− K

8

> R.

This implies that we have n0 = n2 = 0 to ensure a risk at most R. In this case,
Proposition 1.1.3 ensures that the risk induced on vertices of variable paths is 2nν.
This concludes the proof.

Choice of ω We set ω = 8m
1−q

; in addition to the previous choices of s and ν, it
ensures:

Claim A.2.6. Any cut system H for ΓI such that κ(H) ≤ B and ρ(ΓI
H) ≤ R uses

one cut per clause path.

Proof. Claim A.2.5 ensures that the cost of cuts on variables paths is ns and the
related risk is 2nν. So, the budget m remains available and can be used for m cuts
on the edges of the clause paths in such a way that the related contribution to the
risk does not exceed R− 2nν.
As before, we denote by mi the number of clause paths with i cuts, i = 0, 1, 2. We
have m2 = m0 to ensure m cuts on these paths.
Assume that m2 > 0; Lemma A.2.3 guarantees that we can reduce the risk by
replacing one clause path with two cuts and one with no cut by two clause paths
with one cut each. Thus, the minimum risk induced by vertices in clause paths with
m2 > 0 is obtained for m2 = m0 = 1.
Proposition 1.1.3 ensures that the risk induced when all m clause paths have a single
cut is mω(1

2
+2(1

2
+ q− 1

2
q)) = mω(3

2
+ q). Then, using Lemma A.2.3, if two clause

paths with one cut are replaced by one with two cuts and one without any cut, then
the risk increase is 1

2

(︁
2− 31

2

)︁
(1− q)ω = ω

4
(1− q).
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Our choice of ω ensures ω
4
(1−q) ≥ 2m and then the minimum risk induced if m2 > 0

is:
mω

(︃
3

2
+ q

)︃
+

ω

4
(1− q) ≥ mω

(︃
3

2
+ q

)︃
+ 2m > R− 2nν (A.2)

So, we need m2 = 0 to ensure that clause paths have a contribution of the risk at
most R− 2nν, which concludes the proof.

Choice of q We finally choose: q = 1− 1
2K−1

. This implies:

q = 2− K

K − 1
2

⇔ K

2− q
= K − 1

2
(A.3)

that will be used to ensure the validity of the reduction.

A.2.5 Validity of the reduction

In this paragraph, we justify that our reduction is valid.

Claim A.2.7. The instance of Restricted Strong Planar Max 2SAT, I =
(Φ, K), with Φ = (X,C) is satisfiable if and only if the instance (ΓI ,1, πi, κ, φ,B,R)
of Windy Firebreak Location admits a cut system H for ΓI such that κ(H) ≤ B
and ρ(ΓI

H) ≤ R.

Proof. Assume that the instance I of Restricted Strong Planar Max 2SAT
is satisfiable, i.e., the instance I given by (X,C,K), has an assignment for the
variables in X such that at least K clauses are satisfied. Then, we prove that there
exists a cut system H for ΓI such that κ(H) ≤ B and ρ(ΓI

H) ≤ R.
The sought cut system H cuts each variable path on the side of the true literal.
With this assumption, we evaluate now the induced risk on the binding vertices.
We denote with Ki the number of clauses with i satisfied literals, i = 0, 1, 2. Then
K1 +K2 ≥ K and K0 +K1 +K2 = m.
Let ρi be the induced risk on the binding vertices, for all clauses with i true literals.
Then the total induced risk on the binding vertices is ρ = ρ0+ρ1+ρ2. The subgraphs
of ΓI

H representing a clause c = (lx, ly) for all the possible assignments to lx and ly
are shown in Figures A.4, A.5, and A.6. Note that a cut on a clause path can be
on any of the two edges. When lx and ly have the same assignment, the subgraphs
resulting by cutting the clause path either on the left-hand side or on the right-side
are isomorphic (see Figures A.4 and A.6), whereas, if lx is False and ly is True, i.e.,
the clause has only one satisfied literal, then the two possible subgraphs, depending
on which edge of the clause path is cut, are not isomorphic (see Figure A.5).
When lx and ly are both False (see Figure A.4), the risk for the binding vertex on
the left is 1− (1− 1/2)(1− 1/2)(1− 1/2) = 7/8, whereas, for the vertex on the right
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Figure A.4: Clause c = (lx, ly) with lx = False and ly = False. Example where the
clause path is cut on the left-hand side; if it is cut on the right-hand side, then the
resulting partial graph is isomorphic.
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(a) Clause Path cut on the left-hand side
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q
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(b) Clause Path cut on the right-hand side

bcly

ly
1/2

Figure A.5: Clause c = (lx, ly) with lx = False and ly = True and the two possible
cuts of the clause path. This time, the resulting partial graphs are not isomorphic.

it is 1− (1− 1/2)(1− 1/2)(1− 1/2)(1− q) = 1− 1/8 + q/8 = 7/8 + q/8. In total,
we have 7/4 + q/8. Then:

ρ0 = (7/4 + q/8) ·K0. (A.4)

When lx and ly are both True (see Figure A.6), the risk for the binding vertex on
the left is 1 − (1 − 1/2)(1 − 1/2) = 3/4, whereas, for the vertex on the right it is
1−(1−1/2)(1−1/2)(1−q) = 1−1/4+q/4 = 3/4+q/4. In total, we have 3/2+q/4.
Then:

ρ2 = (3/2 + q/4) ·K2. (A.5)

When lx is False and ly is True, we have two cases, as depicted in Figure A.5-a and
Figure A.5-b. In the first case (Figure A.5-a): the risk for the binding vertex on the
left is 1− (1− 1/2)(1− 1/2)(1− 1/2) = 7/8, whereas, for the vertex on the right it
is 1− (1− 1/2)(1− 1/2)(1− q) = 1− 1/4 + q/4 = 3/4 + q/4, and in total we have
13/8+q/4. In the second case (Figure A.5-b): the risk for the binding vertex on the
left is 1− (1− 1/2)(1− 1/2)(1− 1/2)(1− q) = 1− 1/8 + q/8 = 7/8 + q/8, whereas,
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Figure A.6: Clause c = (lx, ly) with lx = True and ly = True. Example where the
clause path is cut on the left-hand side; if it is cut on the right-hand side, then the
resulting partial graph is isomorphic.

for the vertex on the right it is 1− (1− 1/2)(1− 1/2) = 3/4, and in total we have
13/8 + q/8. Then, by choosing opportunistically the cut that minimizes these two
values on the clause path representing the clause (lx, ly), we have:

ρ1 = (13/8 + q/8) ·K1. (A.6)

Since K0 = m− (K1 +K2), we deduce from Equations A.4, A.5, and A.6:

ρ = ρ0 + ρ1 + ρ2 = m(7
4
+ q

8
)− (K1 +K2)(

7
4
+ q

8
) + (13

8
+ q

8
)K1 + (3

2
+ q

4
)K2

= m(7
4
+ q

8
)− K1

8
+ (−1

4
+ q

8
)K2.

(A.7)

Since q ≤ 1, we deduce ρ ≤ m(7
4
+ q

8
)− (K1+K2)

8
≤ m(7

4
+ q

8
)− K

8
.

Recall that, using Proposition 1.1.3, the total induced risk on variable vertices is
2nν (see proof of Claim A.2.5) and the one on clause vertices is mω(3

2
+q) (see proof

of Claim A.2.6). Then, the total risk is:

ρ(ΓI
H) = 2nν +mω

(︃
3

2
+ q

)︃
+ ρ ≤ 2nν +mω

(︃
3

2
+ q

)︃
+m

(︃
7

4
+

q

8

)︃
− K

8
= R.

Conversely, let us assume that the instance (ΓI ,1, πi, κ, φ,B,R) of Windy Fire-
break Location admits a cut system H for ΓI such that κ(H) ≤ B and ρ(ΓI

H) ≤
R. Then we prove that the instance I = (X,C,K) of Restricted Strong Pla-
nar Max 2SAT, has an assignment for the variables in X such that at least K
clauses are satisfied.
Claim A.2.5 ensures that H has necessarily one cut in each variable path and
Claim A.2.6 ensures that it has one cut in each clause path. The induced risk
of the vertices in variable paths is 2nν, while the induced risk of the vertices in
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clause paths is mω(3
2
+ q). Since the total risk is less than R, the risk ρ′ induced on

the binding vertices satisfies

ρ′ ≤ m

(︃
7

4
+

q

8

)︃
− K

8
. (A.8)

By using the same notation K0, K1, K2 as above and since Equation A.7 gives the
minimum possible risk for fixed K0, K1, K2,we deduce

ρ′ ≥ m(7
4
+ q

8
)− K1

8
+ (−2

8
+ q

8
)K2

≥ m(7
4
+ q

8
)− K1+(2−q)K2

8

≥ m(7
4
+ q

8
)− (2− q)K1+K2

8
.

(A.9)

We deduce from Inequalities A.8 and A.9 that m(7
4
+ q

8
)−K1+K2

8
(2−q) ≤ m(7

4
+ q

8
)−K

8
.

Then, Equation A.3 implies:

K1 +K2 ≥
K

2− q
. (A.10)

This implies K1+K2 ≥ K− 1
2
. Since K,K1, K2 are integers, this implies K1+K2 ≥ K

and thus, I is a positive instance. This concludes the proof.
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A.2.6 The main result

We are now ready to prove the main result of this section.

Proposition A.2.8. Restricted Strong Planar Max 2SAT polynomially re-
duces to Windy Firebreak Location in bipartite planar graphs of maximum
degree 5 and with polynomially bounded vertex values and edge costs.

Proof. We use the reduction from Restricted Strong Planar Max 2SAT
described in Paragraph A.2.3 with parameters defined in Paragraph A.2.4. From
an instance of Restricted Strong Planar Max 2SAT with n variables and m
clauses, it constructs an instance of Windy Firebreak Location with (3n+5m)
vertices and (2n+6m) edges. The related graph is planar, bipartite and of maximum
degree 5. Since parameters can all be computed in constant time, the construction
is polynomial. Note finally that the edge costs in the reduction are 1 or s and the
vertex values are 1, ν or ω. All these values are integral and polynomially bounded
with respect to n and m and thus, to the size of the Windy Firebreak Location
instance. Indeed, s = m+1, ω = 8m

1−q
and with q = 1− 1

2K−1
, we get ω = 8m(2K−1)

with K ≤ m. Finally, ν = 8m
(︁
5
2
ω + 2

)︁
= 20mω + 16m.

Claim A.2.7 justifies this is a valid reduction, which concludes the proof.

Since Windy Firebreak Location is NP-complete (see Corollary A.1.10), we
immediately deduce:

Corollary A.2.9. Windy Firebreak Location is NP-complete on bipartite pla-
nar graphs of maximum degree 5 and with polynomially bounded vertex values and
edge costs.

A.3 Some refinements in the instances

The proof of Proposition A.2.8 is written using different values on vertices to keep it
as simple as possible. In what follows, we use self-refinements to show that the case
with integral and polynomially bounded vertex values and edge costs polynomially
reduces to the case where all vertices have the same value 1 and all edges have the
same cost 1.
In Paragraph A.3.1, we first show how to reduce the vertex values to 1. Then,
in Paragraph A.3.2, we describe how to reduce the edge costs to 1. Finally, in
Paragraph A.3.3 we combine both techniques to establish our main result.

A.3.1 Reducing vertex values

Proposition A.3.1. For any graph class C closed under subdivision of edges, Windy
Firebreak Location with polynomially bounded vertex values, polynomially re-
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duces to its particular case where all vertices have value 1. The transformation
preserves the maximum degree.

Proof. Consider an instance I = (Γ,1, πi, κ, φ,B,R) of Windy Firebreak Lo-
cation, where Γ = (V,E) ∈ C and we assume that there is a polynomial P
such that ∀v ∈ V, φ(v) ≤ P (|V |). We build in polynomial time an instance
I ′ = (Γ′,1, π′

i, κ
′, φ1, B,R) with Γ′ = (V ′, E ′) ∈ C, φ1 is the constant function

on V ′ that maps any vertex to 1 and I ′ is positive if and only if I is positive. The
budget and the risk threshold remain unchanged.
For every vertex v ∈ V of degree d, We denote by u1, . . . , ud the neighbors of v
and insert µi ≥ 0 vertices on the edge vui, i = 1, . . . , d such that 1 +

∑︁
i=1,...,d µi =

φ(v). We denote by X(v) the set of new vertices; all edges between two vertices
in {v} ∪ X(v) are non-directed and have the same cost B + 1. Vertices in X(v)
have an probability of ignition 0 while the probability of ignition of v is unchanged:
π′
i(v) = πi(v). The edge vui is replaced by the edge zvi ui, where zvi is the vertex

inserted on vui that is linked to ui (could be v if µi = 0). If vui is directed, then zvi ui

is directed with the same orientation. If we perform this transformation for every
vertex, then we get an instance I ′ in a graph Γ′ = (V ′, E ′) ∈ C, where all vertices
have the same value 1. We can see V and E as subsets of V ′ and E ′, respectively
and there is a one to one correspondence between edges of cost at most B in Γ and
in Γ′ = (V ′, E ′) and the cost is preserved by this correspondence. In particular, any
cut system H ⊂ E in Γ such that κ(H) ≤ B can be seen as a cut system in Γ′

with the same cost. It is straightforward that ρ(ΓH) = ρ(Γ′
H). Indeed, if a vertex

v burns with some probability in ΓH , then, in Γ′
H the φ(v) vertices in {v} ∪ X(v)

will burn with the same probability. Since the transformation can be performed in
polynomial time, the proof is complete.

The transformation in Proposition A.3.1 preserves planarity and the maximum de-
gree. However, it does not necessarily preserve bipartite graphs. Note however that
bipartiteness can easily be imposed. Multiplying all vertex values by the same num-
ber just induces multiplying the risk of any solution by this constant; so, it does
not change the problem. Then, we propose a first transformation ensuring that all
vertices have an odd degree. First multiply all vertex values as well as the risk
threshold by 2 to ensure all values are at least 2. If a vertex v has an even degree,
then add a pending vertex of value 1 and probability of ignition 0, reduce the value
of v by 1 and define the cost of the related edge as B+1. This defines an equivalent
instance where all vertices have an odd degree. In addition if the maximum degree is
odd, this operation does not change it, otherwise it adds 1 to the maximum degree.
Denote now by ∆ the maximum degree in the new graph and multiply all vertex
values as well as the risk threshold by 2∆ to obtain an equivalent instance where
each vertex has an even value greater than its degree. In this case, we can always
perform the transformation in Proposition A.3.1 ensuring that all µis are odd. For
instance, choose all µis but one equal to 1. This ensures the new graph Γ′ is bi-
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partite. Note finally that all edges in Γ are preserved with their cost and the new
edges have the cost B+1. Without loss of generality we can assume B ≤

∑︁
e∈E κ(e)

and consequently, if all edge costs are polynomially bounded in Γ, so are they in Γ′.
Using this argument we deduce the following corollary:

Corollary A.3.2. Windy Firebreak Location remains NP-complete in bipar-
tite planar graphs of maximum degree 5 when all the vertices’ values are 1 and edge
costs are polynomially bounded.

A.3.2 Reducing edge values

A natural question is whether we can add the constraint that edge costs are all 1.
A first answer is that replacing an edge of cost c by c parallel edges, each of cost 1,
makes the problem equivalent. The transformation preserves planarity and bipar-
titeness but it does not preserve low degree. In what follows, we sketch a polynomial
reduction that allows to maintain the degree bounded.

Proposition A.3.3. Windy Firebreak Location with polynomially bounded
edge costs, all vertex values 1 and a rational probability system with a polynomial
least common multiple, polynomially reduces to Windy Firebreak Location with
all edge costs and vertex values equal to 1 in a graph of maximum degree 4.

Proof. Consider an instance I = (Γ,1, πi, κ,1, B,R) of Windy Firebreak Loca-
tion with all vertex values equal to 1. We assume Γ = (V,E) with n = |V |, edge
costs are integers and probabilities are all rational. We also assume there is a polyno-
mial integral function f such that ∀e ∈ E, κ(e) ≤ f(n) and ∀x ∈ V, f(n)πi(x) ∈ N.
This last property ensures that for all cut system H in Γ, f(n)ρ(ΓH) ∈ N. To
simplify further expressions, we define C =

⌈︁
B
2

⌉︁
. The construction depends on a

polynomially bounded value M , chosen as follows:

M = max
(︂
1 + C

⌈︂√︁
2Rf(n) + 1

⌉︂
, |E|f(n)

)︂
. (A.11)

We build an instance I ′ = (Γ′,1, π′
i,1,1, B

′, R′) with all edge cost equal to 1 such
that I ′ is positive if and only if I is positive. In addition Γ′ has maximum degree 4.
Γ′ is obtained from Γ by replacing each vertex x with a (M×M) non-directed square
grid Qx with M2 vertices. Edges of Qx, x ∈ V are called Q-edges in Γ′. Each edge
(x, y) of cost κ((x, y)) is replaced with a set J(x,y) of κ((x, y)) edges, each of cost 1;
such edges are called joining edges in Γ′. All edges incident to x in Γ correspond,
in Γ′, to

∑︁
(x,y)∈E κ((x, y)) joining edges incident to the perimeter of Qx and with

extremities equally spread along this perimeter. Since M ≥ |E|f(n) ≥
∑︁

e∈E κ(e),
the perimeter of Qx is long enough. All vertices in Qx have the same probability of
ignition equal to 1 − (1 − πx)

1
M2 , where 0

1
M2 = 0. Finally, we define B′ = B and
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R′ = M2R. Note that the maximum degree of Γ′ is 4 and that the construction can
be performed in polynomial time.
Assume first that I has a cut system H ⊂ E such that κ(H) ≤ B and ρ(GH) ≤ R.
We then define a cut system H ′ =

⋃︁
(x,y)∈H J(x,y) in Γ′. With the edge costs in Γ

and Γ′ we have κ′(H ′) = κ(H) ≤ B. It is straightforward to verify that ρ(Γ′
H′) =

M2ρ(ΓH) since Qx’s probability of burning in Γ′
H′ is exactly the probability that x

burns in ΓH and φ′(Qx) = M2φ(x). So, I ′ is positive.
Conversely, assume I ′ is positive and let H ′ be a cut system satisfying κ′(H ′) ≤ B
and ρ(Γ′

H′) ≤M2R.
For a vertex x ∈ V , a connected component of Γ′

H′ [Qx] is called small if its size is at
most C2 and it is large instead. Equation A.11 implies in particular M > B.
We establish a few claims that, all together, allow to complete the proof of Propo-
sition A.3.3:

Claim A.3.4. ∀x ∈ V , Γ′
H′ [Qx] has exactly one large component.

Proof. Since all edge costs in I ′ are 1, we have |H ′| ≤ B. Since M > B, removing
B edges from the M ×M grid Qx allows to disconnect at most C2 vertices from
the rest of the grid (this maximum is obtained if removed edges disconnect a corner
C ×C of the grid Qx). Equation A.11 implies M2 −C2 > C2 and consequently the
remaining vertices in Qx constitute a large component. This concludes the proof of
the claim.

The same argument allows to show:

Claim A.3.5. The total size of all small components in Γ′
H′ is at most C2.

To derive from H ′ a cut system in Γ, we first transform H ′ into H ′′ that only includes
joining edges:

• Any joining edge in H ′ is added to H ′′;

• Any joining edge adjacent to a small component of Γ′
H′ [Qx] for some x ∈ V is

added to H ′′ if not yet in it;

Note that a similar argument as in the previous claim shows that the number of
Q-edges in H ′ is at least equal to the number of joining edges adjacent to a small
component of Γ′

H′ [Qx]. As a consequence, |H ′′| ≤ |H ′|.
We denote by VQ the set of vertices of small components in Γ′

H′ and consider the
graph Γ′′ = Γ′[V \ VQ].

Claim A.3.6. ρ(Γ′′
H′′) ≤ ρ(Γ′

H′).

Proof. Connected components of Γ′′
H′′ are contained in connected components of

Γ′
H′ .
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We now define a cut system H in Γ as follows: for every edge e ∈ E, add it in H if
and only if Je ⊂ H ′′. It is straightforward to show that κ(H) ≤ |H ′′|.

Claim A.3.7. ρ(ΓH) ≤
ρ(Γ′′

H′′ )

M2−2C2 .

Proof. Since all vertices have value 1, we deduce from Proposition 1.1.3 that ρ(ΓH) =∑︁
x∈GH

px. Consider a vertex x ∈ V and the related vertex set Qx \ VQ in Γ′′. All
vertices in Qx \ VQ are connected in Γ′′

H′′ due to Claim A.3.4.
Consider an edge (y, x) in ΓH . By definition of H, there is at least one edge from
Qy \ VQ to Qx \ VQ. So, let zx ∈ Qx \ VQ, y ∈ Ux,H in Γ and zy ∈ Qy \ VQ. We
have zy ∈ Uzx,H′′ in Γ′′. Conversely, if zy ∈ Uzx,H′′ in Γ′′ with zx ∈ Qx \ VQ and
zy ∈ Qy \ VQ, then y ∈ Ux,H in Γ.
If we call p′′zx the probability that zx ∈ Qx \ VQ burns in Γ′′

H′′ , we have:

1− p′′zx =
∏︁

t∈Uzx,H′′

(1− πi(t))

≤
∏︁

y∈Ux,H

(1− πi(y))
M2−C2

M2

= (1− px)
M2−C2

M2 .

If px < 1, we consider the real function h : z ↦→ (1 − px)
z = ez log(1−px). It is

decreasing and convex. As a consequence, on the interval [0, 1], h is bounded above
by the linear function equal to h(0) = 1 for z = 0 and equal to h(1) = (1 − px) for
z = 1. So, ∀0 ≤ z ≤ 1, (1−px)

z ≤ 1− zpx. If px = 1, then the inequality also holds.
Since, for any vertex x ∈ V in Γ, the large component associated with x in Γ′′

includes at least M2 − C2 vertices, we have:

ρ(Γ′′
H′′) ≥ (M2 − C2)

∑︁
x∈V

(︃
1− (1− px)

M2−C2

M2

)︃
≥ (M2 − C2)

∑︁
x∈V

(︂
(1− C2

M2 )px

)︂
≥ (M2 − C2)(1− C2

M2 )ρ(ΓH)
≥ (M2 − 2C2)ρ(ΓH).

We deduce:

ρ(ΓH) ≤
ρ(Γ′′

H′′)

M2 − 2C2
.

which completes the proof of the claim.
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Using Claim A.3.6, Claim A.3.7 and ρ(Γ′
H′) ≤M2R we deduce:

ρ(ΓH) ≤ M2R
M2−2C2

≤ R + 2C2R
M2−2C2 .

(A.12)

Equation A.11 implies 2C2R
M2−2C2 < 1

f(n)
. So, Inequality A.12 implies that ρ(ΓH) <

R + 1
f(n)

. Since f(n)ρ(ΓH) ∈ N, we deduce ρ(ΓH) ≤ R, and consequently I is
positive, which completes the proof of Proposition A.3.3.

A.3.3 All together: main result

To complete Section A, we combine techniques used in Paragraphs A.3.1 and A.3.2
to establish Theorem 1.2.2, our main complexity result.
The transformation in Proposition A.3.3 preserves planarity. We can easily ensure
that it preserves bipartiteness. Assume indeed that the original graph Γ = (V,E)
is bipartite with two parts black and white and consider for instance a black vertex
x ∈ V . We then consider any black and white partition of the grid Qx and branch
joining edges along the perimeter of Qx only on black vertices. Doing it for any x
ensures that Γ′ is bipartite. Since M ≥

∑︁
e∈E κ(e), the perimeter is long enough.

In the proof of Proposition A.2.8, the reduction involves a class of Windy Fire-
break Location instances with only three different probabilities of ignition, 0, 1

2

and q = 1 − 1
2K−1

, where K can be chosen not greater than the number of clauses
which is less than the number of vertices in the instance of Windy Firebreak Lo-
cation. Edge costs are either 1, m+ 1 or (n+ 1)(m+ 1), where both n and m are
less than the number of vertices in the instance of Windy Firebreak Location.
So, we can choose f(n) = 2(2K − 1)(n+1)(m+1) that satisfies all requirements of
Proposition A.3.3. Applying successively the reductions in Proposition A.2.8, Corol-
lary A.3.2 and Proposition A.3.3 from an instance (Φ, K) of Restricted Strong
Planar Max 2SAT allows to prove the following Theorem that constitutes the
main result of this section:

Theorem 1.2.2. Windy Firebreak Location is NP-complete in bipartite planar
graphs of maximum degree 4 with all vertex values and edge costs equal to 1.

Note that, in Proposition A.3.3 the probability system π′
i for the Windy Firebreak

Location with all edge costs and vertex values equal to 1, in a graph of maximum
degree 4, is not necessarily rational and it is not polynomially bounded. We let
as an open problem the complexity of Windy Firebreak Location in bipartite
planar graphs with all vertex values and edges costs equal to 1 and rational and
polynomially bounded probabilities of ignition.
We conclude this section with a remark about the complexity in grid graphs that are
natural when considering a homogeneous landscape divided into regular square-like
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areas. A planar graph of maximum degree 4 can be embedded in polynomial time
into a grid [140] in such a way that vertices map to vertices in the grid and edges
map to non-crossing paths in the grid. We can also easily ensure that the embedding
is a subgraph of the grid, also called a subgrid. In other words, there is a subdivision
of the original graph that is a subgrid and the construction can be performed in
polynomial time. If the new vertices (produced in the subdivision) are all of value
0 and all edges have the same cost 1, then Windy Firebreak Location in this
subgrid is equivalent to Windy Firebreak Location in the original graph. Now,
if we consider any grid that contains the subgrid as a subgraph, assign the value 1
and the probability of ignition πi = 0 to the added vertices and the cost 0 to the
added edges. Then, Windy Firebreak Location in this grid is equivalent to
Windy Firebreak Location in the subgrid since we can cut any edge of value 0
without changing the total cost. As a result, we immediately deduce:

Proposition 1.2.3. Windy Firebreak Location is NP-complete if:

• the graph is a subgrid with binary vertex values and unitary edge costs;

• the graph is a grid with binary vertex values and edge costs.

The case with binary probabilities of ignition would be as well an interesting open
case.
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