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Abstract: Technology-based approaches for upper limb (UL) motor rehabilitation after stroke are
mostly designed for severely affected patients to increase their recovery chances. However, the
available randomized controlled trials (RCTs) focused on the efficacy of technology-based interven-
tions often include patients with a wide range of motor impairment. This scoping review aims at
overviewing the actual severity of stroke patients enrolled in RCTs that claim to specifically address
UL severe motor impairment. The literature search was conducted on the Scopus and PubMed
databases and included articles from 2008 to May 2024, specifically RCTs investigating the impact
of technology-based interventions on UL motor functional recovery after stroke. Forty-eight studies
were selected. They showed that, upon patients’ enrollment, the values of the UL Fugl-Meyer
Assessment and Action Research Arm Test covered the whole range of both scales, thus revealing
the non-selective inclusion of severely impaired patients. Heterogeneity in terms of numerosity,
characteristics of enrolled patients, trial design, implementation, and reporting was present across the
studies. No clear difference in the severity of the included patients according to the intervention type
was found. Patient stratification upon enrollment is crucial to best direct resources to those patients
who will benefit the most from a given technology-assisted approach (personalized rehabilitation).

Keywords: technological interventions; motor rehabilitation; upper limb; stroke; severe impairment

1. Introduction

Most technology-based approaches for motor rehabilitation after stroke have been
originally designed and developed with severely affected patients in mind [1,2]. In post-
stroke rehabilitation, traditional approaches targeting upper limb function often rely on
the presence of residual motor capabilities and are, therefore, precluded to very severe (i.e.,
plegic) patients. Furthermore, technology can provide treatment with increased intensity,
which is established as a crucial determinant of rehabilitation outcome [3]. In this regard,
Constraint-Induced Movement Therapy (CIMT), which is still one of the most effective
approaches for the upper limbs [4], represents a clear example of how technology can
impact motor recovery only in those patients with residual motor function of the affected
limb. The lack or scarceness of such residual motor function can be, at least partially,
overcome with technology, such as neuromuscular stimulation combined with CIMT [5].
Thus, technology can not only enhance the intensity of the treatment but also increase the
number of patients that can have access to a given therapy, increasing the chances for all
patients (including those more severely affected) to regain independence.
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However, randomized controlled trials (RCT) testing these technology-based reha-
bilitation approaches often include patients with a wide range of motor impairment and,
sometimes, only a small proportion of patients actually fall in the severe range as de-
fined by clinical scales. Indeed, patients’ recruitment in rehabilitation is influenced by
numerous factors and is still one of the most challenging steps for researchers aiming
to bring technology into clinical practice [6]. The severity of motor deficit often comes
with concomitant conditions, such as bed-confinement status (especially in the acute and
subacute phases), cognitive impairment, pain, and depression, that altogether limit the
ability of patients to participate in such trials. As the motor status at baseline is probably the
most consistent prognostic factor of rehabilitation outcome [7], we believe that this factor
accounts for the hesitating translational success of many of these technological approaches
for several reasons. On one hand, the success of clinical trials may be facilitated by the
participation of less severe patients who increase trial feasibility, especially in the subacute
phase, and are naturally destined to a more favorable outcome. Consequently, the actual
application of a given technology in severe patients may turn out disappointing in terms of
outcome, regardless of the successful trial. On the other hand, some of these technological
aids may provide little added benefit for less severe patients who can take advantage of
other more traditional and less expensive rehabilitative exercises [4]. Furthermore, several
aspects related to patients’ recruitment add complexity to the ambitious task of proving
the efficacy of novel rehabilitation strategies, such as post-stroke stage and the related
adaptive and maladaptive changes that occur both at the central nervous system level and
in peripheral tissues (e.g., spasticity).

In this scoping review, we provide an overview on the actual severity of patients
recruited in RCTs carried out to analyze the efficacy of technology-based rehabilitation
approaches targeting severe upper limb impairment (explicitly mentioning patients’ severity
in the title and/or abstract). According to our question, our research returned clinical
studies investigating robotics, electrical or magnetic stimulation of the central nervous
system (non-invasive brain stimulation, NIBS) or of peripheral structures (peripheral stimu-
lation, PS), brain–computer interfaces (BCIs), virtual reality (VR), and, in general, advanced
technological devices purposely developed for post-stroke motor rehabilitation. While the
identification of the most effective approaches is out of the scope of this review [8], here we
intend to verify the following:

(i) The actual severity of patients included in trials that explicitly declare to enroll severe
subjects to confirm or refute the anecdotal notion of extreme variability in baseline
motor impairment, which might be responsible for the hesitating translational success
of such interventions [9];

(ii) Whether some of these technological approaches have been more consistently tested
on severe patients than others and eventually speculate on why they have.

Furthermore, we check whether the severity of patients was considered as an inclusion
criterion and/or employed for stratification for primary or secondary analyses. We take
into account whether each considered study was or was not successful in confirming
the efficacy of a given intervention, that is, the superiority/not superiority of the target
intervention vs. the control condition (positive/negative results), also highlighting possible
secondary analyses carried out by the authors to support their hypotheses.

The ultimate goal of this scoping review is to provide useful hints to improve patients’
inclusion in RCTs evaluating novel technologies for motor rehabilitation in order to favor the
optimization of resources and efforts towards tailored, highly technological rehabilitation
interventions, which is instrumental to foster technology transfer into clinical practice.

2. Methods
2.1. Protocol and Eligibility Criteria

This scoping review was conducted according to the Preferred Reporting Items for
Systematic reviews and Meta-Analysis (PRISMA) standards. Our protocol was drafted
using the PRISMA extension for Scoping Reviews (PRISMA—ScR, [10]) and revised by the
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research team. To be included in the review, papers needed to describe technology-based
rehabilitative interventions targeting the recovery of motor function of the upper limb in a
stroke population.

Peer-reviewed journal papers were included as follows:

• Published between the period of 2008 and 2024;
• Written in English;
• Involved human participants in the framework of a randomized controlled trial.

Papers were excluded as follows:

• If they did not fit into the conceptual framework of the study (not a technology-based
rehabilitative approach, wrong outcome);

• If they were reviews, study protocols, and meta-analyses.

2.2. Information Sources and Search Strategy

Studies eligible for review were identified through electronic databases, such as Scopus
and PubMed, from 2008 to 23 May 2024. Grey literature was excluded from the search
process. The search strategies consisted of free text terms in the topic “stroke” AND “severe”
AND “rehabilitation” AND “Action Research Arm Test” OR “Fugl-Meyer Assessment”
AND “randomised controlled trial” AND “upper limb” OR “hand”. The complete search
terms and strategy are provided in the Supplementary Materials (Table S1). The search
strategies were developed and executed by a biomedical engineer (EC) and further refined
through team discussion. The search was peer-reviewed by other expert researchers, i.e.,
a neurologist (FP) and a physiatrist (GM), using the Peer Review of Electronic Search
Strategies checklist and modified as required [11]. The final search results were imported
into the online systematic review software Rayyan [12]. Duplicates were identified by
means of the Rayyan duplicates search algorithm and removed by a researcher.

2.3. Selection of Sources of Evidence

Two reviewers (EC, FP) independently screened titles and abstracts for inclusion. For
full-text screening, two reviewers (EC, FP) subsequently screened the full text of potentially
relevant articles to determine inclusion using similar inclusion and exclusion criteria.
We resolved disagreements on study selection by consensus and discussion with other
reviewers if needed or by a single arbitrator (GM). To ensure reliability between reviewers,
a series of training exercises were conducted prior to commencing screening. Inter-rater
agreement for study inclusion was calculated using percent agreement; when it reached
>80% across the team, we proceeded to the next stage. If lower agreement was observed,
the inclusion and exclusion criteria were clarified, and another pilot test occurred.

2.4. Data Charting Process and Data Items

A data charting form was jointly developed by three reviewers to determine which
variables to extract. Three reviewers (EC, FP, GM) independently charted the data, dis-
cussed the results, and continuously updated the data charting form in an iterative process.

For each article, data on the following characteristics were extracted:

• First Author Name;
• Year of publication;
• Source;
• Population sample size (participants per group);
• Severity of the upper limb impairment, i.e., Upper Extremity Fugl-Meyer Assessment

score, FMA [13], and/or Action Research Arm Test, ARAT [14], expressed as the
mean ± standard deviation (SD) or median and first and third quartile (Q1–Q3), per
group, whenever available;

• Inclusion criteria in the RCT related to the upper limb impairment;
• Availability of the dataset used (Yes/No);
• Time since injury (TSI), i.e., stroke event, classified, according to [15,16], as
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# ≤1 month (acute)
# ≤3 months (early subacute)
# ≤6 months (subacute)
# >6 months (chronic)

• Intervention type, classified as

# Brain–Computer Interface (BCI)
# Non-Invasive Brain Stimulation (NIBS)
# Peripheral Stimulation (PS)
# Robotic
# Virtual Reality (VR) and Visual

• Comparator, i.e., control interventions and/or comparison conditions;
• Active motor action required (Yes/Yes whenever possible/No):

# Yes, if the intervention type requires the participant’s residual motor ability
(active motor exercise from the participant)

# Yes whenever possible refers to conditions foreseeing active motor exercise when
feasible, with the technology providing assistance as needed (e.g., robotics)

# No otherwise

• Combination of technological interventions (Yes/No);
• Dose, expressed as minutes x number of sessions;
• Primary and secondary outcomes;
• Key Findings, classified as Positive, Positive on secondary analyses, and Negative. We

define Key Findings as the following:

# Positive if between-group statistical analyses evaluated for the primary out-
comes statistically confirm the hypothesis investigated in the study.

# Positive on secondary analyses if between-group statistical analyses evaluated for
sub-items of the primary/secondary outcomes or considering sub-groups of the
population under investigation confirm the hypothesis investigated in the study
or if within-group statistical analyses evaluated for the primary/secondary
outcomes reveal a statistical improvement only for the experimental group.

# Negative if between- and within-group analyses do not reveal statistically sig-
nificant differences among groups.

The threshold for statistical significance was set to 0.05.

• Stratification for secondary analyses according to an upper limb impairment criterion;
• Follow-up (Yes/No), i.e., if Yes, we reported the number of months after the end of the

intervention;
• Setting: Inpatient/Outpatient.

The extracted data were collected in a table in which the rows represent the included
articles and the columns represent variables (data items). The spreadsheet software Mi-
crosoft Excel (Version 2408) was used to create our custom extraction form. The choice was
based on its ease of use, high customizability, and worldwide diffusion. Before extracting
the data from all papers included in the scoping review, the extraction form was tested
for further refinements and underwent a calibration phase. This entailed three reviewers
independently extracting data from 5 papers each and meeting afterward to discuss any
discrepancies, with further refinement of the form if a high level of agreement between
reviewers was not obtained.

2.5. Synthesis of Results

To analyze the database, the following explanatory approaches are used: descriptive
and frequency analysis and association analysis.
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2.5.1. Descriptive and Frequency Analysis

Descriptive statistics are relative to the overall population of participants that was
included in the selected studies in terms of the number of participants, sample size of
intervention and control groups, dose of intervention, and severity of upper limb motor
impairment upon enrollment as described by FMA and/or ARAT. The data have been
summarized according to their distribution (modality and dispersion) by means of the
mean and standard deviation (SD) or median and interquartile range (IQR), presented as
the difference between the first quartile (Q1) and the third quartile (Q3), i.e., Q1–Q3.

Frequency analyses are relative to the following variables: time since injury (at
least 4 classes, i.e., acute, early subacute, subacute, chronic participants), setting (at least
3 classes, i.e., inpatient/outpatient, inpatient, and outpatient), availability of the dataset
used (2 classes, i.e., Yes or No), technological rehabilitative intervention type (at least
5 classes, i.e., BCI, NIBS, PS, Robotic, VR and Visual) and whether it did or did not require an
active motor exercise from the participants (3 classes, i.e., Yes/Yes whenever possible/No),
comparison conditions, primary and secondary outcome measures, presence/absence of
follow-up evaluations (2 classes, i.e., Yes or No), key findings (3 classes, i.e., positive,
negative, and positive on secondary analyses), and severity of upper limb deficit employed
as an inclusion criterion for participant enrollment and/or stratification for secondary
statistical analyses. In frequency analysis, the counts and percentages of articles in each
cluster are calculated. Studies that share a similar approach towards a specific variable
are clustered together, and those following different approaches are assigned to different
groups. Clustering can be carried out based on the values of a single variable on the entire
dataset or on a subset of articles that already belong to a cluster on a higher level.

All results are presented both narratively and by means of plot and pie charts when
relevant.

2.5.2. Association Analysis

Association analysis explores the relationships between the variables. Since the num-
ber of possible combinations of variables is relatively large, the results are focused on those
regarding the research questions. We hypothesize that the characteristics of the technologi-
cal rehabilitation interventions would determine a difficulty in recruiting severely affected
participants. Therefore, we have separately analyzed the severity of upper limb motor
impairment at baseline (as assessed via FMA) according to the following:

• Type of intervention (e.g., Robotic, BCI, PS, . . .);
• Required active upper limb motor actions from the participant by the intervention itself.

For each analysis, studies that share a similar approach, i.e., type of intervention or
required active motor action, are clustered together. For each level of the analyzed variable,
i.e., 5 levels for the variable TYPE OF INTERVENTION and 3 levels for the variable MOTOR
ACTION, the FMA data are pooled together. If needed, the mean and SD data are estimated
from the data reported in the paper as the median and IQR by means of the formula in [17].

All results are expressed as the mean ± SD and presented both narratively and by
means of plot charts.

3. Results
3.1. Selection of Sources of Evidence

The search returned a total of 189 papers. After the duplicate removal (96), 93 articles
were screened. After screening of titles and abstracts, 41 papers were excluded due to the
following reasons:

• The rehabilitative intervention under investigation does not include a technology-
based approach; videos/instruction displayed on screens or other devices of everyday
use (personal computers, tablet, smartphones) were not included;

• The design of the study does not follow the randomized controlled trial design (wrong
study design);
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• The effectiveness of the rehabilitative intervention under investigation was not as-
sessed in terms of motor function improvement (wrong outcome);

• The paper presents a study protocol, a review, or a meta-analysis.

A total of 52 full-text papers were examined. Four studies were excluded during the
full-text search and check. Thus, 48 articles were included in the scoping review.

The flowchart in Figure 1 presents the detailed search and selection process.
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3.2. Results of Individual Sources of Evidence

The results of individual sources of evidence are shown in Table 1. Table 1 reports a
subset of the items described in the section Data charting process and data items.
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Table 1. Studies included in this review. The following data are reported: name of first author and publication year, population sample size (number of participants
per group, whenever available), severity of the impairment assessed via UE-FMA and ARAT (per group, whenever available), if inclusion criteria related to the
upper limb impairment for the participant enrolment (IC) were defined, time since injury, intervention type, active motor action required, comparator, primary
outcome measures, and key findings. UE-FMA and ARAT values are reported as the mean ± standard deviation or median and interquartile range (Q1–Q3).

First Author Name,
Year of Publication

Population Sample
Size (Participants
per Group)

Severity of the Impairment
(UE-FMA and/or ARAT
per Group)

IC Time Since Injury Intervention Type Active Motor Action
Required Comparator Primary Outcome

Measures Key Findings

Hesse, 2008 [18] EG: 27
CG: 27

UE-FMA
Yes ES PS, Robotic Yes, whenever

possible
Different

Technology UE- FMA NegEG: 8.8 ± 4.5
CG: 8.6 ± 3.5

Lo, 2010 [19]
EG: 47
CG1: 46
CG2: 27

UE-FMA

Yes C Robotic Yes
Dose Equivalent

UL Training,
Usual Care

UE- FMA Pos On Sec
EG: 19.7 ± 10.7
CG1: 17.3 ± 8.4
CG2: 20.3 ± 9.0

Weber, 2010 [20] EG: 10
CG: 13

ARAT
Yes C PS Yes

Without
Technology MAL NegEG: 19.5 ± 13.9

CG: 25.8 ± 15.5

Shindo, 2011 [21] EG: 10
CG: 10

UE-FMA

Yes ES PS Yes
Without

technology UE-FMA Pos

EG: 24.4 ± 10.9
CG: 23.0 ± 13.1

ARAT
EG: 9.3 ± 8.4
CG: 15.8 ± 13.7

Rosewilliam, 2012 [22] EG: 31
CG: 36

ARAT
Yes A/ES PS No Usual Care ARAT NegEG: 0.0 ± 0.0

CG: 0.6 ± 3.5

Ochi, 2013 [23] EG: 9
CG: 9

UE-FMA
Yes C NIBS, Robotic No Different

Parameters UE-FMA Pos On SecEG: 23.2 ± 16.6
CG: 23.6 ± 16.7

Cordo, 2013 [24] EG1: 22
EG2: 21

UE-FMA
Yes C PS, Robotic Yes

Different
Technology UE-FMA Pos On SecEG1: 23.1 ± 8.8

EG2: 19.4 ± 6.2

Krewer, 2014 [25] EG: 31
CG: 32

UE-FMA
Yes C PS No Sham Stimulation MTS

UE-FMA Pos On SecEG: 5 (4–27)
CG: 4 (4–9)

Au-Yeung, 2014 [26]
EG: 29
CG1: 21
CG2: 23

ARAT

Yes A PS No Sham Stimulation,
Usual Care Force measures Pos

EG: 8.9 ± 17.6
CG1: 3.1 ± 8.2
CG2: 9.2 ± 16.3

Ang, 2015 [27] EG: 11
CG: 14

UE-FMA
Yes C BCI, Robotic Yes Different

Combination UE-FMA NegEG: 26.3 ± 10.3
CG: 26.5 ± 18.2
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Table 1. Cont.

First Author Name,
Year of Publication

Population Sample
Size (Participants
per Group)

Severity of the Impairment
(UE-FMA and/or ARAT
per Group)

IC Time Since Injury Intervention Type Active Motor Action
Required Comparator Primary Outcome

Measures Key Findings

Pichiorri, 2015 [28] EG: 14
CG: 14

UE-FMA
No ES/S BCI, VR and

Visual No
Without

Technology UE-FMA PosEG: 23.4 ± 17.3
CG: 24.2 ± 18.2

Pennati, 2015 [29] EG1: 8
EG2: 7

UE-FMA
No C Robotic Yes Different

Combination

UE-FMA
BBT
FIM
MAS

NegEG1: 29.25 ± 13.91
EG2: 18.14 ± 5.27

Carrico, 2016 [30] EG: 18
CG: 18

UE-FMA

Yes C PS Yes Sham Stimulation UE-FMA Pos

EG: 25.7 ± 13.3
CG: 22.8 ± 15.0

ARAT
EG: 13.9 ± 12.3
CG: 10.4 ± 11.2

Wu, 2016 [31] EG: 99
CG: 28

UE-FMA
Yes C Robotic Yes Usual Care UE-FMA PosEG: 18.5 ± 9.7

CG: 20.3 ± 9.0

Frolov, 2017 [32] EG: 55
CG: 19

UE-FMA

No S/C BCI, Robotic No Sham Control UE-FMA
ARAT Pos On Sec

EG: 24.0 (12.0–40.0)
CG: 12.0 (11.0–49.0)

ARAT
EG: 4.0 (0.0–31.0)
CG: 3.0 (0.0–30.0)

Tomic, 2017 [33] EG: 13
CG: 13

UE-FMA
Yes ES Robotic Yes

Dose Equivalent
UL Training UE-FMA PosEG: 26.5 ± 7.7

CG: 26.6 ± 7.5

Schick, 2017 [34] EG: 16
CG: 17

UE-FMA
Yes ES PS No Different

Combination UE-FMA Pos On SecEG: 16.67 ± 10.80
CG: 16.29 ± 9.00

Brunner, 2017 [35] EG: 57
CG: 55

ARAT
Yes ES VR and Visual Yes

Dose Equivalent
UL Training ARAT NegEG: 25.8 ± 18.3

CG: 24.2 ± 18.6

Rabadi, 2017 [36] EG: 8
CG: 8

ARAT
Yes A NIBS No Sham Stimulation ARAT NegEG: 4.0 ± 10.9

CG: 1.9 ± 4.2

Marquez-Chin, 2017 [37] EG: 10
CG: 11C

UE-FMA
Yes A/ES PS Yes Usual Care FIM

UE-FMA PosEG: 3.4 ± 4.8
CG: 4.4 ± 4.6

Carrico, 2018 [38] EG: 33
CG: 22

UE-FMA

Yes S/C PS No Sham Stimulation WMFT Pos

EG: 18.48 ± 12.75
CG: 18.23 ± 13.34

ARAT
EG: 11.58 ± 12.80
CG: 13.36 ± 14.68
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Table 1. Cont.

First Author Name,
Year of Publication

Population Sample
Size (Participants
per Group)

Severity of the Impairment
(UE-FMA and/or ARAT
per Group)

IC Time Since Injury Intervention Type Active Motor Action
Required Comparator Primary Outcome

Measures Key Findings

Ding, 2018 [39] EG: 38
CG: 41

UE-FMA
No S/C VR and Visual Yes

Dose Equivalent
UL Training UE-FMA PosEG: 25.66 ± 17.63

CG: 18.85 ± 16.38

Conroy, 2019 [40] EG: 22
CG: 19

UE-FMA
Yes C Robotic Yes Different

Combination UE-FMA Pos On SecEG: 20.7 ± 8.5
CG: 21.6 ± 8.5

Rodgers, 2019 [41]
EG: 239
CG1: 246
CG2: 223

UE-FMA

Yes S/C Robotic
Yes, whenever

possible

Dose Equivalent
UL Training, Usual

care
ARAT Neg

EG: 18.0 ± 13.1
CG1: 18.2 ± 14.1
CG2: 18.2 ± 13.9

ARAT
EG: 8.5 ± 11.9
CG1: 8.7 ± 11.9
CG2: 8.1 ± 11.5

Ramos-Murguialday, 2019 [42] EG: 16
CG: 12

UE-FMA
Yes C BCI, Robotic Yes Sham Control UE-FMA (54) Pos On SecEG: 11.16 ± 1.73

CG: 13.29 ± 2.86

Takebayashi, 2020 [43] EG: 30
CG: 26

UE-FMA

Yes ES Robotic
Yes, whenever

possible
Dose Equivalent

UL Training UE-FMA Pos On Sec

EG: 47.3 ± 7.4 (mild)
CG: 45.1 ± 19.4 (mild)
EG: 30.3 ± 12.5 (moderate)
CG: 25.8 ± 10.5 (moderate)
EG: 16.1 ± 10.5 (severe)
CG: 14.8 ± 4.7 (severe)

Lee, 2020 [44] EG1: 19
EG2: 19

UE-FMA
Yes S/C Robotic

Yes, whenever
possible

Different
Technology

UE-FMA
WMFT

(*)EG1: 15.37 ± 5.14
EG2: 15.26 ± 4.37

Chew, 2020 [45] EG: 10
CG: 9

UE-FMA
Yes C BCI, NIBS No Sham Stimulation UE-FMA Pos On SecEG: 35.3 ± 7.8

CG: 32.6 ± 8.1

Lin, 2021 [46] EG: 9
CG: 9

UE-FMA
Yes C VR and Visual Yes

Without
technology UE-FMA PosEG: 43.4 ± 14.5

CG: 28.3 ± 18.1

Hu, 2021 [47] EG: 7
CG: 5

UE-FMA

Yes S/C BCI, VR and
Visual No

Without
technology UE-FMA Pos On Sec

EG: 12.70 ± 8.80
CG: 13.80 ± 6.65

ARAT
EG: 3.29 ± 5.79
CG: 6.60 ± 12.29

Boasquevisque, 2021 [48] EG: 15
CG: 15

UE-FMA
No A/ES NIBS No Sham Stimulation Safety (**) NegEG: 46 (8–56.8)

CG: 22.5 (8.8–43.5)
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Table 1. Cont.

First Author Name,
Year of Publication

Population Sample
Size (Participants
per Group)

Severity of the Impairment
(UE-FMA and/or ARAT
per Group)

IC Time Since Injury Intervention Type Active Motor Action
Required Comparator Primary Outcome

Measures Key Findings

Dawson, 2021 [49] EG: 53
CG: 54

UE-FMA
Yes C PS Yes Sham Stimulation UE-FMA PosEG: 34.4 ± 8.2

CG: 35.7 ± 7.8

Llorens, 2021 [50] EG: 14
CG: 15

UE-FMA
Yes C NIBS, VR and

Visual Yes Usual Care UE-FMA PosEG: 9.50 ± 5.11
CG: 9.87 ± 4.82

Cantillo-Negrete, 2021 [51] 10 crossover study

UE-FMA

Yes S/C BCI, Robotic No Usual Care UE-FMA Neg17.5 ± 15.3
ARAT

4.3 ± 6.4

Takebayashi, 2022 [52] EG1: 17
EG2: 13

UE-FMA

Yes ES Robotic
Yes, whenever

possible
Different

Parameters
UE-FMA
WMFT Pos On Sec

EG1: 14.8 ± 7.0 (severe)
EG2: 20.0 ± 5.6 (severe)
EG1: 44.8 ± 5.2 (moderate)
EG2: 46.6 ± 6.8 (moderate)

Jiang, 2022 [53] EG: 24
CG: 20

UE-FMA
Yes A PS No Usual Care UE-FMA PosEG: 12.38 ± 2.26

CG: 12.30 ± 2.39

Schrader, 2022 [54] EG: 14
CG: 10

UE-FMA
Yes A/S/C Robotic No

Without
Technology UE-FMA (60) PosEG: 4.00 (0.75–8.25)

CG: 3.00 (0.00–4.50)

Ohnishi, 2022 [55]

EG1: 25
EG2: 22
EG3: 26
CG: 26

UE-FMA

Yes ES PS Yes
Different

Parameters,
Usual Care

SIAS
UE-FMA MAS

FIM
Pos

EG1: 4.0 (4.0–9.0)
EG2: 4.0 (4.0–8.8)
EG3: 4.0 (3.0–8.8)
CG: 4.0 (4.0–5.8)

Huang, 2022 [56] EG: 13
CG: 11

UE-FMA
Yes C NIBS No Sham Stimulation UE-FMA Pos On SecEG: 39.3 ± 17.9

CG: 34.2 ± 15.9

Wong, 2022 [57] EG: 15
CG: 15

UE-FMA

Yes A/ES PS Yes
Without

Technology ARAT Neg

EG: 31 ± 11
CG: 35 ± 14

ARAT
EG: 19 ± 11
CG: 23 ± 19

Cordo, 2022 [58] EG: 44
CG: 39

UE-FMA
Yes ES/S PS, Robotic Yes Different

Parameters UE-FMA PosEG: 20.9 ± 9.9
CG: 23.7 ± 11.2

Takebayashi, 2022 [59]
EG1: 42
EG2: 39
CG: 36

UE-FMA

Yes C Robotic Yes
Without

Technology UE-FMA Pos On Sec
EG1: 25.9 ± 8.6
EG2: 26.5 ± 11.0
CG: 25.0 ± 0.9
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Table 1. Cont.

First Author Name,
Year of Publication

Population Sample
Size (Participants
per Group)

Severity of the Impairment
(UE-FMA and/or ARAT
per Group)

IC Time Since Injury Intervention Type Active Motor Action
Required Comparator Primary Outcome

Measures Key Findings

Williamson, 2023 [60] 8 crossover study
UE-FMA

Yes ES/S/C NIBS No
Different

Parameters, Sham
Stimulation

UE-FMA Pos27.7 ± 16.3

Dawson, 2023 [61] EG: 53
CG: 55

UE-FMA
Yes C PS Yes Sham Stimulation UE-FMA PosEG: 34.4 ± 8.2

CG: 35.7 ± 7.8

Wang, 2023 [62]
EG1: 23
EG2: 23
CG: 23

UE-FMA

Yes ES/S NIBS, Robotic Yes
Different

Technology,
Usual care

UE-FMA
BI Pos

EG1: 9 (IQR: 12)
EG2: 11 (IQR: 8)
CG: 14 (IQR: 16)

Chen, 2023 [63] EG: 40
CG: 40

UE-FMA
Yes A/ES Robotic Yes Usual Care UE-FMA PosEG: 18.5 ± 10.5

CG: 19.4 ± 10.4

Feingold-Polak, 2024 [64]
EG1: 10
EG2: 8
CG: 8

UE-FMA (60)

Yes S Robotic Yes
Different

Technology,
Usual Care

UE-FMA (60)
ARAT
MAL
SIS

Pos On Sec

EG1: 42 (17–53)
EG2: 41 (17–54)
CG: 39 (18–58)

ARAT
EG1: 36 (15–51)
EG2: 38 (6–57)
CG: 33(17–53)

Brunner, 2024 [65] EG: 15
CG: 20

UE-FMA

Yes A/ES BCI, PS No Usual Care ARAT Neg

EG: 4 (2–4)
CG: 4 (2–4)

ARAT
EG: 0 (0–0)
CG: 0 (0–0)

Legend: A: Acute phase (≤1 month); ARAT: Action Research Arm Test; BCI: Brain–Computer Interface; BBT: Box and Block Test; BI: Barthel Index; CG: Control Group; C: Chronic phase
(>6 months); EG: Experimental Group; ES: Early Subacute phase (≤3 months); FIM: Functional Independence Measure; IQR: inter-quartile range; MAL: Motor Activity Log; MAS:
Modified Ashworth Scale; MTS: Modified Tardieu Scale; Neg: Negative key findings; NIBS: Non-Invasive Brain Stimulation; Pos: Positive key findings; Pos On Sec: Positive findings on
secondary analyses; PS: Peripheral Stimulation; S: Subacute phase (≤6 months); SIAS: Stroke Impairment Assessment Set; SIS: Stroke Impact Scale; UL: upper limb; UE-FMA: Upper
extremity Fugl-Meyer Assessment; VR: Virtual Reality; WMFT: Wolf Motor Function Test. (*) Lee et al., 2020 [44]: we did not define key findings because the hypothesis about the
effectiveness of the intervention EG1 compared to the EG2 is not clear. (**) Boasquevisque et al., 2021 [48]: safety is defined as primary outcome, but authors stated the primary outcome
results were published elsewhere. (60) or (54): the expression (60) and (54) codes for UE-FMA assessed on 60 or 54, respectively.
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3.3. Synthesis of Results
3.3.1. Descriptive and Frequency Results

The included articles report data from 3000 adult participants. Three articles [20,25,54]
include participants with a diagnosis of stroke and traumatic brain injury (TBI), respectively
five and three TBI participants in [20] and [25], for a total of eight participants. No detailed
information on stroke/TBI ratio is reported in [54].

The average sample size of the groups (target intervention and control groups) is 29 ± 39
(mean ± SD). The RCT in [41] is the only study in which a very large number of participants,
i.e., 770 participants, were enrolled. Conversely, there is more than one study in which a very
small number of participants, i.e., less than 10 per group, are analyzed [23,29,36,46,47,51,60].
Therefore, median and quartile values, i.e., 20 (median) and 11–32 (Q1–Q3), provide more
accurate estimates on the target intervention and control groups sample size. Among the
included studies, only 45.83% [18,19,22,25–27,30,32–35,38,41,45,46,49,50,53,58,59,62,63] per-
formed a sample size calculation, and 81.82% [18,22,25,26,30,32–35,38,41,46,49,50,53,59,62,63]
of them actually enrolled the foreseen number of patients.

Enrolled participants include stroke in acute, early subacute, subacute, and chronic
phases. Most studies (62.53%) consider a homogeneous group of participants: 6.25% acute
stroke participants [26,36,53], 16.70% early subacute stroke participants [18,21,33–35,43,52,55],
2.08% subacute stroke participants [64], and 37.50% chronic stroke participants [19,20,23–
25,27,29–31,40,42,45,46,49,50,56,59,61]. The remaining studies (37.47%) include more than
one group of stroke participants who differ in terms of time from the cerebral lesion to
enrollment, e.g., early subacute and subacute. The distribution of studies across TSI classes is
reported in Figure 2.
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Figure 2. Distribution across studies (n = 48) of the stroke population enrolled and classified in terms
of time from the cerebral lesion to enrollment in the study as follows: ≤1 month (acute), ≤3 months
(early subacute), ≤6 months (subacute), >6 months (chronic).

Most of the participants enrolled in the studies are inpatient (60.40%, [18,21,22,25,26,28,
32–35,37,39,43,44,47–57,61–63,65]). Outpatient studies and those considering both inpatient
and outpatient participation are 20.85% [19,20,23,24,27,29,42,58,59,64] and 6.25% [38,40,41],
respectively. For the remaining 12.5%, there are no clear indications referring to the
setting [30,31,36,45,46,60].

Figure 3 summarizes the results about the severity of upper limb motor impairment upon
enrollment based on FMA (panel a) and ARAT (panel b) scores at baseline. Forty-two studies
assess baseline motor impairment in stroke participants by means of the FMA score, while in
fifteen studies, the baseline assessment was performed by means of the ARAT score. As can
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be noted in Figure 3, both FMA and ARAT scores at baseline extend across the whole range,
i.e., FMA: 21.71 ± 11.41 (mean ± SD across 42 studies) and ARAT: 12.28 ± 10.85 (mean ± SD
across 15 studies). Of note, among the seven studies for which the mean or median FMA
value falls below 10, three of them included acute patients [37,54,65].
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Figure 3. (a) Upper Extremity Fugl-Meyer Assessment (FMA) score: minimum score 0, maximum
score 66 equal to normal. (b) Action Research Arm Test score: minimum score 0, maximum score
57 equal to normal. Red circle and grey line code for studies presenting FMA or ARAT score expressed
as the mean (red circle) ± standard deviation (grey line). Blue square marker and black line code for
studies presenting FMA or ARAT score expressed as the median (blue square) and first/third quartile
(black line running from the first to the third quartile). (*) marker codes for two studies [54,64] that
assess FMA out of a maximum of 60 score and codes for one study [42] that assesses FMA out of a
maximum of 54 score.
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The complete dataset about the characteristics of each participant enrolled in the study
(e.g., individual FMA or ARAT scores) is available in 15% of studies.

The pie chart in Figure 4 shows the distributions of studies across technological rehabilitative
intervention types. Rehabilitative interventions administered by means of robotic devices and
peripheral stimulation and their combination cover more than half of the tested interventions:
27.08% [19,29,31,33,40,41,43,44,52,54,59,63,64], 29.17% [20–22,25,26,30,34,37,38,49,53,55,57,61], and
6.25% [18,24,58], respectively. Fewer studies focus on BCI-based and NIBS interventions, both
combined with other intervention types, and Virtual Reality and Visual rehabilitative interventions:
16.66% (eight articles [27,28,32,42,45,47,51,65]), 14.58% (seven articles [23,36,48,50,56,60,62]), and
6.25% (three articles [35,39,46]), respectively.
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Figure 4. Distribution across studies (n = 48) of the technology-based rehabilitative intervention types,
grouped as Brain–Computer Interface (BCI), Non-Invasive Brain Stimulation (NIBS), Peripheral
Stimulation (PS), Robotic, Virtual Reality (VR) and Visual, and their combination.

The majority (52.10%) of rehabilitative intervention approaches require participant’s
residual motor ability (active motor exercise by the participants) [19–21,24,27,29–31,33,35,37,
39,40,42,46,49,50,55,57–59,61–64]; 10.40% are categorized as “Yes whenever possible”, referring
to conditions foreseeing active motor exercise when feasible with the technology providing
assistance as needed (e.g., robotics) [18,41,43,44,52]; and 37.50% do not require any active
motor action from the participants [22,23,25,26,28,32,34,36,38,45,47,48,51,53,54,56,60,65].

Regarding the dose of rehabilitative intervention, the studies differ in terms of both
minutes of each training session, 40 min (median) and 30–60 min (Q1–Q3), and number of
training sessions (21.78 ± 14.39, mean ± SD), ranging from 12 sessions (Q1) to 28 sessions
(Q3). The overall dose of intervention, resulting from the multiplication of minutes per
session and number of sessions, is 13h (median) and 8–27 h (Q1–Q3).

Table 2 shows the number of studies in which each surveyed primary and secondary
outcome is used either as primary or secondary. As for the primary outcome, the Upper
Extremity FMA results are the most frequent scale administered to assess the efficacy
of the rehabilitative interventions (38 on 48 studies, 79.17%) [18,19,21,23–25,27–34,37,
39,40,42–47,49–56,58–64]. Conversely, several evaluations, such as clinical/functional
as well as instrumental, are considered for the secondary outcomes. Among the clini-
cal/functional secondary outcomes, the most frequent are the Stroke Impact Scale [66]
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(22.92% of studies, [19,24,31,38,40,41,44,48,49,58,59]), the Barthel Index [67] (22.92% of
studies, [22,25,33,34,39,41,47,48,53,57,63]), the Wolf Motor Function Test [68] (20.83% of
studies, [19,30,31,33,40,44,49,50,56,61]), and the Action Research Arm Test [14] (16.67%
of studies, [20,21,26,30,38,47,51,59]); transcranial magnetic stimulation, electroencephalo-
graphic, electromyographic, kinematic, and kinetic parameters are considered as brain and
motor outcomes in 27.08% of the studies [22,28,42,45,47,51,53,58–60,62–64].

Table 2. List of the primary and secondary outcomes and number of studies that consider each one
as a primary (column on the left side) or secondary (column on the right side) outcome.

Outcome As Primary
Number of Studies

As Secondary
Number of Studies

Upper Extremity Fugl-Meyer Assessment 38 5
Action Research Arm Test 8 8
Wolf Motor Function Test 3 10
Functional Independence Measure 3 2
Modified Ashworth Scale 2 9
Motor Activity Log 2 6
Stroke Impact Scale 1 11
Barthel Index 1 11
Box and Block Test 1 4
Stroke Impairment Assessment Set: knee–mouth and finger function test 1
Modified Tardieu Scale 1
Goal Attainment Scaling 2
Motricity Index 2
Medical Research Council Scale 2
National Institutes of Health Stroke Scale 2
Finger–Nose Test 1
Jebsen–Taylor Hand Function Test 1
Hamilton Depression Scale 1
Mental Rotation Task 1
Modified Rankin Scale 1
Montreal Cognitive Assessment 1
Nine-hole peg test 1
Nottingham Sensory Assessment 1
Numeric Rating Scale Pain 1
Rancho Los Amigos Scale 1
Rivermead Assessment of Somatosensory Performance 1
Stroke Specific Quality of Life Scale 1
Motor Outcome (kinematic, kinetic, electromyographic parameters) 1 10
Brain Outcome (transcranial magnetic stimulation and
electroencephalographic parameters) 5

Safety (adverse events) 1

In 37.50% of the studies, the participants are followed-up from 2 weeks to 9 months af-
ter the end of the rehabilitation, i.e., 3 months (median) and 3–5 months
(Q1–Q3), [18,19,22,25–27,30,31,35,36,38,41,44,45,48,49,61]. No follow-up evaluations are
reported in 62.50% of the studies.

As for the comparison conditions, most studies (81.25%) are two-arm RCTs. The
remaining 18.75% of studies [19,26,41,43,52,55,59,62,64] compare more than two groups,
up to four groups in [55]. For the two-arm studies, the control conditions that are most
commonly observed can be categorized as follows:

• Sham Stimulation/Control (applies in NIBS/PS and BCI studies, referring to conditions
where the participants are induced to believe they are receiving stimulation or controlling
a BCI system while they are not): 28.20% of studies [25,30,32,36,38,42,45,48,49,56,61];

• Similar intervention “without technology” (e.g., mirror therapy in contrast to VR-based
mirror therapy): 17.95% of studies [20,21,28,46,47,54,57];

• Usual care: 17.95% of studies [22,31,37,50,53,63,65];
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• Dose equivalent upper limb training (dose equivalent therapy session focused on the
upper limb, considered an add-on to usual care): 10.26% of studies [33,35,39,43];

• Different combinations of technology-based approaches: 10.26% of studies [27,29,34,40];
• Different technology: 7.69% of studies [18,24,44];
• Different parameters of the same technology (e.g., different robotic assistance, anodal

vs. cathodal transcranial direct-current stimulation): 7.69% of studies [23,52,58].

For studies comparing more than two groups, different interventions are mostly com-
pared to the usual care control condition. Further details about the comparator employed
in each study can be found in the Supplementary Materials (Table S2).

As shown in Table 1, most studies (89.58%) employ inclusion criteria related to up-
per limb impairment for participant enrollment [18–27,30,31,33–38,40–47,49–65]. Figure 5
shows the inclusion criteria and their frequency across studies (43 studies include in-
clusion criteria). More than half of the studies define the inclusion criteria by means of
an FMA score (53.50% of studies, [18,19,23,27,31,33,34,37,38,40,44–46,49,50,54,58–64]) or
ARAT (9.30% of studies, [22,35,41,65]). Nevertheless, evaluations based on motor outcome,
i.e., range of motion or ability/inability to perform a specific task, such as that involved
in the study protocol, are taken into account in 16.3% of studies [20,21,24,30,42,47,57] as
well as spasticity-related scales, i.e., Brunnstrom stages and Tardieu scale, in 11.63% of
studies [25,43,52,53,56]. Specifically, for the FMA inclusion criteria, Figure 6 shows the re-
duction gained by defining the inclusion criteria for participant enrollment. That reduction,
expressed as percentage, is computed as the one’s complement of the ratio between the
FMA range defined as in the inclusion criteria and the whole FMA range (0–66), according
to the following formula:

FMA range reduction = 100 × (1 − FMA range de f ined as inclusion criteria
66
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related evaluation) used for the enrollment inclusion criteria definition and grouped as UE-FMA:
Upper Extremity Fugl-Meyer Assessment; ARAT: Action Research Arm Test; MRC: Medical Research
Council Scale; MI: Motricity Index; and SIAS: Stroke Impairment Assessment Set; and Motor out-
come, which concerns range of motion evaluation and evaluation of ability/inability to perform a
specific task.
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Fugl-Meyer Assessment (UE-FMA) score, reported as a function of the UE-FMA range reduction
achieved by defining inclusion criteria for participant enrollment.

In seven studies, we observed a reduction between 60% and 80% [18,33,34,37,44,50,54];
among them is the study by Schrader et al. [54] in which inclusion criteria have been
defined on the basis of the hand section of the FMA scale (maximum value 14). Most of
the studies only achieve a 50% reduction [19,31,40,49,60,61,63], thus including in the same
analyses participants who differ in FMA score up to 33 points (50% of the whole FMA
range [0 66]), for example, in the range [8 38] in the study by Chen and colleagues in [63].

As for the severity of the upper limb impairment at baseline for the stratification of par-
ticipants in secondary analyses, 25.00% of studies exploit such an
evaluation [24,31,34,35,39–41,43,45,52,61,63], defining two or more levels of the variable:
FMA (nine studies out of twelve) [24,31,34,39,40,43,52,61,63] and ARAT [41], motor evoked
potentials, [45] and range of motion [35] (one per study).

As for the key findings of the trials, (i) 41.67% report positive results, i.e., the stud-
ies confirm the hypothesis of efficacy of a given intervention via between-group analy-
sis [21,26,28,30,31,33,37–39,46,49,50,53–55,58,60–63]; and (ii) 31.25% report positive results
on secondary analyses, i.e., between-group statistical analyses evaluated for sub-items
of the primary/secondary outcomes or considering sub-groups of the population un-
der investigation confirm the original hypothesis or if within-group statistical analyses
evaluated for the primary/secondary outcomes reveal a statistical improvement only for
the experimental group [19,23–25,32,34,40,42,43,45,47,52,56,59,64]. Negative results are
reported by 25.00% of studies, i.e., the target intervention is not superior to the control
condition [18,20,22,27,29,35,36,41,48,51,57,65].

3.3.2. Association Results

Figure 7 shows, for each type of intervention (top panel in the figure) and motor action
required from the participant by the intervention itself (bottom panel in the figure), the
upper limb impairment severity (UE-FMA) of the participants recruited in those studies.
Each study has been categorized both according to the intervention type (analysis presented
in the top panel) and motor action required (analysis presented in the bottom panel). The
data from studies belonging to the same category, e.g., intervention type PS, are pooled
together and summarized by means of box charts.
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Figure 7. Distribution across studies (n = 42) of UE-FMA at baseline, grouped by intervention type
(top) and motor action required from the participant (bottom). The triangle-up marker codes for the
average of each distribution and the circle codes for outliers. Intervention types were categorized as
BCI (Brain–Computer Interface), NIBS (Non-Invasive Brain Stimulation), PS (peripheral stimulation),
Robotic, and VR (Virtual Reality) and Visual. Each study is assigned to a single category. Studies
that investigate combinations of technology-based interventions, e.g., BCI and PS or BCI and Robotic,
have been assigned to the most significant intervention type according to the study design, e.g., BCI
and PS have been assigned to the BCI category when PS was employed in the control condition as
well, thus BCI control resulted to be the core of the rehabilitative intervention in the study. Active
motor actions are categorized as no/yes/yes whenever possible.

As for the intervention type, most studies seem to cover almost half of the UE-FMA
scale scores. On average, PS-based interventions concern participants with a slightly
lower UE-FMA value (18.46 ± 11.55) than the other interventions (BCI: 19.52 ± 9.72, NIBS:
25.47 ± 10.67, Robotic: 23.46 ± 10.74, VR and Visual: 29.05 ± 10.36). Robotic interventions,
as shown from the distribution outliers, include studies with UE-FMA values both lower
than 5 and higher than 40. As for motor action required from the participant, studies in
which the experimental protocol does not require action of the participant enroll partici-
pants with UE-FMA on average lower (19.44 ± 10.62) than studies either requiring active
motor action (22.41 ± 9.94) or whenever possible (25.14 ± 14.09). Of note, studies that
require active motor actions enroll participants with reduced motor action ability (FMA < 5)
as well as participants with moderate motor impairment (FMA = 43).

4. Discussion

In this scoping review, we provide a portrait of the current evidence derived from
RCTs investigating the efficacy of technology-based interventions targeting upper limb
motor recovery in patients with severe impairment after stroke. Our main aim is to verify
the actual severity of the included patients enrolled in such trials to confirm or refute the
anecdotal notion of extreme variability in baseline motor impairment, which might be
responsible for the lack of solid evidence supporting the efficacy of such interventions [9].

We included papers reporting FMA or ARAT or both to assess upper limb motor
impairment (Table S1, Supplementary Materials) since they are commonly employed to
investigate the efficacy of the rehabilitative treatment [69]. Our results (Table 2) show that
FMA is by far the most commonly employed as the primary outcome measure, followed
by ARAT; other measures that are specific for upper limb function, such as BBT, WMFT,
and MAL, are more commonly employed as the secondary outcome.
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According to our descriptive analyses on FMA and ARAT values upon enrollment,
we verified that the included patients altogether virtually cover the whole range of both
scales (Figure 3a,b). That is, these RCTs that were originally implemented to investigate the
efficacy of rehabilitative interventions designed for severe patients often include patients
with mild to moderate deficits as well. This occurs despite the fact that almost 90% of
the studies actually defined the inclusion criteria based on severity. Actually, there is no
unique definition of severity, even for the same assessment scale. To reach such a univocal
definition of motor severity is beyond the scope of our work; however, our review allows
for us at least to provide a picture of the current state of the art in this aspect. Among those
studies in which the inclusion criteria were based on severity, approximately 50% employed
FMA for such a definition. However, the references for the proposed stratification did
not converge on a unique subdivision. For example, several papers refer to Fugl-Meyer
et al. [13] or Gladstone et al. [70] to justify the use of cut-off values for their inclusion
criteria or stratification analyses, but no subdivision is provided in either of these papers.
Woodbury et al. [71] suggest a cut-off below 19 for severe patients and of 47 for moderately
impaired patients, which is applied as an inclusion criterion by Carrico et al. [38]. Ding
et al. [39] apply the clustering suggested in Woytowicz et al. [72] to define severity in
patients with an FMA < 35. Conroy et al. [40] apply a cut-off of 25 as suggested by
Luft et al. [73]. As a possible explanation for such a wide range of severity among the
enrolled patients, we hypothesized that the technology in the study could play a role.
For example, some robotic devices cannot be proposed to patients with severe spasticity,
or an electromyographically triggered orthosis cannot be activated if patients have no
residual movement in the target muscles. Thus, we categorized the papers according to
the proposed technology. Electrical or magnetic stimulation of peripheral structures (PS) is
the most represented technology in our review, followed by robotics. These two or their
combinations represent approximately 63% of the studies. The BCI and NIBS (often in
combination with other devices) are the topics of approximately 31% of the studies, while
the less represented technology is VR, with just approximately 6% of the papers. To further
characterize the interventions according to the fact that they required (or not) active motor
actions from the patients, we found out that more than 50% of the interventions required
some residual motor ability from the patients. This could be an explanation for the trend to
include “not-so-severe” patients in order to increase trial feasibility. Nevertheless, we did
not observe a clear difference in the severity of the included patients when we divided the
studies according to the technology or to the presence/absence of an active motor exercise.
The distributions of patients’ severity (Figure 7) qualitatively show a tendency towards the
more severe range for the interventions based on PS and for interventions not requiring
active motor tasks. We also highlighted the heterogeneity of included patients in terms of
time since injury. While the majority of studies targeted chronic patients exclusively (37.5%),
the studies including mixed groups altogether reached a similar percentage (37.47%). It is
well known that brain plasticity that underlies motor recovery is time dependent, and the
recovery potential is different according to the post-stroke phase [74]. Moreover, changes
occurring in peripheral structures along recovery (e.g., spasticity, complications related
to reduced mobility) have a direct impact on the motor status (and, thus, potential motor
outcome), further increasing the complexity of the overall picture.

Regarding the study design, we also pointed out extreme variability in terms of the
dose/intensity of treatment, type of comparator, and sample size. In almost 20% of the
two-arm studies, “usual care” is the only control condition, while an active comparator
would be most desirable. Different dosages and very different sample sizes (ranging from
10 to almost 800 participants) limit the potential impact of our attempt to interpret the
results of this scoping review that takes into account such a wide scenario of clinical studies.
An indirect result of our scoping review derives from the papers that we excluded for
reporting study protocols (n = 13). These papers were all published between 2017 and
2023 [75–87], with ten of them being subsequent to 2020, testifying to a progressive increase
in the efforts dedicated to rigorous clinical trial design in this field of translational research.
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The ultimate goal of our reviewing work is to improve the design of RCTs to boost the
translation of rehabilitative technologies into clinical practice. Indeed, the majority of the
selected studies report positive results, indicating the efficacy of the proposed technology.
However, approximately 30% of the studies required secondary analyses to support the
benefit derived from the intervention in the study. Some of them report positive results on
secondary outcomes, e.g., SIS and WMFT [19,40], and/or outcome sub-items, e.g., ARAT,
FMA, and MAS items [23,43]. Some required subgroup analyses, e.g., proving efficacy only
in severe patients [34,43,45,52]. The remaining 25% of openly negative studies (showing
non-superiority of the proposed intervention) is likely underestimated, as it is known
that publishing a negative result is harder and often occurs only in the case of very well
designed and well conducted, large clinical trials.

A further observation derived from our work is that, along with the established clinical
and functional scales employed as primary or secondary outcomes (Table 2), 16 papers
applied objective measurements of brain and motor activity as a means to verify the
effects of the intervention on motor system performance. Advanced analyses on elec-
troencephalographic [28,51] and transcranial magnetic stimulation recordings [45,51,60,62],
electromyographic, kinematic, and kinetic data [22,26,42,47,51,53,58,59,62–64] were per-
formed in these studies to identify modifications in motor system performance subserving
a favorable motor outcome derived from the intervention in the study. This suggests that
technology is not only employed for the design of rehabilitative interventions but may play
a crucial role in improving the outcome assessment with more objective, measurable, and
reproducible parameters that may serve as biomarkers of motor recovery.

This scoping review has several limitations, mostly related to the heterogeneity of
the included studies in terms of numerosity, characteristics of the enrolled patients, trial
design, implementation, and reporting. We considered papers published between 2008 and
2024, observing a progressive improvement in all of these aspects, which will hopefully
be fruitful in the upcoming years to properly address some of the issues that we raised
here and that remain yet unanswered. Only seven studies [28–30,45,51,56,60] provide
a complete dataset documenting the individual severity of the enrolled patients, which
would allow for a statistical analysis on how effective the interventions were according to a
homogeneous stratification of patients based on severity. The policies for data availability
are also progressively pointing towards safe data sharing according to internationally
agreed upon General Data Protection Regulations.

5. Conclusions

We represented the current evidence derived from RCTs investigating the efficacy
of technology-based interventions targeting upper limb motor recovery in patients with
severe impairment after stroke. Our aim was to shed light on the problems of the current
research in rehabilitation technologies to ultimately boost the translational success of such
approaches. There is undoubtedly a need for patient stratification upon enrollment to selec-
tively direct resources to the patients who will benefit the most from a given approach. The
correct taxonomy of patient severity and the related correct reporting in clinical trials could
significantly improve the transnationality and contextualization of the results obtained,
avoiding biases that could affect potential effectiveness. Only severe patients should be
recruited for the clinical validation of devices that are designed specifically for them, while
the design and development of technologies with adequate sensorimotor and cognitive
stimulation would probably increase their salience (and effectiveness) for less affected
subjects. Upon the improvement in the design, implementation, and reporting of clinical
trials, subsequent systematic reviews will probably help in identifying strong evidence and,
thus, evidence-based indications for clinicians operating in the field of neurorehabilitation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm13185414/s1, Table S1: Database Search Strategies. Table S2:
Experimental and control intervention details of the studies included in the review.
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