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Abstract
Wepropose an ensemble artificial neural network (EANN)methodology for predicting
the day ahead energy demand of a district heating operator (DHO). Specifically, at the
end of one day, we forecast the energy demand for each of the 24h of the next day. Our
methodology combines three artificial neural network (ANN) models, each capturing
a different aspect of the predicted time series. In particular, the outcomes of the three
ANN models are combined into a single forecast. This is done using a sequential
ordered optimization procedure that establishes the weights of three models in the
final output. We validate our EANN methodology using data obtained from a A2A,
which is one of the major DHOs in Italy. The data pertains to a major metropolitan
area in Northern Italy. We compared the performance of our EANN with the method
currently used by the DHO, which is based on multiple linear regression requiring
expert intervention. Furthermore, we compared our EANN with the state-of-the-art
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seasonal autoregressive integrated moving average and Echo State Network models.
The results show that our EANN achieves better performance than the other three
methods, both in terms of mean absolute percentage error (MAPE) and maximum
absolute percentage error. Moreover, we demonstrate that the EANN produces good
quality results for longer forecasting horizons. Finally, we note that the EANN is
characterised by simplicity, as it requires little tuning of a handful of parameters. This
simplicity facilitates its replicability in other cases.

Keywords Machine learning · Energy demand forecast · Heat demand forecast ·
Artificial neural networks

1 Introduction

Energy production planning is a complex operation requiring accurate modelling of
many system related interactions. The fact that energy typically cannot be stored,
entails that forecasting its demand is of fundamental importance. In this context,
establishing accurate demand forecasting is essential for integrated district heating
operators (DHOs). These are namely regulated or municipal entities that vertically
manage production, distribution and sales of heating through a district network. DHOs
deploy medium-term and short-term load forecasting in their operational planning.
Both these forecasts enable several optimization processes along theDHOvalue chain.

Medium-term load forecasts typically predict the demand up to one-week in
advance (Hahn et al. 2009). Through medium-term forecasts, DHOs can analyse their
expected financial performancewithmonthly or annual budgets. Based on these analy-
ses, they may optimize their energy supply sources and short-term contracts, schedule
preventive maintenance for generation units, and plan the development or revamping
on network and customer facilities.

Short-term forecasts are typically done hours to days in advance with respect to
delivery. For these forecasts, a DHO typically estimates with an hourly resolution
the amount of heating they are going to produce and distribute to consumers. Such
forecasts are essential to adequately dimension the unit commitment, i.e., the exact
amount that each facility and generation unit has to provide (see e.g., Pineda and
Morales 2016). The resulting commitments must adhere to the hydraulic and thermal
constraints of the overall system (e.g., supply pressure, temperatures and flow rates).
In turn, the operation of generation units should be properly planned accounting for
their technical operative range, while maximizing efficiency and renewable heating
exploitation. Both short-term and medium-term forecasts can be globally viewed as
fundamental components of a DHO’s decision support system (DSS). An overview
of such a system is shown in Fig. 1. In this paper we focus on developing an effective
and replicable tool for short-term forecasts.

In general, leveraging data in decisionmaking processes is becoming rather popular
(Gambella et al. 2021). Indeed, in many industries (e.g., Shipping operations Beşikçi
et al. 2016), machine learning (ML) is used to generate reliable predictions, which are
then used inmanagement science problems to derive optimised decisions. Capitalising
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Fig. 1 An overview of a DHO’s decision support system

on the success of ML techniques in producing reliable predictions, our methodology
is based on artificial neural networks (ANNs).

In Europe, DHOs generally prioritise renewable sources in order to be aligned
with the EU Emissions Trading System (ETS) goals. Therefore, fossil fuel or other
integration sources are dispatched with a lower priority. Considering combined heat
power facilities, often used by DHOs, production planning must comply with energy
quantities exchanged in the day aheadmarket. In Italy, for example, the national energy
market prices are published on a daily basis covering the subsequent 24h. Therefore,
in contrast with many production environments, where operational planning implies
daily planning, an hourly-based plan is better suited to meet the dynamic pricing of
energy commodities. Moreover, several DHOs plan their production at an urban level.
In such cases, forecasting the energy demand is intricate due to the fact that it may
be influenced by exogenous factors, e.g., weather conditions, as well as local features
such as local holidays.

Several methodologies have been used to forecast energy demand. We highlight
several of these in the subsequent section. The main contribution of this paper is the
design of an effective easy-to-replicate methodology, that leverages ML techniques
for the day-ahead forecast of hourly energy demand. Three different ANN forecasting
models are combined. In particular, the same data is organized in different ways to
create specific inputs for the three different ANN models. Each type of input yields
an ANN model, that targets a different feature of demand variability, so as to meet as
much as possible the diversified energy demand trend. To this aim, the final forecast
is obtained by a weighted combination of the three ANN outputs, where the weights
are tuned by iteratively solving a linear programming problem. Up to our knowledge,
this is the first attempt to produce an ANN ensemble with ANNs involving inputs
organized in such a way. As described in a subsequent section, our methodology
may be particularly relevant for time-series forecasting as, together with the weights
optimization procedure, it makes no assumptions on the stationarity of the time-series,
but rather automatically adapts to it when detected.

123



A. Manno et al.

Our proposed methodology is applied to a case study in a metropolitan area in
the Northern Italy, which is a medium-sized city with about 200,000 inhabitants. The
research in the paper is done in collaboration with A2A, which is one of the major
DHOs in Italy. This DHO wanted an accurate point forecasting methodology for
predicting the energy demand of the area in question.Most residential and commercial
buildings in Italy are allowed to operate heating services from the 15th of October of
the current solar year till the 15th of April of the next solar year, we refer to this period
as a thermal season. We trained our procedure on data from about one and a half
thermal seasons and tested it on another. The specific scientific contributions of the
paper are as follows.

• Developing three ANN forecasting models based on three specific configurations
of the same data for the day-ahead hourly demand. Specifically, at the end of one
day, we forecast the energy demand for each of the 24h of the next day.

• Establishing a weight optimization procedure combining the three ANN models
into a single forecast.

• Extensively validating the procedure and its components, and showing that it sig-
nificantly outperforms the forecasting mechanism used by the DHO. Despite the
fact that the latter allows expert intervention.

• Showing that our procedure outperforms the state-of-the-art SARIMAX model,
and an Echo State Network (ESN), which is a type of Deep Neural Network
devised to overcome the typical complicated backpropagation-based training of
such models.

• Demonstrating that our procedure produces good results also for longer forecasting
horizons.

Aside from the previously mentioned scientific contributions, we would like to
highlight a key practical contribution of our procedure. It is characterised by simplicity,
as it requires little tuning of a handful of parameters. This simplicity facilitates its
replicability in other cases.

The rest of the paper is organised as follows. In Sect. 2we review themain literature.
In Sect. 3 we present our procedure, including the description of the used data sets. In
Sect. 4 we present our computational experiments. Finally, in Sect. 5 we present our
conclusions.

2 Literature review

While long-term and medium term energy demand forecasts have been extensively
studied in the literature (e.g., Angelopoulos et al. 2019; Kankal and Uzlu 2017;
Kialashaki and Reisel 2013), this section is centred on short-term forecasts, which
have also been extensively studied. In particular, we survey some of the main fore-
casting approaches related to the day ahead demand forecasts.

Hahn et al. (2009) broadly classify energy demand forecastingmodels into twomain
categories. 1) classical approaches, i.e., which apply concepts stemming from time
series and regression analysis, and 2) approaches based on artificial and computational
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intelligence. In what follows we highlight some of the relatively recent contributions
in both categories.

Fang and Lahdelma (2016) evaluated a number of multiple linear regression mod-
els and a seasonal autoregressive integrated moving average (SARIMA) model for
forecasting heat demand of the city of Espoo. The models were evaluated by out-
of-sample tests for the last 20 full weeks of the year. Among all tested models, the
best performing one was mainly a linear regression with explanatory variables related
to outdoor temperature and wind speed. Arora and Taylor (2018) propose a seasonal
autoregressivemoving average (SARMA) forecastingmodel to predict short-term load
for France. In particular, the authors focus on special days, such as public holidays.
They also incorporate subjective judgment using a rule-based methodology. Eight
years of data were used as an estimation sample, and one year of data was used for
the evaluation. Clements et al. (2016) develop a multiple equation time-series model
for the day-ahead electricity load prediction. The model was validated on data from
the Queensland region of Australia.

The other category of methodologies used for energy demand forecasting is based
on artificial intelligence. Azadeh et al. (2014) develop a two-step ANNs method for
short-term load forecasting. The first step models the daily demand, while the second
step uses amodel composed of 24 sub-networks forecasting hourly load of the next day.
The models are trained and tested using data from the electricity market of Iran from
2003 till 2005. Johansson et al. (2017) develop an online ML algorithm for daily heat
demand forecasting. Specifically, their model combines decision tree ML algorithms
with an online functionality. The proposed method was applied to data from the city of
Rottne. Ding et al. (2020) proposed a framework for the hour ahead and the day ahead
electricity load forecasting. The framework is based on relevance vector machine, and
uses wavelet transform and feature selection in a preprocessing step. A number of
cases from the United Sates were considered. Torres et al. (2022) adopted a deep
Long Short-Memory Network (LSTM) for the short-term forecast of the electricity
consumption in Spain. The case study comprised data from January 2007 to June
2016, and used a forecasting horizon of four hours. Ensemble method approaches
are also adopted. For example, Wu et al. (2023), proposed a method combining an
adaptive network-based fuzzy inference system and an Elman Neural Network for
the short-term electricity demand forecasting. The model was tested on a simulated
case based on data collected in Serbia during 2021. Khwaja et al. (2020) combined
bagging and boosting techniques to train an ensemble of ANNs. The method was used
for the hourly energy demand forecast on a New England dataset. In particular, data
from 2004 to 2007 was used for training, and from 2008 to 2009 for testing. The
proposed approach revealed to be more accurate than a single ANN or single bagged
and single boosted ensembles. A different ensemble approach, combining Bayesian
ANNs, wavelet decomposition, and a genetic algorithm, was applied by Ghayekhloo
et al. (2015) to different case studies obtained by the same New England dataset,
improving the accuracy with respect to other standard forecasting methods.

Some authors examined both classical forecasting models and artificial intelligence
methods. For example, Kurek et al. (2021) extensively analyzed the Warsaw district
heating demand. Amongst others, ridge regression and autoregression with exogenous
input were explored. Furthermore, two ANNs were trained. The models were trained
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using a three-year dataset and were used to predict the heat demand for the following
72h. InManno et al. (2022a), a shallow ANN enhanced with feedback data inputs was
trained for the 24h ahead forecast of the cooling and heating energy demand of three
cases including the Politecnico di Milano university campus. The considered data was
from June 2016 to February 2019 with hourly frequency.

Our methodology is benchmarked against the currently used forecasting method of
A2A. While we cannot disclose the details of this methodology due to confidentiality
agreements,wemay say that it belongs to the category of classical forecastingmethods.
More precisely, the currently used forecasting method of A2A consists of multiple
linear regression models. Similarly to Arora and Taylor (2018), this methodology
accounts for special days and subjective judgment.

Building on the recent success of artificial intelligence methods to predict energy
demand, we propose an ensemble of ANNs to forecast the hourly energy demand. We
expand the idea of using an ensemble of models (e.g., Johansson et al. 2017) to ANNs.
Furthermore, we develop a weight optimization procedure combining the ensemble
of ANN models into a single forecast. Aside from comparing our methodology to
the classical one used by the company, we also compare it with the state-of-the-art
SARIMAX and ESNs. Our results show that our methodology outperforms the three
other considered methodologies.

3 Methodology

Wepropose an ensemble artificial neural network (EANN)methodology for predicting
the day ahead energy demand for each of the forthcoming 24h time. These predic-
tions are to be made at the end of the previous day. The algorithm is based on a
weighted combination of three ANNs models according to an ensemble strategy (see
e.g., Dietterich 2000; West et al. 2005). Each ANN model captures different aspects
of the energy demand. In what follows we first present a brief overview of the ANN
framework in Sect. 3.1, we then describe the available dataset in Sect. 3.2. We present
our three developed ANN models in Sects. 3.3–3.5. We discuss our training strategy
in Sect. 3.6. Finally, in Sect. 3.7 we present our weight optimization procedure, which
unifies the output of the three ANN models into a single prediction by means of a
simple and easy-to-use optimization mechanism.

3.1 The artificial neural network framework

Artificial Neural Networks are widely used supervised learningmachines (see Haykin
1994; Bishop 1995 for comprehensive reviews). Consider a process producing an
output y ∈ � corresponding to an input x ∈ �n according to an unknown functional
relation y = f (x), in supervised learning the goal is to train parameters of a certain
model in order to approximate as best as possible the behavior of f . During the training
phase, these parameters are calibrated on the basis of a set of � available historical
samples of the process, denoted as the training set (T R), for which both the input x
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Fig. 2 An ANN with a single
hidden layer made up of m
neurons. Each neuron has an
activation function g. The input
signal i is connected to neuron j
through a connection associated
to weight ω j i , while the output
signal of hidden neuron j is sent
to the output layer through a
connection with weight λ j . Note
that the + symbol indicates a
weighted sum

and the output y are known. Formally, the training set is defined as

T R := {(xi , yi ), xi ∈ �n, yi ∈ �, i = 1, . . . , �}. (1)

The performance of the trained model is assessed through the testing set (T S), which
is another set of historical samples (with known inputs and outputs) not included in
T R.

In ANNs the training process is inspired by knowledge acquisition of nervous
systems in complex biological organisms. In particular, ANNs work as input–output
systems in which n input signals x1, x2, . . . , xn are propagated through a network of
processing units (neurons) organized into hidden layers to produce a final output ŷ.
In this work we focus on ANNs with a single scalar output ŷ ∈ �. Each neuron is
associated to a nonlinear activation functionwhich elaborates the sum of all incoming
signals to generate a neuron output. During the training phase knowledge is acquired
by calibrating the weights of the oriented connections between neurons.

In this paperwe adopt ANNswith a single hidden layer, as the one reported in Fig. 2.
Formally, in such an ANN, the weights of the incoming connections (input weights)
of neuron j = 1, . . . ,m are denoted by weightsω j1, ω j2, . . . , ω jn . Then, by denoting
the activation function as g (generally continuous and sigmoidal), the output of neuron
j is computed as g(

∑n
i=1 ω j i x ji ). Summing up the output of each neuron j by means

of output weights λ j , the final ANN output ŷ is obtained. The training phase consists
in minimizing a so called loss function, which is generally computed as the sum over
all training points i = 1, . . . , � of a certain deviation between the output produced by
the ANN (say ŷi ) and its actual output yi .
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One of the most commonly used loss functions is the Mean Squared Error (MSE),
computed as

MSE = 1

2P

�∑

i=1

(yi − ŷi )
2 (2)

where yi and ŷi denote the actual output and the one produced by the neural net-
work for training sample i . The vast majority of training algorithms used to minimize
the loss function are gradient-based methods, which exploit a procedure called back-
propagation. This is an automated differentiation scheme based on the chain rule, to
iteratively determine the gradient of the loss function with respect to the weights of
the connections (see e.g., Bishop 2006).

Depending on their practical application, ANNsmay be used for regression (contin-
uous domain) or classification (discrete domain). In this paper we focus on regression,
as we are interested in energy demand time series forecast. In this context, it is worth
mentioning that ANNs can be categorized as feedforward neural networks (FNNs)
(see e.g., Grippo et al. 2015), in which all the connections are oriented from the input
layer to the output layer, and recurrent neural networks (RNNs) (see e.g., Rumelhart
et al. 1986) including also feedback connections, i.e., connections may exist between
units of the same layer, between units of different layers oriented in the output-input
direction, or loop connections. Since it is well-known that FNNs with a single hidden
layer can approximate any continuous function with any precision (see Leshno et al.
1993), they have been successfully applied in many practical real-world problems (see
e.g., Cao et al. 2005; Beşikçi et al. 2016; Avenali et al. 2017; Manno et al. 2022b;
Chelazzi et al. 2021; Clausen and Li 2022). However, the RNN structure is well suited
for time series forecast (see e.g., Carbonneau et al. 2008; Chien andKu 2015; Cao et al.
2012) as the feedback connections allow to retain past information capturing temporal
correlations between occurrences. Nonetheless, determining the proper hyperparame-
ters of RNNs and training them still remain complicated tasks (see e.g., Pascanu et al.
2013). Therefore, in order to provide an easily usable and editable tool for users who
are not ML experts, we opted for FNNs with a single hidden layer. Nonetheless, we
demonstrate in Sect. 4 that our FNN-based algorithm largely outperforms an ESN
model, which is a widely used RNN architecture for time-series forecasting.

Inspired by Manno et al. (2022a), in our approach, the absence of feedback
“memory" connections in FNNs has been counterbalanced by “enriching" the
training samples with previous occurences of the target time series, in a nonlinear-
autoregressive-exogenous (NARX) model fashion (see e.g., Chen et al. 1990), which
is suited for linear and nonlinear time series forecasting (see e.g., Zhang 2001; Zhang
et al. 2001). As will be demonstarted in the remainder of the paper, in the investigated
application the ensemble of three FNNs simple models combined with a proper selec-
tion of the enriching inputs obtains better results, when compared to sophisticated
RNNs. In what follows, we will refer to single hidden layer FNNs as ANNs.
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Table 1 Number of observations
for each day

Type of day Number in sample

Post-holiday 63

Weekday 242

Vacation 18

Pre-holiday/Saturday 65

Holiday/Sunday 82

3.2 Dataset description and preliminary analysis

As previously mentioned, our datasets relate to thermal seasons. We recall that a
thermal season is from the 15th of October of a solar year till the 15th of April of the
subsequent solar year. A2A is one of the major DHOs in Italy, and it was interested in
forecasting the hourly energy demand throughout the thermal season for the considered
metropolitan area.

A2A had an hourly forecasting system based on multiple linear regression models,
which required for manual interventions by expert planners. The data provided by
A2A for this work, including the observed and forecasted energy demand, refers to
the following periods

– from the 1st of January 2017 till the 15th of April 2017,
– from the 28th of October 2017 till the 15th of April 2018,
– from the 15th of October 2018 till the 15th of April 2019.

Data are hourly, so that each sample of the dataset is associated to an hour h = 1, . . . 24
of a day d = 1, . . . , D. In particular, for hour h and day d the available data are:

– the energy demand for the entire metropolitan area, representing the target time
series (i.e., the time series to be forecasted) and referred to as Ehd ;

– the type of day Khd according to a categorization adopted byA2A,which, based on
historical observations, has identified five categories days (see Table 1 for details);

– the hourly temperature forecast Thd obtained 24h ahead.

Let E , T and K be the vectors containing elements Ehd , Thd and Khd . We performed
a correlation analysis between T and E . Considering all observations, the forecasted
temperature T was significantly correlated with the target series E , with a −0.63
Pearson correlation coefficient (see e.g., Fisher 1992).

The correlation between K and E was rather weak, with a 0.09 Pearson correlation
coefficient. This may be due to the imbalance among the number of obseravtions for
each type of day in the dataset. In particular, by removing from K and E the occur-
rences associated to the most represented type of days, that is weekday and holiday
(representing the 70% of the sample), the correlation grows to −0.19. Moreover, by
considering only vacation and pre-holiday the correlation grows to −0.33. This sug-
gests that, despite the weak correlation of the whole time series, using K as a ML
input may facilitate the discrimination between the less represented types of days.

Since samples are hourly, a further useful input for the ML is the hour h to which
the sample is associated. By denoting with H the hours time series (cyclic, with ele-
ments from {1, . . . , 24}), the correlation coefficient between H and E amounts to
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0.13 revealing a moderate correlation, however by grouping the 24 h into three groups
“morning" (from 09:00 to 16:00), “evening" (from 17:00 to 24:00), and “night" (from
01:00 to 08:00), the correlation grows to−0.26. Moreover, by considering exclusively
themorning and evening subseries, the correlation grows to to 0.37. Therefore, includ-
ing also h as ML input may be worthwhile for predictive purposes. We remark that
all the previous correlations tests can be considered statistically significant as their
associated p-values are quite below 0.05.

As a result of the previously discussed analyses, we conclude that for each sample
observation the basic input for the ML consists of the following six elements:

• one for Thd measured in Celsius degrees and normalized in the interval [0, 1] as
(Thd − Tmin)/Tmax , where Tmin = −20◦ and Tmax = 40◦ are lower and upper
bounds on the temperature during the thermal year,

• four to encode the five categorical type of days as a 4-dimensional binary vector
according to a one-hot encoding,

• one for the hour h = 1, . . . , 24 (where value 1 stands for the time interval 00:00-
01:00 a.m.) normalized in the interval [0, 1] as h/24.

As anticipated in Sect. 3.1, in addition to basic inputs, each sample is augmented
with previous occurrences of the target time series in order to overcome the lack of
feedback connections in the adopted neural structure. These further inputs are referred
to as feedback inputs. Considering the autocorrelation plot of the target series E in
Fig. 3, we observe that every 24 h there is a peak of positive correlation. This implies
that the energy demand of a certain hour of a certain day is strongly related to the ones
of the same hour of other days. Naturally, 24 h correlation peak tends to decrease for
larger temporal distances between days, however at a distance of one week (168 time
lags) it is still above the very high value of 0.8. For these reasons, we have chosen
the feedback inputs to be at a time lag distance of r · 24 with r = 1, 2, . . . , 7. Note
that considering inputs from the seven previous days entails that the autocorrelation
is above 0.8. Moreover, including in the input the occurrences of the last seven days
implies that, at the beginning of each thermal season, the first prediction can be made
only after seven days. Thus, the EANN would be ready for use in its full potential one
week after the beginning of each thermal season. Overall, our choice of inputs was
geared by simplicity, hence our features are not too complex and the corresponding
network is replicable.

In the next sections the three different predictive models are described in details.
Motivated by the potential non-stationary behavior of the series, these models share
the same basic inputs, they differ in terms of the type of target, the way feedback inputs
are constructed and the way the final forecast is calculated on the basis of the neural
network output.

3.3 The puremodel

The pure model (pureM) is the most intuitive one, as it solely focuses on the target
time series E . A general training sample associated to hour h of day d is composed
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Fig. 3 Autocorrelation plot of
the target time series E with 168
time lags. Every point beyond
the blue lines represent a
significant correlation
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by the following target yhd and input xhd

yhd =Ehd , (3)

xhd =(Thd , Khd , h, Eh,d−1, Eh,d−2, . . . , Eh,d−7), (4)

where in addition to the three basic inputs (Thd , Khd , h), the energy demands of the
same hour of the previous seven days are considered as feedback inputs (for notational
simplicity, the normalizations and the one-hot encoding are not explicitly reported),
and the target is simply the energy demand at hour h of day d. We recall that Thd is
the 24 h ahead forecasted temperature.

Once theANNis trained, in correspondence of anunseen input vector xh̄d̄ associated
to hour h̄ of day d̄ and structured as in (4), pureM provides an energy demand forecast
FM1
h̄d̄

(where superscipt M1 refers to the pureM) as

FM1
h̄d̄

= ŷM1
h̄d̄

, (5)

where ŷM1
h̄d̄

is the output produced by the ANN for the xh̄d̄ input. We note that pureM
can be directly applied to the 24 h ahead forecast, as all the required inputs are available
24h before the forecasted time instant.

3.4 The inter-daymodel

The inter-day model (interM) captures the inter-day energy deviation pattern. Thus,
interM is focused on learning the difference between energy demands at the same hour
of two consecutive days. The target yhd and input xhd are as follows

yhd =Ehd − Eh,d−1, (6)

xhd =(Thd , Khd , h, Eh,d−1 − Eh,d−2, Eh,d−2 − Eh,d−3, . . .

. . . , Eh,d−6 − Eh,d−7). (7)
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Since the target of interM is the difference of energy demand within a lag of 24h,
the feedback inputs are also 24 h deviations of the last seven days. Note that with
respect to the pureM, there is one less feedback input, since Eh,d−7 − Eh,d−8 is not
considered.

A trained interM produces an output ŷM2
h̄d̄

(where superscript M2 refers to the
interM) corresponding to an unseen input xh̄d̄ which approximates the 24 h deviation
Eh̄d̄ − Eh̄,d̄−1, therefore the actual energy demand forecast FM2

h̄d̄
is obtained as

FM2
h̄d̄

= ŷM2
h̄d̄

+ Eh̄,d̄−1. (8)

Note that Eh̄,d̄−1 together with all the inputs considered in the interM, are available
24 ahead. Thus, this model can also be used to generate the 24 ahead forecast.

3.5 The intra-daymodel

The intra-day model (intraM) aims at learning the energy demand difference between
two consecutive hours. It can be viewed as a way to capture the daily energy demand
variation pattern. The target yhd and input xhd are as follows

yhd =Ehd − Eh−1,d , (9)

xhd =(Thd , Khd , h, Eh,d−1 − Eh−1,d−1, Eh,d−2 − Eh−1,d−2, . . .

. . . , Eh,d−6 − Eh−1,d−6). (10)

Thus, the target is the energy demand difference between the current hour and the
previous one, while the feedback inputs represent this difference in the previous six
days. Similar to the interM, intraM has one less feedback input, compared to the
pureM. Differently from the previous models, intraM is reconstructed recursively and
cannot be directly applied to obtain the 24h ahead energy demand forecast. Indeed, a
trained intraM produces an output ŷM3

h̄d̄
(where superscript M3 refers to the intraM)

corresponding to an unseen input xh̄d̄ which approximates the hourly deviation Eh̄d̄ −
Eh̄−1,d̄ . This quantity may be used to reconstruct the actual energy demand forecast
as FM3

h̄d̄
= ŷM3

h̄d̄
+ Eh̄−1,d̄ . We assume that predictions are performed at t = 1 of

everyday. Thus, with the exception of h̄ = 1, Eh̄−1,d̄ is not available in the previous
day. In particular, for h = 1 the forecast is computed as

FM3
1̄d̄

= ŷM3
1d̄

+ y24,d̄−1. (11)

For h̄ �= 1 the term Eh̄−1,d̄ is approximated by its forecast (the one produced by the
ensemble of the threemodels for the previous hour), i.e., Fh̄−1,d̄ . Therefore, the intraM
forecast is calculated as

FM3
h̄d̄

= ŷM3
h̄d̄

+ Fh̄−1,d̄ . (12)
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3.6 Training and forecasting: a rolling horizon approach

As previoulsy mentioned, due to the operational reasons related to the considered
application, the 24 predictions associated to the next day should be generated at the
end of the current day. Therefore, the implemented training and forecasting strategy
consists of a 24 h rolling-horizon approach. In particular, let us consider the current day
d, and suppose that input and output data are collected for the last T recent “thermal
days" (including d). Let T 0 be the set of days T 0 = {d, d − 1, . . . , d − T + 1},
where superscript 0 refers to the first rolling horizon step. Then, the forecast of the 24
hourly energy demands of d + 1 is obtained by training the ANNs models with data
associated to days in T 0, according to the input extraction methodologies described
in Sects. 3.3– 3.5. We note that from each day of T 0, 24 hourly samples are extracted.

In the next rolling horizon step, day d + 1 is inserted in the new set of days and
the least recent day is discarded, formally T 1 = {{T 0 ∪ d + 1}\{d − T + 1}}. Then
the training is repeated to obtain the predictions of day d + 2, and so on. It is worth
mentioning thatwhile ourmethodology is designed to forecast the day ahead,withmild
alterations we are able to accurately forecast the demand with reasonable precision 48
or 72h ahead. This will be be shown in Sect. 4.5.

3.7 Optimization of the weights

The previously described three models are used to capture different aspects of the
investigated phenomenon. While pureM is the most general and simple out of the
three, interM is expected toworkwell in case of sufficiently regular variations between
consecutive days, while intraM learns the demand deviations between consecutive
hours of the day. It is worth emphasizing that forecasting the 24h seasonal difference
series (interM) and the first order difference series (intraM) is much more sensible
when both series are non-stationary. Here we make no assumptions about stationarity
of both time series as our aim is to develop a very general methodology which is able
to automatically adapt to different energy demand contexts. This does not constitute
a limitation from a practical point of view, since ( as described in what follows),
the weight optimization is able to (partially or totally) enable or disable all involved
models when needed.In what follows, we develop a weight optimization strategy that
produces a unified forecast from the three proposed models.

At each rolling horizon step, each model generates the 24hly forecasts for next day
d̄, i.e., FM1

hd̄
, FM2

hd̄
and FM3

hd̄
, with h = 1, . . . , 24 depicting a general hour of day d̄.

Then the final forecast Fhd̄ is obtained as a weighted sum of the latter. Formally,

Fhd̄ = wM1
h FM1

hd̄
+ wM2

h FM2
hd̄

+ wM3
h FM3

hd̄
, (13)

wherewMi
h ∈ [0, 1] with i = 1, 2, 3 being the weight associated to pureM, interM and

intraM respectively, at hour h. Therefore, we represent all weights via weight matrix
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W ∈ �24×3 as follows

W =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

wM1
1 wM2

1 wM3
1

wM1
2 wM2

2 wM3
2

...
...

. . .

wM1
24 wM2

24 wM3
24

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)

The choice of using hourly weights instead of a single weight per model allows more
freedom, as each model may perform differently during the day.

Theweights are determined by an optimization procedure. Specifically,we optimize
the weights cyclically over P days, i.e., the optimization is carried out on the basis
of data collected during the last P days. The weights are then kept constant for the
next P days. After each cycle of P days the weights are reoptimized. This is done by
minimizing a loss function representing a deviation between the observed values and
the final forecasts. To this aim, the partial forecasts of each single model are needed.
As previously mentioned, this is not an issue for pureM and interM, as the forecast of
the former coincides with the model output (see (5)), and the latter is computed using
the observed energy demand 24h before (see (8)). This data is available for both these
models in the last P days. However, when generating FM3

hd̄
, which is associated with

intraM, the the real observation or the final forecast Fh−1,d̄ of the previous hour is
required (see (11) and (12)). Note that the intraM forecast for h = 1 can be computed
from the real observation of hour 24 of day before according to (11)), to obtain Fh−1,d̄ .
To obtain Fh−1,d̄ for h �= 1, the values of the weights are needed (see (13)) whose
optimization is in turn based on the knowledge of the intraM partial forecasts.

Due to the above mentioned issues, we propose the sequential ordered optimization
procedure (SOOP), which is performed considering one specific hour at a time. By
doing so, when optimizing the weights associated to a certain hour h̄ �= 1, the final
forecasts associated to h̄ − 1 are already available as their corresponding weights
have been determined in the previous step of the SOOP. Formally, we define Dopt by
considering the partial forecasts of pureMand interM, as they can be directly computed
from the available data, and maintaining the model output for the intraM, as

Dopt :=
{(

yhd; FM3
hd , FM2

hd , ŷM3
hd

)
, h = 1, . . . , 24, d = d̄ − P + 1, . . . , d̄

}
. (15)

The SOOP optimizes the weights according to two different criteria reflecting two
different performance measures: the mean absolute percentage error (MAPE) and
the maximum absolute percentage error (MaxAPE). Concerning the MAPE, the opti-
mization problem solved by SOOP to determine the weights associated to hour h̄ is
as follows

argmin
wM1
h̄

,wM2
h̄

,wM3
h̄

∈[0,1]

1

|P|
∑

d∈P

|yh̄d − wM1
h̄

FM1
h̄d

− wM2
h̄

FM2
h̄d

− wM3
h̄

FM3
h̄d

|
yh̄d

, (16)
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whereas for the MaxAPE, the optimization problem solved by SOOP to determine the
weights associated to hour h̄ is as follows

argmin
wM1
h̄

,wM2
h̄

,wM3
h̄

∈[0,1]
max
d∈P

{ |yh̄d − wM1
h̄

FM1
h̄d

− wM2
h̄

FM2
h̄d

− wM3
h̄

FM3
h̄d

|
yh̄d

}
. (17)

Notice that, without loss of generality, theweights are constrained in the interval [0, 1].
The scheme of the SOOP procedure is shown in Algorithm 1.

Algorithm 1: The SOOP procedure.

Input: current day d̄, set Dopt as in (15)
Initialization:
for d ∈ {d̄ − P + 1, . . . , d̄} do

FM3
1d := ŷM3

1d + y24,d−1;
end
Main Loop:
for h̄ ∈ {1, . . . , 24} do

1. determine (wM1
h̄

, wM2
h̄

, wM3
h̄

) by solving (16) or (17) ;

2. for d ∈ {d̄ − P + 1, . . . , d̄} do
Fh̄d := wM1

h̄
FM1
h̄d

+ wM2
h̄

FM2
h̄d

+ wM3
h̄

FM3
h̄d

;

FM3
h̄+1,d

:= ŷM3
h̄+1,d

+ Fh̄d ;

end

end
Output: W

The SOOP procedure takes as input the Dopt dataset of the last P days with respect
to current day d̄. During the initialization the intraM forecasts of the first hour of each
day in Dopt are obtained using the available y24,d−1 values and applying equation
(11).

In the main loop of Algorithm 1 each hour h̄ of the day is considered incrementally.
In particular, in the first step (point 1) the threeweights associated to h̄ are optimized by
solving either problem (16) or (17). The specific choice between the two performance
measures is a up to the user. The presence of the absolute value and the max operators
results in optimizing non-smooth functions. However, as these functions contain only
three variables and are defined over a bounded domain, the optimization problems are
easily solved by an existing metaheuristic algorithm (see Sect. 4.3 for details).

In the second step of Algorithm 1, the final forecast of hour h̄ for each day in Dopt

is computed by exploiting the weights determined at the previous step, and then these
forecasts are exploited to generate the FM3

h̄+1,d
according to (12). Finally, the matrix of

all optimized weights is returned.
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4 Numerical experiments

The objective of this section is to assess, through extensive numerical experiments,
the performance of the proposed EANN described in Sect. 3. To this end, the EANN
is compared against three other forecasting methods, the one previously adopted by
A2A,whichwe refer to asA2A-M, the SARIMAX (Box et al. 2015) and the Echo State
Networks (ESNs) (Jaeger 2001).Due to privacy reasons,we cannot present the detailed
steps of A2A-M. However, as already mentioned, this method is based on multiple
linear regression and requires manual intervention by experts. The comparison with
SARIMAX is motivated by the fact that it is a standard autoregressive model suited
for seasonal time series and the presence of exogenous variables, frequently used to
forecast energy consumption (see e.g., Vagropoulos et al. 2016 and reference therein).
Concerning ESNs, they are powerful deep neural network structures (Goodfellow et al.
2016) with a “not deep" training phase, that are much easier with respect to other deep
architectures. These features make them appealing for many application fields such as
speech recognition or time series forecast (e.g., Skowronski and Harris 2007; Bianchi
et al. 2015).

The rest of this section is organized as follows. In Sect. 4.1 the main elements of
the SARIMAX model are presented, while in Sect. 4.2 we give an overview of ESNs,
and specify its implementation details in the context of the considered setting. We
describe our experimental setting in Sect. 4.3, and present the results for the day ahead
forecasts in Sect. 4.4. In Sect. 4.5 we present the results obtained for other forecasting
horizons.

4.1 SARIMAX

SARIMAX is an extension of the standard seasonal ARIMA model, which takes into
account exogenous variables. Without entering into details (the interested reader is
referred to Box et al. 2015), SARIMAX consists of the following components:

• seasonal (S);
• autoregressive (AR);
• moving average (MA);
• integrating (I);
• exogenous variables (X).

From a mathematical point of view, a SARIMAX model can be described by the
following equation

φp(L)�P (Ls)�d�D
s yt = βxt + θq(L)
Q(Ls)εt , (18)

where yt is the target variable, φp(L) is the AR polynomial of order p, �P (Ls)

is the seasonal AR polynomial of order P , θq(L) is the MA polynomial of order
q, 
Q(Ls) is the seasonal MA polynomial of order Q, L is the lag operator (for
example Lk(yt ) = yt−k), �d is the differencing operator of order d, �D

s is the
seasonal differencing operator of order D, xt is the exogenous variables at time t with
associated coefficient β, εt is a white noise, and s is the seasonal component. The
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Fig. 4 A simplified scheme of an ESN. In the input layer there are the x1, . . . , xn input signals which are
forward propagated to the reservoir made up of h1, . . . , hr hidden units connected to each other by means
of a variety of different connection patterns. The signals outgoing from the reservoir are sent to the output
layer y through feedforward connections

hyperparameters of the model are p, q, d, P, Q, D, and s. The adopted values for
these hyperparameters are specified in Sect. 4.3.

4.2 Echo state networks

ESNs are made up of three layers: a standard input layer as in ANNs, a “deep" hidden
layer called reservoir, and a linear output layer called the readout. A simplified scheme
of an ESN is depicted in Fig. 4.

In principle, ESNs are dynamic systems that propagate the current signal from the
input layer to the output layer by passing through the reservoir. The reservoir is a
chaotic layer comprised by a large amount of connection patterns (including feedback
connections) reproducing multiple temporal dynamics. Thus, the reservoir is able to
represent temporal relations between the current signal and past signals, and generate
the desired forecast at the output layer. For amore comprehensive overview of ESNwe
refer the reader to Jaeger (2001). In ESNs the input and reservoir weights are randomly
determined, while the weights associated to the feedforward connections between the
reservoir and the output layer are actually trained. Therefore, compared to other RNNs,
an ESN’s training procedure is less time consuming and intricate. Specifically, such
procedures typically entail solving a relatively simple convex unconstrained optimiza-
tion problem. This feature makes ESNs very attractive for inexperienced users. Thus,
we saw fit to test ESNs as a possible alternative to our ANN-based approach.

4.3 Experimental settings

Our experimental setup for the ANNs adopted in the EANN, SARIMAX and ESN
includes training set T R, which is composed of the 24 hourly samples associated to
the days from the 1st of January 2017 to 15th of April 2017 and from the 28th of
October 2017 to 15th of April 2018 (see Sect. 3.2). This time period approximately
covers one and a half thermal seasons. Specifically, the set T R consists of 275 training
days corrsponding to 6600 hourly samples. The testing set T S is composed of the 24
hourly samples associated to the days from the 22th of October 2018 till the 4th of
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Table 2 The hyperparameters considered in the ANNs grid-search

Hyperparameter Grid Best

Number of hidden neurons [15, 30, 60, 120] 30

Internal solver [adam,lbfgs,sgd] lbfgs

Maximum solver iterations [125, 250, 500] 500

Activation function [tanh,logistic,relu] tanh

April 2019. This time period approximately covers a thermal season. The choice of
these data sets was determined based on the availability of reliable hourly data in
the case study. In principle, we validated our model using the forecasted temperature
as this is the information available at the time of making the forecast. Our results
could have been further verified using the actual observed temperature rather than the
forecasted one. However, this information was not available at the company.

We recall that the feedback input of the EANNmethod require the heating demand
observation of the seven previous days. In the considered case, the demand between
the 8th to the 14th of October is null, as this period is not contained in the thermal
season. Therefore, we excluded the first week of the thermal season in our analysis.
Furthermore, we have excluded the 25th of February 2019, 23th and 25th of March
2019, and the period from the 5th to the 15th of April 2019, as the forecasts of
A2A-M were not available for these days. Thus, the set T S was made up of 3888
hourly samples, corresponding to 162 days. All experiments have been carried out on
a Linux system running on an Intel Core i7-6700HQ CPU 2.60GHz x 8
with 8 GB of RAM.

Our EANNmethod contains three neural networkmodels. Theses have been imple-
mented in Python 3.6 by adopting the MLPRegressor() function of the freely
available scikit-learn package. To determine the hyperparameters values of the
ANNs models, we performed a grid-search on a time series split cross-validation
(where essentially the training and testing data are taken from temporarily consecu-
tive periods, see Bishop 2006 for cross-validation and Korstanje 2021 for time series
split) with five splits on the T R samples. In particular, the hyperparameters included
in the grid-search, their grid of values and the determined best ones are reported in
Table 2.

For the other hyperparameters, the default values have been used. Concerning the
rolling horizon strategy described in Sect. 3.6, from the above discussion the training
horizonT amounts to 275days,T 0 include all days associated to samples inT R and the
first prediction (testing) day d is the 22th of October 2018. Since the training of ANNs
is formulated as nonconvex nonlinear optimization problem, the trained model and its
predictions are affected by the random starting solution of the optimization phase. To
mitigate this effect, at each testing day the final 24 hourly forecasts are obtained by
averaging the predictions from 10 different random initializations for each of three
models. The best value of the weights optimization horizon P has been determined
by a simple enumeration precedure, and set equal to 28 accordingly. Concerning the
resolution of problems (16) or (17) in step 1. of the SOOP algorithm, note that by
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Table 3 The hyperparameters considered in the ESN grid-search

Hyperparameter Grid Best

Nr [100, 200, 300, 400, 500] 400

λ
[
1e−3, 1e−2, 1e−1, 1.0, 1e1, 1e2

]
1e−1

ρ [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4] 1.1

introducing auxiliary variables to replace the absolute values and the max operator,
they can be modeled as linear programming problems and solved by off-the-shelf
solvers. In particular, the linprog() function of the scipy package has been
used. In the first 28 days, the SOOP procedure could not be applied due to the lack
of previous historical data required in Dopt . Therefore, in that period only the pureM
has been considered.

Also for the SARIMAX model, a rolling horizon strategy like the one described in
Sect. 3.6 has been adopted. However, differently fromEANN, a oneweek long training
horizon (168hly samples hours) has been used, since preliminary experiments showed
that longer or shorter training periods led to substantially worst performance. Thismay
be due to the evident weekly demand pattern. The SARIMAX hyperparameters have
been set to p, P, D, Q = 1, d, q = 0, and s = 24. Except for s, whose value is
straightforwardly derived by the strong daily seasonality, for all other parameters, we
tested all possible 0 or 1 combinations, and selected the best performing combina-
tion. The SARIMAXmodel was implemented using the SARIMAX() function of the
statsmodel package of Python.

The ESN was implemented using the keras Python package. Also ESN models
depend on several hyperparameters. Among themwemention the number of reservoir
neurons (Nr ), the regularization parameter in the ridge regression (λ), and the spectral
radius of the incidencematrix of reservoir connections (ρ). The latter is very important
for the ESN perfromance, indeed its value should not overly exceed the value of one
to prevent explosion of the signals, but it should also be sufficiently large to avoid a
premature decay of the influence of past states (see e.g., Bianchi et al. 2016). Anal-
ogously to ANNs, the ESN hyperparameters values have been determined by means
of a grid-search with 5-fold cross-validation. However, in this case a finer resolution
of the grid was used, as ESNs’ performance is more sensitive to the hyperparameters
than that of ANNs’. The grid values and the best ones are reported in Table 3.

It is worth mentioning that, while in the ANN strategy the models are re-trained
at each rolling horizon step (each testing day), the ESN is trained once and then the
trainedmodel is used as a dynamic systemwhich sequentially generates the predictions
for the whole testing period.

4.4 Results

In this section we consider forecasting the day ahead. We report the results of different
variants of the proposed EANN method over the T S described in Sect. 4.3, compared
with those of A2A-M and ESN. We denote by EANNMAPE and EANNMax APE the
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EANN versions in which problems (16) and (17) are, respectively, considered in the
SOOP procedure.

We mainly consider the MAPE and the MaxAPE as performance measures, since
these were identified as most relevant by the A2A company. However, for the sake of
completeness, we report also performance in terms of MSE, which is the loss function
used for the training of all ANN models and of the ESN, and in terms of Root Mean
Squared Error (RMSE), which is analogous to MSE but is expressed in the same scale
as the data.

The results are reported for both the whole testing period, and also disaggregated
for each of the six periods of 28 consecutive days corresponding to the five steps of
weights optimization. Recall that at each weight optimization step the weights of the
three models remain unaltered at fixed values for the whole period and, at the end of
the period, they are optimized again for the subsequent one. Furthermore, we report
the results for each of the single ANNmodels (pureM, interM, and intraM) to highlight
the added value of combining them in the EANN strategy.

Table 4 reports the results for the whole testing horizon (22th of October 2018–
4the of April 2019). Since the weights of the model are not available in the first
period of 28 days (22nd of October–18th of November), exclusively for this period
only pureM (which taken singularly performs better than interM and intraM) has been
considered for both EANNMAPE and EANNMax APE . Note that EANNMAPE and
EANNMax APE are better than SARIMAX and outperform A2A-M and ESN in terms
of MAPE, and they outperform all the compared methods in terms of MaxAPE. In
particular, EANNMAPE obtains the best MAPE value (6.69%), which is more than
1% better than SARIMAX (7.96%), and almost halving the corresponding A2A-M
value (12.50%). EANNMax APE obtains the best MaxAPE value(41.29%) by more
than halving the A2A-M (107.83%) which in this case is the second best alternative.
The differences are moremarked in the comparison with ESN, as the latter shows to be
the least competitive method for both performance criteria. It is worth mentioning that
EANNMAPE and EANNMax APE are able to achieve the best MAPE and MaxAPE
respectively. This implies that the considered equations (16) and (17) are effective in
determining weights which are suited for the two criteria. Moreover, EANNMAPE and
EANNMax APE outperform all compared methods also in terms of MSE and RMSE.

Table 5 reports the results for the partial testing horizon in which the three weighted
models are used, i.e., excluding the first 28 days. This table also reports the results
obtained by the combineM model, which is a single ANN model inclunding all the
inputs used for pureM, interM and IntraM (with overlapping inputs considered only
once). In other words, combineM is obtained by extending pureM with the inputs of
interM and intraM. The comparison with combineM is used to asses the benefit of the
optimized weighted sum of three separate models with respect to the plain inclusion
of all considered inputs in a single ANN. It is worth pointing out that this comparison
can be applied only in the period where the three weighted models are used, for this
reason it is inserted in this table.Models EANNMAPE andEANNMax APE consistently
achieve the best MAPE and MaxAPE, with approximately the same relative improve-
ments observed in Table 4. The difference inMAPE between EANNMAPE and pureM
is around 1%. Furthermore, the difference in MaxAPE between EANNMAPE and
pureM is around 3%.Moreover, the results obtained by combineM, being substantially
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Table 4 Results on the testing period from the 22th of October 2018 till the 4th of April 2019, excluding
the 25th of February and the 23th and 25th of March 2019

Method MAPE (%) MaxAPE (%) MSE RMSE

A2A-M 12.50 107.83 2806.75 52.98

EANNMAPE 6.69 47.73 419.71 20.47

EANNMax APE 7.25 41.29 512.62 22.64

SARIMAX 7.96 389.12 2564.03 50.64

ESN 15.69 176.68 3449.11 58.63

pureM 7.41 48.67 453.33 21.29

interM 8.93 67.49 659.20 25.67

intraM 16.26 85.90 2307.71 48.04

Best results in bold

comparable with those of pureM, show the advantage of the proposed EANNMAPE

and EANNMax APE .
Tables 6 and 7 report theMAPE andMaxAPE results disaggregated for each period

of 28 consecutive days associated to the weights optimization steps. If we consider
only the five blocks in which the ensemble method is actually applied (columns (II)–
(VI) of Tables 6 and 7), four times over five the bestMAPE is obtained byEANNMAPE

and one time by pureM, while three times over five the best MaxAPE is obtained by
EANNMax APE and two times by pureM.

The first and the last periods (columns (I) and (VI) of Tables 6 and 7) are the most
difficult to forecast. Indeed, in these periods, corresponding approximately to mid
autumnand the beginning of spring, are characterized by large temperature fluctuations
implying a more erratic energy demand profile. In such cases, the EANN tends to be
even more preferable than A2A-M and ESN, especially with respect to the MAPE,
and only SARIMAX achieve comparable (though worse) performance.

It is worth pointing out that the MAPE and MaxAPE performances obtained by,
respectively, EANNMAPE and EANNMax APE , are better than those obtained by the
single ANN models pureM, interM, and intraM.

The disaggregated MSE and RMSE results reported, respectively, in Table 8 and
9 essentially confirm the previous results. Indeed, EANNMAPE achieves the best
performance on the last four periods, while pureM on the first two.

While Fig. 5 depicts the actual energy demand profile and the forecast of all the
compared methods, Fig. 6 shows the absolute error profiles of three five-day periods
related to the different main type of demand patterns. The absolute error at time instant
i is computed as |yi − ŷi | with yi , ŷi being the actual and the forecast demand. The
top subfigure (6.a) is associated to mid-autumn, the central one (6.b) corresponds to
mid-winter, and the bottom one (6.c) to the beginning of spring. The EANNMAPE

profile tends to be lower than the other profiles (so closer to the actual demand) and
generally with less pronounced peaks, especially for the extreme periods which are
more difficult to be predicted.

We conclude this section by mentioning the potential financial gains that could
be achieved by the EANN. Based on back-testing analysis conducted by A2A, each
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Table 5 Results on the testing period from the 19th of November 2018 till the 4th of April 2019, excluding
the 25th of February and the 23th and 25th of March 2019

Method MAPE (%) MaxAPE (%) MSE RMSE

A2A-M 11.31 72.37 1194.27 34.56

EANNMAPE 5.95 47.73 447.44 21.15

EANNMax APE 6.85 41.29 562.26 23.71

SARIMAX 7.39 389.12 970.02 31.14

ESN 13.38 117.07 1779.85 42.19

pureM 6.87 44.61 496.23 22.28

interM 8.06 56.67 703.18 26.52

intraM 15.06 85.90 2576.73 50.76

combinedM 6.75 44.81 475.37 21.80

Best results in bold

Table 6 MAPE results for groups of 28 days

Group of 28 days (I) (II) (III) (IV) (V) (VI)

A2A-M 18.22 6.03 7.00 7.13 13.73 25.75

EANNMAPE – 5.92 5.42 4.5 6.83 8.44

EANNMax APE – 7.52 6.01 5.1 6.93 9.18

SARIMAX 10.70 8.17 6.09 5.18 8.29 9.74

ESN 26.77 9.37 8.36 8.1 17.82 25.94

pureM 9.14 5.74 5.81 5.39 7.17 9.48

interM 11.95 7.16 6.09 5.98 9.87 11.94

intraM 22.77 20.88 8.78 11.43 17.53 17.12

Best results in bold

Table 7 MaxMAPE results for groups of 28 days

Group of 28 days (I) (II) (III) (IV) (V) (VI)

A2A-M 107.83 34.39 45.53 30.37 55.84 72.37

EANNMAPE – 28.77 47.73 22.54 35.34 37.99

EANNMax APE – 35.74 41.29 24.02 35.15 36.92

SARIMAX 43.87 389.12 50.76 29.22 33.42 52.94

ESN 176.68 39.54 77.47 45.04 117.07 96.81

pureM 36.15 26.35 44.61 24.53 39.57 44.15

interM 42.44 36.22 50.91 21.92 45.25 56.67

intraM 58.39 61.58 43.23 38.95 83.76 85.90

Best results in bold
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Table 8 MSE results for groups of 28 days

Group of 28 days (I) (II) (III) (IV) (V) (VI)

A2A-M 792.20 499.09 926.15 948.23 1381.40 2446.84

EANNMAPE – 488.24 599.47 346.51 432.68 352.85

EANNMax APE – 711.94 724.71 491.20 463.74 384.41

SARIMAX 365.76 2461.92 728.19 488.74 624.38 439.87

ESN 1958.68 1053.34 1287.25 1204.34 2215.80 3452.81

pureM 275.63 439.75 617.47 413.23 544.35 461.95

interM 429.31 644.24 734.19 581.07 831.57 735.12

intraM 1556.48 5682.81 1652.89 1826.80 2284.46 1241.89

Best results in bold

Table 9 RMSE results for groups of 28 days

Group of 28 days (I) (II) (III) (IV) (V) (VI)

A2A-M 28.15 22.34 30.43 30.79 37.17 49.47

EANNMAPE – 22.10 24.48 18.61 20.80 18.78

EANNMax APE – 26.68 26.92 22.16 21.53 19.61

SARIMAX 19.12 49.62 26.98 22.11 24.99 20.97

ESN 44.26 32.45 35.88 34.70 47.07 58.76

pureM 16.60 20.97 24.85 20.33 23.33 21.49

interM 20.72 25.38 27.10 24.10 28.84 27.11

intraM 39.45 75.02 40.66 42.74 47.80 35.24

Best results in bold

percentage point reduction in the 24 ahead MAPE may contribute to a reduction of
2 to 4% in the DHO’s operational costs (e.g., including fuel, electricity, ETS). Thus,
reducing the MAPE from 12.5 to 6.69% (as reported in Table 4) can yield significant
cost savings in the considered application.

4.5 Results for different forecast horizons

Performing forecasts for longer planning horizons is useful to plan several operational
activities. In practice, such forecasts are used to have a general idea of the demand,
and are later refined by the more accurate day ahead forecasts. Although the EANN is
designed to perform a day ahead forecast, it can also be used to generate predictions
for longer forecasting horizons, without any structural changes. The main challenge
in such cases is the relatively extended time lag between the available information and
the forecasting horizon.

Since our method is designed for using observations of energy demand collected up
to 24h before the predictions, for longer forecasting horizons it automatically operates
a recursive multi-step approach (see e.g., Galicia et al. 2019). Accordingly, the lacking
energy demand observations are substituted by their EANN forecasts. For example,
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Fig. 6 Three five-day profiles: absolute error profiles in the first (a), central (b) and last (c) periods of testing
horizon

if at hour h �= 24 of day d we should make a prediction of the energy demand 25h
later, that is Fh+1,d+1, then the EANN would determine the forecast of the energy
demand of next hour Fh+1,d , and would then construct the feedback inputs of pureM,
interM and intraM by replacing Eh+1,d with Fh+1,d . Considering for example pureM,
equation (4) would be replaced by

xh+1,d+1 = (Th+1,d+1, Kh+1,d+1, h + 1, Fh+1,d , Eh+1,d−1, . . . , Eh+1,d−6), (19)
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Table 10 Results on the whole
testing horizon for the 48 and
72h ahead forecast for
EANNMAPE and SARIMAX

Method MAPE (%) MaxAPE (%)

EANNMAPE 48h ahead 8.9 65.6

SARIMAX 48h ahead 12.03 484.49

EANNMAPE 72h ahead 10.2 47.5

SARIMAX 72h ahead 12.37 909.40

where Eh+1,d−1, . . . , Eh+1,d−6 are available data. For the 26h later forecast
(Fh+2,d+1), the EANN would determine Fh+2,d and then set the inputs as

xh+2,d+1 = (Th+2,d+1, Kh+2,d+1, h + 2, Fh+2,d , Eh+2,d−1, . . . , Eh+2,d−6). (20)

For forecasting horizons between 48 and 72h two feedback inputs would be replaced
by their forecast. If we consider a 49h ahead forecast, the inputs would be

xh+1,d+2 = (Th+1,d+2, Kh+1,d+2, h + 1, Fh+1,d+1, Fh+1,d , Eh+1,d−1 . . . , Eh+1,d−4),

(21)
and so on. Equations (7) and (10) are modified accordingly.

It is worth pointing out that replacing Eh+1,d with Fh+1,d would propagate the
prediction error made on Fh+1,d to Fh+1,d+1. This effect is amplified with longer
forecasting horizons, as more predictions would be used in the feedback inputs. How-
ever, the EANN does not suffer too much from this error propagation. Indeed, we
tested the EANNMAPE version on the same testing set adopted for the experiments
of Sect. 4.4 for the 48 and 72h ahead forecast. Due to the structure of the feedback
inputs, for the 48 and 72h ahead forecast we had to remove the first two days of the
testing horizon. The results, reported in Table 10, show that the EANN is able to pro-
duce better predictions with a 48 and 72h ahead forecast than SARIMAX and than
the A2A-M with the “simpler" day ahead forecast (see Table 4).1 This is due to the
fact that the propagation of the error phenomenon is mitigated by the very accurate
predictions of the EANNMAPE model.

5 Conclusions

We proposed the EANN method to forecast the day ahead hourly heating demand of
a city or an urban district. The EANN combines a weighted sum of three different
single hidden layer feedforward ANN models with a rolling horizon strategy. Each
ANN model captures a different aspect of the predicted time series. Furthermore, we
devise a sequential ordered optimization procedure to determine the weights of three
models in the final output. The procedure was tailored to two different performance
criteria.

1 The results for longer forecasting horizon are not available for A2A-M, while ESN is not considered as
its 24h ahead forecast are substantially worst than the results of the other methods EANN for the more
complex 48 and 72h ahead cases.
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Our EANNwas validated using A2A data related to ametropolitan area in Northern
Italy, and it was trained on data of half 2016/2017 and entire 2017/2018 thermal
seasons, and then tested on roughly the entire 2018/2019 thermal season.We compared
our method with the one used by A2A, namely A2A-M, which is based on multiple
linear regression requiring expert intervention. Furthermore, we also compared our
method with the autoregressive SARIMAX model and with a deep neural network
architecture, namely an ESN. The comparisons show that EANN is better than all other
methods on all considered performance criteria, almost halving the prediction errors
with respect to A2A-M. Thus, our methodology promises significant cost savings.
The sequential ordered optimization procedure reveals to be effective in calibrating
the models’ weights so as to meet the considered performance measure. We have also
demonstrated that the EANN can be used for longer forecasting horizons. Indeed,
fairly good performance is achieved considering 48 and 72h ahead forecast.

Finally, it is worth mentioning that the EANN can be applied in an automated way.
Thus, differently fromA2A-M, the EANNdoes not require human intervention.More-
over, leveraging a simple neural network architecture, the EANN is suited for being
used by non experts in machine learning. Furthermore, a potential future extension
could be to consider quantiles as optimal point forecasts (see e.g., Gneiting 2011), in
case of distinct overestimation and underestimation costs.
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