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Abstract. The particles that we describe here can only move at the speed of
light c in three-dimensional space. The velocity, which randomly but continuously
changes direction, can be represented as a point on the surface of a sphere of
constant radius c, and its trajectories may only connect points of this variety.
The Wiener process that we use to describe the velocity dynamics on the surface
of the sphere is anisotropic since the infinitesimal variation of the velocity is not
only always orthogonal to the velocity itself (which guarantees a constant speed),
but also to the position. This choice for the infinitesimal variation of the velocity
is the one that best slows down the diffusion of particles in space by random
motion at the speed of light. As a result of these dynamics, the position of the
particles spontaneously remain confined on the surface of an expanding sphere
whose radius increases, for large times, as the square root of time.
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1. Introduction

Research on relativistic stochastic processes has a long tradition and it has sprouted in
a large number of results (see for example [1–10]). The particle dynamics are typically
modeled by assuming that the velocity evolves according to some Langevin process
modified in order that the speed is never superluminal.

There is a direct physical rationale for research in this field since relativity must be
taken into account when the speeds involved in diffusion are comparable to the speed of
light as, for example, in astronomical phenomena. There is also an indirect mathematical
motivation related to the possibility of extending the Feynman–Kac formula to the
relativistic quantum equations; this can be done, in principle, by means of the backward
Kolmogorov equation for the processes.

However, ultra-relativistic stochastic models of light-speed particles have received
less attention. This class of processes, which are mathematically interesting in their own
right, could be suitable for modeling the Brownian motion of constant-speed particles
(not necessarily the speed of light) and for providing new probabilistic tools for the
solution of the relativistic equations of quantum mechanics (in this case, the speed is
necessarily that of light).

Light-speed particles in 1+1 space-time dimension have only two alternatives: to
move in one direction or the opposite with the same speed, with the only option being
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randomly switching from one to the other of two possible velocities. This stochastic
process was considered in 1956 by Kac, who proved that the associated probability
density satisfies the telegrapher’s equation [11–13].

About thirty years later, Kac et al noticed that the telegrapher equation could be
associated both with the Dirac equation in 1+1 dimension (first-order formulation) and
with the Klein–Gordon equation also in 1+1 dimension (second-order formulation).
Using this equivalence, they were able to give a probabilistic solution (by the backward
Kolmogorov equation) to these fundamental quantum equations [14]. This result was
later refined and extended in [15, 16].

Indeed, the process considered in [11, 14–16] is part of a larger class; in fact, by
Lorentz boosts, new processes can be obtained with particles moving at the speed of
light (a simple consequence of the fact that a light-speed particle in an inertial frame
is also light-speed in any other inertial frame). The processes of this larger class have
in general an unbalanced probability rate of velocity inversion, i.e the inversions from
right to left occur with a different probability rate to those from left to right, and as a
consequence, the particle may have a non-vanishing average velocity.

The class of these one-dimensional light-speed processes was further extended by
considering inversion rates that not only depend on the sign of the velocity, but also on
the position and time. This extension gave the possibility to reformulate the quantum
mechanics of a relativistic particle in terms of stochastic processes [17] in the spirit of
Nelson’s stochastic mechanics [18].

The weak point of all these results, i.e. the original results of Kac from 1956 and all
the derived ones, is that they only work for particles in the 1+1 space-time dimension,
and a direct extension to higher dimensions has proven to be complicated.

In very recent research [19, 20], progress has been made concerning the 3+1 space-
time dimensional Dirac equation. The authors followed a Bohm-type approach [21, 22],
in which the particle randomly switches between two possible velocities, each of which
is associated with one of the two values of a dichotomous variable. Both the probability
rate of a switch and the two velocities depend on position and time, and they are
determined by the wave function.

We also tried to take a step in the same direction [13, 23, 24] following a different
approach. We considered a family of processes that generalizes the Kac approach to
the 3+1 space-time dimension case, assuming that a particle only moves at the speed
of light c and that the velocity may take any value compatible with this speed. This
implies that the velocity can be represented as a point on the surface of a sphere of
radius c. We also assumed that the velocity performs an isotropic Wiener process on
this surface; this means that the infinitesimal variation of the velocity can take with
equal probability all possible directions orthogonal to the velocity itself. The behavior
of the position x(t) is diffusive; in fact, for large times one has the expected value
E[|x(t)|2]∼ t.

Since our particles live in a relativistic world, together with the isotropic ‘rest frame’
process of the velocity on the sphere surface, we also considered the whole family of
anisotropic processes that result from Lorentz boosts [23] for which, nevertheless, the
velocity continues to be confined to the sphere surface (light-speed particles are still
light-speed particles under a Lorentz boost).
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Here, we consider particles in 3+1 space-time dimensions, which always move at the
speed of light and which randomly but continuously change their velocity according
to a Wiener process. However, in the present case, the rest frame Wiener process on
the spherical surface is not isotropic since the infinitesimal variation of the velocity is
not only always orthogonal to the velocity (which guarantees a constant speed), but
also to the position. An unexpected result of these dynamics is that the position of the
particles spontaneously remains confined on the surface of an expanding sphere. This
means that the particles move at the speed of light, but their random movement takes
place entirely on the surface of the expanding sphere.

To avoid confusion, let us highlight that both the velocity and position are confined
on the surface of a sphere. For the velocity, the sphere has a constant radius c, and this
is a simple consequence of the hypothesis that the speed is constant. For the position,
however, the sphere has a radius that increases over time, and this is quite a surprising
consequence of the dynamics. Moreover, for large times, this radius goes as the square
root of time; therefore, it can be said that the particles are subject to diffusion.

2. Stochastic equations

The particle velocity is cn(t), where n(t) is a unitary vector so that the speed always
equals c. The stochastic equations we consider are

dx(t) = cn(t)dt,

dn(t) =−ω2

2
n(t)dt+ωn⊥(t)dw (t) ,

(1)

where, following Itô, dx(t) = x(t+dt)−x(t) and dn(t) = n(t+dt)−n(t). The diffusion
coefficient ω has the dimension of the inverse of the square root of time, and dw(t) =
w(t+dt)−w(t) is a standard Wiener increment, i.e. E[dw(t)] = 0, E[(dw(t))2] = dt.
Moreover, we assume that n⊥(t) is a unitary vector orthogonal both to the velocity and
the position; more precisely, we assume

n⊥ (t) =
x(t)×n(t)

|x(t)×n(t) |
(2)

when x(t)×n(t) ̸= 0, and we assume that n⊥(t) is any unitary vector orthogonal to n(t)
otherwise.

It can be verified that |n(t)|= 1 at any time if |n(0)|= 1; in fact, following Itô, one
has

d|n(t) |2 = 2n(t) · dn(t)+ω2|n⊥ (t) |2dt=−ω2
(
|n(t) |2− 1

)
dt, (3)

where for the second equality we took into account that n⊥(t) ·n(t) = 0 and |n⊥(t)|2 = 1.
It is easy to verify that the solution of this equation is |n(t)|= 1 at any time if |n(0)|= 1.
Therefore, n(t) can be represented as a point on a sphere of unitary radius, i.e. the
velocity cn(t) can be represented as a point on a sphere of radius c.

https://doi.org/10.1088/1742-5468/ad4023 4
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We assume that the particle is initially at the origin. We will show that x(t)×n(t)
equals zero only at the initial time t =0 where x (0) = 0; on the contrary, at any later
time t > 0, not only x(t) ̸= 0 but x(t) and n(t) are not parallel.

These equations can eventually be solved assuming without loss of generality that
n(0) = k= (0,0,1). Given that x(0)×n(0) = 0, the unitary vector n⊥(0) can arbitrar-
ily be chosen orthogonally to n(0) = k. We can take, for example, n⊥(0) = i= (1,0,0);
however, we will see that the probability density for the position and velocity at any
time t > 0 is not affected by the choice of the value of n⊥(0).

3. Deterministic equations and solutions

We consider here two relevant derived variables whose equations are deterministic and
whose values can be explicitly computed at any time t. Let us define

ξ (t) = x(t) ·n(t) ,
ρ(t) = |x(t) |,

(4)

we easily derive from equations (1)

dξ (t) = cdt− ω2

2
ξ (t)dt,

dρ2 (t) = 2cξ (t)dt,

(5)

which, surprisingly, are deterministic equations, at variance with the corresponding
equations of the isotropic model considered in [13, 23, 24]. System (5) can be easily
solved, obtaining

ξ (t) =
2c

ω2

(
1− e−

ω2

2
t
)
,

ρ(t) =
2c

ω2

(
ω2t− 2+2e−

ω2

2
t
) 1

2

,

(6)

where, given that the system is at the origin at time zero (x(0) = 0), we have used the
initial conditions ξ (0) = 0, ρ(0) = 0. Notice that the initial values for these equations
are independent of the initial values n(0) and n⊥(0).

The second of the above equalities implies that the particle remains confined to the
surface of an expanding sphere of radius ρ(t), while the first equality implies that the

cosine of the angle between the position x(t) and the velocity cn(t) is x(t)· n(t)
|x(t)| = ξ(t)

ρ(t) .

Moreover, since both ξ(t) and ρ(t) are strictly positive for t > 0, the particle is at the
origin only at time zero, and the angle between the position and velocity never vanishes
for positive times. This means that in the second equation of system (1) we can use
n⊥(t) as defined in (2) at any positive time.

Notice that for large times the radius grows as ρ(t)∼ 2c
ω

√
t, which means a diffusive-

like behavior |x(t)|2 ∼ 4c2

ω2 t. Also notice that the radial component of the velocity
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x(t)·c n(t)
|x(t)| = cξ(t)

ρ(t) asymptotically behaves as c
ω
√
t
, which means that for large times the

position x(t) and the velocity cn(t) tend to be orthogonal.
Let us remark that the following equality also holds:

|x(t)×n(t) |=
[
ρ2 (t)− ξ2 (t)

] 1
2 = ξ+ (t) , (7)

where the second equality is a definition and the first is a consequence of the geometrical
relation |x×n|2 = |x|2− (x ·n)2. The explicit expression of ξ+(t) is

ξ+ (t) =
2c

ω2

(
ω2 t− 3+4e−

ω2

2
t− e−ω2t

) 1
2

. (8)

The reason why we used the symbol ξ+(t) will be made clear in the next section. The
equality (7) also allows us to write

n⊥ (t) =
x(t)×n(t)

ξ+ (t)
, (9)

which can optionally be used in the second equation in (1) in place of (2).

4. Moving reference frame and relative position

Given that n(t) changes over time, the only certainty is that the particle position will be
on the sphere surface of radius ρ(t), but the distribution on it will depend on the initial
conditions. If the initial distribution of the velocity cn(0) is uniform in all directions,
then both the distribution of the velocity cn(t) on the surface of the sphere of radius c
and the distribution of the position x(t) on the sphere of radius ρ(t) will also be uniform
at any positive time. This fact is independent of the initial value or distribution of n⊥(0)
since, as we will see later, n⊥(0) does not influence the future evolution.

Where and with what probability cn(t) and x(t) can be found on the respective
surfaces when the initial condition n(0) has a specific value is a problem that needs
further investigation.

First of all, notice that the component of x(t) in the direction of n⊥(t) vanishes at
any positive time, i.e.

x(t) ·n⊥ (t) = 0; (10)

in fact, this equality immediately follows from definition (2).
The third component of the triad of mutually orthogonal unitary vectors (after n

and n⊥) can be written as

n+(t) = n(t)×n⊥(t) =
n(t)×

(
x(t))×n(t)

)
|x(t)×n(t)|

, (11)

https://doi.org/10.1088/1742-5468/ad4023 6
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Figure 1. In the figure we plot ξ(t) (red), ξ+(t) (green) and ρ(t) = (ξ2(t)+ ξ2+(t))
1
2

(blue) as functions of time. The choice of parameters is ω=1 and c=1. ξ (t) is
asymptotically constant, while ξ+(t) and ρ(t) behave asymptotically as the square
root of time.

where, again, the second equality immediately follows from definition (2). Given the
geometrical relation n× (x×n) = x−n(n ·x), one can write

n+ (t) =
x(t)− (n(t)·x(t)) n(t)

|x(t)×n(t) |
=

x(t)− ξ (t) n(t)

ξ+ (t)
, (12)

then, the component of x(t) in the direction of n+ is

x(t) ·n+ (t) =
ρ2 (t)− ξ2 (t)

ξ+ (t)
= ξ+ (t) , (13)

which explains the choice of the symbol ξ+(t) in definition (7).
In conclusion, according to (12), the position of the particle with respect to the

moving reference frame n(t),n⊥(t),n+(t) is

x(t) = ξ (t)n(t)+ ξ+ (t)n+ (t) , (14)

which is coherent with |x(t)|2 = ξ2(t)+ ξ2+(t) = ρ2(t). The position x(t) has no com-
ponent along n⊥(t), and the three vectors n(t), x(t) and n+(t) lie on the same plane
orthogonal to n⊥(t).

The three quantities ξ(t), ξ+(t) and ρ(t) are plotted in figure 1, where the choice of
parameters is ω=1 and c=1. Notice that ξ(t), which is the component of x(t) parallel
to the velocity, tends to a constant for large times while the orthogonal component ξ+(t)
grows as the square root of time as well as the radius ρ(t).

https://doi.org/10.1088/1742-5468/ad4023 7
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5. Averages of position and velocity

It is easy to compute the averages of velocity and position. From the second of the
equations in (1), taking the averages, we have

dE [n(t)] =−ω2

2
E [n(t)]dt, (15)

which implies

E [n(t)] = e−
ω2

2
tn(0) , (16)

where, in this case, we can choose n(0) = k= (0,0,1) without loss of generality.
Moreover, from the first of the equations in (1) and from the initial condition x(0) =

0, we have

x(t) = c

ˆ t

0

n(s)ds, (17)

which implies

E [x(t)] = c

ˆ t

0

E [n(s)]ds=
2c

ω2

(
1− e−

ω2

2
t
)
n(0) . (18)

The average (16) entails that in the long run E[n(t)]→ 0, which suggests that n(t)
tends to be uniformly distributed on the surface of the unitary radius sphere.

Also, x(t) tends to be uniformly distributed on the surface of the sphere of radius
ρ(t). The fact that E[x(t)]→ 2c

ω2n(0) is misleading, since two phenomena contribute to
this result: the tendency to uniform distribution and the expansion of the sphere.

In order to isolate the first phenomenon, it is sufficient to consider the unitary vector
x(t)
|x(t)| , which also lives on the surface of a unitary radius sphere, and whose average tends

to zero in the long run. In fact,

E

[
x(t)

|x(t) |

]
=

E [x(t)]

ρ(t)
=

(
1− e−

ω2

2
t
)

(
ω2t− 2+2e−

ω2

2
t
) 1

2

n(0) , (19)

which implies E
[

x(t)
|x(t)|

]
≃ 1

ω
√
t
n(0) for large times.

We underline that both the averages of n(t) and x(t)
|x(t)| are independent of the initial

value n⊥(0) = i, which, indeed, is immediately forgotten after t =0. Moreover, both the
averages are parallel to n(0) = k; indeed, we will see that the probability densities of

n(t) and x(t)
|x(t)| are invariant for rotations around the vertical axis.
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6. More on equations and averages

Let us write the stochastic equation for the variable x(t)×n(t):

d [x(t)×n(t)] =−ω2

2
[x(t)×n(t)]dt+

ω

ξ+ (t)
[x(t)× (x(t)×n(t))]dw (t) , (20)

which, given the geometrical relation x× (x×n) = x(n ·x)−n|x|2 becomes

d[x(t)×n(t)] =−ω2

2
[x(t)×n(t)]dt+

ω

ξ+ (t)

[
ξ (t)x(t)− ρ2 (t)n(t)

]
dw (t) . (21)

Then, taking the average, we obtain

dE [x(t)×n(t)] =−ω2

2
E [x(t)×n(t)]dt, (22)

which implies

E [x(t)×n(t)] = e−
ω2

2
tE [x(0)×n(0)] = 0, (23)

where the last equality is the immediate consequence of x(0) = 0. In turn, equality (9),
together with the fact that ξ+(t) is strictly positive when t > 0, implies

E [n⊥ (t)] =
E [x(t)×n(t)]

ξ+ (t)
= 0 (24)

for any positive time. The choice n⊥(0) = i (as well as any other equivalent choice) is,
therefore, irrelevant for the average of n⊥(t) at t > 0. Indeed, as we will see, the value
chosen for n⊥(0) is irrelevant for the probability density of n⊥(t) at any positive time.

Finally, the average of n+(t) can be computed using equation (14):

E [n+ (t)] =
E [x(t)]−E [n(t)]ξ (t)

ξ+ (t)
=

(
1− e−

ω2

2
t
)2

(
ω2 t− 3+4e−

ω2

2
t− e−ω2t

) 1
2

n(0) , (25)

where for the second equality we have used the averages previously computed. Notice
that for large times one has E[n+(t)]≃ 1

ω
√
t
n(0).

In conclusion, the averages of n(t), n+(t) and
x(t)
|x(t)| only have non-vanishing compon-

ents E[n(t)] ·n(0), E[n+(t)] ·n(0) and E
[

x(t)
|x(t)|

]
·n(0) in the direction of n(0)=k, which

are plotted in figure 2. On the contrary, the average of n⊥(t) equals zero at any positive
time, while at time zero one has n⊥(0) = i. These results suggest that for positive times
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Figure 2. The averages of n(t), n+(t) and
x(t)
|x(t)| only have non-vanishing components

in the direction of n(0), while the average of n⊥(t) equals zero. In the figure we plot

E[n(t)] ·n(0) (red), E[n+(t)] ·n(0) (blue) and E
[

x(t)
|x(t)|

]
·n(0) (green). The choice of

parameters is ω=1 and c=1. Notice that the average of n(t) decays exponentially

in time while the averages of n+(t) and
x(t)
|x(t)| decay as 1√

t
.

the probability densities of n(t), n+(t),
x(t)
|x(t)| and also n⊥(t) are invariant for rotations

around the vertical axis despite the asymmetric initial conditions due to the choice of
n⊥(0). This fact will be confirmed in the following section by numerical simulations.

7. Numerical solutions

Without loss of generality, we assume from now that ω=1 and c=1. The discrete
version of the second equation in (1), in its more intuitive form, appears as

n(t+∆t)=

(
1−∆t

2

)
n(t)+∆w (t) n⊥(t) , (26)

where n⊥(t) is given by (9) and (8) or directly by (2). As should be clear by the notation,
t=m∆t; moreover, the Wiener increments ∆w(t) = w(t+∆t)−w(t) are independent
Gaussian variables with vanishing average and variance ∆t.

The above equation preserves the unitarity of n(t) only in the continuous limit
∆t→ 0. In order to guarantee the unitarity of the velocity n(t) at each time step, even
for a finite ∆t, we prefer to replace (26) with

n(t+∆t)=
(
1−(∆w (t))2

) 1
2
n(t)+∆w (t) n⊥(t) . (27)
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In the limit of small ∆t, equations (26) and (27) become identical and both coincide with
the second equation in (1). Equation (27) holds for t > 0, while at t =0 the equation is

n(∆t) =
(
1−(∆w (0))2

) 1
2
k+∆w (0) i, (28)

where we have assumed, without loss of generality, that n(0) = k= (0,0,1) and n⊥(0) =
i= (1,0,0).

Finally, the discrete version of the first equation in (1) is

x(t+∆t) = x(t)+n(t)∆t, (29)

which holds for any time t⩾ 0 and with initial condition x(0) = 0.
The numerical solutions consist of 5 · 105 realizations of the above equations up to

time t =30. The size of a time step is ∆t= 10−4; therefore, the number of steps in each
realization is 3 · 105.

8. Output of simulations

Let us first consider the velocity n(t) (in this section we still assume c=1 and ω=1),
whose components can be expressed in spherical coordinates as n3(t) = cos(θn(t)),
n1(t) = sin(θn(t))cos(ϕn(t)) and n2(t) = sin(θn(t))sin(ϕn(t)), where θn(t) and ϕn(t) are
the corresponding latitude and longitude.

We numerically compute the distributions of n1(t), n2(t), n3(t) = cos(θn(t)) and
ϕn(t)
π ,

which are plotted in figure 3 at different times from t =0.1 to t =10. All four of these
variables have distributions supported on the interval [−1,1]. At all times, the distribu-

tion of ϕn(t)
π is uniform, meaning that the distribution of n(t) on the unitary sphere is

invariant for rotations around the vertical axis. Interestingly, there is no memory of the
initial time asymmetry due to the choice n⊥(0) = i, as is also shown by the fact that
the distributions of n1(t) and n2(t) are identical and symmetric. On the other hand, the
distribution of n3(t) = cos(θn(t)) is asymmetric, being more centered on positive values
(at t =0 it is completely centered at the position n3=1, which corresponds to the initial
value n(0) = k).

The distributions of n1(t), n2(t) and n3(t) become uniform in about 10 s, meaning
that at the same time the distribution of the velocity n(t) becomes uniform on the
surface of the sphere. The averages of n1(t) and n2(t), given the symmetry of their
distributions, vanish at all times, at variance with the average of n3(t). This is exactly
what it is shown in (16).

Then, we consider the normalized position x(t)
|x(t)| , whose components can be expressed

in spherical coordinates as x3(t)
|x(t)| = cos(θx(t)),

x1(t)
|x(t)| = sin(θx(t))cos(ϕx(t)) and x2(t)

|x(t)| =

sin(θx(t))sin(ϕx(t)), where θx(t) and ϕx(t) are the corresponding latitude and longit-
ude. The distributions of these quantities are shown in figure 4 at different times from
t =0.5 to t =30. The qualitative behavior is similar to that of figure 3, including the fact
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Figure 3. Distributions of n3(t) = cos(θn(t)) (green), n1(t) (red), n2(t) (blue) and
ϕn(t)
π (orange), where θn(t) and ϕn(t) are the relative latitude and longitude. At all

times, the distribution of ϕn(t)
π is uniform, meaning that the distribution of n(t) on

the surface of the sphere is invariant for rotations around the vertical axis. The
distributions of n1(t) and n2(t) are identical and symmetric, while the distribution
of n3(t) = cos(θn(t)) is asymmetric, being more centered on positive values. These
last three distributions become uniform in about 10 s, meaning that in the same
time the distribution of the velocity n(t) becomes uniform on the surface of the
sphere of unitary radius.

Figure 4. Distributions of x3(t)
|x(t)| = cos(θx(t)) (green), x1(t)

|x(t)| (red), x2(t)
|x(t)| (blue) and

ϕx(t)
π (orange), where θx(t) and ϕx(t) are the relative latitude and longitude. The

qualitative behavior is similar to that of figure 3, including the fact that the lon-
gitude is uniformly distributed at any time. The only difference is the much slower

progression towards the uniform distribution for x3(t)
|x(t)| , which is not completed in

30 s, while for n3(t) it is already done in 10 s. This is because the relaxation of the

distribution of n3(t) is exponential in time, while for x3(t)
|x(t)| it goes as

1√
t
.
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Figure 5. Distributions of n̂3(t) = cos(θn̂(t)) (green), n̂1(t) (red), n̂2(t) (blue) and
ϕn̂(t)
π (orange), where n⊥(t) = (n̂1(t), n̂2(t), n̂3(t)) and where θn̂(t) and ϕn̂(t) are the

relative latitude and longitude. Again, the longitude is uniformly distributed at
any positive time, although it is not at time zero (n⊥(0) = i implies ϕn̂ = 0). The
distributions of the variables n̂3(t) = cos(θn̂(t)), n̂1(t) and n̂2(t) are symmetric at
all positive times. Moreover, the distributions of n̂1(t) and n̂2(t) are identical at any
positive time, although at time zero they are different (n⊥(0) = i implies n̂1(0) = 1
and n̂2(0) = 0). All distributions are uniform after 10 s.

that the longitude is uniformly distributed at all times, meaning that the distribution

of x(t)
|x(t)| on the unitary sphere is invariant for rotations around the vertical axis.

The only difference is the much slower progression toward the uniform distribution

for x3(t)
|x(t)| , which is not completed in 30 s, while for n3(t) it is already done in about 10 s.

The reason is that for n3(t) the relaxation is exponential, while for x3(t)
|x(t)| it goes as 1√

t
.

This can also be appreciated by comparing the average of n(t) in formula (16) and the

average of x(t)
|x(t)| in formula (19); the first decays exponentially in time, while the second

goes as 1√
t
.

Finally, we consider the unitary vector n⊥(t), whose components can be expressed
in spherical coordinates as n̂3(t) = cos(θn̂(t)), n̂1(t) = sin(θn̂(t))cos(ϕn̂(t)) and n̂2(t) =
sin(θn̂(t))sin(ϕn̂(t)), where θn̂(t) and ϕn̂(t) are the corresponding latitude and longitude.
These quantities are plotted in figure 5 at different times from t =0.1 to t =10. Once
more, the longitude is uniformly distributed at any positive time, although it is not at
time zero (n⊥(0) = i implies ϕn̂(0) = 0). This means that the distribution of n⊥(t) on
the unitary sphere is invariant for rotations around the vertical axis at positive times,
although n⊥(0) = i.

The distributions of the variables n̂3(t) = cos(θn̂(t)), n̂1(t) and n̂2(t) are symmetric
at any positive time, which explains why the average of n⊥(t) vanishes (see (24)). As
in figure 3, after 10 s, all the distributions are uniform, meaning that n⊥(t) becomes
uniformly distributed on the surface of a unitary sphere.
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9. Conclusions and outlook

The equations in (1) describe light-speed particles that spontaneously remain confined
on the surface of an expanding sphere of radius ρ(t). For large times, ρ(t) grows as the
square root of time, so it can be said that the particles are subject to diffusion.

If the initial distribution of the velocity cn(0) is uniform in all directions, the distri-
bution of the velocity cn(t) on the surface of the sphere of radius c and the distribution
of the position x(t) on the sphere of radius ρ(t) will be also uniform at any positive
time. If, on the contrary, one chooses a specific value for the initial velocity (for example
n(0) = k), the velocity cn(t) and the position x(t) will be still on the surfaces of the
respective spheres, but while their distributions will be invariant for rotations around
the vertical axis, they will be more centered around the north pole. The full symmetry
is recovered only at large times.

We call the process described here the ‘rest frame’ process. Since our particles live
in a relativistic world, it would be interesting to also consider and describe the whole
family of processes that result from this rest frame process by Lorentz boosts. For all
of them, obviously, the velocity is still bounded to the surface of a sphere of radius
c (light-speed particles are still light-speed particles under Lorentz boost), but further
asymmetry should appear in the stochastic equations so that the position of the particles
will be confined on a variety different from the surface of a sphere of radius ρ(t).

Even more interesting would be to find an exploitable connection between the back-
ward Kolmogorov equation of this process and the Dirac equation, thus extending the
analogy between the Schrödinger equation and the heat equation to the relativistic
realm. This does not seem to be an easy task, but work in this direction is ongoing,
with few but not vanishing chances of achieving the goal.

Data availability statement

The numerical methods employed to generate the data in this study are described in
the paper and they can be easily reproduced. The code and/or the data are available
from the corresponding author upon reasonable request.
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