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Abstract
Let E be a CM elliptic curve defined over a number field K , with Weiestrass form
y3 = x3 + bx or y2 = x3 + c. For every positive integer m, we denote by E[m]
the m-torsion subgroup of E and by Km

..= K (E[m]) the m-th division field, i.e. the
extension of K generated by the coordinates of the points in E[m]. We classify all the
fields K7. In particular we give explicit generators for K7/K and produce all theGalois
groups Gal(K7/K ). We also show some applications to the Local–Global Divisibility
Problem and to modular curves.
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1 Introduction

Let K be a number field with algebraic closure K and let E be an elliptic curve defined
over K .We keep the standard notationE[m] for them-torsion subgroup ofE and by Km

we denote the m-th division field K (E[m]), i.e. the field obtained by adding to K the
coordinates of the points in E[m]. Since the beginning of the studies on elliptic curves,
the m-th division fields have played a key rôle. The properties of Km/K are related to
Galois representations on the total Tate module, to Iwasawa theory, to modularity and
to the proof of the Mordell–Weil theorem. The extension Km/K is a Galois extension,
in fact it is the splitting field of the m-th division polynomial, i.e. the polynomial
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whose roots are the abscissas of them-torsion points of E, and the polynomials whose
roots are the ordinates corresponding to those abscissas. The extension Km/K is
monogeneous by Artin’s primitive element theorem, however, in general it is not easy
to find an explicit single generator. It is also well known that E[m] � (Z/mZ)2.
Therefore, if {P1, P2} is a generating set for E[m], with Pi = (xi , yi ), for i = 1, 2,
then Km = K (x1, x2, y1, y2) and {x1, x2, y1, y2} is the generating set for K (E[m]) that
is usually adopted. We are interested in showing explicit generators for this extension,
searching for generating sets as easy as possible to be used in applications. Indeed there
aremany potential applications, for instance inGalois representations (see for example
[22]), local–global problems on elliptic curves (see Sect. 8.1), descent problems (see
for example [1, 21] among others), points on modular curves and points on Shimura
curves.

In the previous papers of this series [2, 3, 17], some of those applications have been
shown, as well as some new generating sets involving a primitivem-th root of the unity
ζm . In fact, by the properties of theWeil pairing em , the image ζm

..= em(P1, P2) ∈ Km

is a primitive m-th root of unity and K (ζm) ⊆ Km (see for instance [24]). It turned
out that ζm can be used as a generator for Km/K and in particular, when m is odd,
we have Km = K (x1, ζm, y2) [3, Theorem 1.1]. When m = p is a prime number, this
generating set is minimal among the subsets of {x1, x2, ζm, y1, y2} (for further details
see [3]). On the contrary, in the case when m = pn, with n � 2, we can replace ζpn

with ζp, i.e. Kpn = K (x1, ζp, y2), for every n � 1 (see [8, Theorem 1.1]).
Observe that when K = Q, we have ζm /∈ K and therefore Q(E[m]) �= Q, for

every m � 3. In particular the extension Q(E[m])/Q is “as minimal as possible”
when Q(E[m]) = Q(ζm). Merel and Rebolledo proved that if such an equality holds
whenm = p is a prime, then p � 5 (see [15, 20]). A classification of all elliptic curves
such that Q(E[3]) = Q(ζ3) is given in [16] and a classification of all elliptic curves
such that Q(E[5]) = Q(ζ5) is given in [12]. In this last paper González Jiménez and
Lozano-Robledo also investigate the cases when Q(E[m])/Q is an abelian extension
for all elliptic curves over number fields. Among other important results, in particular
they prove that if E is a CM elliptic curve and Q(E[m])/Q is abelian, then m ∈
{2, 3, 4, 5, 6, 8}.

For m = 3 and m = 4, explicit descriptions of all possible fields K3 and K4 in
terms of generators, degrees and Galois groups were given in [3] in 2016 (see also [2]).
The generators of the fields K8 were produced in 2017 in [27], in which the author
also gives some information on the action of certain elements of Gal(K8/K ). In 2018
a complete description of the fields K5 in terms of generators, degrees and Galois
groups was produced in [17] for the families of CM elliptic curves F1 : y2 = x3 +bx ,
with b ∈ K and F2 : y2 = x3 + c, with c ∈ K .

Here we give a classification of every possible field K7, for the curves of the same
families F1 and F2, showing in particular explicit generators for the extension K7/K .
We also show all possible Galois groups Gal(K7/K ) for the curves in F1 and F2.

The paper is structured as follows. In the first part of it we describe generators,
possible degrees and possible Galois groups for the curves of the family F1. Then we
give a similar description for the curves of the family F2. In the last part of the paper
we show some applications of these results. In particular we produce an application
to the Local–Global Divisibility Problem, which was stated in [9] by Dvornicich
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and Zannier in 2001 (see Sect. 8.1 for further details). In addition we deduce some
properties concerning CM points on modular curves.

2 Generators of K(E[7]) for elliptic curves y2 = x3 + bx

For every positive integer m, the m-th division polynomial of an elliptic curve E

is the polynomial whose roots are the abscissas of the m-torsion points of E. It is
generally denoted by�m(x). The polynomial�m has degree m2−1

2 whenm is odd and
m2−4

2 when m is even. Let E1 be an elliptic curve defined over K , with Weierstrass
form y2 = x3 + bx . We will denote by φ1 the complex multiplication of E1, i.e.
φ1((x, y)) = (−x, iy), for every point P = (x, y) ∈ E1. Since φ1 is an automorphism
ofE1,wehave that�m is a polynomial in x2.Whenm = 7, the 7-th divisionpolynomial
of E1 is the polynomial

q7(x) ..= 7x24 + 308bx22 − 2954b2x20 − 19852b3x18 − 35231b4x16

− 82264b5x14 − 111916b6x12 − 42168b7x10 + 15673b8x8

+ 14756b9x6 + 1302b10x4 + 196b11x2 − b12.

We can set t ..= x2 and consider the polynomial q7(t) of degree 12 to look for the
abscissas of the 7-torsion points of E1. For every α ∈ K7, we denote by α its complex
conjugate. Let i be a root of x2 + 1 = 0, let σ1 be the automorphism of the extension
Q(ζ7, i)/Q mapping ζ7 to ζ 5

7 and let

ω1
..= (6i + 4)ζ 5

7 + (6i − 2)ζ 4
7 + (2i − 2)ζ 3

7 + (2i + 4)ζ 2
7 + 8iζ7 + 4i − 3;

ω3
..= σ1(ω1) = (2i + 2)ζ 5

7 + 6ζ 4
7 + ( − 4i + 6)ζ 3

7 + ( − 6i + 2)ζ 2
7 − 4iζ7 − 2i − 1;

ω5
..= σ1(ω3) = (4i − 6)ζ 5

7 + ( − 2i − 4)ζ 4
7 + (6i − 4)ζ 3

7 − 6ζ 2
7 + 4iζ7 + 2i − 7;

ωs+1
..= ωs, for s ∈ {1, 3, 5};

θ1
..= 1

7

(
( − 3520i − 1568)ζ 5

7 + ( − 4800i + 2352)ζ 4
7 + ( − 256i + 2352)ζ 3

7

+ ( − 1536i − 1568)ζ 2
7 − 5056iζ7 − 2528i + 3584

);
θ3

..= σ1(θ1) = 1

7

(
( − 256i − 2352)ζ 5

7 + (1280i − 3920)ζ 4
7 + (3264i − 3920)ζ 3

7

+ (4800i − 2352)ζ 2
7 + 4544iζ7 + 2272i + 1232

);
θ5

..= σ1(θ3) = 1

7

(
( − 3264i + 3920)ζ 5

7 + (1536i + 1568)ζ 4
7 + ( − 3520i + 1568)ζ 3

7

+ (1280i + 3920)ζ 2
7 − 1984iζ7 − 992i + 5152

);
θs+1

..= θs, for s ∈ {1, 3, 5}.
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With the use of a software of computational algebra (we used AXIOM, that is also
implemented in SAGE), one can verify that q7(t) factors over K (i, ζ7) as follows:

q7(t) ..= 7
6∏

j=1

(
t −

(
ω j b + 1

2
b
√

θ j

))(
t −

(
ω j b − 1

2
b
√

θ j

))
.

Thus the roots of q7(x), i.e. the abscissas of the 7-torsion points of E1, are

x2 j−1 =
√

ω j b + 1

2
b
√

θ j ; x2 j =
√

ω j b − 1

2
b
√

θ j ;

− x2 j−1 = −
√

ω j b + 1

2
b
√

θ j ; −x2 j = −
√

ω j b − 1

2
b
√

θ j ;

for 1 � j � 6.By using the equation y2 = x3+bx , we can calculate the corresponding
ordinates. For ease of notation, we will denote by i P the point φ1(P) = (−x, iy),
where P = (x, y) ∈ E1. It turns out that the 48 points of exact order 7 of E1 are the
following:

±P2 j−1
..= (x2 j−1,±y2 j−1)

=
(√

ω j b + 1

2
b
√

θ j ,±
√(

ω j + 1

2

√
θ j + 1

)
b

√

ω j b + 1

2
b
√

θ j

)
;

±P2 j ..= (x2 j ,±y2 j )

=
(√

ω j b − 1

2
b
√

θ j ,±
√(

ω j − 1

2

√
θ j + 1

)
b

√

ω j b − 1

2
b
√

θ j

)
;

±i P2 j−1
..= (−x2 j−1,±iy2 j−1), ±i P2 j ..= (−x2 j ,±iy2 j );

for 1 � j � 6.

Theorem 2.1 Let θ j and ω j be as above, for j = 1, . . . , 6, and let ε ∈ {+,−} fixed.
Then

K7 = K (i, ζ7, y j ) = K

(
i, ζ7,

√(
ω j + ε

1

2

√
θ j + 1

)
b

√

ω j b + ε
1

2
b
√

θ j

)
.

Proof If P is a nontrivial 7-torsion point, then i P is a 7-torsion point too. If i P is not
a multiple of P , then a basis for E1[7] is given by {P, i P}. Observe that i P = nP if
and only if (i −n)P = O . Since the ring of automorphisms of E1 is Z[i] and 7 is inert
inZ[i], we see that i P is not a multiple of P , for every P ∈ E1[7] of exact order 7, and
we can choose {Pj , i Pj } as a generating set of E1[7], for any j = 1, . . . , 12. We have
K7 = K (x j , y j ,−x j , iy j ) = K (x j , y j , i). On the other hand, by [3, Theorem 1.1],
the field K7 is equal to K (x j , ζ7, iy j ). Then in particular K7 = K (x j , i, ζ7, y j ). By
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calculating y2j and y4j , one can verify that
√

θ j ∈ K (i, ζ7, y4j ). Thus x j ∈ K (i, ζ7, y j )
and we get the conclusion

K7 = K (i, ζ7, y j ) = K

(
i, ζ7,

√(
ω j + ε

1

2

√
θ j + 1

)
b

√

ω j b + ε
1

2
b
√

θ j

)
,

for every j = 1, . . . , 6 and ε ∈ {+,−}. ��

3 Degrees [K7 :K] for the curves of F1

For ease of notation, from now on we will fix the generating set {P1, i P1} for E1[7].
By Theorem 2.1 we have K7 = K

(
i, ζ7,

√
(
ω1 + 1

2

√
θ1 + 1

)
b
√

ω1b + 1
2b

√
θ1

)
. As

explained in the proof of Theorem 2.1, such a choice is without loss of generality and
all the results that we are going to show about the degree [K7 : K ] and the Galois group
Gal(K7/K ) hold as well for every other generating set of the extension K7/K listed
in Theorem 2.1.

Theorem 3.1 Let E1 : y2 = x3 + bx, with b ∈ K. Let

y1 =
√(

ω1 + 1

2

√
θ1 + 1

)
b

√

ω1b + 1

2
b
√

θ1

and consider the conditions

A. i /∈ K ; C.
√

θ1 /∈ K (i, ζ7);
B1. ζ7 + ζ−1

7 /∈ K (i); D.

√
ω1b + 1

2b
√

θ1 /∈ K (i, ζ7,
√

θ1);
B2. ζ7 /∈ K (i, ζ7 + ζ−1

7 ); E. y1 /∈ K
(
i, ζ7,

√
ω1b + 1

2b
√

θ1
)
.

The possible degrees of the extension K7/K are given in Table 1:

Table 1 Degrees [K (E1[7]) : K ]
d Holding conditions d Holding conditions

96 A, B1, B2, C, D, E 8 E and two of A, B2, C, D or A, B2
and C

48 B1, E, and three of A, B2, C, D 6 B1 and one of A, B2, C, E

32 A, B2, C, D, E 4 two of A, B2,C or E and one of A,
B2, C, D

24 B1, E and two of A, B2, C, D or A,
B1, B2 and C

3 B1

16 E and three of A, B2, C, D 2 one of A, B2, C, E

12 B1, E and one of A, B2, C, D or B1
and two of A, B2, C

1 no conditions hold
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Proof Consider the tower of extensions

K ⊆ K (i) ⊆ K (i, ζ7 + ζ−1
7 ) ⊆ K (i, ζ7)

⊆ K
(
i, ζ7,

√
θ1

) ⊆ K

(
i, ζ7,

√

ω1b + 1

2
b
√

θ1

)
⊆ K (i, ζ7, y1).

The degree d ..= [K7 : K ] is the product of the degrees of the intermediate extensions
appearing in the tower. Each extension gives a contribution to the degree less than or
equal to 2, except for the extension K (i) ⊂ K (i, ζ7 + ζ−1

7 )which gives a contribution
dividing 3. With the use of the software of computational algebra AXIOM, we have
verified that if K is linearly disjoint from Q(i, ζ7) over Q, then θ1 is not a square in
K (i, ζ7). A priori we can have all the possible combinations of the conditions A, B1,
B2, C, D and E. However, some of the cases do not occur. The extensions Q(i) and
Q(ζ7) are linearly disjoint over Q, so condition A is independent of conditions B1
and B2 and the other way around. On the other hand, the extensions Q(i, ζ7,

√
θ1),

Q
(
i, ζ7,

√
ω1b + 1

2b
√

θ1
)
andQ(i, ζ7, y1) are not linearly disjoint overQ(i, ζ7). Then

conditions C, D and E might be dependent on each other. Suppose that E does not

hold. Then y1 ∈ K
(
i, ζ7,

√
ω1b + 1

2b
√

θ1
)
, i.e. y1 = α + β

√
ω1b + 1

2b
√

θ1, with

α, β ∈ K (i, ζ7,
√

θ1). By y21 = x31 + bx1, we deduce

⎧
⎪⎨

⎪⎩

2αβ = bω1 + b + b

2

√
θ1

α2 + β2
(
ω1b + b

2

√
θ1

)
= 0

(recall that b �= 0, otherwise the curve would be singular and we would not have an
elliptic curve). Therefore

⎧
⎪⎪⎨

⎪⎪⎩

α = bω1 + b + b
2

√
θ1

2β
b2(ω1 + 1 + 1

2

√
θ1)

2 + 4β4(ω1b + b
2

√
θ1)

4β2 = 0.

Hence b2
(
ω1 + 1 + 1

2

√
θ1

)2 + 4β4
(
ω1b + b

2

√
θ1

) = 0, i.e. ω1b + b
2

√
θ1 =

− b2(ω1+1+ 1
2

√
θ1)

2

4β4 is a square in K (i, ζ7,
√

θ1) and condition D does not hold too.
Therefore we cannot have cases when conditionD holds and conditionE does not hold
and in particular this implies that condition E may not hold only when d � 96

4 = 24.
On the contrary, with a similar calculation, one can see that the assumption that condi-
tionD does not hold, in general gives no contradiction with the holding of conditionC.
There are no similar dependences for other possible combinations of the conditions,
thus all the other cases may take place. One can get examples of extensions realiz-
ing the scenarios given by all the possible combinations by considering the curve in
the family F1 with b = 1 and setting the base field K as the extension of Q whose
generators are the ones of K7/K appearing in the conditions which do not hold. The
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final computation that gives the degree and the corresponding conditions in Table 1 is
straightforward. ��

Notice that [K7 : K ] � 96 < 2016 = |GL2(Z/7Z)| and the Galois representation

ρE1,7 : Gal(K/K ) → GL2(Z/7Z)

is not surjective, in accordance with E1 having complex multiplication.

4 Galois groups Gal(K7/K) for the curves of F1

Let E1 be a curve of the family F1, let G ..= Gal(K7/K ) and let d ..= |G|. Let Q16 be
the generalized quaternion group of order 16.

Theorem 4.1 Let K be a field with char(K ) �= 2, 3 and let E1 be an elliptic curve
with Weierstrass form y2 = x3 + bx, where b ∈ K. Then Gal(K7/K ) is isomorphic
to a subgroup of Q16�Z/6Z. In particular, if [K7 : K ] = 96, then Gal(K7/K ) �
Q16�Z/6Z.

Proof Assume that all the conditions in Theorem 3.1 hold. Then [K7 : K ] = 96. The
image of Gal(K/K ) via the Galois representation ρE1,7 is a subgroup of GL2(Z/7Z)

isomorphic to G = Gal(K7/K ). We denote by G both Gal(K7/K ) and its image
in GL2(Z/7Z). As a consequence of the properties of the Weil pairing, the action of
Gal(K7/K ) on ζ7 is via determinant, i.e. σ(ζ7) = ζ

det(σ )
7 , where σ denotes both an

element of G and its image in GL2(Z/7Z). Consider the tower of extensions in Fig. 1.
We denote by H both Gal(K7/K (ζ7)) and its image in GL2(Z/7Z). We have

that the Galois group Gal(K (ζ7)/K ) � G/H is isomorphic to Z/6Z. If σ fixes ζ7,
then det(σ ) = 1 and σ ∈ SL2(Z/7Z). Therefore H is isomorphic to a subgroup
of SL2(Z/7Z) of order 16. It is well known that |SL2(Z/7Z)| = 336 = 16 ·21.
Therefore the image of H in GL2(Z/7Z) is a 2-Sylow subgroup of SL2(Z/7Z). By
Sylow’s Theorems, the 2-Sylow subgroups are all conjugate and in particular they

Fig. 1 Tower K7

K(ζ7)

K

G

H

G/H

123



   51 Page 8 of 26 J. Alessandrì, L. Paladino

are all isomorphic. So it suffices to determine the structure of a 2-Sylow subgroup
of SL2(Z/7Z) to get H up to isomorphism. The structure of such a group is known;
however, according to our knowledge, there is no explicit reference in the literature.
So, for the reader’s convenience, we are going to describe it. We know that one of the
automorphisms of G is the complex multiplication φ1. We consider again {P1, i P1}
as a generating set of E1[7]. We have

P1
φ1�−−→ i P1

φ1�−−→ −P1
φ1�−−→ −i P1

φ1�−−→ P1.

Then the representation of φ1 in GL2(Z/7Z) is

φ1 =
(
0 −1
1 0

)

and det(φ1) = 1. Therefore φ1 ∈ H . Observe that φ2
1 = −Id.

Consider the matrix

τ1 =
(
2 1
1 1

)
.

Since det(τ1) = 1, we have that τ1 ∈ SL2(Z/7Z). In addition τ1 has order 8 and in
particular τ 41 = −Id. One can easily verify that φ1τ1 = τ−1

1 φ1. Therefore the group
generated by φ1 and τ1 has the following presentation:

〈
φ1, τ1 | φ2

1 = τ 41 = − Id, φ1τ1 = τ−1
1 φ1

〉

and it is then isomorphic to the generalized quaternion group Q16, i.e. the dicyclic
group Dic4. This is a group of order 16, hence it is a 2-Sylow subgroup of SL2(Z/7Z).
Thus H is isomorphic to Q16 too. We have

H = 〈
φ1, ϕ1 | φ2

1 = ϕ4
1 = −Id, φ1ϕ1 = ϕ−1

1 φ1
〉
,

where ϕ1 is a conjugate of τ1. To deduce G, we have to look more closely at the auto-
morphismgeneratingG/H � Z/6Z. In factGL2(Z/7Z) � SL2(Z/7Z)�(Z/7Z)∗ �
SL2(Z/7Z)�Z/6Z. Thus G � H�Z/6Z � Q16�Z/6Z. We are going to show that
this semidirect product is not a direct product. The group Gal(K (ζ7)/K ) � G/H
is generated by an automorphism ψ1 corresponding to the automorphism σ1 of
Q(ζ7, i)/Q mapping ζ7 to ζ 5

7 . Since σ1(ω1) = ω3 and σ1(θ1) = θ3, then we have
that ψ1 acts on the basis {P1, i P1} by mapping P1 to one of the points ±Ps , ±i Ps , for
some s ∈ {5, 6}. Observe that if x1 is sent to xs (respectively−xs), for some s ∈ {5, 6},
then−x1 is sent to−xs (resp. xs). Therefore ifψ1 maps the point P1 to Ps (resp.−Ps)
then ψ1 maps the point i P1 to one of the points ±i Ps . Similarly if ψ1 maps the point
P1 to i Ps (resp. −i Ps), then ψ1 maps the point i P1 to one of the points ±Ps . Let
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ψ1(P1) = αP1 + βi P1. Then ψ1(i P1) = ±(−βP1 + αi P1), i.e.

ψ1 =
(

α −β

β α

)
or ψ1 =

(
α β

β −α

)
.

Since i P1 = φ1(P1), we have that ifψ1 and φ1 commute, thenψ1(i P1) = φ1(ψ1(P1))
= αi P1 − βP1. In this case the representation of ψ1 in GL2(Z/7Z) is the following:

ψ1 =
(

α −β

β α

)
.

Observe that every power of ψ1 is a matrix of the same type

ψn
1 =

(
αn −βn

βn αn

)
,

for some αn, βn ∈ Z/7Z. In particular

ψ3
1 =

(
α3 − 3αβ2 β3 − 3α2β

− β3 + 3α2β α3 − 3αβ2

)
=

(
α3 −β3
β3 α3

)
,

for some α3, β3 ∈ Z/7Z. Since G/H � Z/6Z and G = H�G/H , we have that
ψ6
1 = Id. Hence

(ψ3
1 )2 =

(
α2
3 − β2

3 −2α3β3

2α3β3 α2
3 − β2

3

)
≡

(
1 0
0 1

)
(mod 7).

Thus α3β3 ≡ 0 (mod 7), implying α3 = 0 or β3 = 0. Therefore α3 − 3αβ2 ≡
0 (mod 7) or β3 − 3α2β ≡ 0 (mod 7), i.e. α = 0 or β = 0 or α2 ≡ 3β2 (mod 7) or
β2 ≡ 3α2 (mod 7). The last two congruences have no nontrivial solutions in Z/7Z.
Thus α = 0 or β = 0. Assume α = 0, then

ψ1 =
(
0 −β

β 0

)
= βφ1.

Since ψ6
1 = Id and φ2

1 = −Id, we have −β6 ≡ 1 (mod 7) and we get a contradic-
tion with Fermat’s Little Theorem. If β = 0, then we see that the automorphism �1
is represented by a scalar matrix α · Id. Since �1 acts on ζ7 via determinant and we
are assuming that �1 is the automorphism of order 6 induced by the automorphism
σ1 mapping ζ7 to ζ 5

7 , we have that det(�1) ≡ 5 (mod 7), i.e. α2 ≡ 5 (mod 7). This
congruence has no solutions in Z/7Z. Therefore

ψ1 =
(

α β

β −α

)

and ψ1 and φ1 do not commute. Hence G is not isomorphic to Q16×Z/6Z. If
[K7 : K ] < 96, then G is isomorphic to a proper subgroup of Q16�Z/6Z. ��
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We are going to describe the Galois group G = Gal(K7/K ) (up to isomorphism),
for all possible d ..= [K7 : K ] � 96. We firstly make a few general remarks. In the last
part of the proof of Theorem 4.1 we have shown that

ψ1 =
(

α β

β −α

)
.

Hence

ψ2
1 =

(
α2 + β2 0

0 α2 + β2

)
= − det(ψ1) Id

and then ψ2
1 and ψ4

1 commute with every other automorphism of G. Observe that
instead ψ3

1 = − det(ψ1)ψ1 does not commute with φ1.
We recall that every subgroup of a generalized quaternion group is cyclic or it

is a (generalized) quaternion group itself. The only proper non abelian subgroup of
Q16 is Q8. The other proper nontrivial subgroups of Q16 are the groups Z/mZ, with
m ∈ {2, 4, 8}.

By [25, Chapter II, Theorem 2.3], the extension K7/K (i) is abelian. Therefore,
when condition A does not hold, we have that G is an abelian group. Observe that
if conditions C, D and E hold, then Gal(K7/K (i, ζ7)) is an abelian group of order
8, which is a subgroup of Q16, i.e. Gal(K7/K (i, ζ7)) � Z/8Z. In this case we have
Gal(K7/K (i, ζ7)) = 〈ϕ1〉. In addition Gal(K7/K (i)) = 〈ϕ1, ψ1〉 � Z/8Z×Z/6Z.
In particular ψ1 commutes with ϕ1. Moreover we deduce that the existence of any
power of ϕ1 in G is related to the holding of at least some of the conditions C, D
and E. We also deduce that if A does not hold, then φ1 /∈ G. On the other hand if A
holds and at least one of C, D and E holds, then G has a subgroup of order 4, which
is isomorphic to a subgroup of Q16 that is not generated by any power of ϕ1. Hence
in this case φ1 is an automorphism of G. We also observe that φ1 does not commute
with every power ϕn

1 of ϕ1, with n �≡ 0 (mod 4); in fact φ1ϕ
n
1 = ϕ−n

1 φ1, for every
n �≡ 0 (mod 4). Thus if Q8 is a subgroup of G under certain conditions, then we
have that φ1 ∈ H . Furthermore note that φ2

1 = ϕ4
1 = −Id is an automorphism of

Gal(K7/K (i)).

Galois groups Gal(K(E1[7])/K)

d = 96. If the degree d of the extension K7/K is 96, then all the conditions in Table 1
hold. We have already proved in Theorem 4.1 that G � Q16�Z/6Z.

d = 48. If the degree d of the extension K7/K is 48, then conditionB1 holds, because
of 3 | d. If E does not hold, then as stated in the proof of Theorem 3.1 we have that D
does not hold and wewould have an extension of degree d < 48. Therefore condition
E holds.

• If A does not hold, then G is abelian, as mentioned above. We have G =
〈ϕ1, ψ1〉 � Z/8Z×Z/6Z.
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• IfA holds, we have that φ1 is an automorphism of order 4 ofG (recall that con-
dition E holds too) and G is not abelian (recall that we have already observed
that φ1 does not commute with any map in Q16 except its powers).

If B2 holds, then ψ1 has order 6 and G � Q8�Z/6Z.
If B2 does not hold, then G/H � Z/3Z is generated by ψ2

1 , which is
represented by a scalar matrix, as we have observed above. Thus G �
Q16×Z/3Z.

d = 32. If the degree d of the extension K7/K is 32, then all the conditions hold but
B1. Thus we have thatG/H � Z/2Z is generated by the automorphismψ3

1 mapping
ζ7 to ζ−1

7 and G � Q16�Z/2Z.

d = 24. Condition B1 must hold in all cases when d = 24, because of 3 | d.
• If B2 holds, then G/H � Z/6Z.

If A does not hold, then G is abelian and we have G � Z/4Z×Z/6Z.
Assume that A holds. Since B2 holds, we have that either C or E also
holds and φ1 ∈ G. Therefore H = 〈φ1〉 � Z/4Z and G = 〈φ1, ψ1〉 �
Z/4Z�Z/6Z � D8×Z/3Z (recall that φ1 does not commute with ψ1).

• If B2 does not hold, then G/H � Z/3Z.
If A does not hold, then G is abelian and we have G � Z/8Z×Z/3Z.
Assume that A holds. Since we are assuming that B2 does not hold, then
E holds. We have that φ1 ∈ G. Therefore H is a subgroup of Q16 of order
8, which is not abelian (recall that φ1 does not commute with any map
in Q16 except its powers). The group G/H is generated by ψ2

1 or ψ4
1 .

Since these two maps commute with every homomorphism in G, we have
G � Q8×Z/3Z.

d = 16. If the degree d of the extension K7/K is 16, as stated in Table 1, then
condition B1 does not hold and E holds. Only one of the other conditions does not
hold.

• If B2 does not hold, then G/H is trivial. Therefore G � Q16.
• If B2 holds, then G/H = 〈ψ3

1 〉 � Z/2Z and |H | = 8.
If A does not hold, then we have an abelian extension and G �
Z/8Z×Z/2Z.
Assume that A holds. Since E holds, we have that φ1 ∈ G and H is not
abelian. Therefore G � Q8�Z/2Z (recall that ψ3

1 does not commute
with φ1).

d = 12. If the degree d of the extension K7/K is 12, then Q8 cannot be a subgroup
of G. Condition B1 holds because of 3 | d. We have the following cases.

• If B2 holds, then G/H � Z/6Z and H � Z/2Z. Thus G is abelian and
G � Z/3Z× (Z/2Z)2.

• If B2 does not hold, then G/H has order 3 and it is generated by ψ2
1 or ψ4

1 .
In this case H has order 4. Since every abelian subgroup of Q16 is cyclic and
ψ2
1 and ψ4

1 commute with every other automorphism of G, we have G �
Z/4Z×Z/3Z.
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d = 8. If the degree d of the extension K7/K is 8, then B1 does not hold.

• If A does not hold, then we have an abelian extension.
IfB2 holds, thenG/H has order 2, H has order 4 andG � Z/4Z×Z/2Z.
If B2 does not hold, then G = H � Z/8Z.

• Assume that A holds.
If B2 does not hold, then G = H has order 8. In this case E holds, hence
φ1 is an automorphism of G and G � Q8.
Assume that B2 holds. We have that one of C and E holds too. Hence
G/H = 〈ψ3

1 〉 � Z/2Z and H = 〈φ1〉 � Z/4Z. The complex multiplica-
tion φ1 is an automorphism of G which does not commute with ψ3

1 . Then
G � Z/4Z�Z/2Z.

d = 6. If the degree d of the extension K7/K is 6, then condition B1 must hold in
all cases, as listed in Table 1, and G/H has order divisible by 3. In every case we
have an abelian group of order 6, i.e. G � Z/3Z×Z/2Z.
d = 4. If the degree d of the extension K7/K is 4, then B1 does not hold.

• IfB2 does not hold, thenG/H is trivial andG = H is isomorphic to a subgroup
of Q16 of order 4. Thus G � Z/4Z.

• If B2 holds, then G/H � Z/2Z and G is isomorphic to the Klein group
Z/2Z×Z/2Z.

d � 3. If the degree d of the extension K7/K is 3, 2 or 1, the Galois group is
respectively Z/3Z, Z/2Z or {Id}.

5 Generators of the 7-th division field for elliptic curves y2 = x3 + c

LetE2 be an elliptic curvewithWeierstrass form y2 = x3+c, with c ∈ K . Then them-
th division polynomial�m(x) ofE2 is a polynomial in x3, because of the automorphism
of E2 given by the complex multiplication φ2, which maps (x, y) to (ζ3x, y). Ifm = p

is an odd prime, then �p(x) has degree
p2−1
2 . Observe that 3 | p2 − 1. Set t ..= x3,

then �p(t) is a polynomial of degree p2−1
6 in the variable t . For 1 � j � p2−1

6 , let
δ j be the roots of �p(t). Therefore the p2 − 1 abscissas of the p-torsion points of

E2 of exact order p are
{

3
√

δ j c, ζ3 3
√

δ j c, ζ 2
3

3
√

δ j c | 1� j � p2−1
6

}
. We also have that

the ordinates of the points with abscissas in
{

3
√

δ j , ζ3 3
√

δ j , ζ
2
3

3
√

δ j
}
are ±√

(δ j + 1)c.
The point φ2

((
3
√

δ j c,
√

δ j + c
)) = (

ζ3 3
√

δ j c,
√

δ j + c
)
is still a p-torsion point of

E2, for every δ j . If Pj = (
3
√

δ j c,
√

δ j + c
)
and φ2(Pj ) are linearly independent, then

{Pj , φ2(Pj )} is a generating set for E2[p]. In this case, we have both

K (E2[p]) = K
(

3
√

δ j c, ζ3,
√

(δ j + 1)c
)
, K (E2[p]) = K

(
3
√

δ j c, ζp,
√

(δ j + 1)c
)

(this last equality following by [3, Theorem 1.1]). We now make these generating sets
explicit for p = 7, by producing the coordinates of the points in E2[7].
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We denote by r7(x) the 7-th division polynomial of a curve E2 ∈ F2. We have

r7(x) ..= 7x24 + 3944c x21 − 42896c2x18 − 829696c3x15 − 928256c4x12

− 1555456c5x9 − 2809856c6x6 − 802816c7x3 + 65536c8.

Let σ2 be the automorphism of Q(ζ3, ζ7)/Q mapping ζ7 to ζ 5
7 , let ϕ be the automor-

phism of Q(ζ3, ζ7)/Q mapping ζ3 to ζ 2
3 and let

δ1
..= − (

( − 132ζ3 − 120)ζ 5
7 + ( − 168ζ3 − 12)ζ 4

7 + ( − 24ζ3 + 60)ζ 3
7

+( − 60ζ3 − 84)ζ 2
7 + (−192ζ3 − 96)ζ7 − 96ζ3 + 52

);
δ2

..= σ2(δ1) = − (
( − 24ζ3 − 84)ζ 5

7 + (36ζ3 − 108)ζ 4
7 + (108ζ3 − 72)ζ 3

7

+(168ζ3 + 12)ζ 2
7 + (144ζ3 + 72)ζ7 + 72ζ3 + 64

);
δ3

..= σ2(δ2) = − (
(108ζ3 + 180)ζ 5

7 + ( − 60ζ3 + 24)ζ 4
7 + (132ζ3 + 120)ζ 3

7

+( − 36ζ3 + 108)ζ 2
7 + (72ζ3 + 36)ζ7 + 36ζ3 + 172

);
δ4

..= σ2(δ3) = − (
(132ζ3 + 12)ζ 5

7 + (168ζ3 + 156)ζ 4
7 + (24ζ3 + 84)ζ 3

7

+(60ζ3 − 24)ζ 2
7 + (192ζ3 + 96)ζ7 + 96ζ3 + 148

);
δ5

..= σ2(δ4) = − (
(24ζ3 − 60)ζ 5

7 + ( − 36ζ3 − 144)ζ 4
7 + (−108ζ3 − 180)ζ 3

7

+( − 168ζ3 − 156)ζ 2
7 + ( − 144ζ3 − 72)ζ7 − 72ζ3 − 8

);
δ6

..= σ(δ5) = − (
( − 108ζ3 + 72)ζ 5

7 + (60ζ3 + 84)ζ 4
7 + ( − 132ζ3 − 12)ζ 3

7

+(36ζ3 + 144)ζ 2
7 + ( − 72ζ3 − 36)ζ7 − 36ζ3 + 136

);
δ7

..= 12ζ3 + 8

7
;

δ8
..= ϕ(δ8) = − 12ζ3 + 4

7
.

The polynomial r7(x) factors over K (ζ3, ζ7) as follows:

r7(x) = 7
8∏

j=1

(x3 + δ j c).

Then, as mentioned above, the 48 torsion points of E2 with exact order 7 are

±Pj = (x j ,±y j ) =
(

3
√

δ j c,±
√

(δ j + 1)c
)
;

±φ(Pj ) = (ζ3x j ,±y j ) =
(
ζ3

3
√

δ j c ,±
√

(δ j + 1)c
)
;

±φ2(Pj ) = (ζ 2
3 x j ,±y j ) =

(
ζ 2
3

3
√

δ j c ,±
√

(δ j + 1)c
)
;

for 1 � j � 8.
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Theorem 5.1 Let δ j be as above, with 1 � j � 6. Then

K7 = K
(

3
√

δ j c, ζ3,
√

(δ j + 1)c
)

= K
(

3
√

δ j c, ζ7,
√

(δ j + 1)c
)
.

Proof We have already observed at the beginning of this section that if φ2(P) is a 7-
torsion point that is not a multiple of P , then a basis for E2[7] is given by {P, φ2(P)}
and K7 = K (x(P), ζ3, y(P)). However, in some cases the point φ2(P) is a multiple
of P . This happens for the points Pj and φ2(Pj ), when j = 7, 8 (in fact if ζ7 /∈ K ,
then ζ7 /∈ K (x(Pj ), ζ3, y(Pj )), for j = 7, 8, contradicting the well-known property
of the Weil pairing recalled above). By the use of a software of computational algebra
(we used AXIOM again), one can verify that x(2P1) = x(P3) (i.e. 2P1 = P3 or
2P1 = −P3) and x(4P1) = x(P5) (i.e. 4P1 = P5 or 4P1 = −P5). Suppose that
φ2(P1) = nP1. Since φ2

2(P1) = −P1 − φ2(P1), we have (n2 + n + 1)P1 = O . Thus
n is a root of n2 + n+ 1 modulo 7, hence n ≡ 2, 4 (mod 7). But, as noticed above, we
have x(2P1) �= x(φ2(P1)) and x(4P1) �= x(φ2(P1)). Thus φ2(P1) and P1 are linearly
independent. Similar arguments apply for P3 and P5. In addition one can verify that
x(2P2) = x(P4) and x(4P2) = x(P6) and repeat the arguments for those points too.
Therefore Pj and φ2(Pj ) are linearly independent for j = 1, . . . , 6 and {Pj , φ2(Pj )}
is a basis of E2[7], for every j = 1, . . . , 6. Then K7 = K

(
3
√

δ j c, ζ3,
√

(δ j + 1)c
)
. As

stated above, by [3, Theorem 1.1] we also have K7 = K
(
3
√

δ j c, ζ7,
√

(δ j + 1)c
)
. ��

6 Degrees [K7 :K] for the curves of F2

By the results achieved in Theorem 5.1, we are going to describe the possible
degrees [K7 : K ] for the elliptic curves of the family F2. From now on we will fix
the generating set {P1, φ2(P1)} for E2[7]. Thus K7 = K

(
3
√

δ1c, ζ3,
√

(δ1 + 1)c
) =

K
(
3
√

δ1c, ζ7,
√

(δ1 + 1)c
)
. Clearly all the results that we are going to show about the

degree [K7 : K ] and the Galois group Gal(K7/K ) hold as well for every other gener-
ating set

{
3
√

δ j c, ζ3,
√

(δ j + 1)c
}
or

{
3
√

δ j c, ζ7,
√

(δ j + 1)c
}
of the extension K7/K ,

with 2 � j � 6.

Theorem 6.1 Let E2 : y2 = x3 + c, with c ∈ K. Let δ1 be as above. Consider the
conditions

A. ζ3 /∈ K ;
B1. ζ7 + ζ−1

7 /∈ K (ζ3); C. 3
√

δ1c /∈ K (ζ3, ζ7);
B2. ζ7 /∈ K (ζ3, ζ7 + ζ−1

7 ); D.
√

(δ1 + 1)c /∈ K (ζ3, ζ7).

The possible degrees of the extension K7/K are given in Table 2:
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Table 2 Degrees [K (E2[7]) : K ]
d Holding conditions d Holding conditions

72 A, B1, B2, C, D 8 A, B2, D

36 B1, C and two of A, B2, D 6 one of B1, C and one of A, B2, D

24 one of B1, C and A, B2, D 4 two of A, B2, D

18 B1, C and one of A, B2, D 3 one of B1, C

12 one of B1, C and two of A, B2, D 2 one of A, B2, D

9 B1, C 1 no conditions hold

Proof Consider the tower of extensions in Fig. 1.

K ⊆ K (ζ3) ⊆ K (ζ3, ζ7 + ζ−1
7 ) ⊆ K (ζ3, ζ7)

⊆ K
(
ζ3, ζ7,

3
√

δ1c
) ⊆ K

(
ζ3, ζ7,

3
√

δ1c,
√

(δ1 + 1)c
)
.

We have that each of the degrees [K (ζ3, ζ7 + ζ−1
7 ) : K (ζ3)] and [K (ζ3, ζ7,

3
√

δ1c) :
K (ζ3, ζ7)] divides 3. In addition each of the degrees [K (ζ3) : K ], [K (ζ3, ζ7) :
K (ζ3, ζ7 + ζ−1

7 )] and [K7 : K (ζ3, ζ7,
3
√

δ1c)] divides 2. Since the fields Q(ζ3) and
Q(ζ7) are linearly disjoint over Q, then condition A is independent of conditions B1
and B2 and the other way around. In addition, with the software AXIOM we have
verified that when K ∩ Q(ζ3, ζ7) = Q neither δ1 + 1 is a square in K (ζ3, ζ7), nor
δ1 is a cube in K (ζ3, ζ7). Then the fields K ( 3

√
δ1c) and K (

√
(δ1 + 1)c) are linearly

disjoint over Q(ζ3, ζ7). Hence all the conditions are independent on each other, except
B1 and B2. Then we can have all the possible combinations of the conditions. The
conclusions follow immediately from [K7 : K ] being the product of the degrees of the
intermediate extensions appearing in the tower. One can produce examples of exten-
sions realizing the scenarios given by all the possible combinations by considering
the curve in the family F2 with c = 1 and setting the base field K as the extension of
Q whose generators are the ones of K7/K appearing in the conditions which do not
hold. ��

Notice that [K7 : K ] � 72 < 2016 = |GL2(Z/7Z)| and the Galois representation

ρE2,7 : Gal(K/K ) → GL2(Z/7Z)

is not surjective, in accordance with E2 having complex multiplication.

7 Galois groups Gal(K7/K) for the curves of F2

Let E2 be a curve of the family F2. We are going to show all possible Galois groups
Gal(K (E2[7])/K ), with respect to the degrees d = [K7 : K ] � 72.

Theorem 7.1 Let K be a field with char(K ) �= 2, 3 and let E2 be an elliptic curve
with Weierstrass form y2 = x3 + c, where c ∈ K. Then Gal(K7/K ) is isomorphic to
a subgroup of G � Dic3�Z/6Z. In particular, if [K7 : K ] = 72, then Gal(K7/K ) �
Dic3�Z/6Z.
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Proof Suppose that all the conditions in Theorem 6.1 hold, so that [K7 : K ] = 72. The
image of Gal(K/K ) via the Galois representation ρE2,7 is a subgroup of GL2(Z/7Z)

isomorphic to G = Gal(K7/K ). As for the family F1, we denote by G both
Gal(K7/K ) and its image in GL2(Z/7Z). Consider the tower of extensions in Fig. 1.
We denote by H both Gal(K7/K (ζ7)) and its image in GL2(Z/7Z). The Galois group
Gal(K (ζ7)/K ) is then isomorphic to the quotient G/H . The group H has order 12,
because of Gal(K (ζ7)/K ) � Z/6Z. Since the action of σ ∈ GL2(Z/7Z) on ζ7 is
given by σ(ζ7)

..= ζ
det(σ )
7 , then det(σ ) = 1, for every σ ∈ H . Thus H is indeed a

subgroup of SL2(Z/7Z). We are going to describe H up to isomorphism. For every
positive integer n, we denote by D2n the dihedral group of order 2n. Since we are
assuming that all the conditions in Theorem 6.1 hold, then the complex multiplication
φ2 and −Id are automorphisms of H . The complex multiplication φ2 has order 3 and
acts on the basis {P1, φ2(P1)} as

P1
φ2�−−→ φ2(P1), φ2(P1)

φ2�−−→ φ2
2(P1).

Since φ2
2(P1) = −P1 − φ2(P1), we can represent φ2 in GL2(Z/7Z) as

φ2 =
(
0 −1
1 −1

)
.

Then the inverse of φ2 is represented by the matrix

φ−1
2 = φ2

2 =
(−1 1

−1 0

)
.

The automorphism −Id, swapping the ordinates P
−Id�−→ −P for every P ∈ E2[7],

corresponds to the automorphism of K7/K that maps
√

(δ j + 1)c to −√
(δ j + 1)c,

for all 1 � j � 8. Clearly φ2 and −Id commute, so H has a subgroup isomorphic
to Z/3Z×Z/2Z � Z/6Z. We are going to show that H is not abelian. Suppose that
H is abelian. Then it is isomorphic to either Z/3Z×Z/4Z or Z/3Z×(Z/2Z)2. Let
σ ∈ H . Since σ commutes with φ2, one gets that

σ =
(

α −β

β α − β

)
,

for some α, β ∈ Z/7Z. We have already observed that −Id ∈ H . If H �
Z/3Z×Z/4Z, then there exists σ ∈ H such that σ 4 = Id and σ 2 = −Id, i.e.

σ 2 =
(

α2 − β2 β2 − 2αβ

2αβ − β2 α2 − 2αβ

)
≡

(−1 0
0 −1

)
(mod 7).

The congruence β2 − 2αβ ≡ 0 (mod 7) implies β = 0 or β = 2α. If β = 0, then
α2 ≡ −1 (mod 7), which has no solutions. If β = 2α, then −3α2 ≡ −1 (mod 7),
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which has no solutions as well. On the other hand, if H � Z/3Z× (Z/2Z)2, then there
exists σ ∈ H such that σ 2 = Id and σ �= ±Id. By

σ 2 =
(

α2 − β2 β2 − 2αβ

2αβ − β2 α2 − 2αβ

)
≡

(
1 0
0 1

)
(mod 7),

we get again β = 0 or β = 2α. If β = 0, then σ = ±Id and we have a contradiction.
Suppose β = 2α. From det(σ ) ≡ 1 (mod 7) we get α2 ≡ −2 (mod 7), which has no
solutions. Therefore H is not abelian, as claimed. In addition H is a group of order
12, with a subgroup isomorphic to Z/6Z. We have that either H � D12 or H � Dic3,
where Dic3 is the dicyclic group of order 12 (which is isomorphic to Z/3Z�Z/4Z).
Suppose that H � D12. We also have H � D6×Z/2Z, thus H is generated by −Id,
φ2 and another automorphism τ of order 2 such that φ2τ = τφ−1

2 (i.e. 〈φ2, τ 〉 � D6

and H = 〈−Id〉×〈φ2, τ 〉 � Z/2Z×D6 � D12). The relation φ2τ = τφ−1
2 implies

that τ is represented by a matrix of the form

τ =
(

α β

α + β −α

)
,

for some α, β ∈ Z/7Z. Since τ has order 2, we have

τ 2 =
(

α2 + β2 + αβ 0
0 α2 + β2 + αβ

)
≡

(
1 0
0 1

)
(mod 7),

i.e. α2 + β2 + αβ ≡ 1 (mod 7). On the other hand, since det(τ ) ≡ 1 (mod 7), we
have that α2 + β2 + αβ ≡ −1 (mod 7) and we find a contradiction. Therefore the
group H is isomorphic to Dic3 � Z/3Z�Z/4Z and it is generated by the complex
multiplication ψ2, which has order 3, and an automorphism τ2 of order 4, such that

H = 〈
φ2, τ2 | φ3

2 = τ 42 = 1, φ2τ2 = τ2φ
−1
2

〉
.

In addition τ 22 = −Id. Since GL2(Z/7Z) � SL2(Z/7Z)�F
∗
7 � SL2(Z/7Z)�Z/6Z,

we have that G � Dic3�Z/6Z. For completeness we are going to show that this
last semidirect product is not a direct product (as in the case of the family F1). The
group G/H is generated by an automorphism ψ2 of order 6 corresponding to the
automorphism σ2 of Gal(Q(ζ7)/Q) mapping ζ7 to ζ 5

7 . As stated above, we have

δ1
σ2�−−→ δ2

σ2�−−→ δ3
σ2�−−→ δ4

σ2�−−→ δ5
σ2�−−→ δ6

σ2�−−→ δ1.

Then �2(P1) is one of the points ±�n
2 (P2), with n ∈ {0, 1, 2} (where φ0

2 = Id).
Since �2(x1) = ζ3x1, we have that �2(φ2(P1)) is one of the points ±�n+1

2 (P2) =
±�2(�2(P1)). Suppose that �2(P1) = αP1 + β�2(P1), for some α, β ∈ Z/7Z, thus
we see that �2(φ2(P1)) = ±(βP1 + (β − α)�2(P1)). Thus

�2 =
(

α −β

β −β + α

)
or �2 =

(
α β

β β − α

)
.
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Only in the first case �2 and φ2 commute. By [25, Chapter II, Theorem 2.3], the
extension K7/K (ζ3) is abelian. If all the conditions in Theorem 6.1 hold, then the
complex multiplication φ2 and �2 are automorphisms of Gal(K7/K (ζ3)). Therefore
they must commute and we get

�2 =
(

α −β

β −β + α

)
.

Observe that �2
2 maps P1 to φ

j
2 (P3), for some j ∈ {0, 1, 2} and φ2(P1) to φ

j+1
2 (P3).

As noted in the proof of Theorem 5.1, we have x(P3) = x(2P1), i.e. P3 = 2P1
or P3 = −2P1. We also have x(φ2(P3)) = x(2φ2(P1)) = φ2(x(2P1)). Hence the
automorphism �2

2 is equal to φ
j
2ω for some j , where ω is represented by one of the

following matrices:

ω =
(
2 0
0 2

)
or ω =

(−2 0
0 −2

)
.

The second case is not possible, since �2
2 would not have order 3. Thus we have

�2
2 = φ

j
2ω, with

ω =
(
2 0
0 2

)
.

Since�2
2 ∈ G/H andφ

j
2 ∈ H , wemay assumewithout loss of generality that�2

2 = ω,
by eventually changing the representative of the class �2

2 in G/H . Observe that then
�2

2 commutes with every other automorphism of G. Furthermore, we have

�2
2 =

(
α2 − β2 β2 − 2αβ

2αβ − β2 α2 − 2αβ

)
≡

(
2 0
0 2

)
(mod 7),

Thus β(β − 2α) = 0, implying β = 0 or β = 2α. If β = 0, then det(ψ2) = α2 ≡
5 (mod 7) (recall that ψ2(ζ7) = ζ 5

7 = ζ
det(ψ2)
7 ), which has no solutions. So β = 2α

and −3α2 ≡ 2 (mod 7), i.e. α ≡ 2 (mod 7) or α ≡ −2 (mod 7). Thus we get

ψ2 =
(

2 3
−3 −2

)
or ψ2 =

(−2 −3
3 2

)
= −

(
2 3

−3 −2

)
.

Again, by eventually change the representative of the class of ψ2 in G/H , we may
assume without loss of generality that

ψ2 =
(−2 −3

3 2

)
.

We consider an automorphism ρ ∈ H induced by the automorphism of Gal(K7/K )

mapping ζ3 to ζ 2
3 . Thus ρ maps P1 to φ

j
2 (P4), for some j ∈ {0, 1, 2} and we have that
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there exists a power φs
2 of φ2, with s ∈ {0, 1, 2} such that j + s ≡ 0 (mod 3). We call

ρ̃ the product φs
2ρ and we have that it maps P1 to P4. Since ψ3

2 also maps P1 to P4
and

ψ3
2 =

(
3 1

−1 4

)
,

then we have

ρ̃ =
(

3 α

−1 β

)
,

for some α, β ∈ Z/7Z. Thus

ρ̃ψ2 − ψ2ρ̃ =
(
3α − 3 3β + 4α − 2
3β − 5 −3α + 3

)
,

and therefore ρ̃ and ψ2 commute if and only if α ≡ 1 (mod 7) and β ≡ −3 (mod 7).
But then in this case det(ρ̃) = −1 and we would have a contradiction with ρ ∈ H .
Therefore G � Dic3�Z/6Z with G �= Dic3×Z/6Z. For every d = [K7 : K ] < 72,
we have that G is isomorphic to a proper subgroup of Dic3�Z/6Z. ��

Observe that the situation for the Galois groups of the family F2 is similar to that
of the Galois groups of the family F1; in fact for the curves in F1 have that G �
Dic4�Z/6Z, since the dicyclic group Dic4 of order 16 is nothing but the quaternion
group Q16.

We are going to describe the possible Galois groups G = Gal(K (E2[7])/K ) when
d � 72. In the proof of Theorem 7.1, we showed that ψ3

2 = 2ψ2 does not commute
with ρ̃. In addition we deduce that τ2 does not commute withψ2 (otherwise we would
get G � Dic3×Z/6Z) and neither does it commute with ψ3

2 . Recall that, by the
mentioned [25, Chapter II, Theorem 2.3], we have that G is abelian whenever A does
not hold. Recall also that every nontrivial proper subgroup of Dic3 � Z/3Z�Z/4Z

is isomorphic to Z/mZ, with m ∈ {2, 3, 4, 6}. In particular, if D does not hold, then
H is abelian. Furthermore, if D does not hold and φ2 ∈ H , then we have that every
other automorphism of H commutes with φ2 and it is then represented by a matrix of
the form

(
α −β

β α − β

)
,

for some α and β inZ/7Z. Everymatrix of this type commutes withψ2 too. Therefore,
if D does not hold, then G is abelian as well.

Galois groups Gal(K(E2[7])/K)

d = 72. If the degree d of the extension K7/K is 72, then all the conditions hold.
We have proved in Theorem 7.1 that in this case G � Dic3�Z/6Z.
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d = 36. If the degree d of the extension K7/K is 36, then conditionB1 and condition
C hold.

• If one of A and D does not hold, then we have an abelian group. Since
both condition B1 and condition B2 hold, then G/H � Z/6Z and thus
G � Z/3Z×Z/2Z×Z/6Z � (Z/2Z)2×(Z/3Z)2.

• IfB2 does not hold, thenG/H � Z/3Z andG = 〈φ2, τ2, ψ
2
2 〉. Sinceψ2

2 is rep-
resented by a diagonal matrix and commutes with every other automorphism,
we have G � Dic3×Z/3Z.

d = 24. Only one of condition B1 and condition C holds and all the other conditions
hold.

• If C does not hold, then G = 〈τ2, ψ2〉 � Z/4Z�Z/6Z � D8×Z/3Z.
• If B1 does not hold, then G/H � Z/2Z = 〈ψ3

2 〉. Thus G � Dic3�Z/2Z.

d = 18. Conditions B1 and C hold and the automorphism φ2 has order 3. Since only
one of the other conditions holds, we have that at least one of A or D does not hold
and G is abelian.

• If either A or D holds, then G � (Z/3Z)2×Z/2Z.
• If both A and D do not hold, then B2 holds. We have G/H = 〈ψ2〉 � Z/6Z

and H � 〈φ2〉 � Z/3Z. Since φ2 and ψ2 commute, we have that G �
(Z/3Z)2×Z/2Z as well.

d = 12. Only one of conditions B1 andC holds and two of the other conditions hold.

• If both B1 and B2 do not hold, then the extension G/H is trivial and G =
H � Dic3 � Z/3Z�Z/4Z.

• If B1 does not hold and B2 holds, then H � Z/2Z and G/H � Z/6Z. One
ofA andD does not hold, so the extension K7/K is abelian with Galois group
G � Z/3Z× (Z/2Z)2.

• If B1 holds and B2 does not hold, then G/H is generated by ψ2
2 and H =

〈τ2〉 � Z/4Z. Since ψ2
2 commutes with τ2, we get that the Galois group G is

isomorphic to Z/4Z×Z/3Z.
• If both B1 and B2 hold, then G/H � Z/6Z and H � Z/2Z. We have that one
of A and D does not hold, hence K7/K is an abelian extension with Galois
group G � Z/3Z×(Z/2Z)2.

d = 9. The only holding conditions are B1 and C. Then H = 〈φ2〉 � Z/3Z and
G/H � Z/3Z. We have G � Z/3Z×Z/3Z.

d = 8. If the degree d of the extension K7/K is 8, then all the conditions hold but
B1 and C. Thus H = 〈τ2〉 � Z/4Z and G/H = 〈ψ3

2 〉 � Z/2Z. We have observed
that τ2 and ψ3

2 do not commute, hence G � Z/4Z�Z/2Z � D8.

d = 6. If the degree d of the extension K7/K is 6, then either B1 or C holds
and one of the other condition holds. In all cases the group G is isomorphic to
Z/6Z � Z/3Z×Z/2Z.
d = 4. If the degree d of the extension K7/K is 4, then both B1 and C do not hold.

123



On 7-division fields of CM elliptic curves Page 21 of 26    51 

• If B2 does not hold, then G/H is trivial and G = H = 〈τ2〉 � Z/4Z.
• If B2 holds, then G/H � Z/2Z and G is isomorphic to the Klein group

Z/2Z×Z/2Z.

d � 3. If the degree d of the extension K7/K is 3 or 2 or 1, obviously the Galois
group is isomorphic to, respectively, Z/3Z, Z/2Z or {Id}.

8 Some applications

As mentioned in Sect. 1, we are going to describe some applications of the results
produced in the previous sections.

8.1 Aminimal bound for the local–global divisibility by 7

The first application concerns the following Local–Global question that was stated in
[9] by Dvornicich and Zannier as a generalization of a particular case of the famous
Hasse principle on quadratic forms (for further details one can see [6, 10, 11, 18, 19]
among others; Dvornicich and the corresponding author also produced a survey [7]
about this topic).

Problem 8.1 (Dvornicich, Zannier, 2001) Let K be a number field, MK the set of the
places v of K and Kv the completion of K at v. LetG be a commutative algebraic group
defined over K . Fix a positive integerm and assume that there exists a K -rational point
P in G, such that P = mDv , for some Dv ∈ G(Kv), for all but finitely many v ∈ MK .
Does there exist D ∈ G(K ) such that P = mD?

We have stated the question in its original form, for all commutative algebraic groups,
but from here on we will confine the discussion to elliptic curves E over K . It is a
common method in local–global questions to translate the problem into a cohomolog-
ical question. Dvornicich and Zannier stated the following definition of a subgroup
of H1(G,E[m]) which encodes the hypotheses of the problem and whose triviality
assures the validity of the local–global divisibility by m in E over K [9, Proposition
2.1]:

H1
loc(G,E[m]) ..=

⋂

v∈Σ

(
ker H1(G,E[m]) resv−−−→ H1(Gv,E[m])

)
,

whereΣ is the set of places of K unramified in K (E[m]) and resv is the usual restriction
map.

The group H1
loc(G,E[m]) is called first local cohomology group and gives an

obstruction to the validity of this Hasse principle for divisibility of points by m in
E over a finite extensions of K linearly disjoint from K (E[m]) [10, Theorem 3]. Since
every v ∈ Σ is unramified in K (E[m]), then Gv is a cyclic subgroup of G, for all
v ∈ Σ . By the Chebotarev Density Theorem, the local Galois group Gv varies over
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all cyclic subgroups of G as v varies in Σ . Observe that indeed it suffices to take

H1
loc(G,E[m]) =

⋂

v∈S

(
ker H1(G,E[m]) resv−−−→ H1(Gv,E[m])

)
, (1)

with S a subset ofΣ such thatGv varies over all cyclic subgroups ofG as v varies in S.
Observe that in particular we can choose a finite set S (on the contraryΣ is not finite).
In [9] the authors showed that the local–global divisibility by a prime number p holds
in E over K (this was also proved in [26, Theorem 1] and a very similar statement was
proved in [5, Lemma 6.1 and its corollary] and [4, Theorem 8.1]). In particular, the
local–global divisibility by 7 holds in E over K . Thus, if we are able to find such a set
S and prove that the local divisibility by 7 holds for P ∈ E(K ), for all v ∈ S, then
we get that P is globally divisible by 7, i.e. that P has a K -rational 7-divisor. So it
suffices to have the local divisibility by 7 for a finite number of suitable places to get
the global divisibility by 7. In [8], Dvornicich and the corresponding author produced
an explicit effective version of the hypotheses of Problem 8.1 in all elliptic curves over
number fields, by producing an explicit finite set S, for every positive integer m and
every elliptic curve E. Such an effective version is given by an upper bound B(m,E)

(depending on m and E) to the places of K unramified in Km , such that the validity of
the local divisibility for all places less than B(m,E) assures the global divisibility (in
the cases when the Hasse principle for divisibility of points holds in E over K ). With
such a bound it is not necessary to take into account the distinctness of the Galois
groups Gv in testing the local divisibility, since it is already assured by the density
of places v that are considered. However, for this reason the cardinality of the set S
produced in [8] is not as minimal as possible. It is indeed a very hard problem to obtain
a similar result with an explicit set S of minimal cardinality (i.e. with the assumption
that the local Galois groupsGv , corresponding to the places in S, are pairwise distinct),
for all positive integersm. It is also a difficult problem just to find the minimal possible
cardinality for S for every m. In view of the results achieved for the Galois groups
Gal(K7/K ) for the elliptic curves of the families F1 and F2, we give an answer to
this last question when m = 7 for the curves of these families (in [17] an answer was
given when m = 5 for the curves of the same families). For these curves we produce
an upper bound to the cardinality of S which is surprisingly small and it is as minimal
as possible when the degree [K7 : K ] is maximum (i.e. [K7 : K ] = 96 for the curves in
F1 and [K7 : K ] = 72 for the curves in F2). With the description of the Galois groups
given in Sects. 4 and 7 and with the description of the cyclic subgroups of G given in
the proofs of the following Theorems 8.2 and 8.3, one can easily deduce the minimal
cardinality for S, for every E1 ∈ F1 and E2 ∈ F2.

Theorem 8.2 Let E1 be an elliptic curve defined over a number field K , with Weier-
strass equation y2 = x2+bx, for some b ∈ K. There exist sets S ⊆ MK of cardinality
s � 18 such that if P = 7Dv , with Dv ∈ E1(Kv), for all v ∈ S, then P = 7D, for
some D ∈ E1(K ). In particular, if [K7 : K ] = 96, then s = 18.

Proof Let s be the number of distinct cyclic subgroups of G. As stated above, the set
S can be chosen as a subset of MK with cardinality s, such that Gv varies over all
cyclic subgroups of G, as v varies in S, and Gv and Gw are pairwise distinct cyclic
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subgroups of G, for all v,w ∈ S, with v �= w. It suffices to show that s � 18,
i.e. that G has at most 18 cyclic subgroups. We have proved in Sect. 4, that for
every E1 ∈ F1, the Galois group G is isomorphic to a subgroup of Q16�Z/6Z. We
keep the notation used in Sect. 4 for the generators of Q16 and Z/6Z, i.e. Q16 =
〈φ1, ϕ1 | φ2

1 = ϕ4
1 = −Id, φ1ϕ1 = ϕ−1

1 φ1〉 and Z/6Z = 〈ψ1〉. The group Q16 has
seven nontrivial cyclic subgroups: 〈ϕ1〉 � Z/8Z, 〈−Id〉 = 〈φ2

1〉 = 〈ϕ4
1〉 � Z/2Z

and the five cyclic subgroups of order 4 generated respectively by φ1, ϕ2
1 , φ1ϕ1, φ1ϕ

2
1

and φ1ϕ
3
1 . We also have the nontrivial cyclic subgroups of Z/6Z, i.e 〈ψ3

1 〉 � Z/2Z,
〈ψ2

1 〉 � Z/3Z and 〈ψ1〉 � Z/6Z itself. All of these groups are cyclic subgroups of
G. In addition we have the group 〈ϕ1, ψ

2
1 〉 � Z/8Z×Z/3Z � Z/24Z, five copies

of Z/12Z � Z/4Z×Z/3Z given by the direct products of the five subgroups of
order 4 of Q16 with 〈ψ2

1 〉, the subgroup 〈−Id, ψ2
1 〉 � Z/2Z×Z/3Z and the trivial

group 〈Id〉. Therefore Q16�Z/6Z contains 18 cyclic subgroups and every subgroup
G of Q16�Z/6Z has at most 18 cyclic subgroups. Thus s � 18. In particular, if
[K7 : K ] = 96, then G has exactly 18 cyclic subgroups and in this case s = 18 is
sharp (in fact, if s < 18, then the hypotheses of Problem 8.1 are not satisfied). ��

Theorem 8.3 Let E2 be an elliptic curve defined over a number field K , with Weier-
strass equation y2 = x2 + c, for some c ∈ K. There exist sets S ⊆ MK of cardinality
s � 15 such that if P = 7Dv , with Dv ∈ E(Kv), for all v ∈ S, then P = 7D, for
some D ∈ E(K ). In particular, if [K7 : K ] = 72, then s = 15.

Proof Let s be the number of distinct cyclic subgroups of G. By the discussion con-
cerning the minimal possible cardinality of the set S in Eq. (1), we can choose S
containing exactly s places v, such that Gv varies over all cyclic subgroups of G
as v varies in S and Gv and Gw are pairwise distinct cyclic subgroups of G, for
all v,w ∈ S, with v �= w. We just have to show that G has at most 15 cyclic
subgroups. As proved in Sect. 7, for every E2 ∈ F2, the Galois group G is isomor-
phic to a subgroup of Dic3�Z/6Z. In the notation of Sect. 7, a presentation of the
group Dic3 � Z/3Z�Z/4Z is 〈φ2, τ2 | φ3

2 = τ 42 = Id, τ2φ2 = φ−1
2 τ2〉. We have

six nontrivial cyclic subgroups of Dic3: 〈−Id〉, 〈φ2〉, 〈τ2〉, 〈τ2φ2〉 = 〈τ 32φ2〉 � Z/4Z,
〈τ2φ2

2〉 = 〈τ 32φ2
2〉 � Z/4Z, 〈−φ2〉 = 〈−φ2

2〉 � Z/6Z. We have three nontrivial cyclic
subgroups of 〈ψ2〉 � Z/6Z, i.e. 〈ψ2〉, 〈ψ2

2 〉, 〈ψ3
2 〉. In addition, we have two other

cyclic subgroups of Dic3�Z/6Z that are isomorphic to Z/3×Z/2Z, i.e. 〈φ2, ψ
3
2 〉,

〈−Id, ψ2
2 〉 and three subgroups isomorphic to Z/12Z � Z/4Z×Z/3Z, i.e. 〈τ2, ψ2

2 〉,
〈τ2φ2, ψ

2
2 〉, 〈τ2φ2

2 , ψ
2
2 〉. Finally we have the trivial subgroup 〈Id〉. Thus Dic3�Z/6Z

has 15 cyclic subgroups and s � 15. In particular, if [K7 : K ] = 72, thenG has exactly
15 cyclic subgroups and in this case the bound s = 15 is sharp. ��

8.2 Remarks onmodular curves

We are going to deduce some information about CM points on modular curves by the
results produced about the fields K7.

123



   51 Page 24 of 26 J. Alessandrì, L. Paladino

8.2.1 On CM points of modular curves

LetH be the complex upper half plane {z ∈ C : Im z > 0}. The group SL2(Z) acts on
H via the Möbius trasformations

(
a b
c d

)
z = az + b

cz + d
.

By�wedenote a congruence group, i.e. a subgroup of SL2(Z) containing the principal
congruence group of level m

�(m) =
{
A ∈ SL2(Z)

∣∣
∣ A ≡

(
1 0
0 1

)
(mod m)

}
,

for some positive integer m. When m is minimal, the congruence group is said to be
of level m. Important congruence groups of level m are

�0(m) =
{
A ∈ SL2(Z)

∣
∣∣ A ≡

(∗ ∗
0 ∗

)
(mod m)

}
,

and

�1(m) =
{
A ∈ SL2(Z)

∣∣∣ A ≡
(
1 ∗
0 1

)
(mod m)

}
.

The quotient H/� of H by the action of �, with the analytic structure induced by
H, is a Riemann surface, that is denoted by Y� . The modular curve X� , associated
to �, is the compactification of Y� by the addition of a finite number of cusps, i.e.
the rational points corresponding to the orbits of P

1(Q) under �. The modular curves
associated to the groups �(m), �0(m) and �1(m) are denoted respectively by X(m),
X0(m) and X1(m). They are moduli spaces of families of elliptic curves with an extra
structure of level m as follows (for further details see for example [13, 14, 23]):

(i) non-cuspidal points in X0(m) correspond to pairs (E,Cm), where E is an elliptic
curve (defined over C) and Cm is a cyclic subgroup of E[m] of order m;

(ii) non-cuspidal points in X1(m) correspond to pairs (E, P), where E is an elliptic
curve (defined over C) and P is a point of order m;

(iii) non-cuspidal points in X(m) correspond to triples (E, P, Q), where E is an
elliptic curve (defined over C) and P , Q are points of order m generating E[m].

A CM point on a modular curve is a point which corresponds to an elliptic curve
with complex multiplication. For every modular curve X , we denote by X(K )CM the
set of its K -rational CM points.

From what we have shown in the previous sections we can deduce the following
facts (see in particular Theorem 5.1).

Proposition 8.4 Let K be a number field. Let δ j and Pj be as in Sect. 5, for 1 � j � 8,
and let E2, j,γ : y2 = x3 + c j,γ , with c j,γ ..= δ2j (δ j + 1)3γ 6, for some γ ∈ Q. If
Q(ζ3, ζ7) ⊆ K, then

123



On 7-division fields of CM elliptic curves Page 25 of 26    51 

(i) The pairs (E2, j,γ , Pj ), (E2, j,γ , 〈Pj 〉), with 1 � j � 8, define K -rational CM
points on X1(7) and respectively on X0(7).

(ii) The triples (E2, j,γ , Pj , φ2(Pj )), with 1 � j � 8, define K -rational CM points on
X(7).

(iii) In particular X0(7)(K )CM �= ∅, X1(7)(K )CM �= ∅ and X(7)(K )CM �= ∅.
Proof If 1 � j � 6, then c j,γ , 3

√
δ j c j,γ ,

√
δ j c j,γ ∈ Q(ζ3, ζ7). Since Q(ζ3, ζ7) ⊆

K , then the pairs (E2, j,γ , Pj ) and (E2, j,γ , 〈Pj 〉), for 1 � j � 6, define K -
rational CM points of X1(7) and respectively of X0(7). Furthermore, the triples
(E2, j,γ , Pj , φ2(Pj )) define K -rational CM points on X(7).

If j ∈ {7, 8}, then c j,γ ∈ Q(ζ3).Wealso have that 3
√

δ j c j,γ = δ j (δ j+1)γ 2 ∈ Q(ζ3)

and
√

δ j c j,γ = δ j (δ j + 1)2γ 3 ∈ Q(ζ3). Owing to Q(ζ3, ζ7) ⊆ K , then the pairs
(E2, j,γ , Pj ) and (E2, j,γ , 〈Pj 〉) define K -rational CM points of X1(7) and respectively
of X0(7). Furthermore, the triples (E2, j,γ , Pj , φ2(Pj )) define K -rational CM points
on X(7). ��

Moreover, from the results proved in Sects. 2 and 5, we can immediately deduce
the following propositions.

Proposition 8.5 Let K be an extension of Q(i, ζ7). Let E1 ∈ F1 and let P ∈ E1[7]
such that {P, i P} is a generating set of E1[7]. Then
(i) the pair (E1, 〈P〉) defines a non-cuspidal K -rational CM point of X0(7) if and

only if y(P) ∈ K ;
(ii) the pair (E1, P) defines a non-cuspidal K -rational CM point of X1(7) if and only

if y(P) ∈ K;
(iii) the triple (E1, P, i P) defines a non-cuspidal K -rational CM point of X(7) if and

only if y(P) ∈ K .

Proposition 8.6 Let K be an extension of Q(ζ3, ζ7). Let E2 ∈ F2 and let P ∈ E2[7]
be such that {P, φ2(P)} is a generating set of E2[7]. Then
(i) the pair (E2, 〈P〉) defines a non-cuspidal K -rational CM point of X0(7) if and

only if y(P) ∈ K ;
(ii) the pair (E2, P) defines a non-cuspidal K -rational CM point of X1(7) if and only

if y(P) ∈ K;
(iii) the triple (E2, P, φ2(P)) defines a non-cuspidal K -rational CM point of X(7), if

and only if y(P) ∈ K .

Acknowledgements We thank the anonymous referees for their valuable comments and suggestions that
allow us to improve our paper.

Funding Open access funding provided by Universitá della Calabria within the CRUI-CARE Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


   51 Page 26 of 26 J. Alessandrì, L. Paladino

References

1. Bandini, A.: Three-descent and the Birch and Swinnerton–Dyer conjecture. Rocky Mountain J. Math.
34(1), 13–27 (2004)

2. Bandini, A., Paladino, L.: Number fields generated by the 3-torsion points of an elliptic curve.Monatsh.
Math. 168(2), 157–181 (2012)

3. Bandini, A., Paladino, L.: Fields generated by torsion points of elliptic curves. J. Number Theory 169,
103–133 (2016)

4. Cassels, J.W.S.: Arithmetic on curves of genus 1. III. The Tate–Šafarevič and Selmer groups. Proc.
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