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This note provides additional information to supplement the study of Ref. [1]. Specifically, it presents 
a comprehensive derivation of the power spectra for the amplitude and phase fluctuations of the output 
radiation emitted by the two counter-propagating modes of a laser gyro in the phase-locked regime. The 
derivation involves solving the linearized equations for the quantum operators that describe the laser 
dynamics, supplemented with the appropriate quantum noise terms.

In this note, we present additional findings to complement
the results discussed in [1]. We will focus first on the situa-
tion in which locking is caused by the coupling induced by
back-reflection from a grating generated in the saturated gain
medium and occurs with frequency difference Ω0 between the
two modes. Specifically, we investigate the influence of quan-
tum noise introduced by the gain coupling of the two coun-
terpropagating modes. Our analysis reveals that this coupling
contributes a minor term to the noise spectra, on the order of
the ratio κg/γ between the mode coupling coefficient and the
photon lifetime. Additionally, we provide explicit expressions
for the power spectra of the amplitude and phase fluctuations
of the output radiation emitted by the two counterpropagating
modes of a laser gyro operating in the phase-locked regime, as
well as the spectrum of their correlations. The spectra of the
output radiation naturally incorporate the impact of shot-noise
arising from the detection process. To find the output spectra, we
solve the linearized equations that describe the dynamics of the
two counterpropagating modes, using the operators that char-
acterize laser behavior and incorporating the necessary noise
operators to preserve the commutation relations.

In the concluding section, we also outline the derivation of
the equations describing the fluctuations of the output fields in
a scenario where locking occurs due to passive reflections. This
situation can relate to two possible scenarios. The first scenario
involves reflections from a time-dependent index grating, result-
ing in non-degenerate frequency locking. The second scenario
involves reflections from static intracavity elements, causing
undesired locking of the two modes at the same frequency.

1. LOCKING BY DYNAMIC GAIN MODULATION

We will use the annihilation operators a(t) and b(t) to repre-
sent the amplitudes of the two modes centered at frequency
ω0 + Ω0/2 and ω0 − Ω0/2, where ω0 is the optical frequency.
These modes correspond to the primed operators a′(t) and b′(t)

used in the main text. In addition, we redefine sa(t)eiΩ0t/2 7→
sa(t), sb(t)e−iΩ0t/2 7→ sb(t), s(−)

a (t)eiΩ0t/2 7→ s(−)
a (t) and

s(−)
b (t)e−iΩ0t/2 7→ s(−)

b (t), with the new noise operators having
the same statistical properties of the original ones. The equations
for the amplitude of the two modes are then [1]

da(t)
dt

= κgb(t) +
[
−γ

2
+

g2

Γ
n(t)

]
a(t)

−ig
(

2N
Γ

)1/2
s(−)

a (t) +
√

γ sa(t), (1)

db(t)
dt

= κ∗ga(t) +
[
−γ

2
+

g2

Γ
n(t)

]
b(t)

−ig
(

2N
Γ

)1/2
s(−)

b (t) +
√

γ sb(t). (2)

These equations can be simplified by setting κg = |κg|eiφg and
defining b(t) = b′(t)e−iφg/2 and a(t) = a′(t)eiφg/2. In terms of
the new phase shifted fields, the coupling coefficient is real and
positive, so that Eqs. (1) and (2) can be rewritten, dropping the
primes to simplify the notation, as

da(t)
dt

= κgb(t) +
[
−γ

2
+

g2

Γ
n(t)

]
a(t)

−ig
(

2N
Γ

)1/2
s(−)

a (t) +
√

γ sa(t), (3)

db(t)
dt

= κga(t) +
[
−γ

2
+

g2

Γ
n(t)

]
b(t)

−ig
(

2N
Γ

)1/2
s(−)

b (t) +
√

γ sb(t). (4)

The coupling of the two modes through a gain grating is not
hermitian. As a consequence, the spatial components of the
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material polarization that couple with the two counterpropa-
gating modes mix, resulting in a statistical dependence of the

corresponding noise terms s(−)
a and s(−)

b , which in absence of
coupling are independent. The mixing of the noise terms can
be quantified if we require the preservation of the commutation
rules [a, b†] = 0, which express the independence of the two
modes. This requirement is satisfied if

2Ng2

Γ
[s(−)

a (t), s(−)†
b (t′)] = −2κgδ(t − t′). (5)

The commutation relations alone do not fully specify the cor-
relations of the noise operators. However, we notice that the
noise sources of the material polarization are creation opera-

tors so that s(−)
a and s(−)

b when applied on the left, and s(−)†
a

and s(−)†
b when applied on the right, to a state representing a

fully inverted gain medium should give zero. These conditions,
combined with the commutation relations (5), give

⟨s(−)
a (t)s(−)†

b (t′)⟩ = 0, (6)

⟨s(−)†
b (t′)s(−)

a (t)⟩ =
Γκg

Ng2 δ(t − t′), (7)

⟨s(−)
a (t)s(−)

b (t′)⟩ = 0, (8)

⟨s(−)†
a (t)s(−)†

b (t′)⟩ = 0. (9)

The equation for the carrier number is [1]

dn(t)
dt

= R − n(t)
τ

− 4g2

Γ
n(t)

[
a†(t)a(t) + b†(t)b(t)

]
+i2g

(
2N
Γ

)1/2 [
a†(t)s(−)

a (t) + b†(t)s(−)
b (t)

−s(−)†
a (t)a(t)− s(−)†

b (t)b(t)
]
. (10)

We did not include in the equation for the carrier number the
term

d∆n(t)
dt

= −4g2

Γ
n(t)

[
a†(t)b(t)eiΩ0t + b†(t)a(t)e−iΩ0t

]
, (11)

responsible for the coupling between the two modes because
∆n(t) has been implicitly considered in Eqs. (1) and (2) through
the coefficient κg. In the analysis that follows, we will take into
consideration the saturation of this term and its influence on the
laser dynamics using the fundamental property that in the laser
cavity each photon is generated through the decay of a single
carrier.

If we define

∆g = −γ +
2g2

Γ
n0, (12)

where we have set n = n0 + δn with n0 is the steady state value
of n, the condition for steady state of Eqs. (3) and (4) is

κg|b0|ei∆φ +
∆g
2
|a0| = 0, (13)

κg|a0|e−i∆φ +
∆g
2
|b0| = 0, (14)

where we defined a0 = |a0|eiφa , b0 = |b0|eiφb , and ∆φ =
φa − φb. Steady state is achieved for the two modes with
equal amplitudes |a0| = |b0|, for κg sin (∆φ) = 0 and for
∆g = −2κg cos(∆φ). Of the two possible solutions ∆φ = 0
and ∆φ = π, only the one with ∆g < 0 is stable. In the follow-
ing, we will assume without loss of generality that the phase

reference for the two modes is chosen such that a0 and b0 are
real, so that φa = φb = 0.

Using γ = 2g2n0/Γ − ∆g and assuming full inversion n0 ≃
N and that at steady state κg = −∆g/2, and defining a = a0 + δa
and b = b0 + δb, the equations for the displacements of the
mode amplitudes become

dδa(t)
dt

= κgδb(t) +
∆g
2

δa(t) +
g2

Γ
a0δn(t)

−i
√

γ − 2κg s(−)
a (t) +

√
γ sa(t), (15)

dδb(t)
dt

= κgδa(t) +
∆g
2

δb(t) +
g2

Γ
b0δn(t)

−i
√

γ − 2κg s(−)
b (t) +

√
γ sb(t). (16)

The correlation of the noise sources for the gain material are
given by Eqs. (6)–(9) where, using 2g2N/Γ = γ + ∆g = γ − 2κg,
Eq. (7) becomes

⟨s(−)†
b (t)s(−)

a (t′)⟩ =
2κg

γ − 2κg
δ(t − t′). (17)

Using that at steady state a0 = b0 and defining the two uncou-
pled eigenmodes of the system, also known as supermodes,

c+(t) =
δa(t) + δb(t)√

2
, (18)

c−(t) =
δa(t)− δb(t)√

2
, (19)

we obtain

dc+(t)
dt

=
g2

√
2 Γ

(a0 + b0) δn(t)

+
√

γ/2 [sa(t) + sb(t)]

−i
√
(γ − 2κg)/2

[
s(−)

a (t) + s(−)
b (t)

]
, (20)

dc−(t)
dt

= −2κgc−(t) +
√

γ/2 [sa(t)− sb(t)]

−i
√
(γ − 2κg)/2

[
s(−)

a (t)− s(−)
b (t)

]
. (21)

Let us define now the noise operators

s+(t) =
sa(t) + sb(t)√

2
, (22)

s−(t) =
sa(t)− sb(t)√

2
, (23)

s(−)
+ (t) =

√
γ − 2κg

γ

s(−)
a (t) + s(−)

b (t)
√

2
, (24)

s(−)
− (t) =

√
γ − 2κg

γ − 4κg

s(−)
a (t)− s(−)

b (t)
√

2
. (25)

It may easily be verified that the new noise operators are inde-
pendent

s(−)
± (t)s(−)

∓ (t) = 0, (26)

s±(t)s
(−)†
∓ (t) = s(−)†

± (t)s∓(t) = 0, (27)

and have, for γ > 2κg, the same commutation relations of the
equivalent uncoupled operators with full inversion ⟨σ3⟩ = 1,

s(−)†
± (t)s(−)

± (t′) = δ(t − t′), (28)
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s(−)
± (t)s(−)†

± (t) = s(−)
± (t)s(−)

± (t) = s(−)†
± (t)s(−)†

± (t) = 0. (29)

The commutation relations of c±(t) are [c±(t), c†
±(t)] = 1.

Inserting the new noise operators and using 2g2n0/Γ = γ −
2κg, Eqs. (20) and (21) become

dc+(t)
dt

=
1
2
(
γ − 2κg

) a0 + b0√
2

δn(t)
n0

+
√

γ
[
−is(−)

+ (t) + s+(t)
]

, (30)

dc−(t)
dt

= −2κgc−(t)− i
√

γ − 4κg s(−)
− (t) +

√
γ s−(t).

(31)

Equation (31) shows the presence of a restoring force for the
difference of the amplitudes of the two modes proportional to
the coupling coefficient κg. This is a manifestation of the locking
between the two modes.

To get to a closed form of Eq. (30), let us expand Eq. (10)
to first order, obtaining the equation for the fluctuations of the
carriers as

dδn(t)
dt

= − δn(t)
τ

− 4g2

Γ
(a2

0 + b2
0)δn(t)

−8g2

Γ
n0 [a0δa1(t) + b0δb1(t)]

−4g
(

2N
Γ

)1/2 [
a0s(−)

a,2 (t) + b0s(−)
b,2 (t)

]
. (32)

This equation however does not include the effect of the de-
pletion of the carriers that generate the gain grating, whose
dynamics is described by Eq. (11). Instead of constructing a
model to describe the formation of the gain grating and its inter-
action with the two counterpropagating modes, which would
necessitate making assumptions about the complex physics of
the laser that are challenging to evaluate, like for instance the
carrier diffusion attenuating the grating amplitude, we choose
to introduce a term that account for this effect without a formal
derivation, relying on the principle that each photon is gener-
ated through the decay of a single carrier. To this aim, we notice
that the coupling induced by the gain grating produces a rate of
photon production

d
dt

(
a†a + b†b

)
coupling = 2κg

(
b†a + a†b

)
, (33)

and therefore the change of carrier number caused by fluctua-
tions of a and b is(

dδn
dt

)
coupling

= −4κg

[
a0
(
δb + δb†)+ b0

(
δa + δa†)] , (34)

where we used that a0 and b0 are real. Equation (32) supple-
mented with the coupling term (34) becomes

dδn(t)
dt

= − δn(t)
τ

− 4g2

Γ
(a2

0 + b2
0)δn(t)

−8g2

Γ
n0 [a0δa1(t) + b0δb1(t)]

−8κg [a0δb1(t) + b0δa1(t)]

−4g
(

2N
Γ

)1/2 [
a0s(−)

a,2 (t) + b0s(−)
b,2 (t)

]
. (35)

Using now once again our assumption of full inversion n0 = N,
we can replace 2g2N/Γ = γ − 2κg and therefore

dδn(t)
dt

= − δn(t)
τ

− 2(γ − 2κg)(a2
0 + b2

0)
δn(t)

n0

−4(γ − 2κg) [a0δa1(t) + b0δb1(t)]
−8κg [a0δb1(t) + b0δa1(t)]

−4
√

γ − 2κg

[
a0s(−)

a,2 (t) + b0s(−)
b,2 (t)

]
. (36)

Assuming strong saturation and neglecting spontaneous emis-
sion compared to stimulated emission, we may assume that the
carriers adiabatically follow the field fluctuations, so that we
obtain

δn(t)
n0

= − 2
a2

0 + b2
0
[a0δa1(t) + b0δb1(t)]

−
4κg

(γ − 2κg)(a2
0 + b2

0)
[b0δa1(t) + a0δb1(t)]

− 2√
γ − 2κg(a2

0 + b2
0)

[
a0s(−)

a,2 (t) + b0s(−)
b,2 (t)

]
.

(37)

Entering this expression into Eq. (30) yields

dc+(t)
dt

= −
(γ − 2κg)(a0 + b0)√

2(a2
0 + b2

0)
[a0δa1(t) + b0δb1(t)]

−
2κg(a0 + b0)√

2(a2
0 + b2

0)
[b0δa1(t) + a0δb1(t)]

−

√
(γ − 2κg)(a0 + b0)
√

2(a2
0 + b2

0)

[
a0s(−)

a,2 (t) + b0s(−)
b,2 (t)

]
−i

√
γs(−)

+ (t) +
√

γ s+(t). (38)

Using the steady state condition a0 = b0 we obtain

dc+(t)
dt

= −γc+,1(t)

−√
γ

[
s(−)
+,2 (t) + is(−)

+ (t)− s+(t)
]

. (39)

Equation (39) shows that the evolution equation of the super-
mode sum of the two counterpropagating modes is equal to that
of an uncoupled single mode with cavity loss (hence, cavity Q
factor) equal to the cavity loss of the two coupled laser modes.

Utilizing Eqs. (31) and (39) to find d[c±(t), c†
±(t)] and after

using the averages in Eqs. (28) and (29), it is easy to verify
that d[c±(t), c†

±(t)] = 0 hence that Eqs. (31) and (39) preserve
the commutation rules. The preservation of the commutation
rules of the two independent and orthogonal supermodes in-
sures that modes obtained by unitary transformations, including
the original counterpropagating modes, also preserve the same
commutation rules hence do not violate any of the minimum
uncertainties relations related to those commutation rules.

Defining the two quadratures for the operators associated to
the supermodes as c1 = (δc + δc†)/2 and c2 = (δc − δc†)/(2i),
we obtain from Eqs. (31) and (39)

dc−,1(t)
dt

= −2κgc−,1(t) +
√

γ − 4κgs(−)
−,2 (t) +

√
γs−,1(t),

(40)
dc−,2(t)

dt
= −2κgc−,2(t)−

√
γ − 4κgs(−)

−,1 (t) +
√

γs−,2(t),

(41)
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dc+,1(t)
dt

= −γc+,1(t) +
√

γ s+,1(t), (42)

dc+,2(t)
dt

=
√

γ
[
s+,2(t)− s(−)

+,1 (t)
]

. (43)

Defining the Fourier transform as

c(ω) =
∫ ∞

−∞

dω

2π
exp(−iωt)c(t), (44)

we may readily solve Eqs. (41), (40), (42) and (43) in the Fourier
domain as

c−,1(ω) =

√
γs−,1(ω) +

√
γ − 4κgs(−)

−,2 (ω)

−iω + 2κg
, (45)

c−,2(ω) =

√
γs−,2(ω)−

√
γ − 4κgs(−)

−,1 (ω)

−iω + 2κg
, (46)

c+,1(ω) =

√
γ

−iω + γ
s+,1(ω), (47)

c+,2(ω) = −
√

γ

iω

[
s+,2(ω)− s(−)

+,1 (ω)
]

. (48)

Let us first analyze the fluctuations of the phases of the intracav-
ity modes, which are the quantities analyzed in the main text.
Being the output radiation in a vacuum state, we have

⟨s±,i(t)s±,i(t′)⟩ =
1
4

δ(t − t′), i = 1, 2. (49)

In addition, Eqs. (26)–(29) imply

⟨s(−)
±,i (t)s

(−)
±,i (t

′)⟩ = 1
4

δ(t − t′), i = 1, 2, (50)

so that Eq. (45) yields

⟨c−,1(ω)c†
−,1(ω

′)⟩ =
γ − 4κg

2 (ω2 + 4κ2
g)

2πδ(ω − ω′). (51)

The fluctuations of the difference of the phases of the emitted
radiation are the difference between the fluctuations of the in-
quadrature components of the intracavity mode amplitude di-
vided by the average mode amplitude a0 = b0 =

√
P/(γh̄ω0)

where P is the average output power per mode, that is ∆φ =√
γh̄ω/P [

√
2c−,1(ω)] so that the spectrum of the fluctuations

of the phase difference is

⟨∆φ(ω)∆φ†(ω′)⟩ =
h̄ω0γ(γ − 4κg)

P(ω2 + 4κ2
g)

2πδ(ω − ω′), (52)

which is the result given in the main text [1], with a small correc-
tion of the order of κg/γ arising from the fact that the analysis
presented here accounts for the non-hermiticity of the mode
coupling. Notice that the term 2πδ(ω − ω′) appearing here and
in all other spectra is removed by integration over frequency
f ′ = ω′/(2π). This procedure returns for any given spectrum
⟨x(ω)x(ω′)⟩ the Fourier transform of ⟨x(t)x(0)⟩, that is, if x(t)
is a stationary process, the power spectrum of x(t).

The amplitude of the emitted radiation is given by [2]

ra(t) = −sa(t) +
√

γ a(t), (53)

rb(t) = −sb(t) +
√

γ b(t), (54)

so that defining

r±(t) =
1√
2
[ra(t)± rb(t)] , (55)

we obtain for the fluctuations

δr+(t) = −s+(t) +
√

γ c+(t), (56)

δr−(t) = −s−(t) +
√

γ c−(t). (57)

The quadratures of the emitted radiation are readily obtained by
inserting Eqs. (45)–(48) into Eqs. (56) and (57), so as to obtain

δr−,1(ω) =
γ s−,1(ω) +

√
γ(γ − 4κg) s(−)

−,2 (ω)

−iω + 2κg
− s−,1(ω),

(58)

δr−,2(ω) =
γ s−,2(ω)−

√
γ(γ − 4κg) s(−)

−,1 (ω)

−iω + 2κg
− s−,2(ω),

(59)

δr+,1(ω) =
iω

−iω + γ
s+,1(ω), (60)

δr+,2(ω) = − γ

iω

[
s+,2(ω)− s(−)

+,1 (ω)
]
− s+,2(ω). (61)

As a consistency check, using that

[s±,1(ω), s†
±,1(ω

′)] = [s±,2(ω), s†
±,2(ω

′)] = 0, (62)

[s±,1(ω), s†
±,2(ω

′)] =
1
4
[2πδ(ω − ω′)], (63)

[s(−)
±,1 , s(−)†

±,1 (ω′)] = [s(−)
±,2 , s(−)†

±,2 (ω′)] = 0, (64)

[s(−)
±,1 , s(−)†

±,2 (ω′)] =
1
4
[2πδ(ω − ω′)], (65)

one may show right away that

[δr±,1(ω), δr†
±,1(ω)] = [δr±,2(ω), δr†

±,2(ω)] = 0, (66)

[δr±,1(ω), δr†
±,2(ω

′)] =
1
4
[2πδ(ω − ω′)], (67)

so that the above equations correctly describe supermodes that
are independent waves with bosonic commutation rules.

Using once again the correlation functions of the noise terms
(62)–(65) we obtain

⟨δr−,2(ω)δr†
−,2(ω

′)⟩ =
1
4

[
2γ(γ − 4κg)

ω2 + 4κ2
g

+ 1

]
2πδ(ω − ω′),

(68)

⟨δr+,2(ω)δr†
+,2(ω

′)⟩ =
1
4

(
2γ2

ω2 + 1
)

2πδ(ω − ω′). (69)

The fluctuations of the difference of the phases of the emit-
ted radiation ∆φout(ω) is the difference of the fluctuations of
the in-quadrature components divided by the amplitude of the
output per mode in photon units

√
P/(h̄ω0), that is ∆φout =√

h̄ω0/P [
√

2 δr−,2] so that the spectrum of the phase difference
is ⟨∆φout(ω)∆φ†

out(ω
′)⟩ = 2(h̄ω0/P)⟨δr−,2(ω)δr†

−,2(ω
′)⟩, that

is

⟨∆φout(ω)∆φ†
out(ω

′)⟩ = h̄ω0
2P

[
2γ(γ − 4κg)

ω2 + 4κ2
g

+ 1

]
2πδ(ω − ω′).

(70)
The spectra of the phase fluctuations of the beat between the
intracavity fields Eq. (52) and that of the output waves Eq.
(70) differ primarily in the region ω ≫ γ, where the spectrum
of the emitted radiation follows the phase fluctuations of the
vacuum reflected from the cavity and the variance of the phase
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fluctuations of the beat are the sum of the variances of the phase
fluctuations of two coherent states. In semiclassical terms, the is
the manifestation of the shot-noise of the detection.

If we define φa = δra,2/a0 and φb = δrb,2/b0 as the deviation
of the phases of the emitted radiation from the steady state and
use that a0 = b0 we obtain ⟨φa(ω)φ†

a(ω
′)⟩ = ⟨φb(ω)φ†

b(ω
′)⟩

with

⟨φa(ω)φ†
a(ω

′)⟩ =
h̄ω0
2P

[
γ2

ω2 +
γ(γ − 4κg)

ω2 + 4κ2
g

+ 1
]

2πδ(ω − ω′),

(71)

⟨φa(ω)φ†
b(ω

′)⟩ =
h̄ω0
2P

[
γ2

ω2 −
γ(γ − 4κg)

ω2 + 4κ2
g

]
2πδ(ω − ω′). (72)

Three spectral regions are present. In the locking region |ω| ≪
2κg, the phase fluctuations of the two modes are fully correlated
with ⟨φa(ω)φ†

a(ω
′)⟩ ≃ ⟨φa(ω)φ†

b(ω
′)⟩. In this spectral region,

the variance of the phase fluctuations of each mode is one half
of the free-running phase fluctuations of independent modes
with the same output power and, similarly to the mode-locking
case [3, 4], equal to the phase fluctuations of a single mode
whose power is equal to the total power emitted by the laser.
For 2κg < |ω| < γ, the two modes are unlocked and the phase
fluctuations are the same of two free running modes of a laser
which follow the Schawlow–Townes formula. For |ω| ≫ γ the
phase fluctuations are those of a radiation in a coherent state,
as expected because they are the shot-noise fluctuations of the
vacuum field reflected by the laser cavity outside its frequency
cutoff. The expressions of the frequency noise spectra of the
mode beat and of the two counterpropagating mode can be
readily obtained multiplying by ω2 the corresponding phase
noise spectra.

Let us now analyze the amplitude fluctuations. We have

⟨δr+,1(ω)δr†
+,1(ω

′)⟩ =
ω2

4 (ω2 + γ2)
2πδ(ω − ω′), (73)

⟨δr−,1(ω)δr†
−,1(ω

′)⟩ =
1
4

[
2γ(γ − 4κg)

ω2 + 4κ2
g

+ 1

]
2πδ(ω − ω′),

(74)

and consequently ⟨δra,1(ω)δr†
a,1(ω

′)⟩ = ⟨δrb,1(ω)δr†
b,1(ω

′)⟩ and

⟨δra,1(ω)δr†
a,1(ω

′)⟩ =
1
8

[
2γ(γ − 4κg)

ω2 + 4κ2
g

− γ2

ω2 + γ2 + 2

]
2πδ(ω − ω′), (75)

⟨δra,1(ω)δr†
b,1(ω

′)⟩ =
1
8

[
2γ(γ − 4κg)

ω2 + 4κ2
g

+
γ2

ω2 + γ2

]
2πδ(ω − ω′). (76)

For |ω| ≪ γ, similarly to the amplitude squeezing of the radi-
ation emitted from the laser when pump fluctuations are sup-
pressed [5, 6], the fluctuations of the sum of the amplitudes of
the two modes (the fluctuations of the amplitude of the super-
mode) are below the quantum noise limit (sub-Poissonian) and
zero at ω = 0. The amplitudes of the two modes are locked, with
a finite variance, for ω ≪ 2κg, and their fluctuations are corre-
lated. For 2κg < |ω| < γ, the two modes are unlocked and their
amplitudes experience partition noise, while the fluctuations of
the sum of their amplitude are still suppressed. For |ω| ≫ γ,
above the cutoff introduced by the laser cavity, the amplitude

fluctuations are those of a radiation in a coherent state, because
they are those of the vacuum state reflected from the cavity.

It is interesting to discuss the autocorrelation function of the
phase fluctuations of the beat of the output fields. Let us suppose
that the measurement is performed with a finite bandwidth B,
by assuming an ideal square low-pass filter of bandwidth B with
a flat unit response for |ω|/(2π) ≤ B/2 and zero outside. This
situation describes, for instance, an ideal measurement with a
sampling period Tsampling = 1/B. Then, integration over ω′

in the two-dimensional inverse Fourier transform of Eq. (70)
produces a result that depends only on T = t′ − t. For B ≫ 2κg,
we may neglect the effect of frequency filtering on the first term
by approximating, in the convolution with this term, the sinc
generated by the spectral filtering with a Dirac delta function.
After doing so, another inverse Fourier transformation with
respect to ω produces

⟨∆φout(t + T)∆φout(t)⟩ =
h̄ω0
2P

[
γ(γ − 4κg)

2κg
exp

(
−2κgT

)
+B

sin (πBT)
πBT

]
. (77)

The sinc appearing in this expression represents the effect of
the filtered vacuum noise reflected from the laser cavity or, in
a semiclassical language, the shot-noise of the detection. Using
now Eq. (77) in the expression for the Allan variance in terms of
the time autocorrelation function

σ2
T =

1
T2

[
3 ⟨∆φout(t)

2⟩ − 4 ⟨∆φout(t + T)∆φout(t)⟩

+ ⟨∆φout(t + 2T)∆φout(t)⟩
]
, (78)

and assuming that T is a multiple of the sampling period if the
filtering is the effect of sampling, or in general that T ≫ 1/B,
we obtain

σ2
T =

h̄ω0

2PT2

[
γ(γ − 4κg)

2κg

[
3 − 4 exp

(
−2κgT

)
+ exp

(
−4κgT

) ]
+ 3B

]
. (79)

For κgT ≫ 1 we have

σ2
T =

3h̄ω0

2PT2

[
γ(γ − 4κg)

2κg
+ B

]
. (80)

The term proportional to B is the effect for long T of the high
frequency portion of the vacuum noise fluctuations reflected by
the laser and coherently added to the emitted light beams. This
contribution is negligible for B ≪ γ(γ − 4κg)/(2κg). Equations
(79) and (80) are the same expressions given in the main text,
with the addition of the shot-noise contribution and with a small
correction arising from the interference between the emitted
radiation and the vacuum field reflected from the cavity.

2. LOCKING BY PASSIVE REFLECTIONS

The mode coupling mechanism in a laser gyro bears similari-
ties to the two different coupling mechanisms that operate in
distributed feedback (DFB) lasers. In these lasers, photon con-
finement is achieved through index coupling, gain coupling, or
a combination of both [7]. A design based on gain coupling was
initially suggested during the early development of semiconduc-
tor DFB lasers as a means to prevent mode degeneracy at the
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edge of the stop band, a problem commonly encountered in con-
ventional index coupled DFB lasers. However, index coupling
has emerged as the preferred solution for commercial DFB lasers
currently in use. This is primarily due to the successful resolu-
tion of mode degeneracy in the so-called quarter wave shifted
DFB lasers, employing a quarter wave shift of the index modula-
tion at the center of the grating, which generates a narrow-band
mode at the center of the stop band. Gain coupling involves
creating photon confinement by periodically modulating the
gain. This physics is akin to the operation of a laser gyro with
a gain grating, the main difference lying in the slow temporal
modulation of the grating, resulting in the coupling of two non-
degenerate frequencies. Since the coupling mechanism involves
material gain, the quantum mechanical noise operators affected
by the coupling are those relevant to the material polarization.
Index coupling, on the other hand, achieves photon confinement
by backscattering from an index grating, which establish an ef-
fective optical cavity by constructing interference of multiple
reflections. This scenario is similar to the case where degenerate
coupling is induced by passive reflections in laser gyros. Ideally,
no gain or scattering loss is involved in the process.

In a laser gyro, non-degenerate locking may also result from
index coupling when it is caused by a time-dependent refractive
index modulation induced by the mode beat. The mechanism
for the generation of the index modulation may be either Kerr
effect within a dielectric slab inserted in the laser cavity, or the at-
tendant index modulation associated to gain modulation within
the gain medium itself. In the latter case, the index modula-
tion arises from gain-index coupling governed by the Kramers-
Kronig relations in a gain medium with asymmetric spectral pro-
file, similar to the mechanism underlying the Henry’s linewidth
enhancement factor in semiconductor lasers [8]. Equivalent to
index coupling is the case in which locking occurs because of un-
desired passive reflections in the laser cavity, with the difference
that in this case locking occurs at degenerate frequency and it is
of course an undesired process.

A quantum mechanical analysis of the cases in which locking
occurs because of passive reflections (either time-dependent or
time-independent) in the laser cavity is more straightforward
than that in which coupling is induced by gain grating, and
must account for two effects. One is the reduction of the cav-
ity loss, which becomes γ − 2κm and produces a reduction of
the coupling between the internal laser modes and the vacuum
fluctuations impinging upon the laser cavity. The second is the
coupling between the vacuum noise of the two counterpropa-
gating modes caused by the internal reflections. This coupling,
similarly to the coupling of the polarization noise in the case of
the coupling by the gain grating, correlates the noise sources
associated to the coupling with the outside vacuum fluctuations.
The quantum noise operators associated to material polarization
remain uncorrelated like in the case of absence of coupling. An
outline of the derivation of the main equations that describe the
fluctuations of the output fields is reported below. The mode
amplitudes a(t) and b(t) should be intended as centered at
ω0 + Ω0/2 and ω0 − Ω0/2 when locking occurs because of a
time-dependent index grating, or both around ω0 when it occurs
because of undesired static reflections.

Let us start to note that, to preserve the commutation relations
[a, b†] = 0, we require that [sa(t), s†

b(t
′)] = −(2κm/γ)δ(t − t′),

equivalent to sa(t)s†
b(t

′) = −(2κm/γ)δ(t − t′) and s†
b(t

′)sa(t) =
0 being the modes a and b in a vacuum state. Equations (15),
(16), (20) and (21) stay the same with κg replaced by κm. If we

then define, similarly to Eqs. (22)–(25), new independent noise
terms

s+(t) =

√
γ

γ − 2κm

sa(t) + sb(t)√
2

, (81)

s−(t) =

√
γ

γ + 2κm

sa(t)− sb(t)√
2

, (82)

s(−)
+ (t) =

s(−)
a (t) + s(−)

b (t)
√

2
, (83)

s(−)
− (t) =

s(−)
a (t)− s(−)

b (t)
√

2
, (84)

we obtain from Eq. (21)

dc−(t)
dt

= −2κmc−(t)− i
√

γ − 2κm s(−)
− (t) +

√
γ + 2κm s−(t).

(85)
Interestingly, the equation for the fluctuations of the carrier in
this case follows rigorously Eq. (32), which of course does not
necessitate any additional term to account for the effect of the
carrier depletion induced by gain grating. This is because the
apparent gain induced by the index grating is the effect of the re-
duction of the cavity loss caused by the extra reflection from the
grating which adds to that of the cavity mirrors, and is balanced
by a modification of the noise produced by the coupling with
the outside vacuum fluctuations. In the gain modulation case,
the extra reflection is caused by gain modulation, and its effect
is accounted for by a reduction of the noise due to the material
polarization. The carrier fluctuations are then given by Eq. (37)
without the correction term

δn(t)
n0

= − 2
a2

0 + b2
0
[a0δa1(t) + b0δb1(t)]

− 2√
γ − 2κm(a2

0 + b2
0)

[
a0s(−)

a,2 (t) + b0s(−)
b,2 (t)

]
,

(86)

so that entering this expression into Eq. (20) with a0 = b0 and
2g2n0/Γ = γ − 2κm gives

dc+(t)
dt

= −(γ − 2κm)c+,1(t)

−
√

γ − 2κm

[
s(−)
+,2 (t) + is(−)

+ (t)− s+(t)
]

.(87)

It is straightforward to check, with the same procedure followed
in the non-degenerate case, that the above equations preserve the
commutation rules. The output fields of the two modes a(t) and
b(t) do not obey in this case Eqs. (53) and (54), because sa(t) and
sb(t) are not independent bosonic waves. On the other hand, the
noise terms s+(t) and s−(t) associated to the two supermodes
c+(t) and c−(t), are independent bosonic waves, so that two
relations similar to Eqs. (53) and (54) can be established for
the two supermodes. The coupling with the outside vacuum
field of the two supermodes is quantified by the coefficients of
s+(t) and s−(t) in the dynamical equations for c+(t) and c−(t),
Eqs. (87) and (85). Being

√
γ − 2κm the coefficient of s+(t) in Eq.

(87), and
√

γ + 2κm the coefficient of s−(t) in Eq. (85), power
conservation requires that these equations are

r− = −s− +
√

γ + 2κm c−, (88)

r+ = −s+ +
√

γ − 2κm c+. (89)
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It may be verified that these equalities ensure that the commu-
tation relations of the reflected supermode fields are given by
[r±(t), r†

±(t
′)] = δ(t − t′)/4 at any time. Equations (87) and (89)

show that the output field r+ of the supermode that represents
the sum of two counterpropagating modes is the same of that
of an uncoupled single mode with effective cavity loss γ − 2κm.
Being a0 = b0, the average reflected power on the supermode
difference is zero, that is ⟨r†

−r−⟩ = 0, and the average power of
the two modes is P = h̄ω0⟨r†

+r+⟩ = h̄ω0(γ − 2κm)a2
0.

The spectra and correlation functions have limited practical
relevance when modes lock with degenerate frequencies, but
they are relevant when locking occurs with non-degenerate fre-
quencies due to a time-dependent refractive index modulation.
In this case, the expressions for the spectra and correlation func-
tions are very similar to the non-degenerate case, and they can
be obtained straightforwardly by following the same steps used
to derive them in the case of gain modulation. The main results
are

⟨δr−,2(ω)δr†
−,2(ω

′)⟩ =
1
4

[
2(γ2 − 4κ2

m)

ω2 + 4κ2
m

+ 1
]

2πδ(ω − ω′),

(90)

⟨δr+,2(ω)δr†
+,2(ω

′)⟩ =
1
4

[
2(γ − 2κm)2

ω2 + 1
]

2πδ(ω − ω′).

(91)

The spectrum of the phase difference is ⟨∆φout(ω)∆φ†
out(ω

′)⟩ =
2(h̄ω0/P)⟨δr−,2(ω)δr†

−,2(ω
′)⟩, so that

⟨∆φout(ω)∆φ†
out(ω

′)⟩ = h̄ω0
2P

[
2(γ2 − 4κ2

m)

ω2 + 4κ2
m

+ 1
]

2πδ(ω − ω′).

(92)
The second term in this expression (proportional to the +1 in the
square brackets) represents the impact of broadband vacuum
noise fluctuations that are reflected by the cavity. In semiclassical
terms, it corresponds to the shot noise of the detection process.
On the other hand, the first term represents the contribution of
phase fluctuations in the radiation emitted from the laser gyro.
When γ = 2κm, this term becomes zero. This particular case
lies outside the framework of our theory, which assumes a weak
coupling between the two modes. Indeed, the emitted power
is connected to the amplitude of the intracavity mode through
the equation P = h̄ω0⟨r†

+r+⟩ = h̄ω0(γ − 2κm)a2
0. Therefore, if

γ = 2κm, the coupling strength is so high that the output power
of the laser gyro is zero, unless the amplitude of the intracavity
mode a0 is infinite.

3. DISCUSSION

Let us now discuss the independence of photon emission in the
two counterpropagating modes. In a laser, the random nature
of emission is attributed to two sources of noise. One source
is associated with the output vacuum noise radiation leaking
through the partially reflecting coupling mirrors, while the other
is related to the inverted medium responsible for the gain. Each
noise source contributes equally to the total noise. The very exis-
tence of these noise sources is related to the need of preserving
the commutation rules of the emitted radiation of the laser.

When two modes are orthogonal, such as in free running
lasers, they are independent, and so are the photon emission on
the two modes. This is reflected by the fact that the quantum
noise associated with each mode are uncorrelated. Conversely,
when two modes are locked, they are no longer orthogonal, and

the noise sources of the two modes need to exhibit a nonzero
correlation. This is because the quantum operators representing
the mode amplitudes must commute at all times, being this the
mathematical expression of the property that it is always possi-
ble to measure the two modes independently, and the correlation
of the noise sources is required to preserve the commutativity
of the counterpropagating mode amplitudes at all times. A
correlation of the noise sources has the physical meaning that
the photon emission on the two counterpropagating modes is
correlated. Nevertheless, it is important to note that the cor-
relation between the noise sources has a negligible impact on
the laser noise properties. The primary mechanism responsible
for the reduction of the laser frequency noise stems from the
semi-classical laser dynamics, which effectively locks the phase
of the two modes.

As a final remark, the above analysis, for both locking mech-
anisms, can be straightforwardly extended to incomplete in-
version by using the noise operators related to polarization in
their general form s(−)(t)s(−)†(t′) = (1/2)(1− σ3)δ(t − t′) and
s(−)†(t)s(−)(t′) = (1/2)(1 + σ3)δ(t − t′), where σ3 is the inver-
sion operator.
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