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Frequency noise of laser gyros
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Laser gyros are powerful tools used to test the predictions of the general theory of relativity. The precision of a measure-
ment of the rotation rate with a laser gyro is limited by the frequency noise of the beat between two counterpropagating
modes of a ring laser. The frequency noise of a single mode of a laser is limited by quantum mechanical constraints
because it is related to the maximum precision with which the phase of a coherent state can be measured. If two modes
are not correlated, the variance of the fluctuations of the difference of their frequencies is the sum of the variance of the
frequency noise of the two modes. If the two modes are correlated, this result does not hold any longer. In this paper, we
show that a laser gyro has mechanisms capable of dynamically locking the two modes together without forcing them to
the same frequency. The lock of modes decouples the noise of the beat note from the frequency noise of the individual
modes, thus allowing the realization of sub-shot noise laser gyros. © 2023 Optica Publishing Group under the terms of the

Optica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.493935

1. INTRODUCTION

Laser gyros are a powerful tool used to test general relativity pre-
dictions [1–3]. They enable a precise measurement of the rotation
rate by measuring the beat of two counterpropagating modes of
a ring laser. The basic idea is that rotation breaks the symmetry
between conterpropagating modes, and the frequency difference
between the two modes is proportional to the rotation rate of the
laser gyro. The precision of the measurement depends on the fre-
quency stability of the beat note obtained by detecting the intensity
of a coherent combination of the two modes. If the modes are
independent and of equal power, the variance of the frequency
noise of the beat is twice the variance of the frequency noise of each
individual mode [4–7]. The frequency noise of each individual
mode originates from constraints dictated by quantum mechanics
and in particular from the precision of a measurement of the phase
of a coherent state [4]. The physical mechanisms that make the
laser radiation compliant with these constraints come for one half
from the quantum noise of the active medium and the other half
from the vacuum fluctuations entering from the output port of
the laser [8]. Such noise sources are responsible for the phase and
frequency noise of the laser, and for the non-zero linewidth of the
emitted radiation.

In this paper, we show that under proper conditions, the two
counterpropagating modes of a laser gyro can lock together while
still maintaining a different frequency. When these conditions are
fulfilled, the noise of the frequency of the beat note decouples to
the noise of the individual modes. This result can be understood
by the analogy with mode-locked lasers. In passively mode-locked
lasers, the locking mechanism is associated with pulsed operation.
The linewidth of the single line of the spectrum of the emitted
radiation is Lorentzian, but the frequency fluctuations are strongly
correlated, to the extent that the spectral purity of the beat note

between the spectral lines of the emitted frequency comb [9] has
been exploited for the realization of very accurate clockworks [10].
In ring lasers, locking of counterpropagating modes is the result
of reflections. When reflections occur from static cavity elements
such as cavity mirrors, the two modes locks at the same frequency.
When reflections come from the slowly moving grating, generated
in a nonlinear medium with slow response by the beat of the two
counterpropagating modes themselves, they tend to stabilize the
difference frequency of the two modes. We speculate that this
mechanism is at work in the best-performing laser gyros operating
around the world, when spurious reflections from static cavity
elements are minimized, and that may in particular explain the
observation of sub-shot noise performance of the GINGERino
laser gyro that appeared in the literature recently [11–13].

One may use these results for investigating the possibility
of alternate laser design, where suitable nonlinear elements are
inserted in the laser cavity to stabilize the mode beat. Our findings
pave the way for the realization of sub-shot noise laser gyros of
unprecedented accuracy for ultra-precise testing of the predictions
of general relativity.

2. SINGLE-MODE CASE

Following the analysis of Yamamoto and Haus [8], let us consider
first a single mode of an empty cavity a(t)with bosonic commuta-
tion relations

[a(t), a†(t)] = 1, (1)

coupled to an outside optical wave sa (t) with commutation
relations

[sa (t), s†
a (t
′)] = δ(t − t ′). (2)
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The wave reflected from the cavity is given by [8,14,15]

ra (t)=−sa (t)+
√
γ a(t). (3)

The temporal evolution of the mode a(t) is described by the dif-
ferential equation

da(t)
dt
=−

γ

2
a(t)+

√
γ sa (t). (4)

Assuming that the outside wave is incident upon the cavity from
a time much longer than 1/γ , the solution of Eq. (3) is

a(t)=
√
γ

∫ t

−∞

du exp
[
−
γ

2
(t − u)

]
sa (u), (5)

so that the two-time commutation relations of ra (t) are

[a(t), a†(t ′)] = γ exp
[
−
γ

2
(t + t ′)

] ∫ t

−∞

du
∫ t ′

−∞

du ′

× exp
[γ

2
(u + u ′)

]
[sa (u), s†

a (u
′)], (6)

that is [
a(t), a†(t ′)

]
= exp

(
−
γ

2

∣∣t − t ′
∣∣) , (7)

consistent with the bosonic commutation rule (1) for t = t ′.
The commutation relations of the reflected wave ra (t) are

[ra (t), r†
a (t
′)] = [sa (t), s†

a (t
′)] + γ [a(t), a†(t ′)]

−
√
γ
(
[a(t), s†

a (t
′)] + [sa (t), a†(t ′)]

)
. (8)

Being

[a(t), s†
a (t
′)] =
√
γ

∫ t

−∞

du exp
[
−
γ

2
(t − u)

]
[sa (u), s†

a (t
′)],

(9)
that is

[a(t), s†
a (t
′)] = exp

[
−
γ

2
(t − t ′)

]
u(t − t ′), (10)

and also

[sa (t), a†(t ′)] = exp
[
−
γ

2
(t ′ − t)

]
u(t ′ − t), (11)

where u(t)= 1 for t > 0, u(t)= 0 for t < 0, and u(0)= 1/2, so
that we obtain

[ra (t), r†
a (t
′)] = [sa (t), s†

a (t)], (12)

and hence that the commutation relation of the output optical
wave was the same of the input wave, as it should be.

Let us now assume that a gain medium is inserted into the cav-
ity (see Fig. 1), which we represent as a statistical mixture of N two-
level atoms. Let us define the operators

σ− =

N∑
i=1

1

N
(|1〉〈2|)i , (13)

where |1〉 and |2〉 are the two levels, and

σ 3 =

N∑
i=1

1

N
(|2〉〈2| − |1〉〈1|)i . (14)

Fig. 1. Representation of the laser cavity. The front mirror is a partially
reflecting mirror with power reflectivity R , such that γ = (1− R)/τrt,
where τrt is the cavity roundtrip time, whereas the backward mirror is fully
reflecting.

It is easy to show that σ− and σ 3 obey the commutation
relations

[σ−, σ
†
−
] =−

σ 3

N
, (15)

and the anti-commutation

{σ−, σ
†
−
} =

1

N
. (16)

The spontaneous decay ofσ 3 is described by

dσ−(t)
dt
=−0σ−(t)+

(
20

N

)1/2

s(−)(t), (17)

where a noise source s(−)(t)with commutation relation

[s(−)(t), s(−)†(t ′)] =−σ 3(t)δ(t − t ′), (18)

and anti-commutation

{s(−)(t), s(−)†(t ′)} = δ(t − t ′) (19)

is required to preserve the commutation and anti-commutation
relations, as it may be verified for the commutator (and similarly
for the anti-commutator) by calculating d[σ 3(t), σ

†
3(t)] and using

that

[s(−)(t)dt, s(−)†(t)dt] =−σ 3(t)dt . (20)

Being σ−(t)2 = 0, we also have s(−)(t)2 = s(−)†(t)2 = 0, and
this completes the characterization of the noise operator. If the
active medium is placed into the cavity that we described above, the
coupling with the cavity mode is described by the equation for a(t):

da(t)
dt
=−

γ

2
a(t)− ig Nσ−(t)+

√
γ sa (t), (21)

where g is a coefficient proportional to the gain, and by the equa-
tion forσ−:

dσ−(t)
dt
=−0σ−(t)+ igσ 3(t)a(t)+

(
20

N

)1/2

s(−)(t). (22)

In the presence of optical pumping with pumping rate R p , the
equation for the population inversion n(t)= Nσ 3(t) is

dn(t)
dt
= R p −

n
τ
+ i2g N

[
a†(t)σ−(t)− σ †

−
(t)a(t)

]
, (23)

where τ is the spontaneous carrier lifetime.
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Assuming 0� 1/τ , we may neglect dσ−(t)/dt in Eq. (22)
compared to−0σ−(t). This procedure yields

σ−(t)= i
g

N0
n(t)a(t)+

(
2

N0

)1/2

s(−)(t), (24)

and this identity once inserted into the equation for n(t) permits to
adiabatically eliminateσ−(t) in Eqs. (21) and (23), which become

da(t)
dt
=

[
−
γ

2
+

g 2

0
n(t)

]
a(t)− ig

(
2N
0

)1/2

s(−)(t)+
√
γ sa (t),

(25)

dn(t)
dt
= R p −

n(t)
τ
−

4g 2

0
n(t)a†(t)a(t)

+ i2g
(

2N
0

)1/2[
a†(t)s(−)(t)− s(−)†(t)a(t)

]
. (26)

The commutation relations of the noise term in Eq. (25)

Sa (t)=−ig
(

2N
0

)1/2

s(−)(t)+
√
γ sa (t) (27)

is

[Sa (t), S†
a (t
′)] = 2

(
γ

2
−

g 2

0
n
)
δ(t − t ′). (28)

Using

d[a(t), a†(t)] = [da(t), a†(t)] + [a(t), da†(t)] + [da(t), da†(t)],
(29)

and

[da(t), da†(t)] = [Sa (t)dt, S†
a (t)dt] = 2

[
γ

2
−

g 2

0
n(t)

]
dt,

(30)
we may show that the commutation relations Eq. (28) imply
d[a(t), a†(t)] = 0, thus ensuring the preservation of the commu-
tation relations for a(t), also in the presence of the interaction with
the gain medium.

Let us now linearize Eqs. (25) and (26) around the steady state
by setting

a(t)= a0 + δa(t), (31)

n(t)= n0 + δn(t), (32)

with a0 and n0 c-numbers. The commutation relations for δa(t)
are equal to the commutation relations for a(t). The steady state
value of the population inversion is

n0 =
γ0

2g 2
, (33)

so that linearization of Eqs. (25) and (26) yields

dδa(t)
dt
=

g 2

0
a0δn(t)− ig

(
2N
0

)1/2

s(−)(t)+
√
γ sa (t), (34)

dδn(t)
dt
=−

δn(t)
τ
−

4g 2

0
a2

0δn(t)

−
4g 2

0
n0a0

[
δa(t)+ δa†(t)

]
+ i2g

(
2N
0

)1/2

a0
[
s (−)(t)− s (−)†(t)

]
, (35)

where we assumed a0 as real implying the definition of a phase ref-
erence for the field.

Adiabatic elimination of the population inversion in the
high-gain regime in which 1/τ � 4g 2a2

0/0 gives

δn(t)=−
n0

a0

[
δa(t)+ δa†(t)

]
+ i

0

2g

(
2N
0

)1/2 1

a0

[
s(−)(t)− s(−)†(t)

]
. (36)

This equation, inserted into Eq. (34) gives

dδa(t)
dt
=−γ

δa(t)+ δa†(t)
2

+
√
γ sa (t)

− ig
(

2N
0

)1/2 s(−)(t)+ s(−)†(t)
2

. (37)

With strong pumping, the medium is fully inverted so that
n0 ' N, and using Eq. (33), we obtainγ = 2n0g 2/0 ' 2Ng 2/0.
Therefore,

dδa(t)
dt
=−γ

δa(t)+ δa†(t)
2

+
√
γ sa (t)

− i
√
γ

s(−)(t)+ s(−)†(t)
2

. (38)

The equations for the in-phase component δa1(t)=
[δa(t)+ δa†(t)]/2 and the in-quadrature component
δa2(t)= [δa(t)− δa†(t)]/(2i) are

dδa1(t)
dt

=−γ δa1(t)+
√
γ sa ,1(t), (39)

and

dδa2(t)
dt

=
√
γ
[
s2(t)− s(−)1 (t)

]
, (40)

where s(−)1 (t)= [s(−)(t)+ s(−)†(t)]/2, s(−)2 (t)= [s(−)(t)−
s(−)†(t)]/(2i), sa ,1(t)= [sa (t)+ s†

a (t)]/2, and sa ,2(t)=
[sa (t)− s†

a (t)]/(2i).
Solving the equation for the in-phase component Eq. (39) in the

Fourier domain, we obtain

δa1(ω)=

√
γ sa ,1(ω)

−iω+ γ
, (41)

which inserted into the equation for the fluctuations of ra ,1(ω)

given by Eq. (3) yields

δra ,1(ω)=
iωγ
−iω+ γ

sa ,1(ω). (42)



Research Article Vol. 10, No. 8 / August 2023 / Optica 1105

For ω� γ , we have δra ,1(ω)' 0 [8,15], whereas for ω� γ ,
we have δra ,1(ω)=−sa ,1(ω), so that in this regime, the incoming
vacuum fluctuations are reflected from the cavity with a π -phase
shift, producing a coherent state at output.

Using Eq. (18), and being 〈σ3〉 = 1 for full inversion, we obtain

〈s(−)i (t)s(−)i (t ′)〉 =
1

4
δ(t − t ′), i = 1, 2, (43)

and using Eq. (3)

〈si (t)si (t ′)〉 =
1

4
δ(t − t ′), i = 1, 2. (44)

Equation (40) shows that the diffusion coefficient for the in-
quadrature fluctuations is equal to γ /2, so that the diffusion
coefficient for the phase fluctuations, defined as

1ϕ =
δa2(t)

a0
(45)

is

Dϕ =
γ

2a2
0

, (46)

so that the laser line-width is

1ν =
Dϕ

2π
=

γ

4πa2
0

. (47)

If we use the expression for the output power of the laser
P = γ a2

0~ω0, we obtain the well-known Schawlow–Townes
linewidth formula:

1ν =
γ 2~ω0

4π P
. (48)

The uncertainty of a frequency measurement over a time T is

ωmeasT =ω0T +1ϕ(t + T)−1ϕ(t), (49)

so that, using 〈[1ϕ(t + T)−1ϕ(t)]2〉 = DϕT, we obtain

1ω2
meas =

〈[1ϕ(t + T)−1ϕ(t)]2〉
T2

=
γ

2a2
0 T
, (50)

where we defined the uncertainty of the frequency measurement
as 1ωmeas = (〈1ωmeas〉

2)1/2. Equation (50) can be interpreted
in simple physical terms. The variance of a phase measurement
on a coherent state of amplitude a0 is 1ϕ2

coh = 1/(4a2
0). Nyquist

criterion states that the number of independent measurements that
can be performed over a time T on a signal of correlation time 1/γ
[see Eq. (42)] is Nmeas = (2T)/(1/γ ), so that the variance of the
frequency measurement is 1ω2

coh = (1ϕ
2
coh/T2)/Nmeas, which

returns Eq. (50) [4].
Using Eq. (50), the relation that links a2

0 to the output power of
the laser P , namely a2

0 = P/(γ~ω0), we obtain

1ωmeas =
ω0

Q

√
~ω0

2P T
, (51)

where we defined the cavity quality factor as Q =ω0/γ .

3. LASER GYRO: A TWO-MODE CASE

While the laser linewidth and the precision of a measurement of
the frequency of a single laser mode are prone to strong quantum

Fig. 2. Representation of the ring laser cavity. The front mirror
is a partially reflecting mirror with power reflectivity R , such that
γ = (1− R)/τrt, where τrt is the cavity roundtrip time, whereas other two
mirrors are fully reflecting.

mechanical constraints, the frequency difference of two modes
is not. Of course, if the two modes are independent, the variance
of the fluctuations of the difference frequency is the sum of the
variances of the individual modes. Different is the case of correlated
modes. The case of the beat of two modes of a mode-locked laser is
an example where the beat of two modes has precision orders of a
magnitude larger than the precision of each individual mode fre-
quency [9]. This property enables the transfer down to microwave
frequencies of extremely stable optical oscillations and vice versa
[10]. It is therefore worth investigating whether there are any active
locking mechanisms (or can be induced by a suitable design) in
laser gyros.

Let us consider a ring laser with two counterpropagating modes
(see Fig. 2), one forward-propagating, centered at frequency ω0 +

�0/2:

da(t)
dt
=−i

�0

2
a(t)−

γ

2
a(t)− ig N[σ−(t)]a +

√
γ sa (t),

(52)
and the other backward propagating centered at frequency
ω0 −�0/2:

db(t)
dt
= i

�0

2
b(t)−

γ

2
b(t)− ig N[σ−(t)]b +

√
γ sb(t). (53)

Here [σ−(t)]a and [σ−(t)]b are the (suitably normalized)
spatial Fourier components of σ− proportional to exp(ikz)
and exp(−ikz) that couple with the forward and backward
propagating waves. The equation forσ− becomes

dσ−(t)
dt
=−0σ−(t)+ igσ 3(t)(a(t)+ b(t))+

(
20

N

)1/2

s(−)(t).

(54)
In the presence of optical pumping with pumping rate R p , the

equation for the population inversion n(t)= Nσ 3(t) is

dn(t)
dt
= R p −

n
τ
+ i2g N[(a†(t)+ b†

(t))σ−(t)

− σ †
−
(t)(a(t)+ b(t))], (55)

where τ is the spontaneous lifetime.
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Adiabatic elimination ofσ−(t) in Eq. (54) gives

σ−(t)= i
g

N0
n(t)(a(t)+ b(t))+

(
2

N0

)1/2

s(−)(t), (56)

that is, the expected linear dependence of the medium polarization
on the optical field. Inserting Eq. (56) into Eqs. (52) and (53) and
projectingσ−(t) over the two counterpropagating modes gives

da(t)
dt
=−i

�0

2
a(t)+

[
−
γ

2
+

g 2

0
n(t)

]
a(t)

− ig
(

2N
0

)1/2

s(−)a (t)+
√
γ sa (t), (57)

db(t)
dt
= i

�0

2
b(t)+

[
−
γ

2
+

g 2

0
n(t)

]
b(t)

− ig
(

2N
0

)1/2

s(−)b (t)+
√
γ sb(t). (58)

Here, s(−)a ,b (t) are the result of the projection of the noise term
s(−)(t) over the spatial mode profile exp(ikz) and exp(−ikz).
Local multiplication by exp(±ikz) generates two independent
noise terms with the same commutation properties of s(−)(t). As a
check, it may be verified that, if s(−)a ,b (t) obey the commutation rule
(18), Eqs. (57) and (58) preserve the bosonic commutation rules of
the two modes. Entering Eq. (56) into Eq. (55) and expanding the
product of the mode amplitudes yields

dn(t)
dt
= R p −

n(t)
τ
−

4g 2

0
n(t)[a†(t)a(t)+ b†

(t)b(t)

+ a†(t)b(t)+ b†
(t)a(t)]

+ i2g
(

2N
0

)1/2

[(a†(t)+ b†
(t))s(−)(t)

− s(−)†(t)(a(t)+ b(t))]. (59)

Being�� 1/τ , we may assume that n(t) adiabatically follows the
modulation frequency, so that the steady state of n is

n(t)=
R p

1/τ + (4g 2/0)
(
|a0|

2 + |b0|
2 + a ∗0 b0e i�0t + a0b∗0e−i�0t

) .

(60)
The terms a∗0 b0 and a0b∗0 account for a gain grating generated
by the beat of the two counterpropagating modes over the gain
medium. The nature of this grating may be understood by con-
sidering that the two counterpropagating modes collide over the
active medium and generate the intensity pattern:

I (z, t)= |A exp(−i�0t/2+ ikz)+ B exp(i�0t/2− ikz)|2,
(61)

where A and B are the amplitudes of the forward and backward
propagating modes at the position of the gain medium. Expanding
the expression of the intensity, we obtain

I (z, t)= |A|2 + |B |2 + AB∗ exp(−i�0t + 2ikz)

+ A∗B exp(i�0t − 2ikz). (62)

The grating moves at the speed �0/(2k)= ( f1 − f2)λ/2, in
the GINGERino case [16,17] about 89 microns per second. In
a gas laser, the amplitude of the grating tends to be attenuated by
diffusion, so that we may expand the above expression to first order:

n(t)= n0

(
1−

a∗0 b0e i�0t
+ a0b∗0e−i�0t

|a0|
2 + |b0|

2

)
, (63)

where we assumed high saturation so that (4g 2/0)(|a0|
2
+

|b0|
2)� 1/τ and defined

n0 =
R p0

4g 2
(
|a0|

2 + |b0|
2
) . (64)

Similarly to the single mode case, the phase fluctuations are
independent of the fluctuations of the carrier, so that n(t) can be
replaced by its steady state value n0:

da(t)
dt
=−i

�0

2
a(t)+ κg b(t)e−i�0t

+

(
−
γ

2
+

g 2

0
n0

)
a(t)

− i
√
γ s(−)a (t)+

√
γ sa (t),

(65)

db(t)
dt
= i

�0

2
b(t)+ κ∗g a(t)e i�0t

+

(
−
γ

2
+

g 2

0
n0

)
b(t)

− i
√
γ s (−)b (t)+

√
γ sb(t), (66)

where we used γ = 2g 2n0/0 and assumed full inversion so that
N ' n0, and we defined

κg =−
g 2n0

0

ξa0b∗0
|a0|

2 + |b0|
2

. (67)

Here, we have introduced a factor ξ < 1 to account for the reduc-
tion of the grating amplitude caused by diffusion of the active
atoms and by the fact that in HeNe lasers, the presence of different
isotopes of Ne results in that different sets of atoms couple with
uneven strengths to the two countepropagating waves. The term
κg , proportional to a0b∗0 , couples the backward propagating mode
to the forward propagating mode, because the spatial modulation
proportional to exp(2ikz) promotes phase matching between the
backward propagating wave, with spatial dependence exp(−ikz),
and the forward propagating wave with spatial dependence
exp(ikz). By a similar mechanism, the term κ∗g , proportional to
a∗0 b0, couples the forward propagating mode to the backward
propagating mode.

A potentially relevant additional effect may also arise because
the Kramers–Kronig relations dictate that a dynamic gain change
with an asymmetric spectrum always generates a dynamic index
change. This phenomenon is similar to the effect that leads to the
Henry’s α factor in semiconductor lasers [18]. Consequently, in
addition to the coupling directly induced by gain modulation, the
resulting index grating can further enhance the coupling between
the two counterpropagating waves, by a mechanism similar to that
employed in index-coupled distributed feedback lasers [19]. The
effect of a dynamic index grating is essentially to change the value
of the coupling constant κg into (1+ α)κg , with α being a phe-
nomenological constant. A detailed quantum analysis of the case in
which coupling is caused by a dynamic index grating is reported in
Supplement 1.

https://doi.org/10.6084/m9.figshare.23703396
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Reflections may also occur from various optical elements in the
optical cavity, primarily from cavity mirrors. In this case, however,
reflections do not change the frequency of the field. Including
this process into Eqs. (65) and (66) by an extra backscattering
coefficient κm , they become

da(t)
dt
=−i

�0

2
a(t)+

(
κg e−i�0t

+ κm
)

b(t)

+

(
−
γ

2
+

g 2

0
n0

)
a(t)− i

√
γ s(−)a (t)+

√
γ sa (t),

(68)

db(t)
dt
= i

�0

2
b(t)+

(
κ∗g e i�0t

+ κ∗m
)

a(t)

+

(
−
γ

2
+

g 2

0
n0

)
b(t)− i

√
γ s(−)b (t)+

√
γ sb(t).

(69)

The coupling between the two modes is non-hermitian, so that
Eqs. (68) and (69) need to be modified to preserve the commuta-
tion relations. The following analysis is therefore valid for small
κg and κm . A rigorous quantum analysis of the coupling of the two
counterpropagating modes is reported in Supplement 1.

These equations are linear in the fields. Thus, a meaningful
analysis can be performed assuming classical fields, with noise
sources whose strength are dictated by quantum mechanics.
Considering only the deterministic part, and defining 1g =
−γ + 2g 2n0/0, a0 = |a0| exp(iϕa ), b0 = |b0| exp(iϕb), κg =

|κg | exp(iϕg ), and κg = |κm | exp(iϕm), we obtain:

dϕa

dt
=−

�0

2
+
|b0|

|a0|
[|κg | sin(ϕb − ϕa + ϕg −�0t)

+ |κm | sin(ϕb − ϕa + ϕm)], (70)

dϕb

dt
=
�0

2
−
|a0|

|b0|
[|κg | sin(ϕb − ϕa + ϕg −�0t)

+ |κm | sin(ϕb − ϕa + ϕm)]. (71)

We also have

d|a0|

dt
=
1g
2
|a0| + |b0|[|κg | cos(ϕb − ϕa + ϕg −�0t)

+ |κm | cos(ϕb − ϕa + ϕm)], (72)

d|b0|

dt
=
1g
2
|b0| + |a0|[|κg | cos(ϕb − ϕa + ϕg −�0t)

+ |κm | cos(ϕb − ϕa + ϕm)]. (73)

These equations admit stable stationary solutions for |a0| and |b0|

only when either |κg | or |κm | is predominant, so that the other can
be neglected. Let us consider these two cases separately.

A. Scattering Due to Mirrors Is Predominant

This case corresponds to κg = 0. In this case, by defining
1ϕ = ϕa − ϕb − ϕm , we obtain

d1ϕ

dt
=�0 − |κm |

(
|b0|

|a0|
+
|a0|

|b0|

)
sin(1ϕ), (74)

and also

d|a0|

dt
=
1g
2
|a0| + |κm ||b0| cos(1ϕ), (75)

d|b0|

dt
=
1g
2
|b0| + |κm ||a0| cos(1ϕ). (76)

Of course, if |κm | is negligible 1ϕ =�0t . However, two steady-
state solutions with a time-independent value of 1ϕ exist if
�0 ≤ 2|κm |. This steady state corresponds to two counterprop-
agating modes with the same frequency and locked phase, and is
achieved for |a0| = |b0|,1g =−2|κm | cos(1ϕ), and for values of
�0 such that

�0 = 2|κm | sin(1ϕ). (77)

Of the two solutions, only that with1g =−2|κm | cos(1ϕ) < 0 is
stable. The maximum value of�0 compatible with this steady state
solution is�lock−in = 2|κm |.

Locking at a zero difference frequency should be avoided in
the proper operation of a laser gyro. The value of |κm | can be esti-
mated from the frequency f lock−in =�lock−in/(2π) reported for
operating laser gyros in Table II of ref. [3], which ranges from 8 to
240 mHz.

When the locking condition is established, the two modes
of equal frequency produce a static standing grating in the gain
medium, and the reflection from this grating further stabilize
the locking state. The effect in a laser gyro of reflections from a
standing index grating has been analyzed in [1].

B. Scattering Due to Gain Is Predominant

This case corresponds to set κm = 0 in Eqs. (68) and (69), and is
more conveniently studied by frequency shifting a(t) by −�0/2
and a(t) by�0/2 by

a′(t)= a(t) exp(i�0t/2), (78)

b′(t)= b(t) exp(−i�0t/2), (79)

so that the transformed field a′(t) is centered at frequency
ω0 −�0/2 and b′(t) around ω0 +�0/2. The new fields obey
the following equations:

da′(t)
dt
= κg b′(t)+

[
−
γ

2
+

g 2

0
n(t)

]
a′(t)

+
[
−i
√
γ s(−)a (t)+

√
γ sa (t)

]
e i�0t/2, (80)

db′(t)
dt
= κ∗g a′(t)+

[
−
γ

2
+

g 2

0
n(t)

]
b′(t)

+

[
−i
√
γ s(−)b (t)+

√
γ sb(t)

]
e−i�0t/2. (81)

The transformations (78) and (79) allow us to define inde-
pendent phase references for the two modes. Defining 1ϕ′ =
ϕ′a − ϕ

′

b − ϕg , where ϕ′a and−ϕ′b are the phases of the frequency-
shifted fields, corresponding to 1ϕ′ = ϕa − ϕb − ϕg +�0t in
terms of the phases of the original fields, we obtain

d1φ′

dt
=−

∣∣κg

∣∣ ( |b0|

|a0|
+
|a0|

|b0|

)
sin(1φ′), (82)

and also
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d|a0|

dt
=
1g
2
|a0| + |κg ||b0| cos(1ϕ), (83)

d|b0|

dt
=
1g
2
|b0| + |κg ||a0| cos(1ϕ). (84)

Steady state is achieved for |a0| = |b0|, 1g =−2|κg | cos(1ϕ)
and for values of 1ϕ = 0 and 1ϕ = π . Of the two solutions,
only 1ϕ = 0 is stable because 1g =−2|κg | cos(1ϕ) < 0. This
condition correspond to a locking of the two modes at a difference
frequency�0.

Linearization of Eq. (82) about the steady state 1ϕ′ = 0 (and
removing the prime for simplicity of notation) gives

d1ϕ

dt
=−2|κ|1ϕ. (85)

This equation can be extended to the quantum domain defining
1ϕ = δa′2/a0 − δb′2/b0 and adding the proper noise terms as

d1ϕ

dt
=−2|κ|1ϕ + s1ϕ, (86)

where

s1ϕ =
√
γ

a0

[
s(−)a ,2 (t)+ sa ,1(t)

]
e i�0t/2

−

√
γ

b0

[
s(−)b,2 (t)+ sb,1(t)

]
e−i�0t/2. (87)

The frequency shift of the two independent white noise terms in
the two lines of Eq. (87) has no effect on their statistical properties
and can be neglected. Solution of Eq. (87) shows that 1ϕ has a
Lorentzian spectrum. The phase noise 1ϕ is a stationary process
with power spectrum

W1ϕ(ω)=
γ 2~ω0

P (ω2 + 4|κg |
2)
, (88)

corresponding to the following auto-correlation function of the
phase fluctuations

〈1ϕ(t + τ)1ϕ(t)〉 =
γ 2~ω0

4P |κg |
exp
(
−2|κg ||τ |

)
. (89)

Here, we assumed once again the full inversion 〈σ3〉 = 1. The
power spectrum of the (angular) frequency fluctuations is therefore

W1ωmeas(ω)=
γ 2~ω0

P
ω2

ω2 + 4|κg |
2

. (90)

The uncertainty of a frequency measurement performed over a
time T is

ωmeasT =ω0T +1ϕ(t + T)−1ϕ(t), (91)

so that, considering that 〈1ϕ2
〉 = 2〈ϕ(t)〉 − 2〈1ϕ(t +

T)1ϕ(t)〉, the uncertainty in a frequency measurement defined
like in Eq. (50), is

1ω2
meas =

γ 2~ω0

2P T2|κg |

[
1− exp

(
−2|κg |T

)]
, (92)

that is, usingγ =ω0/Q,

1ωmeas =
ω0

Q

√√√√~ω0

P T

[
1− exp

(
−2|κg |T

)
2|κg |T

]
. (93)

In the limit |κg |T→ 0, we obtain

1ωmeas =
ω0

Q

√
~ω0

P T
, |κg |T→ 0, (94)

that is, the known result for independent modes and is
√

2 times
bigger than the frequency uncertainty of a single mode given by
Eq. (51) [4], whereas for |κg |T� 1, we have

1ωmeas =
ω0

QT

√
~ω0

2P |κg |
, |κg |T� 1. (95)

The Allan variance can be easily calculated from the
autocorrelation function as

σ 2
T =

γ 2~ω0

4P |κg |T2

[
3− 4 exp

(
−2|κg |T

)
+ exp

(
−4|κg |T

)]
.

(96)
For |κg |T→ 0, we obtain the Allan variance for unlocked modes,
corresponding to white frequency noise

σ 2
T =

γ 2~ω0

P T
, |κg |T→ 0, (97)

whereas for |κg |T� 1, the Allan variance of white phase noise

σ 2
T =

3γ 2~ω0

4P |κg |T2
, |κg |T� 1. (98)

The complete expressions of the Allan variances of the output
of a laser gyro, which include the effect of the shot noise of the
detection, are given in Supplement 1.

4. DISCUSSION

Our analysis assumed that the two counterpropagating modes
share the same gain medium, implicitly neglecting spectral hole
burning in the gain medium and considering only the saturation of
the total number of inverted atoms. Indeed, in HeNe laser gyros,
a 50:50 mixture of two isotopes of Ne, Ne20, and Ne22 are used
aiming to stabilize the two-mode operation [1,20,21]. With only
one isotope of Ne present (resulting in a single gain curve), both
counterpropagating modes would create a hole at the peak of the
Doppler broadened-gain spectrum, corresponding to a com-
ponent of velocity along the local laser axis that approaches zero.
However, when two isotopes with different gain spectra are present,
the peak of the composite gain spectrum shifts to an intermediate
position between the two individual spectra. Consequently, the
laser operating frequency deviates from the maximum of the gain
curve of each of the two isotopes, and the atoms responsible for the
gain at that frequency have opposite velocities for each of the two
counterpropagating modes, with the maximum velocity difference
occurring when the isotopic ratio is 50:50. With this choice, the
two counterpropagating waves create holes in the gain spectrum
with a maximum frequency separation, stabilizing the two-mode
operation of the laser.

These considerations may lead us to conclude that a compre-
hensive description of the laser should consider independent gain

https://doi.org/10.6084/m9.figshare.23703396
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media for the two counterpropagating modes. We believe, how-
ever, that this is an oversimplification. Indeed, out analysis relies on
the existence of a gain grating in the laser gyro, and the aforemen-
tioned picture does not hinder the effectiveness of its generation.
The coupling between the gain medium and the two counterprop-
agating modes is minimal at the nodes of the quasi-static standing
wave, while it is maximal at the antinodes, a principle used to con-
trol spontaneous emission in micorocavities [22]. The resulting
depletion of active atoms follows the modulation of the standing
wave and generates a gain modulation, whose persistence is coun-
teracted by diffusion. Once spectral holes are formed in the HeNe
gain spectrum at a specific frequency for each counterpropagating
mode, collisions act to restore a thermal distribution of the inverted
atoms, thereby equalizing the gain compression across the entire
gain bandwidth. This further justifies our assumption that the two
counterpropagating modes share the same active medium.

Additionally, the dynamic index grating generated by a broad-
band gain modulation, which we discussed previously, may further
contribute to the coupling between the two counterpropagating
waves. This mechanism can be very effective because the gain
modulations that are effective in generating the index grating are
not only those at the lasing frequency, but also those generated at a
shifted frequency by the counterpropagating waves.

5. CONCLUSION

In the absence of locking, the two modes fluctuate independently,
and their phase difference undertakes free diffusion. The effect
of the gain grating is to lock the relative phase of the two modes.
While free diffusion of the individual modes is not affected, the
relative phase diffusion is suppressed. Mathematically, this is the
result of the presence of restoring force in the dynamical equation
for the phase difference, which effectively suppresses the effect of
the quantum noise on the phase difference between the two modes,
thus stabilizing the difference frequency of the laser gyro.

This scenario is very similar to the mode-locked laser case [9],
where the width of the individual lines of the frequency comb have
a Lorentzian shape with the Schawlow–Townes linewidth corre-
sponding to the total intracavity power, whereas the linewidth of
the beat is delta-like if the repetition rate of the laser is locked to an
external microwave source by a feedback loop acting on the cavity
length [9]. This property is used in the realization of clockworks
based on optical transitions using phase-stabilized mode-locked
lasers [10].

In a conventional laser, the mode spacing is determined by the
cavity geometry, namely, by the roundtrip time. In a laser gyro, the
spacing between the two couterpropagating modes is determined
by the cavity geometry and by the rotation rate of the gyro, which
produces an effective roundtrip time difference between the two
modes. In the absence of locking, in both cases, the instantaneous
frequency difference between the two modes is affected by their
independent phase diffusion.

The modes of a laser may lock together when the locked con-
figuration requires lower energy compared to the unlocked one.
This is the case of passively mode-locked lasers, where the locked
configuration corresponds to a pulsed operation, with pulses ener-
getically preferred because of the presence of a saturable absorbing
action within the laser cavity. In the case of a laser gyro where the
reflection from a dynamical gain (or index) grating occurs, the
configuration in which the two modes are locked requires less gain
because of the constructive interference with the component of the

opposite propagating mode reflected from the gain grating. In the
case of mode-locked lasers, the mode beat has a residual linewidth
because frequency noise, also originated by the spontaneous emis-
sion and hence of quantum origin, couples to the pulse timing via
the intracavity dispersion, inducing a timing jitter that perturbs the
ideal periodicity of the pulse train [9]. If timing jitter is controlled,
like in the case of active mode locking, the individual lines of the
frequency comb have a linewidth that depends on the stability of
the intracavity optical modulator.

In laser gyros where spurious reflections from the mirrors
are minimized, dynamic locking of the two counterpropagat-
ing modes is caused by a dynamic gain grating that controls the
fast fluctuations induced by the spontaneous emission. Like in
passively mode-locked lasers, the locking does not prevent the
possibility that the mode beat follows the dynamic change of the
mode spacing, if this change occurs over a time scale longer than
the lifetime of the grating, which is related to the excited state
lifetime of the active medium. The locking mechanism may be
responsible for the recently observed sub-shot-noise perform-
ance of the GINGERino laser gyro [11–13]. We may speculate
that locking of non-degenerate modes may also be stabilized by
a suitable design of the laser, adding for instance a slow saturable
absorber into the laser cavity, or by a feedback loop with a long
integration time acting on the cavity roundtrip time to stabilize the
beat frequency between the two counterpropagating modes.
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