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1. Introduction

Let F be a fixed field of characteristic zero containing an element i such that i2 = −1
and consider an associative superalgebra A = A0 ⊕A1 over F . A graded linear map p is 
a pseudoautomorphism on A if, for any homogeneous elements a, b ∈ A0 ∪A1,

p2(a) = (−1)|a|a and p(ab) = (−1)|a||b|p(a)p(b).

In [9], the author proved that pseudoautomorphisms represent the connection link 
between graded involutions, superinvolutions and pseudoinvolutions; such maps play a 
prominent role in the setting of Lie and Jordan superalgebras (see for instance [14–16]) 
and they have been extensively studied within the theory of polynomial identities (see 
[1,12] and the references therein).

It is well-known that the study of the polynomial identities satisfied by an ordinary 
algebra A (with no additional structure) is equivalent to the study of the multilinear ones 
and an effective way to measure such identities is through the sequence of codimensions 
cn(A), n = 1, 2, . . ., of A. Recall that if Pn is the space of multilinear polynomials 
in the non-commuting variables x1, . . . , xn and Id(A) is the ideal of identities of A, 
then cn(A) = dimPn/(Pn ∩ Id(A)). The asymptotic behavior of this sequence has been 
extensively studied leading to classification results of several varieties of algebras. The 
key result in this area says that the sequence of codimensions of an algebra satisfying a 
non-trivial polynomial identity is exponentially bounded ([17]) and its exponential rate 
of growth is an integer ([3,4]).

Let A be a superalgebra with pseudoautomorphism. In this paper we study the p-
polynomial identities satisfied by A and we investigate the asymptotic behavior of the 
corresponding sequence cpn(A) of p-codimensions. Notice that such a sequence is bounded 
from above by 4nn!. Nevertheless when A satisfies an ordinary (non trivial) identity, 
cpn(A) is exponentially bounded (see [6]).

Now assume that A has finite dimension over the field F . In the first part of the paper 
we determine the exponential rate of growth of the sequence of p-codimensions, showing 
that

expp(A) = lim
n→∞

n

√
cpn(A)

exists and it is a non-negative integer, called the p-exponent of A. Moreover expp(A)
can be explicitly computed and it turns out to be equal to the dimension of a suitable 
semisimple p-subalgebra of A.

The last part of the paper is devoted to the characterization of those algebras whose 
p-exponent is bounded by 2 (see also [2,5,8,11]). If the p-exponent of an algebra A is 
bounded by 1, it is equivalent to say that the p-codimensions are polynomially bounded 
and that the variety generated by A does not contain the group algebra of Z2 and the 
algebra of 2× 2 upper triangular matrices with suitable pseudoautomorphisms (see [6]). 
These are the only algebras generating minimal varieties of p-exponent 2.
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Finally, new results concerning p-algebras generating varieties of minimal p-exponent 
> 2 will be obtained.

It is important to highlight that the starting point in the proof of all results of this 
paper is the Wedderburn-Malcev decomposition of a finite dimensional p-algebra based 
on the classification of the simple ones given in [10].

2. Superalgebras with pseudoautomorphism

Throughout this paper F will denote a field of characteristic zero containing an el-
ement i such that i2 = −1 and A = A0 ⊕ A1 an associative superalgebra (an algebra 
graded by Z2, the cyclic group of order 2) over F endowed with a pseudoautomorphism 
p. We say that a linear map p : A → A is a pseudoautomorphism if it preserves the 
grading (graded map) and for any elements a, b ∈ A0 ∪A1,

p2(a) = (−1)|a|a and p(ab) = (−1)|a||b|p(a)p(b).

Here |c| = 0 or 1 denotes the homogeneous degree of c ∈ A0 ∪A1.
If A is a superalgebra with pseudoautomorphism we shall call it simply a p-algebra.
In case A is a finite dimensional algebra, its structure is known from a generalization of 

Wedderburn-Malcev’s theorem proved in [6, Theorem 3]. Before stating it, recall that an 
ideal (subalgebra) I of A is a p-ideal (subalgebra) of A if it is a graded ideal (subalgebra) 
and p(I) = I. The algebra A is a simple p-algebra if A2 �= 0 and A has no non-trivial 
p-ideals.

Theorem 1. Let A be a finite dimensional p-algebra. Then there exists a semisimple p-
subalgebra B such that

A = B + J = B1 ⊕ · · · ⊕Bk + J,

where J , the Jacobson radical of A, is a p-ideal of A and B1, . . . , Bk are simple p-algebras.

Since the classification of the simple p-algebras is known, the above result can be 
further refined.

To this end, consider the following simple superalgebras:

– Q(n) = Mn(F )⊕ cMn(F ), where Mn(F ) is the algebra of n×n matrices over F and 
c2 = 1;

– Mk,h(F ), the algebra of n × n matrices, n = k + h, k ≥ h ≥ 0, with the following 
Z2-grading

Mk,h(F ) =
{(

K 0
0 H

)
| K ∈ Mk(F ), H ∈ Mh(F )

}
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⊕
{(

0 R
S 0

)
| R ∈ Mk×h(F ), S ∈ Mh×k(F )

}
.

Given a superalgebra B, let B̄ denote the superalgebra with the same graded vector 
space structure as B and product ◦ given on homogeneous elements a, b by the formula

a ◦ b := (−1)|a||b|ab.

Two p-algebras (A, p) and (A′, p′) are isomorphic if there exists an isomorphism of 
superalgebras τ : A → A′ such that τ(p(a)) = p′(τ(a)), for any a ∈ A.

Now we are ready to state the classification theorem of the finite dimensional simple 
p-algebras (see [10]).

Theorem 2. Assume that the field F is also algebraically closed. A finite dimensional 
p-simple superalgebra A over F is isomorphic to one of the following:

(1) Mk,h(F ) endowed with the pseudoautomorphism

p

((
K R
S H

))
=

(
PKP ±iPRQ
±iQSP QHQ

)
,

P =
(
Ik1 0
0 −Ik2

)
, Q =

(
Ih1 0
0 −Ih2

)
, Ij’s are identity matrices, k = k1 + k2, 

h = h1 + h2, k1 ≥ k2, h1 ≥ h2.

(2) Mk,k(F ) endowed with the pseudoautomorphism p given by p
((

K R
S H

))
=(

H iS
iR K

)
.

(3) Mk,h(F ) ⊕ Mk,h(F ) with the pseudoautomorphism pex given by pex(a, b) =(
(−1)|(a,b)|b, a

)
.

(4) Q(n) ⊕Q(n), with the pseudoautomorphism pex defined above.
(5) Q(n) endowed with the following pseudoautomorphism

p(a + cb) = f(a) ± icf(b),

where f is an automorphism of order ≤ 2 on Mn(F ).

3. The p-exponent

Now we are interested in studying the p-algebras in the context of the theory of 
polynomial identities.

If A is a p-algebra, since charF = 0 and there exists i ∈ F such that i2 = −1, we can 
write
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A = A+
0 ⊕A−

0 ⊕Ai
1 ⊕A−i

1 .

Here A+
0 = {a ∈ A0 | p(a) = a} and A−

0 = {a ∈ A0 | p(a) = −a} are the sets of 
symmetric and skew elements of A0, respectively, and Ai

1 = {a ∈ A1 | p(a) = ia} and 
A−i

1 = {a ∈ A1 | p(a) = −ia} are the sets of the so-called i-symmetric and i-skew 
elements of A1, respectively.

One can define in a natural way a pseudoautomorphism on the free associative al-
gebra F 〈X〉 on a countable set X over F . We write X as the union of two disjoint 
infinite sets Y and Z, requiring that their elements are of homogeneous degree 0 and 1, 
respectively. Then each set is written as the disjoint union of two other infinite sets of 
symmetric and skew elements and of i-symmetric and i-skew elements, respectively. The 
free superalgebra with pseudoautomorphism is denoted F 〈Y ∪ Z, p〉 and we write

F 〈Y ∪ Z, p〉 = F 〈y+
1 , y−1 , z+

1 , z−1 , y+
2 , y−2 , z+

2 , z−2 , . . .〉,

where y+
i stands for a (even) symmetric variable, y−i for a (even) skew variable, z+

i for 
a (odd) i-symmetric variable and z−i for a (odd) i-skew variable.

A polynomial f ∈ F 〈Y ∪Z, p〉 is a p-polynomial identity of A (or simply a p-identity), 
and we write f ≡ 0, if it vanishes for all substitutions y± �→ a± ∈ A±

0 , z± �→ b± ∈
A±i

1 . Let Idp(A) denote the set of all p-identities of A. Clearly it is an ideal of F 〈Y ∪
Z, p〉 invariant under all endomorphisms of the free superalgebra commuting with the 
pseudoautomorphism p. As in the ordinary case, it is easily seen that in characteristic 
zero, every p-identity is equivalent to a system of multilinear p-identities. Hence if we 
denote by

P p
n = spanF {wσ(1) · · ·wσ(n) | σ ∈ Sn, wi ∈ {y+

i , y
−
i , z

+
i , z

−
i }, i = 1, . . . , n}

the space of multilinear polynomials of degree n in the variables y+
i , y−i , z+

i , z−i , i =
1, . . . , n, the study of Idp(A) is equivalent to the study of P p

n ∩ Idp(A), for all n ≥ 1. The 
n-th p-codimension of A is the non-negative integer

cpn(A) = dimF
P p
n

P p
n ∩ Idp(A) , n ≥ 1.

If A satisfies an ordinary polynomial identity, it was proved that cpn(A), n = 1, 2, . . ., is 
exponentially bounded ([6]).

The first aim of this paper is to determine the exponential rate of growth of the 
sequence of p-codimensions of a finite dimensional p-algebra. We start with the following 
definition.

Definition 3. Let A = B1⊕· · ·⊕Bk+J be a finite dimensional p-algebra and let C1, . . . , Ch

be distinct simple p-subalgebras of A from {B1, . . . , Bk}. The p-algebra C = C1⊕· · ·⊕Ch

is called p-admissible if
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C1J · · ·JCh−1JCh �= 0.

Now we can define the following integer.

Definition 4. Let A be a finite dimensional p-algebra. We set

d = d(A) := max {dimF C : C is an admissible p-subalgebra of A} .

The role of such an integer in the description of the asymptotic behavior of the p-
codimensions is explained in the following result.

Theorem 5. Let A be a finite dimensional p-algebra over F and consider the integer d of 
Definition 4. Then there exist constants a1 > 0 and a2, b1, b2 such that

a1n
b1dn ≤ cpn(A) ≤ a2n

b2dn.

Hence the p-exponent of A, expp(A) = limn→∞
n
√

cpn(A) exists and it is a non-negative 
integer.

Proof. Since the p-codimensions do not change by extending the ground field, we may 
assume that the field F is algebraically closed. Now the result can be proved, with the 
necessary changes, by following word by word the proof given in [7] in the setting of 
superalgebras with superinvolution. �

As an immediate consequence we get the following.

Corollary 6. Under the hypotheses of Theorem 5, the sequence cpn(A), n = 1, 2, . . ., either 
is polynomially bounded (i.e., expp(A) ≤ 1) or it grows exponentially (i.e., expp(A) ≥ 2).

In [6], the second author described the varieties of p-algebras of polynomial growth by 
giving a finite list of p-algebras to be excluded from the variety. Recall that the growth 
of a variety V of p-algebras is defined as the growth of the sequence of p-codimensions 
of any algebra A generating V, i.e., V = varp(A). Then we say that V has polynomial 
growth if cpn(V) is polynomially bounded and V has almost polynomial growth if cpn(V)
is not polynomially bounded but every proper subvariety of V has polynomial growth.

Let F⊕F be the two-dimensional commutative algebra. We can see it as a superalgebra 
with trivial grading or with the natural grading

F ⊕ F = F (1, 1) ⊕ F (1,−1).

We consider the following three superalgebras with pseudoautomorphism:

• D, the algebra F ⊕F with trivial grading and pseudoautomorphism ex(a, b) = (b, a).
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• Di, the algebra F ⊕ F with natural grading and pseudoautomorphism exi(a, b) =
i|(a,b)|(b, a).

• D−i, the algebra F ⊕F with natural grading and pseudoautomorphism ex−i(a, b) =
(−i)|(a,b)|(b, a).

Now consider the algebra UT2(F ) =
{(

a b
0 c

)
| a, b, c ∈ F

}
of 2×2 upper-triangular 

matrices. We can see it as a superalgebra with trivial grading or with the natural grading

UT2(F ) =
{(

a 0
0 c

)
| a, c ∈ F

}
⊕

{(
0 b
0 0

)
| b ∈ F

}
.

We consider the following four superalgebras with pseudoautomorphism:

• UT2, the algebra UT2(F ) with trivial grading and trivial pseudoautomorphism.
• UT−

2 , the algebra UT2(F ) with trivial grading and pseudoautomorphism:

p

((
a b
0 c

))
=

(
a −b
0 c

)
.

• UT i
2, the algebra UT2(F ) with natural grading and pseudoautomorphism:

p

((
a b
0 c

))
=

(
a ib
0 c

)
.

• UT−i
2 , the algebra UT2(F ) with natural grading and pseudoautomorphism:

p

((
a b
0 c

))
=

(
a −ib
0 c

)
.

These p-algebras characterize the varieties of polynomial growth as stated in the 
following result ([6, Theorem 9]).

Theorem 7. Let A be a finite dimensional p-algebra over F . The sequence cpn(A), n =
1, 2, . . ., is polynomially bounded (i.e., expp(A) ≤ 1) if and only if UT2, UT−

2 , UT i
2, 

UT−i
2 , D, Di, D−i / ∈ varp(A).

Given two p-algebras A and B we say that they are equivalent if Idp(A) = Idp(B).

Corollary 8. [6] The algebras UT2, UT−
2 , UT i

2, UT−i
2 , D, Di, D−i are the only finite di-

mensional p-algebras, up to equivalence, generating varieties of almost polynomial growth.

Now we recall that a variety V of p-algebras is minimal with respect to the p-exponent 
if for any proper subvariety U , we have that expp(V) > expp(U). Here the p-exponent 
of a variety is the p-exponent of a generating algebra. Since the above algebras have 
p-exponent equal to 2, by using this definition we get the following result.

Corollary 9. The algebras UT2, UT−
2 , UT i

2, UT−i
2 , D, Di, D−i are the only finite di-

mensional p-algebras, up to equivalence, generating minimal varieties of p-exponent 2.
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4. Characterizing algebras with p-exponent bounded by 2

We start this section by constructing a suitable finite list of p-algebras generating 
varieties of p-exponent ≥ 2.

Let us consider the following simple p-algebras:

• C1, the superalgebra M2,0(F ) with trivial pseudoautomorphism id;

• C2, the superalgebra M2,0(F ) with pseudoautomorphism p given by p
((

a b
c d

))
=(

a −b
−c d

)
;

• C3, the superalgebra M1,1(F ) with pseudoautomorphism p given by p
((

a b
c d

))
=(

a ib
ic d

)
;

• C4, the superalgebra M1,1(F ) with pseudoautomorphism p given by p
((

a b
c d

))
=(

a −ib
−ic d

)
;

• C5, the superalgebra M1,1(F ) with pseudoautomorphism p given by p
((

a b
c d

))
=(

d ic
ib a

)
;

• C6, the superalgebra Q(1) ⊕ Q(1) with the pseudoautomorphism pex(a, b) =(
(−1)|(a,b)|b, a

)
.

By Theorem 5 we get the following result.

Remark 10. For any i = 1, . . . , 6, expp(Ci) = 4.

The above p-algebras allow us to prove the following lemma.

Lemma 11. Let B be a simple p-algebra with dimF B ≥ 4. Then Cj ∈ varp(B), for some 
j ∈ {1, . . . , 6}.

Proof. We shall prove the lemma by constructing a p-subalgebra of B isomorphic to Cj

for some j ∈ {1, . . . , 6}.

Case 1. B = (Mk,h(F ), p) with p
((

K R
S H

))
=

(
PKP ±iPRQ
±iQSP QHQ

)
, P =(

Ik1 0
0 −Ik2

)
, Q =

(
Ih1 0
0 −Ih2

)
.

Suppose first that h = 0. This means that the superalgebra B has trivial grading 
and the pseudoautomorphism p is just a graded automorphism. If k2 = 0, p is the 
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identity map and it is immediate to see that the p-subalgebra of B generated by the 
elements a1 = e1,1, a2 = e1,k1 , a3 = ek1,1, a4 = ek1,k1 is isomorphic to C1. Now assume 
k2 > 0. We easily get that the p-subalgebra C ′ of B generated by the elements a1 = e1,1, 
a2 = ek1+1,k1+1, a3 = e1,k1+1, a4 = ek1+1,1 is isomorphic to C2 through the isomorphism 
f : C ′ → C2, given by

f(a1) = e1,1, f(a2) = e2,2, f(a3) = e1,2, f(a4) = e2,1. 

We are left to deal with the case h > 0. Let C ′ be the p-subalgebra of B generated by 
the elements a1 = e1,1, a2 = ek+1,k+1, a3 = e1,k+1, a4 = ek+1,1. The linear map f given 
by

f(a1) = e1,1, f(a2) = e2,2, f(a3) = e1,2, f(a4) = e2,1, 

is an isomorphism of p-algebras between C ′ and C3 or C4, according to the sign (±i) of 
the pseudoautomorphism p.

Case 2. B = (Mk,k(F ), p) with p
((

K R
S H

))
=

(
H iS
iR K

)
.

Let C ′ be the p-subalgebra of B generated by a1 = e1,1, a2 = ek+1,k+1, a3 = e1,k+1, 
a4 = ek+1,1. Hence we obtain an isomorphism of p-algebras between C ′ and C5 via the 
linear map f : C ′ → C5 given by

f(a1) = e1,1, f(a2) = e2,2, f(a3) = e1,2, f(a4) = e2,1. 

Case 3. B =
(
Mk,h(F ) ⊕Mk,h(F ), pex

)
, k ≥ h ≥ 0.

Suppose first k = h = 1. The p-subalgebra C ′ generated by the elements a1 = (e1,1 +
e2,2, 0), a2 = (e1,2 + e2,1, 0), a3 = (0, e1,1 + e2,2), a4 = (0, e1,2 + e2,1) is isomorphic to 
C6 = (F ⊕ cF )⊕ (F ⊕ cF ) through the isomorphism of p-algebras: f : C ′ → C6, given by

f(a1) = (1, 0), f(a2) = (c1, 0), f(a3) = (0, 1), f(a4) = (0, c1). 

Now assume k > 1. In this case, we get that the p-subalgebra of B generated by 
a1 = (e1,1, e1,1), a2 = (e2,2, e2,2), a3 = (e1,2, e1,2), a4 = (e2,1, e2,1) is isomorphic to C1.

Case 4. B =
(
Q(n) ⊕Q(n), pex

)
.

If n = 1, then B = C6 and there is nothing to prove. Now, let n > 1. Then C1 is 
isomorphic to the p-subalgebra of B generated by the elements a1 = (e1,1, e1,1), a2 =
(e2,2, e2,2), a3 = (e1,2, e1,2) and a4 = (e2,1, e2,1).

Case 5. B = Q(n) with pseudoautomorphism p(a + cb) = f(a) ± icf(b), f automor-
phism of order ≤ 2 on Mn(F ).
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Since dimF B ≥ 4, we have that n ≥ 2. Hence we can consider the p-subalgebra C ′

of B generated by a1 = e1,1, a2 = e2,2, a3 = e1,2 and a4 = e2,1. C ′ has trivial grading 
and induced pseudoautomorphism p. Since f is an order 2 automorphism of Mn(F ), it 
is well-known that it acts trivially on M2(F ) or

f

((
a b
c d

))
=

(
a −b
−c d

)
.

According to the action of f , we get a p-algebras isomorphism between C ′ and C1 or C2
and we are done. �

Next we need to consider some suitable Z2-gradings and pseudoautomorphisms on the 
algebra UT3 of 3×3 upper triangular matrices. Recall that an arbitrary triple (g1, g2, g3)
of elements of Z2 defines an elementary Z2-grading on UT3 by setting:

(UT3)0 = span{ei,j | gi+gj = 0 (mod 2)} and (UT3)1 = span{ei,j | gi+gj = 1 (mod 2)}.

On UT3 we can define the following automorphisms (of order ≤ 2):

id

((
a b c
0 d e
0 0 f

))
=

(
a b c
0 d e
0 0 f

)
, ϕ1

((
a b c
0 d e
0 0 f

))
=

(
a −b −c
0 d e
0 0 f

)
,

ϕ2

((
a b c
0 d e
0 0 f

))
=

(
a b −c
0 d −e
0 0 f

)
, ϕ3

((
a b c
0 d e
0 0 f

))
=

(
a −b c
0 d −e
0 0 f

)
.

If UT3 is endowed with trivial grading, the above automorphisms can be seen as 
pseudoautomorphisms.

Given any superalgebra A = A0 ⊕A1, one can consider the following pseudoautomor-
phism (recall that i2 = −1)

p : A0 ⊕A1 → A0 ⊕A1

a0 + a1 �→ a0 + ia1.

Notice that in case the superalgebra has trivial grading, the pseudoautomorphism p is 
actually the identity map.

According to the result of [13], it is not difficult to see that the composition between 
p and a graded automorphism of order ≤ 2 on UT3 is a pseudoautomorphism of UT3. 
Hence we have the following p-algebras:

• C7, with trivial grading and trivial pseudoautomorphism id;
• C8, with trivial grading and pseudoautomorphism ϕ1;
• C9, with trivial grading and pseudoautomorphism ϕ2;
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• C10, with trivial grading and pseudoautomorphism ϕ3;
• C11, with grading induced by (0, 0, 1) and pseudoautomorphism p;
• C12, with grading induced by (0, 0, 1) and pseudoautomorphism p ◦ ϕ1;
• C13, with grading induced by (0, 0, 1) and pseudoautomorphism p ◦ ϕ2;
• C14, with grading induced by (0, 0, 1) and pseudoautomorphism p ◦ ϕ3;
• C15, with grading induced by (0, 1, 1) and pseudoautomorphism p;
• C16, with grading induced by (0, 1, 1) and pseudoautomorphism p ◦ ϕ1;
• C17, with grading induced by (0, 1, 1) and pseudoautomorphism p ◦ ϕ2;
• C18, with grading induced by (0, 1, 1) and pseudoautomorphism p ◦ ϕ3;
• C19, with grading induced by (0, 1, 0) and pseudoautomorphism p;
• C20, with grading induced by (0, 1, 0) and pseudoautomorphism p ◦ ϕ1;
• C21, with grading induced by (0, 1, 0) and pseudoautomorphism p ◦ ϕ2;
• C22, with grading induced by (0, 1, 0) and pseudoautomorphism p ◦ ϕ3.

Remark 12. For j = 7, . . . , 22, we have that expp(Cj) = 3.

Proof. All the p-algebras Cj have the same Wedderburn-Malcev decomposition:

Cj = A1 ⊕A2 ⊕A3 + J,

where A1 = Fe1,1, A2 = Fe2,2, A3 = Fe3,3 and J = Fe1,2 ⊕ Fe1,3 ⊕ Fe2,3. Since 
A1JA2JA3 �= 0, A1 ⊕ A2 ⊕ A3 is a maximal dimensional p-admissible subalgebra and 
the result follows by Theorem 5. �

The above p-algebras allow us to prove the following lemma.

Lemma 13. Let A = B1 ⊕ · · · ⊕ Bk + J be a finite dimensional p-algebra over an 
algebraically closed field F of characteristic zero. If there exist three distinct simple com-
ponents Bi1

∼ = Bi2
∼ = Bi3

∼ = F such that Bi1JBi2JBi3 �= 0, then Cj ∈ varp(A), for some 
j ∈ {7, . . . , 22}.

Proof. Let e1, e2, e3 be the unit elements of Bi1 , Bi2 , Bi3 , respectively. Then e2
l = epl =

el ∈ (Bil)0 and eres = δrser, for r, s, l = 1, 2, 3. Since Bi1JBi2JBi3 �= 0 then e1Je2Je3 �=
0. So we may assume that there exist homogeneous (symmetric, skew, i-symmetric or 
i-skew) elements j, j′ ∈ J such that

e1je2j
′e3 �= 0.

Consider the p-subalgebra U of A linearly generated by

e1, e2, e3, e1je2, e2j
′e3, e1je2j

′e3.

The linear map f : U → UT3, defined by
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f(e1) = e1,1, f(e2) = e2,2, f(e3) = e3,3, f(e1je2) = e1,2,

f(e2j
′e3) = e2,3, f(e1je2j

′e3) = e1,3,

is an isomorphism of algebras. Now, by taking into account the homogeneous degrees 
of j and j′ and their symmetry with respect to the pseudoautomorphism p, we get an 
isomorphism of p-algebras between U and Cj , for some j = 7, . . . , 22. �

Let us consider the algebra

M =

⎧⎪⎨
⎪⎩
⎛
⎜⎝
a + αa′ e + αe′ 0 0

0 b + αb′ 0 0
0 0 c + αc′ 0
0 0 f + αf ′ d + αd′

⎞
⎟⎠ | 

a, a′, b, b′, c, c′, d, d′, e, e′, f, f ′ ∈ F, α2 = 1

⎫⎪⎬
⎪⎭

and the automorphism † on it given by

†

⎛
⎜⎝
⎛
⎜⎝
a + αa′ e + αe′ 0 0

0 b + αb′ 0 0
0 0 c + αc′ 0
0 0 f + αf ′ d + αd′

⎞
⎟⎠
⎞
⎟⎠

=

⎛
⎜⎝
d + αd′ f + αf ′ 0 0

0 c + αc′ 0 0
0 0 b + αb′ 0
0 0 e + αe′ a + αa′

⎞
⎟⎠ .

We denote by M1 the algebra M such that a′ = b′ = c′ = d′ = e′ = f ′ = 0, endowed 
with trivial grading and pseudoautomorphism †. Instead we use the symbol M2 in case 
the grading is the elementary one induced by (0, 1, 1, 0) and the pseudoautomorphism is 
p ◦ †. We need the following p-algebras:

• C23, the subalgebra of M1 with b = c;
• C24, the subalgebra of M1 with a = d;
• C25, the subalgebra of M2 with b = c;
• C26, the subalgebra of M2 with a = d.

Now notice that the algebra M can be seen as a superalgebra also with the following 
grading:

⎧⎪⎨
⎪⎩
⎛
⎜⎝
a e 0 0
0 b 0 0
0 0 c 0
0 0 f d

⎞
⎟⎠ | a, b, c, d, e, f ∈ F

⎫⎪⎬
⎪⎭
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⊕

⎧⎪⎨
⎪⎩
⎛
⎜⎝
αa′ αe′ 0 0
0 αb′ 0 0
0 0 αc′ 0
0 0 αf ′ αd′

⎞
⎟⎠ | a′, b′, c′, d′, e′, f ′ ∈ F

⎫⎪⎬
⎪⎭ .

We denote by Mi the superalgebra M with the pseudoautomorphism ρi given by

ρi

⎛
⎜⎝
⎛
⎜⎝
a + αa′ e + αe′ 0 0

0 b + αb′ 0 0
0 0 c + αc′ 0
0 0 f + αf ′ d + αd′

⎞
⎟⎠
⎞
⎟⎠

=

⎛
⎜⎝
d + iαd′ f + iαf ′ 0 0

0 c + iαc′ 0 0
0 0 b + iαb′ 0
0 0 e + iαe′ a + iαa′

⎞
⎟⎠ .

Analogously, M−i denote the superalgebra M with pseudoautomorphism ρ−i defined as 
ρi but with −i instead of i.

The last p-algebras we have to consider are the following:

• C27 is the subalgebra of Mi with a = d, b = c, a′ = d′ and c′ = b′ = 0;
• C28 is the subalgebra of M−i with a = d, b = c, a′ = d′ and c′ = b′ = 0;
• C29 is the subalgebra of Mi with a = d, b = c, b′ = c′ and a′ = d′ = 0;
• C30 is the subalgebra of M−i with a = d, b = c, b′ = c′ and a′ = d′ = 0.

Using the same approach as in Remark 12, we get the following result.

Remark 14. For j = 23, . . . , 30, we have that expp(Cj) = 3.

Now we can prove the following lemma.

Lemma 15. Assume that the field F is also algebraically closed. Let A = B1 ⊕ · · · ⊕
Bk + J be a finite dimensional p-algebra over F such that BlJBm �= 0 with (Bl, Bm) ∈{
(F,D), (D,F ), (F,Di), (Di, F ), (F,D−i), (D−i, F )

}
, l �= m. Then Cj ∈ varp(A), for 

some j ∈ {23, . . . , 30}.

Proof. Suppose first that (Bl, Bm) = (D,F ). Let el = e1 + e2 and em = e3 be the 
unit elements of Bl and Bm, respectively. Clearly p(e1) = e2 and p(e3) = e3. Since 
BlJBm �= 0, there exists a homogeneous element j ∈ J such that

eljem = (e1 + e2)je3 �= 0.

Without loss of generality, we may assume that e1je3 �= 0. Let U be the p-algebra linearly 
generated by the elements

e1, e2, e3, e1je3, e2p(j)e3.
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When the homogeneous degree of j is 0, the map f defined by

f(e1) = e1,1, f(e2) = e4,4, f(e3) = e2,2+e3,3, f(e1je3) = e1,2, f(e2p(j)e3) = e4,3,

is an isomorphism of p-algebras between U and C23. When the homogeneous degree of 
j is 1, the map f defined by

f(e1) = e1,1, f(e2) = e4,4, f(e3) = e2,2+e3,3, f(e1je3) = e1,2, f(e2p(j)e3) = ie4,3,

is an isomorphism of p-algebras between U and C25.
In a similar way, when (Bl, Bm) = (F,D) we obtain that C24, C26 ∈ varp(A).
Suppose now that (Bl, Bm) = (Di, F ). Let el = e1 and em = e2 be the unit elements 

of Bl and Bm, respectively. Clearly p(e1) = e1 and p(e2) = e2. Since BlJBm �= 0, there 
exists a homogeneous element j ∈ J such that

eljem = e1je2 �= 0.

Let U be the p-algebra linearly generated by the elements

e1, e2, ce1, e1je2, e1p(j)e2, ce1je2, ce1p(j)e2.

Then U is isomorphic to C27 as p-algebras, via f defined by

f(e1) = e1,1 + e4,4, f(e2) = e2,2 + e3,3, f(ce1) = c(e1,1 + e4,4), f(e1je2) = e1,2,

f(e1p(j)e2) = e4,3, f(ce1je2) = ce1,2, f(ce1p(j)e2) = ce4,3,

when the homogeneous degree of j is 0, and f defined by

f(e1) = e1,1 + e4,4, f(e2) = e2,2 + e3,3, f(ce1) = c(e1,1 + e4,4), f(e1je2) = ce1,2,

f(e1p(j)e2) = ice4,3, f(ce1je2) = e1,2, f(ce1p(j)e2) = ie4,3,

when the homogeneous degree of j is 1.
In a similar way, when (Bl, Bm) = (D−i, F ), (F,Di) or (F,D−i), we obtain that C28, 

C29 or C30 ∈ varp(A), respectively. �
The following proposition proves that the list of p-algebras C1, . . . , C30 cannot be 

reduced.

Proposition 16. For all l, j ∈ {1, . . . , 30}, l �= j, Idp(Cl) ⊈ Idp(Cj).

Proof. By the classification of pseudoautomorphisms on UTn given in [13], we have that 
the p-algebras Ci, i = 7, . . . , 22 are not pairwise equivalent. Now, let y denote an even 
variable, z an odd one and x any variable. The proof is completed by putting together 
the following facts.
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• Idp(Cl) �⊆ Idp(Cj), l = 1, 3, 4, 7, 11, 13, 15, 16, 19, 22, j �= l: in fact y− ≡ 0 on Cl but 
not on Cj .

• Idp(Cl) �⊆ Idp(Cj), l = 1, 2, 7, 8, 9, 10, 23, 24, j �= l: in fact z ≡ 0 on Cl but not on Cj.
• Idp(Cl) �⊆ Idp(Cj), l = 3, j = 4: in fact z− ≡ 0 on Cl but not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 4, j = 3: in fact z+ ≡ 0 on Cl but not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 2, . . . , 6, 12, 14, 17, 18, 20, 21, 25, 26, j �= l: in fact [y+

1 , y+
2 ] ≡ 0

on Cl but not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 1, . . . , 5, j = 7, . . . , 22: in fact 

[
[x1, x2]2, x3

]
≡ 0 on Cl but 

not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 5, j = 2, 3, 4, 25, 26: in fact [y+, x] ≡ 0 on Cl but not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 5, j = 6: in fact y−z− + z−y− ≡ 0 on Cl but not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 6, j = 1, . . . , 5, 7 . . . , 30: in fact [x1, x2] ≡ 0 on Cl but not on 

Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 7, . . . , 30, j = 1, . . . , 6: in fact expp(Cl) < expp(Cj).
• Idp(Cl) �⊆ Idp(Cj), l = 6, 23, . . . , 30, j = 1, . . . , 5, 7, . . . , 22: in fact [x1, x2][x3, x4] ≡ 0

on Cl but not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 7, . . . , 22, j = 23, . . . , 26: in fact y−1 y−2 y−3 ≡ 0 on Cl but not 

on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 23, j = 24: in fact [y−1 , y−2 ]y−3 ≡ 0 on Cl but not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 24, j = 23: in fact y−3 [y−1 , y−2 ] ≡ 0 on Cl but not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 25, j = 26: in fact z+y− ≡ 0 on Cl but not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 26, j = 25: in fact y−z+ ≡ 0 on Cl but not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 27, . . . , 30, j = 23, . . . , 26: in fact y−1 y−2 ≡ 0 on Cl but not on 

Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 28, 30, j = 27, 29: in fact z+

1 z+
2 ≡ 0 on Cl but not on Cj .

• Idp(Cl) �⊆ Idp(Cj), l = 27, 29, j = 28, 30: in fact z−1 z−2 ≡ 0 on Cl but not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 27, 30, j = 28, 29: in fact z−z+ ≡ 0 on Cl but not on Cj .
• Idp(Cl) �⊆ Idp(Cj), l = 28, 29, j = 27, 30: in fact z+z− ≡ 0 on Cl but not on Cj . �

Now we are in a position to characterize the p-algebras A with expp(A) ≤ 2.

Theorem 17. Let A be a finite dimensional p-algebra over F . Then expp(A) ≤ 2 if and 
only if Cj / ∈ varp(A), for any j ∈ {1, . . . , 30}.

Proof. Since we are dealing with p-codimensions that do not change by extending the 
base field, in what follows we may assume that the field F is algebraically closed.

First let expp(A) ≤ 2. Since expp(Ci) > 2, by Remarks 10, 12 and 14, we get Cj / ∈
varp(A), j ∈ {1, . . . , 30}.

Conversely, let Cj / ∈ varp(A), for any j ∈ {1, . . . , 30}. Hence by Theorem 1 we can 
write A = B1 ⊕ · · · ⊕Bm + J , where the Bj ’s are simple p-algebras isomorphic to those 
ones given in Theorem 2. Since C1, . . . , C6 �∈ varp(A), according to Lemma 11, we have 
that dimF Bl < 4, for any l.
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Suppose by contradiction that expp(A) > 2. Then by Theorem 5, one of the following 
possibilities occurs:

1. there exist distinct Bi1 , Bi2 , Bi3 such that Bi1JBi2JBi3 �= 0 and Bi1
∼ = Bi2

∼ = Bi3
∼ = 

F ,
2. for some i1 �= i2, Bi1JBi2 �= 0 and Bi1

∼ = F and Bi2
∼ = D or Di or D−i,

3. for some i1 �= i2, Bi1JBi2 �= 0 and Bi1
∼ = D or Di or D−i and Bi2

∼ = F .

Notice that when we are in the situation Bi1JBi2 �= 0 with Bi1
∼ = D or Di or D−i

and Bi2
∼ = D or Di or D−i, it easily follows that one of the last two cases occurs.

If 1. holds, then, by Lemma 13, Cj ∈ varp(A), for some j ∈ {7, . . . , 22}, a contradiction. 
We reach a contradiction also in all the other cases, since by Lemma 15, we should have 
that Cj ∈ varp(A), for some j ∈ {23, . . . , 30}. �

In light of Theorems 7 and 17, we get the characterization of p-algebras with p-
exponent equal to two.

Corollary 18. Let A be a finite dimensional p-algebra over F . Then expp(A) = 2 if and 
only if

– Cj �∈ varp(A), for all j ∈ {1, . . . , 30} and
– either UT2 or UT−

2 or UT i
2 or UT−i

2 or D or Di or D−i ∈ varp(A).

Now let us slightly change the definition of minimal varieties given at the end of 
Section 3: a variety V of p-algebras is minimal with respect to the p-exponent if for 
any proper subvariety U , generated by a finite dimensional p-algebra, we have that 
expp(V) > expp(U). By using this definition we get the following.

Corollary 19. 

1. The p-algebras Cj, j = 1, . . . , 6, generate minimal varieties of p-exponent 4.
2. The p-algebras Cj, j = 7, . . . , 30, are the only finite dimensional algebras, up to 

equivalence, generating minimal varieties of p-exponent 3.

Proof. We prove just item 2. (the proof of 1. is similar).
Let V be a proper subvariety of varp(Cj), j = 7, . . . , 30. Clearly Cj / ∈ V. Also, by 

Proposition 16, we get that Cl / ∈ V, for any l = 1, . . . , 30. Then, from Theorem 17, 
expp(V) ≤ 2 and we are done.

Now suppose that there exists a minimal variety U of p-exponent 3 which is not 
generated by any of the algebras in 2. Since U is minimal and its p-exponent is 3, Cj / ∈ U , 
for any j. Then by Theorem 17 we should have expp(U) ≤ 2, a contradiction. �
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