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Abstract: Brain–computer interfaces (BCIs) are pivotal in translating neural activities into control
commands for external assistive devices. Non-invasive techniques like electroencephalography
(EEG) offer a balance of sensitivity and spatial-temporal resolution for capturing brain signals
associated with motor activities. This work introduces MOVING, a Multi-Modal dataset of EEG
signals and Virtual Glove Hand Tracking. This dataset comprises neural EEG signals and kinematic
data associated with three hand movements—open/close, finger tapping, and wrist rotation—along
with a rest period. The dataset, obtained from 11 subjects using a 32-channel dry wireless EEG system,
also includes synchronized kinematic data captured by a Virtual Glove (VG) system equipped with
two orthogonal Leap Motion Controllers. The use of these two devices allows for fast assembly
(∼1 min), although introducing more noise than the gold standard devices for data acquisition. The
study investigates which frequency bands in EEG signals are the most informative for motor task
classification and the impact of baseline reduction on gesture recognition. Deep learning techniques,
particularly EEGnetV4, are applied to analyze and classify movements based on the EEG data. This
dataset aims to facilitate advances in BCI research and in the development of assistive devices for
people with impaired hand mobility. This study contributes to the repository of EEG datasets, which
is continuously increasing with data from other subjects, which is hoped to serve as benchmarks for
new BCI approaches and applications.

Keywords: BCI; EEG; virtual glove; EEGnetV4; dataset

1. Introduction

Research on brain waves for human–machine interaction began with the initial publi-
cation analyzing EEG data related to movement in 1968 [1]. The field of brain–computer
interface (BCI) [2] studies focuses on recognizing mental conditions, such as emotions [3],
mental workloads [4], and movements [5,6] (upper limb, wrist, and fingers) from hu-
man neurophysiological signals to control external assistive devices [7]. Brain signals
acquired through acquisition processes are classified as invasive or non-invasive [8]. The
non-invasive class includes electroencephalography (EEG), functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS).
Among these, EEG strikes a good mix between sensitivity and spatial-temporal resolution
for measuring and analyzing movements. In the literature, EEG-based BCI is used to
decode a user’s movement intention based on signs of active brain engagement in the
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preparation of desired movement paradigms known as motor imagery (MI), as well as to
decode real human movements, i.e., Motor Execution (ME), using Artificial Intelligence
(AI) approaches. To classify MI movement, deep learning (DL) algorithms must be trained
using MI EEG datasets and then used as benchmarks before single subject data testing
or to directly evaluate the suggested approaches. Many MI datasets are accessible in the
literature. The EEG BCI dataset [9] was constructed by capturing signals from electrodes
F3, F4, FC5, and FC6 from the Emotiv Device, and selecting four individuals to imagine the
opening/closing of the right or left hand after the video stimuli for a total of 2400 trials. The
EEG Motor Movement/Imagery Dataset [10] was developed by obtaining signals from the
BCI2000 64-channel system by choosing 109 volunteer individuals who imagined opening
and closing left or right hand, or opening and closing both hands or both feet according to
video stimuli. The BCI Competition III dataset IIIa [11] has four classes (left hand, right
hand, foot, tongue) acquired from three subjects by obtaining signals from a 64-channel
Neuroscan EEG amplifier for a total of 60 trials per class. The BCI Competition III dataset
IVa [12] was recorded with multichannel EEG amplifiers using 64 or 128 channels from
ten healthy subjects. Subjects sat in a comfortable chair with arms resting on armrests and
imagined left or right hand or foot or imagination of a visual (with eyes open), auditory,
or tactile sensation. Moreover, BCI Competition IV dataset 2a [13] and 2b [14] are also
available for MI. For the classification, many DL techniques are used. A deep metric model
with a triple convolutional neural network (CNN) was used to classify MI of the right
or left hand based on incoming visual stimuli; in the absence of a stimulus, it is deemed
rest [15]. Electroencephalography topographical representation (ETR)-CNN classifies five
MI movements and one resting movement using the ETR manipulation on the signals
of the BCI Competition IV-2a dataset [16]. Classification Network-based long short-term
memory (LSTM) is applied on the BCI Competition IV-2a dataset and to make the classifi-
cation more resilient on the dataset’s signals, a one-dimensional-aggregate approximation
is performed [17], as well as in other BCI domains such as emotions [18,19]. In a recent
review [20], many EEG motor-related datasets are summarized and many of them are
related to MI tasks, while few are related to ME. The distinction between MI and ME tasks
is a well-known concept in scientific literature, and can be identified using neuroimag-
ing methods in several experimental works [21,22] and in a comprehensive review [23].
Regarding ME, the approach used is the same as above for MI. Datasets, available in the
literature, collect many types of real movements ranging from the most complex to the most
intuitive, and DL techniques are applied to classify them. EEG Data for Voluntary Finger
Tapping Movement is a collection of EEG data acquired during voluntary asynchronous
index finger tapping by 14 healthy adults. EEG was recorded using a TruScan Deymed
amplifier with 19 channels for three conditions: right finger tap, left finger tap, and resting
state, with a sampling rate of 1024 Hz. Each participant performed 120 trials, 40 for each
of the three conditions [24]. The EEG Motor Movement/Imagery Dataset has a section
where the imagined movements, explained before, are replicated with the real movement
of the subject [10]. The High-Gamma Dataset is a 128-electrode dataset collected from
14 healthy subjects during four-second trials of executed movements, separated into 13 runs
per subject. Movements can be classified into four types: left hand, right hand, both feet, or
rest [25]. The Upper Limb movements dataset [20] consists of data from 15 healthy subjects,
of whom all except one were right-handed. To avoid muscle fatigue, subjects sat in a chair
with their right arm fully supported by an exoskeleton. Each subject had two sessions on
different days, no more than one week apart. Subjects conducted ME in the first session
and MI in the second. Six different movements were executed with the right upper limb,
beginning in a neutral posture. Additionally, a rest class was recorded in which individuals
were advised to avoid moving and keep their starting position.

The present work is focused on creating a multi-modal EEG dataset to classify the
neural signals and to correlate neural information with three human-hand movements
(open/close, finger tapping, and wrist rotation) modeled by a CV-based system named
Virtual Glove (VG) [26–28]. The conceptualization of this dataset follows the multi-modal
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approach of some previous works [29], but differentiated by using VG with two sensors for
kinematic data acquisition at high precision. Furthermore, this article focuses on baseline
analysis and the most informative frequency bands for motion classification using a deep
learning technique operating on the power spectral density (PSD) [30]. The use of these
two devices, VG and Enobio® EEG dry, allow data acquisition to begin in ∼1 min, thus
making the device effectively usable in an outdoor environment. However, dry electrodes
introduce significantly higher noise than wet EEG devices [31]; the latter are considered
the gold standard for EEG recording [32]. The acquisition modality, the acquired data, and
the classification movement process using the DL architecture EEGnetv4 [33] are detailed.
This architecture has been developed to be useful in many BCI applications such as P300
cortical potentials movement-related and sensory-motor rhythms [34]. The protocol is
carried out using a simple motor task, composed of sequences of hand movements tasks
composed of MI action or ME. In the proposed work, according to the literature, three
different movements (both MI and ME) are used: open/close, finger tapping, and wrist
rotation. In addition, EEG data are recorded under rest conditions. The same movements
performed in MI were followed by ME and rest for 10 min. The EEGnetV4, developed in
the Pytorch environment, is trained and validated using this new dataset based on EEG
signals in ME and rest conditions. The article is structured as follows: Section 2 details how
the data were collected and modified, as well as the EEGnetV4 model used to classify the
movements; Section 3 reports on the experimental work and discusses the results, Section 4
reports the discussion, and Section 5 is the conclusion.

2. Methodology

This work aims to present a multi-modal dataset on MI/ME on kinematic and brain
data acquired with VG and a wireless dry, fast-wearable EEG device (Enobio® EEG
(https://www.neuroelectrics.com/solutions/enobio/32, accessed on 15 June 2024)). In
addition, its goal is to analyze which frequency bands are more informative for ME clas-
sification and the role of the baseline reduction method. These devices were used in a
semi-controlled environment to emulate real-life situations [35] where high noise and dis-
turbances are present. The classification is performed with EEGnetV4 [33] because recent
studies have shown that this architecture is one of the best performing [30,36]. Three classes
of data were collected in both the ME and MI conditions: open/close, finger tapping, wrist
rotation, and the rest condition using a dry EEG device and VG. These findings are made
available as a starting point for the development of rehabilitation support systems for
patients who have experienced hand injuries with loss of mobility. The EEGnetV4 model
acts on the collected EEG signals to recognize movements, even if not executed correctly,
allowing the corresponding movements to reproduce on a robot arm. In this way, it allows
the patient to have feedback for improving the motor skills.

2.1. Data Structure

The dataset is composed of two main independent data structures: the EEG data and
the VG data.

2.1.1. EEG Data

The EEG signal is arranged as a 2D matrix, with rows representing channels (elec-
trodes) and columns indicating time points (samples). The EEG recording involves 32 chan-
nels at 500 Hz throughout ∼10 min, thus generating a matrix ∼32 × 300,000. For the
epoch creation, it is necessary to fix some markers to identify the occurring events. The
markers are placed through synchronization between Unity (https://unity.com/, accessed
on 15 June 2024), which communicates with the VG, and the EEG software, NIC2, that
saves the EEG signal. In general, events are a matrix in which each row represents an event
associated with the timestamp and the label of the event. This configuration, along with
metadata such as sampling rate, electrode positions, and event markers, enables in-depth

https://www.neuroelectrics.com/solutions/enobio/32 
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analysis and understanding of brain activity. An example of the data collected with this
structure is shown in Figure 1.

(a)

(b)
Figure 1. EEG raw data before (a) and after (b) a cleaning band-pass [1–45 Hz] filtering. In (a), the
high noise level makes it difficult to visualize high-amplitude brain signals. Vertical lines represent
the triggers for rest, fixation cross, and open/close movement, respectively.

2.1.2. Virtual Glove Data

VG uses two Leap Motion Controllers (LMCs), each generating a dynamic 4D nu-
merical representation of the hand. A picture of the VG is shown in Figure 2. The hand
model is reproduced into frames, each frame representing a temporal snapshot of the
hand at a certain point in time (Figure 3). These frames collect detailed information on
the recognized hands, including the precise positioning of 25 joints and their timestamp.
Each joint represents the articulation between two bones or a terminal bone (fingertip) and
provides precise coordinates in three dimensions (x, y, and z), as well as the calculation of
velocity and acceleration. In addition to joint data, the system collects other hand-related
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information, such as the position and velocity of the palm. Furthermore, the VG was
calibrated to a single reference system [37], and Figure 3 shows the basis vector of the VG.
The former points from the palm to the fingers, whereas the latter indicates the palm’s
direction related to the controller. These vectors are used to calculate the inner product
and create a rotation matrix for the hand. This matrix simplifies the calculation of the
hand’s orientation angles (yaw, pitch, and roll), as well as the angle between any two bones.
Velocity and acceleration are also determined for each joint by combining neighboring
frames. Finally, the two LMCs have been calibrated to guarantee that the views from both
LMCs are aligned, hence improving data integration, and the data provided by the optimal
viewer is used based on roll angle. This algorithm ensures that the data from the optimal
viewer are used all the time [37].

Figure 2. VG system while tracking the hand movements. The hand positioning system is united
with the one of the VG.

Y

X
Z

Figure 3. Model based on data collected by VG. The left part shows the vertical view; the right part
shows the horizontal view. The Cartesian reference system is reported in the center.

2.2. Data Acquisition

The protocol used in this work is similar to [24], in which the participant was seated
in a comfortable chair, in front of a 20′′ screen following the instructions visualized on the
monitor. The participant wears an Enobio® EEG system with 32 dry electrodes (P7, P4, Cz,
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Pz, P3, P8, O1, O2, T8, F8, C4, F4, Fp2, Fz, C3, F3, Fp1, T7, F7, Oz, PO4, FC6, FC2, AF4, CP6,
CP2, CP1, CP5, FC1, FC5, AF3, PO3), while the VG device is placed under the right arm to
record kinematic data. Figure 4a depicts the experimental procedure and Figure 4b shows
the acquisition environment.

Comfortable chair

EEG cap

Monitor

VISUAL
STIMULI

Virtual Glove

(a) (b)
Figure 4. Acquisition environment scheme (a) and real acquisition environment (b) used in this work.

Eleven healthy right-handed subjects (ten men and one woman; average age 28.27 ± 9.94)
were recorded for 10 min. Before the recording, the consent information was signed by
each of them. The protocol consists of a sequence of tasks, each composed of a series
of actions shown on the screen to guide the participant in the movements (ME, MI, and
rest). In Figure 5, the images depict the movements used in this work. Each action starts
with a fixation cross displayed for two seconds, followed by an instruction to perform
either imagined or executed movement shown for the subsequent six seconds. Each task is
composed of a triplet of actions, with movements always presented in the same sequence:
rest, MI, and ME. The protocol comprised a triplet of tasks, the first involving imagining
and performing the open/close movement, followed by the imagined and executed wrist
rotation, and finally the imagined and executed finger tapping. In Figure 6, structure of
the protocol is reported and in Figure 7, the instructions are shown with one repetition of
the protocol. Participants were shown the instructions on the screen and asked to continue
performing the movement (MI or ME) until the next instruction appeared. Each triplet
of all types of movement was repeated eight times, corresponding to 10 min. During the
recording, the forearm was not sustained by any support, as shown in Figure 2.

ì

open/close RestWrist Rotation Finger Tapping

Movement

Figure 5. The analyzed movements. The dotted line represents the movement acquired but not
analyzed in this work. The class “movement” is created by merging the open/close and wrist
rotation classes.



Sensors 2024, 24, 5207 7 of 20

Action Rest Action Motor
Imagery
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Figure 6. The used hand movement protocol.

+ REST +
MI

OPEN/
CLOSE

+
ME

OPEN/
CLOSE

+ REST +
MI

WRIST
ROTATION

+
ME

WRIST
ROTATION

+ REST +
MI

FINGER
TAPPING

+
ME

FINGER
TAPPING

2 s 2 s 2 s

2 s 2 s2 s

2 s 2 s 2 s

6 s 6 s 6 s

6 s 6 s 6 s

6 s 6 s 6 s

Figure 7. Instructions shown to participants for both MI and ME. The flow stops when 8 repetitions
are reached.
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2.3. Preprocessing Data

The data were processed using the MNE [38] library for Python, and were divided
into two parts: general preprocessing and specific preprocessing, as shown in Figure 8. The
preprocessing pipeline started loading the channel location following the 10-20 interna-
tional system. The first step of the general preprocessing included a Common Average
Referencing (CAR) and a band-pass Butterworth filter between 1 Hz and 100 Hz. Af-
ter that, the Independent Component Analysis (ICA) weights were computed using the
Extended Infomax algorithm [39] with 500 iterations, and with IC-Label [40], the “eye”
components with probability greater than 0.9 were removed. Subsequently, artifact removal
was applied [41] (“muscle” components were removed with a probability greater than 0.9).
The average of components for each subject identified as “eye” or “muscle” component
removed are 0.2 and 1.3, respectively. Finally, the signal was downsampled at 256 Hz. For
this study, neither MI classes nor ME of finger tapping movement were analyzed in depth.

Butterworth filter
1 Hz and 100 Hz

ICA decomposition
Extended Infomax

Excluding "eye"
components with IC-

Label
Downsample to 256 Hz

Band pass filter

CAR Excluding "muscle"
components 

Extract epochsBaseline
reduction

Data augmentation:
splitting 1 s of signal

with 50% overlap

Train/Validation/Test
split

Yes No

Open/Close
Wrist Rotation

Open/Close
Rest

Wrist Rotation
Rest

Movement
Rest

1 - 45 Hz 4 - 8 Hz

8 - 12 Hz 12 - 30 Hz 30 - 45 Hz
Wrist Rotation

(from 1 s to 6 s)
Rest

(from 2 s to 6 s)
Open/Close

(from 1 s to 6 s)

1 - 4 Hz

Movement

General preprocessing

Specific preprocessing

Train set

Validation set

Test set

Train the
network

Network
weights

Classification

Training process

Compute PSD with
Welch's Method

Figure 8. Preprocessing for sample generation and training. The colored boxes represent the parame-
ters that change to explore different frequency bands (in orange) and the baseline reduction method
(in pink), for each combination of movement/rest. The movement class (violet box) represents the
merging of the open/close and wrist rotation. In the lower part of the scheme, the training process of
the model is described.
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In the second part of the preprocessing, defining a specific preprocessing pipeline, a
different band-pass filter was applied each time, and on the resulting signal, the baseline
reduction method (subtraction of the EEG signal during fixation cross) was either applied
or not. Furthermore, the epochs of the ME open/close, wrist rotation, and rest were
extracted and combined in pairs. Moreover, in a further test, the two classes open/close
and wrist rotation were combined to create a single class, “movement”, to see if it was more
distinguishable from the rest condition. The result of these combinations (two baseline
conditions, six bandpass filters, three movement classes, and one rest), corresponds to
46 trials. Then, the epochs aligned with the signal cue are segmented into pieces of one
second, starting from the 2nd second for the open/close and wrist rotation epochs and
the 3rd second for the rest epochs. The reason for this drop for the rest cue is to avoid
interference with previous movements and to give time to start movements (open/close
and wrist rotation). It was decided to exclude the 1st second for the movement because
the movement did not start exactly with the appearance of the trigger but took a variable
amount of time depending on the individual, as can be seen from Figures 9–12. Furthermore,
the participants reported they did not perform the first movement correctly. For the “rest”
task, again based on the participants’ feedback and the analysis of the kinematic data, the
first two seconds were excluded as the movement was not stopped instantaneously while
the cross appeared but lasted for a few times even during “rest”. This new type of multi-
modal dataset not only allows the extraction of possible patterns between the two modes,
but also the preprocessing of data from one mode based on information extracted from
another. In this specific case, the cut-off times of the EEG signal were chosen based on the
kinematic data of the VG, without performing a combined analysis. Thus, the kinematic
data made it possible to avoid biases due to the recording protocol, which could not
have been avoided in the absence of kinematic data. During the epochs extraction after
cutting the signals, a data augmentation process was applied extracting one second of
signal shifting only by 0.50 s from the following epochs, overlapping each epoch with the
following of 50%. Then, a train/validation/test split was performed to create the three
sets for the neural network training, allocating 60%, 20%, and 20% of the original data,
respectively. Finally, the PSD from each sample was computed using Welch’s Method [42]
and used for training the network. Figure 8 shows the corresponding pipeline.

The data from the VG are stored in a JSON file. The LMC tracks hand movements in a
3D coordinate system. Using this raw data, the LMC software, Ultraleap Gemini v5.20.0,
constructs a numerical model of the hand represented as a stick figure that mirrors the
anatomy of the human hand, as illustrated in Figure 3. Specifically, the LMC data are
structured into frames [37]. Each frame is a unique moment in time, and includes all of
the captured data by the controller at that instance. Within each frame, details regarding
detected hands are included. This encompasses information such as hand identifier, palm
location (x, y, z coordinates), palm speed, palm orientation (the direction the palm is
oriented towards), and palm trajectory (the path the palm is moving along). For the hand,
comprehensive data regarding each finger is supplied. This consists of details like the
finger’s unique identifier, type of finger (thumb, index finger, middle finger, ring finger,
pinky finger), the position of the fingertip (x, y, z coordinates), finger’s direction, and
velocity. Figures 9 and 10 show the horizontal and vertical LMCs trajectory, respectively,
and Figures 11 and 12 show the horizontal and vertical LMCs velocity.

2.4. EEGnetV4

The EEGNetV4 [33] is a convolutional neural network (CNN) designed for raw EEG
signals, in particular for BCI paradigms [43,44]. Its architecture is composed of depthwise
and separable convolutions that allow the network to catch both spatial and temporal
information [36]. Furthermore, this layer enables it to classify EEG signals by identifying
common spatial patterns [45]. Moreover, EEGNetV4 can extract neurophysiologically inter-
pretable features from the EEG signals it processes [33]. The main strength of EEGNetV4
is the ability to be trained with minimal data [46] demonstrating high decoding accuracy
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and shorter training times compared to other models [47]. In this work, the EEGnetV4
was chosen over other architectures, for its performance in classifying motion in public
datasets [30].

(a)

(b)

(c)

Figure 9. x (a), y (b), and z (c) components of the fingertip trajectory for the Horizontal LMC. All
fingertips are reported in a single plot.
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(a)

(b)

(c)

Figure 10. x (a), y (b), and z (c) components of the fingertip trajectory for the Vertical LMC. All
fingertips are reported in a single plot.
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(a)

(b)

(c)

Figure 11. x (a), y (b), and z (c) components of the fingertip velocity for the Horizontal LMC. All
fingertips are reported in a single plot.
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(a)

(b)

(c)

Figure 12. x (a), y (b), and z (c) components of the fingertip velocity for the Vertical LMC. All
fingertips are reported in a single plot.

3. Results

This section summarizes the analyses of the data acquired according to the procedures
in the previous sections. Several frequency bands were analyzed, and the entire band
[1–45 Hz] was filtered in the preprocessing phase to separate the sub-bands delta [1–4 Hz],
theta [4–8 Hz], alpha [8–12 Hz], beta [12–30 Hz], and gamma [30–45 Hz]. Tests also include
analyses with and without baseline removal. The classification step was accomplished



Sensors 2024, 24, 5207 14 of 20

using the EEGnetv4 implemented in the Braindecode Python library [25]. The block training
process in Figure 8 shows the full training and testing process.

Table 1 illustrates the training hyperparameters, whose values were selected following
extensive experimental trials. The Stochastic Gradient Descending (SGD) was used to
increase training convergence, along with a dynamic Learning Rate (LR) that began at
0.004 and automatically dropped when there was no improvement after 25 idle epochs.
The reduction factor for the LR was set at 0.2. Furthermore, we employed a double-value
batch size [48], which was modified when the network showed no further enhancement
even after the LR was reduced. Finally, we used a decay rate of 0.001 to boost the network
learning rate. The change in the batch size throughout the learning phase enabled the
network to improve its performance. For model evaluation, Accuracy, Precision, Recall,
and F1 metrics were used. They are based on True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). Concerning rest vs. movement, the best result
was obtained by analyzing the whole frequency range [1–45 Hz] with baseline reduction,
achieving an accuracy of 0.64, whereas when analyzing rest vs. single movements, the
frequency band that allows us to achieve better results was the theta band. The baseline
reduction allowed us to achieve an accuracy of 0.61 and 0.55 for rest vs. open/close and
open/close vs. wrist rotation, respectively. For rest vs. wrist rotation, the baseline reduction
was not as effective as in the previous tests, obtaining an accuracy value of 0.58, above the
chance value [49], but three percentage points less than the best result, shown in Table 2.
To verify the robustness of the results obtained in the different combinations of tasks that
exceeded the threshold [49], a five-group k-fold cross-validation was performed and the
results are shown in Table 3. The stability in the average value and standard deviation
confirms the robustness of the trained models. For the kinematic data acquired by the
VG, the trajectories and velocities of each fingertip on each axis and for each of the two
LMCs, horizontal and vertical, were calculated and reported in Figures 9–12. From the
graph of the z-component trajectories and velocities (the Cartesian reference system is
oriented as in Figure 3), it can be seen that the more effective movements along this axis are
open/close and finger tapping; while the wrist rotation movement is mostly affecting the x
and y components. Observing the open/close z-component in the chosen time window,
the individual performs on average 3 open/close movements. Regarding wrist rotation,
the number of times a complete movement is performed is 3, as it is observed mostly on
the y-axis. Regarding finger tapping, the most affected components are the y and z. All
fingers are involved in finger tapping but the greatest contribution is by the index finger,
mostly observable from the z-component. In the initial rest phase, the hand did not stop
immediately, but took a variable time before arresting, depending on the individual and
∼1–2 s to maintain a constant position. Finally, for a preliminary visual analysis, Figure 13
reports the topoplots indicating the PSD distribution of one of the subjects in the dataset
for each of the movements reported along the timeline. The analysis of the topoplots shows
that the activation in certain areas is more pronounced in the ME task than in the MI task,
and almost absent in the “rest” task.

300,000

8,000

Figure 13. Spatial distribution of PSD for each task in a single subject. The timeline is the same as
used in Figures 9–12.
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Table 1. The EEGnetV4 hyperparameters.

Hyperparameter Value

Sample shape 1, 32, 129
Sampling rate 256 Hz
N. channels 32

N. epochs of training 2000

Optimizer Stochastic Gradient
Descending (SGD)

Scheduler type Reduce learning rate when a
metric has stopped improving

Learning rate 0.004
Patience 25 epochs

Factor scale 0.2
Batch size 16, 32

Decay 0.001
Baseline reduction Yes/No

Table 2. Overview of the results. The movement class represents the merging of open/close and
wrist rotation epochs. The best results for each combination of baseline and filter for each binary
classification are in the box. In orange are the results that go above the chance threshold [49]. The box
around the value indicates the best results for the classification.

Baseline Filter Classes Precision Recall F1 Score Support Accuracy Classes Precision Recall F1 Score Support Accuracy

Yes 1–45 rest 0.71 0.51 0.59 346 0.64 rest 0.61 0.56 0.59 177 0.59
movement 0.60 0.78 0.68 325 open/close 0.57 0.61 0.59 165

No 1–45 rest 0.60 0.62 0.61 341 0.60 rest 0.54 0.73 0.62 165 0.57
movement 0.60 0.58 0.59 334 open/close 0.64 0.43 0.52 182

Yes 1–4 rest 0.54 0.7 0.61 346 0.54 rest 0.52 0.68 0.59 177 0.51
movement 0.53 0.37 0.44 325 open/close 0.49 0.33 0.39 165

No 1–4 rest 0.54 0.64 0.59 341 0.55 rest 0.50 0.71 0.58 165 0.52
movement 0.55 0.45 0.50 334 open/close 0.57 0.35 0.44 182

Yes 4–8 rest 0.60 0.57 0.58 389 0.57 rest 0.64 0.55 0.59 190 0.61
movement 0.55 0.58 0.57 358 open/close 0.58 0.67 0.62 179

No 4–8 rest 0.58 0.56 0.57 382 0.58 rest 0.51 0.63 0.57 183 0.53
movement 0.57 0.59 0.58 379 open/close 0.56 0.44 0.49 195

Yes 8–12 rest 0.56 0.51 0.53 403 0.54 rest 0.53 0.68 0.60 191 0.55
movement 0.52 0.56 0.54 376 open/close 0.59 0.43 0.50 201

No 8–12 rest 0.57 0.48 0.52 414 0.54 rest 0.53 0.51 0.52 191 0.54
movement 0.51 0.60 0.55 369 open/close 0.55 0.57 0.56 201

Yes 12–30 rest 0.58 0.60 0.59 405 0.57 rest 0.54 0.71 0.61 198 0.55
movement 0.56 0.55 0.56 383 open/close 0.57 0.39 0.46 198

No 12–30 rest 0.58 0.52 0.55 405 0.56 rest 0.52 0.71 0.60 198 0.53
movement 0.55 0.61 0.57 383 open/close 0.55 0.35 0.43 198

Yes 30–45 rest 0.50 0.32 0.39 405 0.48 rest 0.48 0.55 0.51 198 0.47
movement 0.48 0.66 0.55 383 open/close 0.47 0.39 0.43 198

No 30–45 rest 0.52 0.44 0.47 405 0.50 rest 0.48 0.62 0.54 198 0.48
movement 0.49 0.57 0.52 383 open/close 0.47 0.34 0.39 198

Yes 1–45 rest 0.65 0.49 0.56 172 0.60 open/close 0.52 0.58 0.55 128 0.53
wrist rotation 0.56 0.71 0.63 157 wrist rotation 0.53 0.48 0.50 128

No 1–45 rest 0.57 0.53 0.55 172 0.54 open/close 0.50 0.43 0.46 128 0.50
wrist rotation 0.52 0.56 0.54 157 wrist rotation 0.50 0.58 0.54 128

Yes 1–4 rest 0.58 0.63 0.61 172 0.57 open/close 0.56 0.45 0.50 128 0.55
wrist rotation 0.55 0.50 0.52 157 wrist rotation 0.54 0.65 0.59 128

No 1–4 rest 0.58 0.60 0.59 172 0.56 open/close 0.49 0.46 0.48 128 0.49
wrist rotation 0.54 0.52 0.53 157 wrist rotation 0.49 0.52 0.51 128

Yes 4–8 rest 0.56 0.64 0.60 183 0.58 open/close 0.56 0.67 0.61 153 0.55
wrist rotation 0.61 0.53 0.57 195 wrist rotation 0.54 0.43 0.48 141

No 4–8 rest 0.57 0.72 0.63 180 0.61 open/close 0.55 0.38 0.45 159 0.51
wrist rotation 0.67 0.51 0.58 203 wrist rotation 0.48 0.65 0.55 139

Yes 8–12 rest 0.52 0.51 0.52 194 0.52 open/close 0.53 0.61 0.56 157 0.51
wrist rotation 0.52 0.53 0.52 193 wrist rotation 0.49 0.41 0.45 144
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Table 2. Cont.

Baseline Filter Classes Precision Recall F1 Score Support Accuracy Classes Precision Recall F1 Score Support Accuracy

No 8–12 rest 0.52 0.50 0.51 191 0.53 open/close 0.52 0.24 0.33 164 0.47
wrist rotation 0.54 0.56 0.55 201 wrist rotation 0.46 0.74 0.56 141

Yes 12–30 rest 0.54 0.55 0.55 191 0.55 open/close 0.57 0.49 0.53 164 0.52
wrist rotation 0.57 0.56 0.56 201 wrist rotation 0.49 0.56 0.52 141

No 12–30 rest 0.53 0.48 0.50 191 0.54 open/close 0.55 0.40 0.46 164 0.50
wrist rotation 0.55 0.59 0.57 201 wrist rotation 0.47 0.62 0.53 141

Yes 30–45 rest 0.45 0.42 0.43 191 0.47 open/close 0.57 0.45 0.50 164 0.52
wrist rotation 0.48 0.51 0.50 201 wrist rotation 0.49 0.60 0.54 141

No 30–45 rest 0.46 0.52 0.49 191 0.47 open/close 0.55 0.42 0.48 164 0.50
wrist rotation 0.48 0.42 0.45 201 wrist rotation 0.47 0.60 0.53 141

Table 3. Results performing 5-fold cross-validation on the best models reported in Table 2.

k-Fold Rest/Mov Rest/Wrist Rest/Openclose

1-fold 0.59 0.63 0.61
2-fold 0.62 0.61 0.60
3-fold 0.62 0.58 0.61
4-fold 0.60 0.59 0.60
5-fold 0.64 0.61 0.61

average ± dev.st 0.61 ± 0.02 0.60 ± 0.02 0.61 ± 0.01

4. Discussion

In this work, EEG signals and kinematic data related to MI and ME of open/close, wrist
rotation and rest conditions were collected by 11 healthy subjects, stored in the MOVING
dataset, and analyzed (those related to ME). Moreover, a new class called “movements” was
built grouping open/close and wrist rotation, as shown in Figure 5. In the first step of the
analysis, “rest” was chosen as the class of comparison between the two selected movements
(merged in one class), in view of its usage with robot-assisted BCI. The tests carried out
focused on finding the correct classification of the above-mentioned classes. Therefore, the
following experiments were performed: rest vs. open/close, rest vs. wrist rotation, and
open/close vs. wrist rotation. Despite the high-level noise affecting data (see Figure 1),
using the preprocessing pipeline (Figure 8) and EEGnetV4 in the frequency domain, the
results are above the literature threshold [49], as reported in Table 2, except in one case
(open/close vs. wrist rotation). These results are in line with previous recent studies [30].
We also sought to determine which frequency band was more informative using PSD and
found it was the theta band. Furthermore, the plots in Figures 9–12 show the kinematics
of the gestures used in this dataset for one of the analyzed subjects. By observing the
trajectory and velocity, it is possible to reconstruct the movements of all the fingertips. The
synchronism between the EEG data and the kinematic data also allows us to focus on part
of the EEG signal with more information about the movement, as can be observed from the
trajectories and velocities plots. It can also be noticed that the rest in the first few seconds
is influenced by movements and, in the same way, the movement epochs in the first few
seconds are in the rest position. In fact, before starting the execution, a subject-dependent
delay, due to the processing of the stimulus, was present. The MOVING dataset, to the
best of our knowledge, is the first dataset that contains a numerical model of the moving
hand and the corresponding EEG motion-related signals. It aims to become the benchmark
in the scientific community for multi-modal analysis of multi-modal signals produced by
movement. Finally, from Figure 13, it can be observed that there is a gradual decrease in
PSD in the transition from ME to MI and from MI to “rest”. This figure correlates with the
cognitive effort required for the three tasks. One can see how the PSD between ME and
MI presents the same spatial pattern, differing in the value of the PSD, as represented in
the legend on the right. Moreover, the “finger tapping” ME does not show any movement-
related pattern (Figure 13), and this result explains the difficulty of EEGnetV4 in classifying
this task compared to “rest”, which on the contrary can be easily performed with the other



Sensors 2024, 24, 5207 17 of 20

two ME tasks. The examination of the PSD spatial distribution across various ME, MI, and
“rest” conditions is conducted on a single subject to illustrate the potential analysis that can
be carried out. This calculation excludes the first second of the ME/MI condition and the
initial two seconds of the “rest” condition: this exclusion is determined based on kinematic
data analysis and on feedback reported by subjects, which indicated when subjects began
and finished movements. The MI and “finger tapping” tasks were not analyzed with
EEGnetV4, but only used for representing their topoplots shown in Figure 13. Here, we
provide additional data and tables that support the findings of this study.

5. Conclusions

This study aimed to introduce MOVING, a multi-modal dataset in a semi-controlled
environment, consisting of EEG signals and kinematic data collected using VG during ME,
MI, and rest conditions. The EEG data contained a high noise level due to dry electrodes:
dry electrodes make the montage faster than wet electrodes. Furthermore, the influence
of baseline reduction and frequency band analysis on ME classification was examined for
only two ME movements and the rest condition, using PSD data extracted with Welch’s
method. The results, reported in Table 2, show that, for rest vs. movement (open/close
and wrist rotation) classification, the most informative frequency band is [1–45 Hz], and
the classification is supported if the data are corrected by baseline reduction. For single
movement detection, theta was the most informative frequency band for both movements,
but the network performed better with the baseline reduction for rest vs. open/close, and
without baseline reduction for rest vs. wrist rotation. Finally, the possibility of using the
same network for the open/close vs. wrist rotation classification was also investigated,
but the results were not above the chance [49]. Moreover, these findings are in line with
previous studies that used the same conditions [30]. The kinematic data collected with
the VG were also analyzed. The plots shown in Figures 9–12 suggest that: (1) movements
were not stopped immediately with the appearance of the trigger; (2) movements were not
started as the start trigger appeared, but needed some latency; and (3) movements were
well reconstructed based on trajectories and velocities. On these considerations, the EEG
signals were cut before the analysis, to reduce the bias due to the late start or stop of the
movements. These considerations could be useful for the design of future experimental
protocols to contain cleaner, bias-free, multi-modal datasets with simultaneous recording of
EEG signals and kinematic data. The topoplots representing the scalp PSD in the 1–45 Hz
frequency band over the analyzed time interval (Figure 13) show that the activation of
certain areas during ME (in two over three movements recorded) is more pronounced
than during MI or “rest”. This initial analysis must be expanded by considering prior
observations to conduct a comprehensive evaluation across all subjects. In conclusion, the
MOVING dataset opens the possibility to investigate not only the preprocessing method
and the characteristics of the hand movement extracted by the EEG signals, but also the
relationship with the kinematic data acquired with the VG, here started with topoplot
analysis. Future work will be dedicated to analyzing the MI part and building a portable
system for safe operations in a work environment [50], improving the preprocessing steps
by new fast algorithms [51,52], and investigating new models to analyze EEG data [53,54] to
improve the performance classification in a real-life environment, such as to move a robotic
arm in a dangerous workplace [55], or to interact with collaborative assistive devices [56,57].
Finally, in the future, the MOVING dataset will be increased by including more subjects
(men and women, left- and right-handed subjects) to make it more robust.
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