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Summary

The storage of electric energy is a key process in mobility applications but

is also essential in �xed smart grids for the time-shifting of energy produc-

tion/consumption. The storage unit is usually a battery pack with adequate

power factors and with requirements concerning energy density, lightweight

and long life cycle. The high voltage of the battery is obtained by a se-

ries connection of elementary cells and the low internal impedance of the

battery is obtained by parallel connections of cells or streams of cells. In

many applications, the battery is seen as a raw energy source, unsuitable to

directly power the load. Thus, a converter/inverter is usually put as an in-

terface between the battery and the �nal load to assure the required quality

of output voltage. The �rst part of this thesis explores the advantages that

can be gained by including the multilevel solutions of inverters inside the

battery architecture. Instead of a �xed stream of cells, the battery contains

a stream of modules. Each module has insert/bypass power switches and

one or a group of battery cells. By properly driving the switches at sam-

pling times, the battery can synthesize a desired DC or even an AC output

voltage. The number of modules can be redundant in order to assure fault

tolerance against cell failures and/or to accommodate a greater total charge

capacity. Batteries are governed by complex internal chemical reactions, that

are not completely reversible. Thus continuously charging and discharging

the battery gives rise to what is commonly known as ageing. Ageing implies

changes in the internal impedance of the battery and a decrease in the to-



3

tal charge capacity over time. The internal impedance is usually observed

experimentally, and this requires expensive equipment and delicate test pro-

cedures. Moreover, observing the e�ects of ageing on real batteries is very

time-consuming, since many charge-discharge cycles need to be performed.

These operations can take months in the lab and, moreover, require special

equipment to ensure safety. Batteries are complex non-linear systems that

must be run under the supervision of a Battery Management System (BMS)

to assure safe charge/discharge operations. The development of a complete

autonomous system requires �ne-tuning of many algorithms, which include

the SoC/SoH estimation algorithms from voltage and currents signals at the

battery terminals. Thus precise simulations of various components play a

crucial role in the successful design of an e�cient BMS. Therefore, a robust

battery model is required for �eld applications. Depending on the desired

level of abstraction, a multitude of models have been developed by researchers

worldwide. Among these, ECM models represent an e�ective and computa-

tionally light solution to capture the battery behavior. The behavior of the

cell is described by common circuit elements whose properties represent the

internal chemical processes. ECM are usually static models, but to make

them more realistic, dynamic circuit parameters can be considered. In re-

cent years, many high-end laboratories have released datasets with battery

experimental data, making them publicly available for researchers worldwide.

Although these data are very useful for the scienti�c community, they are

necessarily limited to a few working conditions of selected battery cells.

The second part of this thesis aims at developing a Battery Digital Twin

(BDT) that receives normalized state of charge, state of heath parameters as

inputs, and produces a realistic voltage output signal in response to a load

current waveform of any shape. This characteristic allows to use the BDT for

many purposes: (i) for the validation of SoC and SoH estimation algorithms

(ii) for battery monitoring or diagnostic when run in parallel with the real

battery.
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This BDT is very useful in smart batteries where the single cells inside the

pack can be used according to their states (SoC, SoH), possibly leading to

a longer lifetime of the battery. It is therefore essential, especially in SB, to

have a tool that is able to simulate cells at di�erent SoC and SoH. Since the

BDT allows to simulate a smart battery pack with cells at di�erent charge

and ageing states, it can be used for the validation of di�erent SB balancing

algorithms, consequently allowing to test the optimization of the lifetime of

the SB. The BDT is developed in the Matlab-Simulink-Simscape environ-

ment. The non-linear ECM parameters depending on SoC/SoH values are

based on feed-forward Neural Networks (NN) trained with real data from the

NASA Prognostic Repository, publicly available online.
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Nomenclature

AI Arti�cial Intelligence

BDT Battery Digital Twin

BMS Battery Management System

BP Battery Pack

CC-CV Constant Current - Constant Voltage

CHB Chained H-Bridge

CPE Constant Phase Element

CWT Continuous Wavelet Transform

DoD Depth of Discharge

ECM Equivalent Circuit Model

EIS Electrochemical Impedance Spettroscopy

EV Electric Vehicle

IR Internal Resitance

Li-ion Lithium-Ion

LIB Lithium-ion Battery
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LUT Look-Up Table

MKNA Multidimensional K-nearest control algorithm

ML Machine Learning

MSE Mean Squared Error

NN Neural Network

OCV Open Circuit Voltage

PEV Pure Electric Vehicle

PMSM Permanent Magnet Synchronous Motor

RW Random Walk

SB Smart Battery

SBP Smart Battery Pack

SEI Solid Electrolyte Interphase

SoC State of Charge

SoH State of Health

VCVS Variable Controlled Voltage Source
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Introduction

Background

The storage of electric energy is a key process in mobility applications but

is also essential in �xed smart grids for the time-shifting of energy produc-

tion/consumption. One of the key features of a smart grid is its capacity to

handle various distributed storage alternatives and renewable energy sources.

To distribute electricity to customers more e�ectively, the smart grid com-

bines cutting-edge sensor technologies, control techniques, and communica-

tion technologies into existing power distribution systems[10]. A signi�cant

part of the generation in the smart grid comes from renewable energy re-

sources such as wind and solar. The unpredictability and intermittent na-

ture of these renewable sources pose serious challenges to the network during

energy generation, transmission, and distribution. The smart grid operation

can be of two types: power applications and energy applications. Power

applications require the management of short bursts of high power, ranging

from a few seconds to a few minutes. Energy applications require a sys-

tem able to store a large amount of energy and discharge it over a longer

period of time. In both applications, Li-ion Batteries (LIB) turned out to

be a valuable and e�ective solution[14]. Despite the rapid evolution of bat-

tery technologies, several factors need to be taken into account to achieve a

successful application of battery-powered solutions in smart grids. There are

still concerns regarding the total cost (including manufacturing, management
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and replacement), lifetime, power delivery and environmental impact[18].

Battery packs and related issues

Thanks to their high energy density (up to 200 Wh/kg), high energy e�-

ciency (more than 95%) and long cycle life (3000 cycles at deep discharge of

80%) [10], LIBs are employed in a broad range of applications: they are an

e�ective solution for the integration of renewable energy sources in the smart

grid and they are the preferred solution for electric mobility, ranging from

Electric Vehicles (EVs) to mobile robots. Every class of application will re-

quire a tailored battery solution. To obtain a battery of the required voltage

and charge capacity, elementary battery cells are connected in series/parallel.

Cells can also be arranged in modules that can in turn be connected in series

and/or parallel. The ensemble of cells/modules forms the battery pack (BP).

The cells inside the battery pack are not perfectly equal. The cells can have

di�erent charge capacities and this could happen for various reasons: it could

be a result of the manufacturing process or the results of the ageing mech-

anism that a�ects the cells di�erently[19]. Moreover, leakage currents and

di�erent working conditions can impact the cells, causing State of Charge

(SoC) imbalances that lead to di�erent Depth of Discharge (DoD) of the

cells[9]. Temperature gradient inside the battery pack is another important

issue and can be the result of parameter variation of the cells (internal re-

sistance and/or thermal resistance variation) and temperature variation of

the coolant of the EV. As a result, the cells in the pack are not equally uti-

lized, and the weakest cell in a series-connected battery can stop the whole

operation due to overcharge or over-discharge, so it is not possible to use all

the energy stored in the battery. Furthermore, the battery lifetime is heav-

ily a�ected by SoC imbalance and high temperature. To circumvent these

issues, strategies are needed for balancing SoC and limiting the temperature

gradient. A crucial component of a battery pack is the Battery Manage-
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ment System (BMS): it ensures safe and reliable operation of the battery

and it provides an estimation of the battery states, namely SoC and State of

Health (SoH). BMS are also crucial in EVs, where Li-ion battery safety is a

non-negotiable requirement to prevent the risk of �re and hazard to the ve-

hicle passengers. The BMS main features are: (1) cell monitoring (voltage,

current and temperature measurements) (2) battery safety and protection

(3) cell balancing (4) SoC and SoH estimation (5) charge control (6) thermal

management.

Battery models

Depending on the desired level of abstraction, a multitude of models have

been developed by researchers worldwide. There are three big categories of

battery models: (i) physics and multi-physics models that aim at describing

the complex internal chemical phenomena of batteries[11]; these can be con-

sidered lower-level models (ii) empirical models that use past experimental

data to develop a strategy for predicting future behavior[8]; (iii) Equivalent

Circuit Models (ECM) aim at simulating the battery behavior using circuit

elements[17], these models can be considered to be at higher level. ECM

models are usually static, but research shows that using dynamic circuit

elements, tuned with look-up tables (LUTs) allows to achieve high-�delity

model of the battery behavior[13].

Multilevel battery solutions

In many applications, the battery is seen as a raw energy source, unsuit-

able to directly power the load. Thus, a converter/inverter is usually put as

an interface between the battery and the �nal load to assure the required

quality of output voltage. Innovative battery topologies that integrate the

multilevel inverter concept have been developed in literature[16, 15]. Instead
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of a �xed stream of cells, the battery contains a stream of modules. Each

module has insert/bypass power switches and one or more battery cells. By

properly driving the switches at sampling times, the battery can synthe-

size a desired DC or even an AC output voltage, as well as performing cell

balancing, charge control and subsequent thermal management. The num-

ber of modules can be redundant in order to assure fault tolerance against

cell failures and/or to accommodate a greater total charge capacity. Among

these battery solutions, the Smart Battery (SB) is an innovative concept that

combines advanced power electronics, Arti�cial Intelligence (AI) and wire-

less communication with the goal of developing a new generation of battery

solutions for e-mobility and grid storage [20]. The SB topology is based on

the series connection of modules. Each module has a cell with an inser-

tion/bypass circuit and a local processor that monitors the cell states[12].

The SB has more cells than strictly necessary to synthesize the desired nomi-

nal voltage, so the whole battery has a higher total charge capacity compared

to a standard battery. By strategically exploiting the insertion/bypass mech-

anism, it is possible to design a control algorithm that uses the cells in the

battery uniformly, according to their SoC, temperature and possibly SoH,

thus extending the lifetime of the battery[3]. When a cell is bypassed, it has

time to rest. This rest time can be used to allow a cell to cool o� when its

temperature is too high so it can be inserted again when it has in-the-range

temperature values. The insertion/bypass circuit can also be used to: (i)

bypass a low-charge cell, putting it to rest until the next charge (ii) bypass

a faulted cell, so the SB can keep working.

This work has been developed under the Programma Operativo Nazionale

2014-2020 (CCI 2014IT16M2OP005), Fondo Sociale Europeo, Azione I.1

�Dottorati Innovativi con caratterizzazione industriale�. The project was de-

veloped in collaboration with Aalborg University, Denmark and Digipower

ltd.
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Thesis motivation

Batteries are the energy source for a wide range of electrical applications.

However, there are still challenges that need to be addressed to develop

e�ective solutions:

� Need for a �exible battery architecture: at present batteries are

built from a �xed stream of series/parallel cells However, the cells in-

side the battery are not perfectly equal. As a result, the weakest cell

in a series-connected stream can be overcharged or over-discharged,

lowering the whole battery's performance. To maximize the battery

charge capacity, cell balancing is needed. Cell balancing can be either

passive or active: passive balancing techniques dissipate the energy

of higher SoC cells through resistors. Classical active balancing tech-

niques use additional circuits like DC/DC converters to distribute the

charge among the cells. In both cases, part of the energy of the bat-

tery is lost. Strategies are thus needed to use the cells in the battery

pack optimally, with also bene�ts on the battery lifetime. Moreover,

in many applications, the battery is seen as a raw energy source, un-

suitable to directly power the load due to the changing of voltage as

the cells discharge and age. A �exible architecture could compensate

for these e�ects and enable the synthesis of a stabilized DC or even an

AC output voltage.

� Need for a dynamic cell/Battery model for realistic simula-

tions: batteries exhibit a non-linear behavior during charge-discharge

cycles and lifetime. The successful design of a complex system, such

as a BMS, requires a realistic simulation model of the battery. The

battery's internal parameters depend on SoC and SoH and are usually

observed performing expensive and time-consuming laboratory experi-

ments, usually at �xed SoC and SoH values. Thus, a model with �xed
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parameters cannot successfully �t the wide range of battery SoC and

SoH. Hence the need for a dynamic battery model that can simulate a

speci�c cell at di�erent SoC and ageing times.

Thesis objectives

To address the above-mentioned challenges, the main objectives are the fol-

lowing:

� explore the advantages of multilevel battery systems for cell

balancing and load management.

� develop cell models as a function of SoC and SoH.

Thesis outline

The thesis is organized as follows:

The �rst part of the thesis will focus on the applications of multilevel-based

battery systems. Chapter 1 presents a multilevel battery solution for the

synthesis of the AC driving voltage to power a PMSM motor inside an elec-

tric car. Each module has a half bridge and an ideal cell. The proposed

topology is exploited to develop a regenerative braking system to recover the

kinetic energy of the car during braking. Chapter 2 addresses the issue of Soc

and temperature imbalances of battery cells that constitute battery packs.

The SB topology is introduced. An intelligent algorithm based on Machine

Learning (ML) is proposed, with the aim of choosing in real time which cells

need to be connected/bypassed, according to their states and temperatures.
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The goal is to synthesize a stabilized DC output voltage of a SB, while simul-

taneously balancing the SOC and reducing the temperature spread among

the cells.

The second part of the thesis will focus on cell models. Chapter 3 presents

the Li-ion basic operation and ageing e�ects. Chapter 4 introduces the issues

related to battery modelling and focuses on the ECM models of a battery

cell showing the correlation of RC components with internal electrochemical

processes. Chapter 5 presents a method to parametrize a Simulink prede�ned

model using a data-driven approach. Two di�erent ways of computing the

parameters are explored: using datasheets provided by the manufacturer and

using more extensive laboratory measurements. Chapter 6 presents an inno-

vative methodology to extract the ECM model as a function of the SoC and

SoH of the cell from pulsed discharge signals. Furthermore, a methodology

for OCV extraction is provided. Chapter 7 shows how to use the results pre-

sented in Chapter 6 to synthesize a NN-based Battery Digital Twin (BDT).

The BDT receives normalized SoC, SoH parameters as inputs, and produces

a realistic voltage output signal in response to a load current waveform of any

shape. Chapter 8 summarizes the main contributions and gives an overview

of future work.



22

List of publications

[1] Roberta Di Fonso and Carlo Cecati. Navigation and motors control of

a di�erential drive mobile robot. In 2023 International Conference on

Control, Automation and Diagnosis (ICCAD), pages 1�6, 2023.

[2] Roberta Di Fonso and Carlo Cecati. Test cycle simulation of an electric

car with regenerative braking. In 2020 AEIT International Conference

of Electrical and Electronic Technologies for Automotive (AEIT AUTO-

MOTIVE), pages 1�5, 2020.

[3] Roberta Di Fonso, Xin Sui, Anirudh Budnar Acharya, Remus Teodor-

escu, and Carlo Cecati. Multidimensional machine learning balancing

in smart battery packs. In IECON 2021 47th Annual Conference of the

IEEE Industrial Electronics Society, pages 1�6, 2021.

[4] Roberta Di Fonso, Pallavi Bharadwaj, Remus Teodorescu, and Carlo

Cecati. Internal resistance estimation of li-ion batteries using wavelet

analysis. In 2022 IEEE 13th International Symposium on Power Elec-

tronics for Distributed Generation Systems (PEDG), pages 1�5, 2022.

[5] Roberta Di Fonso, Pallavi Bharadwaj, Remus Teodorescu, and Carlo Ce-

cati. A battery digital twin based on neural network for testing soc/soh

algorithms. In 2022 IEEE 20th International Power Electronics and

Motion Control Conference (PEMC), pages 655�660, 2022.



CONTENTS 23

[6] Roberta Di Fonso, Remus Teodorescu, Daniel-Ioan Stroe, Carlo Cecati,

and Pallavi Bharadwaj. Data-driven modeling of li-ion battery based on

the manufacturer speci�cations and laboratory measurements. In 2022

IEEE Power Electronics, Drives and Energy Systems (PEDES), 2022.

[7] Roberta Di Fonso, Remus Teodorescu, Carlo Cecati, and Pallavi Bharad-

waj. A battery digital twin from pulsed laboratory data using wavelet

analysis and neural networks. Submitted for publication to IEEE Trans-

action on Industrial Informatics, 2023.



24

References

[8] Empirical modeling of lithium-ion batteries based on electrochemical

impedance spectroscopy tests. Electrochimica Acta, 160:169�177, 2015.

[9] Faisal Altaf. Thermal and State-of-Charge Balancing of Batteries using

Multilevel Converters. PhD thesis, Mar. 2014.

[10] Tianmei Chen, Yi Jin, Hanyu Lv, Antao Yang, Meiyi Liu, Bing Chen,

Ying Xie, and Qiang Chen. Applications of lithium-ion batteries in grid-

scale energy storage systems. Transactions of Tianjin University, 26, 02

2020.

[11] W. B. Gu and C. Y. Wang. Thermal electrochemical modeling of battery

systems. 2000 J. Electrochem. Soc. 147 2910.

[12] Xinrong Huang, Anirudh Budnar Acharya, Jinhao Meng, Xin Sui,

Daniel-Ioan Stroe, and Remus Teodorescu. Wireless smart battery man-

agement system for electric vehicles. In IEEE Energy Conv. Congr.

Expo. (ECCE), pages 5620�5625, 2020.

[13] Tarun Huria, Massimo Ceraolo, Javier Gazzarri, and Robyn Jackey.

High �delity electrical model with thermal dependence for characteri-

zation and simulation of high power lithium battery cells. In 2012 IEEE

International Electric Vehicle Conference, pages 1�8, 2012.

[14] Alireza Khaligh and Zhihao Li. Battery, ultracapacitor, fuel cell, and

hybrid energy storage systems for electric, hybrid electric, fuel cell, and



CONTENTS 25

plug-in hybrid electric vehicles: State of the art. IEEE Transactions on

Vehicular Technology, 59(6):2806�2814, 2010.

[15] Branko Majmunovic, Radhika Sarda, Remus Teodorescu, Cristian

Lascu, and Mattia Ricco. Highly e�cient smart battery pack for ev driv-

etrains. In IEEE Veh. Power Propuls.Conf.(VPPC), pages 1�5, 2017.

[16] Antonio Manenti, Andrea Abba, Alessandro Merati, Sergio M. Savaresi,

and Angelo Geraci. A new bms architecture based on cell redundancy.

IEEE Trans. Ind. Electron., 58(9):4314�4322, 2011.

[17] Gregory Plett. Battery Management Systems, Volume II: Equivalent-

Circuit Methods. 2015.

[18] Habiballah Rahimi-Eichi, Unnati Ojha, Federico Baronti, and Mo-Yuen

Chow. Battery management system: An overview of its application

in the smart grid and electric vehicles. IEEE Industrial Electronics

Magazine, 7(2):4�16, 2013.

[19] Mattia Ricco, Jinhao Meng, Tudor Gherman, Gabriele Grandi, and Re-

mus Teodorescu. Smart battery pack for electric vehicles based on active

balancing with wireless communication feedback. Energies, 12(20), 2019.

[20] Remus Teodorescu, Xin Sui, Soren B. Vilsen, Pallavi Bharadwaj, Abhijit

Kulkarni, and Daniel-Ioan Stroe. Smart battery technology for lifetime

improvement. Batteries, 8(10), 2022.



26

Chapter 1

Synthesis of an AC power signal

for driving a PMSM motor

1.1 Background

Electric propulsion can be adopted in a wide class of applications such as

cars, trucks, vehicles for mobility-impaired people, industrial robots and

much more [4]. Multilevel inverters are a class of power electronics con-

verters that are able to operate at high voltages and allow to create stepped

output voltages [1, 2, 6, 7, 9, 12, 14, 15]. They are mainly employed in high

[13] medium voltage industry and traction applications [14], but their use

can be e�ectively extended to road transportation [11]. Multilevel converters

output voltages that better approximate the ideal sinusoidal reference that

an electric machine should have as input [13]. These sinusoidal-like voltages

make the PMSM motor perform more closely to the ideal operation, creating

less heat and vibrations and diminishing torque ripples [11]. The converter

itself has better operations due to low-frequency operations, lower dv/dt and

di/dt [8]. The higher the number of levels, the better the approximation,

hence operations [5, 10], but the higher the converter complexity. A critical

aspect of electric vehicles is the energy management which is directly corre-
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lated to battery energy depletion. The so-called �range anxiety�, i.e. the fear

that the vehicle will not have enough energy to reach the desired destination,

is one of the biggest deterrents in the di�usion of EVs. It is therefore essen-

tial to �nd a way to extend the autonomy of the vehicle and one promising

approach consists of reducing energy consumption and recovering as much

energy as possible. Electric machines, including PMSM motors, have the at-

tractive ability to work both as motor (during acceleration, steady state) and,

if properly supplied, as a generator during deceleration. This capability can

be exploited to recover part of the kinetic energy during deceleration which is

then capable of partially recharging the car battery pack. This type of opera-

tion requires a bidirectional DC-AC Multilevel converter [3]. In this chapter,

a regenerative braking system for an EV will be developed and combined

with the usage of multilevel converters. The underlying idea is that from one

side multilevel converters power more e�ciently the PMSM machine (thus

having lessened motor losses), and from the other side, the regenerative brak-

ing systems allows to recover as much kinetic energy as possible. These two

approaches combined allow to improve the energy management of the car. In

this chapter, we will show: (i) the development of a regenerative braking sys-

tem for the vehicle making use of the quarter car model; (ii) the comparison

between a conventional braking system and proposed regenerative braking

system (iii) the analysis for the energy consumption.

1.2 Quarter-car model

An electric vehicle can be modelled by a combination of a mechanical and

electrical subsystems exchanging energy. The whole car model contains both

a mechanical and an electrical subsystem in order to better simulate the

energy exchange between the two domains. All simulations have been carried

out in the Matlab-Simulink-Simscape development environment so it seems

appropriate to use their symbols to describe the subsystems.
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The mechanical model considered to pose the motor control problem of the

car is the so-called �quarter car model� which consists of a wheel and its

attachments and the mass of one-fourth of the total mass of the car. It has

been assumed that there is no rotational motion in the body and the wheel in

always in contact with the ground. The classical quarter car model assumes

no friction, but in this work a rotational damper has been introduced to take

into account the rotational loss. Fig. 1.1 shows the mechanical model of a

quarter-car. The translational mass represents one-fourth of the car mass

and is coupled to a wheel-and-axle mechanism. A rotational input to the

axle (port A) produces a translational motion of the wheel periphery (port

P). The wheel is simulated by a rotational inertia and the viscous friction is

simulated by the rotational damper.

Figure 1.1: Quarter car mechanical model

Assuming that the wheel does not slip, the system is governed by the

following equation:

T = (J +m· r2) ω̇ +D·ω; (1.1)
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T torque on the axle [N·m]
J wheel inertia [Kg·m2]
r wheel radius [m]
m quarter car mass [Kg]
ω wheel angular speed [rad/sec]

D damping coe�cient
[︂

N·m
rad/sec

]︂
Fig.1.2 shows a portion of the electrical subsystem.

Figure 1.2: Electrical subsystem

The PMSM block is the interface between the electrical and the mechanical

domain. Ports A, B and C are linked to a multilevel three-phase converter,

port m is a bus for measurements and port S is a rotational shaft directly

coupled to the wheel axle. The PMSM operates in either generator or

motor mode. The mode of operation is dictated by the sign of the

mechanical torque (positive for motor mode, negative for generator mode).

1.2.1 Multilevel battery system topology

The three-phase converter is a bidirectional 9-level DC-AC with PWM

between levels in order to mitigate the transitions. The converter has four

Chained-H-Bridge (CHB) per phase: each cell is powered by an isolated

battery. This seems di�cult to realize, but thinking of a wireless recharge

systems, it can be accepted. Moreover, the chained architecture can allow
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battery SoC balancing. It is assumed that the batteries and switches are

nearly ideal, as the focus is on energy �ow between the electrical and

mechanical subsystems. The multilevel converter provides also an Energy

output signal whose meaning is the total energy exchanged from 0 to t with

the PMSM block. The Energy signal E is computed as the integral of the

instantaneous power of the three phases, where dτ is the sampling period:

E(t) =

t�

0

(va(τ)· ia(τ) + vb(τ)· ib(τ) + vc(τ)· ic(τ))dτ (1.2)

Fig. 1.3 shows one phase maximum voltage output from the multilevel

converter. Each battery has a Vpeak/4 voltage.

Figure 1.3: Maximum voltage output of the multilevel converter

The converter is driven by two-phase reference voltages v∗α, v
∗
β computed by

the higher level control loops, as shown in Fig. 1.2.

1.3 PMSM control

Fig. 1.4 shows the inner loop to control the Iq, Id currents in the rotor refer-

ence frame. Id is controlled to zero (no �ux weakening) so there is only one
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input Iqref from higher levels. The PMSM is con�gured to be round rotor,

sinusoidal back Emf, four pole pairs. The rotor angle is thus multiplied by

4, being the electrical speed four times the mechanical speed.

Figure 1.4: PMSM control: inner loop

Fig. 1.5 shows the outer loop that controls the rotor angular speed and

thus the wheel and the car longitudinal speed.

Figure 1.5: PMSM control: outher loop

The two control blocks are Matlab user de�ned functions, containing

simple proportional-integral (PI) controllers.
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1.4 Regenerative braking

The PMSM can be used in generator mode to brake the car and recharge the

batteries. The following parameters have been chosen for the simulations:

Table 1.1: Simulation parameters

Quarter-car mass 400 Kg
Wheel radius 0.316 m
Wheel inertia 1 [Kg·m2]

Viscous dumper 0.1
[︂

N·m
rad/sec

]︂
Gear box ratio 3

The parameters in 1.1 are relative to an average electric car. The gearbox

ratio value has been set to 3 for simulation purposes: a higher value would

require less torque from the motor, but also a higher functioning frequency

from the multilevel converter. The PMSM machine parameters are from

model n.16 of the Simscape Power Systems Library:

Table 1.2: PMSM parameters

Stator phase resistance 0.05 Ω
Flux linkage 0.192 [V· s]
Pole pairs 4

Torque constant 1.152
[︁
N·m
A

]︁
Fig. 1.6 shows a trapezoidal speed test of the quarter-car at the rotor

level.
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(a) Rotor torque

(b) Rotor speed

(c) Electrical energy

Figure 1.6: Trapezoidal speed test of the quarter-car at the rotor level

The rotor torque is positive and slightly increasing (due to the viscous

damper) during constant acceleration and negative during braking. The

electrical energy from the multilevel converter is decreasing during braking

as the batteries are recharging. However, there are two problems with this

simple solution:

� currents can be very high during braking with consequential excessive

PMSM dissipation;

� at low speed the back Emf is not su�cient to assure the required brak-

ing torque. Thus energy is drown from batteries and the energy graph
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rises before rotor stops.

A better and safer solution is to use a mix of electrical and mechanical

braking. The mechanical brake is used to avoid high negative torque to

the PMSM and for stopping the car. The PMSM brake is highly bene-

�cial at high speed to recover the kinetic energy and to avoid excessive

brake pad wear. The maximum instantaneous current during braking is

iq = back Emf/2·R, where R is the stator resistance. The corresponding brak-

ing torque is Tb = (Torque constant)· iq. This solution is shown in Fig. 1.7

, where iq max is limited to 80A. The mechanical braking torque is superim-

posed.
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(a) Rotor torque

(b) Rotor speed

(c) Electrical energy

Figure 1.7: Regenerative and mechanical braking for the PMSM motor

1.5 WLTC test cycle results

The United Nations Economic Commission for Europe (UN-ECE) has

developed a World-wide harmonized Light duty driving Test Cycle (WLTC)

to represent typical driving characteristics around the world. The Test

Cycle is useful to assess the performance of vehicles in terms of emissions,

fuel and/or energy consumption. The WLTC contains four phases of

time-speed data points ((Low, Medium, High and Extra-high). The

applicable test for Pure Electrical Vehicles (PEV) is WLTC class 3, version
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5.1. The following results are relative to the medium phase test: duration

433 s, maximum speed 76.6 [Km/h], distance 4.72 [Km]. Simulations are

carried out with Matlab, Simulink and Simscape. To simulate air drag loss,

a negative brake torque is applied to the wheel axle by a controlled Torque

Source block, as shown in Fig. 1.8.

Figure 1.8: Controlled Torque Source block

The control signal is computed by the following formula:

Air drag torque =
1

2

(︁
C·A· ρ· (ω· r)2

)︁
(1.3)

where:

C = 0.25 air drag coe�cient

A = 0.5 cross section quarter-car [m2]

ρ = 1.29 air density [Km/m3]

ω wheel speed [rad/s]

r = 0.316 wheel radius [m]

Fig. 1.9 shows the results seen from the point of view of the PMSM rotor

shaft (the [Km/h] data points of WLTC have been converted to rotor

angular speed, taking into account wheel radius and the gear-box ratio of
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3). The amount of rotor torque has to overcome viscous friction, air drag

and car acceleration-deceleration to perfectly track the WLTC data points.

(a) Rotor torque

(b) Rotor speed

Figure 1.9: Rotor torque and speed

The corresponding energy balance is shown in Fig. 1.10a. The electrical

energy (E-energy) is measured at the three-phase bus of PMSM. The

mechanical energy (M-energy) is measured at the rotor shaft. The

di�erence is due to the PMSM loss (mainly stator resistance). The

E-energy rises during acceleration and decays during regenerative braking

(battery recharge). The air-drag energy loss is substantially high and also

the viscous friction loss cannot be neglected. At the end of the test cycle,

the quarter-car has drawn about 100 [Wh] of energy from batteries to

overcome the total losses (the full car would have drawn 400 [Wh]of energy
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from the batteries). The [Wh/Km] for the quarter car is 21 [Wh/Km] (for the

full car it would have been about 84 [Wh/Km]) (test cycle distance of

4.72 Km). It is interesting to see the energy lost in the case of pure

mechanical braking, as shown in Fig. 1.10b. At the end of the test cycle,

the energy drawn from batteries is about 170 Wh. The regenerative braking

system can thus save up to 41% of electrical energy.

(a) Regenerative braking

(b) Pure mechanical braking

Figure 1.10: Regenerative braking vs. pure mechanical braking
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1.6 Summary

Electric cars must be able of long-range operations. This goal can be reached

with high-capacity batteries but also by adopting suitable energy manage-

ment. In this chapter, a multilevel battery system for Ev has been proposed.

The goal is to recover the car's mass kinetic energy during braking to recharge

the batteries. To simulate the �ow of energy between the mechanical and

the electric domain, in this chapter a complete model of an electric car has

been developed. The interface between the two domains is a PMSM machine

that operates as a motor during acceleration and as a generator during brak-

ing. The simulation model takes into account substantial viscous rotational

friction and realistic air-drag losses. The simulations have been run through

time-speed data points taken from the WLTC worldwide Test Cycle. Results

show that the proposed regenerative braking system can save up to 41% of

electrical energy versus pure mechanical braking.
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Chapter 2

Multidimensional balancing in

smart battery packs

2.1 Background

In recent years the interest in lithium batteries has grown enormously. The

goal of reducing CO2 emissions has been the main reasoning behind the de-

velopment of electric mobility and the e�ort to increase electricity production

from sustainable sources. Lithium batteries �nd their main application area

in the �eld of renewable energy sources, whose market penetration rate is

expected to increase in the coming years. Lithium batteries will play a key

role in the reliable and e�cient integration of renewable energy sources with

the electricity grid [2, 10]. Electric propulsion can be used in a wide range of

applications (cars, trucks, industrial robots, vehicles for people with impaired

mobility...). Thanks to the use of batteries as a driving force, purely electric

vehicles are able to eliminate environmental emissions. In addition, unlike

conventional vehicles, in which the kinetic (downhill) energy and braking en-

ergies of a vehicle are wasted, battery-powered electri�ed vehicles are able

to store energy in the battery and use it later for propulsion. Therefore, the

electri�cation of transport will have a positive social impact in economic and
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environmental terms. Among the di�erent types of batteries, lithium (Li-

ion) batteries are the most promising, thanks to their higher energy density

and a longer life cycle. The batteries consist of long strings of hundreds of

cells connected in series and/or parallel to meet the required traction power

and are currently the most expensive component of an electric vehicle's pow-

ertrain; Therefore, battery lifetime is a key factor in the success of electric

vehicles. The need to extend the battery lifetime and ensure its correct use

has attracted great research interest, both from an academic and industrial

point of view. The battery lifetime is strongly in�uenced by the imbalance

of the State of Charge SoC and the temperature between the cells that make

up the battery pack. For these reasons, in recent years, new concepts of

BMS have been proposed in the literature. The BMS is a critical component

of a battery pack, as it ensures that the battery pack operates in the safe

operating region, constantly monitors the battery pack status and records

useful data. One of the fundamental tasks of the BMS is the estimation of

the battery SoC and its balancing. Estimating the SoC is essential, as bat-

teries can be damaged in both overcharging and over-discharging. Balancing

allows you to use all the energy stored in the battery pack, avoiding the need

to stop using the battery when one of its cells reaches the minimum SoC.

2.1.1 Causes of cell unbalancing

The unbalancing of the cells during discharge is due to the di�erent internal

resistances and capacities of the individual cells that make up the battery

pack. The production processes of the cells are complex, and cannot ensure

that the cells produced have the same capacity. Ageing processes also have an

unpredictable impact on cells, resulting in a battery pack with cells that have

a wide range of di�erent capacities. Variations in cell capacities, cell leakage

currents, and operating conditions cause SoC imbalance in cell strings. The

SoC and capacity imbalance in turn results in DoD imbalance. Similarly,

changes in the internal resistance of the cells and the temperature gradient
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in the coolant, which is not negligible in electric vehicle battery packs, cause

a thermal imbalance in the string. The SoC level and temperature of every

single cell in a string during battery storage and the succession of charge-

discharge cycles, have a great impact on the electrochemical ageing of the

battery, while the DOD a�ects the life cycle of the cell. Therefore, the battery

pack is subject to a serious problem of uneven ageing due to SoC, DOD and

thermal imbalance. The battery pack may reach its end of life sooner due to

premature failure of just one cell in the string, regardless of the high SoH of

other cells.

2.1.2 Multidimensional control motivation

To circumvent these issues, strategies are needed for balancing SoC and lim-

iting the temperature gradient. Classical active balancing techniques use

additional circuits like DC/DC converters to exchange energy between cells

[1, 3, 4, 5, 6, 9]. A more �exible and e�cient option to achieve the active bal-

ancing of the battery pack is represented by the smart batteries (SB)[7, 8, 11].

SB topologies introduce modularity and recon�gurability in the battery pack

thanks to the capability to insert/bypass single cells. This feature can be

exploited to reach multidimensional control, that is simultaneous balancing

of SoC and limiting temperature gradient inside the battery. A K-nearest-

based control algorithm is developed to achieve the multidimensional bal-

ancing goal. The algorithm chooses at sampling time a subset of the cells

to maintain the SB nominal output voltage. The cells are selected based on

their sampled SoC and temperature values. The algorithm allows to trade

o� between the SOC and temperature spread of the cells during discharge.

A lower temperature spread has also the e�ect to slow down the ageing of

the cells and thus extending the lifetime of the battery pack.
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2.2 The Smart Battery

Smart Battery (SB) is a new concept that combines advanced power elec-

tronics, wireless communication and arti�cial intelligence with the goal to

develop a new generation of battery solutions for transportation and grid

storage where the following new features are achieved: increased safety and

reliability by fault-tolerant operation, user-controlled lifetime and software

recon�guration for 2nd-lifetime applications. The structure of SB is shown in

Figure 2.1 and consists of a battery cell, a switching device, and a slave con-

troller. The cell is not directly connected to the battery string but through
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Figure 2.1: Smart Battery Structure.

the switching device which is implemented by a simple half-bridge MOSFET

circuit and allows two operation modes: inserted or bypassed, as shown in

Figure 2.2. The advantages of SB are many:

� The modularity of the structure allows to design a battery with a higher

number of modules than those strictly necessary, adding redundancy

to the battery and making it;

� Individual modules can be easily replaced in case of failure or ageing;
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� The structure is easily scalable: starting from a battery it's possible to

put together a more or less powerful battery pack for another applica-

tion;

� The BMS which is usually a component external to the battery, is

integrated into the structure;

� The structure adds "intelligence" to the single cell: parameters such as

the SoC and the temperature can be locally evaluated;

Bypass 
Device

A

B
Cell

Bypass 
Device

A

B
Cell

Figure 2.2: Operation mode of the switching device: inserted cell on the left,
bypassed cell on the right.

The slave controller can monitor the voltage, current, and temperature of

the cell and also estimate the SoC of the cell. All slaves are communicating

wirelessly with a Master controller that is performing higher (package) level

functions as SoH estimation and prediction using AI, SoC&SoH balancing

and lifetime control. The balancing process is done by bypassing one cell at

a time and thus not a�ecting the load current. In contrast to other active

balancing methods, this balancing method is not requiring the use of DC/DC

converters and is therefore an ultra-low energy balancing. The switching

device is also used to permanently bypass faulted cells and thus adding fault-

tolerant operation mode, increasing the safety and reliability at system level.

When a cell is bypassed, it has time to rest. Cell rest time is used to: (i) allow

a cell to cool o� when its temperature is too high so it can be inserted again

when it has in-the-range temperature values; (ii) bypass a faulted cell, so the

SB can keep working; (iii) bypass a low charge cell, putting it to rest until

next charge. In this way the whole battery can also be made fault tolerant.
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By strategically exploiting the insertion/bypass mechanism, it is possible

to design a control algorithm that uses the cells in the battery uniformly,

according to their SoC, temperature and possibly SoH, thus extending the

lifetime of the battery. The increase in the availability of data and the

advances in Arti�cial Intelligence applications have contributed to pushing

the batteries into the new �smart era�.

2.3 Multidimensional K-nearest control algo-

rithm

The SB has more cells than strictly necessary, so only a subset n ≤ N of

the cells is needed to synthesize the output voltage. The redundancy and

the recon�gurability of the topology allow us to dynamically choose among

cells. A cell with low SoC (i.e. below 20%) can be bypassed in favour of

cells with higher SoC; cells with out-of-range temperatures can be bypassed

until they return to acceptable values. Since the algorithm is dynamic, cells

can be inserted or bypassed based on the working condition. In this way, the

bypassed cells have time to rest until they are either inserted again by the

algorithm or until the next charge. Furthermore, in case of a cell fault, the cell

is permanently excluded and the SB keeps working. Given the N cells of the

SB, the goal is to optimally choose the subset n ≤ N of cells to balance both

the SoC and temperatures. The algorithm chooses the cells with the highest

SoC and lowest temperatures. The proposed control algorithm leverage on

the K-nearest classi�cation algorithm. Given a data set of points and one or

more test examples, the K-nearest algorithm calculates the distances from

all the points in the data set and the test example(s). These distances are

then sorted and the k nearest neighbours (i.e the points with the minimum

distances from the test examples) are returned. By properly choosing k, the

test examples and the distance metric, we can use the K-nearest technique to

optimally choose the n cells that need to be inserted in the SB. In this work
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the data set is given by the N couples of SoC and temperatures (SoCi, Ti) , i =

1, . . . , N , the test example is given by the couple (SoCmax, Tmin), k = n and

the metric used for the distance is a weighted Euclidean distance. The control

algorithm receives as input the voltage, SoC and temperature values of the

N cells and outputs the control signals for the Half-Bridges of the N cell

modules. The voltage values are used to calculate the number n of cells to

synthesize the desired output voltage, while the SoCs and the temperatures

are used to choose which cells need to be inserted to achieve balancing.

The steps of the control algorithm are the following:

� given the SoC and temperature values of all cells create a virtual point

v by choosing the highest SoC and the minimum temperature: v =

(SoCmax, Tmin);

� calculate the distance vector d :

d =
N∑︂
i=1

(︁
kS (SoCi − SoCmax)

2 + kT (Ti − Tmin)
2)︁

where: kS, kT are weighting factors for the SoC and the temperature;

� sort the distances d in ascending order and �nd the index vector of the

corresponding cells;

� scan the index vector and add the voltages of the corresponding cells

until the desired output voltage is reached;

� compute the binary vector to drive the h-bridges that insert/bypass

the cells (1 to insert a cell, 0 to bypass it).
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2.4 Results

The SB system is simulated in Matlab-Simulink-Simscape. In order to reduce

the simulation time to acceptable levels, the SB model is built with only 25

modules, instead of 150 needed for a real EV battery (a model scaled down

by 6). At each sampling time, the control unit connects in series the right

number of cells in order to output an average of 60 V (instead of 360 V ).

The battery cell parameters shown in Table 2.1 are from the preset model n.

6 from the Simscape Power System Library. With these cells, the parameters

of the SB pack are shown in Table2.2.

Table 2.1: Cell parameters.

Nominal voltage 3.6 V
Cell capacity 48 Ah

Table 2.2: Smart Battery pack parameters.

Controlled output voltage 60 V
Energy stored 4.32 kWh

Case Study

In order to get meaningful results, it is useful to think to the following case

study. A car is parked in a garage for a time long enough to have all the

cells at the same initial ambient temperature, which is 25◦C. When the

car starts for a test drive, the temperatures of the used cells will rise due

to their internal resistance. The simulation is carried out thinking that the

battery is contained in a box whose ambient temperature increases as the

mean temperature of the cells. No cooling action has been considered. The

initial SoC of the cells is set up between 80% and 90%, as shown in Fig. 2.3.
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Figure 2.3: Cell distribution at the beginning of the test.

The SB performance depends on the control algorithms used to select the

right cells at each sampling time. Their selection can be based on a single

dimension, like SoC, or multiple dimensions, like SoC and temperature, or

ageing, or other parameters. The following results are related to two dis-

tinct control algorithms: (i) an SoC Sorting algorithm, based on cell SoC

only and, (ii) the proposed Multidimensional K-nearest control algorithm

(MKNA), based both on cell SoC and temperature. Both algorithms main-

tain the desired output voltage close to Vdes = 60 V using 16 or even more

cells with discrete increments. The load is simulated by a 1.8 Ω resistor re-

sulting in an average discharge current of about 33 A.
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Figure 2.4: SoC balancing sorting algorithm �ow chart.

SoC Balancing Sorting algorithm

This control algorithm is based on SoC sorting. At each step, the algorithm

sorts the SoC of all the cells in descending order and chooses the �rst n cells

to be inserted in the SB string. The number n is dynamically de�ned in

order to synthesize the desired output voltage. A �ow chart of the algorithm

is shown in Fig. 2.4. The chosen cells have the relatively highest SoC, while

the cells with the lowest SoC have time to rest. The algorithm action is

best seen on an animated scatter plot (SoC vs. Temperature). Used cells

are pushed down-right (SoC decrease and temperature increase) until all cells

reach roughly the same SoC value (a �at line). From then on, the cells will be
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(a) 1s. (b) 500 s.

(c) 1000 s. (d) 2000 s.

Figure 2.5: Cell insertion/bypass choice - SoC balancing sorting algorithm.

used more uniformly and remain horizontally aligned. The total simulation

time is 2000 s. Fig. 2.5 shows four screenshots of the scatter plot at 1 s,

500 s, 1000 s and 2000 s. Fig. 2.6a and 2.6b show SoC and temperature

vs. time of all the 25 cells. The temperature of each cell varies according

to its usage. At the beginning of the test, all cells are at 25◦C and then

the spread of temperatures increases as the temperature of the most inserted

cells increases. The cells tend to reach the same higher temperature towards

the end of the test. Fig. 2.5 shows how the cells to be inserted/bypassed are

chosen by the algorithm at di�erent time steps: a value of �1� corresponds

to cell insertion, while a value of �0� corresponds to cell bypass.
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(a) SoC of the 25 cells.

(b) Temperature of the 25 cells

Figure 2.6: SoC balancing sorting algorithm simulation results.

Multidimensional K-nearest control algorithm

The previous algorithm based only on SoC has the side e�ect of an uncon-

trolled spread of the cell temperatures. The idea here is to select cells both

on their SoC and temperature in order to reduce the maximum temperature

spread. The K-nearest algorithm selects the n cells that are nearest to the

dynamic virtual point SoCmax, Tmin. The algorithm action could be best
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seen on an animated scatter plot (SoC vs. Temperature). Used cells are

(a) 1s. (b) 500 s.

(c) 1000 s. (d) 2000 s.

Figure 2.7: Cell insertion/bypass choice - MKNA algorithm.

pushed down-right (SoC decrease and temperature increase) until all cells

tend to converge on an arc centered on current SoCmax, Tmin. This means

that the maximum temperature spread is reduced at the expense of a small

SoC spread (the ray of the arc). The weighting factors kS, kT can be used

to give more weight to SoC or to temperature. The limiting cases are: (i)

kT = 0, the arc changes to a horizontal line and the cells are pushed to have

the same SoC (as the previous SoC Sorting); (ii) kS = 0, the arc changes to a

vertical line and the cells are pushed to have the same temperature. Fig. 2.7

shows four screenshots of the scatter plot at 1s, 500s, 1000s and 2000s. Fig.
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2.8a and 2.8b show SoC and temperature vs. time of all the 25 cells. Fig.

2.7 shows how the cells to be inserted/bypassed are chosen by the algorithm

at di�erent time steps: a value of �1� corresponds to cell insertion, while a

value of �0� corresponds to cell bypass.

(a) SoC of the 25 cells.

(b) Temperature of the 25 cells

Figure 2.8: MKNA algorithm simulation results.

Finally, Fig. 2.9 shows a comparison between the temperature spread of

the two control algorithms vs. time. The SoC Sorting algorithm produces

peak temperatures higher than the multidimensional algorithm.
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2.5 Summary

The proposed SB architecture, where at a given time only n < N cells are

series-connected, has many useful features like modularity, recon�gurabil-

ity, cell fault tolerance, greater useful capacity. In order to achieve optimal

balancing in operation for both temperature and SoC, a multidimensional

K-nearest control algorithm (MKNA) was developed and simulated with the

aim to limit the spread of cell SoCs and temperatures. The MKNA algo-

rithm chooses the cells to be inserted/bypasses based on their �distance�

from a virtual point that is dynamically computed at sampling time. The

algorithm uses weighting factors to give more importance to SoC or tem-

perature. It turns out that the MKNA algorithm reduces itself to the SoC

Sorting algorithm when the temperature is weighted out. Simulation results

show that the maximum temperature spread is reduced in comparison with

a simple SoC sort. This operation has the potential to extend the lifetime

of the battery pack, which will be evaluated in future work. The structure

of the MKNA algorithm allows to easily add other dimensions to the control

strategy, such as the internal resistance or the SoH of the cells.
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Chapter 3

Overview of battery cells

3.1 Battery Basics

Traditional electrochemical cells depend on redox reactions that chemically

change the reacting species at the electrode surfaces. Lithium-ion cells work-

ing principle is di�erent: lithium ions move from the electrolyte to the elec-

trode (absorbed) or from the electrode to the electrolyte (expelled). The

absorption of lithium is a process known as intercalation and the opposite

process is referred to as deintercalation. In order for this process to work

properly, the electrode materials must have a proper crystal structure and

must be able to accept or deliver electrons to/from the external electric cir-

cuit. Each cell has 4 components [5]: the negative electrode (often a metal or

an alloy or graphite), the positive electrode (often a metallic oxide, sul�de, or

oxygen), the electrolyte (the ionic conductor) and the separator (that elec-

trically isolates the positive and negative electrodes to avoid self-discharge

of the cell). The electrolyte is the media that conducts ions between elec-

trodes. The separator inside the electrolyte in a lithium-ion cell is a per-

meable membrane that allows lithium ions to pass through but avoids short

circuits between negative and positive electrodes. Lithium-ion cells are fab-

ricated in a completely discharged state (all of the lithium is in the positive
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electrode). In order to activate the working materials, the cell must be put

through at least one precisely controlled charge cycle, referred to as the for-

mation process. The result is the formation of a passivating �lm on the

surface of the graphite, known as the solid electrolyte interphase (SEI) layer

which is electrically insulating yet provides su�cient ionic conductivity for

lithium to move through the electrodes. Failures in Li-ion cells can happen

due to poorly controlled manufacturing processes, aging, uncontrolled op-

erations and abuse. Cell performance naturally deteriorates gradually with

time and usage and it is generally irreversible, with detrimental e�ects on

battery operativity. The causes for ageing are [1]: (i) corrosion, that is

the deterioration due to chemical interaction with the environment; (ii) SEI

growth; (iii) loss of capacity due to gases-leak and crystal formation. These

chemical-related aging e�ects have in turn adverse e�ects on cell operativity

and can lead to: (iv) increased internal impedance leading to power fade; (v)

reduced capacity with continuous charge-discharge cycles, leading to charge

capacity fade; (vi) increased self-discharge, further accelerated by elevated

temperatures. Battery cells are thus not immune to failures. Using cells at

unsuitable charging/discharging pro�les and exposing it to high ambient or

storage temperatures can shorten the battery life. The high voltage of a bat-

tery pack is obtained by series connection of elementary cells, and the high

charge capacity is obtained by parallel connection of cells or stream of cells.

Two important parameters must be known to assure that the battery always

operates inside a safe area: the State of Charge (SoC) and State of Health

(SoH). SoC is an indicator of the actual charge inside the cell and it can

be computed by integrating the current exchanged with the external circuit.

SoC is a relative measure of the actual charge, normalized to the full charge

capacity. SoH instead, is a relative measure of the actual full charged capac-

ity, normalized to the full charge capacity of a fresh cell. Both parameters are

thus normalized in the range 1 to 0 to give compact information on battery

states. To operate the battery pack optimally, usually a BMS is in charge of
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the following features: (1) cell monitoring (voltage, current and temperature

measurements) (2) battery safety and protection (3) cell balancing (4) SoC

and SoH estimation (5) charge control (6) thermal management.

3.2 Internal electrochemical processes and their

e�ects

When a battery cell is operated, a current �ow alters the electrochemical

equilibrium inside the cell. The electrochemical processes are not perfect,

and there is a loss in the electrochemical energy conversion. This process is

due to an e�ect called polarization. There are two main types of polariza-

tion: activation polarization and concentration polarization. If electrochem-

ical parameters and the mass-transfer condition were known, it would be

theoretically possible to estimate activation polarization and concentration

polarization. Electrodes have very complex physical structures, so it would

require complex mathematical modelling to derive equations to estimate ac-

tivation and concentration polarization [4]. Therefore, it is very complex

to get an accurate estimation. Furthermore, the output voltage of the cell

is also in�uenced by the internal impedance of the cell. The total internal

impedance of a cell is the sum of the electric resistance of the electrolyte

(within the separator and the porous electrodes), the resistances of the elec-

trodes and of the battery cell terminals. When the cell is under operation,

there is an instantaneous voltage change proportional to the intensity of the

current [6]. This e�ect is referred to as �ohmic polarization� and it is due to

the above-mentioned resistances. Another electrochemical e�ect is known as

the �electrical double layer� and it is referred to the presence of two sepa-

rate layers of electric charge building up at the electrolyte-electrode surface.

There are also complex ion di�usion processes that are responsible for slow

dynamic e�ects on the output voltage. Since these electrochemical internal

processes are not completely reversible, continuous usage of a battery results
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in aging. A battery cell can face two types of aging: calendar ageing and

cycling ageing [2, 3]. Calendar ageing is related to the time and conditions of

storage. Cycling ageing is related to the charge/discharge of the cell. When

a cell ages its full charged capacity decreases (capacity fade) and its internal

resistance rises (power fade). In EVs applications, this capacity fade leads to

the so-called range anxiety and the power fade leads to loss of performance in

the driving experience and to higher battery temperature, with detrimental

e�ects on battery lifetime. Li-ion batteries are governed by complex internal

electrochemical processes. However, from an application point of view, the

battery behavior can be summarized in a simpler equivalent model.
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Chapter 4

ECM model

4.1 Battery Modeling

Lithium-ion batteries are the preferred energy source for the ever-expanding

world of mobile applications, ranging from low power in smartphones to high

power in electric vehicles (EVs). Such a wide spectrum of systems requires

quite di�erent battery models, based on di�erent chemistry and with di�er-

ent behavior at the electrical terminals. Batteries are complex non-linear

systems that must be run under the supervision of a BMS (Battery Man-

agement System) in order to assure safe charge/discharge operations. The

development of a complete autonomous system requires the �ne-tuning of

many algorithms, which include the SoC/SoH estimation algorithms using

voltage and currents at the battery terminals. Thus precise simulations of

various components play a crucial role in the successful design of an e�cient

BMS. Depending on the desired level of abstraction, a multitude of models

have been developed by researchers worldwide. There are three big categories

of battery models: (i) Physics and Multiphysics models that aim at describing

the complex internal chemical phenomena of batteries [5] ; these can be con-

sidered lower-level models (ii) empirical models that use past experimental

data to develop a strategy for predicting future behavior [1]; (iii) Equiva-
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lent Circuit Models that aim at simulating the battery behavior using circuit

elements [4], these can be considered higher-level models. Physics models

are the most accurate since they can capture the internal electrochemical

behavior of the cell. The most famous among these models is the Doyle-

Fuller-Newman model which describes the battery internal states using sets

of Partial Di�erential Equations. These equations require a high number of

parameters that are usually determined using complex and time-consuming

experiments that usually involve cycling or tearing down of a cell in the lab-

oratory. The literature on the DFN model is vast and researchers continue

to put e�ort both in optimizing the estimation of the model parameters and

in developing software solutions for making the model performance faster

[6]. ECM models are instead computationally fast and simple. There are

many techniques for the identi�cation of equivalent circuit parameters such

as the Electrochemical Impedance Spectroscopy (EIS) [2]. Traditional EIS is

a technique to measure the real and imaginary parts of internal impedance

Z as a function of frequency. EIS is an expensive lab activity that requires

a scanning sine wave generator, powerful enough to stimulate the battery at

di�erent frequencies, from mHz to kHz. The result is a Nyquist plot that

is only valid for well-de�ned values of T, SoC and SoH. The Nyquist plot

is then �tted with a circuit containing resistors, capacitors and even exotic

components like Warburg impedance or Constant Phase Element (CPE), Un-

fortunately, Z is a function of T, SoC, SoH and a complete estimation of the

components would require a massive use of EIS. In [7] an alternative solution

to the frequency scanning stimulus of EIS is provided, by the injection of

a wide spectrum current signal to the battery. Then, the resulting voltage

drop could be analyzed in frequency with signal processing techniques. How-

ever, EIS-based methodologies for impedance evaluation are not very useful

for EVs because the identi�cation is mainly o�ine. An online identi�cation

would provide real-time information that could be used to operate the bat-

tery optimally. The knowledge of the cell's actual internal impedance is also
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very important in Smart Battery (SB) applications, in order to design better

control algorithms.

4.2 Equivalent Circuit Model

Lithium-ion batteries are based on highly complex chemistry that is not

easy to understand. However, from the perspective of the application, we

need only to know how the battery behaves at the accessible terminals. The

ECM is an electrical model based on common circuit elements, like voltage

generator, resistors and capacitors. Fig. 4.1 shows the Randles circuit based

Figure 4.1: Randles circuit

on electro-chemical principles [3]:

� R0 models the electrolyte resistance

� R1 models the voltage drop over the electrode�electrolyte interface

� C1 models the e�ect of charges building up in the electrolyte at the

electrode surface

� Zw is the Warburg impedance that models di�usion of lithium ions in

the electrodes
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The Warburg impedance Zw = Aw/√jω is frequency-dependent and can be

thought as the impedance of a semi-in�nite transmission line composed only

of resistance and capacitance per unit length [8]. Fig. 4.2 shows an equiva-

lent circuit of a Warburg impedance.

Figure 4.2: Equivalent circuit of the Warburg impedance

The precise simulation of a Warburg impedance requires an in�nite number

of RC pairs and is thus intractable. However, Zw can be modelled well over

some frequency range using a few RC pairs. The double-layer capacitance

C1 of the Randles circuit has little e�ect except at very high frequencies

and can thus be often omitted. Substituting the Zw with a small number of

RC pairs, the Randles circuit becomes identical to what is shown in Fig.4.3.

This cell/battery ECM model is adopted in Chapter 6. Note that the ideal

Figure 4.3: Complete 3RC ECM model

generator, labelled as OCV (Open Circuit Voltage) and all RC pairs are a

non-linear function of temperature T, SoC and SoH. To simulate a speci�c
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real cell/battery, it is �rst necessary to identify the functions of all elements of

the ECM model by means of laboratory measurements. Regarding the OCV

generator, as the name implies, it can be easily measured at zero or low

currents, although the complete function characterization requires a time-

consuming process in the lab. The identi�cation of all RC elements is more

challenging as they are not accessible from the battery's terminals. How-

ever, the collective e�ects of all the RC elements, i.e. of the battery internal

impedance, is fully observable as an output voltage drop when the battery

supplies current to an external load. The traditional identi�cation method

of the internal impedance is performed by using EIS, which requires special

equipment and time-consuming measurements in the lab. In the next Chap-

ters we will show that the identi�cation of the internal complex impedance

can be done in di�erent ways, by means of signal processing of the battery

voltage and current signals.

4.3 Summary

Li-ion batteries are governed by complex internal electrochemical processes

but, from an application point of view, we need only a behavioral model to

e�ectively simulate the battery. The ECM is a fast computationally model

of the battery behavior that uses simple circuit elements. However, these

elements are not �xed as they change as a non-linear function of SoC, SoH

and temperature. To simulate a speci�c real cell/battery, it is �rst necessary

to identify the functions of all elements of the ECM model. The task is

challenging but it can be carried out in new ways compared to traditional

EIS.
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Chapter 5

Data-driven Modeling of Li-ion

Battery

5.1 Background

Researchers need a good battery model for the development of innovative per-

formance optimization algorithms. The optimization of the battery model

comes down to three elements: (i) ready to use in a small amount of devel-

oping time (ii) custom-made to a speci�c battery of interest (iii) good trade

o� between accuracy and complexity. The Datasheet Battery Block from

Simulink [3] aims at developing an Equivalent Circuit Model of the battery,

based on the datasheets provided by the battery manufacturer. This data,

however, is not �ready to use�, but need to be extracted in a precise way in

order to be used successfully for which a systematic methodology is presented

in this chapter. Con�guring a Simulink model directly from the commercial

datasheet is very useful and relatively fast. However, the datasheet data

are collected using sets of C-rates and temperatures chosen by the manufac-

turer, and they could be very di�erent from the ones that would be used in

the laboratory for experiments or in real-life applications of the battery. In

order to further enhance the robustness of the battery model for real �eld
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applications experimental data is collected in the laboratory and used in fur-

ther training of datasheet model: these controlled experiments allow us to

add additional conditions of interest as are faced by battery in �eld applica-

tions. This chapter presents di�erent paths and steps that can be followed to

gather information about a speci�c battery model, looking �rst at the battery

manufacturer datasheet and when speci�ed data is not enough, resorting to

dedicated laboratory data collection. The extracted information is further

used to develop an accurate simulation model of the selected battery. This

virtual battery model can be used in battery cell simulators that allow the

testing of Battery Management Systems as Hardware-in-the-Loop systems

(BMS HiL) among many other applications.

5.2 Datasheet Battery Block

One of the most readily available and basic tools of battery modelling is

found in Matlab, called the Datasheet Battery Block which is contained in

the Simulink Library and simulates a lithium-ion, lithium-polymer, or lead-

acid battery cell. The model can be customized to the type of battery of

interest, by using the manufacturer's data. The model is shown in Fig. 5.1.

Internally the block is built using an ECM, as shown in Fig. 5.2. The inputs

of the datasheet battery block are the battery initial charge capacity rated

at nominal temperature, the battery current, and the battery temperature.

The output voltage is computed using look-up tables for the Open Circuit

Voltage (OCV) and the Internal Resistance (IR). These look-up tables are

user-generated by using the discharge characteristics provided by the manu-

facturer. By using a standard procedure, the user can parameterize the OCV

and IR depending on SoC and temperature, and thus the battery performance

is characterized at di�erent operating points. The Datasheet Battery Block

can either represent a single cell, or a battery made up by combining cells in

parallel or in series. As previously said, the internal structure of the block is
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Figure 5.1: Datasheet Battery Block

an ECM and this can be either a basic model, that just considers OCV and

IR, or a more complex model that also considers one RC branch. This can

be done by selecting the option Filtered in the Output Battery Voltage box

and choosing the RC time constant.

Lookup table generation procedure

In order to get the Datasheet Battery Block model running, we need to create

the parameters to �ll up the lookup tables for the OCV and IR that will be

used by the block. The procedure is broken down into steps:

� import the datasheet data

� use curve-�tting techniques to obtain OCV and IR data at di�erent

temperatures

� validate the model comparing the simulated values to the datasheet

data and verifying the behavior of IR

� specify the Datasheet Battery Block parameters: Rated capacity at

nominal temperature, OCV table data, OCV breakpoints, IR table

data, battery temperature breakpoints, battery capacity breakpoints

and initial battery charge
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Figure 5.2: Datasheet Battery Block Internal Structure

5.3 Extracting Data from Datasheet

The Simulink �Datasheet Battery block� is a ready to use subsystem that can

simulate an ECM model, customized with look-up tables. In particular, this

block must be con�gured with the cell OCV and the cell internal resistance,

both as a function of SOC and temperature T. Unfortunately, these data are

not directly available from the cell manufaturers, but can be extracted from

the o�cial datasheets, mainly provided in graphic form. Therefore there is

the need to extract the numerical data in some way. This data recovery

process from graphs is not easy and naturally prone to errors. Many tools

have been developed over the years to aid this process, and some of them

are freely available online [4]. The sample points of interest can be extracted

semi-automatically drawing a mask to isolate the curve of interest: Fig. 5.3

shows an example of sampling a signal from the datasheet of A123 batteries
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Figure 5.3: Sampling the graphic datasheet curves

recorder at 23◦C. Fig. 5.4 shows the raw vectors imported in Matlab (i.e. the

values extracted from the voltage vs. capacity curves using this procedure).

The raw vectors are sampled semi-automatically and some points must be

hand adjusted in the x,y coordinates. So the sampling period is not uniform

and, moreover, the curves are not sampled synchronously. The synchronicity

is needed in order to relate the curves algebraically. The solution is provided

by the Matlab Interp1 function [1], which can interpolate and resample the

curves. Fig. 6(a), 6(b) show the results after up-sampling to 101 points and

lightly �ltering the curves. The manufacturer provides two families of curves:

� curves at constant temperature and di�erent discharge currents (Fig.6(a));

� curves at constant current and di�erent temperatures (Fig.6(b))

We need the OCV curve at zero current. In order to extract this information,

we can �t a surface to the curves of Fig. 5.5a, obtaining Fig. 5.6.

The black curves are the originals ones from Fig. 5.5a, at discharge cur-

rents 1C, 5C and 20C. Note that the surface can now be cut at any desired
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Figure 5.4: Imported raw vectors for voltage vs. cell capacity

value between 1C and 20C. However, to obtain the surface cut at zero cur-

rent, i.e the OCV curve, we need to extrapolate the surface. Again, the

solution is provided by the Matlab function Interp2 [2], using the extrapola-

tion method spline. The �nal answer is the red curve, which can be directly

used to con�gure the Em parameter of the Datasheet Battery Block. From

the OCV curve is now possible to compute the internal resistance R0 at

di�erent temperature from the data V (T ) of Fig.5.5b. The curves can be

related algebraically, elementwise, to obtain R0 as a function of SOC and

temperature:

R0(SOC, T ) = (OCV − V (T ))/1C

The result is shown in Fig. 5.7: Unfortunately, OCV can be computed only

at 23◦C and not as a function of T, due to lack of information from the

manufacturer. This can generate some inconsistencies at low values of cell

SOC that, however, can be corrected with clipping before programming the
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(a) Re-sampled voltage vs. capacity curves from the

datasheet

(b) Filtered curves voltage vs. capacity curves from the
datasheet

Figure 5.5: Data preparation
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Figure 5.6: OCV at zero current extrapolation

Figure 5.7: R0 computation from datasheet data
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R0 parameter of the Datasheet Battery Block.

5.4 Extracting Data from Laboratory data col-

lection

If laboratory equipment is available, it is possible to collect customized

datasheet-like data. The o�cial data provided by the manufacturer are usu-

ally averaged on the characteristics of the batteries produced; furthermore

every company uses their own procedure since standard procedures do not

exist. Performing a data collection campaign in the lab has, therefore three

main advantages:

1. the data are speci�c to the selected battery cell

2. the ambient temperature and C-rates can be customized

3. more extensive tests can be tailored to the �nal applications, including

dynamic behavior and cycling ageing

The capacity of the A123 LFP-based Lithium-ion batteries was measured

both during charging, using a standardized constant current � constant volt-

age (CC-CV) procedure, and discharging, using a CC procedure, at four

di�erent temperatures T = {15◦C, 25◦C, 35◦C, 45◦C }. At each tempera-

ture, the battery capacity was measured at six di�erent C-rates C− rates =

{0.25C, 0.5C, 1C, 2C, 3C, 4C} [5]. Prior to each charging or discharging

capacity measurement, the battery cell was kept for one hour at open circuit

voltage condition, in order to ensure that it reached a thermo-dynamical sta-

ble condition. During all the measurements, the battery cell was placed into

a climatic chamber to ensure stable and reliable temperature; furthermore,

the mentioned temperature is the one measured on the surface of the cell

using a type-k thermocouple.
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Figure 5.8: Laboratory collected data showing discharge voltage vs. SoC at
25◦C at di�erent C-rates

The discharge voltage data at di�erent C-rates and at a constant tempera-

ture of 25◦C are shown in Fig. 5.8 while the discharge voltage at constant 1C

and at di�erent temperatures are shown in Fig. 5.9. The same procedure

has been performed at di�erent aging states, with charge and discharge bat-

tery voltage pro�les for temperature ranging from 15◦C to 45◦C and C-rates

varying from 0.25 C to 4 C.

5.5 Results

Using the battery manufacturer data we are able to validate battery behav-

ior for limited test conditions. However, using the advanced battery model

with the laboratory measurements we have been able to replicate battery

behavior under varied operating conditions. Fig. 5.10 shows the results of

the datasheet battery block obtained by using the manufacturer's data. The

A123 batteries have been tested by the manufacturer using two test cases: (1)
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Figure 5.9: Laboratory collected data showing discharge voltage at 1C at
di�erent temperatures

Ambient temperature of 23◦C and C− rates = {1C, 5C, 20C}; (2) 1C rate

and temperatures T = {0◦C, 23◦C, 45◦C } as shown in Fig. 5.10a. These

data have then been normalized with respect to 1-SOC, as shown in Fig.

5.10b, 5.10c. Fig. 5.10d, 5.10e show the obtained internal resistance as a

function of SoC and temperature, while Fig. 11(f) shows the extrapolated

OCV, indicated by the symbol Em: A thorough battery behavior is stud-

ied in the laboratory, using which a more robust model is made. Fig. 12

shows the results of the datasheet battery block obtained using data col-

lected in the lab. The A123 batteries have been tested at more operating

conditions. In this case, we have: (1) Ambient temperature of 25◦C and

C− rates = {0.25C, 0.5C, 1C, 2C, 3C, 4C}; (2) 1C rate and temperatures

T = {15◦C, 25◦C, 35◦C, 45◦C }as shown in Fig. 5.11a. These data have

then been normalized with respect to 1-SOC, as shown in Fig. 15.11b, 5.11c.

Fig. 5.11d, 5.11e show the obtained internal resistance as a function of SoC

and temperature, while Fig. 5.11f shows the extrapolated OCV, indicated
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by the symbol Em. To compare the two models, we have computed the

relative error RE between the original voltage curves used to parametrize

the datasheet battery block Vexp (i.e. either the data extracted from the

manufacturer's datasheet or the laboratory measurements), and the voltage

simulated by the con�gured block Vsym, according to this formula:

RE = 100· (Vsym−Vexp)/Vexp

The datasheet battery block con�gured using data extracted from the man-

ufacturer data has RE ≤ 2.8% for SoC 10% ≤ SoC ≤ 100% ,while the

battery block con�gured using customized laboratory measurements has a

RE ≤ 1.05% for SoC 10% ≤ SoC ≤ 100%.
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(a) Discharge Data (b) SoC normalized voltage at 23◦C

(c) SoC normalized voltage at 1C (d) Internal Resistance

(e) Internal resistance surface (f) Voltage validation

Figure 5.10: Datasheet Model based on manufacturer's speci�cation data
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(a) Discharge Data (b) SoC normalized voltage at 23◦C

(c) SoC normalized voltage at 1C (d) Internal Resistance

(e) Internal resistance surface (f) Voltage validation

Figure 5.11: Advanced datasheet battery model using laboratory measure-
ments
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5.6 Summary

This chapter presents a data-driven approach for modelling the behavior

of a Li-ion battery. Here we showed a systematic methodology of using

the manufacturer's datasheets for available simulation platforms, such as

Matlab-Simulink. In order to overcome the limited data availability in man-

ufacturer's datasheets we have enhanced the model by including extensive

laboratory measurements for building a robust advanced battery datasheet

model that can predict battery behavior under varied �eld applications. The

model was validated by using data collected on two test cases: (1) ambient

temperature of 25◦C and C− rates = {0.25C, 0.5C, 1C, 2C, 3C, 4C}; (2)
1C rate and temperatures T = {15◦C, 25◦C, 35◦C, 45◦C }. The advanced

datasheet battery model using laboratory measurements is 99% accurate.
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Chapter 6

Extracting the ECM model using

wavelet analysis

6.1 Background

There are many techniques for the identi�cation of equivalent circuit param-

eters such as Electrochemical Impedance Spectroscopy (EIS) . Traditional

EIS is a technique to measure the real and imaginary parts of impedance Z

as a function of frequency. EIS is an expensive lab activity that requires a

scanning sine wave generator, powerful enough to stimulate the battery at

di�erent frequencies, from milliHz to kiloHz. The result is a Nyquist plot

that is only valid for well-de�ned values of T, SoC and SoH. The Nyquist

plot is then �tted with a circuit containing resistors, capacitors and even ex-

otic components like Warburg impedance or Constant Phase Element (CPE)

[1, 3]. Unfortunately, Z is a function of T, SoC and SoH and a complete esti-

mation of the components would require a massive use of EIS. An alternative

solution to the frequency scanning stimulus of EIS could be the injection of

a wide spectrum current signal to the battery. Then, the resulting voltage

drop could be analyzed in frequency with signal processing techniques [5].

The wide spectrum signal could be designed ad-hoc as a pseudorandom bi-
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Figure 6.1: A more accurate ECM model

nary sequence. However, EIS-based methodologies for impedance evaluation

are not very useful for EVs, because the identi�cation is mainly o�ine. More-

over, the internal impedance is di�erent when measured under load and this

is especially true for the internal resistance, that is responsible for the volt-

age drop when a current pulse is applied. An online identi�cation would be

more useful since it can provide real-time information that could be used to

operate the battery optimally.

6.2 A more accurate ECM model

The ECM is an electrical model based on common circuit elements, like

voltage generators, resistors and capacitors, and its overall complexity can

be tailored to the application. A battery is a voltage source whose electrical

behavior can be summarized by an equivalent Thevenin circuit, as shown in

Fig. 6.1 The ideal generator, labelled as OCV, is a non-linear function of

temperature (T), SoC and SoH. As the name implies, the OCV generator

can be easily measured at zero or low currents, but the complete function

characterization requires a time-consuming process in the lab. An alternative
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Figure 6.2: Pulsed current discharge

solution will be provided at the end of this chapter. The internal impedance

Z is as well a non-linear function of T, SoC and SoH, but it is not accessible

and cannot be easily measured. Moreover, the inside equivalent circuit of

Z is not known. However, the e�ect of Z is fully observable as an output

voltage drop when the battery supplies current to an external load. Just as

an example, Fig. 6.2 shows the voltage drop when the battery supplies an

impulse current of 1 A. Under the assumption that Z has inside a �rst-order

equivalent circuit made of R0 in series with an R1,C1 pair, it is possible to

estimate the values of components observing the time domain response: R0

can be estimated as R = −dV/dI at the falling edge of the current; the

R1,C1 time constant can be estimated from the duration of the exponential

rise of the voltage signal. For now, it is useful to note that R0 is related to

the fast change of the signal, i.e. to high frequencies, and the pair R1,C1 is

related to the relative slow change of the signal, i.e. to low frequencies. In

general, Z has a much more complex equivalent circuit and the identi�cation
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of components requires a time-frequency analysis of the current and voltage

signals.

6.3 Time-frequency analysis of battery signals

As we introduced in Section 6.1, an alternative solution to the frequency

scanning stimulus of EIS could be the injection of a wide spectrum current

signal into the battery. Then, the resulting voltage drop could be analyzed in

frequency with signal processing techniques. The wide spectrum signal could

be designed ad-hoc as a pseudorandom binary sequence, but in this Chapter

we show that a simple current pulse is enough to draw a partial Nyquist plot

over at least two decades of frequencies. This opens the possibility to test

the battery in the application �eld, not only in the lab. In summary, we

propose to analyze common pulsed discharge signals of a battery in order to

recover multiple Nyquist plots, one for each current pulse, corresponding to

di�erent SoC. If the process is repeated at di�erent SoH and di�erent T, we

obtain a complete characterization of the battery's internal impedance as a

function of T, SoC and SoH. The overall frequency analysis of the signals

cannot be done with a simple FFT because this transform locates the signal

only in frequency and loses the time information related to SoC. Instead, the

frequencies of each pulse must be distinguished by the others in order to draw

di�erent Nyquist plots at di�ent SoC. The solution is a Continuous Wavelet

Transform (CWT) that allows a time-frequency localization of signals. The

CWT analyzes a signal with a wavelet, a waveform that is concentrated both

in time and in frequency domain. A measure of the concentration is the so-

called Heisenberg area, de�ned as the product of standard deviations in time

domain and in frequency domain respectively. A suitable wavelet, called the

Generalized Morse Wavelet [4] is shown in Fig. 6.3. Here the parameters

gamma and beta have been chosen in order to obtain a small Heisenberg

area.
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(a) Wavelet real part

(b) Wavelet imaginary part

Figure 6.3: Generalized Morse wavelet

This wavelet in time domain can be thought as the impulse response

of a bandpass �lter. Then the CWT output can be thought as a �ltered

version of the input signal. In this manner, by changing the wavelet frequency

we can perform a time-frequency analysis of a signal. The highest possible

wavelet frequency is established by half of the sampling frequency of signals

(or ω = πfs). The lowest possible frequency for pulsed discharge signals

must avoid the overlapping of wavelets located at adjacent fronts of current

pulses. Fig. 6.4 shows a zoomed view of a wavelet located to a rising edge

of the battery's voltage signal (falling edge of battery current).
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(a) Pulsed voltage discharge

(b) CWT

Figure 6.4: CWT of the pulsed discharge voltage

The wavelet is complex in time domain and has a real and imaginary

part. When we divide the CWT of battery voltage and the CWT of battery

current at each falling edge, we obtain a single point on multiple Nyquist

plots, each corresponding to a falling edge of current, i.e. at di�erent SoC.

Changing the wavelet frequency, we can complete all Nyquist plots over a

range of frequencies within the limits explained.

6.4 Experimental Data

The proposed methodology has been applied to the NASA dataset [2]. A

series of charging and discharging currents between −4.5 A and 4.5 A were
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used to continuously operate a set of four 18650 Li-ion batteries. Random

walk (RW) operation is the term used to describe this kind of charging and

discharging process. Five minutes were allotted for each loading period,

and after 1500 of them (about �ve days), a set of reference charging and

discharging cycles were carried out in order to give benchmarks for battery

state health. To measure changes in battery transient dynamics, fully charged

batteries are discharged with pulsed current after every 3000 RW steps. The

pulsed current discharge consists of 10 minutes with a 1 A load applied and

20 minutes with no load. This dataset has 21 pulsed discharge sequences of

cell voltage and current, recorded at di�erent ageing times, synchronously

sampled at 1 Hz. In Fig. 6.5 only 4 sequences, at di�erent aging times, are

superimposed for better visualization. Each current pulse extracts from the

cell a charge of 1/6 Ah. The process is repeated until the depletion of the

cell. The last current pulse of a sequence can be shorter than 10 minutes.

Integrating the current, we obtain the charge capacity of the cell. The fresh

cell has a total capacity of 2.1Ah (sequence 1, longest), the aged cell at end of

life has a total capacity of about 0.9Ah (sequence 21, shortest). To apply the

CWT, we have to establish the range of frequency that the chosen wavelet

can analyze.

6.5 Wavelet analysis of Nasa data set

The wavelet is complex in the time domain and thus has a real and imaginary

part. When we divide the CWT of battery voltage and the CWT of battery

current at each falling edge of the current and voltage signals taken from

the NASA dataset, we obtain a single point on multiple Nyquist plots, each

corresponding to a falling edge of current, i.e. at di�erent SoC. Changing

the wavelet frequency, we can complete all Nyquist plots over a range of

frequencies within the limits previously explained. The Nyquist plots have

been calculated at each current front. For visualization clarity, the next
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Figure 6.5: Selected pulsed voltages and currents sequences from the NASA
dataset

graphs are shown only in correspondence with the falling edge of the third

pulse (from the left). At this edge, the total charge extracted from the cell is

0.5Ah. The Nyquist plots have each 30 points, corresponding to log spaced

frequencies from ω = 2 to ω = 0.02 (two decades). Fig. 6.6 shows the results

only for the sequences of Fig. 6.5, with the same colors for the identi�cation.

It is apparent the increase of the impedance as the cell ages and the charge

capacity fades (decrease of SoH). The Nyquist plots from traditional EIS are

computed over a wider frequency range. For example, the intersection with

the real axis cannot be computed with CWT due to the limits of the sampling

frequency of the cell signals. However, this reduced view of plots has enough

information and makes it possible to extract equivalent circuit elements.
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Figure 6.6: Nyquist plots of selected pulsed discharge sequencies from the
NASA dataset

6.6 Fitting the Nyquist plots

Nyquist plots show complex impedance values measured at di�erent frequen-

cies. We want to �nd an equivalent circuit that exhibits the same impedance

behavior as closely as possible. We know that for batteries the circuit ele-

ments are mainly resistors and capacitors. Small inductances are only due

to battery terminals and are present only at high frequencies, which are not

considered in this work. Even complex components like Warburg impedance

or CPE can be approximated by RC circuits, as they can be modelled by

a large number of RC branches, as in an equivalent transmission line. For

batteries, the simplest equivalent circuit is shown in Fig. 6.7.
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Figure 6.7: First order equivalent circuit

The corresponding Nyquist plot is a semi-circle with center at R0 +R1/2

and radius R1/2. C1 has e�ects on the frequency behavior. For this simple

Nyquist plot, it is possible to derive some formulas to �t the equivalent R0, R1

and C1 circuit elements.

Figure 6.8: Some Nyquist points on the semicircle
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Fig.6.8 shows some semi-circle points computed with the CWT method

at known frequencies and also the bisects of cords between adjacent points.

The bisects intersect at the center of the semi circle, also laying on the real

Z axis. With simple geometric considerations, the following formulas can be

derived:

Z = R0 +
R1

(1 + sR1C1)
where s = jω (6.1)

the real part Re(Z) and the imaginary part Im(Z) are, respectively:

Re(Z) = R0 +
R1

1+(ωR1C1)2

Im(Z) =
−ωR2

1C1

1+(ωR1C1)2

(6.2)

If we consider two di�erent frequencies ω1 and ω2, and their respective imag-

inary parts Im (Zω1) and Im (Zω2), we obtain:

C1 =
ω2

Im2
− ω1

Im1

ω2
1 − ω2

2

(6.3)

The semi circular Nyquist plot has center CN = R0+
R1

2
and radius RN = R1

2
.

We know that a perpendicular that bisects a chord passes for the center of

the circle. The mid point P on the chord has the following coordinates:

px = Re (Z2) +
DR
2

py = Im (Z1) +
DI
2

(6.4)

where:
DR = abs (Re (Z1)−Re (Z2))

DI = abs (Im (Z1)− Im (Z2))
(6.5)

the angular coe�cient of the perpendicular is:

m = tan
(︁
π
2
+ arctan

(︁
DI
DR

)︁)︁
y = m · (x− px) + py

(6.6)
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and the circle center on the horizontal axis of the Nyquist plot is:

CN =
m · (px − py)

m
(6.7)

and �nally we can obtain R1 :

R1 =
√︁
(cx −Re (Z1)) 2 + Im (Z2) 2 (6.8)

These formulas require only two Nyquist points, with better results for bisects

near 45 degrees. The components values corresponding to the Nyquist plot

of Fig.6.8 are: R0 = 0.08 Ω; R1 = 0.03 Ω; C1 = 600 F . Real cells have

more complicated Nyquist plots and circuit �tting is much more challenging.

Nyquist plots computed from the Nasa dataset and shown in Fig. 6.6 require

higher-order RC circuits for which geometric considerations to derive simple

formulas for the computation of the components is not possible. The solution

is to �t RC values with known optimization techniques that minimize the

distance between the Nyquist plot and the Z behavior of the tentative circuit.

To �t the data from the NASA repository, we propose a 3rd order circuit, as

shown in Fig.6.9.

Figure 6.9: Third order equivalent circuit

In the Matlab environment, the fminsearch function can perform the

�tting of the Nyquist plots. fminsearch makes a guess for the seven R0, R1,

C1, R2, C2, R3, C3 parameters and then call a user callback function that must
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Figure 6.10: Fitting results for Nyquist plots

return a scalar as a measure of distance. The scalar returned has been com-

puted as the unweighted squared distance between the Nyquist points and

the corresponding guessed points. Due to the large search space, it is im-

portant to start from a good starting guess for a successful �tting. The �rst

guess has been computed with the formulas (6.1)-(6.8) shown above for the

1st order circuit. The �tting results for Nyquist plots of Fig. 6.6 are shown in

Fig.6.10, with the same colors for identi�cation. The R0, R1C1, R2C2, R3C3

have been computed for all the current fronts of all the 21 NASA sequences,

obtaining seven functions of cell parameters dependent on SoC and SoH. The

dependability from temperature T cannot be computed as all the NASA se-

quences are taken at room temperature. The complete results of the analysis

on all the sequences of the NASA dataset are shown with normalized SoC

and SoH. The plots contain 21 values, each corresponding to a sequence of
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the NASA dataset. The SoH points are computed as the ratio of the charge

capacity of the aged cell (sequence 2 to 21) over the charge capacity of the

fresh cell (sequence 1). Fig. 6.11 shows the SoH of the NASA dataset.

Figure 6.11: Normalized SoH of the NASA dataset

The color sidebar helps in identifying the pulsed discharge sequences:

the color identi�ed with 's1' indicates sequence 1 of the fresh cell (longest

sequence), the color identi�ed with 's21' color indicates sequence 21 of the

end-of-life cell (shortest sequence). The same color code has been used for

Figs. 6.12 - 6.15, which show the results for the seven parameters R0, R1,

C1, R2, C2, R3, C3 as functions of SoC, SoH.
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(a) R0(SoC, SoH)

(b) R1(SoC, SoH)

Figure 6.12: ECM parameters values using wavelet analysis on the NASA
dataset



Chapter 6 104

(a) C2(SoC, SoH)

(b) R3(SoC, SoH)

Figure 6.14: ECM parameters values using wavelet analysis on the NASA
dataset
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(a) C1(SoC, SoH)

(b) R2(SoC, SoH)

Figure 6.13: ECM parameters values using wavelet analysis on the NASA
dataset
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(a) C3(SoC, SoH)

Figure 6.15: ECM parameter values using wavelet analysis on the NASA
dataset

Note that Figs. 6.12-6.15 have di�erent angle of view for resistors and ca-

pacitors, to aid the visualization of values. It is quite reasonable that internal

resistance values increase as the cell ages. Less obvious is the simultaneous

decrease of capacitors values, presumably related to the lithium ion di�usion

process inside the cell.

6.7 Estimating the OCV from experimental data

The Open Circuit Voltage (OCV) of a cell, at a �xed temperature and at a

de�ned lifetime, is a non-linear function of SoC. This means that the dV drop

after the a discharge dQ depends on the state of charge. The ratio dQ/dV
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has a dimension of a capacitance and has a �nite value (dV is not zero as in

an ideal voltage generator). Thus the OCV generator can be thought of as

a non-linear supercapacitor. Its reactance at the frequencies of the previous

Nyquist plots is low, but it has been taken into account by correcting the

imaginary part of the internal impedance Z. Here we want to estimate the

OCV generator as a function of SoC and SoH in order to be able to simulate

it as a Voltage Controlled Voltage Source (VCVS). Thanks to the previous

analysis, we now know the values of the complex internal impedance Z. We

can reverse engineer the voltage pulsed discharge signal and subtract the

dynamic e�ects of Z traversed by the pulsed current. Fig. 6.16 shows the

3rd order equivalent circuit of Z.

Figure 6.16: Complete 3RC ECM model

The voltage contribution of R0 is simply the instantaneous product

R0i(t). The voltage contribution of each pair RiCi (i = 1, 2, 3) can be com-

puted by the following recursive formula:

vRC(k + 1) = exp(−dt/RC)vRC(k) + (1− exp(−dt/RC))R · i(k) (6.9)

where dt is the sampling period and k is the sample index at time kdt. The

total voltage e�ect of Z is the sum of the four contributions. When this total

voltage is summed to the original pulsed voltage of Fig. 6.5, we obtain the
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results shown in Fig. 6.17 (for a clear visualization only sequence 1 and 21

are shown).

Figure 6.17: OCV reconstruction for sequences 1 and 21 of the NASA dataset

Now, recording the voltage output only when the current is 1A (i.e. during

the current pulses), we obtain the classical OCV plot. The horizontal axis

shows time, but it can be easily converted to Ah and thus to SoC. The results

for all 21 sequences are shown in Fig. 6.18
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Figure 6.18: OCV reconstruction results on the NASA dataset

It is worth noting that the extracted parameters R0, R1, C1, R2, C2, R3, C3

are indirectly proven to be correct as the voltage pulses due to internal Z on

Fig. 6.17 are almost completely canceled.

6.8 Summary

We presented an innovative methodology to extract ECM model parameters

as a function of the SoC and SoH of battery cells. The methodology is

based on wavelet analysis of the pulsed discharge voltage and current signals

from the publicly available Prognostic data repository of NASA. The circuit

parameters were �tted using optimization techniques. These parameters were

used to cancel the discharge voltage pulses and to recover the OCV curve.

R0, R1C1, R2C2, R3C3 and OCV will used in the next Chapter to synthesize

a Battery Digital Twin.
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Chapter 7

Synthesis of a Battery Digital

Twin

7.1 Background

Arti�cial Intelligence (AI) has progressively become a very attractive tool to

be applied to batteries, mostly to the estimation of battery parameters[2, 4].

The data preparation phase is the most critical and it is of fundamental im-

portance to insure a successful and trustworthy application of AI techniques.

Neural Networks (NN) are broadly used for their capability to infer the input-

output relationship between data in an automated way, a process known as

black-box modelling. A successful application of NN, requires a lot of train-

ing data taken from �eld-speci�c applications. To aid the training phase,

which can require a lot of time depending on the chosen NN structure, the

input data are usually pre-processed using domain-speci�c knowledge by re-

searchers. This process requires a great deal of time and e�ort since the data

need to be fully understood and cleaned of all the parts that are not necessary

to understand the data input-output relationship. Therefore, the develop-

ment of domain-targeted tools for automating the data preparation phase for

NN is needed to speed up the data preparation phase and to be sure to cap-
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ture the signi�cant parts of the training data. NNs can exactly �t the training

points and, thanks to their interpolation generalization properties, can com-

pute the output also for intermediate points. As previously stated the battery

cell is a complex non-linear system. Its parameters change dynamically as a

function of SoC, SoH and T. It would be useful to have a digital twin of a real

battery cell, chosen for a speci�c application [3]. Such battery model would

be useful to simulate the whole system application in accelerated time taking

into account the battery ageing avoiding time-consuming and costly experi-

ments in the laboratory. At this point, we have developed a methodology to

extract equivalent ECM parameters from the pulsed voltage and current dis-

charge signals of a real battery. We now need to build a simulation model that

behaves like a real battery. The implementation can be carried out using Neu-

ral Networks (NN) to compute the instant values of the circuit elements. The

solution could thus be an ensemble of NNs that drives variable RC elements

and OCV generator. The aim of this Chapter is thus to develop a NN-based

Battery Digital Twin (BDT) that receives normalized SoC, SoH parameters

as inputs, and produces a realistic voltage output signal in response to a

load current waveform of any shape. In this way the output voltage will be a

function of cell current and known charges and ageing states, thereby provid-

ing a platform to test algorithms that must reconstruct the cell states from

only the voltage and current signals. The BDT has many purposes: it can

be used as a simulator for fast testing of state estimation algorithms, or for

battery monitoring or diagnostic when run in parallel with the real battery.

This BDT is very useful in SB, where the single cells inside the pack can be

used according to their states (SoC, SoH), possibly leading to a longer life-

time of the battery. It is therefore essential, especially in SB, to have a tool

that is able to simulate cells at di�erent SoC and SoH. Since the BDT allows

to simulate a smart battery pack with cells at di�erent charge and ageing

states, it can be used for the validation of di�erent SB balancing algorithms,

consequently allowing to test the optimization of the lifetime of the SB.
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Figure 7.1: BDT development process

Figure 7.2: The NN-based dynamic ECM model

7.2 Battery Digital Twin

We will syntesize a BDT using the 3RC ECM model presented in Section 4.2.

Developing a BDT starting from pulsed discharge experimental data is a two

step process, as shown in Fig. 7.1. In the Analysis phase, experimental data

are analyzed to extract only the relevant parts of the data needed to train the

NN. This phase is performed with wavelet analysis. The data coming from

the analysis step, are used in the synthesis step, to train the NNs. The results

of the wavelet analysis presented in Chapter 6 will be used to train NNs to

synthesize the BDT. Each NN will receive as input the SoH and SoC values

and computes the output values for the OCV, R0, R1, C1, R2, C2, R3, C3, as

shown in Fig. 7.2.
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7.3 Synthesis of the ECM model with feed for-

ward neural networks

Now we want to implement all the nonlinear functions R0,R1,C1,R2,C2,

R3, C3,OCV for the realization of a cell model that can accurately reproduce

the pulsed discharge waveforms and mimic the real cell as a digital twin. The

solution is based on feed-forward neural networks that drive controlled RC

elements for the simulation of the internal Z and a controlled VCVS for the

simulation of the OCV generator. Neural networks can exactly �t the training

points and moreover, they can compute the output for intermediate points,

thanks to their interpolation and generalization properties. The neural net-

work training has been done in the Matlab environment with the tools of

the Deep Learning Toolbox. After several trials on di�erent partitions of RC

elements, it turns out that the best generalization results can be obtained by

training a neural network for each function R0,R1,C1,R2,C2,R3,C3,OCV.

In this way, each neural network needs only few neurons (10-20) and the

optimization can be carried out without interference from the other parame-

ters. Other choices lead to bulk neural networks with many neurons and with

poor generalization. Each NN has as input two rows vector [SoC; SoH] and

outputs the control for the corresponding circuit parameter. The networks

were trained with Levenberg-Marquardt backpropagation algorithm [1]. The

training can be run several times. The best result must have the lowest Mean

Squared Error (MSE) between the Neural Network outputs and the target

values. The NNcell trained with the data shown in Section 6.6 and 6.7 have

an MSE in the range 10−6 ≤ MSE ≤ 10−4. The Simulink scheme of the cell

model is shown in Fig. 7.3. On the right side of Fig. 7.3 we can recognize

the RC circuit for the realization of the complex internal impedance of the

cell. All elements are variable and are controlled by an ensemble of neural

networks. The OCV generator is realized by a controlled voltage source,

again controlled by a neural network. All neural networks receive in input
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the same SoC and SoH control signals. All electrical components are taken

from the Simscape library and are simulated as physical elements (note the

blue color of the scheme). On the left side of Fig 7.3 we can see a Simulink

test circuit of the cell model. The test performs a pulsed discharge of the cell

with a current of 1A, with the same timings of the NASA signals (10 minutes

on, 20 minutes o�). The charged fresh cell has a charge capacity of Q (2.1

Ah in the example). A Coulomb counting function computes the SoC and

sends it to the neural networks. For simplicity, SoH is �xed as a constant. In

a more sophisticated simulation, SoH can be computed from calendar ageing

and/or from cycling ageing. The cell model outputs a realistic voltage signal

according to the SoC and SoH states. By reversing the input current, the cell

model can be used also for charging simulation. The blocks CellC.mat and

CellV.mat record the current and voltage signals on �les, for later o�ine post-

processing. The gain blocks between neural networks and variable elements

determine the actual values of the circuit components. The gains can be set

up at the start of the simulation by an init.m program that writes variable

values in the Matlab workspace. The gains are present because the neural

networks are normalized to the component values at SoC = 1, SoH = 1 (see

values in Figs. 6.11 -6.15a). This solution has been adopted in order to allow

the BDT to simulate not only a single cell but a complete battery system

consisting of a stream of s series connected cells and p parallel connected

streams. With the hypothesis of identical cells, the battery can be simulated

after multiplying gainOCV by s, gainRi by s/p and gainCi by p/s (i=1,2,3 ).

In simulations where the cells are not identical, the series connection of cells

must be really done and thus the BMS must send multiple SoC, SoH control

signals.

The cell model of Fig. 7.3 can reproduce the NASA signals with the

same pulsed currents and with the same SoH state, as shown on Fig.7.2 and

7.3 for SoH=1 and SoH=0.45, respectively. However, the cell model can

now produce any signal waveform, so it is as if we can perform tests in the
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laboratory on the same NASA battery cell without any hardware requirement

using the developed battery digital twin.

(a) BDT current input and voltage output at SoH = 1

(b) BDT current input and voltage output at SoH = 0.45

Figure 7.4: BDT generating voltage signals for di�erent SoH
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7.4 Summary

The BDT produces a realistic voltage signal as a function of input current,

SoC and SoH. The non-linear behavior of the OCV and of the internal

impedance parameters versus SoC and SoH are simulated by feed-forward

Neural Networks, trained with data extracted by wavelet analysis. This

BDT has many useful applications. It could be used: to produce data sig-

nals for testing SoC and SoH algorithms; to simulate a battery pack with

cells at di�erent states of charge and/or ageing states to develop and test

cell balancing algorithms. Moreover, the BDT could be run in parallel with

a real battery for monitoring and diagnostic purposes.
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Chapter 8

Main contributions and

conclusions

8.1 Main contributions

This thesis gave the main contribution to the following topics:

� Multilevel battery system for EVs: a solution for the synthesis

of the AC driving voltage for a PMSM motor inside an electric car.

The proposed topology has been exploited to develop a regenerative

braking system for an EV. Results on the WLTC test cycle show that

the proposed system allows to recover up to 41% of the kinetic energy

of the car. The paper has been published in [2] and Best Student Paper

Award.

� Multidimensional Machine Learning balancing in Smart Bat-

tery Packs (SBP): Smart Battery Packs are a redundant battery

topology based on the series connection of individual cell modules.

Each module is formed by a cell with an insertion/bypass circuit and

a wireless processor that monitors cell states and communicates with

a Master controller. Ideally, the cells in the SBP should be identi-
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cal. However, parameter variations of cells in EVs, along with di�erent

working conditions can cause SoC and temperature imbalances that

shorten battery lifetime. A Machine Learning based control algorithm

is proposed and tested in Matlab to insert/bypass the cells and reach si-

multaneous balancing of both SoC and temperature. The new method

based on the K-nearest algorithm has been compared in simulation with

a conventional sorting balancing method and showed superior perfor-

mance, especially in temperature balancing. The results of this work

have been published in [3].

� Data-driven Modeling of Li-ion Battery: The Simulink Datasheet

Battery block is a ready-to-use subsystem that can simulate an ECM

model, customized with look-up tables. Two di�erent ways of creating

the model are explored: using datasheets provided by the manufac-

turer and using more extensive laboratory measurements. This hybrid

method of using the laboratoty data on datasheet battery model is

named here as advance datasheet battery model. Results show that

the measurements-based advanced datasheet battery model is more ro-

bust to model battery behavior, improving signi�cantly the modelling

accuracy compared to a pure datasheet-based approach. The results of

this work have been published in [6].

� Battery internal impedance estimation using Wavelet Anal-

ysis: Battery performances degrade with usage and time and this

translates into a decreased charge capacity and an increased internal

impedance. Internal resistance is directly related to the amount of de-

liverable power, therefore its estimation is of particular interest for EVs.

Observing the ageing e�ects on real batteries, however, is very time-

consuming since many charge-discharge cycles need to be performed

in the laboratory. The internal impedance e�ects are best seen on

the output voltage of the battery when the input is a current pulse.
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The wavelet time-frequency analysis can be used to �lter the output

voltage of the battery in order to estimate the internal impedance as

a function of SoC and SoH. The wavelet analysis is a software tool to

reconstruct the Nyquist plots of a battery cell, according to ageing con-

ditions. Moreover, if applied to SB, the wavelet analysis is an online

tool for internal impedance estimation. The results of this work have

been published in [4].

� Open Circuit Voltage (OCV) extraction methodology from

pulsed discharge data: OCV depends on SoC and SoH. Its mea-

surement in the lab is very delicate and time-consuming. It requires

putting the cell at rest for many hours and is also prone to measurement

errors. A software procedure to extract OCV from pulsed discharge lab-

oratory measurements is developed. The results of this work will be

publised in [7].

� Building a Battery Digital Twin (BDT): To avoid working con-

ditions that can accelerate irreversible degradation reactions, SoC and

SoH must always be known. Since they cannot be measured directly

with sensors on cells, they must be derived from the observation of volt-

age and current at the accessible connections. Testing of algorithms on

real batteries is very time-consuming due to the need for many charge-

discharge cycles in order to observe ageing e�ects. A Battery Digital

Twin (BDT) that receives normalized SoC, SoH parameters as inputs,

and produces a realistic voltage output signal in response to a load

current waveform of any shape, is developed in this work. This BDT is

a dynamic ECM-based built with feed-forward Neural Networks (NN).

The time-frequency wavelet analysis is used as a domain-speci�c, auto-

mated pre-processing tool to prepare NNs training data. The BDT is

essentially a battery simulator that is accelerated in time with respect

to the SoH, so it is able to simulate both a cell at any given age, and
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a cell that ages in seconds, not months. The BDT can be used for

many purposes: (i) as a simulator for fast testing of state estimation

algorithms; (ii) for the validation of balancing or other optimization al-

gorithms (iii) for battery monitoring or diagnostic when run in parallel

with the real battery. Partial results of this work have been published

in [5] and the full BDT development procedure will be publised in [7].
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8.2 Conclusions and future work

Thanks to their high energy density, high energy e�ciency and long cycle life

LIBs are employed in a broad range of applications: they are an e�ective so-

lution for the integration of renewable energy sources in the smart grid and

they are the preferred solution for electric mobility, ranging from Electric

Vehicles (EVs) to mobile robots. In many applications, the battery is seen

as a raw energy source, unsuitable to directly power the load. Thus, a con-

verter/inverter is usually put as an interface between the battery and the �nal

load to assure the required quality of output voltage. The �rst part of this

thesis explored the advantages of using innovative battery topologies that in-

tegrate the multilevel inverter concept. Instead of a �xed stream of cells, the

battery contains a stream of modules. Each module has insert/bypass power

switches and one or more cells. By properly driving the switches at sampling

times, the battery can synthesize a desired DC or even an AC output volt-

age, as well as perform cell balancing, charge control and subsequent thermal

management. The number of modules can be redundant in order to assure

fault tolerance against cell failures and/or to accommodate a greater total

charge capacity. In the Chapter 1 a bidirectional 9-level cascaded H-bridge

converter with batteries was proposed to synthesize the AC output voltage

to control a PMSM motor of an electric car. A regenerative braking system

has been developed, with the aim of recovering part of the kinetic energy of

the car during braking. The proposed solution allowed to recover up to 41%

of the energy of the car, compared to pure mechanical braking. Chapter 2

focused on another multilevel battery system: the smart battery. Since the

SB has more cells than strictly necessary, at a given time only a subset of cells

are series-connected. This topology has many useful features like modular-

ity, recon�gurability, cell fault tolerance and greater useful capacity. In order

to achieve optimal balancing in operation for both temperature and SoC, a

multidimensional K-nearest control algorithm (MKNA) was developed and

simulated with the aim to limit the spread of cell SoCs and temperatures.
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The MKNA algorithm chooses the cells to be inserted/bypasses based on

their �distance� from a virtual point that is dynamically computed at sam-

pling time. The algorithm uses weighting factors to give more importance to

SoC or temperature. This operation has the potential to extend the lifetime

of the battery pack, which will be evaluated in future work. The structure

of the MKNA algorithm allows to easily add other dimensions to the control

strategy, such as the internal resistance or the SoH of the cells. The second

part of the thesis focused on cell models. Chapter 3 presented an overview

of how Li-ion cells work, and how the internal electrochemical reactions have

e�ects on their operativity. Chapter 4 o�ered an overview of battery models

and presented the ECM model adopted in this work. In Chapter 5, we pre-

sented a data-driven approach for modelling the behavior of a Li-ion battery

using a ready-to-use model available in Simulink. We showed a systematic

methodology of using the manufacturer's datasheets for available simulation

platforms, such as Matlab-Simulink. In order to overcome the limited data

availability in manufacturer's datasheets we have enhanced the model by in-

cluding extensive laboratory measurements for building a robust advanced

battery datasheet model that can predict battery behavior under varied �eld

applications. In future work, we will further enhance the proposed model by

incorporating di�erent ageing cases for a more complete approach. Chap-

ter 6 presented the wavelet time-frequency analysis as a software alternative

to EIS-based experimental techniques. The proposed methodology was ap-

plied to pulsed discharge signals from the publicly available prognostic data

repository of NASA. Furthermore, a methodology for OCV extraction was

presented. Future work will explore the potential to use the wavelet analysis

in SB topologies, where it could be used for online estimation of the cell

parameters and SoH. This knowledge can then be used to develop strategies

to use the cell in the pack optimally with the goal of maximizing the battery

lifetime. Furthermore, we will explore how to use the wavelet analysis to ex-

tract other parameters of interest, such as temperature. Chapter 7 presented
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the battery digital twin. The BDT produces a realistic voltage signal as a

function of current and SoC and SoH states. The non-linear behavior of the

OCV and the internal impedance parameters versus SoC and SoH are sim-

ulated usding feed-forward Neural Networks. In this work, we developed a

battery digital twin using the experimental data from the publicly available

Prognostic data repository of NASA. By collecting pulsed discharge data

from a speci�c battery of interest, the whole developing process can be re-

peated, obtaining a BDT tailored to the battery of interest. Future work will

focus on the BDT applications: (i) for the testing of SoC and SoH estima-

tion algorithms (ii) to simulate cells of di�erent charge capacities and aging

times in battery packs (iii) to be used in a battery cell simulators for testing

Battery Management Systems as Hardware-in-the- Loop systems (BMS HiL)

(iv) to be run in parallel with real battery in on-�eld applications, such as

EVs and smart grids for monitoring/diagnosis purposes.
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Appendix

Wavelet theory

The Continuous Wavelet Transform (CWT) of a �nite energy signal x(t) is

[12]:

WΨ(u, s) =
1√
s

+∞�

−∞

x(t)Ψ∗ (t− u)

s
dt (1)

Where Ψ(t) represents the mother wavelet, i.e. a complex-valued time-

frequency �lter; u is the time shift parameter (for time localization) and s is

a scaling parameter (for frequency localization). The CWT can be thought

as the output of a bandpass �lter whose input is the signal x(t). By choosing

a suitable mother wavelet, we can compute the time-frequency content of the

signal as coe�cients of the CWT. The choice of which wavelet to use depends

on its time and frequency resolution. Only analytic wavelets will be consid-

ered, i.e. wavelets whose spectrum is zero for negative angular frequencies:

Ψ(ω) = 0, ω < 0. In this work, we will use the Generalized Morse Wavelet

:

Ψ(ω) = U(ω)K(β,γ)ω
βe−ωγ

(2)

Where U(ω) is the Heaviside function, and K(β,γ) is a normalizing factor.

Unlike other mother wavelets, the Generalized Morse wavelet is de�ned by

two parameters β, γ > 0 that allow to change the wavelet properties, while

remaining exactly analytic [9, 10, 11, 12]. By properly choosing β, γ, ω we
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(a) Wavelet real part

(b) Wavelet imaginary part

Figure 1: Generalized Morse wavelet

can tune the frequency and the bandpass resolution.

Fig. 1 shows an example of the generalized Morse wavelet plotted using

the MATLAB toolbox JLAB, freely available online [8]. The wavelet can

be thought as the impulse response of a bandpass �lter. Fig. 2b shows the

zoomed output of this �lter (i.e. CWT) when the input is the voltage signal

of Fig. 2a. As the wavelet is complex in the time domain, Fig. 2b shows

the real and imaginary part, as well the absolute value, which peaks at the

rising transition of the voltage signal. Knowing this behavior, the wavelet

transform is applied to voltage and current signals v(t), i(t) of the cell battery
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(a) Pulsed voltage discharge

(b) CWT

Figure 2: CWT of the pulsed discharge voltage
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in order to obtain a set of coe�cients:

Wi(t, ω) = Re {Wi(t, ω)}+ jIm {Wi(t, ω)}
Wv(t, ω) = Re {Wv(t, ω)}+ jIm {Wv(t, ω)}

(3)

where Wv(t, ω) is the wavelet transform of the signal v(t) as a function of

time t and angular frequency ω. Since the transform is a linear operation,

the cell impedance Z can be then identi�ed by a division between the CWT

coe�cients of voltage and current:

Z(t, ω) =
Wv(t, ω)

Wi(t, ω)
(4)

Z(t, ω) is the instantaneous amplitude and phase of impedance Z at angular

frequency ω. By changing the wavelet frequency we can perform a time-

frequency analysis of a signal to identify the whole ECM model.
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