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Abstract

The present PhD thesis deals with the study of aggregation PDE systems with many
species coupled through nonlocal interaction and considering inertial effects.

We first study a multi-dimensional system, considering both smooth and singular
self-interaction potentials and requiring smooth assumptions on cross-interaction po-
tentials. We provide existence and uniqueness results of measure solutions considering
initial data in a Wasserstein space of probability measures. Then, we investigate the
small inertia limits for both the smooth and singular case, proving convergence results
towards the corresponding macroscopic first order systems. These results extend to the
many species case previous results by Fetecau-Sun and Choi-Jeong.

We construct an upwind finite volume scheme for a kinetic system with two species.
Here, the inertia term is not considered, and we require smooth assumptions on in-
teraction potentials. A convergence result for the scheme is provided, without any
restriction on the mesh size. This result is inspired by previous result by Filbet with
minor modifications and a slight improvement of the rate of convergence.

Furthermore, we study a one-dimensional macroscopic system for two species cou-
pled through nonlocal interactions, with an additional damping parameter. This system
describes the dynamics of interacting particles; in case of collisions a sticky particles
condition is adopted. We prove existence and uniqueness of measure solutions by using
optimal transportation theory and taking initial data in a space of probability measures
with finite second moments. A large-time large-damping result is obtained, proving the
convergence towards the corresponding first order system. Finally, we investigate the
case with Newtonian potentials for the self-interaction terms, with additional confining
external potentials. For the latter case, we prove existence of solutions and a large time
collapse result, showing the convergence towards Dirac delta solutions. The results are
complemented with numerical simulations. Previous results on this problem only dealt
with the one species case, see Brenier et al. for the existence of sticky particles and
Carrillo, Choi and Tse for the large damping limit. We stress that the technique we use
in the large damping limit is totally new.
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Chapter 1

Introduction

1.1 Particle and continuum models

Nonlocal aggregation models describe phenomena related to many domains of sciences,
such as biology, robotics and space missions, artificial intelligence, social sciences, and
traffic and pedestrian flows. In particular, for biological applications, the fundamental
motivation is to understand and investigate the formation of many spectacular groups
observed in nature, such as swarms, schools of fishes, and flocks of birds.

This kind of models can be studied by adopting two main points of view: individual-
based, where one considers the dynamics of each particle in the group, and partial
differential equations, describing the evolution of a density of individuals.

The use of (integro-)partial differential equations in this context has become very
popular in order to analyse the evolution of a population density ρ(t, x) subject to a
space-dependent nonlocal interaction force W . A simple example of said models is the
following

∂ρ

∂t
= div(ρ∇W ∗ ρ). (1.1)

In equation (1.1), x is a spatial variable typically ranging in Rd, t ≥ 0 is the time variable,
W = W (x) is a given interaction potential and ∗ denotes the spatial convolution.
The potential W typically accounts for attractive or repulsive drift among individuals.
Equation (1.1) is an example of macroscopic model, in which the population is treated
in its entirety.

On the other hand, discrete modelling considers the evolution of each particle in the
group. The “particle counterpart” of equation (1.1) is

ẋi = − 1

N

N∑
j=1

∇W (xi − xj), (1.2)

i = 1, . . . , N , where N is the number of particles, xi are the positions of the particles,
and W is the same interaction potential as in (1.1). Observing the formations of aggre-
gation phenomena occurring in nature, the particle description typically includes three
mechanisms in three zones: a short-range repulsion zone, a long-range attraction zone
and an alignment or orientation zone. These models are called three-zone models. Sys-
tem (1.2) is an example of microscopic model, in which the evolution of each particle is
influenced by the interaction with the other particles.

First order models are often “too restrictive” in many cases, and a second order
approach is more appropriate to describe the dynamics since it takes into account inertial
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effects. At least formally, a similar split-up between macroscopic and microscopic models
holds also if we deal with second order systems, namely a second order PDEs system
describing the evolution of a population density ρ(t, x) under the influence of a nonlocal
interaction force W (x) can be written as

∂ρ

∂t
+ div(ρv) = 0 ,

∂

∂t
(ρv) + div(ρv ⊗ v) = −ρ∇W ∗ ρ ,

(1.3)

and the corresponding individual-based system is given by the second order particle
system 

ẋi = vi ,

v̇i = − 1

N

N∑
j=1

∇W (xi − xj) .
(1.4)

In system (1.3), v = v(x, t) is the Eulerian velocity of the population. Moreover, the
first equation in (1.3) is the continuity equation and describes the local conservation of
mass, while the second equation describes the balance of momentum.

Together with the modeling from the two points of view described above, recently
an increasing attention has been devoted to the kinetic description in this context. If
we set x ∈ Rd as the position and v ∈ Rd as the velocity, a kinetic equation studies the
evolution of f(t, x, v), that is the probability measure of individuals at position x, with
velocity v at time t ≥ 0. The kinetic equation associated to particle system (1.4) is

∂f

∂t
+ v · ∇xf = ∇v · ((∇xW ∗ ρ)f) , (1.5)

where ρ(t, x) is the macroscopic population density, i.e.,

ρ(t, x) =

ˆ
Rd
f(t, x, v) dv.

Equation (1.5) is an example of mesoscopic model, in which a statistical description of
the interacting agent system is presented.

In recent years, the attention of many researchers in this field turned to systems
with many species, motivated for example by opinion formation models, pedestrian
movements, and other aggregation phenomena in biology. The second order modelling
approach via (1.3) and (1.4) and the kinetic approach via (1.5) seem to be more useful
since the inertial effects, sometimes referred in these contexts as “persistence” effects,
do play a role in the model’s dynamics.

In this PhD thesis, we will focus on multi-species second order systems and in
particular on macroscopic and kinetic models with nonlocal interactions.

In this introductory Chapter we will describe the problems we address in this thesis
and the tools and techniques adopted to investigate them.

1.2 Small inertia limits

One of the main goals in this PhD thesis is to study the behaviour of solutions of our
systems in relation to the persistence effects.
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In Chapter 2, we extend to many species the particle model proposed in the paper
[10] by Bodnar and Velazquez, that, in Newton’s law form, is

ε
d2xi
dt2

+
dxi
dt

= Fi ,

Fi = − 1

N

∑
j 6=i
∇xiW (xi − xj) ,

(1.6)

i = 1, . . . , N , where xi are the particle locations and W is a nonlocal interaction kernel,
and ε > 0 is the inertia parameter. From a biological point of view, (1.6) takes into
account a small response time of individuals. This occurs since when two agents interact,
their “reactions” are not immediate, but a little time to replay is necessary. Formally,
we see that by sending ε→ 0, we derive the first order model (1.2).

In Chapters 2 and 3 we will obtain rigorously small inertia limits for multi-species
systems, considering both smooth potentials and singular self-potentials.

A relevant phenomenon we consider in this thesis is the damping, see the first order
term in the first equation of (1.6). The macroscopic system (1.3) can be seen as a
nonlocal version of compressible gas-dynamics, where in place of the pressure term
−∇p(ρ), a nonlocal interaction force −ρ∇W ∗ ρ is considered. Including also a friction
term σ > 0 and an external force −∇V , the full model with pressure can be written as

∂ρ

∂t
+ div(ρv) = 0 ,

∂

∂t
(ρv) + div(ρv ⊗ v) +∇p(ρ) = −ρ∇W ∗ ρ− ρ∇V − σρv.

(1.7)

At least on a formal level, an equation of the form

∂ρ

∂t
= div(∇p(ρ) + ρ∇(V +W ∗ ρ))

can be obtained by rescaling time in (1.7) as t = στ and sending σ → +∞. This limit
regime is called overdamped limit or large friction limit.

In this PhD thesis we will deal with pressure-less systems, namely p = 0.
In Chapter 5, starting from the model investigated in [12] that we briefly describe

in Section 1.3, we extend said model to the two-species case, considering in addition
a damping effect. We want to underline here that, after said time rescaling, the large
damping effect can be seen as a small inertia effect, since a parameter σ > 0 equal to
the reciprocal of ε will be sent to +∞, in a regime that is equivalent to ε→ 0.

1.3 Sticky particle dynamics

As said, in this PhD thesis we consider pressure-less systems. From the macroscopic
point of view, this implies that the population density ρ(t, x) in (1.3) is not forced to
be absolutely continuous with respect to the Lebesgue measure. Therefore, “particle”
solutions in the spirit of (1.4) are allowed. When two particles collide, a standard way
to continue the solution after collision is the so-called sticky particle condition, which
forces particles to stay attached to each other after collision, with a post-collisional
velocity that is uniquely determined by the conservation of momentum.

In this Section we briefly introduce the sticky particles dynamics, since we will adopt
it in Chapter 5, where we will focus on a one-dimensional two-species pressure-less Euler
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system with nonlocal interactions. In particular, we consider here the to one-species
case investigated in [12]. Here the authors study a model in dimension d = 1 for the
evolution of a sticky particle system via adhesion dynamic and the macroscopic one-
dimensional system considered is

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) +

∂

∂x
(ρv2) = f [ρ],

(1.8)

in [0,+∞]× R, with initial datum (ρ, v)(t = 0) = (ρ0, v0).
In system (1.8), ρ(t, ·) ∈ P2(R) is the population density, v(t, ·) ∈ L2(R, ρ(t, ·)) its

Eulerian velocity and the map f : P2(R)→M(R) describes the force field. P2(R) is the
set of probability measures on R with finite second moment andM(R) is the space of
signed Borel measures with finite total variation. The form of the force field considered
in [12] is

f [ρ] = −ρ∂x
(
V (x) +

ˆ
R
W (x− y) dρ(y)

)
, (1.9)

and suitable assumptions on V and W are prescribed.
The sticky particle dynamics implies that particles stick together when collisions

occur and then they are not allowed to split any longer. This can be formulated by
considering the discrete measures

ρN (t, ·) :=

N∑
i=1

miδxi(t), (ρv)N (t, ·) :=

N∑
i=1

mivi(t)δxi(t), (1.10)

concentrated in a finite set of N particles with positions xi(t), masses mi, velocities
vi(t), i = 1, . . . , N , with ordered locations

x1(t) ≤ x2(t) ≤ . . . ≤ xN−1(t) ≤ xN (t).

We also set x(t) = (x1(t), . . . , xN (t)), v(t) = (v1(t), . . . , vN (t)) belonging to RN , and
m = (m1, . . . ,mN ) belonging to [0,+∞)N . In this framework, the force field applied to
the discrete measure ρN is given by

f [ρN ](x) =

ˆ
R
a(x) dρN (x) =

1

N

N∑
i=1

mia(xi),

with

a(x) = −V ′(x)−
N∑
k=1

mkW
′(x− xk).

The above force field is well-defined on collisions only if the interaction potential W is
C1(R). The pairs (xi, vi) in (1.10) solve the ordinary differential equations system

ẋi(t) = vi(t), v̇i(t) = a(xi(t)),

equipped with initial data, between two consecutive particle collisions.
When a collision between two particles of masses mk and mk+1 occurs at a time

t > 0, the velocities of each of them are updated to

vk(t+) = vk+1(t+) =
mkvk(t−) +mk+1vk+1(t−)

mk +mk+1
,
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so that the momentum is conserved during the collision. If more then two particles
stick together, collisions can be treated in a similar way. Then, one can observe that
the measures ρN and (ρv)N solve system (1.8). After a collision, the particles can be
relabelled such that system (1.10) is still satisfied with the number of particles reduced
because of the collision.

Since we are in the one-dimensional case, we consider ordered particles and this
ordering has to be preserved. Let us introduce the closed convex cone

KN := {x ∈ RN : x1 ≤ x2 ≤ . . . ≤ xN},

and assume that x(t) ∈ KN for all t ≥ 0. This implies that only consecutive particles
may collide, so that we define

Ωx := {j : xj = xj+1, j = 1, . . . , N}.

Notice that the adhesion dynamics implies that the sets Ωx(t) are non-decreasing in
time. When the vector x(t) touches the boundary of KN , namely

∂KN = {x ∈ KN : Ωx 6= ∅},

an instantaneous force changes its velocity such that it still belongs to KN . Thus,
introducing the normal cone of KN ,

NxKN := {l ∈ RN : l · (y − x) ≤ 0 for all y ∈ KN},

one obtains that the said instantaneous force belongs to NxKN .
Therefore, one can investigate the second order differential inclusion (cf. [14])

ẋ = v, v̇ +NxKN 3 a(x),

in [0,+∞[. The system above can be rephrased in terms of sub-differential inclusions
in Lagrangian framework, that is strictly related to the Eulerian description, as we do
in Chapter 5.

1.4 The finite volume method

Another gol of this PhD thesis is to investigate a finite volume method for a two-species
system with nonlocal interactions at kinetic level, see Chapter 4. The development of
these kind of numerical methods has become very important since they preserve the
conservative properties of the PDEs. In order to give an idea of the method and in
particular of what we will perform, let us give a brief introduction, [54]. Consider the
scalar advection equation

∂u

∂t
+ c

∂u

∂x
= 0 , (1.11)

where u(x, t) ∈ Rm is the unknown. Linear hyperbolic equations are quite easy to
study, since the initial value problem is well posed for them and the solution is regular
as the initial data for any time. By discretizing both in space and in time, it is possible
to construct a stable scheme. Let (xj)j be finite ordered equidistant points in R and
T the final time and set ∆x = xj+1 − xj and ∆t = T/NT the space and time steps
respectively, for some NT ∈ N. The upwind scheme uses a first order approximation of
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the space derivative, and the upwinding time discretization follows by discretizing the
space derivatives as

∂u

∂x

∣∣∣∣
xj

≈


uj − uj−1

∆x
, if c ≥ 0 ,

uj+1 − uj
∆x

, if c < 0 .

Thus, by explicit Euler and first order upwind space discretization, the scheme in com-
pact form is

un+1
j = unj −

∆t

∆x
(c+(unj − unj−1)− c−(unj+1 − unj )),

where c+ = max{c, 0}, c− = −min{c, 0} and n ∈ {0, . . . , NT − 1}. From now on,
assume c > 0. In order to study the consistency of the upwind scheme, we apply the
discrete operator to the exact solution of (1.11) obtaining

L∆u(x, t) =
u(x, t+ ∆t)− u(x, t)

∆t
+ c

u(x, t)− u(x−∆x, t)

∆x
.

By considering in the previous equation the Taylor expansion of u(x, t) both in space
and in time, we get

L∆u(x, t) =
∂u

∂t
+ c

∂u

∂x
+

∆t

2

∂2u

∂t2
(x, t+ τ)− c∆x

2

∂2u

∂x2
(x− ξ, t),

with τ ∈ [0,∆t] and ξ ∈ [0,∆x]. If u satisfies equation (1.11), then the consistency
error is

d(x, t) =
∆t

2

∂2u

∂t2
(x, t+ τ)− c∆x

2

∂2u

∂x2
(x− ξ, t) = O(∆x,∆t).

A scheme is defined consistent if d(x, t)→ 0 as ∆x→ 0 and ∆t→ 0. Here we see that
the scheme is consistent to the first order in both ∆t and ∆x.

Concerning the stability of the scheme, we can check it assuming periodic boundary
conditions and considering a solution of the form

unj = ρneijξ .

Thus, we get

un+1
j = unj −

∆t

∆x
c(unj − unj−1) .

After some computations, one can see that the amplification factor ρ is such that |ρ|2 < 1
if and only if c∆t

∆x < 1. This stability condition is a particular case of a more general
condition known as CFL condition. In theory, the CFL number relates the speed of
which information propagates in the mesh to the time step size.

In order to be able to construct the scheme proposed in Chapter 4, let us now switch
to a hyperbolic quasilinear equation. Consider

∂u

∂t
+
∂f(u)

∂x
= 0 , (1.12)

where u(x, t) ∈ Rm is the unknown, and f : Rm → Rm is a given smooth function. The
initial value problem for these kind of equations is well posed locally in time, and, gen-
erally, the solution loses the regularity of the initial data in finite time. Thus one needs
to consider weak solutions that, assuming smooth initial data, seem piecewise smooth
functions containing jump discontinuities. If we want a similar propagation speed of
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discontinuities at discrete level, then the numerical scheme has to be a conservative
scheme.

In order to derive the scheme, let us construct a numerical mesh: we divide the space
by using N + 1 ordered equidistant points xj and consider N cells Cj = [xj−1/2, xj+1/2]
with centers xj , as j = 1, . . . , N . Integrating equation (1.12) over a cell Cj and dividing
by ∆x = xj+1/2 − xj−1/2, we obtain

dūj
dt

+
1

∆x
[f(u(xj+1/2, t))− f(u(xj−1/2, t))] = 0 ,

where ūj denotes the cell average, i.e.,

ūj(t) :=
1

∆x

ˆ xj+1/2

xj−1/2

u(x, t) dx.

Thus the numerical scheme should be

dūj
dt

= − 1

∆x
[Fj+1/2 − Fj−1/2],

with Fj+1/2 the numerical flux on the right edge of the cell Cj . Finally, if we take the
numerical flux Fj+1/2 as a function of the cell averages, in a simple case ūj and ūj+1,
we arrive at a semidiscrete scheme.

A fully discrete scheme can be obtained by integrating equation (1.12) in a time-
space cell, getting

ūn+1
j = ūnj −

1

∆x

ˆ tn+1

tn
[f(u(xj+1/2, t))− f(u(xj−1/2, t))] dt ,

with tn := n∆t, where ∆t is the time step. This suggests a numerical scheme of the
form

ūn+1
j = ūnj −

∆t

∆x
(Fnj+1/2 − F

n
j−1/2) , (1.13)

where the numerical flux Fnj+1/2 approximates the time average of f along the edge of
the cell average.

An example of a fully discrete scheme is the upwind scheme we saw above.
This kind of scheme is conservative. Indeed, if x ∈ [a, b] and we assume a periodic

boundary condition on [a, b], i.e., u(a, t) = u(b, t), then, at continuous level,

d

dt

ˆ b

a
u(x, t) dx = 0 .

Now, if we adopt the fully discrete scheme constructed above, this property is still
satisfied. Indeed, summing scheme (1.13) over j ∈ {1, . . . , N}, we get

N∑
j=1

ūn+1
j =

N∑
j=1

ūnj

since we deal with a telescopic sum because of the periodicity.
In Chapter 4 we will construct a upwind scheme for a system of two kinetic equations

that are coupled with nonlocal interactions terms.
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1.5 Optimal transportation theory

In the next two Sections we present some notions of optimal transportation theory and
Wasserstein distances, [2, 59, 60]. We will use them in Chapters 2, 3 and 5.

Optimal transportation theory studies how to transfer a given mass distribution
from one configuration to another in an optimal way. The two configurations must have
the same mass.

Let (X,µ) and (Y, ν) be two probability spaces. Let T : X → Y be a measurable
map. The measure ν = T#µ, called push-forward of µ through T , is defined by

T#µ(A) = µ(T−1(A)),

for all Borel subsets A ⊂ Y , with T−1(A) = {x ∈ X : T (x) ∈ A}. This measure is
characterized by ˆ

Y
f dT#µ =

ˆ
X
f ◦ T dµ,

for all Borel function f : Y → R.
We now set a non-negative measurable cost function c : X × Y → R. It can be

interpreted as the work needed to transfer one unit of mass from location x ∈ X to
location y ∈ Y .

1.5.1 Monge and Kantorovich formulations of the optimal
transportation problem

Monge’s optimal transportation problem consists in minimizing the functional

I[T ] =

ˆ
X
c(x, T (x)) dµ(x)

over the set of transport maps T from µ to ν, i.e., all maps T such that T#µ = ν.
This formulation requires that mass cannot be separated, which means that to each

location x corresponds a unique destination y.
A generalization of the Monge’s formulation is defined as follows. We consider a

probability measure defined on the product space X × Y . Informally, a transference
plan γ is such that all the mass in the point x coincides with dµ(x), and all the mass
moved to y coincides with dν(y). Moreover, the mass in x is sent to location y with
probability given by γ(x, y), and a priori some mass in x can be transported to many
destinations y’s, namely it may be split in many parts.

Rigorously, we define a transference plan with marginals µ and ν as a probability
measure γ on the product space X × Y satisfying

γ[A× Y ] = µ[A], γ[X ×B] = ν[B], (1.14)

for all measurable subsets A ⊂ X, B ⊂ Y . Equivalently, we require that

π1#γ = µ, π2#γ = ν,

where πi is the projection operator on the i-th component of the product space. In
other words, this means

ˆ
Y
dγ(x, y) = dµ(x),

ˆ
X
dγ(x, y) = dν(y).
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More precisely, this is equivalent to haveˆ
X×Y

[ϕ(x) + ψ(y)] dγ(x, y) =

ˆ
X
ϕ(x) dµ(x) +

ˆ
Y
ψ(y) dν(y),

for all (ϕ,ψ) ∈ L1(dµ)× L1(dν). Set

Π(µ, ν) := {γ : X × Y → R : (1.14) holds}.

Notice that Π(µ, ν) 6= ∅, since µ⊗ ν ∈ Π(µ, ν).
Kantorovich’s formulation consists in minimizing the functional

I[γ] =

ˆ
X×Y

c(x, y) dγ(x, y),

with γ ∈ Π(µ, ν). If γ is a transference plan, I[γ] is called total transportation cost
associated to γ. The optimal transportation cost between µ and ν is defined by

Tc(µ, ν) := inf
γ∈Π(µ,ν)

I[γ].

The transference plans such that I[γ] = Tc(µ, ν) are called optimal transportation maps.
We can observe that this problem is a generalization of the Monge’s problem. Indeed,

if T : X → Y is a transport map, one can consider the transference plan γT := (id ×
T )#µ. In particular, we have that

dγT (x, y) = dµ(x)δ[y = T (x)],

and satisfies what follows: for any non-negative measurable map ζ on X × Y ,ˆ
X×Y

ζ(x, y) dγT (x, y) =

ˆ
X
ζ(x, T (x)) dµ(x).

Therefore, the total transportation cost in Monge’s formulation is defined by

I[T ] =

ˆ
X
c(x, T (x)) dµ(x).

We have that γT belongs to Π(µ, ν) ifˆ
X

[ϕ(x) + ψ ◦ T (x)] dµ(x) =

ˆ
X
ϕ(x) dµ(x) +

ˆ
Y
ψ(y) dν(y),

that is ˆ
X

(ψ ◦ T ) dµ =

ˆ
Y
ψ dν.

Thus, for all ψ ∈ L1(dν), the measurable function ψ◦T should belong to L1(dµ) and the
values of the two integrals above should be equal. Equivalently, γT belongs to Π(µ, ν)
if

ν(B) = µ[T−1(B)],

for all measurable subsets B ⊂ Y , that can be rewritten as

ν = T#µ.

This shows that Kantorovich’s formulation generalizes Monge’s formulation.
The main advantage in the Kantorovich’s approach is that a minimizer γ of I[γ] in

Π(µ, ν) always exists, as we prove in the next Proposition, see [1, 2, 59, 60]. First, we
state the Prokhorov Theorem.
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Theorem 1.1 (Prokhorov Theorem). Let X be a complete and separable metric space.
A subset K ⊂ P(X) is tight, that is for all ε > 0 there exists Kε compact in X such that

µ(X \Kε) ≤ ε

for all µ ∈ K, if and only if then K is relatively compact in P(X).

Proposition 1.1 (Existence of optimal plan). Let X and Y be two complete and sep-
arable metric spaces and let µ ∈ P(X) and ν ∈ P(Y ) be two probability measures.
Let c be a lower semi-continuous cost function. Then there exists a transference map
γ ∈ Π(µ, ν) minimizing I[γ].

Proof. We claim that Π(µ, ν) is weakly closed. Let δ > 0 and let K ⊂ X and L ⊂ Y
be such that

µ[X \X] ≤ δ, ν[Y \ L] ≤ δ.
For any γ ∈ Π(µ, ν), we have

γ[(X × Y ) \ (K × L)] ≤ γ[(X × (Y \ L)] + γ[(X \K)× L] ≤ 2δ.

Therefore the set Π(µ, ν) is tight, and, by Prokhorov Theorem, it is relatively compact
with respect to the weak topology. Furthermore, since the conditions defining Π(µ, ν)
are continuous with respect to the weak topology, then Π(µ, ν) is weakly closed.
Now, let (γk)k∈N be a minimizing sequence and let γ∗ ∈ Π(µ, ν) be a limit point of
the sequence. Since, c is a lower semi-continuous and non-negative function, there is
a sequence (c`)`∈N of non-decreasing bounded Lipschitz functions such that c is its
pointwise supremum. Then, by using the monotone convergence Theorem, we deriveˆ

X×Y
c(x, y)dγ∗(x, y) = lim

`

ˆ
X×Y

c`(x, y)dγ∗(x, y)

≤ lim
`

lim sup
k

ˆ
X×Y

c`(x, y) dγk(x, y)

≤ lim sup
k

ˆ
X×Y

c(x, y)dγk(x, y)

= inf I[γ],

that concludes the proof.

1.6 Wasserstein distances

Let (X, d) be a metric space. Let Pp(X) be the set of probability measures on X with
finite moment of order p, for p ≥ 0, i.e., µ ∈ Pp(X) if for an arbitrary y ∈ X,ˆ

X
d(x, y)p dµ(x) < +∞.

This definition does not depend on the choice of the point y, thus the property µ ∈
Pp(X) is well-posed.

Let now consider the cost function c(x, y) = d(x, y)p, with p ∈ [1,∞). Given two
probability measures µ, ν on the metric space (X, d), the Monge-Kantorovich distance
of order p, or Monge-Kantorovich distance with exponent p between µ and ν is

Wp(µ, ν) =

(
inf

γ∈Π(µ,ν)

ˆ
X×X

d(x, y)p dγ(x, y)

)1/p

,
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where Π(µ, ν) is the class of transference maps between µ and ν. The Wasserstein
distance Wp defines a metric on Pp(X).

The Monge-Kantorovich distance of order 2, namelyW2, is called quadratic Wasser-
stein distance. The Monge-Kantorovich distance with exponent 1, i.e., W1, is said
Monge-Kantorovich-Rubinstein distance.

Another notion of distance we will deal with in Chapter 3 is the one of bounded
Lipschitz distance dBL for probability measures defined by, see [19],

dBL(µ, ν) := sup

{∣∣∣∣ˆ
Rd
φdµ−

ˆ
Rd
φdν

∣∣∣∣ : ‖φ‖L∞(Rd) ≤ 1,

‖φ‖Lip := sup
x 6=y

|φ(x)− φ(y)|
|x− y|

≤ 1

}
.

Note that the bounded Lipschitz distance and the 1-Wasserstein distance are equivalent
in the set of probability measure with finite first moment.

In this PhD thesis we will consider models with many species, therefore we will work
in product spaces, and we will introduce suitable notions of distances on these spaces.

In the next Proposition we state a property on the convergence of measures, [59].

Proposition 1.2. Let (X, d) be a complete and separable metric space. Let p ∈ (0,∞),
let µn be a sequence of probability measures in Pp(X), and let µ ∈ Pp(X). Then, the
following are equivalent:

1. Wp(µn, µ)→ 0 as n→∞.

2. µn → µ in the weak sense as n→∞ and the following tightness condition holds:
for any x0 ∈ X,

lim
R→∞

lim sup
k→∞

ˆ
d(x0,x)≥R

d(x0, x)pdµn = 0.

3. µn → µ in the weak sense as n→∞, and there is convergence of the moment of
order p, i.e., for any x0 ∈ X,

ˆ
X×X

d(x0, x)p dµn(x)→
ˆ
X×X

d(x0, x)p dµ(x),

as n→∞.

1.6.1 One-dimensional case

In this Subsection we deal with d = 1 and p = 2, i.e., we consider the 2-Wasserstein
distance on R. In this case, there exists a unique optimal plan γ ∈ Πo(µ, ν) for which
the infimum in

W 2
2 (µ, ν) = inf

γ∈Π(µ,ν)

{¨
R×R
|x− y|2 dγ(x, y)

}
is attained, with µ, ν ∈ P2(R), [59]. This measure γ can be characterised by the
monotone rearrangements or pseudo-inverses of µ and ν: given µ ∈ P(R), its monotone
rearrangement is

Xµ(m) := inf{x : Mµ(x) > m} for all m ∈ Ω,

11



where Ω := (0, 1) and Mµ is the cumulative distribution of the measure µ, i.e.,

Mµ(x) := µ
(
(−∞, x]

)
for all x ∈ R.

The map Xµ is right-continuous and non-decreasing and satisfies, by denoting the one-
dimensional Lebesgue measure on Ω by m,(

Xµ

)
#m = µ,

ˆ
R
ζ(x)µ(dx) =

ˆ
Ω
ζ
(
Xµ(m)

)
dm,

for all Borel maps ζ : R → R. In particular, µ ∈ P2(R) if and only if Xµ ∈ L2(Ω).
Moreover, the joint map Xµ,ν : Ω → R × R defined by Xµ,ν(m) :=

(
Xµ(m), Xν(m)

)
characterises the optimal transportation plan γ ∈ Πo(µ, ν) by the formula

γ =
(
Xµ,ν

)
#m,

according to which

W 2
2 (µ, ν) =

ˆ
Ω
|Xµ(m)−Xν(m)|2 dm,

thus the 2-Wasserstein distance can be reformulated in terms of pseudo-inverses. Fur-
thermore, introducing the closed convex set of non-decreasing functions in the Hilbert
space L2(Ω), i.e.,

K := {X ∈ L2(Ω) : X is non-decreasing}, (1.15)

and observing that there is always a right-continuous representative due to monotonicity,
the map

Ψ : P2(R) 3 µ 7→ Xµ ∈ K (1.16)

is a distance-preserving bijection between the space of probability measures with finite
second moment P2(R) and the convex cone K of non-decreasing L2(Ω)-functions. By
using this bijection, we can rewrite the Eulerian system in terms of pseudo-inverses.

1.7 Maximal monotone operators

In this Section we provide a brief introduction to maximal monotone operators theory
developed by Brézis in [14], that we will apply in Chapter 5.

Let us start by defining such operator. Let H be a Hilbert set and P(H) its power
set. Let A : H → P(H) be a multivalued operator and D(A) = {x ∈ H : Ax 6= ∅}
its domain. We say the operator A is monotone if for all x1, x2 ∈ D(A), and for all
y1 ∈ Ax1, y2 ∈ Ax2,

(y1 − y2, x1 − x2) ≥ 0.

For example, let ϕ be a convex and proper function on H, i.e., ϕ : H →]−∞,+∞]
is such that ϕ 6≡ +∞ and ϕ(tx + (1 − t)y) ≤ tϕ(x) + (1 − t)ϕ(y), for all x, y ∈ H
and for all t ∈]0, 1[. Then the set D(ϕ) = {x ∈ H : ϕ(x) < +∞} is convex and the
sub-differential ∂ϕ defined as

y ∈ ∂ϕ(x) ⇐⇒ ∀ξ ∈ H,ϕ(ξ) ≥ ϕ(x) + (y, ξ − x)

is monotone in H.
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A monotone operator A is maximal if there is no monotone operator that properly
contains it. More precisely, A is a maximal monotone operator if and only if A is
monotone and for all x, y ∈ H such that η ∈ Aξ and

(y − η, x− ξ) ≥ 0 for all ξ ∈ D(A),

then y ∈ Ax.
For instance, if a function ϕ is convex, proper and lower semi-continuous, then ∂ϕ

is a maximal monotone operator.
From basic convex analysis, we know that if A is a maximal monotone operator,

then Ax is convex and closed for every x ∈ D(A), and such sets admit a unique element
with minimal norm. Setting A◦x := PAx0 the projection of 0 ∈ H onto Ax ⊂ H , where
PAx : H → Ax denotes the projection on Ax, then A◦x is the unique element with
minimal norm in Ax.

The theory we apply in this thesis, in particular in Chapter 5, is developed in [14,
Chapter 3] and is devoted to solve an equation of the type

du

dt
+Au 3 f, u(0) = u0, (1.17)

where A is a multivalued operator on H and f ∈ L1((0, T );H).
We now introduce the notions of strong and weak solution and some results.
We say that u is a strong solution to (1.17) if u ∈ C([0, T ], H) is absolutely continuous

on the compact sets of ]0, T [, differentiable almost everywhere on ]0, T [ and satisfies

u(t) ∈ D(A), and
du

dt
(t) +Au(t) 3 f(t)

almost everywhere on ]0, T [.
A function u ∈ C([0, T ];H) is said to be a weak solution to (1.17) if there exists two

sequences fn ∈ L1((0, T );H) and un ∈ C([0, T ], H) such that un is a strong solution to
dun
dt +Aun 3 fn, fn → f in L1((0, T );H) and un → u uniformly on [0, T ].

Next we gather some results from [14] that we mention in Chapter 5. In particular,
we provide the proofs of Lemma A.5, Theorem 3.5, and Theorem 3.17 in [14].

Lemma 1.1. Let m ∈ L1((0, T );R) be such that m ≥ 0 almost everywhere on ]0, T [,
and a ≥ 0 a constant. If φ : [0, T ]→ R is a continuous function satisfying

1

2
φ2(t) ≤ 1

2
a2 +

ˆ t

0
m(s)φ(s) ds

for all t ∈ [0, T ], then

|φ(t)| ≤ a+

ˆ t

0
m(s) ds

for all t ∈ [0, T ].

Proof. Let ε > 0 and set

ψε(t) =
1

2
(a+ ε)2 +

ˆ t

0
m(s)φ(s) ds.

Thus,
dψε
dt

(t) = m(t)ψ(t)
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almost everywhere on ]0, T [, and, by using the assumption,

1

2
φ2(t) ≤ ψ0(t) ≤ ψε(t)

for t ∈ [0, T ]. Therefore, we get

dψε
dt

(t) ≤ m(t)
√

2
√
ψε(t).

Now, we have that ψε(t) ≥ 1
2ε

2 for t ∈ [0, T ], then the map t 7→ ψε(t) is absolutely
continuous and since d

dt

√
ψε(t) = 1

2
√
ψε(t)

dψε
dt (t) almost everywhere, we derive

d

dt

√
ψε(t) ≤

1√
2
m(t)

almost everywhere on ]0, T [. It follows that√
ψε(t) ≤

√
ψε(0) +

1√
2

ˆ t

0
m(s) ds.

Then, we get

|φ(t)| ≤
√

2
√
ψε(t) ≤

√
2
√
ψε(0) +

ˆ t

0
m(s) ds = a+ ε+

ˆ t

0
m(s) ds,

for all t ∈ [0, T ] and all ε > 0. This concludes the proof.

Lemma 1.2. Let A be a monotone operator, f, g ∈ L1((0, T );H), and u and v weak
solutions to inclusions

du

dt
+Au 3 f and

dv

dt
+Av 3 g,

respectively. Then, for all 0 ≤ s ≤ t ≤ T ,

|u(t)− v(t)| ≤ |u(s)− v(s)|+
ˆ t

s
|f(σ)− g(σ)| dσ,

and for all 0 ≤ s ≤ t ≤ T , and for every x, y ∈ A,

(u(t)− u(s), u(s)− x) ≤ 1

2
|u(t)− x|2 − 1

2
|u(s)− x|2 ≤

ˆ t

s
(f(σ)− y, u(σ)− x) dσ.

Proof. Since this estimate is stable by passing to limit in C([0, T ];H), we can assume
that u and v are strong solutions. Thus, by using the monotonicity of A, we get

1

2

d

dt
|u(t)− v(t)|2 =

(
du

dt
(t)− dv

dt
(t), u(t)− v(t)

)
≤ (f(t)− g(t), u(t)− v(t)).

Since |u(t)−v(t)|2 is absolutely continuous on the compact sets of ]0, T [ and continuous
on [0, T ], by integrating on ]s, t[ we obtain

1

2
|u(t)− v(t)|2 − 1

2
|u(s)− v(s)|2 ≤

ˆ t

s
(f(σ)− g(σ), u(σ)− v(σ)) dσ.

Then, by applying Lemma 1.1, we derive the first inequality. The second inequality
follows by considering g ≡ y and v ≡ x.
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Theorem 1.2. Let A be a maximal monotone operator on H, f ∈ L1((0, T );H) and
u ∈ C([0, T ];H) a weak solution to (1.17). Assume that t0 is a Lebesgue point to the

right of f and set f(t0 + 0) = lim
h→0

1

h

ˆ t0+h

t0

f(s) ds. Then, the following properties are

equivalent:

1. u(t0) ∈ D(A).

2. lim inf
h→0

1

h
|u(t0 + h)− u(t0)| < +∞.

3. u is right differentiable in t0. In this case

d+u

dt
(t0) = (f(t0 + 0)−Au(t0))◦.

Proof. Clearly 3. implies 2.. Let us prove that 2. implies 1.. Let x, y ∈ A, and set

α := lim inf
h→0

1

h
|u(t0 + h)− u(t0)|. We have that

1

h

ˆ t0+h

t0

(f(σ)− y, u(σ)− x) dσ ⇀ (f(t0 + 0)− y, u(t0)− x)

as h→ 0. Moreover, by Lemma 1.2, we get(
u(t0 + h)− u(t0)

h
, u(t0)− x

)
≤ 1

h

ˆ t0+h

t0

(f(σ)− y, u(σ)− x) dσ.

Thus, by passing to the limit as h→ 0,

(α, u(t0)− x) ≤ (f(t0 + 0)− y, u(t0)− x),

for all x, y ∈ A. Since A is a maximal monotone operator, then u(t0) ∈ D(A). Fur-
thermore, we get that f(t0 + 0) − α ∈ Au(t0). Now we prove that 1. implies 3.. Let
u(t0) ∈ D(A). By applying Lemma 1.2 with g(t) ≡ f(t0 + 0) − (f(t0 + 0) − Au(t0))◦

and v(t) ≡ u(t0), we get

|u(t0 + h)− u(t0)| ≤
ˆ t0+h

t0

|f(σ)− f(t0 + 0) + (f(t0 + 0)−Au(t0))◦| dσ,

and therefore

lim sup
h→0

1

h
|u(t0 + h)− u(t0)| ≤ |(f(t0 + 0)−Au(t0))◦|.

From the previous point, we know that f(t0 + 0)−α ∈ A(u(t0)). Thus α = (f(t0 + 0)−
Au(t0))◦ and, therefore, u is right differentiable in t0 and

d+u

dt
(t0) = (f(t0 + 0)−Au(t0))◦,

that proves the statement.

The last result we prove involves a maximal monotone operator perturbed by a
Lipschitz operator.
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Theorem 1.3. Let A be a maximal monotone operator, ω > 0, f ∈ L1((0, T );H) and
u0 ∈ D(A). Then there exists a unique weak solution to

du

dt
+Au− ωu 3 f, u(0) = u0. (1.18)

Proof. Let us begin by proving the uniqueness. Let u and v be two solutions to (1.18).
By Lemma 1.2 we get

|u(t)− v(t)| ≤ |u(s)− v(s)|+ ω

ˆ t

s
|u(τ)− v(τ)| dτ,

for all 0 ≤ s ≤ t ≤ T . Then, by Grönwall’s inequality we derive

|u(t)− v(t)| ≤ eωt|u(0)− v(0)| = 0,

which proves uniqueness. Now, consider the iterative sequence defined by u0(t) ≡ u0,
and un+1 is the weak solution to

dun+1

dt
+Aun+1 3 f + ωun+1, un+1(0) = u0.

By invoking again Lemma (1.2), we obtain

|un+1(t)− un(t)| ≤
ˆ t

0
ω|un(s)− un−1(s)| ds,

for 0 ≤ t ≤ T and n ≥ 1. Therefore,

|un+1(t)− un(t)| ≤ (ωt)n

n!
‖u1 − u0‖L∞ .

This implies that the sequence un converges uniformly on [0, T ] to a function u which
is a weak solution to (1.18).

1.8 A literature review on aggregation models

The aggregation models with nonlocal interactions are extensively studied by adopting
many approaches. In this Section we cite some works, but this list is not exhaustive.
Since in this thesis we deal with no pressure term, we brefly list here some references
on the existence theory for systems of the form (1.7). We mention [33, 37, 46, 47] for
the one-dimensional case and [38, 61], for the multi-dimensional case. In particular, in
[33] authors focus on a model described a isentropic gas through porous media; in [37] a
inhomogeneous system of isentropic gas dynamics is studied; in [47] compressible Euler
equations with damping is presented; in [46] authors investigate a damped compressible
isentropic flow. For the multi-dimensional case, in [61] the isentropic damped Euler
equation is studied; in [38] the asymptotic behaviour of compressible Euler equation
with damping is analysed.
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1.8.1 First order models

Let us now switch to models with no pressure terms. There are many works concerning
the study of equation (1.1) and its variants. In [50] authors study models for swarm-
ing phenomena with nonlocal interactions in the one-dimensional case, and in particular
they focus on advection-diffusion equations with convolution terms describing long range
attraction and repulsion. In [57] a continuum model for aggregation equations applied
to biology is studied both in the one-dimensional case and in higher dimensions. In
[56] authors investigate a two-dimensional continuum model describing the behaviour
of biological individuals that interact through nonlocal terms. Here pattern formations
are studied. In [5] the aggregation equation (1.1) is studied in several dimensions with
initial data in L1(Rd) ∩ L∞(Rd) and a finite time blow-up result is proved with a Lip-
schitz assumption on the kernel. Aggregation equations (1.1) with singular kernels are
approached in many ways. In [8] a well-posedness result is provided in P2(Rd)∩Lp(Rd)
for sufficiently large p. In [7] authors study the well-posedness of non-negative solu-
tions of equation (1.1) where the kernel is singular at the origin, and the finite time
blow-up in multiple space dimensions is investigated. In [6] authors analyse the Osgood
condition associated to equation (1.1) with singular kernels. In [15] the large time be-
haviour of one-dimensional nonlocal models for aggregation phenomena is studied via a
gradient flow formulation considering the space of probability measure with the Wasser-
stein metric. In [40] authors study an aggregation phenomenon incuding the alignment
interactions and the results are obtained by using mass trasportation theory. In [23]
multi-dimensional continuum models for interacting particle systems through nonlocal
terms are investigated. Here existence and uniqueness of the solutions are provided by
adopting the theory of gradient flows in the space of probability measures equipped with
the Wasserstein distance, and a finite time collapse is proved. In the last two decades,
the attention of many reaserchers has turned to systems with many species. The first
order approach is considered in many papers, see [22, 34, 35]. In particular, in [34] a
one-dimensional system with cross-diffusion and nonlocal interactions is performed; in
[35] weak solutions to a two-species model with nonlocal interaction are investigated; in
[22] a first order system with potentials driven by Newtonian potentials is considered,
and a notion of gradient flow solutions is provided, cf. [2]. See also [32] for an application
to chemotaxis in biology.

Finite volume methods are adopted in order to study aggregation models with many
species. We mention [4, 24, 25] for macroscopic one-dimensional systems. In details,
in [25] a nonlocal two-species cross-interaction model with cross diffusion is studied,
and the solutions are analysed by considering many regimes, both analytically and
numerically. In [24] a semi-discrete finite volume scheme for a coupled system of two non-
local equations with cross-diffusion is investigated and the convergence of the scheme
is proved. Moreover, in [4] an implicit finite volume scheme for nonlinear and nonlocal
aggregation equations is studied and the convergence of the scheme is provided under
suitable assumptions on the potentials and diffusion functions.

1.8.2 Kinetic models

Kinetic theory provides a classical mesoscopic approach to fluid mechanics. For a gen-
eral overview we refer to [26, 58]. The kinetic approach is largely used in the study
of aggregation phenomena. Some of the techniques developed in this context are in-
spired by [48]. In [17] equation (1.5) is studied by tacking into account a self-propulsion
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term and a friction term. The first parameter provides an effect on individuals that
are independent of the other individuals, whereas with the second parameter a velocity-
averaging effect is considered and agents are forced to adapt their own velocity to that of
other close agents. Here, well-posedness, existence, uniqueness and continuous depen-
dence results are presented in the space of probability measures P1(Rd) equipped with
the Monge-Kantorovich-Rubinstein distance. Moreover, the corresponding microscopic
system is studied and a convergence result of the particle system to the kinetic equation
is provided. Equation (1.5) is investigated also in [39] in a multi-dimensional space,
considering in addition inertial effects. Here, by assuming smooth assumptions on the
kernel and by applying the theory developed in [17], an existence and uniqueness result
in the sense of measures is proved and the small inertia limit is performed, showing a
convergence result to the corresponding macroscopic system. Concerning the existence
of smooth solutions, it can be obtained using the classical framework for Vlasov-type
equations, [43]. See also [27] for recent treatments of the theory of Vlasov-Poisson
equation.

A lot of attention is devoted to aggregation systems with singular kernels also at
mesoscopic level. In [30], the Vlasov-Manev-Fokker-Planck system in dimension 3 is
considered, which has the gravitational potential of the form −1/r − 1/r2. Existence
of weak solutions are showed under suitable initial data. In [29], the fractional porous
medium equation is investigated and a local-in-time existence and uniqueness result is
proved. We also mention [20] for a recent contribution in the theory of Vlasov-Poisson-
Fokker-Planck system.

From the mesoscopic point of view, in [42] a finite volume scheme to approximate
the one-dimensional Vlasov-Poisson system is presented. Here the author proves that,
under suitable assumptions, the numerical approximation converges to the weak solution
of the system in L∞. Moreover, if initial data are in BV, then the convergence is strong
in C0((0, T );L1

loc).

1.8.3 Second order models

The microscopic system (1.4) is studied in several ways and many continuum models
are derived from it. In [10] system (1.4) is investigated by adding a friction term. Many
properties of the model are presented and several macroscopic equations are derived.

The macroscopic system (1.3) and its variants have been intensively studied with
the pressure term p = 0 and results of such “sticky particle” solutions have attracted
the attention of many researchers. We mention [9] for results related with existence
and uniqueness in the multi-dimensional case. In one space dimension there are many
results in the literature, cf. [12, 13, 51]. In particular, in [51] the one-species case is
investigated with W = 0 in the space of probability measures P2(R) with the quadratic
Wasserstein distance and many interesting properties of the solution are presented. In
[12] system (1.3) is performed and we briefly describe it in Section 1.3. Here existence
and uniqueness results are proved and many properties of the solution are provided in
the metric space (P2(R),W2). We also mention [53] for a very interesting application to
the Euler-Poisson model, in which W is the solution operator to Poisson equation. For
one-species case, a large friction limit is investigated in [21] where a multi-dimensional
damped Euler system is studied under the influence of a external potential with respect
to the 2-Wasserstein distance, and a rigorous proof of the overdamped limit is provided
in one space dimension. Very little attention has been devoted to multi-species second
order models, see [3] for an application to pedestrian movements.
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1.9 Outline of the thesis

This thesis is organised as follows.

Chapter 2 and Chapter 3 are based on a joint work with Young-Pil Choi and Simone
Fagioli. In particular, Chapter 2 is devoted to the study of a multi-dimension system
made up by kinetic equations describing the evolution of many species coupled through
nonlocal interaction. We consider inertial effects in the model and require smooth
assumptions on all the kernels. We prove existence and uniqueness of a measure solution
to the kinetic system. The main result in this Chapter concerns the small inertia
limit : we prove that the solution to the kinetic system converges towards a solution to
the associated first order macroscopic system as the inertia vanishes. More in details,
in Section 2.1 we describe the kinetic model we deal with, and we provide a formal
derivation of this model from a microscopic system when the number of individuals
increases to infinity. In Section 2.2 we provide the measure space we consider for
measure solutions. It is the product of spaces of probability measures on Rd with finite
first moment equipped with the 1-Wasserstein distance. In Section 2.3 we study the well-
posedness of the kinetic system. In particular, we associate to model its characteristic
system and we fall into the classical ordinary differential equations theory. Taking the
time dependent flow map associated to the characteristic system, we define the notion
of measure solution. In this Section we also provide some a priori estimates on the
characteristic system and we prove existence and uniqueness of measure solutions to
the kinetic system in Theorem 2.1, and existence of smooth solutions to the kinetic
system in Theorem 2.2. In Section 2.4 we gather all the uniform estimates in the inertia
parameter, holding both for smooth solutions and for measure solutions. Finally, in
Section 2.5 the main result of this Chapter is presented, that is Theorem 2.3. We prove
that, under suitable smooth assumption on the kernels, the solution to the kinetic
system converges towards a solution to the associated first order macroscopic system as
the inertia parameter vanishes. The results of this Chapter are inspired by the paper
[39] by Fetecau and Sun: we extend to many species their model without requiring
further assumptions.

In Chapter 3 we study a mesoscopic multi-dimension system describing the be-
haviour of many interacting species and we consider inertial effects and singular self-
potentials. We prove existence of solutions to the kinetic system, and we provide a
small-inertia result. We cite the papers [30] by Choi and Jeong and [19] by Carrillo,
Choi and Jung where the authors study the one-species case considering different ef-
fects on the model. Entering in details, in Section 3.1 we present the mesoscopic and
macroscopic models with singular self-potentials. In Section 3.2 we consider a regu-
larised version of the kinetic system obtained by perturbing the self-potentials and we
prove some uniform estimates with respect to the perturbation. In Section 3.3 we prove
existence of weak solutions to the kinetic system, see Theorem 3.1. In Section 3.4 we
show rigorously the convergence of the solutions to the kinetic system towards solutions
to the corresponding macroscopic model. This result is contained in Theorem 3.3.

In Chapter 4 we propose an upwind finite volume scheme for a system of two kinetic
equations coupled through nonlocal interaction terms. In this model we do not consider
inertial effects and we do not require any constrains on the mesh size. The finite volume
method we construct conserves mass and preserves positivity. The main result of this
Chapter concerns the convergence of the scheme. The notion of solution we adopt is
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the one of weak solution. The results of this Chapter are inspired by the paper [42]
by Filbet, where the author constructs a finite volume scheme to discretize the one-
dimensional Vlasov-Poisson system, showing that the approximated solution converges
to the continuous one as square roots of the time, space and velocity steps go to zero.
We improve the convergence rate in time, avoiding to take the square root of the time
step. In details, in Section 4.1 we introduce the model and some of its properties
at continuum level. In Section 4.2, we construct the numerical mesh and define the
notion of weak solutions. In Section 4.3 we provide some a priori estimates, used for
passing to the limit and obtain weak solutions of continuum system. In particular we
show that the numerical solutions remain non-negative and bounded under a suitable
timestep constraint. In Section 4.4 we prove the convergence of the numerical solution
of the scheme to a weak solution to the continuum system, see Theorem 4.1. The work
presented in this Chapter is based on a joint work with Markus Schmidtchen and Julia
Hauser.

In Chapter 5 we investigate a second order system with two species interacting
through nonlocal interactions and subject to linear damping from the macroscopic point
of view. Our results only deal with the one space dimensional case. We first consider
the case of smooth potentials and prove existence and uniqueness of the solution. Then,
after a suitable rescaling of the time variable, we consider a large-time large-damping
version of the system and show convergence to solution to the corresponding first order
system. We also study the case of Newtonian potentials in the self-interaction terms,
considering additional external coercive potentials. Once provided an existence result,
we prove a collapse result showing that for large time a solution converges toward Dirac
delta solutions. We mention the papers [12] by Brenier at al. where the author provide
the existence of solution considering the notion of “sticky particles” dealing only with
the one-species case and by not including the damping parameter, and [21] by Carrillo,
Choi and Tse where the authors study the large damping limit for the one-species case.
Entering more in details, in Section 5.1 we present the model from the microscopic
and macroscopic points of view. In Section 5.2 we define the metric structure. The
metric space we consider is the product of the probability spaces with finite second
moment equipped with the 2-Wasserstein distance. We introduce formally the large-
damping limit and we rephrase the model in a Lagrangian framework. In Section 5.3
we prove existence and uniqueness of solutions to the second order system considering
the Lagrangian formulation and applying the Brezis theory, [14]. This result is stated in
Proposition 5.1. In Section 5.4 we perform the large damping limit rigorously, obtaining
in Theorem 5.2 that solutions to second order system converge to the solutions of the
corresponding first order system. We observe that the technique used in this theorem
was never used in the one-species case. In Section 5.5 we consider the case of Newtonian
potentials and prove existence of sticky solutions and the large-time collapse to Dirac
deltas, see Theorem 5.3. In Section 5.6 we provide some numerical simulations.

The results of this Chapter are contained in [36], joint work with Marco Di Francesco
and Simone Fagioli.
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Chapter 2

Small inertia limit to first order
nonlocal system: smooth case

This Chapter is dedicated to investigating a mesoscopic multi-dimensional system with
many species coupled through nonlocal smooth interaction, considering also an inertia
parameter. Taking the associated characteristic system, we provide some a priori es-
timates. Then we prove existence and uniqueness of a measure solution to the kinetic
system in the space of probability measures with finite first moment endowed with the
1-Wasserstein distance. The main result concerns the small inertia limit: we prove that
the solution of the kinetic system converges towards a solution to the corresponding
first order macroscopic system as the inertia vanishes.

2.1 The model

The system we deal with is the following first order macroscopic system
∂tρi +∇ · (ρivi) = 0,

vi = −
N∑
j=1

∇Kij ∗ ρj ,
(2.1)

for i = 1, . . . , N , where N is the number of species, ρi(t, x) is the probability measure in
Rd modelling the i-th species, vi(t, x) is its Eulerian velocities, Kii are self-interaction
kernels and Kij are cross-interaction kernels. The self-interaction kernels model the in-
teractions between agents of the same species, whereas cross-interaction kernels describe
the interactions of individuals of different species.

System (2.1) admits a discrete counterpart constructed as follows: consider M par-
ticles for each species and let zki , k = 1, . . . ,M , be the locations of M particles of the
i-th species, for i = 1, . . . , N . Denoting by uki the velocities of zki , the dynamics of zki
is determined by the first order ODE system

dzki
dt

= uki ,

uki = − 1

M

N∑
j=1

M∑
h=1

∇Kij(z
k
i − zhi ),

(2.2)
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as i = 1, . . . , N , k = 1, . . . ,M , where Kij are the same kernels as in (2.1). System (2.2)
was derived in [10] considering the second order model

ε
d2zki
dt2

+
dzki
dt

= F ki ,

F ki = − 1

M

N∑
j=1

M∑
h=1

∇Kij(z
k
i − zhi ),

(2.3)

as i = 1, . . . , N , k = 1 . . . ,M . In (2.3), ε > 0 represents a small inertia time of
individuals. In system (2.2) it is assumed that the ε-terms in (2.3) are negligible, but
this choice is quite restrictive in many cases since in this way a “reaction” time is not
taking into account and velocities change instantaneously, [39]. Considering (2.2), we
can write system (2.3) as

d

dt
zki = uki ,

ε
d

dt
uki = −uki −

1

M

N∑
j=1

M∑
h=1

∇Kij(z
k
i − zhi ),

(2.4)

with ε > 0, i = 1, . . . , N , k = 1, . . . ,M . Formally, considering the limit as ε → 0 in
(2.4), we obtain system (2.2).

Taking the formal limit as the number of particles increases to infinity, namely
M →∞, we can associate to (2.4) the kinetic system

∂tfi + v · ∇xfi =
1

ε
∇v · (vfi) +

1

ε
∇v ·

(( N∑
j=1

∇Kij ∗ ρj
)
fi

)
, (2.5)

for i = 1, . . . , N , where fi(t, x, v) is the mesoscopic density of the i-th species at position
x ∈ Rd with velocity v ∈ Rd, and ρi(t, x) is the associated macroscopic population
density, i.e.,

ρi(t, x) =

ˆ
Rd
fi(t, x, v) dv. (2.6)

Our aim is to investigate the small inertia limit at continuum level. In particular,
we want to study the ε → 0 limit in (2.5) and prove that it converges towards to the
first order PDEs model (2.1).

2.1.1 Formal derivation of the kinetic model

We now formally derive the kinetic model (2.5) from the particle system (2.4) as the
number of particles increases to infinity. Let fi,M , for i = 1, . . . , N , be the empirical
distribution density associated to the solution (zki (t), uki (t)) to (2.4), as k = 1, . . . ,M ,
defined by

fi,M (t, x, v) =
1

M

M∑
k=1

δ(x− zki (t))δ(v − uki (t)).

Observe that

ρi,M (t, x) :=

ˆ
Rd
fi,M (t, x, v) dv =

1

M

M∑
k=1

δ(x− zki (t)),
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thus, if Q is a generic kernel, we get

∇Q ∗ ρi,M (x) =

ˆ
Rd
∇Q(x− y)ρi,M (y) dy =

1

M

M∑
k=1

∇Q(x− zki ).

Now, let ϕ := ϕ(x, v) ∈ C1
c (R2d) be a test function. Then

d

dt
〈fi,M (t), ϕ〉 =

1

M

M∑
k=1

d

dt
ϕ(zki (t), uki (t))

=
1

M

M∑
k=1

∇xϕ(zki (t), uki (t))ż
k
i (t) +

1

M

M∑
k=1

∇vϕ(zki (t), uki (t))u̇
k
i (t)

=
1

M

M∑
k=1

∇xϕ(zki (t), uki (t))u
k
i (t)

+
1

M

M∑
k=1

∇vϕ(zki (t), uki (t))
1

ε

(
− uki −

1

M

N∑
j=1

M∑
h=1

∇Kij(z
k
i − zhi )

)

=〈fi,M (t),∇xϕ · v〉+

〈
fi,M (t),∇vϕ ·

1

ε

(
− v −

N∑
j=1

∇Kij ∗ ρj,M (x)

)〉
.

Integrating by parts in x and v, we have〈
∂tfi,M + v · ∇xfi,M −

1

ε
∇v ·

((
v +

N∑
j=1

∇Kij ∗ ρj,M
)
fi,M

)
, ϕ

〉
= 0,

hence

∂tfi,M + v · ∇xfi,M =
1

ε
∇v · (vfi,M ) +

1

ε
∇v ·

(( N∑
j=1

∇Kij ∗ ρj,M
)
fi,M

)
.

Assuming that fi,M converges to fi as M →∞ for all i = 1, . . . , N , we formally obtain
the mesoscopic system (2.5).

2.2 Main assumptions

Since we deal with N interacting species, the measure space we consider for measure
solutions is (P1(Rd)N ,W1), where P1(Rd) denotes the space of probability measures on
Rd having finite first moment, i.e.,

P1(Rd) =

{
f ∈ P(Rd) :

ˆ
Rd
|x|f(x) dx <∞

}
,

and W1 is the 1-Wasserstein distance on P1(Rd)N defined below. In order to fix the
notation, we write

f = (fi)
N
i=1 ∈ P1(Rd)N (2.7)

to denote a N -tuple of probability measures in the product space P1(Rd)N .
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Definition 2.1. (1-Wasserstein distance) Let f = (fi)
N
i=1, g = (gi)

N
i=1 ∈ P1(Rd)N . The

1-Wasserstein distance between f and g is defined as

W1(f ,g) := sup
t∈[0,T ]

[
W1(f1, g1) + · · ·+W1(fN , gN )

]
,

where W1 is the Monge-Kantorovich-Rubinstein distance introduced in Section 1.6.

We assume the following condition, labelled by (Pot), on the potentials involved in
system (2.5). Denoting by Q a generic potential, we require

Q ∈W 2,∞(Rd) such that ∇Q is locally Lipschitz and sub-linear, i.e., (Pot)

1. for all x ∈ Rd there is a constant C > 0 such that

|∇Q(x)| ≤ C(1 + |x|);

2. for any compact set K ⊂ Rd there exists a positive constant L such that

|∇Q(x)−∇Q(y)| ≤ L|x− y|,

for all x, y ∈ K.

Remark 2.1 (Lipschitz constant). Denote by BR a closed ball in Rd centered in 0
and with radius R > 0 and consider a function Q : Rd → Rn. We denote by LipR(Q)
the Lipschitz constant of Q in the ball BR ⊂ Rd. If Q depends also on time, i.e.,
Q : [0, T ]× Rd → Rn, Q = Q(t, x), we write LipR(Q) to denote the Lipschitz constant
of Q with respect to x in the ball BR ⊂ Rd, that is the smallest constant such that

|Q(t, x)−Q(t, y)| ≤ LipR(Q)|x− y|,

for all x, y ∈ BR, and for all t ∈ [0, T ].

2.3 Well-posedness for the kinetic system for ε > 0 fixed

This Section is devoted to the study of the well-posedness for system (2.5) for ε > 0
fixed, in the spirt of [17]. We start observing that such existence theory can be studied
for a more general class of force fields

E := (Ei)
N
i=1(t, x) : [0, T ]× Rd → RNd,

for i = 1, . . . , N , fulfilling the following general set of assumptions:

(E1) Ei are continuous on [0, T ]× Rd, for all i = 1, . . . , N .

(E2) There exist some positive constants Ci such that

|Ei(t, x)| ≤ Ci(1 + |x|),

for all (t, x) ∈ [0, T ]× Rd, for all i = 1, . . . , N .

(E3) Ei are locally Lipschitz with respect to x uniformly in t, for i = 1, . . . , N , that is
for any compact set K ⊂ Rd there exist positive constants Li such that

|Ei(t, x)− Ei(t, y)| ≤ Li|x− y|,

for all x, y ∈ K, and for all t ∈ [0, T ].
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The kinetic system we are going to study takes then the following form

∂tfi + v · ∇xfi −
1

ε
∇v · (vfi) +

1

ε
Ei · ∇vfi = 0, (2.8)

as i = 1, . . . , N . Following the approach in [17], we will construct solutions to (2.8) by
considering the following characteristic system associated to (2.8)

dX

dt
= V,

dV

dt
= −1

ε
V +

1

ε
Ei(t,X),

(2.9)

as i = 1, . . . , N . Introducing P := (X,V ) ∈ Rd × Rd, and denoting by

ΨEi : [0, T ]× Rd × Rd → Rd × Rd

the right-hand side of system (2.9), we can rewrite system (2.9) as

d

dt
P = ΨEi(t, P ), (2.10)

for i = 1, . . . , N , subject to the initial condition (X0, V0) ∈ Rd × Rd. Throughout the
Chapter, we will use the compact notation

ΨE := (ΨEi)
N
i=1.

Note that system (2.5) falls back to this formalism by setting

E := (Ei)
N
i=1 =

(
−

N∑
j=1

∇Kij ∗ ρj
)N
i=1

.

The following Lemma concerns existence and uniqueness of solutions to system (2.9),
and falls into the classical ordinary differential equations theory, see [55].

Lemma 2.1. Fix T > 0 and ε > 0. Consider a vector field E = (Ei)
N
i=1 satisfying

(E1)-(E2)-(E3). Let P0 ∈ R2d be a given vector. Then, for each i = 1, . . . , N , there
exists a unique solution P to system (2.10) with initial condition P0 (or equivalently
(X,V ) solution to system (2.9) with initial condition (X0, V0), for each i = 1, . . . , N)
such that P ∈ C1([0, T ];R2d). Furthermore, there exists a constant C depending on T ,
|X0|, |V0|, and on the constants Ci in Assumption (E2) such that

|P | ≤ |P0|eCt,

for all t ∈ [0, T ].

Proof. The statement follows from the regularity of the fields Ei, as i = 1, . . . , N , using
the standard theory of ordinary differential equations. The bound follows from a direct
estimate on the equations, using the Assumption (E2).

Thanks to the existence result above, we can introduce the time dependent flow map
associated to system (2.9) by

T tEi : Rd × Rd → Rd × Rd,
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such that
T tEi((X0, V0)) = (X(t), V (t)),

where (X(t), V (t)) is the unique solution to (2.9) at time t > 0 under the initial condition
(X0, V0).

We are now in the position to introduce the notion of measure solution to system
(2.8). Consider fi0 ∈ P1(R2d) the initial datum of the i-th species and let T > 0. Then,
a measure solution to (2.8) can be defined as

fi(t) = T tEi#fi0, (2.11)

as i = 1, . . . , N . With a slight abuse of notation, for using a compact formulation we
set

T tE =
(
T tEi
)N
i=1
,

and given the initial datum f0 ∈ P(R2d)N and a time T > 0, we define the measure
solution to (2.8) as

f(t) = T tE#f0. (2.12)

Going back to system (2.5), we define the vector field E[f ] associated to a N -tuple
of measures f as

E[f ] = (Ei[f ])
N
i=1 =

(
−

N∑
j=1

∇Kij ∗ ρj
)N
i=1

. (2.13)

We can now give the notion of measure solution to system (2.5) as in [17, 39].

Definition 2.2 (Measure solution to (2.5)). Fix T > 0 and ε > 0. Let f0 ∈ P1(R2d)N

be a given initial condition and let E[f ] be defined as in (2.13). A N -tuple f : [0, T ]→
P1(R2d)N is a measure solution to system (2.5) with initial condition f0 if:

1. the field E[f ] defined in (2.13) satisfies the conditions (E1)-(E2)-(E3);

2. it holds f(t) = T tE[f ]#f0.

2.3.1 A priori estimates on the characteristics system

In this Subsection we collect some results on the solution to the characteristic system
(2.9). We start with two standard regularity results. The proofs of the two Lemmas
below can be obtained directly from system (2.9) and by definition of ΨE in (2.10).

Lemma 2.2 (Regularity of the characteristic system). Let E : [0, T ]× Rd → RNd be a
field that satisfies (E1)-(E2)-(E3). Consider R > 0 and the closed ball BR ⊂ RNd×RNd.
Then

1. ΨE is bounded in compact sets, i.e.,

|ΨE(t, P )| ≤ C,

for all P ∈ BR, t ∈ [0, T ] and for some C > 0 which depends on R and
‖E‖L∞([0,T ]×B1

R), where B
1
R is the ball in Rd with radius R.

2. ΨE is locally Lipschitz with respect to X and V , i.e.,

|ΨE(t, P1)−ΨE(t, P2)| ≤ C(1 + LipR(E))|P1 − P2|,

for all P1, P2 ∈ BR, t ∈ [0, T ] and C > 0.
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Lemma 2.3 (Dependence of the characteristic equations on E). Consider two fields
E and D satisfying (E1)-(E2)-(E3), and consider the functions ΨE,ΨD as in (2.10).
Then, for any compact set B ⊂ RNd × RNd,

‖ΨE −ΨD‖L∞(B) ≤
1

ε
‖E−D‖L∞(B1).

Now we provide some results that concern the dependence of the characteristics on
the field E and a quantitative bound on the regularity of the flow T tE.

Lemma 2.4 (Dependence of the characteristics on E). Fix T > 0 and consider two
vector fields E and D satisfying (E1)-(E2)-(E3). Fix P0 ∈ RNd × RNd and R > 0.
Assume

|T tE(P0)| ≤ R, |T tD(P0)| ≤ R,

for t ∈ [0, T ]. Then, it holds that

|T tE(P0)− T tD(P0)| ≤ eCt − 1

Cε
sup

s∈[0,T )
‖E(s)−D(s)‖L∞(B1

R),

for t ∈ [0, T ], where the constant C depends on R and LipR(E).

Proof. Let PE(t) = T tE(P0) and PD(t) = T tD(P0) be the solutions to system (2.9) with
vector fields E and D respectively, that is

d

dt
PE(t) = ΨE(t, PE(t)),

d

dt
PD(t) = ΨD(t, PD(t)).

Using Lemma 2.2 and Lemma 2.3 we have

|PE(t)− PD(t)| ≤
ˆ t

0
|ΨE(s, PE(s))−ΨD(s, PD(s))| ds

≤
ˆ t

0
|ΨE(s, PE(s))−ΨE(s, PD(s))| ds

+

ˆ t

0
|ΨE(s, PD(s))−ΨD(s, PD(s))| ds

≤ C

ˆ t

0
|PE(s)− PD(s)| ds+

ˆ t

0

1

ε
‖E(s)−D(s)‖L∞(B1

R) ds.

By Grönwall’s lemma we obtain that

|PE(t)− PD(t)| ≤
ˆ t

0
eC(t−s) 1

ε
‖E(s)−D(s)‖L∞(B1

R) ds

≤ eCt − 1

Cε
sup

s∈[0,T )
‖E(s)−D(s)‖L∞(B1

R),

that concludes the proof.

Remark 2.2. Note that the sub-linearity assumption on the vector field E ensures
global existence for solution for t ∈ R. The boundedness assumption in Lemma 2.4 on
the initial flow T tE(P0) is only needed to prove a quantitative estimate on the flow map
for every time t ∈ [0, T ].
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Lemma 2.5 (Regularity of the characteristics with respect to the initial conditions).
Fix T > 0 and a vector field E satisfying (E1)-(E2)-(E3). Consider P1, P2 ∈ RNd×RNd
and R > 0 and assume

|T tE(P1)| ≤ R, |T tE(P2)| ≤ R,
for t ∈ [0, T ]. Then

|T tE(P1)− T tE(P2)| ≤ |P1 − P2|eC
´ t
0 (LipR(E(s))+1) ds,

for t ∈ [0, T ], where the constant C depends on R.

Proof. Set Pi(t) = T tE(Pi), for i = 1, 2, and t ∈ [0, T ]. These functions fulfil

d

dt
Pi(t) = ΨE(t, Pi(t)), Pi(0) = Pi,

for i = 1, 2. Using Lemma 2.2, for t ∈ [0, T ] we have that

|P1(t)− P2(t)| ≤ |P1 − P2|+
ˆ t

0
|ΨE(s, P1(s))−ΨE(s, P2(s))| ds

≤ |P1 − P2|+ C

ˆ t

0
(LipR(E(s)) + 1)|P1(s)− P2(s)| ds.

Applying Grönwall’s lemma to inequality above, we get the statement.

Remark 2.3. Lemma 2.5 ensures that the flow T tE is Lipschitz on BR ⊂ RNd × RNd,
with constant

LipR(T tE) ≤ eC
´ t
0 (LipR(E(s))+1) ds,

for t ∈ [0, T ].

Lemma 2.6 (Regularity of the characteristics with respect to time). Let T > 0 and E
be a vector field satisfying (E1)-(E2)-(E3). Let P0 ∈ RNd × RNd, R > 0 and assume

|T tE(P0)| ≤ R,

for t ∈ [0, T ]. Then, it holds that

|T tE(P0)− T sE(P0)| ≤ C|t− s|,

for s, t ∈ [0, T ], where the constant C depends on R and ‖E‖L∞([0,T ]×B1
R).

Proof. Since we are assuming that T tE(P0) is in a compact subset of RNd × RNd for
every time, then the statement holds by definition of T tE(P0) and by Lemma 2.2.

In the following Lemmas we collect some contraction results in the Wasserstein
distance W1 that are crucial in proving existence of measure solutions for (2.8). What
we reproduce is the extension to multiple species of the results in [17, Lemma 3.11,
Lemma 3.12, Lemma 3.13].

Lemma 2.7. Let E, D : RNd → RNd be two Borel measurable maps and let f ∈
P1(Rd)N . Then

W1

(
E#f ,D#f

)
≤ ‖E−D‖L∞(supp f).

Proof. Thanks to the Definition 2.1 of 1-Wasserstain distance in the product space, it
holds that

W1

(
E#f ,D#f

)
≤

N∑
i=1

W1(Ei#fi, Di#fi)
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≤
N∑
i=1

‖Ei −Di‖L∞(supp f)

≤ ‖E−D‖L∞(supp f),

thus the statement is proved.

Lemma 2.8. Let T > 0. Let E : [0, T ] × Rd → RNd be a field that satisfies (E1)-
(E2)-(E3) and let f be a N -tuple of measures on Rd with compact support contained
in a ball BR ⊂ Rd. Then, there exists a positive constant C depending on N , R and
‖E‖L∞([0,T ]×B1

R) such that

W1(T tE#f , T sE#f) ≤ C|t− s|,

for any s, t ∈ [0, T ].

Proof. By the definition of flow in (2.12), we have that

W1

(
T tE#f , T sE#f

)
≤

N∑
i=1

W1(T tEi#fi, T
s
Ei#fi)

≤
N∑
i=1

Ci|t− s|

≤ C|t− s|,

therefore the statement holds.

Lemma 2.9. Let T : RNd → RNd be a Lipschitz map and let f ,g ∈ P1(Rd)N both have
compact support contained in a ball BR. Then

W1

(
T #f , T #g

)
≤ LW1(f ,g),

where L is the Lipschitz constant of T on the ball BR.

Proof. By a simple application of the triangular inequality we have

W1

(
T #f , T #g

)
=W1

(
(T1#f1, · · · , TN#fN ), (T1#g1, · · · , TN#gN )

)
≤

N∑
i=1

[
W1(Ti#fi, Ti#gi)

]
≤

N∑
i=1

LiW1(fi, gi)

≤ L W1(f ,g),

that concludes the proof.

2.3.2 Existence and uniqueness for smooth potentials

We turn now into the existence and uniqueness of measure solutions to system (2.5).
We first provide the following preliminary Lemmas, whose proof is straightforward and
we omit.
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Lemma 2.10. Assume the potentials Kij under assumption (Pot). Let f ∈ P1(R2d)N

be with compact support contained in a ball BR ⊂ R2d. Set B1
R := {x : (x, v) ∈ BR}.

Consider the vector field defined in (2.13). Then,

‖E[f ]‖L∞(B1
R) ≤ Ξ, and LipR(E[f ]) ≤ Υ,

where the constants Ξ and Υ are defined by

Ξ :=
N∑

i,j=1

‖∇Kij‖L∞(B2R),

and

Υ :=

N∑
i,j=1

Lip2R(∇Kij).

Lemma 2.11. Assume the potentials Kij as in (Pot). Let f ,g ∈ P1(R2d)N and R > 0.
Then,

‖E[f ]−E[g]‖L∞(B1
R) ≤ ΥW1(f ,g).

Existence and uniqueness of measure solutions to the kinetic system (2.5) is stated
and proved in the following Theorem.

Theorem 2.1. Assume the potentials Kij under assumption (Pot). Let f0 ∈ P1(R2d)N

be with compact support. Then there exists a unique measure solution f ∈ P1(R2d)N to
system (2.5) with initial condition f0 in the sense of Definition 2.2. In particular,

f ∈ C([0,+∞);P1(R2d)N ), (2.14)

and there exists an increasing function R = R(T ) such that for all T > 0,

supp(f) ⊂ BR(T ) ⊂ Rd × Rd, (2.15)

for all t ∈ [0, T ].

Proof. Let f0 be such that

supp(f0) ⊂ BR0 ⊂ Rd × Rd,

for some R0 > 0. In order to prove existence and uniqueness of the solution, we are
going to use a contraction argument. In particular, we introduce the metric space

F =
{
f ∈ C((0, T ],P1(R2d)N ) : supp(f) ⊂ BR for all t ∈ [0, T ]

}
,

where R := 2R0 and T > 0 is a fixed time we will choose later. This metric space is
equipped with the distance W1, see Definition 2.1. On this space we define a map as
follows. For f ∈ F , consider E[f ] defined as in (2.13). Then, by Lemmas 2.10 and 2.11
and by assumption (Pot), we obtain that E[f ] satisfies (E1)-(E2)-(E3) and thus we can
define

Γ[f ](t) := T tE[f ]#f0.
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The aim is to prove that this map is a contraction and its unique fixed point in F is
the solution to (2.5). We start proving that the operator Γ[f ] is well-posed in the space
F . From Lemma 2.10 we have that

‖E[f ]‖L∞([0,T ]×B1
R) ≤ Ξ,

and from Lemma 2.2, ∣∣∣∣ ddtT tE[f ](P )

∣∣∣∣ ≤ C1,

for all P ∈ BR0 ⊂ Rd × Rd, with C1 depending on R0 and Ξ. For T < R0/C1, we have
that T tE[f ]#f0 has support contained in BR for all t ∈ [0, T ]. Then, for each t ∈ [0, T ],
Γ[f ](t) ∈ P1(R2d)N , the support of Γ[f ](t) is contained in BR and the map t 7→ Γ[f ](t)
is continuous by Lemma 2.8. Thus the map Γ : F → F is well defined.
We show now that the map is a contraction, i.e., considering two functions f ,g ∈ F and
taking Γ[f ] and Γ[g], we want to prove that

W1(Γ[f ],Γ[g]) ≤ CW1(f ,g)

for 0 < C < 1 which does not depend on the functions f and g. By definition of Γ we
have that

W1(Γ[f ],Γ[g]) =W1(T tE[f ]#f0, T tE[g]#f0).

Using Lemmas 2.7, 2.4 and 2.11, the above distance can be estimated as follows

W1(T tE[f ]#f0, T tE[g]#f0) ≤ ‖T tE[f ] − T
t
E[g]‖L∞(supp f0)

≤ C(t) sup
s∈[0,T ]

‖E[f ](s)−E[g](s)‖L∞(B1
R)

≤ C(t)ΥW1(f ,g),

where C(t) = (eC2t − 1)/εC2 is the function in the statement of Lemma 2.4, with C2 a
constant depending on R and Υ. Therefore, we obtain that

W1(Γ[f ],Γ[g]) ≤ C(t)ΥW1(f ,g).

Since it holds that
lim
t→0

C(t) = 0,

we get
W1(Γ[f ],Γ[g]) ≤ C(T )ΥW1(f ,g).

We can choose T small enough so that C(T )Υ < 1. In this way, the functional Γ is
contractive and then there is a unique fixed point of Γ in F . By construction it is easy
to see that this fixed point of Γ is a solution to (2.5) on [0, T ]. Finally, since the growth
of characteristic is bounded, as proved in Lemma 2.1, we can construct a unique global
solution satisfying (2.14) and (2.15).

Proposition 2.1 (Stability of the solutions). Assume that the potentials Kij are under
assumption (Pot). Let f0,g0 ∈ P1(R2d)N be with compact support, and consider the
solutions f ,g to (2.5) with initial conditions f0 and g0, respectively. Then, there exists
an increasing function r(t) : [0,∞) → R+ with r(0) = 1 that depends only on the
supports of f0 and g0 such that

W1(f(t),g(t)) ≤ r(t)W1(f0,g0), (2.16)

for t ≥ 0.
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Proof. Take T > 0 and let R > 0 such that the supports of f(t) and g(t) are contained
in BR ⊂ R2d for each t ∈ [0, T ]. In order to prove the stability result, we follow the
strategy introduced in [17, Theorem 3.16], where a triangulation argument mixes the
estimates obtained in the previous Lemmas. We get

W1(f(t),g(t)) =W1(T tE[f ]#f0, T tE[g]#g0)

≤ W1(T tE[f ]#f0, T tE[g]#f0) +W1(T tE[g]#f0, T tE[g]#g0)

=: A1 +A2.

Using Lemmas 2.7, 2.4 and 2.11, we get

A1 ≤ ‖T tE[f ] − T
t
E[g]‖L∞(supp f0)

≤
ˆ t

0
eC1(t−s) 1

ε
‖E[f ](s)− E[g](s)‖L∞(B1

R) ds

≤ C1
Υ

ε

ˆ t

0
eC1(t−s)W1(f(s),g(s)) ds.

Moreover, by Lemma 2.5, calling L the Lipschitz constant of T tE[g] on BR, we have that

A2 ≤ LW1(f0,g0) ≤ eC2tW1(f0,g0),

for all t ∈ [0, T ]. Thus, we obtain

W1(f(t),g(t)) ≤ Υ

ε

ˆ t

0
eC1(t−s)W1(f(s),g(s)) ds+ eC2tW1(f0,g0).

Setting C = max{Υ/ε, C1, C2}, multiplying by e−Ct we get

e−CtW1(f(t),g(t)) ≤ C
ˆ t

0
e−CsW1(f(s),g(s)) ds+W1(f0,g0).

By Grönwall’s lemma we derive

e−CtW1(f(t),g(t)) ≤ W1(f0,g0)eCt,

for t ∈ [0, T ], thus (2.16) holds.

Theorem 2.2 (Existence of smooth solutions). Let T > 0 be a positive time. Assume
∇Kij ∈ W 1,∞(Rd). Let f0 ∈ C2(R2d)N ∩ L1(R2d)N . Then system (2.5) has a solution
f ε ∈ C([0, T ]; C1(R2d)N ) with initial datum f0.

Sketch of Proof. We provide a sketch of proof. The details can be found in [43] for
Vlasov-Poisson system and Vlasov-Maxwell system. The proof is divided in three steps.
One first constructs an approximating sequence f ε,n ∈ C([0, T ]; C2(Rd × Rd)N ) by iter-
ations, defining f ε,n+1 to be the solution of

∂tf
ε,n+1
i + v · ∇xf ε,n+1

i − 1

ε
∇v · (vf ε,n+1

i ) +
1

ε
Eni · ∇vf

ε,n+1
i = 0,

f ε,n+1
i (0, x, v) = fi0(x, v),

as i = 1, . . . , N . Once we observe that the characteristics associated to the system
above depend on n, but still satisfy the features in Lemmas above, then it holds that
f ε,n ∈ C1([0, T ]; C1(Rd × Rd)N ) is uniformly bounded with respect to n, since all the
constants in the estimates above depend on the support of the initial datum and on
the Lipschitz constant of the kernels. Next, showing that f ε,n is a Cauchy sequence in
C([0, T ]; C1(Rd × Rd)N ) converging to the solution to (2.5), we complete the proof.
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2.4 Uniform estimates in ε

In this Section we gather some uniform in ε estimates we will use to prove the conver-
gence of solutions to (2.5) towards the solution to (2.1) as ε → 0. For this reason, we
make the ε-dependence explicit, i.e., we deal with the system

∂tf
ε
i + v · ∇xf εi =

1

ε
∇v ·

((
v +

N∑
j=1

∇Kij ∗ ρεj
)
f εi

)
, (2.17)

for i = 1, . . . , N , equipped with initial data

f εi (t, x, v)|t=0 = f εi0(x, v) ∈ P1(Rd × Rd), (2.18)

and where
ρεi (t, x) =

ˆ
Rd
f εi (t, x, v) dv.

Throughout this Section, we assume the initial data with compact support.

Proposition 2.2 (Uniform estimate for the support). Assume all the potentials under
assumption (Pot). Let f ε be a solution to the system (2.17)-(2.18) as proved in Theorem
2.1. Then, there exists an increasing function R(T ) independent on ε such that for all
T > 0,

supp(f ε)(t) ⊂ BR(T ), (2.19)
for all t ∈ [0, T ] and ε > 0. The function R(T ) depends only on the support of f ε0 and
Ξ.

Proof. Consider the initial point (x0, v0) ∈ supp(f ε0 ). The support of f ε evolves accord-
ing to the flow associated to the following characteristic equations

dxεi
dt

= vεi , (2.20)

ε
dvεi
dt

= −vεi −
N∑
j=1

∇Kij ∗ ρεj , (2.21)

starting from (xi0, vi0), as i = 1, . . . , N . Since∣∣∣∣ N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣ ≤ N∑

j=1

‖∇Kij‖L∞ =: Ci,1,

for i = 1, . . . , N , we have that the Euclidean norms |vεi (t)| of the trajectories of vεi
satisfies

d|vεi |
dt
≤ −1

ε
|vεi |+

1

ε
C1, vεi (0) = vi0,

with C1 = maxiCi,1. Therefore, there exists a constant C2 depending only on the
support of f0 and Ξ such that all the characteristic trajectories starting within the
supports of f0 satisfy

|vεi (t)| ≤ C2,

as i = 1, . . . , N , for all t > 0 and ε > 0. The trajectories of xεi grow at most linearly in
time since

d|xεi |
dt
≤ |vεi |.

Then, there exists a function R(T ) that depends only on the supports of f0, T and Ξ
such that (2.19) holds.
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2.4.1 Estimate for smooth solutions

We first produce uniform in ε estimates in case of smooth solutions, namely solutions
given by Theorem 2.2. In the next Subsection, we will deal with uniform in ε estimates
for measure solutions.

Proposition 2.3. Assume all the potentials under assumption (Pot). Suppose that the
initial datum f0 in (2.18) has a finite first moment in v, i.e., |v|fi0 ∈ L1(Rd × Rd) for
all i = 1, . . . , N . Let f ε be the classical solution to (2.17), as in Theorem 2.2. Then
there exist some positive constants Ci, as i = 1, . . . , N , and a function M(ε) depending
on ε, such that ¨

R2d

∣∣∣∣v +
N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣f εi dx dv ≤ CiM(ε), (2.22)

for all t ∈ [0, T ], where Ci depends on ‖(1 + |v|)fi0‖L1(R2d) and Ξ. Moreover,

lim
ε↓0

M(ε) = 0.

Proof. We set

Ii(t) =

¨
R2d

∣∣∣∣v +
N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣f εi dx dv,

as i = 1, . . . , N . We want to prove that there exist Ci and M(ε) as in the statement
such that

sup
t∈[0,T ]

Ii(t) ≤ CiM(ε),

for a small ε. Straightforward computation shows that

d

dt
Ii(t) =

¨
Rd×Rd

(
∂t

∣∣∣∣v +
N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣)f εi dx dv

+

¨
Rd×Rd

∣∣∣∣v +
N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣∂tf εi dx dv.

By using system (2.17) and integration by parts, we get

¨
Rd×Rd

∣∣∣∣v +

N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣∂tf εi dx dv

=−
¨

Rd×Rd
(v · ∇xf εi )

∣∣∣∣v +
N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣ dx dv

+
1

ε

¨
Rd×Rd

∇v ·
((

v +

N∑
j=1

∇Kij ∗ ρεj
)
f εi

)∣∣∣∣v +

N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣ dx dv

=

¨
Rd×Rd

(
v · ∇x

∣∣∣∣v +
N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣)f εi dx dv

− 1

ε

¨
Rd×Rd

∣∣∣∣v +

N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣f εi dx dv.
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Therefore, we have that

d

dt
Ii(t) = −1

ε
Ii(t) + I1

i (t) + I2
i (t),

with

I1
i (t) =

¨
R2d

(
∂t

∣∣∣∣v +
N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣)f εi dx dv,

I2
i (t) =

¨
R2d

(
v · ∇x

∣∣∣∣v +

N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣)f εi dx dv,

for i = 1, . . . , N . In order to obtain our claim, we want to show that I1
i (t) and I2

i (t)
are bounded linearly by Ii(t), and then derive a differential inequality to bound Ii(t).
Setting

〈fi〉 :=

ˆ
Rd
fi dv,

integrating (2.17) in v, we have that

∂tρ
ε
i +∇x · 〈vf εi 〉 = 0, (2.23)

and the conservation of masses

‖ρεi (t)‖L1(Rd) = ‖fi0‖L1(R2d),

for all t > 0 and for all i = 1, . . . , N . Thus, using the equation for ρεi in (2.23), we can
preliminary estimate∣∣∣∣∂t∣∣∣∣v +

N∑
j=1

∇Kij ∗ ρεj
∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣ N∑

j=1

∇Kij ∗ ∂tρεj
∣∣∣∣ ≤ N∑

j=1

∣∣∣∣∆Kij ∗ 〈vf εj 〉
∣∣∣∣.

By adding and subtracting
∑N

h=1∇Kih ∗ ρεh in the absolute value in the right hand side
of the inequality above, and using assumption (Pot) we get

N∑
j=1

∣∣∣∣∇Kij ∗ 〈vfεj 〉
∣∣∣∣ ≤ N∑

j=1

∣∣∣∣∆Kij ∗
〈(

v +

N∑
h=1

∇Kih ∗ ρεh
)
f εj

〉∣∣∣∣
+

N∑
j=1

‖∆Kij ∗ ρεj‖L∞
N∑
h=1

‖∇Kih ∗ ρεh‖L∞

≤
N∑
j=1

‖∆Kij‖L∞
ˆ
Rd

∣∣∣∣w +

N∑
h=1

∇Kih ∗ ρεh
∣∣∣∣f εj (x,w, t) dw

+
N∑
j=1

‖∆Kij‖L∞‖∇Kij‖L∞‖ρ
ε
j‖

2
L1 .
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Thus, integrating the above inequality in x and v we get

|I1
i (t)| ≤

N∑
j=1

‖∆Kij‖L∞
ˆ
Rd

ˆ
Rd

ˆ
Rd

∣∣∣∣v +
N∑
h=1

∇Kih ∗ ρεh
∣∣∣∣f εi (x, v, t)f εj (x,w, t) dx dv dw

+

N∑
j=1

‖∆Kij‖L∞
ˆ
Rd

ˆ
Rd

ˆ
Rd

(|v|+ |w|)f εj (x,w, t)f εi (x, v, t) dx dv dw

+
N∑
j=1

‖∆Kij‖L∞‖∇Kij‖L∞‖ρ
ε
j‖

2
L1‖ρεi‖L1

≤
N∑
j=1

‖∆Kij‖L∞Ii(t)‖ρ
ε
j‖L1

+
N∑
j=1

‖∆Kij‖L∞
(ˆ

Rd

ˆ
Rd
|v|f εi (x, v, t) dx dv +

ˆ
Rd

ˆ
Rd
|w|f εj (x,w, t) dx, dw

)

+

N∑
j=1

‖∆Kij‖L∞‖∇Kij‖L∞‖ρ
ε
j‖

2
L1‖ρεi‖L1 .

Since f εi ∈ P1(R2d) for all i = 1, . . . , N , we obtain that for each i there exist two positive
constants A1

i and A2
i depending on Ξ and all ‖(1 + |v|)fi0‖L1 such that

I1
i (t) ≤ A1

i Ii(t) +A2
i .

Concerning the terms I2
i , we can estimate

|I2
i (t)| ≤

N∑
j=1

ˆ
Rd×Rd

|v||∆Kij ∗ ρεj |f εi dx dv

≤
N∑
j=1

‖∆Kij‖L∞‖ρ
ε
j‖L1

¨
Rd×Rd

|v|f εi dx dv

≤
N∑
j=1

‖∆Kij‖L∞‖ρ
ε
j‖L1

[¨
Rd×Rd

∣∣∣∣v +
N∑
h=1

∇Kihρ
ε
h

∣∣∣∣f εi dx dv
+

N∑
h=1

¨
Rd×Rd

∣∣∣∣∇Kih ∗ ρεh
∣∣∣∣f εi dx dv]

≤
N∑
j=1

‖∆Kij‖L∞‖ρ
ε
j‖L1

[
Ii(t) +

N∑
h=1

‖∇Kih‖L∞‖ρ
ε
h‖L1‖ρεi‖L1

]
.

Thus, we derive that for each i there exist two positive constants B1
i and B2

i depending
on Ξ and all ‖fi0‖L1 such that

|I2
i (t)| ≤ B1

i Ii(t) +B2
i .

Hence, considering the estimates above, we obtain that

d

dt
Ii(t) ≤ −

1

ε
Ii(t) + C1

i Ii(t) + C2
i , (2.24)
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where Cki = Aki +Bk
i for i = 1, . . . , N and k = 1, 2. Furthermore, at time t = 0 we get

Ii(0) ≤ ‖|v|fi0‖L1 +Di, (2.25)

as i = 1, . . . , N , where the positive constantsDi depend on Ξ and all ‖fi0‖L1 . Combining
(2.24) and (2.25) and using Grönwall’s lemma, we obtain that

sup
t∈[0,T ]

Ii(t) ≤ CiMi(ε),

where the constants Ci depend on Ξ and all ‖(1 + |v|)fi0‖L1 . Finally, is it enough to
note that M(ε) := maxi{Mi(ε)} decays to 0 as ε→ 0.

2.4.2 Estimate for measure solutions

In this Section our aim is to find an estimate as in (2.22) for a measure solution f to
system (2.17). In order to proceed, we introduce the mollifier

γ(n)(x, v) = n2dγ(1)(nx, nv) ∈ C∞c (R2d),

where

supp(γ(1)) ⊂ B(0, 1) ⊂ R2d, γ(1) ≥ 0,

¨
R2d

γ(1)(x, v) dx dv = 1,

¨
Rd×Rd

|v|γ(1)(x, v) dx dv ≤ 1.

Now, let f0 ∈ P1(R2d)N be with compact support and let ε > 0 fixed. Define

f
(n)
0 = f0 ∗ γ(n), (2.26)

i.e.,
f

(n)
i0 = fi0 ∗ γ(n) ∈ C2(R2d),

for all i = 1, . . . , N . The following is a classical result concerning the mollifier γ, see [1].

Lemma 2.12. Let f ∈ P1(R2d)N be with supp(f) ⊂ B(R0) ⊂ R2d. Then

(i) supp(f (n)) ⊂ B(R0 + 1) for all n ≥ 1.

(ii) f (n) ∈ P1(R2d)N and ¨
Rd×Rd

|v|f (n)
i (x, v) dx dv

are uniformly bounded, for all i = 1, . . . , N .

(iii) {f (n)}n≥1 is a Cauchy sequence in P1(R2d)N equipped with the Wasserstein dis-
tance W1 and ‖f (n) − f‖W1

→ 0 as n→ +∞.

Consider that the approximating sequence f ε,(n) satisfies the system

∂tf
ε,(n)
i + v · ∇xf ε,(n)

i =
1

ε
∇v ·

((
v +

N∑
j=1

∇Kij ∗ ρε,(n)
i

)
f
ε,(n)
i

)
, (2.27)
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for i = 1, . . . , N , equipped with initial data

f
ε,(n)
i |t=0= f

(n)
i0 (x, v),

with
ρ
ε,(n)
i =

ˆ
Rd
f
ε,(n)
i dv.

Lemma 2.13. Assume all the potentials under assumption (Pot). Let f0 ∈ P1(R2d)N

be with compact support and f
(n)
0 defined as in (2.26). Then for each T > 0 there exists

a solution f ε,(n) ∈ C([0, T ); C1(R2d)N ) to (2.27) whose support depends only on T and
Ξ and is uniformly bounded both in ε and n. Furthermore, if f ε ∈ C([0, T ),P1(R2d)N )
is the unique measure solution to (2.17) as provided in Theorem 2.1, then

f ε,(n)(t, ·, ·) W1−−→ f ε(t, ·, ·) in P1(R2d)N , (2.28)

uniformly in t as n→∞.

Proof. Since f
(n)
0 ∈ C2

c (R2d)N , we can apply Theorem 2.2 and we find that there exists
a smooth solution f ε,(n) ∈ C([0, t), C1(R2d)N ) to (2.17) for every ε > 0 and every n ≥ 1,
with compact support. By Proposition 2.2, we have that supp(f ε,(n)) is independent
of ε and depends on T , Ξ and the support of f (n)

0 . Since by Lemma 2.12 supp(f
(n)
0 ) is

contained in a ball for all n ≥ 1, we deduce that supp(f ε,(n)) is uniformly bounded both
in ε and in n for all t ∈ [0, T ]. Now, let f ε ∈ C([0, t),P1(R2d)N ) be the unique solution
to (2.17) as in Theorem 2.1. By Proposition 2.1, for all t ≥ 0,

‖f ε,(n) − f ε‖W1
≤ r(T )‖f (n)

0 − f0‖W1
.

By Lemma 2.12, we have the assertion.

From this result it follows that

ρε,(n)(t, ·)→ ρε(t, ·) weakly as measures (2.29)

for each t ∈ [0, T ) as n→∞, where ρ = (ρi)
N
i=1.

Lemma 2.14. Let f ε be the solution to (2.17) obtained as limit of approximating se-
quences f ε,(n) as in Lemma 2.13. Then, for all t ≥ 0, ∇Kij ∗ρεj are continuous functions
in Rd for all i, j = 1 . . . , N and

∇Kij ∗ ρε,(n)
j (t, ·)→ ∇Kij ∗ ρεj(t, ·)

strongly in L∞loc(Rd), as n→∞.

Proof. Given the regularity of f ε,(n), i.e., f ε,(n) ∈ C([0, T ); C1(R2d)2) and the assumption
(Pot), we get the continuity of the convolutions. Moreover, we can easily estimate

|∇Kij ∗ ρε,(n)
j | ≤ ‖∇Kij‖L∞ ,

and for all x1, x2 ∈ Rd, we have

|∇Kij ∗ ρε,(n)
j (x1)−∇Kij ∗ ρε,(n)

j (x2)| ≤ ‖∇Kij‖L∞ |x1 − x2|,
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for i, j = 1, . . . , N . Thus the sequences

{∇Kij ∗ ρε,(n)
j }n≥1

are equicontinuous and uniformly bounded. Hence, by Ascoli-Arzelà theorem, they
strongly converge on a subsequence on compact sets in Rd. Furthermore, by (2.29) we
have that the limit functions are

∇Kij ∗ ρεj ,

respectively. These limit functions are also continuous on Rd by inequalities above
(using ρεj in place of ρε,(n)

j ). Then it follows the assertion.

Since the approximating sequence f ε,(n) is smooth, we can apply to it Proposition
2.3 with ε fixed. In particular, with n ≥ 1 fixed, we can say that there exist N positive
constants Ci depending on Ξ and all ‖(1 + |v|f (n)

i0 )‖L1 and a function M(ε) depending
on ε such that for ε < ε0∣∣∣∣¨

R2d

(
v +

N∑
j=1

∇Kij ∗ ρε,(n)
j

)
f
ε,(n)
i dx dv

∣∣∣∣ ≤ CiM(ε).

By part (ii) in Lemma 2.12, we have that ‖(1+|v|f (n)
i0 )‖L1 are uniform bound in n for all

i = 1, . . . , N , thus the function M(ε) and the constants Ci can be chosen independent
on n. Therefore the estimates∣∣∣∣¨

R2d

(
v +

N∑
j=1

∇Kij ∗ ρε,(n)
j

)
f
ε,(n)
i dx dv

∣∣∣∣ ≤ CiM(ε) (2.30)

hold for all n ≥ 1 and t ∈ [0, T ], as i = 1, . . . , N .

Proposition 2.4 (Main estimates for measure solutions). Assume ε > 0 fixed such that
(2.30) holds and assume that assumptions in Lemma 2.13 are satisfied. Then for any
(φi)

N
i=1 ∈ Cb(R2d)N there exist N constants Ci such that∣∣∣∣¨

R2d

φi(x, v)

(
v +

N∑
j=1

∇Kij ∗ ρεj(x)

)
f εi (x, v) dx dv

∣∣∣∣ ≤ CiM(ε)

hold for all t ∈ [0, T ], as i = 1, . . . , N . In particular, the constants Ci are independent of
ε and t, and Ci = ‖φi‖L∞Ci, where Ci are constants depending on all

˜
(1+|v|)fi0 dx dv

and Ξ.

Proof. Multiplying (2.30) by φi we have∣∣∣∣¨
R2d

φ(x, v)

(
v +

N∑
j=1

∇Kij ∗ ρε,(n)
j

)
f
ε,(n)
i dx dv

∣∣∣∣ ≤ Ci‖φi‖L∞M(ε), (2.31)

where Ci are constants depending on Ξ and the first moment of fi0 in v. Let Ω(T ) be
the common support of f ε,(n)(t) for all ε > 0, n ≥ 1 and t ∈ [0, T ]. Then, by Lemma
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2.14 and Proposition 1.2, we obtain that for each t ∈ [0, T ],

¨
R2d

φi(x, v)

(
v +

N∑
j=1

∇Kij ∗ ρε,(n)
j

)
f
ε,(n)
i dxdv

=

¨
Ω(T )

φi(x, v)

(
v +

N∑
j=1

∇Kij ∗ ρε,(n)
j

)
f
ε,(n)
i dxdv

converges to ¨
R2d

φi(x, v)

(
v +

N∑
j=1

∇Kij ∗ ρεj
)
f εi dxdv

as n → ∞, for all i = 1, . . . , N . Therefore, considering the limit as n → ∞ in (2.31),
we find the assertion.

2.5 Small inertia limit

We now tackle the ε→ 0 limit. More precisely, we consider f ε solution to (2.5), satisfying
the uniform bounds as stated in Proposition 2.4 and we show that the marginals

ρεi (t, x) =

ˆ
Rd
f εi (t, x, v) dv, (2.32)

as i = 1, . . . , N , converge to a solution ρ = (ρi)
N
i=1 to the first order system

∂tρi −∇ ·
(( N∑

j=1

∇Kij ∗ ρj
)
ρi

)
= 0, (2.33)

for i = 1, . . . , N , equipped with initial data

ρi(t, x) |t=0= ρi0(x).

Next we define the weak solutions to (2.33).

Definition 2.3. A weak solution to (2.33) is a N -tuple ρ = (ρi)
N
i=1 ∈ C([0, T ),P(Rd)N )

that satisfies
ˆ T

0

ˆ
Rd
∂tφiρi dx dt−

ˆ T

0

ˆ
Rd
∇xφi ·

( N∑
j=1

Kij∗ρj
)
ρi dx dt+

ˆ
Rd
φi(0)ρi0 dx = 0, (2.34)

for each φi ∈ C1
c ([0, T ); C1

b (Rd)), as i = 1, . . . , N .

Theorem 2.3 (Small inertia limit). Let T > 0. Assume all the potentials as in (Pot).
Consider f0 ∈ P1(R2d)N with compact support. Let f ε ∈ C([0, T );P1(R2d)N ) be the so-
lution to system (2.5) given by Theorem 2.1. Let ρεi be given by (2.32), for i = 1, . . . , N .
Then there exists ρ ∈ C([0, T );P1(Rd)N ) such that for each t ∈ [0, T ),

ρε(t, ·) W1−−→ ρ(t, ·) in P1(Rd)N

as ε → 0. Moreover, ρ is a weak solution to system (2.33) in the sense of Definition
2.3.
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Proof. We start noting that, for each φi ∈ C1
c ([0, T ); C1

b (R2d)), the measure solution f ε

satisfies
ˆ T

0

¨
R2d

∂tφif
ε
i dx dv dt+

¨
R2d

φi(0)fi0 dx dv +

ˆ T

0

¨
R2d

∇xφi · vfεi dx dv dt

− 1

ε

ˆ T

0

¨
R2d

∇vφi ·
(
v +

N∑
j=1

∇Kij ∗ ρεj
)
f εi dx dv dt = 0,

(2.35)

for all i = 1, . . . , N . Consider ψi ∈ C1
c (0, T ), and χi ∈ C1

b (Rd), as i = 1, . . . , N , and
define

φi(t, x, v) = ψi(t)χi(x). (2.36)

Using the test functions defined in (2.36) in system (2.35) we have
ˆ T

0
ψ′i(t)

ˆ
Rd
χi(x)ρεi (t, x) dx dt = −

ˆ T

0
ψi(t)

¨
R2d

∇xχi(x) · vfεi dx dv dt.

Set
ξi(t) :=

ˆ
Rd
χi(x)ρεi (t, x) dx.

Thus, it follows
ˆ T

0
ψ′i(t)ξi(t) dt = −

ˆ T

0
ψi(t)

¨
R2d

∇xχi(x) · vfεi dx dv dt,

for any ψi ∈ C1
c (0, T ). Therefore, we deduce that the weak derivative of ξi is

ξ′i(t) =

¨
R2d

∇xχi · vfεi dx dv ∈ L∞(0, T ).

Let Ω(T ) be the common support of f ε for every ε > 0 and for all t ∈ [0, T ]. By Theorem
2.1, f ε is uniformly supported on Ω(T ), thus

‖ξi‖W 1,∞(0,T ) ≤ Ci(T )‖χi‖C1b (Rd), (2.37)

where Ci depend on T and are independent of ε. Since ξi(t) are uniformly bounded in
W 1,∞(0, T ), as i = 1, . . . , N , by Ascoli-Arzelà theorem there exist a subsequence εk and
a function µi(t) ∈ C([0, T )) such that

ˆ
Rd
χi(x)ρεki (x, t) dx→ µi(t) (2.38)

uniformly on [0, T ) as εk → 0. Furthermore, Proposition 2.2 ensures that the support
of f ε is uniformly bounded in ε, then the sequence ρε(t, ·) is tight. By Prokhorov’s
theorem 1.1, for each t ∈ [0, T ), ρε(t, ·) converges weakly-∗, up to a subsequence, to
ρ(t, ·) ∈ P(Rd)N . By Proposition 1.2, we have that this implies convergence in P1(Rd)N
with respect to W1-distance. Hence, for each t > 0, there exists a subsequence of ρεk
denoted by ρεkn , where kn may depend on time, such that

ρεkn (t, ·) W1−−→ ρ(t, ·) in P1(Rd)N
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as εkn → 0. It follows that for each t ∈ [0, T ) and all χi ∈ C1
b (Rd) we get

ˆ
Rd
ρ
εkn
i (t, x)χi(x) dx→

ˆ
Rd
ρi(t, x)χi(x) dx (2.39)

as εkn → 0. The limit µi(t) in (2.38) is unique at each t ∈ [0, T ). Combining this
with (2.39), we deduce that the sequence ρεk(t, ·), with εk independent of time, and
ρ(t, ·) ∈ P1(Rd)N satisfy

ˆ
Rd
χi(x)ρεki (t, x) dx→

ˆ
Rd
χi(x)ρi(t, x) dx (2.40)

uniformly on [0, T ) as εk → 0, for any χi ∈ C1
b (Rd). Moreover,

ρεk(t, ·) W1−−→ ρ(t, ·) in P1(Rd)N (2.41)

as εk → 0. Now we want to prove that in (2.40) we can consider test functions χi
depending also on t. In particular, taking ζi(t, x) ∈ Cc([0, T ); C1

b (Rd)) we have that
ˆ
Rd
ζi(t, x)ρεki (t, x) dx

are equicontinuous on [0, T ). Indeed, considering s, t ∈ [0, T ),∣∣∣∣ˆ
Rd
ζi(t, x)ρεki (t, x) dx−

ˆ
Rd
ζi(s, x)ρεki (s, x) dx

∣∣∣∣
≤
ˆ
Rd
|ζi(t, x)− ζi(s, x)|ρεki (t, x) dx+

∣∣∣∣ˆ
Rd
ζi(s, x)[ρεki (t, x)− ρεki (s, x)] dx

∣∣∣∣
≤ sup

x∈Rd
|ζi(t, x)− ζi(s, x)|+ Ci(T ) sup

t∈(0,T )
‖ζi‖C1b (Rd)|t− s|.

Since ζi is uniformly continuous on [0, T )× Rd, then

sup
x∈Rd
|ζi(t, x)− ζi(s, x)| → 0 as |t− s| → 0,

and we get equicontinuity. Thus, up to a subsequence,ˆ
Rd
ζi(t, x)ρεki (t, x) dx→

ˆ
Rd
ζi(t, x)ρi(t, x) dx (2.42)

uniformly on [0, T ) as εk → 0, for any test functions ζi ∈ Cc([0, T ); C1
b (Rd)).

Now, set
Ω1(T ) := {x : (x, v) ∈ Ω(T )}.

We can deduce that Ω1 is bounded and both supp(ρ) and supp(ρεk) are in Ω1(T ) for
all t ∈ [0, T ]. Consider Ψi ∈ C1

c ([0, T ); C1
b (Rd)) and let φi(x, v, t) = Ψi(x, t) in (2.35), as

i = 1, . . . , N . Hence
ˆ T

0

ˆ
Rd
∂tΨiρ

εk
i dx dt+

ˆ T

0

¨
R2d

∇xΨi · vfεki dx dv dt+

ˆ
Rd

Ψi(0)ρi0(x) dx = 0. (2.43)

Regarding the first integral in (2.43), by (2.42) we have that
ˆ T

0

ˆ
Rd
∂tΨiρ

εk
i dx dt→

ˆ T

0

ˆ
Rd
∂tΨiρi dx dt,
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as εk → 0. Concerning the integrand of the second term in (2.43), it can be rewritten
as

¨
R2d

∇xΨi · vf εki dx dv =

¨
R2d

∇xΨi ·
(
v +

N∑
j=1

∇Kij ∗ ρεkj

)
f εki dx dv

−
¨

R2d

∇xΨi ·
( N∑
j=1

∇Kij ∗ ρεkj

)
f εki dx dv.

By Proposition 2.4, we have that

¨
R2d

∇xΨi ·
(
v +

N∑
j=1

∇Kij ∗ ρεkj

)
f εki dx dv → 0, (2.44)

as εk → 0, uniformly in t. The families {∇Kij ∗ ρεkj (t, ·)} are bounded in W 1,∞(Rd) for
all t ∈ [0, T ). In particular,

‖∇Kij ∗ ρεkj (t, ·)‖W 1,∞(Rd) ≤ ‖∇Kij‖W 1,∞(Rd).

Now, we want to prove that {∇Kij ∗ ρεkj } are equicontinuous in t. In order to use
inequalities in (2.37) with the kernels in places of χi, we should mollify Kij . Let

K
(n)
ij = Kij ∗ γ(n),

where γ(n) is the mollifier defined in Subsection 2.4.2. It follows that

∇K(n)
ij = ∇Kij ∗ γ(n),

thus, we have

‖∇K(n)
ij ‖C1b ≤ ‖∇Kij‖W 1,∞ ,

for all n ≥ 1. Now, considering the mollified interaction kernels acting on the i-th species
in estimates (2.37) in places of χi, we get

sup
x
‖
N∑
j=1

∇K(n)
ij ∗ ρ

εk
j ‖W 1,∞(0,T ) ≤ Ci(T )

N∑
j=1

‖∇K(n)
ij ‖C1b ≤ Ci(T )

N∑
j=1

‖∇Kij‖W 1,∞ .

Furthermore,∥∥∥∥ N∑
j=1

∇K(n)
ij ∗ ρ

εk
j

∥∥∥∥
W 1,∞(Rd)

≤
N∑
j=1

‖∇K(n)
ij ‖W 1,∞ ≤

N∑
j=1

‖∇Kij‖W 1,∞ ,

thus, we find that∥∥∥∥ N∑
j=1

∇K(n)
ij ∗ ρ

εk
j

∥∥∥∥
W 1,∞(Rd×(0,T ))

≤ (1 + Ci(T ))

N∑
j=1

‖∇Kij‖W 1,∞ .

43



Therefore, for all x, y ∈ Rd and s, t ∈ [0, T ), we get∣∣∣∣ N∑
j=1

[
∇K(n)

ij ∗ ρ
εk
j (t, x)−∇K(n)

ij ∗ ρ
εk
j (s, y)

]∣∣∣∣
≤ (Ci(T ) + 1)

( N∑
j=1

‖∇Kij‖W 1,∞

)(
|t− s|+ |x− y|

)
.

(2.45)

Since ∇Kij are continuous, by Lemma 2.14 we get

∇K(n)
ij → ∇Kij ,

uniformly on compact sets in Rd. Since∣∣∣∣ N∑
j=1

[
∇K(n)

ij ∗ ρ
εk
j (t, x)−∇Kij ∗ ρεkj (t, x)

∣∣∣∣ ≤ sup
x

[∣∣∣∣ N∑
j=1

∇K(n)
ij (x)−∇Kij(x)

∣∣∣∣],
we have that for any compact set A ⊂ Rd,

N∑
j=1

∇K(n)
ij ∗ ρ

εk
j (t, x)

n→∞−−−→
N∑
j=1

∇Kij ∗ ρεkj (t, x),

uniformly for t ∈ [0, T ), for x ∈ A, k ∈ N. Therefore, considering the limit as n → ∞
in (2.45) on a compact set A ⊂ Rd, we get∣∣∣∣ N∑

j=1

[
∇Kij ∗ ρεkj (t, x)−∇Kij ∗ ρεkj (s, y)

]∣∣∣∣
≤ (C(T ) + 1)

( N∑
j=1

‖∇Kij‖W 1,∞

)(
|t− s|+ |x− y|

)
.

Thus, by Ascoli-Arzelà theorem, there exist N subsequences still denoted by ρεki , as
i = 1, . . . , N , such that

N∑
j=1

∇Kij ∗ ρεkj →
N∑
j=1

∇Kij ∗ ρj ,

as εk → 0, strongly in L∞([0, T ) × A), with A ⊂ Rd compact set. Hence, for every
t ∈ [0, T ), ∣∣∣∣ˆ

Rd
∇Ψi ·

[ N∑
j=1

(∇Kij ∗ ρεkj )ρεki −
N∑
j=1

(∇Kij ∗ ρj)ρi
]
dx

∣∣∣∣
≤

N∑
j=1

ˆ
Ω1(T )

|∇Ψi| · |∇Kij ∗ ρεkj −∇Kij ∗ ρj |ρεki dx

+

N∑
j=1

∣∣∣∣ˆ
Rd
∇Ψi · (∇Kij ∗ ρj)(ρεki − ρi) dx

∣∣∣∣
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≤
N∑
j=1

‖∇Kij ∗ ρεkj −∇Kij ∗ ρj‖L∞(Ω1(T ))‖∇Ψi‖L∞

+
N∑
j=1

∣∣∣∣ˆ
Ω1(T )

∇Ψi · (∇Kij ∗ ρj)(ρεki − ρi) dx
∣∣∣∣,

and the first term goes to zero as εk → 0 uniformly on [0, T ) and the second integral
vanishes as εk → 0 by (2.41). Combining this with (2.44) we obtain that, for each
t ∈ (0, T ),

¨
R2d

∇Ψi · vf εki dx dv → −
ˆ
Rd
∇Ψi ·

[ N∑
j=1

(∇Kij ∗ ρj)ρi
]
dx

as εk → 0. Finally, define

Ω2(T ) = {v ∈ Rd : (x, v) ∈ Ω(T )}.

We have that Ω2(T ) is bounded for all t ∈ (0, T ) and the following uniform estimate
holds: ∣∣∣∣¨

R2d

∇Ψi · vf εki dx dv

∣∣∣∣ ≤ Di‖∇Ψi‖L∞(Rd),

where the constant Di depends only on Ω2(T ). This implies, by Lebesgue’s dominated
convergence theorem, that

ˆ T

0

¨
R2d

∇Ψi · vfεki dx dv dt→ −
ˆ T

0

ˆ
Rd
∇Ψi ·

[ N∑
j=1

(∇Kij ∗ ρj)ρi
]
dx dt

as εk → 0. Thus the limiting N -tuple of measures ρ ∈ C([0, T );P(R)N ) is a solution to
system (2.33) in the weak sense.

Corollary 2.1 (Uniqueness). Assume that the assumptions in Theorem 2.3 and Propo-
sition 2.1 hold. Then, the N -tuple ρ ∈ C([0, T );P1(Rd)N ) obtained in Theorem 2.3 is
the unique solution to system (2.1).

Proof. The proof follows by Proposition 2.1. Indeed, if we assume that there are two
solutions starting from the same initial datum, by (2.16) we have the statement.

Corollary 2.2 (Uniqueness with gradient flow structure). Assume that assumptions in
Theorem 2.3 hold. Moreover, assume that the cross-interaction kernels are equal, i.e.,
H := Kij, for i 6= j. Then the solution to system (2.1) obtained in Theorem 2.3 is
unique.

Proof. Since ρ ∈ C([0, T ),P1(Rd)N ) is a weak solution to (2.33), by [39, Theorem 5.1]
and the references therein, we can say that ρ is the push-forward of ρ0 via the flow T tE[f ]

where E[f ] = (Ei[f ])
N
i=1 with

Ei[f ] = −
N∑
j=1

∇Kij ∗ ρj ∈ L∞([0, T )× Rd),
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that is
ρ = T tE[f ]#ρ0.

Furthermore, ρ(t, ·) has compact support and it is narrowly continuous in time, since
we get that ρ(t, ·) ∈ C([0, T );P1(Rd)N ) where the continuity is in the W1 metric, (see
Proposition 1.2). Then ρ is the unique solution to (2.33) in the mass transportation
sense.
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Chapter 3

Small inertia limit to first order
nonlocal system: singular case

In this Chapter we deal with a multi-dimensional system with many species subject to
smooth cross-potentials and singular self-potentials. We consider in addition an inertial
effect. Once we introduce the mesoscopic and macroscopic models we want to study, we
perturb the self-potentials in order to switch to a regularised system. After providing
some uniform estimates with respect to the perturbation, we prove existence of weak
solutions to the kinetic system. Then we show rigorously that a solution to the kinetic
system converges towards a solution to the corresponding macroscopic system as the
inertia goes to zero.

3.1 The model

The kinetic system we investigate in this Chapter is

∂tfi + v · ∇xfi =
1

ε
∇v · (vfi) +

1

ε

( N∑
j=1

∇Kij ∗ ρj
)
· ∇vfi, (3.1)

for i = 1, . . . , N , with smooth cross-potentials Kij , i 6= j, as in assumption (Pot) and
singular self-potentials Kii of the form

Kii(x) :=
Ci
|x|αi

, (3.2)

with αi ∈ (0, d−1], and some positive constants Ci. As said, ρi(t, x) is the macroscopic
population density of the i-th species, namely

ρi(t, x) =

ˆ
Rd
fi(t, x, v) dv.

We consider system (3.1) equipped with initial data f0 = (fi0)Ni=1 such that

fi0 ∈ L1
+ ∩ L∞(Rd × Rd), and (|x|2 + |v|2)fi0 ∈ L1(Rd × Rd).

We want to study the ε→ 0 limit in (3.1) to derive the first order macroscopic system
∂tρi = ∇ · (ρiui),

ui =
N∑
j=1

∇Kij ∗ ρj ,
(3.3)
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for i = 1, . . . , N , with smooth cross-potentials as in (Pot) and singular self-potentials
as in (3.2). Note that if αi ∈ ((d−2)∨0, d), then Kii ∗ρi = Λαi−dρi with Λ = (−∆)

1
2 up

to constant. Thus in this case the system (3.3) becomes the following coupled fractional
porous medium flows, [16]:

∂tρi = ∇ ·
(
ρi

(
∇Λαi−dρi +

N∑
j=1
j 6=i

∇Kij ∗ ρj
))

,

for i = 1, . . . , N . The notion of solution we adopt for the kinetic system (3.1) is that of
weak solution contained in the next Definition.

Definition 3.1 (Weak solution to (3.1)). Let f0 = (fi0)Ni=1 ∈ P1(Rd × Rd)N be the ini-
tial datum. A weak solution to (3.1) is a N -tuple f = (fi)

N
i=1 ∈ C([0, T ),P(Rd × Rd)N )

that fulfils
ˆ T

0

¨
Rd×Rd

∂tφifi dx dv dt+

ˆ T

0

¨
Rd×Rd

v · ∇xφifi dx dv dt

+

¨
Rd×Rd

φi(0)fi0 dx dv −
1

ε

ˆ T

0

¨
Rd×Rd

v · ∇vφifi dx dv dt

+
1

ε

ˆ T

0

¨
Rd×Rd

∇vφi ·
( N∑
j=1

∇Kij ∗ ρi
)
fi dx dv dt = 0,

for each φi ∈ C1
c ([0, T ); C1

b (Rd × Rd)), as i = 1, . . . , N .

3.2 Regularised system

We start by considering a regularised version of the system (3.1). For this purpose, we
perturb the self-potentials and consider the following system

∂tf
δ
i + v · ∇xf δi =

1

ε
∇v · (vf δi ) +

1

ε

( N∑
j=1

∇Kδ
ij ∗ ρδj

)
· ∇vf δi , (3.4)

for i = 1, . . . , N , with

Kδ
ii(x) :=

Ci
|x|αi + δ

,

and
ρδi (t, x) :=

ˆ
Rd
f δi (t, x, v) dv.

In system (3.4) we setted Kδ
ij := Kij , for i 6= j, in order to keep the notation to a

minimum. Notice that the global-in-time existence and uniqueness of a weak solution
to the regularised system (3.4) follows by the results developed in Chapter 2, since the
force fields ∇Kδ

ij ∗ρδj are bounded and Lipschitz continuous. See in particular Definition
2.2 and Theorem 2.1.
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3.2.1 Uniform in δ estimates

In this Subsection we gather some uniform in δ estimates that we will apply for proving
existence of solutions to system (3.1). Let us begin with L∞ bound estimates.

Lemma 3.1. Let T > 0 and f δ := (f δ1 , . . . , f
δ
N ) be the weak solution to (3.4) on the

interval [0, T ] in the sense of Definition 2.2. Then we have

sup
0≤t≤T

‖f δi (·, ·, t)‖Lp ≤ ‖f
δ
i0‖Lpe

d 1
ε

(1− 1
p

)T
,

for p ∈ [1,+∞), and
sup

0≤t≤T
‖f δi (·, ·, t)‖L∞ ≤ ‖f

δ
i0‖L∞e

d 1
ε
T .

Proof. By integrating by parts with respect to x and v we get

d

dt

¨
Rd×Rd

(f δi )p dx dv =− 1

ε
p(p− 1)

¨
Rd×Rd

(f δi )p−2∇xf δi · vf δi

− 1

ε
p(p− 1)

¨
Rd×Rd

(f δi )p−2∇vf δi ·
( N∑
j=1

Kδ
ij ∗ ρδj

)
f δi

+ p(p− 1)

¨
Rd×Rd

(f δi )p−2∇xf δi · vf δi .

Thus,
d

dt

¨
Rd×Rd

(f δi )p dx dv = d
1

ε
(p− 1)

¨
Rd×Rd

(f δi )p dx dv,

for p ∈ [1,+∞). Therefore, by Grönwall’s lemma we have

‖f δi (·, ·, t)‖pLp = ‖f δi0‖
p
Lpe

d 1
ε

(p−1)t.

Then, it follows that

sup
0≤t≤T

‖f δi (·, ·, t)‖Lp ≤ ‖f
δ
i0‖Lpe

d 1
ε

(1− 1
p

)T
,

for p ∈ [1,+∞). Sending p→ +∞ in the previous line, we obtain that

sup
0≤t≤T

‖f δi (·, ·, t)‖L∞ ≤ ‖f
δ
i0‖L∞e

d 1
ε
T ,

that concludes the proof.

Now we prove a Lemma that points out the relationship between the local density
and the kinetic energy (cf. [44, Lemma 3.1]), that we will use to estimate the interaction
energy. Notice that in the next result we consider generic functions and we do not work
along the solutions of system (3.4).

Lemma 3.2. Assume that fi ∈ L1
+ ∩ L∞(Rd × Rd) and |v|2fi ∈ L1(Rd × Rd), as

i = 1, . . . , N . Then, there exists a positive constant C such that

‖ρi‖
L
d+2
d
≤ C‖fi‖

2
d+2

L∞

(¨
Rd×Rd

|v|2fi dx dv
) d
d+2

.
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In particular, we find that

‖ρi‖Lp ≤ C‖fi‖
2
d+2

β

L∞

(¨
Rd×Rd

|v|2fi dx dv
) d
d+2

β

‖ρi‖1−βL1 ,

for all p ∈ [1, d+2
d ], with ρi =

´
Rd fi dv and β = d+2

2 (1− 1
p).

Proof. Let R > 0. Then

ρi =

ˆ
Rd
fi dv =

( ˆ
|v|≥R

+

ˆ
|v|≤R

)
fi dv ≤

1

R2

ˆ
Rd
|v|2fi dv + C‖fi‖L∞R

d.

For R = (
´
Rd |v|

2fi dv/‖fi‖L∞)
1
d+2 we have that

ρi ≤ C‖fi‖
2
d+2

L∞

(ˆ
Rd
|v|2fi dv

) d
d+2

.

Taking the power to d+2
d and integrating with respect to x, we obtain that

‖ρi‖
L
d+2
d
≤ C‖fi‖

2
d+2

L∞

(¨
Rd×Rd

|v|2fi dx dv
) d
d+2

.

By using the Lp interpolation inequality, we obtain the result.

Let us now provide a bound estimate on the interaction energy.

Lemma 3.3. Let T > 0 and f δ be the weak solution to (3.4) on the interval [0, T ]. Then∣∣∣∣¨
Rd×Rd

Kδ
ii(x− y)ρδi (x)ρδi (y) dx dy

∣∣∣∣ ≤ Ci‖ρi0‖2− 5
2d
αi

L1 ‖ρδi ‖
5
2d
αi

L
d+2
d

,

where Ci > 0 is independent of δ.

Proof. We recall the classical Hardy-Littlewood-Sobolev inequality, that is∣∣∣∣¨
Rd×Rd

µ(x)|x− y|−λν(y) dx dy

∣∣∣∣ ≤ Cp,λ,d‖µ‖Lp‖ν‖Lq ,
for µ ∈ Lp(Rd), ν ∈ Lq(Rd), 1 < p, q < ∞, 1/p + 1/q + λ/d = 2, and 0 < λ < d. By
Lp-interpolation we know that for 1 ≤ p, q ≤ γ,

‖ρi‖Lp ≤ ‖ρi‖
1−a
L1 ‖ρi‖aLγ ,

1

p
= 1− a+

a

γ
,

and
‖ρi‖Lq ≤ ‖ρi‖

1−b
L1 ‖ρi‖bLγ ,

1

q
= 1− b+

b

γ
.

Thus
‖ρi‖Lp‖ρi‖Lq ≤ ‖ρi‖

2−(a+b)
L1 ‖ρi‖a+b

Lγ .

If 1/p+ 1/q + λ/d = 2, then

a+ b =
γ

γ − 1

λ

d
.
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If we take γ = d+2
d and λ = αi, we obtain

¨
Rd×Rd

Kδ
ii(x− y)ρδi (x)ρδi (y) dx dy ≤

¨
Rd×Rd

Kii(x− y)ρδi (x)ρδi (y) dx dy

≤ Ci‖ρδi ‖Lp‖ρ
δ
i ‖Lq

≤ Ci‖ρδi ‖
2− 5

2d
αi

L1 ‖ρδi ‖
5
2d
αi

L
d+2
d

≤ Ci‖ρi0‖
2− 5

2d
αi

L1 ‖ρδi ‖
5
2d
αi

L
d+2
d

,

with Ci > 0 independent of δ.

Next we provide a uniform in δ estimate on the second moments of the weak solution
f δ to system (3.4).

Proposition 3.1. Let T > 0 and f δ be the weak solution to system (3.4) on the interval
[0, T ]. Assume that ˆ

Rd
ρi0Kii ∗ ρi0 dx <∞.

Then the following estimate on the second moment holds:
¨

Rd×Rd

(
|x|2

2
+
|v|2

2

)
f δi dx dv +

1

ε

ˆ t

0

¨
Rd×Rd

1

f δi
|vf δi |

2 dx dv ds ≤ C,

for all t ∈ [0, T ] and for some C > 0 independent of δ.

Proof. A direct computation gives that

1

2

d

dt

(¨
Rd×Rd

|v|2f δi dx dv
)

=
1

2

¨
Rd×Rd

|v|2∂tf δi dx dv

=
1

2

¨
Rd×Rd

|v|2
[

1

ε
∇v · (vf δi ) +

1

ε
(
N∑
j=1

∇Kδ
ij ∗ ρδj) · ∇vf δi − v · ∇xf δi

]
dx dv

=− 1

ε

¨
Rd×Rd

(
N∑
j=1

∇Kδ
ij ∗ ρδj) · vf δi dx dv −

1

ε

¨
Rd×Rd

v · vf δi dx dv

=− 1

ε

N∑
j=1
j 6=i

¨
Rd×Rd

(∇Kδ
ij ∗ ρδj) · vf δi dx dv

− 1

ε

¨
Rd×Rd

(∇Kδ
ii ∗ ρδi ) · vf δi dx dv

− 1

ε

¨
Rd×Rd

v · vf δi dx dv.

For i 6= j, we have that |∇Kij ∗ ρj | ≤ ‖∇Kij‖L∞ , thus∣∣∣∣¨
Rd×Rd

∇Kδ
ij ∗ ρδj dx dv

∣∣∣∣ ≤ ‖∇Kδ
ij‖L∞

¨
Rd×Rd

|v|f δi dx dv.
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If, instead, i = j, by using (2.23) in Proposition 2.3 we get

d

dt

(
1

2

¨
Rd×Rd

Kδ
ii(x− y)ρδi (x)ρδi (y) dx dy

)
=

¨
Rd×Rd

Kδ
ii(x− y)∂tρ

δ
i (x)ρδi (y) dx dy

=−
¨

Rd×Rd
Kδ
ii(x− y)∇x · 〈vf δi 〉(x)ρδi (y) dx dy

=

¨
Rd×Rd

∇Kδ
ii(x− y)ρδi (y) · 〈vf δi 〉(x) dx dy

=

¨
Rd×Rd

(∇Kδ
ii ∗ ρδi ) · vf δi dx dv.

Thus, we derive

1

2

d

dt

(¨
Rd×Rd

|v|2f δi dx dv
)

+
1

2

1

ε

d

dt

(¨
Rd×Rd

Kδ
ii(x− y)ρδi (x)ρδi (y) dx dy

)
=− 1

ε

N∑
j=1
j 6=i

¨
Rd×Rd

(∇Kij ∗ ρδj) · vf δi dx dv −
1

ε

¨
Rd×Rd

v · vf δi dx dv.

In the spatial variable, we have the following estimate for the second order moment

d

dt

(¨
Rd×Rd

|x|2

2
f δi dx dv

)
=

¨
Rd×Rd

|x|2

2
∂tf

δ
i dx dv

=

¨
Rd×Rd

x · vf δi dx dv ≤
¨

Rd×Rd

(
|x|2

2
+
|v|2

2

)
f δi dx dv.

Now, considering the estimates above, we obtain
¨

Rd×Rd

(
|x|2

2
+
|v|2

2

)
f δi dx dv +

1

ε

1

2

¨
Rd×Rd

Kδ
ii(x− y)ρδi (x)ρδi (y) dx dy

+
1

ε

ˆ t

0

¨
Rd×Rd

1

f δi
|vf δi |

2 dx dv ds

≤
¨

Rd×Rd

(
|x|2

2
+
|v|2

2

)
f δi0 dx dv +

1

ε

1

2

¨
Rd×Rd

Kδ
ii(x− y)ρδi0(x)ρδi0(y) dx dy

+
1

ε

N∑
j=1
j 6=i

ˆ t

0

¨
Rd×Rd

(∇Kδ
ij ∗ ρδj) · vf δi dx dv

+

ˆ t

0

¨
Rd×Rd

(
|x|2

2
+
|v|2

2

)
f δi dx dv ds.

By previous Lemmas we know that∣∣∣∣¨
Rd×Rd

Kδ
ii(x− y)ρδi (x)ρδi (y) dx dy

∣∣∣∣ ≤ C,
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where C is independent of δ. We derive
¨

Rd×Rd

(
|v|2

2
+
|x|2

2

)
f δi dx dv +

1

ε

ˆ t

0

¨
Rd×Rd

1

f δi
|vf δi |

2 dx dv ds

≤
¨

Rd×Rd

(
|x|2

2
+
|v|2

2

)
f δi0 dx dv + C

ˆ t

0

¨
Rd×Rd

(|v|2 + |x|2)f δi dx dv ds+ C

for some C > 0 independent of δ. Then, by Grönwall’s lemma we obtain the result.

Remark 3.1. From Proposition 3.1, we derive the following total energy estimates for
f δi , i = 1, . . . , N , and for all t ∈ [0, T ]:

N∑
i=1

¨
Rd×Rd

|v|2

2
f δi dx dv +

1

2ε

N∑
i=1

ˆ
Rd
ρδiKii ∗ ρδi dx+

1

ε

ˆ t

0

N∑
i=1

¨
Rd×Rd

|v|2f δi dx dv ds

≤
N∑
i=1

¨
Rd×Rd

|v|2

2
f δi0 dx dv +

1

2ε

N∑
i=1

ˆ
Rd
ρδi0Kii ∗ ρδi0 dx+

1

ε

∑
i 6=j
‖∇Kij‖L∞t.

Remark 3.2. If Kij = Kji for all i, j = 1, . . . , N , we find

d

dt

( N∑
i=1

¨
Rd×Rd

|v|2

2
f δi dx dv +

1

2ε

N∑
i=1

ˆ
Rd
ρδiKii ∗ ρδi dx+

1

ε

∑
i>j

ˆ
Rd
ρδiKij ∗ ρδj dx

)

= −1

ε

N∑
i=1

¨
Rd×Rd

|v|2f δi dx dv.

Moreover, if Kij ∈ L∞ for i 6= j, then

N∑
i=1

¨
Rd×Rd

|v|2

2
f δi dx dv +

1

2ε

N∑
i=1

ˆ
Rd
ρδiKii ∗ ρδi dx+

1

ε

ˆ t

0

N∑
i=1

¨
Rd×Rd

|v|2f δi dx dv ds

≤
N∑
i=1

¨
Rd×Rd

|v|2

2
f δi0 dx dv +

1

2ε

N∑
i=1

ˆ
Rd
ρδi0Kii ∗ ρδi0 dx+

2

ε

∑
i>j

‖Kij‖L∞t.

In this case, if we define a free energy F(ρ) as

F(ρ) =
N∑

i,j=1

ˆ
Rd
ρiKij ∗ ρj dx,

then the limiting system (3.3) has a gradient flow structure:

∂tρi = ∇ ·
(
ρi∇

δF(ρ)

δρi

)
,

as i = 1, . . . , N .
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3.3 Existence of weak solution to the kinetic system

Now, we prove the existence of weak solutions to system (3.1). For this porpouse, we
need the following lemma, cf. [43, 49].

Lemma 3.4. Let {fn}n be bounded in Lploc(R
d × Rd × [0, T ]) with 1 < p < ∞, and

{Gn}n be bounded in Lploc(R
d × Rd × [0, T ]). Assume that fn and Gn satisfy

∂tf
n + v · ∇xfn = ∇vGn, fn |t=0= f0 ∈ Lp(Rd × Rd),

and
fn is bounded in L∞(Rd × Rd),

(|v|2 + |x|2)fn is bounded in L∞((0, T );L1(Rd × Rd)).

Then, for any q < d+2
d+1 , the sequence{ˆ

Rd
fn dv

}
n

is relatively compact in Lq((0, T )× Rd).

The existence result of weak solutions to system (3.1) is contained in the following
Theorem.

Theorem 3.1 (Existence of weak solutions). Assume that the initial datum f0 satisfies

fi0 ∈ L1
+ ∩ L∞(Rd × Rd), (|x|2 + |v|2)fi0 ∈ L1(Rd × Rd),

and
(Kii ∗ ρi0)fi0 ∈ L1(Rd × Rd).

Then there exists a weak solution f to (3.1) such that

f ∈ C([0, T ];P(Rd × Rd)N ).

Proof. By the uniform in δ bound estimates obtained above we know

‖f δi ‖L∞((0,T );Lp(Rd×Rd)) + ‖ρδi ‖L∞((0,T );Lq(Rd)) ≤ C,

with p ∈ [1 +∞], q ∈ [1, d+2
d ], C > 0 independent of δ. Therefore, by compactness

theory, we have that as δ → 0, up to a subsequence,

f δi
∗−⇀ fi in L∞((0, T );Lp(Rd × Rd)), p ∈ [1,+∞],

ρδi
∗−⇀ ρi in L∞((0, T );Lp(Rd)), p ∈ [1, d+2

d ].

Set

Gδi :=
1

ε
vf δi +

1

ε

N∑
j=1

(∇Kδ
ij ∗ ρδj)f δi .

54



We want to prove that Gδi ∈ Lploc(R
d × Rd × [0, T ]) for some p ∈ (1,∞), in order to

apply Lemma 3.4. We need to check the self terms. Let q < 2. Then
¨

Rd×Rd
|vf δi |

q dx dv =

¨
Rd×Rd

(
1

f δi
|vf δi |

2

) q
2

(f δi )
q
2 dx dv

≤
(¨

Rd×Rd

1

f δi
|vf δi |

2 dx dv

) q
2

‖f δi ‖
q
2

L
q

2−q
.

For the second term, by using Young’s inequality for convolution, we obtain that

‖(∇Kδ
ii ∗ ρδi )f δi ‖Lp ≤ C‖f

δ
i ‖L∞‖∇Kii ∗ ρδi ‖Lp ≤ C‖f

δ
i ‖L∞‖ρ

δ
i ‖Lp ,

for p < d+2
d . Thus, by Lemma 3.4, we derive that

ρδi → ρi in Lq(Rd × (0, T )) and a.e.,

up to a subsequence, as δ → 0, for q < d+2
d+1 . Now we want to prove that

(∇Kδ
ii ∗ ρδi )f δi → (∇Kii ∗ ρi)fi,

in the sense of distributions. Let Ψi ∈ C∞c ([0, T ]× Rd × Rd).
ˆ T

0

¨
Rd×Rd

[(∇Kδ
ii ∗ ρδi )f δi − (∇Kii ∗ ρi)fi]Ψi dx dv ds

=

ˆ T

0

ˆ
Rd

(∇(Kδ
ii −Kii) ∗ ρi)ρi,Ψ dx ds

+

ˆ T

0

ˆ
Rd
∇Kδ

ii ∗ (ρδi − ρi)ρδi,Ψ dx ds

+

ˆ T

0

ˆ
Rd

(∇Kδ
ii ∗ ρi)(ρδi,Ψ − ρi,Ψ) dx ds

=:A+B + C,

with ρi,Ψ :=
´
Rd fiΨ dv and ρδi,Ψ :=

´
Rd f

δ
i Ψ dv. Thanks to the uniform in δ estimate for

f δi in L∞((0, T )× Rd × Rd) and the compact support of Ψi, we find

ρi,Ψ, ρ
δ
i,Ψ ∈ Lp((0, T );Lq(Rd)),

for any p, q ∈ [1,∞], uniformly in δ.

Estimate of A

We have that |(∇Kδ
ii∗ρi)ρi,Ψ| ≤ |∇Kii∗ρi||ρi,Ψ| and (∇Kδ

ii∗ρi)ρi,Ψ converges pointwise
to (∇Kii ∗ ρi)ρi,Ψ as δ → 0. Moreover, by Hardy-Littlewood-Sobolev inequality, we get

ˆ T

0

ˆ
Rd

(|∇Kii| ∗ ρi)|ρi,Ψ| dx ds ≤
ˆ T

0

¨
Rd×Rd

ρi(x)|x− y|−(αi+1)|ρi,Ψ|(y) dx dy ds

≤ C‖ρi‖Lp(Rd×(0,T ))‖ρi,Ψ‖Lp′ ((0,T );Lq(Rd)),

where p ∈ (1, d+2
d ), αi+1

d = 1 − 1
q + 1

p , and p
′ is the Holder conjugate of p. Therefore,

by Lebesgue’s dominated convergence theorem, we obtain that A vanishes as δ → 0.
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Estimate of B

As in the previous estimate, we have that∣∣∣∣ˆ T

0

ˆ
Rd
∇Kii ∗ (ρδi − ρi)ρδi,Ψ dx ds

∣∣∣∣
≤
ˆ T

0

¨
Rd×Rd

|ρδi − ρi|(x)|x− y|−(αi+1)|ρδi,Ψ|(y) dx dy ds

≤ C‖ρδi − ρi‖Lp(Rd×(0,T ))‖ρiΨ‖Lp′ ((0,T );Lq(Rd)),

with p ∈ (1, d+2
d+1) and αi+1

d = 1− 1
q + 1

p . Thus, B → 0 as δ → 0.

Estimate of C

As said, we know that

(∇Kδ
ii ∗ ρi)Ψ ∈ L1((0, T );Lq(Rd)),

with q < 2 uniformly in δ. Then, since f δi
∗−⇀ fi, we obtain that C → 0 as δ → 0. We

conclude that f is a weak solution to system (3.1).

3.4 Small inertia limit

In this Section we prove rigorously the small inertia limit. Since we want to study
the behaviour of solutions to kinetic system (3.1) with respect to the inertia parameter
ε > 0, we explicit the ε-dependence, namely we define f ε = (f εi )Ni=1 to be a weak solution
to system

∂tf
ε
i + v · ∇xf εi =

1

ε
∇v · (vf εi ) +

1

ε

( N∑
j=1

∇Kij ∗ ρεj
)
· ∇vf εi , (3.5)

for i = 1, . . . , N , with smooth cross-potentials as in assumption (Pot) and singular
self-potentials of the form

Kii(x) :=
Ci
|x|αi

,

with αi ∈ (0, d−1], and some positive constants Ci. As above, ρεi (t, x) is the macroscopic
population density of the i-th species, namely

ρεi (t, x) =

ˆ
Rd
f εi (t, x, v) dv.

The main purpose in this Section is to consider the limit ε→ 0 in (3.5) to derive
∂tρi = ∇ · (ρiui),

ui =
N∑
j=1

∇Kij ∗ ρj ,
(3.6)

as i = 1, . . . , N .
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Remark 3.3. In literature, the macroscopic velocity is defined by, see [19],

u(t, x) =

´
Rd vf(t, x, v) dv´
Rd f(t, x, v) dv

.

Since
ρεi |uεi |

2 ≤
ˆ
Rd
|v|2f εi dv,

Proposition 3.1 shows that for ε > 0

N∑
i=1

ˆ
Rd
ρεi |uεi |

2 dx <∞

on some time interval [0, T ].

Next we recall from [31] (see also [52]) the following modulated interaction energy
estimates.

Theorem 3.2. Let T > 0 and K be given by

K(x) =
1

|x|α
with α ∈ (0, d).

Suppose that the pairs (ρ̄, ū) and (ρ, u) satisfy the followings:

(i) (ρ̄, ū) and (ρ, u) satisfy the continuity equations in the sense of distribution:

∂tρ̄+∇ · (ρ̄ū) = 0 and ∂tρ+∇ · (ρu) = 0,

(ii) (ρ̄, ū) and (ρ, u) satisfy the energy inequality:

sup
0≤t≤T

(ˆ
Rd
ρ̄|ū|2 dx+

ˆ
Rd
ρ̄K ∗ ρ̄ dx

)
<∞,

and
sup

0≤t≤T

(ˆ
Rd
ρ|u|2 dx+

ˆ
Rd
ρK ∗ ρ dx

)
<∞,

(iii) ρ̄, ρ ∈ C((0, T );L1(Rd)), ∇u ∈ L∞(Rd × (0, T )) and if α < d− 2,{
∇[(d−α)/2]+1u ∈ L∞((0, T );L

d
[(d−α)/2] (Rd)), if α ∈ (0, d− 2) \ (d− 2N),

∇
d−α
2 u ∈ L∞((0, T );L

2d
d−α−2 (Rd)), if α ≡ d mod 2,

where d− 2N := {d− 2n : n ∈ N} and [ · ] denotes the floor function.

Then we have

1

2

d

dt

ˆ
Rd

(ρ− ρ̄)K ∗(ρ− ρ̄) dx ≤
ˆ
Rd
ρ̄(u− ū) ·∇K ∗(ρ− ρ̄) dx+C

ˆ
Rd

(ρ− ρ̄)K ∗(ρ− ρ̄) dx

for t ∈ [0, T ) and some C > 0 which depends only on α, d and ‖∇u‖L∞(Rd×(0,T )), and
if d < α− 2, additionally ‖∇

[(d−α)/2]+1u‖
L∞((0,T );L

d
[(d−α)/2]−1 )

, if α ∈ (0, d− 2) \ (d− 2N),

‖∇(d−α)/2u‖
L∞((0,T );L

2d
d−α−2 )

, if α ≡ d mod 2.
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We also recall from [19, Lemma 4.1] (see also [28, Proposition 3.1], [60, Theorem
23.9], [2, 18, 41]) the following lemma which gives a relation between the bounded
Lipschitz distance and modulated kinetic energy.

Lemma 3.5. Let T > 0 and ρ̄ : [0, T ]→ P(Rd) be a narrowly continuous solution of

∂tρ̄+∇ · (ρ̄ū) = 0,

that is, ρ̄ is continuous in the duality with continuous bounded functions, for a Borel
vector field ū satisfying

ˆ T

0

ˆ
Rd
|ū(x, t)|pρ̄(x, t) dx dt <∞

for some p > 1. Let ρ ∈ C([0, T ];Pp(Rd)) be a solution of the following continuity
equation

∂tρ+∇ · (ρu) = 0

with the velocity fields u ∈ L∞((0, T ); Ẇ 1,∞(Rd)). Then there exists a Cu,T > 0 de-
pending only on T and ‖∇u‖L∞ such that for all t ∈ [0, T ]

d2
BL(ρ, ρ̄) ≤ Cu,T

(
d2
BL(ρ0, ρ̄0) +

ˆ t

0

ˆ
Rd
ρε|uε − u|2 dx ds

)
,

where ρε and uε are defined in Remark 3.3.

Remark 3.4. Since
ρεi |uεi − ui|

2 ≤
ˆ
Rd
f εi |v − ui|

2 dv,

Lemma 3.5 particularly implies

d2
BL(ρi, ρ̄i) ≤ Cu,T

(
d2

BL(ρi0, ρ̄i0) +

ˆ t

0

¨
Rd×Rd

f εi |v − ui|
2 dx dv ds

)
,

as i = 1, . . . , N .

Theorem 3.3. Let T > 0 and d ≥ 1. Let f ε = (f εi )Ni=1 ∈ C([0, T );P(Rd × Rd)N )
be a solution to system (3.5) in the sense of distributions, and let (ρ,u) = (ρi, ui)

N
i=1

be the unique classical solution of the coupled fractional porous medium flows (3.6)
with ρi > 0 on Rd × [0, T ), ∂tui + ui · ∇ui ∈ L∞(Rd × (0, T )), and if α < d − 2,
∇[(d−α)/2]+1ui ∈ L∞((0, T );L

d
[(d−α)/2] (Rd)) up to time T > 0 with the initial data ρi0. If

sup
ε>0

N∑
i=1

¨
Rd×Rd

|v − ui0(x)|2f εi0(x, v) dx dv <∞

and
N∑
i=1

ˆ
Rd

(ρi0 − ρεi0)Kii ∗ (ρi0 − ρεi0) dx+

N∑
i=1

dBL(ρi0, ρ
ε
i0)→ 0,

as ε→ 0, then for each i = 1, . . . , N , we haveˆ
Rd

f εi dv ⇀ ρi weakly in L∞((0, T );M(Rd)),
ˆ
Rd
v fεi dv ⇀ ρiui weakly in L2((0, T );M(Rd)),
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and
f εi ⇀ ρiδui weakly in L2((0, T );M(Rd × Rd)),

where dBL stands for the bounded-Lipschitz distance introduced in Section 1.6, and we
denoted byM(Rn) the space of signed Radon measures on Rn with n ∈ N.

Proof. We first rewrite the system (3.6) as

∂tρi +∇ · (ρiui) = 0,

ε∂tui + εui · ∇ui = −ui −
N∑
j=1

∇Kij ∗ ρj + εei,

where ei := ∂tui + ui · ∇ui, for i = 1, . . . , N . For the error estimates, we consider the
modulated kinetic and interaction energies:

EK(f εi |ρi, ui) :=
1

2

¨
Rd×Rd

|ui − v|2f εi dx dv +
1

2ε

ˆ
Rd

(ρi − ρεi )Kii ∗ (ρi − ρεi ) dx.

Straightforward computation yields that for each i = 1, . . . , N

1

2

d

dt

¨
Rd×Rd

|ui − v|2f εi dx dv +
1

ε

¨
Rd×Rd

|ui − v|2f εi dx dv

=

¨
Rd×Rd

(ui − v)⊗ (v − ui) : ∇xuif εi dx dv −
¨

Rd×Rd
(v − ui) · eif εi dx dv

+
1

ε

¨
Rd×Rd

(v − ui) ·
( N∑
j=1

∇Kij ∗ (ρj − ρεj)
)
f εi dx dv

=: I + II + III,

where
I ≤ ‖∇ui‖L∞

¨
Rd×Rd

|ui − v|2f εi dx dv,

and
II ≤ 4ε‖ei‖L∞ +

1

ε

¨
Rd×Rd

|ui − v|2f εi dx dv.

For III, we use ∇Kij ∈W 1,∞ for i, j = 1, . . . , N with i 6= j to obtain

III ≤1

ε

ˆ
Rd
ρεi (u

ε
i − ui) · ∇Kii ∗ (ρi − ρεi ) dx

+
1

ε

(¨
Rd×Rd

|ui − v|2f εi dx dv
)1/2∑

j 6=i
‖∇Kij‖W 1,∞dBL(ρj , ρ

ε
j)

≤1

ε

ˆ
Rd
ρεi (u

ε
i − ui) · ∇Kii ∗ (ρi − ρεi ) dx

+
cK
2ε

¨
Rd×Rd

|ui − v|2f εi dx dv +
cK
2ε

∑
j 6=i

d2
BL(ρj , ρ

ε
j),

where
cK := max

i=1,...,N

∑
j 6=i
‖∇Kij‖W 1,∞ .
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We then apply Theorem 3.2 and Lemma 3.5 to deduce

EK(f εi |ρi, ui) +
1

ε

(
1− max

i=1,...,N
‖∇ui‖L∞ε− 1− cK

2

) ˆ t

0

¨
Rd×Rd

|ui − v|2f εi dx dv ds

≤EK(f εi0|ρi0, ui0) +
CcK
2ε

∑
j 6=i

d2
BL(ρj0, ρ

ε
j0) + Cε

+
C

ε

N∑
i=1

ˆ t

0

ˆ
Rd

(ρi − ρεi )Kii ∗ (ρi − ρεi ) dx ds

+
CcK
2ε

∑
j 6=i

ˆ t

0

¨
Rd×Rd

|uj − v|2f εj dx dv ds,

where C > 0 depends only on u1, . . . , uN , and T , but independent of ε > 0. We now
sum over i = 1, . . . , N , apply Grönwall’s inequality to have

N∑
i=1

EK(f εi |ρi, ui) +
1

ε

N∑
i=1

ˆ t

0

¨
Rd×Rd

|ui − v|2f εi dx dv ds

≤ c0

N∑
i=1

EK(f εi0|ρi0, ui0) +
c0

ε

N∑
i=1

d2
BL(ρi0, ρ

ε
i0),

where c0 > 0 is independent of ε > 0.

Remark 3.5. If ∇Kij ∈ W 1,∞ for all i, j = 1, . . . , N , then we only need to assume
that

sup
ε>0

N∑
i=1

¨
Rd×Rd

|v − ui0(x)|2f εi0(x, v) dx dv <∞

and
N∑
i=1

dBL(ρi0, ρ
ε
i0)→ 0

as ε→ 0 for the desired convergences. That is, the modulated interaction energies are
not required when the interaction potentials are smooth enough. In this case, we also
readily find ∂tui + ui · ∇ui ∈ L∞(Rd × (0, T )) for all i = 1, . . . , N . Indeed,

‖ui‖W 1,∞ ≤
N∑
j=1

‖∇Kij‖W 1,∞ <∞

and

|∂tui| =
∣∣∣∣ N∑
j=1

∇Kij ∗ ∂tρj
∣∣∣∣ ≤ ‖ui‖L∞ N∑

j=1

‖∆Kij‖L∞ <∞.

Remark 3.6. In Theorem 3.3, if we assume

N∑
i=1

¨
Rd×Rd

|v − ui0(x)|2f εi0(x, v) dx dv → 0

and
1

ε

N∑
i=1

ˆ
Rd

(ρi0 − ρεi0)Kii ∗ (ρi0 − ρεi0) dx+
1

ε

N∑
i=1

d2
BL(ρi0, ρ

ε
i0)→ 0
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as ε→ 0, then for each i = 1, . . . , N , we have
ˆ
Rd
f εi dv ⇀ ρi,

ˆ
Rd
vfεi dv ⇀ ρiui weakly in L∞((0, T );M(Rd)),

and
f εi ⇀ ρiδui weakly in L∞((0, T );M(Rd × Rd))

as ε→ 0.

Remark 3.7 (Existence of unique classical solution to system (3.6)). In the statement
of Theorem 3.3 we assume that there exists a unique classical solution to system (3.6).
The strategy for proving existence of unique smooth solution to system (3.6) could be to
adapt the argument in [29] by exploiting a proper splitting argument between singular
self-potentials and smooth cross-potentials. This will be object of future investigations.
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Chapter 4

A finite volume method for a
kinetic model for interacting species

In this Chapter we propose an upwind finite volume scheme for a system of two kinetic
equations coupled through nonlocal interaction terms. Once we construct the numerical
mesh, we define the numerical approximation of the solution. After showing some a
priori estimates, we prove the convergence of the numerical solution of the scheme to
the solution to the continuum system.

4.1 The model

The system we deal with is the following two-species kinetic system
∂f

∂t
+ v

∂f

∂x
= (K ′11 ∗ ρ+K ′12 ∗ η)

∂f

∂v
,

∂g

∂t
+ v

∂g

∂x
= (K ′22 ∗ η +K ′21 ∗ ρ)

∂g

∂v
,

(4.1)

equipped with some non-negative initial data f0, g0 ∈ L1(R× R), i.e.,

f(0, x, v) = f0(x, v), and g(0, x, v) = g0(x, v).

Here, (f, g)(t, x, v) is a pair of densities describing the distribution of the two species
on the domain [0, T ]×R×R, and Kij are the interaction potentials. Moreover, ρ(t, x)
and η(t, x) denote the macroscopic population densities, i.e.,

ρ(t, x) =

ˆ
R
f(t, x, v) dv, and η(t, x) =

ˆ
R
g(t, x, v) dv.

The existence theory for system (4.1) has been studied in arbitrary dimension and
considering many species in Chapter 2.

In particular, here we consider a two-species version in order to construct an upwind
finite volume scheme, and we do not include the inertia term. Before constructing the
numerical scheme and studying its properties, let us present some formal properties of
the solutions at the continuous level.

For convenience, we shall, henceforth, use the notation

Υf (t, x) := K ′11 ∗ ρ+K ′12 ∗ η, and Υg(t, x) := K ′22 ∗ η +K ′21 ∗ ρ. (4.2)
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Now, we show that the solutions on the continuous level are bounded and posi-
tive. Indeed, for any smooth function φ : R → R and p ∈ {f, g}, a straightforward
computation shows

d

dt

¨
R×R

φ ◦ p dx dv =

¨
R×R

φ′(p)∂tp dx dv

=

¨
R×R

φ′(p)

(
−v ∂p

∂x
+ Υp

∂p

∂v

)
dx dv

=

¨
R×R

(
−v
Υp

)
· ∇(x,v)φ(p) dx dv

= 0.

We introduce the notation

[x]+ := max{x, 0}, and [x]− := −min{x, 0}

for the positive part and the negative part, respectively, of a real number x. Using
φ(s) = [s]−, we observe that the solutions of system (4.1) remain non-negative if they
were non-negative initially. Furthermore, if φ(s) = [s − ‖p0‖L∞ ]+, with p0 ∈ {f0, g0},
we obtain that the solution is bounded at the continuous level. Moreover, considering
φ(s) = |s|q, we see that the Lq-norms of the solution are preserved.

4.2 Derivation of the numerical method

In this Section, we shall derive a finite volume scheme to approximate the solutions of
system (4.1) on the domain QT := (0, T ) × (−L,L) × R, equipped with some periodic
boundary conditions in the physical space. Throughout this Chapter, we will use the
following domains Q := (−L,L)× R and ΩT := (0, T )× (−L,L).

4.2.1 Numerical mesh

We discretize the phase space by introducing cells

Ci,j = (xi−1/2, xi+1/2)× (vj−1/2, vj+1/2),

for (i, j) ∈ I × Z, where I = {0, . . . , Nx − 1}. Here, (xi−1/2)i∈{0,...,Nx} is a strictly
increasing family of interfaces with x−1/2 = −L and xNx−1/2 = L. Similarly, (vj−1/2)j∈Z
denotes a strictly increasing sequence in R, with vj+1/2 → ±∞, as j → ±∞.

We denote by ∆xi = xi+1/2 − xi−1/2, for i ∈ I, the width of the spatial interval
(xi−1/2, xi+1/2). Additionally, we set ∆vj = vj+1/2 − vj−1/2, for j ∈ Z, to denote the
width of the velocity interval (vj−1/2, vj+1/2).

We associate with the mesh the parameter h as the maximum of all space and
velocity steps, i.e.,

h := max
i∈I,j∈Z

{∆xi,∆vj} > 0.

We denote by xi the centre of the interval (xi−1/2, xi+1/2) and by vj the center of
the interval (vj−1/2, vj+1/2).

Additionally we call the mesh admissible if there exists α ∈ (0, 1) such that

αh ≤ ∆xi,∆vj ≤ h,
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for all (i, j) ∈ I ×Z. Henceforth, we assume that our mesh admits the existence of such
an α > 0.

Finally, for some NT ∈ N, we set ∆t := T/NT for the time step and tn := n∆t,
n = 0, . . . , NT , to denote the discrete time instances.

4.2.2 Discretization of the data

We discretize the initial data by a piecewise constant function. We set

f0
i,j :=

 
Ci,j

f0(x, v) dx dv, and g0
i,j :=

 
Ci,j

g0(x, v) dx dv,

for (i, j) ∈ I × Z as the averaged integral
ffl

of the initial datum (f0, g0) over the cell
Ci,j .

To approximate the functions f and g we use piecewise constant functions on each
cell (tn, tn+1)×Ci,j , n = 0, . . . , NT − 1, (i, j) ∈ I ×Z. For that purpose, we write these
approximations as

fni,j ≈
 
Ci,j

f(tn, x, v) dx dv, and gni,j ≈
 
Ci,j

g(tn, x, v) dx dv.

Besides, we define the piecewise constant approximations, ρh and ηh, of the macroscopic
densities ρ and η as

ρh(t, x) = ρni , and ηh(t, x) = ηni ,

for (t, x) ∈ [tn, tn+1)× [xi−1/2, xi+1/2), with i ∈ I, and

ρni :=
∑
j∈Z

∆vjf
n
i,j , and ηni :=

∑
j∈Z

∆vjg
n
i,j .

However, these sums are over infinitely many entries j ∈ Z. To implement the
scheme, we have to work in a bounded domain. Therefore we need to truncate the
velocity domain. Hence, we choose an arbitrary vh > 0 sufficiently large, such that
vh → ∞ as h → 0 and restrict the velocity domain to (−vh, vh). We introduce the
index set J := {j ∈ Z : |vj+1/2| ≤ vh} which consists of all indices j of the interfaces
(vj−1/2)j that are inside the truncated velocity domain. Note that the choice of vh > 0
is made precise in Remark 4.2.

Therefore, we define the piecewise constant approximation associated with the it-
erates obtained from the scheme, (fh, gh) on [0, T ) × [−L,L] × (−vh, vh). They are
extended by zero to the whole domain [0, T )× [−L,L]× R, such that

(fh, gh)(t, x, v) :=

{
(fni,j , g

n
i,j), if (t, x, v) ∈ [tn, tn+1)× Ci,j and (i, j) ∈ I × J ,

(0, 0), else.

4.2.3 Construction of the method

We obtain the finite volume approximation by integrating system (4.1) over a test cell,
(tn, tn+1)×Ci,j for a fixed n ∈ {0, . . . NT − 1}, i ∈ I and j ∈ Z. A formal computation
yields
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

 
Ci,j

f(tn+1, x, v)− f(tn, x, v) dx dv = −
xFni+1/2,j −

xFni−1/2,j + vFni,j+1/2 −
vFni,j−1/2

|Ci,j |
,

 
Ci,j

g(tn+1, x, v)− g(tn, x, v) dx dv = −
xGni+1/2,j −

xGni−1/2,j + vGni,j+1/2 −
vGni,j−1/2

|Ci,j |
,

where xFni+1/2,j ,
vFni,j+1/2 are the fluxes of f on the respective parts of the boundary

of the cell Ci,j given by
xFni+1/2,j =

ˆ tn+1

tn

ˆ vj+1/2

vj−1/2

vf(t, xi+1/2, v) dv dt,

vFni,j+1/2 =

ˆ tn+1

tn

ˆ xi+1/2

xi−1/2

−Υf (t, x)f(t, x, vj+1/2) dx dt,

for (i, j) ∈ I × Z. Similarly, xGni+1/2,j ,
vGni,j+1/2 are the fluxes of g on the boundary of

the cell Ci,j , i.e.,
xGni+1/2,j =

ˆ tn+1

tn

ˆ vj+1/2

vj−1/2

vg(t, xi+1/2, v) dv dt,

vGni,j+1/2 =

ˆ tn+1

tn

ˆ xi+1/2

xi−1/2

−Υg(t, x)g(t, x, vj+1/2) dx dt,

with (i, j) ∈ I × Z.
If we apply the piecewise constant approximation for f, g, ρ and η as in Section 4.2.2,

we arrive at the discrete version of (4.1):


fn+1
i,j = fni,j −

1

|Ci,j |
(x
F̄
n
i+1/2,j −

x
F̄
n
i−1/2,j +

v
F̄
n
i,j+1/2 −

v
F̄
n
i,j−1/2

)
,

gn+1
i,j = gni,j −

1

|Ci,j |
(x
Ḡ
n
i+1/2,j −

x
Ḡ
n
i−1/2,j +

v
Ḡ
n
i,j+1/2 −

v
Ḡ
n
i,j−1/2

)
,

(4.3a)

for (i, j) ∈ I × Z and n ∈ {0, . . . NT − 1}. Note that we have replaced the continu-
ous fluxes above by the discrete upwind fluxes xF̄ni+1/2,j ,

v
F̄
n
i,j+1/2,

x
Ḡ
n
i+1/2,j ,

v
Ḡ
n
i,j+1/2,

defined as 
x
F̄
n
i+1/2,j = ∆t∆vj

(
fni,j [vj ]

+ − fni+1,j [vj ]
−),

v
F̄
n
i,j+1/2 = ∆t∆xi

(
fni,j [(Υf )ni ]− − fni,j+1[(Υf )ni ]+

)
,

(4.3b)

and, similarly, 
x
Ḡ
n
i+1/2,j = ∆t∆vj

(
gni,j [vj ]

+ − gni+1,j [vj ]
−),

v
Ḡ
n
i,j+1/2 = ∆t∆xi

(
gni,j [(Υg)

n
i ]− − gni,j+1[(Υg)

n
i ]+
)
,

(4.3c)

for (i, j) ∈ I × Z.
The terms (Υf )ni and (Υg)

n
i are the approximations of the interaction terms Υf and Υg
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at the point (tn, xi), and are defined by
(Υf )ni :=

∑
k∈I

(
ρnk

ˆ xk+1/2

xk−1/2

K ′11(xi − y) dy + ηnk

ˆ xk+1/2

xk−1/2

K ′12(xi − y) dy

)
,

(Υg)
n
i :=

∑
k∈I

(
ηnk

ˆ xk+1/2

xk−1/2

K ′22(xi − y) dy + ρnk

ˆ xk+1/2

xk−1/2

K ′21(xi − y) dy

)
.

(4.3d)

The scheme is complemented with periodic boundary conditions in space, i.e.,

fnNx,j = fn0,j , gnNx,j = gn0,j , (4.4a)

fn−1,j = fnNx−1,j , gn−1,j = gnNx−1,j , (4.4b)

where the values fn−1,j , g
n
−1,j , f

n
Nx,j

, gnNx,j represent an approximation on a “virtual cell”.
In velocity we have no-flux boundaries, i.e.,

v
F̄
n
i,j+1/2 = 0 =

v
Ḡ
n
i,j+1/2 (4.4c)

for all (i, j) ∈ I × Z \ J .

4.2.4 The finite volume scheme

Throughout the Chapter we will use the following two representations of our scheme.
First, we consider

fn+1
i,j = fni,j −

1

|Ci,j |
(x
F̄
n
i+1/2,j −

x
F̄
n
i−1/2,j +

v
F̄
n
i,j+1/2 −

v
F̄
n
i,j−1/2

)
,

gn+1
i,j = gni,j −

1

|Ci,j |
(x
Ḡ
n
i+1/2,j −

x
Ḡ
n
i−1/2,j +

v
Ḡ
n
i,j+1/2 −

v
Ḡ
n
i,j−1/2

)
,

(4.3a)

for n = 0, . . . , NT − 1 and (i, j) ∈ I ×J , where xF̄ , vF̄ , xḠ and v
Ḡ are defined in (4.3b)

and (4.3c). Second, we can rewrite the scheme (4.3) and get by a short computation

pn+1
i,j =

(
1−∆t

[
|vj |
∆xi

+
|(Υp)

n
i |

∆vj

])
pni,j + ∆t

[vj ]
−

∆xi
pni+1,j + ∆t

[vj ]
+

∆xi
pni−1,j

+ ∆t
[(Υp)

n
i ]+

∆vj
pni,j+1 + ∆t

[(Υp)
n
i ]−

∆vj
pni,j−1,

(4.5)

for p ∈ {f, g} and n = 0, . . . , NT − 1 and (i, j) ∈ I × J . For both representations we
use the boundary conditions (4.4).

Before proving some a priori estimates, let us introduce our notion of solutions.

Definition 4.1 (Weak solution). We call the pair (f, g) a weak solution to system (4.1)
if it satisfies

ˆ
QT

f

(
∂ϕ

∂t
+ v

∂ϕ

∂x
−Υf

∂ϕ

∂v

)
dt dx dv +

ˆ
Q
f0(x, v)ϕ(0, x, v) dx dv = 0,

ˆ
QT

g

(
∂ϕ

∂t
+ v

∂ϕ

∂x
−Υg

∂ϕ

∂v

)
dt dx dv +

ˆ
Q
g0(x, v)ϕ(0, x, v) dx dv = 0,

for every ϕ ∈ C∞c ([0, T )×Q).
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4.3 Properties of the numerical method and a priori
estimates

4.3.1 A priori estimates

This Section is dedicated to establishing the positivity and boundedness of the discrete
approximation obtained in Section 4.2.4.

4.3.2 Positivity of the solution and the CFL condition

To mimic the structure-preserving properties of system (4.1) on the level of the approxi-
mations, a stepsize restriction is required. Indeed, we assume that there exists ξ ∈ (0, 1)
such that, for both species, p ∈ {f, g},

∆t

|Ci,j |
(∆vj |vj |+ ∆xi|(Υp)

n
i |) ≤ 1− ξ, (4.6)

for all (i, j) ∈ I × J , and all n ∈ N.
It is absolutely crucial to stress that, albeit apparently dependent on n, the stepsize

restriction, (4.6), can be shown to be satisfied uniformly in n. Indeed, we shall see in the
subsequent Proposition that it is independent of n using a short induction argument.

Proposition 4.1 (Positivity preservation of the scheme). Let Kij ∈ W 1,∞(−L,L),
i, j ∈ {1, 2}, p ∈ {f, g} be with non-negative initial condition p0 ∈ {f0, g0} with
‖p0‖L1(Q) = 1. Assume that there exists ξ ∈ (0, 1) such that the stepsize restriction

∆t

∆xi∆vj
(∆vj |vj |+ ∆xi|(Υp)

0
i |) ≤ 1− ξ, (4.7)

is satisfied. Then, the following holds true:

(i) pni,j ≥ 0, for all (i, j) ∈ I × J , and ‖ph(tn)‖L1(Q) = ‖ph(t = 0)‖L1(Q), for all
n ∈ N.

(ii) If ∆t is chosen such that

∆t ≤ (1− ξ)α
vh + CW

h, (4.8)

where ξ is as in (4.7) and CW is defined by

CW := max
i∈{1,2}

2∑
j=1

‖K ′ij‖L∞(−L,L), (4.9)

then the CFL condition (4.6) is satisfied for the two species uniformly in n ∈ N.

Remark 4.1. Note that, by Proposition 4.1, the positivity of fh and gh is guaranteed,
and the scheme conserves the mass.

Proof. We proceed by induction. First, let us consider n = 0. Since p0 is non-negative,
we know that p0

ij ≥ 0 which implies (i). On the other hand, for n = 0 the CFL condition
(4.6) is satisfied by assumption. Next, let us assume for n fixed that the statement (i)
and condition (4.6) hold true. Let us prove (i) for n+1. We consider the representation
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(4.5) of our scheme. Since, by induction assumption, pnij ≥ 0 for all i ∈ I and j ∈ J ,
and condition (4.6) is met for n, we derive from the representation (4.5) that

pn+1
i,j ≥ 0.

Next, we prove the conservation of mass. Using the non-negativity in conjunction with
the scheme, we compute

‖ph(tn+1)‖L1(Q) =
∑

i∈I,j∈J
|Ci,j | pn+1

i,j

=
∑

i∈I,j∈J
|Ci,j | pni,j −

∑
i∈I,j∈J

(x
P̄
n
i+1/2,j −

x
P̄
n
i−1/2,j

)
−

∑
i∈I,j∈J

(v
P̄
n
i+1/2,j −

v
P̄
n
i−1/2,j

)
=

∑
i∈I,j∈J

|Ci,j | pni,j ,

since both sums over the fluxes are telescopic sums and having exploited the periodic
and no-flux boundary conditions. Therefore, we obtain

‖ph(tn+1)‖L1(Q) =
∑

i∈I,j∈J
|Ci,j | pni,j = ‖ph(tn)‖L1(Q) = ‖ph(0)‖L1(Q),

where the last equality holds by assumption. Thus, the conservation of mass, (i), is
guaranteed on the numerical level.

Next, we prove statement (ii). Let ζh ∈ {ρh, ηh} be the respective macroscopic
density of ph ∈ {fh, gh}. We know that

ˆ L

−L
ζh(tn+1, x) dx =

∑
i∈I,j∈J

|Ci,j | pn+1
i,j

=
∑

i∈I,j∈J
|Ci,j | p0

i,j

≤
∑

i∈I,j∈Z
|Ci,j | p0

i,j

= 1.

Then we compute for ph = fh

|(Υf )n+1
i | =

∣∣∣∣ˆ L

−L
K ′11(xi − y)ρh(tn+1, y) dy +K ′12(xi − y)ηh(tn+1, y) dy

∣∣∣∣
≤‖K ′11‖L∞

ˆ L

−L
ρh(tn+1, y) dy + ‖K ′12‖L∞

ˆ L

−L
ηh(tn+1, y) dy

≤ CW .

(4.10)

The same estimate can be established for the other species, ph = gh. Overall, this shows
that

∆t

(
|vj |
∆xi

+
|(Υp)

n+1
i |

∆vj

)
≤ ∆t

(
vh
αh

+
CW
αh

)
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for p ∈ {f, g}. So, if we choose ∆t such that

(1− ξ)
vh + CW

h > ∆t,

we can guarantee

∆t

(
|vj |
∆xi

+
|(Υp)

n+1
i |

∆vj

)
≤ 1− ξ.

Therefore, the stepsize condition (4.6) is satisfied for both species and all n ∈ N.

4.3.3 Boundedness of the solution and an a priori estimate

We will begin by proving that the solutions of the scheme described in Section 4.2.4
are bounded in Lp(Q) for each time t ∈ (0, T ). This we will prove using the next
Proposition.

Proposition 4.2. Consider a non-negative, convex function φ : R→ R such that
ˆ L

−L

ˆ
R
φ(p0(x, v)) dx dv < +∞,

for p0 ∈ {f0, g0}. Let the assumptions of Proposition 4.1 hold true. Then, under the
CFL condition (4.6), the numerical solution satisfies

ˆ L

−L

ˆ
R
φ(ph(t+ τ, x, v)) dx dv ≤

ˆ L

−L

ˆ
R
φ(ph(t, x, v)) dx dv,

for p ∈ {f, g} and every t, τ ≥ 0.

Proof. Consider the representation (4.5) of the discrete scheme. Under the CFL condi-
tion (4.6), we can observe that pn+1

i,j is a convex combination of pni,j , p
n
i+1,j , p

n
i−1,j , p

n
i,j+1,

pni,j−1. By convexity of φ, we obtain

φ(pn+1
i,j ) ≤

(
1−∆t

[
|vj |
∆xi

+
|(Υp)

n
i |

∆vj

])
φ(pni,j) + ∆t

[vj ]
−

∆xi
φ(pni+1,j) + ∆t

[vj ]
+

∆xi
φ(pni−1,j)

+ ∆t
[(Υp)

n
i ]+

∆vj
φ(pni,j+1) + ∆t

[(Υp)
n
i ]−

∆vj
φ(pni,j−1).

Integrating in space and velocity, we have
ˆ L

−L

ˆ
R
φ(ph(tn+1, x, v)) dx dv

=
∑

i∈I,j∈J
|Ci,j |φ(pn+1

i,j )

≤
Nx−1∑
i=0

∑
j∈J

[(
∆xi∆vj −∆t(|vj |∆vj + |(Υp)

n
i |∆xi)

)
φ(pni,j)

+ ∆t∆vjv
−
j φ(pni+1,j) + ∆t∆vjv

+
j φ(pni−1,j)

+ ∆t∆xi[(Υp)
n
i ]+φ(pni,j+1) + ∆t∆xi[(Υp)

n
i ]−φ(pni,j−1)

]
.
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By shifting the indices and applying the boundary conditions (4.4), we get
ˆ L

−L

ˆ
R
φ(ph(tn+1, x, v)) dx dv ≤

∑
i∈I,j∈J

∆xi∆vjφ(pni,j)

=

ˆ L

−L

ˆ
R
φ(ph(tn, x, v)) dx dv .

(4.11)

Finally, let t, τ ≥ 0 be given. The statement follows from fixing integers, n0, n1 ∈ N such
that t ∈ [tn0 , tn0+1) and t+ τ ∈ [tn1 , tn1+1) and applying estimate (4.11) iteratively.

In the subsequent analysis, more refined bounds are required. To this end, we
estimate the tails of (fh, gh).

Proposition 4.3. Let the initial datum of both species be non-negative and bounded
from above by a function R of the following type

R(x, v) =
C

1 + |v|λ1 + |x|λ2
,

for some λ1 > 1, λ2 ≥ 1, with λ2 ≤ λ1, i.e., 0 ≤ p0(x, v) ≤ R(x, v) with p ∈ {f, g}.
Then, there exists a constant CT > 0 depending on α, λ1, λ2, CW and the final time
T > 0 such that

0 ≤ ph(t, x, v) ≤ CTRh(x, v), (4.12)

for (t, x, v) ∈ QT , ph ∈ {fh, gh}, where

Rh(x, v) :=
C

1 + |vj |λ1 + |xi|λ2
,

for (x, v) ∈ Ci,j. As a consequence, for h small enough

0 ≤ ζh(t, x) ≤ CT ,

for (t, x) ∈ ΩT , and where ζh ∈ {ρh, ηh} is the respective macroscopic density of ph ∈
{fh, gh}.

Proof. Let ph ∈ {fh, gh}. By Proposition 4.1, we know that ph is non-negative. Next,
since xi = xi+1 − 1

2(∆xi + ∆xi+1), setting ∆xi+1/2 = 1
2(∆xi + ∆xi+1), by definition of

Rh we have

Rh(xi+1, vj)

Rh(xi, vj)
≤

1 + |vj |λ1 + (|xi+1|+ ∆xi+1/2)λ2

1 + |vj |λ1 + |xi+1|λ2

≤
1 + |vj |λ1 + |xi+1|λ2 + C|xi+1|λ2−1∆xi+1/2 +O((∆xi+1/2)2)

1 + |vj |λ1 + |xi+1|λ2

≤ 1 + C
|xi+1|λ2−1

1 + |vj |λ1 + |xi+1|λ2
∆xi+1/2 +O((∆xi+1/2)2).

In the same way, we obtain

Rh(xi−1, vj)

Rh(xi, vj)
≤ 1 + C

|xi|λ2−1

1 + |vj |λ1 + |xi|λ2
∆xi−1/2 +O((∆xi−1/2)2).
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Since by assumption λ2 ≤ λ1, we derive, for i ∈ I,

|xi|λ2−1|vj |
1 + |vj |λ1 + |xi|λ2

≤ 1.

Indeed, if |vj | ≤ |xi|, we get

|xi|λ2−1|vj | ≤ |xi|λ2 ≤ 1 + |vj |λ1 + |xi|λ2 .

If, instead, |xi| < |vj | and |vj | ≥ 1, we obtain

|xi|λ2−1|vj | ≤ |vj |λ2 ≤ |vj |λ1 ≤ 1 + |vj |λ1 + |xi|λ2 .

If, finally, |xi| < |vj | and |vj | < 1, then

|xi|λ2−1|vj | ≤ |xi|λ2−1 ≤ 1 + |xi|λ2 ≤ 1 + |xi|λ2 + |vj |λ1 .

Therefore, we derive that

[vj ]
−Rh(xi+1, vj)

Rh(xi, vj)
+ [vj ]

+Rh(xi−1, vj)

Rh(xi, vj)
≤ |vj |+ c1(λ2)∆xi

(
2 +

∆xi+1 + ∆xi−1

∆xi

)
≤ |vj |+ c1(α, λ2)∆xi.

Now, setting ∆vj+1/2 = 1
2(∆vj + ∆vj+1), we have

Rh(xi, vj+1)

Rh(xi, vj)
=

1 + |vj |λ1 + |xi|λ2

1 + |vj+1|λ1 + |xi|λ2
≤

1 + (|vj+1|+ ∆vj+1/2)λ1 + |xi|λ2

1 + |vj+1|λ1 + |xi|λ2

≤ 1 + C
|vj+1|λ1−1∆vj+1/2 +O((∆vj+1/2)2)

1 + |vj+1|λ1 + |xi|λ2

≤ 1 + C
|vj+1|λ1−1

1 + |vj+1|λ1
∆vj+1/2 +O((∆vj+1/2)2)

≤ 1 + c2(α, λ1)∆vj .

In the same way, we obtain

Rh(xi, vj−1)

Rh(xi, vj)
≤ 1 + c3(α, λ1)∆vj .

Set c0(α, λ1, λ2) = max{c1, c2, c3}. Set A := (1+∆tc0(1+CW)). We know that p0(x, v) ≤
A0Rh(x, v).

Let us proceed by induction. Assume ph(tn, x, v) ≤ AnRh(x, v). Using the numerical
scheme (4.5) we have

pn+1
i,j

Rh(xi, vj)
=

(
1−∆t

[
|vj |
∆xi

+
|(Υp)

n
i |

∆vj

])
pni,j

Rh(xi, vj)

+ ∆t
[vj ]
−

∆xi

pni+1,j

Rh(xi+1, vj)

Rh(xi+1, vj)

Rh(xi, vj)

+ ∆t
[vj ]

+

∆xi

pni−1,j

Rh(xi−1, vj)

Rh(xi−1, vj)

Rh(xi, vj)

+ ∆t
[(Υp)

n
i ]+

∆vj

pni,j+1

Rh(xi, vj+1)

Rh(xi, vj+1)

Rh(xi, vj)

+ ∆t
[(Υp)

n
i ]−

∆vj

pni,j−1

Rh(xi, vj−1)

Rh(xi, vj−1)

Rh(xi, vj)
.
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Hence, using the estimates above and (4.10) we arrive at

pn+1
i,j

Rh(xi, vj)
≤
(

1−∆t

[
|vj |
∆xi

+
|(Υp)

n
i |

∆vj

])
An + ∆t

|vj |
∆xi

An
(

1 + c0
∆xi
|vj |

)
+ ∆t

|(Υp)
n
i |

∆vj
An(1 + c0∆vj)

≤An
(

1 + ∆tc0(1 + CW)

)
= An+1.

Thus, we obtain that for all (i, j) ∈ I × Z,

pn+1
i,j

Rh(xi, vj)
≤ An+1.

By definition of An, we have for all n ∈ {0, . . . dT/∆te}, An+1 < ec0(1+CW )T . There-
fore, as in the continuous case, at discrete level there exists CT > 0 depending on
α, λ1, λ2, CW , T such that

ph(t, x, v) ≤ CTRh(x, v),

for (t, x, v) ∈ QT . Moreover, we have that
ˆ
R
Rh(x, v) dv = C

∑
j∈Z

∆vj

1 + |vj |λ1 + |xi|λ2
≤ 2C

∑
j∈N

h

1 + (α[j − 1]h)λ1 + |xi|λ2

≤ 2C

α

∑
j∈N

∆vj−1

1 + (α[j − 1]h)λ1
≤ 2C

α1+λ1

ˆ ∞
0

1

1 + vλ1
dv.

Now, we have that
ˆ ∞

0

1

1 + vλ1
dv =

ˆ 1

0

1

1 + vλ1
dv +

ˆ ∞
1

1

1 + vλ1
dv

≤ 1 +

ˆ ∞
1

1

vλ1
dv = 1 +

1

λ1 − 1
.

Thus, for h small enough, we obtain that

ζh(t, x) =

ˆ
R
ph(t, x, v) dv ≤ CT

(
1

α1+λ1

ˆ
R

dv

1 + |v|λ1

)
< +∞,

for ζh ∈ {ρh, ηh}.

Remark 4.2. With this proposition we now choose an appropriate vh which is applied
for the cut off in the velocity domain in Section 4.2.2. First, let x ∈ (−L,L) be fixed
and ε > 0. Now we want to choose vh such thatˆ

R\(−vh,vh)
ph(t, x, v) dv < ε,

with ph ∈ {fh, gh} and t ∈ (0, T ). Indeed we derive as in the proof of Proposition 4.3
ˆ
R\(−vh,vh)

ph(t, x, v) dv ≤
ˆ
R\(−vh,vh)

CTRh(x, v) dv ≤ CT
2

α1+λ1

ˆ ∞
vh

1

1 + vλ1
dv

≤ 2CT
α1+λ1

1

λ1 − 1
v−λ1+1
h ,
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for t ∈ (0, T ). Then we choose

vh =

(
2CT
α1+λ1

1

λ1 − 1
ε−1

) 1
λ1+1

.

Such a choice of vh guarantees that the mass outside of (−vh, vh) is less then ε for all
time t ∈ (0, T ). If ε is much smaller than the machine epsilon then the error that we
are making by cutting off the functions f and g in the velocity domain is minimal with
respect to the computational error.

4.4 Convergence of the scheme

Before we will prove the convergence of the scheme, we will introduce the piecewise
constant approximation of the interaction terms that we will use in the following proof.

Definition 4.2 (Piecewise constant interpolation). We define the piecewise constant
approximation of the interaction terms as

(Υf )h(t, x) :=

ˆ L

−L
K ′11(x− y)ρh(t, y) dy +

ˆ L

−L
K ′12(x− y)ηh(t, y) dy, (4.13a)

(Υg)h(t, x) :=

ˆ L

−L
K ′22(x− y)ηh(t, y) dy +

ˆ L

−L
K ′21(x− y)ρh(t, y) dy. (4.13b)

We are now in the position to prove the main result of this Chapter concerning the
convergence of the scheme.

Theorem 4.1 (Convergence of the scheme). Assume p0 ∈ {f0, g0} non-negative and
bounded from above by a function R, where

R(x, v) :=
C

1 + |vj |λ1 + |xi|λ2
,

for (x, v) ∈ (xi−1/2, xi+1/2)×(vj−1/2, vj+1/2), with λ1 > 1, λ2 ≥ 1 and λ2 ≤ λ1, for some
C > 0. Assume that the CFL condition (4.6) is satisfied and that ∆t satisfies (4.8).
Let Kij ∈ W 2,∞(−L,L), for i, j ∈ {1, 2}. Denoting by (fh, gh)(t, x, v) the numerical
solution to the scheme (4.3), then we have

fh(t, x, v) ⇀ f(t, x, v), gh(t, x, v) ⇀ g(t, x, v),

weakly-∗ in L∞(QT ) as h → 0, where (f, g) is a solution to system (4.1), in the sense
of Definition 4.1.

Proof. Let ph ∈ {fh, gh} and ζh ∈ {ρh, ηh} the respective density. By Proposition 4.3
we know that ph is bounded in L∞(QT ), thus, by Banach-Alaoglu Theorem we have
that, up to a subsequence, there exists a function p ∈ L∞(QT ) such that

ph(t, x, v) ⇀ p(t, x, v),

weakly-∗ in L∞(QT ), as h→ 0. We also know that ζh is bounded in L∞(ΩT ), thus, up
to a subsequence,

ζh(t, x) ⇀ ζ(t, x),
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weakly-∗ in L∞(ΩT ), as h→ 0. Moreover, we have that ζ(t, x) is equal to
´
R p(t, x, v) dv

a.e.. Indeed, considering ψ ∈ L1(ΩT ) we have
ˆ T

0

ˆ L

−L

(
ζh −

ˆ
R
p dv

)
ψ(t, x) dx dt =

ˆ T

0

ˆ L

−L

ˆ
R

(ph − p)ψ(t, x) dv dx dt→ 0,

since ph ⇀ p weakly-∗ in L∞(QT ). Furthermore, if p = f , it holds that
ˆ
QT

∂ϕ

∂v
(Υf )hfh dx dv dt→

ˆ
QT

∂ϕ

∂v
Υff dx dv dt,

since fh ⇀ f weakly-∗ in L∞(QT ), and (Υf )h → Υf strongly in L1(−L,L). Indeed, for
any x ∈ (−L,L) fixed, we get

(Υf )h(t, x)−Υf (t, x) =

ˆ L

−L
K ′11(x− y)ρh(t, y) dy +

ˆ L

−L
K ′12(x− y)ηh(t, y) dy

−
ˆ L

−L
K ′11(x− y)ρ(t, y) dy −

ˆ L

−L
K ′12(x− y)η(t, y) dy

−→
ˆ L

−L
K ′11(x− y)ρ(t, y) dy +

ˆ L

−L
K ′12(x− y)η(t, y) dy

−
ˆ L

−L
K ′11(x− y)ρ(t, y) dy −

ˆ L

−L
K ′12(x− y)η(t, y) dy

=0,

since ρh ⇀ ρ and ηh ⇀ η weakly-∗ in L∞(ΩT ). Thus, we have pointwise convergence.
Since

‖K ′11 ∗ ρh‖L∞ ≤ ‖K
′
11‖L∞‖ρh‖L1 ≤ C and ‖K ′12 ∗ ηh‖L∞ ≤ ‖K

′
12‖L∞‖ηh‖L1 ≤ C

with C independent of h and
´

ΩC dx <∞, then by Lebesgue’s dominated convergence
theorem we get (Υf )h → Υf strongly in L1(ΩT ). The same argumentation can be done
for p = g.

Having garnered all information necessary, we are now ready to identify the limit.
The following notation will be convenient:

Iht :=

ˆ
QT

ph(t, x, v)
∂ϕ

∂t
(t, x, v) dt dx dv +

ˆ
Q
p0(x, v)ϕ(0, x, v) dx dv,

Ihx :=

ˆ
QT

ph(t, x, v)v
∂ϕ

∂x
(t, x, v) dt dx dv,

Ihv := −
ˆ
QT

ph(t, x, v)(Υp)h(t, x)
∂ϕ

∂v
(t, x, v) dt dx dv,

where ϕ ∈ C∞c ([0, T ) × Q) is arbitrary but fixed throughout. With the compactness
from above, it is immediate to see that

lim
∆t, h→0

Iht =

ˆ
QT

p(t, x, v)
∂ϕ

∂t
(t, x, v) dt dx dv +

ˆ
Q
p0(x, v)ϕ(0, x, v) dt dx dv,

as well as

lim
∆t, h→0

Ihx =

ˆ
QT

p(t, x, v) v
∂ϕ

∂x
(t, x, v) dt dx dv,
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and

lim
∆t, h→0

Ihv = −
ˆ
QT

p(t, x, v) Υp(t, x)
∂ϕ

∂v
(t, x, v) dt dx dv.

It remains to show that

lim
∆t, h→0

Iht + Ihx + Ihv = 0. (4.14)

In order to establish this limit, we exploit the discrete scheme, (4.5). Indeed, let us
observe that (4.5) can be rewritten as

pn+1
i,j − pni,j

∆t
=

[vj ]
−

∆xi
(pni+1,j − pni,j) +

[vj ]
+

∆xi
(pni−1,j − pni,j)

+
[(Υp)

n
i ]−

∆vj
(pni,j−1 − pni,j) +

[(Υp)
n
i ]+

∆vj
(pni,j+1 − pni,j).

(4.15)

Multiplying (4.15) by

ϕni,j :=

ˆ
Cni,j

ϕ(t, x, v) dt dx dv,

where Cni,j := [tn, tn+1)×Ci,j , and summing over i ∈ I, j ∈ J and n ∈ {0, . . . , NT − 1},
we obtain

J ht + J hx + J hv = 0,

with

J ht :=
∑
n,i,j

pn+1
i,j − pni,j

∆t
ϕni,j ,

J hx := −
∑
n,i,j

[
[vj ]
−

∆xi
(pni+1,j − pni,j)ϕni,j +

[vj ]
+

∆xi
(pni−1,j − pni,j)ϕni,j

]
,

J hv := −
∑
n,i,j

[
[(Υp)

n
i ]−

∆vj
(pni,j−1 − pni,j)ϕni,j +

[(Υp)
n
i ]+

∆vj
(pni,j+1 − pni,j)ϕni,j

]
.

The strategy is to show that

|Iht + J ht |, |Ihx + J hx |, |Ihv + J hv |,→ 0, (4.16)

as ∆t, h → 0, which shows the convergence of each of the terms on the one hand and
establishes the limit in (4.14) on the other hand. We proceed term by term.

Estimating J ht
We consider

J ht =
1

∆t

∑
i,j

ji,j , (4.17)
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where

ji,j :=

NT−1∑
n=0

(pn+1
i,j − p

n
i,j)ϕ

n
i,j

=−
NT∑
n=1

pni,j(ϕ
n
i,j − ϕn−1

i,j )− p0
i,jϕ

0
i,j

=−
NT−1∑
n=0

pn+1
i,j (ϕn+1

i,j − ϕ
n
i,j)− p0

i,jϕ
0
i,j , (4.18)

having used integration by parts and the fact that ϕNTi,j = 0 due to the compact support
of ϕ. By using Taylor expansion we derive

ϕ(t−∆t, x, v) = ϕ(t, x, v)−∆t
∂ϕ

∂t
(t, x, v) +

∆t2

2

∂2ϕ

∂t2
(t, x, v) +O(∆t3).

Then, using the definition of ϕni,j we get

ϕn+1
i,j − ϕ

n
i,j =

ˆ
Ci,j

[ˆ tn+2

tn+1

ϕ(t, x, v) dt−
ˆ tn+1

tn
ϕ(t, x, v) dt

]
dx dv

=

ˆ
Cn+1
i,j

[
ϕ(t, x, v)− ϕ(t−∆t, x, v)

]
dt dx dv

=

ˆ
Cn+1
i,j

[
∆t

∂ϕ

∂t
(t, x, v)− ∆t2

2

∂2ϕ

∂t2
(t, x, v) +O(∆t3)

]
dt dx dv.

Substituting this expression in (4.18), we obtain

ji,j = −
NT−1∑
n=0

pn+1
i,j

ˆ
Cn+1
i,j

[
∆t

∂ϕ

∂t
− ∆t2

2

∂2ϕ

∂t2
+O(∆t3)

]
dt dx dv − p0

i,jϕ
0
i,j . (4.19)

Substituting (4.19) into (4.17) yields

J ht =
1

∆t

∑
i,j

[
−
NT−1∑
n=0

[ˆ
Cn+1
i,j

pn+1
i,j ∆t

∂ϕ

∂t
dt dx dv +

ˆ
Cn+1
i,j

pn+1
i,j

∆t2

2

∂2ϕ

∂t2
dt dx dv

]

− p0
i,jϕ

0
i,j −

NT∑
n=1

pni,j |Ci,j |∆t3O(1)

]

=
∑
i,j

[
−
NT−1∑
n=1

ˆ
Cni,j

pni,j
∂ϕ

∂t
dt dx dv +

NT−1∑
n=0

ˆ
Cn+1
i,j

pn+1
i,j

∆t

2

∂2ϕ

∂t2
dt dx dv

− 1

∆t
p0
i,jϕ

0
i,j −

NT∑
n=1

pni,j |Ci,j |∆t2O(1)

]
,

since the test function has compact support. Rearranging the expression in Iht , we find

J ht + Iht =
∑
i,j

[
− 1

∆t
p0
i,jϕ

0
i,j + p0

i,j

ˆ
Cij

ˆ t1

0

∂ϕ

∂t
dt dx dv +

ˆ
Cij

p0(x, v)ϕ(0, x, v) dx dv

+

NT−1∑
n=0

ˆ
Cn+1
i,j

pn+1
i,j

∆t

2

∂2ϕ

∂t2
dt dx dv −

NT∑
n=1

pni,j |Ci,j |∆t2O(1)

]
.
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Now, noting that
1

∆t
ϕ0
i,j =

1

∆t

ˆ
Ci,j

ˆ t1

0
ϕ(t, x, v) dt dx dv,

we use the Taylor expansion for both ϕ(t, x, v) and
∂ϕ

∂t
(t, x, v) around the point (0, x, v)

to get

− 1

∆t

ˆ
Ci,j

ˆ t1

0
ϕ(t, x, v) dt dx dv +

ˆ
Ci,j

ˆ t1

0

∂ϕ

∂t
(t, x, v) dt dx dv

=−
ˆ
Ci,j

ϕ(0, x, v) dx dv +

ˆ
Ci,j

∂ϕ

∂t
(0, x, v)

ˆ t1

0

(
1− t

∆t

)
dt dx dv

+

ˆ
Ci,j

∂2ϕ

∂t2
(0, x, v)

ˆ t1

0

[
t

(
1− t

2

1

∆t

)]
dt dx dv +O(∆t3∆xi∆vj),

for i ∈ I and j ∈ J . Therefore, we derive

|J ht + Iht | ≤
∑
i,j

[ˆ
Ci,j

|p0(x, v)− p0
i,j ||ϕ(0, x, v)| dx dv + p0

i,j‖
∂ϕ

∂t
(0)‖L∞(Q)|Ci,j |

∆t

2

+ p0
i,j‖

∂2ϕ

∂t2
(0)‖L∞(Q)|Ci,j |

5

12
∆t2 + p0

i,j |Ci,j |∆t3O(1)

+ ∆t

NT−1∑
n=0

pn+1
i,j

2
‖∂

2ϕ

∂t2
‖L∞(QT )|Ci,j |∆t−

NT∑
n=1

pni,j |Ci,j |∆t2O(1)

]
.

Thus, we obtain that

|J ht + Iht | ≤ C‖p0 − ph(0)‖L1(Q) + C∆t+O(∆t2)→ 0,

as ∆t, h→ 0.

Estimating J hx
Next, let us consider

J hx =
∑
n,i,j

[vj ]
−

∆xi
(pni,j − pni+1,j)ϕ

n
i,j +

[vj ]
+

∆xi
(pni,j − pni−1,j)ϕ

n
i,j

= J h,−x + J h,+x ,

with

J h,+x :=
∑
n,i,j

[vj ]
+

∆xi
(pni,j − pni−1,j)ϕ

n
i,j , and J h,−x :=

∑
n,i,j

[vj ]
−

∆xi
(pni,j − pni+1,j)ϕ

n
i,j .

By using Taylor expansion on the test function, we haveˆ xi+1/2

xi−1/2

ϕ(t, x, v) dx = ϕ(t, xi±1/2, v)∆xi +O(∆x2
i ).

Thus, using integration by parts and the spatial boundary conditions, we obtain

J h,+x =
∑
n,j

Nx−1∑
i=0

[vj ]
+(pni,j − pni−1,j)

ˆ tn+1

tn

ˆ vj+1/2

vj−1/2

ϕ(t, xi−1/2, v) dv dt+ Eh,+x , (4.20)
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where

|Eh,+x | ≤ C
∑
n,i,j

|Cni,j |[vj ]+|pni,j − pni−1,j |. (4.21)

Manipulating the first term, we get∑
n,j

[vj ]
+

[
pnNx−1,j

ˆ tn+1

tn

ˆ vj+1/2

vj−1/2

ϕ(t, xNx−3/2, v) dv dt

− pn−1,j

ˆ tn+1

tn

ˆ vj+1/2

vj−1/2

ϕ(t, x−3/2, v) dv dt

−
Nx−2∑
i=−1

pni,j

ˆ tn+1

tn

ˆ vj+1/2

vj−1/2

(ϕ(t, xi+1/2, v)− ϕ(t, xi−1/2, v)) dv dt

]

= −
∑
n,j

Nx−1∑
i=0

[vj ]
+pni,j

ˆ tn+1

tn

ˆ vj+1/2

vj−1/2

(ϕ(t, xi+1/2, v)− ϕ(t, xi−1/2, v)) dv dt

= −
∑
n,j

Nx−1∑
i=0

[vj ]
+

ˆ
Cni,j

ph(t, x, v)
∂ϕ

∂x
(t, x, v) dt dx dv.

Substituting this into (4.20), we obtain

J h,+x = −
∑
n,i,j

[vj ]
+

ˆ
Cni,j

ph(t, x, v)
∂ϕ

∂x
(t, x, v) dt dx dv + Eh,+x . (4.22)

Next, let us address J h,−x . We have

J h,−x = −
∑
n,j

Nx−1∑
i=0

[vj ]
−(pni+1,j − pni,j)

ˆ tn+1

tn

ˆ vj+1/2

vj−1/2

ϕ(t, xi+1/2, v) dv dt+ Eh,−x , (4.23)

where

|Eh,−x | ≤ C
∑
n,i,j

|Cni,j |[v]−
∣∣pni+1,j − pni,j

∣∣. (4.24)

Estimating the first term of J h,−x , we find

−
∑
n,j

[vj ]
−
[
pnNx,j

ˆ tn+1

tn

ˆ vj+1/2

vj−1/2

ϕ(t, xNx−1/2, v) dv dt

− pn0,j
ˆ tn+1

tn

ˆ vj+1/2

vj−1/2

ϕ(t, x1/2, v) dv dt

−
Nx∑
i=1

pni,j

ˆ tn+1

tn

ˆ vj+1/2

vj−1/2

(ϕ(t, xi+1/2, v)− ϕ(t, xi−1/2, v)) dv dt

]

=
∑
n,j

Nx−1∑
i=0

[vj ]
−pni,j

ˆ tn+1

tn

ˆ vj+1/2

vj−1/2

(ϕ(t, xi+1/2, v)− ϕ(t, xi−1/2, v)) dv dt

=
∑
n,i,j

[vj ]
−
ˆ
Cni,j

ph(t, x, v)
∂ϕ

∂x
(t, x, v) dt dx dv.
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Substituting this into (4.23), we obtain

J h,−x =
∑
n,i,j

[vj ]
−
ˆ
Cni,j

ph(t, x, v)
∂ϕ

∂x
(t, x, v) dt dx dv + Eh,−x . (4.25)

Adding up (4.22) and (4.25), we get

J hx = −
∑
n,i,j

ˆ
Cni,j

ph(t, x, v)vj
∂ϕ

∂x
(t, x, v) dt dx dv + Eh,+x + Eh,−x

= −
∑
n,i,j

ˆ
Cni,j

ph(t, x, v)v
∂ϕ

∂x
(t, x, v) dt dx dv + Eh,+x + Eh,−x +O(h).

Thus, we may conclude our estimate by summarising

J hx + Ihx = Eh,+x + Eh,−x +O(h). (4.26)

Estimating J hv
We consider

J hv =
∑
n,i,j

[(Υp)
n
i ]−

∆vj
(pni,j − pni,j−1)ϕni,j +

[(Υp)
n
i ]+

∆vj
(pni,j − pni,j+1)ϕni,j

= J h,−v + J h,+v ,

where

J h,+v :=
∑
n,i,j

[(Υp)
n
i ]+

∆vj
(pni,j − pni,j+1)ϕni,j , and J h,−v :=

∑
n,i,j

[(Υp)
n
i ]−

∆vj
(pni,j − pni,j−1)ϕni,j .

Again, we proceed by Taylor expanding the test function, i.e.,
ˆ vj+1/2

vj−1/2

ϕ(t, x, v) dv = ϕ(t, x, vj±1/2)∆vj +O(∆v2
j ).

Now, let J ∈ N such that supp(ϕ(t, x, ·)) ⊂ (v−J−1/2, vJ+1/2). Then we have

J h,−v =
∑
n,i

J∑
j=−J

[(Υp)
n
i ]−

∆vj
(pni,j − pni,j−1)ϕni,j

=
∑
n,i

J∑
j=−J

[(Υp)
n
i ]−(pni,j − pni,j−1)

ˆ tn+1

tn

ˆ xi+1/2

xi−1/2

ϕ(t, x, vj−1/2) dx dt+ Eh,−v ,

where

|Eh,−v | ≤ C
∑
n,i,j

|Cni,j |[(Υp)
n
i ]−
∣∣pni,j − pni,j−1

∣∣. (4.27)
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By manipulating the first term in J h,−v we get

∑
n,i

[(Υp)
n
i ]−
[
pni,J

ˆ tn+1

tn

ˆ xi+1/2

xi−1/2

ϕ(t, x, vJ−1/2) dx dt

− pni,−J−1

ˆ tn+1

tn

ˆ xi+1/2

xi−1/2

ϕ(t, x, v−J−3/2) dx dt

−
J−1∑

j=−J−1

pni,j

ˆ tn+1

tn

ˆ xi+1/2

xi−1/2

(ϕ(t, x, vj+1/2)− ϕ(t, x, vj−1/2)) dx dt

]

= −
∑
n,i

[(Υp)
n
i ]−

J∑
j=−J

pni,j

ˆ tn+1

tn

ˆ xi+1/2

xi−1/2

(ϕ(t, x, vj+1/2)− ϕ(t, x, vj−1/2)) dx dt

= −
∑
n,i,j

ˆ
Cni,j

ph(t, x, v)[(Υp)
n
i ]−

∂ϕ

∂v
(t, x, v) dv dx dt,

having used the compact support of the test function. Next, let us consider

J h,+v =−
∑
n,i,j

[(Υp)
n
i ]+

∆vj
(pni,j+1 − pni,j)ϕni,j

=−
∑
n,i

J∑
j=−J

[(Υp)
n
i ]+(pni,j+1 − pni,j)

ˆ tn+1

tn

ˆ xi+1/2

xi−1/2

ϕ(t, x, vj+1/2) dx dt+ Eh,+v ,

where

|Eh,+v | ≤ C
∑
n,i,j

|Cni,j |[(Υp)
n
i ]+
∣∣pni,j+1 − pni,j

∣∣. (4.28)

We continue treating the first term of J h,+v , obtaining

−
∑
n,i

[(Υp)
n
i ]+
[
pni,J+1

ˆ tn+1

tn

ˆ xi+1/2

xi−1/2

ϕ(t, x, vJ+3/2) dx dt

− pni,−J
ˆ tn+1

tn

ˆ xi+1/2

xi−1/2

ϕ(t, x, v−J+1/2) dx dt

−
J+1∑

j=−J+1

pni,j

ˆ tn+1

tn

ˆ xi+1/2

xi−1/2

(ϕ(t, x, vj+1/2)− ϕ(t, x, vj−1/2)) dx dt

]

=
∑
n,i

[(Υp)
n
i ]+

J∑
j=−J

pni,j

ˆ tn+1

tn

ˆ xi+1/2

xi−1/2

ˆ vj+1/2

vj−1/2

∂ϕ

∂v
(t, x, v) dv dx dt

=
∑
n,i,j

ˆ
Cni,j

ph(t, x, v)[(Υp)
n
i ]+

∂ϕ

∂v
(t, x, v) dv dx dt.

Thus

J h,+v =
∑
n,i,j

ˆ
Cni,j

ph(t, x, v)[(Υp)
n
i ]+

∂ϕ

∂v
(t, x, v) dv dx dt+ Eh,+v .
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In conclusion, we have

J hv = J h,−v + J h,−v

=
∑
n,i,j

ˆ
Cni,j

ph(t, x, v)[(Υp)
n
i ]
∂ϕ

∂v
(t, x, v) dv dx dt+ Eh,−v + Eh,+v

=
∑
n,i,j

ˆ
Cni,j

ph(t, x, v) (Υp)h
∂ϕ

∂v
(t, x, v) dv dx dt+ Eh,−v + Eh,+v +O(h),

since ∣∣∣∣∑
n,i,j

ˆ
Cni,j

ph(t, x, v)[[(Υp)
n
i ]− (Υp)h]

∂ϕ

∂v
(t, x, v) dv dx dt

∣∣∣∣
≤ C

∑
n,i,j

|Cni,j |pni,j |[(Υp)
n
i ]− (Υp)h|+O(h).

Thus

Ihv + J hv = Eh,+v + Eh,−v +O(h).

Combination of all Estimates

We have

eh := |J ht + J hx + J hv + Iht + Ihx + Ihv |
≤ |J ht + Iht |+ |J hx + Ihx |+ |J hv + Ihv |
≤ |Eh,+x |+ |Eh,−x |+ |Eh,+v |+ |Eh,−v |+O(h).

Using equations (4.21), (4.24), (4.27), (4.28), we have

eh ≤
∑
n,i,j

|Cni,j |
[
[vj ]

+|pni,j − pni−1,j |+ [v]−|pni+1,j − pni,j |

+ [(Υp)
n
i ]−|pni,j − pni,j−1|+ [(Υp)

n
i ]+|pni,j+1 − pni,j |

]
+O(h)

≤ h∆t
∑
n,i,j

[
∆vj [vj ]

+|pni,j − pni−1,j |+ ∆vj [v]−
∣∣pni+1,j − pni,j

∣∣
+ ∆xi[(Υp)

n
i ]−|pni,j − pni,j−1|+ ∆xi[(Υp)

n
i ]+|pni,j+1 − pni,j |

]
+O(h)

≤ h∆t

[∑
n,i,j

∆vj |vj |+ ∆xi|[(Υp)
n
i ]|
]1/2

×
[∑
n,i,j

∆vj [vj ]
+[pni,j − pni−1,j ]

2 + ∆vj [vj ]
−[pni,j − pni+1,j ]

2

+ ∆xi[(Υp)
n
i ]+[pni,j − pni,j+1]2 + ∆xi[(Υp)

n
i ]−[pni,j − pni,j−1]2

]1/2

+O(h),
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having used Cauchy-Schwarz inequality. Since[∑
n,i,j

∆vj |vj |+ ∆xi|[(Υp)
n
i ]|
]1/2

≤ C(vh, CW)

[∑
n,i,j

(∆vj + ∆xi)

]1/2

≤ C(vh, L, CW , T )
1

h1/2

1

∆t1/2
,

we have

eh ≤ Ch1/2∆t1/2R1/2, (4.29)

where

R :=
∑
n,i,j

∆vj [vj ]
+|pni−1,j − pni,j |

2 + ∆vj [vj ]
−|pni+1,j − pni,j |

2

+ ∆xi[(Υp)
n
i ]+|pni,j+1 − pni,j |

2 + ∆xi[(Υp)
n
i ]−|pni,j−1 − pni,j |

2.

Using the fact that

|p̂− pni,j |
2 = 2

(
pni,j − p̂

)
pni,j + p̂2 −

∣∣pni,j∣∣2,
in particular for p̂ ∈ {pni±1,j , pi,j±1}, we may rewrite R such that

R = 2
∑
n,i,j

[
∆vj [vj ]

+[pni,j − pni−1,j ]p
n
i,j + ∆vj [vj ]

−[pni,j − pni+1,j ]p
n
i,j

+ ∆xi[(Υp)
n
i ]−[pni,j − pni,j−1]pni,j + ∆xi[(Υp)

n
i ]+[pni,j − pni,j+1]pni,j

]

+
∑
n,i,j

[
∆vj [vj ]

+(|pni−1,j |
2 − |pni,j |

2) + ∆vj [vj ]
−(|pni+1,j |

2 − |pni,j |
2)

+ ∆xi[(Υp)
n
i ]−(|pni,j−1|

2 − |pni,j |
2) + ∆xi[(Υp)

n
i ]+(|pni,j+1|

2 − |pni,j |
2)

]
.

We observe that the last summation contains telescopic sums such that, indeed,

R ≤ 2
∑
n,i,j

pni,j

[
∆vj [vj ]

+[pni,j − pni−1,j ] + ∆vj [vj ]
−[pni,j − pni+1,j ]

+ ∆xi[(Υp)
n
i ]−[pni,j − pni,j−1] + ∆xi[(Υp)

n
i ]+[pni,j − pni,j+1]

]

+
∑
n,i

[
∆xi[(Υp)

n
i ]+(|pni,−J |

2 − |pni,J+1|
2) + ∆xi[(Υp)

n
i ]−(|pni,−J−1|

2 − |pni,J |
2)

]
,

where we factored out a pni,j in the first term. Using the scheme (4.15), we see that

R ≤ 2
∑
n,i,j

|Ci,j |pni,j
pn+1
i,j − pni,j

∆t
+

C

∆t
,
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where the last term comes from bounding the boundary terms, i.e., the second sum in
the previous equation. By convexity of x 7→ x2, we can estimate further to get

R ≤
∑
n,i,j

|Ci,j |
∆t

((
pn+1
i,j

)2 − (pni,j)2
)

+
C

∆t
≤ C

∆t
. (4.30)

Substituting (4.30) into (4.29), we finally obtain

eh ≤ Ch1/2,

which goes to zero, as h→ 0. Therefore, we have established (4.16), and thus
ˆ
QT

ph

(
∂ϕ

∂t
+ v

∂ϕ

∂x
− (Υp)h

∂ϕ

∂v

)
dt dx dv +

ˆ
Q
p0(x, v)ϕ(0, x, v) dx dv → 0

as ∆t, h → 0. Then the limit (f, g) of (fh, gh) is a solution to the weak formulation of
system (4.1).
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Chapter 5

One-dimensional second order
system with two species

In this Chapter we study a second order system with two species subject to nonlocal
interactions and linear damping. We prove that, under smoothness assumptions on
the potentials, a unique measure solution exists. We then consider a large-time large-
damping scaled version of the system and prove convergence towards the solution to
the corresponding first order system. Finally, we consider the case of self-interaction
potentials driven by Newtonian potentials and external coercive potentials. After pro-
viding an existence result, we prove a collapse result, showing that for large times the
solutions converge to Dirac delta measures. We complement the results with numerical
simulations.

5.1 The model

The system we deal with is

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂η

∂t
+

∂

∂x
(ηw) = 0,

∂

∂t
(ρv) +

∂

∂x
(ρv2) = −σρv − ρ[K ′11 ∗ ρ+K ′12 ∗ η],

∂

∂t
(ηw) +

∂

∂x
(ηw2) = −σηw − η[K ′22 ∗ η +K ′21 ∗ ρ],

(5.1)

equipped with initial data {
(ρ, v)(t = 0) = (ρ, v),

(η, w)(t = 0) = (η, w).
(5.2)

In system (5.1), ρ(t, x) and η(t, x) are probability measures modelling two species of
agents, or individuals, v(t, x) and w(t, x) are the corresponding Eulerian velocities of
the two species, σ > 0 is the damping parameter, Kij are smooth (to an extent to be
specified later) given space-depending potentials. The convolutions in (5.1) are meant
with respect to the space variable.

System (5.1) has a natural discrete particle counterpart. Let us consider x1, . . . , xN
asN particles of the first species with massesm1, . . . ,mN , and y1, . . . , yM asM particles

84



of the second species with masses n1, . . . , nM . The dynamics of xi and yj is determined
by the following equations

ẍi = −σẋi −
∑
k 6=i

mkK
′
11

(
xi − xk

)
−
∑
k

nkK
′
12

(
xi − yk

)
,

ÿj = −σẏj −
∑
k 6=j

nkK
′
21

(
yj − yk

)
−
∑
k

mkK
′
22

(
yj − xk

)
,

(5.3)

with i = 1, . . . , N and j = 1, . . . ,M and the following initial data{
xi(0) = xi,

ẋi(0) = vi,

{
yj(0) = yj ,

ẏj(0) = wj .

5.2 Main assumptions and particle system

In what follows we will set the assumptions and introduce definitions. Then, we precise
description of system (5.1) in terms of particles and Lagrangian coordinates respectively.
We also provide a formal argument for the large damping limit of system (5.1) towards
the corresponding first order system.

We point out here that, since we are dealing with a two-species system, we will work
on the product space P2(R) × P2(R), where P2(R) is the set of probability measures
with finite second moment. For all µ = (µ1, µ2), ν = (ν1, ν2) ∈ P2(R) × P2(R), we
define the product Wasserstein distance as

W2
2 (µ,ν) = W 2

2 (µ1, ν1) +W 2
2 (µ2, ν2),

where W2 is the 2-Wasserstein distance introduced in Section 1.6. See Subsection 1.6.1
for the description of the 2-Wasserstein distance in the one-dimensional case and the
bijection between the space of probability measures on R with finite second moment
and the convex cone K of the non-decreasing L2(Ω)-functions, with Ω := (0, 1).

5.2.1 Main assumptions

Let us start by specifying the class of interaction potentials we are going to use.

Definition 5.1. A function K : R→ R is called an admissible potential if

K ∈W 2,∞(R), K(0) = 0 and K(−x) = K(x). (A)

An admissible potentialK is said to be sub-quadratic at infinity if there exists a constant
C > 0 such that

K(x) ≤ C(1 + |x|2) for all x ∈ R. (SQ)

An admissible potential K has a sub-linear gradient if there exists C > 0 such that

K ′(x) ≤ C(1 + |x|) for all x ∈ R. (SL)

We call an admissible potential attractive if

K(x) = k(|x|) ≥ 0, for all x ∈ R and K ′(r)r ≥ 0 for all r ∈ R. (AT)
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In Section 5.5 we will also take into account the action of external potentials in
the dynamics. More precisely, we consider A ∈ C2(R) and assume that there exist the
positive constants λ and α such that

A(x) ≥ λ|x|2 (H1)

and
xA′(x) ≥ α|x|2 (H2)

for all x ∈ R.
Denoting with 〈·, ·〉L2(Ω)2 the inner product on the space L2(Ω)2, that is

〈Z1, Z2〉L2(Ω)2 =

ˆ
Ω

[
X1(s)X2(s) + Y1(s)Y2(s)

]
ds,

for Z1 = (X1, Y1) and Z2 = (X2, Y2) in L2(Ω)2, we recall below the notion of Fréchet
sub-differential for a generic operator F on a general Hilbert space.

Definition 5.2. Let H be a Hilbert space. For a given, proper and lower semi-
continuous functional F : H → (−∞,+∞], we say that Z ∈ H belongs to the sub-
differential of F at Z̃ ∈ H if and only if

F(R)− F(Z̃) ≥ 〈Z,R− Z̃〉H + o(‖R− Z̃‖),

as ‖R− Z̃‖ → 0, with R ∈ H. The sub-differential of F at Z̃ is denoted by ∂F(Z̃).

In particular, we will usually consider as Hilbert spaces H = L2(Ω) or H = L2(Ω)2.
Let IK : L2(Ω)→ [0,+∞) be the indicator function of the L2-convex cone K intro-

duced in (1.15), that is

IK(X) =

{
0 if X ∈ K,
+∞ otherwise.

For a given X ∈ L2(Ω), the sub-differential of IK in X is given by

∂IK(X) =

{
Z ∈ L2(Ω) : IK(X̃) ≥ IK(X) +

ˆ
Ω
Z(X̃ −X)dm, for all X̃ ∈ K

}
,

or in its alternative form

∂IK(X) =

{
{Z ∈ L2(Ω) : 0 ≥

´
Ω Z(X̃ −X)dm, for all X̃ ∈ K}, ifX ∈ K,

∅, otherwise.

The definitions above can be easily extended to any Hilbert space H different form
L2, as sometimes required.

We conclude this Subsection with the following definition, which we borrow from
[12].

Definition 5.3. An operator F : K → L2(Ω) is bounded if there exists a constant
C ≥ 0 such that

‖F [X]‖L2(Ω) ≤ C(1 + ‖X‖L2(Ω)) for all X ∈ K.
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An operator F : K → L2(Ω) is pointwise linearly bounded if there exists a constant
Cp ≥ 0 such that

|F [X](m)| ≤ Cp
(
1 + |X(m)|+ ‖X‖L1(Ω)

)
for a.e. m ∈ Ω and all X ∈ K.

An operator F : K → L2(Ω) is uniformly continuous if there exists a modulus of
continuity ω such that

‖F [X1]− F [X2]‖L2(Ω) ≤ ω
(
‖X1 −X2‖L2(Ω)

)
for all X1, X2 ∈ K.

5.2.2 Particles system

We dedicate this Subsection to the study of sticky solutions in the finite dimensional
case. Let x = (x1, . . . , xN ) ∈ RN and y = (y1, . . . , yM ) ∈ RM be the positions of
particles of the first and second species respectively. Since the particles do not overtake
each other, the “sticky” condition preserves the ordering of the particles. Therefore their
evolution is confined in the closed convex set

KN ×KM = {(x, y) ∈ RN × RM : x1 ≤ . . . ≤ xN , y1 ≤ . . . ≤ yM}.

Setting v = (v1, . . . , vN ) ∈ RN and w = (w1, . . . , wM ) ∈ RM as the velocity vectors of
particles of the first species and second species respectively, we consider the following
system 

ẋi(t) = vi(t),

ẏj(t) = wj(t),

v̇i(t) = ai(x(t)) + bi(x(t), y(t))− σvi(t),
ẇj(t) = cj(y(t)) + dj((x(t), y(t))− σwj(t),

(5.4)

for i = 1, . . . , N and j = 1, . . . ,M. In system (5.4),

ai(x) = −
N∑
k=1

mkK
′
ρ(xi − xk) , bi(x, y) = −

M∑
k=1

nkH
′
ρ(xi − yk) ,

cj(y) = −
M∑
k=1

nkK
′
η(yi − yk) , dj(x, y) = −

N∑
k=1

mkH
′
η(yj − xk) .

for i = 1, . . . , N and j = 1, . . . ,M. The i-th component of the vector field

a(x) : x ∈ KN →
(
a1(x), . . . , aN (x)

)
∈ RN

models the interactions between particles of the first species and the i-th particle of the
first species, while the i-th component of the vector field

b(x, y) : (x, y) ∈ KN ×KM → (b1(x, y), . . . , bN (x, y)) ∈ RN

describes the interactions between the i-th particle of the first species and particles of
the second species. Similarly one can describe the j-th component of the terms

c(y) : y ∈ KM → (c1(y), . . . , cM (y)) ∈ RM ,

and
d(x, y) : (x, y) ∈ KN ×KM → (d1(x, y), . . . , dM (x, y)) ∈ RM ,
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respectively.
Assuming that all the potentials in (5.4) are smooth enough (for example with C2

regularity), a unique solution to (5.4) exists as long as particles occupy distinct positions.
When two or more particles collide, we apply the concept of sticky particle solution
sketched in the introduction, Section 1.3. Following [12, 51], the precise formalisation
of sticky collisions requires the definition of the following normal cones

NxKN := {l ∈ RN : l · (x̃− x) ≤ 0 for all x̃ ∈ KN},
NyKM := {n ∈ RM : n · (ỹ − y) ≤ 0 for all ỹ ∈ KM}.

Note that the normal coneNxKN is equal to the sub-differential ∂IKN (x) of the indicator
function of KN at the point x. When two particles of the same species collide, an
instantaneous force is released and the respective particles velocities evolve as elements
of the normal cones NxKN and NyKM respectively. Given these premises, we can
consider the second order system of differential inclusions

ẋ = v,

ẏ = w,

v̇ +NxKN 3 a(x) + b(x, y)− σv,
ẇ +NyKM 3 c(y) + d(x, y)− σw.

(5.5)

System (5.5) is justified as follows. Introducing the vector W(t) = (V (t),W (t)) =
eσt(v(t), w(t)), from (5.4) we get

Ẇ(t) = eσtA(x(t), y(t)) ,

where A(x, y) is the vector in RN+M with components a(x) + b(x, y) and c(y) + d(x, y)
respectively. Now, due to the smoothness of the interaction potentials, the vector
field A(x, y) can be extended by continuity to the boundary of the cone KN × KM .
Therefore, as W and (v, w) only differ by a scalar factor, a suitable modified version of
the differential equation for W that keeps the dynamics in KN ×KM is the differential
inclusion

Ẇ(t) ∈ eσtA(x(t), y(t)) +Nx(t)KN ×Ny(t)KM ,

which easily yields the last two differential inclusions in (5.5).
According to [12], if x : [0,∞) → KN satisfies the global sticky condition, i.e.,

particles are not allowed to split after colliding, then the following monotonicity property
on the family of normal cones Nx(t)KN holds:

Nx(s)KN ⊂ Nx(t)KN for all s < t.

Hence, for any function ζ : [0,∞)→ RN such that ζ(t) ∈ Nx(t)KN , we have

ˆ t

s
ζ(r) dr ∈ Nx(t)KN for all s < t.

Consequently, integrating the last two equations in (5.5) on a time interval [s, t], one
obtains

v(t) + σx(t) +Nx(t)KN 3 v(s) + σx(s) +

ˆ t

s
a(x(r)) dr +

ˆ t

s
b(x(r), y(r)) dr, (5.6)
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and

w(t) + σy(t) +Ny(t)KM 3 w(s) + σy(s) +

ˆ t

s
c(y(r)) dr +

ˆ t

s
d(x(r), y(r)) dr. (5.7)

System (5.5), together with (5.6) and (5.7), can be rewritten in a more compact form
in the new variables (x, y, p, q) where p and q are defined by

p(t) =

ˆ t

s
a(x(r)) dr +

ˆ t

s
b(x(r), y(r)) dr + v(s) + σx(s),

q(t) =

ˆ t

s
c(y(r)) dr +

ˆ t

s
d(x(r), y(r)) dr + w(s) + σy(s),

yielding the following first order system of differential inclusions
ẋ+ σx+NxKN 3 p,
ẏ + σy +NyKM 3 q,
ṗ = a(x) + b(x, y),

q̇ = c(y) + d(x, y),

with the additional characterisation of v and w in terms of p and q given by

v(t) + σ

ˆ t

s
v(r) dr +NxKN 3 p(t),

w(t) + σ

ˆ t

s
w(r) dr +NyKM 3 q(t).

5.2.3 Time scaling and formal large damping limit

One of the purposes is to study system (5.1) in the large time / large damping regime,
namely we aim to send σ → +∞ in (5.1) after having suitably rescaled the time vari-
able. We start performing the scaling at the level of particles, namely for system (5.3).
Consider the new time variable τ defined by

τ =
t

σ
, (5.8)

and introduce the scaled particle trajectories as follows:

xi(t) = χi(τ) = χi(t/σ),

yj(t) = ξj(τ) = ξj(t/σ),

as i = 1, . . . , N and j = 1, . . . ,M . Notice that we can scale the initial velocities accord-
ingly as

χ̇i(0) := νi = σvi, ξ̇j(0) := ωj = σwj .

Hence, system (5.3) becomes

σ−2χ̈i(τ) = −χ̇i(τ)−
∑
k 6=i

mkK
′
ρ

(
χi(τ)− χk(τ)

)
−
∑
k

nkH
′
ρ

(
χi(τ)− ξk(τ)

)
,

σ−2ξ̈j(τ) = −ξ̇j(τ)−
∑
k 6=j

nkK
′
η

(
ξj(τ)− ξk(τ)

)
−
∑
k

mkH
′
η

(
ξj(τ)− χk(τ)

)
.

89



A formal limit σ → +∞ leads to the following first order system of differential equations
for particle positions

χ̇i(τ) = −
∑
k 6=i

mkK
′
ρ

(
χi(τ)− χk(τ)

)
−
∑
k

nkH
′
ρ

(
χi(τ)− ξk(τ)

)
,

ξ̇j(τ) = −
∑
k 6=j

nkK
′
η

(
ξj(τ)− ξk(τ)

)
−
∑
k

mkH
′
η

(
ξj(τ)− χk(τ)

)
.

A similar time scaling can be performed at the level of (5.1). Using the definition
of τ in (5.8) and considering (ρ̃, ṽ, η̃, w̃) solution to

∂ρ̃

∂t
+

∂

∂x
(ρ̃ṽ) = 0,

∂η̃

∂t
+

∂

∂x
(η̃w̃) = 0,

∂

∂t
(ρ̃ṽ) +

∂

∂x
(ρ̃ṽ2) = −σρ̃ṽ − ρ̃[K ′11 ∗ ρ̃+K ′12 ∗ η̃],

∂

∂t
(η̃w̃) +

∂

∂x
(η̃w̃2) = −ση̃w̃ − η̃[K ′22 ∗ η̃ +K ′21 ∗ ρ̃],

we can introduce the rescaled densities and velocities as

ρ(τ, x) = ρ̃(t, x), v(τ, x) = σṽ(t, x),

η(τ, x) = η̃(t, x), w(τ, x) = σw̃(t, x).

Then the quadruple (ρ, v, η, w) solves

∂ρ

∂τ
+

∂

∂x
(ρv) = 0,

∂η

∂τ
+

∂

∂x
(ηw) = 0,

σ−2

[
∂

∂τ
(ρv) +

∂

∂x
(ρv2)

]
= −ρv − ρ[K ′11 ∗ ρ+K ′12 ∗ η],

σ−2

[
∂

∂τ
(ηw) +

∂

∂x
(ηw2)

]
= −ηw − η[K ′22 ∗ η +K ′21 ∗ ρ],

(5.9)

and formally, as σ →∞, we get the first order system
∂ρ

∂τ
=

∂

∂x

[
ρK ′11 ∗ ρ+ ρK ′12 ∗ η

]
,

∂η

∂τ
=

∂

∂x

[
ηK ′22 ∗ η + ηK ′21 ∗ ρ

]
.

(5.10)

5.2.4 Lagrangian description of the continuum model

We now transpose the considerations above in terms of a Lagrangian description for
system (5.1). For any X ∈ K, where K denotes the convex cone introduced in (1.15),
we define the set

ΩX := {m ∈ Ω : X is constant in an open neighborhood of m} , (5.11)

and the closed subspace

HX = {Z ∈ L2(0, 1) : Z is constant on each interval (a, b) ∈ ΩX}. (5.12)
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A crucial quantity in the following analysis is the projection PHX : L2 → HX given by

PHX (U) =


 b

a
U(m) dm in any maximal interval (a, b) ⊂ ΩX ,

U a.e. in Ω \ ΩX ,

(5.13)

for all U ∈ L2(Ω). The proof of the following Lemma is an easy consequence of Jensen’s
inequality, see [12, Lemma 2.2].

Lemma 5.1 (HX -contraction). Let ψ : R→ [0,∞) be a convex lower semi-continuous
function. Then PHX is dominated by X, namely

ˆ
Ω
ψ
(
PHX (Y )

)
dm ≤

ˆ
Ω
ψ(Y ) dm for all X ∈ K and all Y ∈ L2(Ω),

and we write PHX ≺ X.

Consider a quadruple (ρ, η, v, w) solution to (5.1) and define the mapsX,Y : [0,∞)×
Ω→ R and the velocities V,W : [0,∞)× Ω→ R as follows

X(t, ·) = Ψ(ρ(t, ·)), V (t, ·) = v(t,X(t, ·)) = ∂tX(t, ·),
Y (t, ·) = Ψ(η(t, ·)), W (t, ·) = w(t, Y (t, ·)) = ∂tY (t, ·),

where Ψ is the isometry defined in (1.16) that associates to a probability measure
its monotone rearrangement. In the new unknowns (X,Y, V,W ), system (5.1) can be
(formally) rephrased as

∂tX(t) = V (t),

∂tY (t) = W (t),

∂tV (t) = −
ˆ

Ω
K ′11

(
X(m)−X(m′)

)
dm′

−
ˆ

Ω
K ′12

(
X(m)−X(m′)

)
dm′ − σV (t),

∂tY (t) = −
ˆ

Ω
K ′21

(
Y (m)− Y (m′)

)
dm′

−
ˆ

Ω
K ′22

(
Y (m)−X(m′)

)
dm′ − σW (t).

Similarly to Subsection 5.2.2, one can show that the previous system can be reformulated
in terms of differential inclusions to incorporate particles collisions. Moreover, since
we will investigate on the large-damping limit, through the chapter we consider the
Lagrangian counterpart of the rescaled system (5.9). Then, according to the previous
calculations, we get the system

εẊ(t,m) +X(t,m) + ∂IK(X(t,m)) 3 εV (m) +X(m)

+

ˆ t

0
F [X(·, r), Y (·, r)](m) dr,

εẎ (t,m) + Y (t,m) + ∂IK(Y (t,m)) 3 εW (m) + Y (m)

+

ˆ t

0
G[X(·, r), Y (·, r)](m) dr,

(5.14)
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with ε := σ−2 and where we have denoted by

F : K ×K → L2(Ω) and G : K ×K → L2(Ω)

the operators

F [X,Y ](m) =−
ˆ

Ω
K ′11

(
X(r,m)−X(r,m′)

)
dm′

−
ˆ

Ω
K ′12

(
X(r,m)− Y (r,m′)

)
dm′,

(5.15)

and
G[X,Y ](m) =−

ˆ
Ω
K ′22

(
Y (r,m)− Y (r,m′)

)
dm′

−
ˆ

Ω
K ′21

(
Y (r,m)−X(r,m′)

)
dm′ .

(5.16)

We observe that if Kij are C1 functions that satisfy (A) and (SL) then the two
operator F and G defined in (5.15) and (5.16) are uniformly continuous and bounded
according to Definition 5.3.

Notice also that the parameter ε = σ−2 is an inertia parameter; thus a large damping
limit corresponds to a small inertia limit, i.e., send σ →∞ means to consider ε→ 0.

Definition 5.4 (Lagrangian solutions). Let K11, K12, K21, K22 ∈ C1(R) potentials
satisfying (A) and (SL). Let X,Y ∈ K and V ,W ∈ L2(Ω) be given. A Lagrangian
solution to (5.14) with initial data (X,Y , V ,W ) is a pair (X,Y ) ∈ Lip

loc
([0,∞);K) ×

Liploc([0,∞);K) satisfying X(0) = X, Y (0) = Y and (5.14) for a.e. t ∈ [0,∞).

In order to consider the case of Newtonian potentials, we introduce the following
notion of generalised Lagrangian solutions for system (5.14) under globally sticky dy-
namics, see [12].

Definition 5.5. A generalised solution to the system (5.14) is a pair

(X,Y ) ∈ Lip
loc

([0,∞);K)× Lip
loc

([0,∞);K)

such that

1. Differential inclusion:
εẊ(t) +X(t) + ∂IK(X(t)) 3 εV +X +

ˆ t

0
Θ(s) ds,

εẎ (t) + Y (t) + ∂IK(Y (t)) 3 εW + Y +

ˆ t

0
Ξ(s) ds,

holds for a.e. t ∈ (0,∞), for some maps

Θ,Ξ ∈ L∞
loc

([0,∞);L2(Ω))× L∞
loc

([0,∞);L2(Ω))

with

Θ−F [X(t), Y (t)] ∈ H⊥X(t) and Θ ≺ F [X(t), Y (t)] for a.e. t ∈ (0,∞), (5.17)

and, similarly,

Ξ−G[X(t), Y (t)] ∈ H⊥Y (t) and Ξ ≺ G[X(t), Y (t)] for a.e. t ∈ (0,∞), (5.18)

where F [X(t), Y (t)] and G[X(t), Y (t)] are the operators defined in (5.15) and
(5.16).
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2. Semigroup property: for all t ≥ t1 ≥ 0, the right derivatives V = d+

dtX and
W = d+

dt Y satisfy


εV (t) +X(t) + ∂IK(X(t)) 3 εV (t1) +X(t1) +

ˆ t

t1

Θ(s) ds, (5.19)

εY (t) +W (t) + ∂IK(Y (t)) 3 εW (t1) + Y (t1) +

ˆ t

t1

Ξ(s) ds. (5.20)

3. Projection formula: for all t ≥ t1 ≥ 0

X(t) = PK

(
X(t1) +

1

ε
(t− t1)

(
X(t1) + εV (t1)

)
−1

ε

ˆ t

t1

X(s) ds+
1

ε

ˆ t

t1

(t− s)Θ(s) ds

)
, (5.21)

Y (t) = PK

(
Y (t1) +

1

ε
(t− t1)

(
Y (t1) + εW (t1)

)
−1

ε

ˆ t

t1

Y (s) ds+
1

ε

ˆ t

t1

(t− s)Ξ(s) ds

)
. (5.22)

Note that if we choose Θ(t) := F [X(t), Y (t)] and Ξ(t) := G[X(t), Y (t)] with F and
G as in (5.15) and (5.16) and the interaction potentialsK11, K12, K21 andK22 satisfying
(A) and (SL), then any Lagrangian solution is a generalised Lagrangian solution.

In the following we will make use of the auxiliary variables

P (t,m) = εV (m) +X(m) +

ˆ t

0
F [X(·, r), Y (·, r)](m) dr, (5.23)

and

Q(t,m) = εW (m) + Y (m) +

ˆ t

0
G[X(·, r), Y (·, r)](m) dr, (5.24)

that allow to rephrase system (5.14) in the equivalent form
εẊ +X + ∂IK(X) 3 P,
εẎ + Y + ∂IK(Y ) 3 Q,
Ṗ = F [X,Y ],

Q̇ = G[X,Y ].

(5.25)

5.3 Existence and uniqueness for smooth potentials

In this Section we prove existence and uniqueness of solution to system (5.1). To perform
this task, we pass through existence of solutions to the Lagrangian system (5.14), where
we apply the theory of Maximal Monotone Operators subject to Lipschitz perturbations
in the spirit of [14, Theorem 3.17], see Section 1.7.

We start proving the following Lemma.
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Lemma 5.2. Let (X,Y ),(X̃, Ỹ ) ∈ K × K be given. Consider the interaction kernels
K11, K12, K21, K22 under assumptions (A) and (SL) and let F and G be the operators
defined in (5.15) and (5.16) respectively. Then there exist two positive constants C1 and
C2 depending on the Lipschitz constants of the kernels, such that

(i) ‖F [X,Y ]− F [X̃, Ỹ ]‖2L2(Ω) ≤ C1

(
‖X − X̃‖2L2(Ω) + ‖Y − Ỹ ‖2L2(Ω)

)
,

(ii) ‖G[X,Y ]−G[X̃, Ỹ ]‖2L2(Ω) ≤ C2

(
‖X − X̃‖2L2(Ω) + ‖Y − Ỹ ‖2L2(Ω)

)
.

Proof. We only prove (i) since (ii) follows from a similar argument. By the definition
of F in (5.15) we have

‖F [X,Y ]− F [X̃, Ỹ ]‖2L2(Ω)

=

ˆ
Ω

∣∣∣∣−ˆ
Ω
K ′11

(
X(r,m)−X(r,m′)

)
dm′ −

ˆ
Ω
K ′12

(
X(r,m)− Y (r,m′)

)
dm′

+

ˆ
Ω
K ′11

(
X̃(r,m)− X̃(r,m′)

)
dm′ +

ˆ
Ω
K ′12

(
X̃(r,m)− Ỹ (r,m′)

)
dm′

∣∣∣∣2 dm.
(5.26)

Using the fact that |x+y|2 ≤ 2(|x|2+|y|2), the right hand side of (5.26) can be controlled
by

2

ˆ
Ω

(∣∣∣∣ˆ
Ω

[
K ′11

(
X(r,m)−X(r,m′)

)
−K ′11(X̃(r,m)− X̃(r,m′)

)]
dm′

∣∣∣∣2
+

∣∣∣∣ˆ
Ω

[
K ′12

(
X(r,m)− Y (r,m′)

)
−K ′12

(
X̃(r,m)− Ỹ (r,m′)

)]
dm′

∣∣∣∣2) dm
≤ 2

ˆ
Ω

(ˆ
Ω
|K ′11

(
X(r,m)−X(r,m′)

)
−K ′11(X̃(r,m)− X̃(r,m′)

)
| dm′

)2

+

( ˆ
Ω
|K ′12

(
X(r,m)− Y (r,m′)

)
−K ′12(X̃(r,m)− Ỹ (r,m′)

)
| dm′

)2

dm.

(5.27)

Let L(K ′11) and L(K ′12) be the Lipschitz constants of K ′11 and K ′12 respectively, then,
using Jensen’s inequality, the right hand side of (5.27) is bounded by

2

ˆ
Ω

(ˆ
Ω
L(K ′11)

(
|X(r,m)− X̃(r,m)|+ |X(r,m′)− X̃(r,m′)|

)
dm′

)2

+

(ˆ
Ω
L(K ′12)

(
|X(r,m)− X̃(r,m)|+ |Y (r,m′)− Ỹ (r,m′)|

)
dm′

)2

dm

≤ 4

ˆ
Ω

( ˆ
Ω

[
L(K ′11)2|X(r,m)− X̃(r,m)|2 + L(K ′11)2|X(r,m′)− X̃(r,m′)|2

]
dm′

)
+

(ˆ
Ω

[
L(K ′12)2|X(r,m)− X̃(r,m)|2 + L(K ′12)2|Y (r,m′)− Ỹ (r,m′)|2

]
dm′

)
dm.

Thus, there exists a positive constant C1 = C1

(
L(K ′11), L(K ′12)

)
such that

‖F [X,Y ]− F [X̃, Ỹ ]‖2L2(Ω) ≤ C1

(
‖X − X̃‖2L2(Ω) + ‖Y − Ỹ ‖2L2(Ω)

)
.

Analogously, one can prove the inequality (ii), we omit the details.

We are now ready to state existence result for Lagrangian solution to system (5.14).
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Proposition 5.1. Let T > 0 and suppose that the kernels K11, K12, K21, K22 ∈ C1(R)
satisfy (A) and (SL). Then, for every (X,Y , V ,W ) ∈ K2×L2(Ω)2 there exists a unique
Lagrangian solution (X,Y ) to (5.14) in [0, T ].

Proof. According to the discussion in Subsection 5.2.4, system (5.14) can be rewritten
in the following equivalent form

Ẋ + ∂

(
IK(X) +

|X|2

2ε

)
3 P
ε
,

Ẏ + ∂

(
IK(Y ) +

|Y |2

2ε

)
3 Q
ε
,

Ṗ = F [X,Y ],

Q̇ = G[X,Y ],

(5.28)

where P and Q are defined in (5.23) and (5.24) respectively. In order to prove the result
we will follow the strategy in [14, Theorem 3.17]. Consider the operator

A(X,Y, P,Q) := IK(X) + IK(Y ) +
|X|2

2ε
+
|Y |2

2ε

defined on the Hilbert space H := L2(Ω)2×L2(Ω)2. Note that A is convex and bounded
from below. Consider the iterative sequence defined as follows: fix U0 := (X,Y , P ,Q) ≡
(X,Y , εV +X, εW + Y ) and, for n ≥ 1 construct

Un+1(t) := (Xn+1(t), Yn+1(t), Pn+1(t), Qn+1(t))

recursively as the weak solution to the implicit-explicit system

Ẋn+1 + ∂

(
IK(Xn+1) +

|Xn+1|2

2ε

)
3 Pn

ε
, Xn+1(0) = X,

Ẏn+1 + ∂

(
IK(Yn+1) +

|Yn+1|2

2ε

)
3 Qn

ε
, Yn+1(0) = Y ,

Ṗn+1 = F [Xn, Yn], Pn+1(0) = P ,

Q̇n+1 = G[Xn, Yn], Qn+1(0) = Q.

(5.29)

Setting R(Un) =
(
Pn/ε,Qn/ε, F [Xn, Yn], G[Xn, Yn]

)
, the previous system (5.29) can be

rewritten in the following compact form

U̇n+1 + ∂A(Un+1) 3 R(Un). (5.30)

Since the functional A is convex, its sub-differential is a maximal monotone operator in
the sense of [14] and R can be seen as a Lipschitz perturbation of it, see [14, Lemma
3.1]. A direct computation shows that

1

2

d

dt
‖Un+1 − Un‖2L2(Ω) ≤

(
Un+1 − Un, R(Un)−R(Un−1)

)
.

Proceeding as in [14, Lemma A.5], we may introduce the function

ψδ(t) =
1

2

(
‖Un+1(0)− Un(0)‖2L2(Ω) + δ

)2

+

ˆ t

0

(
Un+1(r)− Un(r), R(Un)(r)−R(Un−1(r))

)
dr
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and prove that it is absolutely continuous for all t ∈ [0, T ] with

√
ψδ(t) ≤

√
ψδ(0) +

1√
2

ˆ t

0
‖R(Un)(r)−R(Un−1)(r)‖L2(Ω) dr,

uniformly in δ. Since ‖Un+1(t)− Un(t)‖L2(Ω) ≤
√

2
√
ψδ(t) for all δ > 0, we have that

‖Un+1(t)− Un(t)‖L2(Ω) ≤
ˆ t

0
‖R(Un)(r)−R(Un−1)(r)‖L2(Ω) dr.

Invoking Lemma 5.2 and the definitions for P and Q in (5.23) and (5.24) respectively, we
can say that there exists a positive constant C depending on T , ε and on the Lipschitz
constants of the kernels L(K ′11), L(K ′22), L(K ′21), L(K ′12) such that

‖Un+1(t)− Un(t)‖L2(Ω) ≤ C
ˆ t

0
‖Un(r)− Un−1(r)‖L2(Ω) dr

for 0 ≤ t ≤ T . An easy iterative procedure implies that

‖Un+1 − Un‖L2(Ω) ≤
(Ct)n

n!
‖U1 − U0‖L2(Ω),

thus, Un uniformly converges on [0, T ] to some U . Due to the Lemma 5.2, R is continuous
in L2 in each component. Moreover, since the sub-differential of A is closed, we can
pass to the limit in (5.30) and obtain that U is a weak solution to the system (5.28).

Concerning uniqueness, let U1 = (X1, Y1, P1, Q1) and U2 = (X2, Y2, P2, Q2) be two
solutions to system (5.28) with the same initial condition U1 = U2 = U . Proceeding in
an analogous way as before, we can argue that

‖U1(t)− U2(t)‖L2(Ω) ≤ C
ˆ t

0
‖U1(r)− U2(r)‖L2(Ω) dr

for 0 ≤ t ≤ T , where the positive constant C depends on T , ε, L(K ′11), L(K ′12), L(K ′21),
L(K ′22). This implies that

‖U1(t)− U2(t)‖L2(Ω) ≤ e
Ct‖U1 − U2‖L2(Ω) = 0,

that proves the uniqueness.

The following Proposition collects some properties of Lagrangian solution.

Proposition 5.2. Let F,G : K×K → L2(Ω) be uniformly continuous operators in (5.15)
and (5.16) and let (X,Y ) be the Lagrangian solution to (5.14). Then, the following
properties hold:

(i) The right-derivatives

V =
d+

dt
X, W =

d+

dt
Y (5.31)

exist for all t ≥ 0.
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(ii) V and W are the unique elements of minimal norm in the closed convex sets

1

ε

(
P (t)− ∂IK(X(t))−X(t)

)
and

1

ε

(
Q(t)− ∂IK(Y (t))− Y (t)

)
respectively, i.e.,

V (t) =

(
1

ε

(
P (t)− ∂IK(X(t))−X(t)

))◦
(5.32)

and

W (t) =

(
1

ε

(
Q(t)− ∂IK(Y (t))− Y (t)

))◦
(5.33)

respectively. In particular, by replacing Ẋ by V and Ẏ by W , (5.14) and (5.25)
hold for all t ≥ 0.

(iii) The functions t 7→ V (t) and t 7→W (t) are right-continuous for all t ≥ 0.

(iv) If T 0
X ⊂ (0,∞) and T 0

Y ⊂ (0,∞) denote the subsets of all times at which the
maps s → ‖V (s)‖L2(Ω) and s → ‖W (s)‖L2(Ω) respectively are continuous, then
(0,∞)\T 0

X and (0,∞)\T 0
Y are negligible, V and W are continuous, X and Y are

differentiable in L2(Ω) at every point of T 0
X and T 0

Y respectively.

(v) Setting ρ(t, ·) := Ψ−1(X(t, ·)) and η(t, ·) := Ψ−1(Y (t, ·)) where Ψ is the isometry
introduced in (1.16), there exist a unique map v(t, ·) ∈ L2(R, ρ) and a unique map
w(t, ·) ∈ L2(R, η) such that

Ẋ(t) = V (t) = PHX(t)

(
1

ε

(
P (t)−X(t)

))
= v(t,X(t)) ∈ HX(t), (5.34)

for every t ∈ T 0
X , and

Ẏ (t) = W (t) = PHY (t)

(
1

ε

(
Q(t)− Y (t)

))
= w(t, Y (t)) ∈ HY (t), (5.35)

for every t ∈ T 0
Y .

Proof. The results in (i), (ii), (iii) are consequences of the general theory of [14, Theo-
rem 3.5]. Concerning (iv) and (v), we follow [12, Theorem 3.5]. We prove only (5.34),
since the proof of (5.35) is similar. By applying [14, Remark 3.9], one can see that if
t is a point of differentiability of X, the derivative with respect to time of X in t is
the projection of 0 onto the affine space generated by P (t) − ∂IK(X(t)) − X(t), i.e.,
the orthogonal projection of P (t)−X(t) onto the orthogonal complement of the space
generated by ∂IK(X(t)). By using [12, Lemma 2.5], we obtain (5.34). Since any element
of HX(t) can be written as v ◦ X, where v ∈ L2(Ω) is a suitable Borel map, we have
that there exists a Borel map v : [0,∞) × R → R such that v(t, ·) ∈ L2(R, ρ(t, ·)) and
V (t, ·) = v(t,X(t)) for t ∈ T 0

X .

We are now in the position of proving the main result, that concerns existence and
uniqueness of the solution to system (5.1).
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Theorem 5.1. Let T > 0 and suppose that the kernels K11, K12, K21, K22 ∈ C1(R)
satisfy (A) and (SL). Let ρ, η ∈ P2(R) and v ∈ L2(dρ) and w ∈ L2(dη). Then, there
exists a unique quadruple

(ρ, η, v, w) ∈ Lip
(
[0, T ];P2(R)× P2(R)× L2(dρ(t))× L2(dη(t))

)
that is a distributional solution to system (5.1) such that

lim
t↓0

ρ(t, ·) = ρ in P2(R), lim
t↓0

ρ(t, ·)v(t, ·) = ρ v in M(R),

lim
t↓0

η(t, ·) = η in P2(R), lim
t↓0

η(t, ·)w(t, ·) = η w in M(R).

Proof. Let ρ, η ∈ P2(R) and v ∈ L2(dρ), w ∈ L2(dη) be given initial conditions. Define
the L2(Ω)-functions X = Ψ(ρ) and Y = Ψ(η) and the compositions V = v ◦ X and
W = w ◦ Y . Then (X,Y , V ,W ) is an admissible initial condition for system (5.14),
thus Proposition 5.1 ensures existence and uniqueness of a couple (X,Y ) that is the
Lagrangian solution to (5.14). According to Proposition 5.2 we can define the right-
continuous functions V and W such that (5.31) holds for all t ≥ 0 and introduce
ρ(t, ·) := Ψ−1(X(t, ·)) and η(t, ·) := Ψ−1(Y (t, ·)). Let v(t, ·) be the map given by
Proposition 5.2 and ϕ be a test function on (0, T )× R, thenˆ ∞

0

ˆ
R
ε
(
∂tϕ(t, x) + ∂xϕ(t, x)v(t, x)

)
v(t, x)ρ(t, dx) dt

=

ˆ ∞
0

ˆ
Ω
ε
(
∂tϕ(t,X(t,m))

)
v(t,X(t,m)) dmdt

+

ˆ ∞
0

ˆ
Ω
ε
(
∂xϕ(t,X(t,m))v(t,X(t,m))

)
v(t,X(t,m)) dmdt.

(5.36)

Using (5.34) and integrating by parts, the right hand side of (5.36) is equal toˆ ∞
0

ˆ
Ω

(
d

dt
ϕ(t,X(t,m))

)(
P (t,m)−X(t,m)

)
dmdt

=

ˆ ∞
0

ˆ
Ω
ϕ(t,X(t,m))

(
Ẋ(t,m)− Ṗ (t,m)

)
dmdt.

(5.37)

As proved in Proposition 5.2 we have that Ẋ(t,m) = V (t,m) and from the definition
of the operator P (t,m) in (5.23), one obtains that (5.37) equalsˆ ∞

0

ˆ
Ω
ϕ(t,X(t,m))

(
V (t,m) +

ˆ
Ω
K ′11

(
X(s,m)−X(s,m′)

)
dm′

+

ˆ
Ω
K ′12

(
X(s,m)− Y (s,m′)

)
dm′

)
dmdt

=

ˆ ∞
o

ˆ
R
ϕ(t, x)

(
v(t, x) +K ′11 ∗ ρ(t, x) +K ′12 ∗ η(t, x)

)
ρ(t, dx) dt,

that is the distributional formulation of the momentum equation in (5.1). Similarly, for
the continuity equation we haveˆ ∞

0

ˆ 1

0

(
d

dt
ϕ(t,X(t,m))

)
dmdt

=

ˆ ∞
0

ˆ 1

0

(
∂tϕ(t,X(t,m)) + ∂xϕ(t,X(t,m))V (t,m)

)
dmdt

=

ˆ ∞
0

ˆ
R

(
∂tϕ(t, x) + ϕx(t, x)v(t, x)

)
ρ(t, dx) dt = 0.
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Concerning the initial conditions, since limt↓0X(t) = X in L2(Ω) for Proposition 5.1
and X = Ψ(ρ), we have that ρ → ρ in P2(R) as t → 0. Moreover, V = v ◦X, so that
limt↓0 V (t) = V in L2(Ω), therefore for every ϕ ∈ Cb(R) we have

ˆ
R
ϕ(x)v(x)ρ(dx) =

ˆ 1

0
ϕ(X(m))V (m) dm

= lim
t↓0

ˆ 1

0
ϕ(X(t,m))V (t,m) dm = lim

t↓0

ˆ
R
ϕ(t, x)v(t, x)ρ(t, dx).

A similar argument can be used for the pair (η, w).

5.4 Large-damping limit

In this Section we study the large-damping limit of system (5.1) for the damping pa-
rameter σ → ∞. In particular, we aim at making the formal argument introduced in
Subsection 5.2.3 rigorous, and showing that solutions to system (5.9) converge to the
ones of the first order system

∂ρ

∂t
=

∂

∂x
[ρK ′ρ ∗ ρ+ ρH ′ρ ∗ η],

∂η

∂t
=

∂

∂x
[ηK ′η ∗ η + ηH ′η ∗ ρ].

(5.38)

In what follows we will assume that the potentials K11, K12, K21, K22 are under
assumptions (A) and (SL).

Recalling the definition of F [X,Y ](m) and G[X,Y ](m) in (5.15) and (5.16), we
introduce the operator

L
(
(X,Y )

)
(m) :=

(
F [X,Y ](m)
G[X,Y ](m)

)
.

By setting Zε = (Xε, Yε), Zε = (Xε, Y ε), Uε = (Vε,Wε) and U ε = (V ε,W ε), system
(5.14) can be rewritten in the following compact form

εŻε(t) + Zε(t) + ∂IK2(Zε(t)) 3 εU ε + Zε +

ˆ t

0
L(Zε(r)) dr. (5.39)

We are now in the position of proving

Theorem 5.2. Let T > 0 and suppose that the kernels K11, K12, K21, K22 ∈ C1(R)
satisfy (A) and (SL). Let (ρε, ηε, vε, wε) be solution to system (5.9) with ε = σ−2 under
the initial condition (ρε, ηε, vε, wε) and let (ρ, η) be solution to system (5.10) with initial
data (ρ, η). Furthermore, assume that

(i) ρε → ρ and ηε → η as ε→ 0 in P2(R);

(ii) vε = o(1/ε) in L2(dρε) and wε = o(1/ε) in L2(dηε) as ε→ 0.

Then,

lim
ε→0

ˆ T

0
W2

2

(
(ρε, ηε), (ρ, η)

)
dt = 0.
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Remark 5.1 (Initial data are not well-prepared in the velocity variable). In Theorem
5.2, recalling that vε = 1√

ε
v, assumption (ii) is satisfied in case v ∈ L2(dρ) and w ∈

L2(dη) are given and independent of ε. Therefore, assumption (ii) is quite general in
the context of singular limits. Assumption (i) instead imposes that the initial density
should converge to the one of the limiting first order system.

Proof of Theorem 5.2. Let (ρ, η) be a solution to system (5.38) subject to the initial
condition (ρ, η), and (ρε, ηε, vε, wε) be a solution to system (5.9) subject to the initial
condition (ρε, ηε, vε, wε), Define X0 = Ψ(ρ) and Y0 = Ψ(η), then Z0 = (X0, Y0) is a
solution to

Z0(t) + ∂IK2(Z0(t)) 3 Z0 +

ˆ t

0
L(Z0(r)) dr, (5.40)

with Z0 = (X0, Y 0) = (Ψ(ρ),Ψ(η)). Similarly, consider Zε = (Xε, Yε) that solves
(5.39), with Xε = Ψ(ρε) and Yε = Ψ(ηε). Adding εŻ0(t) to both sides of (5.40) and
taking the difference between (5.39) and (5.40), we get

ε
(
Żε(t)− Ż0(t)

)
+ Zε(t)− Z0(t) + ∂IK2(Zε(t))− ∂IK2(Z0(t))

3 εU ε + Zε − Z0 − εŻ0(t) +

ˆ t

0

[
L(Zε(r))− L(Z0(r))

]
dr.

(5.41)

We now estimate the evolution of the L2-norm of the quantity Zε(t)− Z0(t). In doing
that, we use the monotonicity of the set valued operator ∂IK2 , which is a consequence
of the convexity of the indicator function and of the definition of sub-differential.

ε

2

d

dt

ˆ
Ω

(
Zε(t,m)− Z0(t,m)

)2
dm+

ˆ
Ω

(
Zε(t,m)− Z0(t,m)

)2
dm

≤
ˆ

Ω

[
εU ε(m) + Zε(m)− Z0(m)

](
Zε(t,m)− Z0(t,m)

)
dm

− ε
ˆ

Ω
Ż0(t,m)

(
Zε(t,m)− Z0(t,m)

)
dm

+

ˆ t

0

ˆ
Ω

[
L(Zε(r,m))− L(Z0(r,m))]

(
Zε(t,m)− Z0(t,m)

)
dmdr.

(5.42)

Using Young’s inequality and the bounds in Lemma 5.2, (5.42) becomes

ε

2

d

dt

ˆ
Ω

(
Zε(t,m)− Z0(t,m)

)2
dm+

ˆ
Ω

(
Zε(t,m)− Z0(t,m)

)2
dm

≤ 1

2

ˆ
Ω

[
εU ε(m) + Zε(m)− Z0(m)

]2
dm+

1

2

ˆ
Ω

(
Zε(t,m)− Z0(t,m)

)2
dm

+
ε

2

ˆ
Ω
Ż2

0 (t,m) dm+
ε

2

ˆ
Ω

(
Zε(t,m)− Z0(t,m)

)2
dm

+
1

2

ˆ t

0

ˆ
Ω

[
L(Zε(r,m))− L(Z0(r,m))]2 dmdr

+
1

2

ˆ t

0

ˆ
Ω

(
Zε(r,m)− Z0(r,m)

)2
dmdr ,
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which implies

ε

2

d

dt

ˆ
Ω

(
Zε(t,m)− Z0(t,m)

)2
dm+

1− ε
2

ˆ
Ω

(
Zε(t,m)− Z0(t,m)

)2
dm

≤ 1

2

ˆ
Ω

[
εU ε(m) + Zε(m)− Z0(m)

]2
dm+

ε

2

ˆ
Ω
Ż2

0 (t,m) dm

+ C
1

2

ˆ t

0

ˆ
Ω

(
Zε(r,m)− Z0(r,m)

)2
dmdr ,

where C is a fixed constant depending on the operator L and coming from Lemma 5.2.
Integrating over [0, T ] and denoting

A(ε, T ) :=(2ε+ 4T )

ˆ
Ω

(
Zε(m)− Z0(m)

)2
dm+ 4T

ˆ
Ω

[
εU ε(m)

]2
dm

+ 2ε

ˆ T

0

ˆ
Ω
Ż2

0 (t,m) dmdt,

assuming ε < 1/2, by using Cauchy-Schwarz inequality we have that
ˆ T

0

ˆ
Ω

(
Zε(t,m)− Z0(t,m)

)2
dmdt

≤ C
ˆ T

0

ˆ t

0

ˆ
Ω

(
Zε(r,m)− Z0(r,m)

)2
dmdr dt+A(ε, T ) ,

by suitably renaming the constant C. By applying Grönwall’s lemma we get
ˆ T

0

ˆ
Ω

(
Zε(t,m)− Z0(t,m)

)2
dmdt ≤ A(ε, T )eCT .

In order to conclude it is enough to see that A(ε, T )→ 0 as ε→ 0. We recall assumption
(i) reads ρε → ρ and ηε → η in P2(R), thus Zε → Z0 as ε→ 0 in L2(Ω)2. Assumption
(ii) implies initial velocities under the following conditions

vε = o(1/ε) in L2(dρε) and wε = o(1/ε) in L2(dηε)

as ε → 0, thus εU ε → 0 as ε → 0. Finally, the last term in A(ε, T ) converges to zero
since Ż0 does not depend on ε.

5.5 Newtonian potentials

This Section is devoted to study existence of solutions and asymptotic property of sys-
tem (5.1) when self-attractive forces are driven by Newtonian potentials, i.e., K11(x) =
K22(x) =: N(x) := |x|. We restrict the analysis to the case of equal cross potentials,
namely K12 = K21 =: H. We also consider two uniformly convex external potentials
Aρ and Aη acting on the system. More precisely, we assume Aρ, Aη ∈ C2(R) under as-
sumptions (H1) and (H2). These additional terms do not affect the study of existence
of solutions, in the generalised sense specified in Definition 5.5, but are only required in
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the study of asymptotic behaviour in Theorem 5.3. The system we are dealing with is

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂η

∂t
+

∂

∂x
(ηw) = 0,

∂

∂t
(ρv) +

∂

∂x
(ρv2) = −σρv − ρ[N ′ ∗ ρ+H ′ ∗ η +Aρ],

∂

∂t
(ηw) +

∂

∂x
(ηw2) = −σηw − η[N ′ ∗ η +H ′ ∗ ρ+Aη],

(5.43)

and its Lagrangian counterpart is

∂tX(t,m) = V (t,m),

∂tY (t,m) = W (t,m),

∂tV (t,m) = −
ˆ

Ω
sign

(
X(t,m)−X(t,m′)

)
dm′

−
ˆ

Ω
H ′
(
X(t,m)− Y (t,m′)

)
dm′ − σV (t,m)−A′ρ(X),

∂tW (t,m) = −
ˆ

Ω
sign

(
Y (t,m)− Y (t,m′)

)
dm′

−
ˆ

Ω
H ′
(
Y (t,m)−X(t,m′)

)
dm′ − σW (t,m)−A′η(Y ).

(5.44)

Stationary solutions in this case are (ρs, ηs) = (δ0, δ0) where δ is the Dirac measure,
which corresponds to (Xs, Ys) = (0, 0) in terms of the Lagrangian description.

We can associate to the system (5.44) the following functional

F(X,Y ) =
1

2

ˆ
Ω

ˆ
Ω
|X(m)−X(m′)| dm′ dm+

1

2

ˆ
Ω

ˆ
Ω
|Y (m)− Y (m′)| dm′ dm

+

ˆ
Ω

ˆ
Ω
H
(
Y (m)−X(m′)

)
dm′ dm

+

ˆ
Ω
Aρ(X(m)) dm+

ˆ
Ω
Aη(Y (m)) dm.

(5.45)

In particular, we write

F(X,Y ) := S(X) + S(Y ) +K(X,Y ),

where

S(X) :=
1

2

ˆ
Ω

ˆ
Ω
|X(m)−X(m′)| dm′ dm,

S(Y ) :=
1

2

ˆ
Ω

ˆ
Ω
|Y (m)− Y (m′)| dm′ dm,

K(X,Y ) :=

ˆ
Ω

ˆ
Ω
H
(
Y (m)−X(m′)

)
dm′ dm

+

ˆ
Ω
Aρ(X(m)) dm+

ˆ
Ω
Aη(Y (m)) dm.

As shown in [11, 22], it is easy to prove that the self-interaction contributions in F
are linear when restricted to K.
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Lemma 5.3. If X ∈ K, then

S(X) =

ˆ
Ω

(2m− 1)X(m) dm.

Proof. A direct computation shows that

S(X) =
1

2

ˆ
Ω

ˆ
Ω
|X(m)−X(s)| ds dm =

ˆ ˆ
{X(m)≥X(s)}

(
X(m)−X(s)

)
dmds.

Since X ∈ K, X is non-decreasing, then the set {X(m) ≥ X(s)} can be characterised
as follows

{X(m) ≥ X(s)} = {m ≥ s} ∪ {m ≤ s ≤ Σ(m)},

with
Σ(m) = sup{s ∈ [0, 1] : X(s) = X(m)}.

Moreover, X(s) = X(m) on {m ≤ s ≤ Σ(m)}, then

S(X) =

ˆ ˆ
m≥s

(
X(m)−X(s)

)
dmds

=

(ˆ
Ω

ˆ m

0
X(m) ds dm−

ˆ
Ω

ˆ 1

s
X(s) dmds

)
=

ˆ
Ω
mX(m) dm−

ˆ
Ω

(1− s)X(s) ds

=

ˆ
Ω

(2m− 1)X(m) dm,

that proves the statement.

The first result in this Section consists in proving the existence of a map t 7→
(X(t), Y (t)) that is a generalised Lagrangian solution to (5.14) with respect to the choice
Θ = PHX (F1)(t,m) and Ξ = PHY (F2)(t,m), i.e., the system (5.44) can be written as
follows 

∂tX(t,m) = PHX (V )(t,m),

∂tY (t,m) = PHY (W )(t,m),

∂tV (t,m) = −PHX (F1[X,Y ])(m)− σV (t,m),

∂tW (t,m) = −PHY (F2[X,Y ])(m)− σW (t,m),

(5.46)

where
F1[X,Y ](m) = 2m− 1 +

ˆ
Ω
H ′
(
X(m)− Y (m′)

)
dm′ +A′ρ(X) (5.47)

and
F2[X,Y ](m) = 2m− 1 +

ˆ
Ω
H ′
(
Y (m)−X(m′)

)
dm′ +A′η(Y ) (5.48)

are the force operators and describe the external and interaction forces that act on the
system.

The following Proposition ensures that a generalised Lagrangian solution exists.

Proposition 5.3. Assume the cross-potential H under assumptions (A) and (SL).
Assume the external potentials Aρ, Aη ∈ C2(R). Then for every (X,Y , V ,W ) ∈ K2 ×
HX × HY there exists a generalised Lagrangian solution to system (5.44) with initial
data (X,Y , V ,W ) in the sense of Definition 5.5.
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Proof. The proof is based on a discretization argument, inspired by the result in [12,
Theorem 4.5]. Consider the following two partitions of Ω:

0 =: l0 < l1 < · · · < lN := 1, and 0 =: z0 < z1 < · · · < zM := 1,

with

li :=

i∑
j=1

mj , and zj :=

j∑
i=1

ni,

for i = 1, . . . , N−1 and j = 1, . . . ,M−1, and introduce the piecewise constant functions

X(t, ·) =
N∑
i=1

xi(t)ILi , V (t, ·) =
N∑
i=1

vi(t)ILi , (5.49)

Y (t, ·) =

M∑
j=1

yj(t)IZj , W (t, ·) =

M∑
j=1

wj(t)IZj , (5.50)

defined on the intervals Li := [li−1, li) and Zj := [zj−1, zj), for i = 1, . . . , N − 1 and
j = 1, . . . ,M − 1. Consider the finite dimensional Hilbert space

Hm ×Hn :=

{
(X,Y ) =

( N∑
i=1

xiILi ,
M∑
j=1

yjIZj

)
: (x, y) ∈ RN ×RM

}
⊂ L2(Ω)×L2(Ω)

and its closed convex cone

Km ×Kn :=

{
(X,Y ) =

( N∑
i=1

xiILi ,
M∑
j=1

yjIZj

)
: (x, y) ∈ KN ×KM

}
⊂ K ×K.

Note that the projected forces

Fm[X,Y ] := PHm(F1[X,Y ]) and Fn[X,Y ] := PHn(F2[X,Y ])

are well defined and Lipschitz continuous according to the definitions in (5.47)-(5.48)
and assumptions (A) and (SL).

Now, assume that the initial condition (X,Y , V ,W ) ∈ Km×Kn×HX×HY does not
hit the boundary of Km ×Kn. Consider the time interval [0, t1) with t1 = min{tX1 , tY1 }
where

t1 = inf
{
t > 0 : X(t) ∈ ∂Km}, tY1 = inf{t > 0 : Y (t) ∈ ∂Kn

}
.

Then, we obtain (5.49)-(5.50) by solving

Ẋ(t) = V (t), V̇ (t) = PHm

(
1

ε

(
F1[X(t), Y (t)]− V (t)

))
,

Ẏ (t) = W (t), Ẇ (t) = PHn

(
1

ε

(
F2[X(t), Y (t)]−W (t)

))
.

(5.51)

We have that Hm = HX(t) and Hn = HY (t) in [0, t1), thus the projection onto the set
Hm yields functions defined on Ω that are constant on the same intervals where (X,V )
is constant, and similarly the projection onto Hn. Taking t1 as the new initial time,
we can consider a new initial condition (X

′
, Y
′
, V
′
,W
′
) ∈ Km′ × Kn′ × HX′ × HY ′ of
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dimensions N ′ ≤ N and M ′ ≤ M and, proceeding in the same fashion, we can define
t2 > t1 and consider the evolution in the time interval [t1, t2). Iterating the procedure,
we obtain a sequence of collision times 0 =: t0 < t1 < · · · < tK :=∞ and the quadruple
(X,Y, V,W ) such that

Ẋ(t) = V (t), V̇ (t) = PHX(t)

(
1

ε

(
F1[X(t), Y (t)]− V (t)

))
,

Ẏ (t) = W (t), Ẇ (t) = PHY (t)

(
1

ε

(
F2[X(t), Y (t)]−W (t)

))
,

(5.52)

for all t ∈ [tk−1, tk), k = 1, . . . ,K with

HX(t) = HX(tk−1), HY (t) = HY (tk−1). (5.53)

When an inelastic collision occurs, we have that

X(tk+) = X(tk−), V (tk+) = PHX(tk)
(V (tk−)),

Y (tk+) = Y (tk−), W (tk+) = PHY (tk)
(W (tk−)).

(5.54)

In order to prove inclusion (5.19), it is not restrictive to assume t1 = 0. We proceed
by induction on the collision times. In the first time interval [0, t1), inclusion (5.19)
holds by considering the empty set for the sub-differential ∂IK(X(t)). Now, suppose
that (5.19) is satisfied in [tk−1, tk). Hence, by induction assumption,

εV (tk−) +X(tk−) + ξ = εV +X +

ˆ tk

0
PHX(s)

(F1[X(s), Y (s)]) ds (5.55)

with ξ ∈ ∂IK(X(tk)). By (5.52),

εẊ(t) +X(t) =X(tk+) + εV (tk+) +

ˆ t

tk

PHX(s)
(F1[X(s), Y (s)]) ds

=X(tk+) + ε
(
V (tk+)− V (tk−)

)
+ εV (tk−)

+

ˆ t

tk

PHX(s)
(F1[X(s), Y (s)]) ds

(5.56)

for any t ∈ [tk, tk+1). Combining equations (5.55) and (5.56) we get

εẊ(t) +X(t) + ε
(
V (tk−)− V (tk+)

)
+ ξ = εV +X +

ˆ t

0
PHX(s)

(F1[X(s), Y (s)]) ds.

Invoking again (5.52), we have

V (tk−) = lim
h→0+

X(tk)−X(tk − h)

h
,

hence using (5.54), we derive

V (tk−)− V (tk+) =V (tk−)− PHX(tk)
(V (tk−))

= lim
h→0+

X(tk)−X(tk − h)− PHX(tk)

(
X(tk)−X(tk − h)

)
h

= lim
h→0+

PHX(tk)
(X(tk − h))−X(tk − h)

h
.
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Applying [12, Lemma 2.6], we find that V (tk−)− V (tk+) ∈ ∂IK(X(tk)), and using the
monotonicity property of the sub-differential, one obtains that

ξ + V (tk−)− V (tk+) ∈ ∂IK(X(t))

for all t ∈ [tk, tk+1). Therefore inclusion (5.19) is satisfied. Now, let us prove that (5.21)
holds. Consider system (5.25) with P replaced by

P1(t,m) = εV (m) +X(m) +

ˆ t

0
F1[X(r, ·), Y (r, ·)](m) dr.

Thus, we have that for any t ≥ s ≥ 0,

1

ε
[P1(s)−X(s)]− V (s) ∈ ∂IK(X(s)) ⊂ ∂IK(X(t)),

where we used the monotonicity of the sub-differential. Integrating on s ∈ [0, t] we
obtain ˆ t

0

1

ε
[P1(s)−X(s)] ds+X −X(t) ∈ ∂IK(X(t))

for a.e. t ≥ 0. Since the following property holds (cf. [12])

Y = PK(X) ⇐⇒ X − Y ∈ ∂IK(Y ),

we derive

X(t) = PK

(
X − 1

ε

ˆ t

0
X(s) ds+

1

ε
t
(
εV +X

)
+

1

ε

ˆ t

0
(t− s)F1[X(s), Y (s)] ds

)
.

A similar proof holds for the equations (5.20) and (5.22). Finally, since the construction
above starts form descrete initial data in the form of the piecewise constant functions
as in (5.49)-(5.50), and since these functions are dense in L2(Ω), we can approximate
any given initial data and then combine the procedure into the proof with the stability
Theorem 4.4 in [12].

Now, we provide an estimate on the total energy of the system (5.46), used in the
proof of next Theorem.

Lemma 5.4. Let (X,Y, V,W ) ∈ K2 × L2(0, 1)2 be the solution to the system (5.46)
with initial data (X,Y , V ,W ). Then, the following uniform estimate holds:

sup
t≥0

(
F(X,Y ) +

1

2
‖V ‖2L2(Ω) +

1

2
‖W‖2L2(Ω)

)
≤F(X,Y ) +

1

2
‖V ‖2L2(Ω) +

1

2
‖W‖2L2(Ω).

(5.57)

Proof. The proof is based on an estimate of the following total energy

E(X,Y, V,W ) =
1

2

ˆ
Ω
|V |2 dm+

1

2

ˆ
Ω
|W |2 dm+ F(X,Y ).
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Considering (X,Y, V,W ) generalised solution to (5.46), we have

d+

dt
E(X,Y, V,W ) = −σ

ˆ
Ω

(
|V |2 + |W |2

)
dm

−
ˆ

Ω
V PHX (F1) dm−

ˆ
Ω
WPHY (F2) dm

+

ˆ
Ω
PHX (V )

[
2m− 1 +

ˆ
Ω
H ′
(
X(m)− Y (m′)

)
dm′ +A′ρ(X)

]
dm

+

ˆ
Ω
PHY (W )

[
2m− 1 +

ˆ
Ω
H ′
(
Y (m)−X(m′)

)
dm′ +A′η(Y )

]
dm.

(5.58)

Thanks to the definitions of F1[X,Y ] and F2[X,Y ] in (5.47)-(5.48), we obtain that

d+

dt
E(X,Y, V,W ) = −σ

ˆ
Ω

(
|V |2 + |W |2

)
dm−

ˆ
Ω
V PHX (F1) dm

−
ˆ

Ω
WPHY (F2) dm+

ˆ
Ω
PHX (V )F1 dm+

ˆ
Ω
PHY (W )F2 dm.

(5.59)

By definition of the projection operator in (5.13),ˆ
Ω
PHX (V )

(
PHX (F1[X,Y ])− F1[X,Y ]

)
dm = 0,

and ˆ
Ω
PHX (F1[X,Y ])

(
PHX (V )− V

)
dm = 0,

then ˆ
Ω

(
F1[X,Y ]PHX (V )− V PHX (F1[X,Y ])

)
dm = 0,

and similarly ˆ
Ω

(
F2[X,Y ]PHY (W )−WPHY (F2[X,Y ])

)
dm = 0,

therefore (5.59) reduces to

d+

dt
E(X,Y, V,W ) = −σ

ˆ
Ω
|V |2 dm− σ

ˆ
Ω
|W |2 dm ≤ 0, (5.60)

from which we can easily deduce the uniform estimate (5.57).

We can now provide the collapse result.

Theorem 5.3. Let H be an interaction potential under assumptions (A), (SL) and
(AT). Consider Aρ, Aη ∈ C2(R) as in (H1) and (H2). Let (X,Y ) ∈ Liploc([0,∞);K)2

be a generalised Lagrangian solution to (5.44) in the sense of Definition 5.5. Assume
that the initial positions (X,Y ) ∈ K2 and velocities (V ,W ) ∈

(
L2(Ω)

)2 satisfy

‖X‖L2 + ‖Y ‖L2 + ‖V ‖L2 + ‖W‖L2 <∞,

then
lim
t→∞

(
‖X‖L2 + ‖Y ‖L2 + ‖V ‖L2 + ‖W‖L2

)
= 0.

Furthermore calling ρ(t, ·) := Ψ−1(X(t, ·)) and η(t, ·) := Ψ−1(Y (t, ·)), where Ψ is the
isometry defined in (1.16), we have

lim
t→∞
W2

2

(
(ρ, η), (ρs, ηs)

)
= 0.
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Proof. Integrating in time the equation (5.60), we find that for all T > 0

E(X,Y, V,W ) |t=T +σ

ˆ T

0

ˆ
Ω

(
|V |2 + |W |2

)
dmdt = E(X,Y, V,W ) |t=0 .

Thanks to the non-negativity of the cross-potential H, assumption (H1) and the fact
that ˆ

Ω
(2m− 1)(X + Y ) dm = −

ˆ
Ω

(m2 −m)(∂mX + ∂mY ) dm ≥ 0, (5.61)

which holds since m2 −m ≤ 0 for m ∈ (0, 1) and ∂mX + ∂mY ≥ 0 for X,Y ∈ K, we
obtain that

σ

ˆ T

0

ˆ
Ω

(
|V |2 + |W |2

)
dmdt ≤ −λ

ˆ
Ω
|X|2 |t=T dm− µ

ˆ
Ω
|Y |2 |t=T dm+ C1,

where C1 is a constant depending on initial data, and λ and µ are the constants in
assumption (H1) for both potentials. Thusˆ ∞

0

ˆ
Ω

(
|V |2 + |W |2

)
dmdt < +∞. (5.62)

Computing the temporal derivative of the L2-distance between (X,Y ) and (Xs, Ys), we
derive

1

2

d

dt

ˆ
Ω

(
|X|2 + |Y |2

)
dm =

ˆ
Ω
XPHX (V ) dm+

ˆ
Ω
Y PHY (W ) dm

=

ˆ
Ω
X
(
PHX (V )− V

)
dm+

ˆ
Ω
Y
(
PHY (W )−W

)
dm

+

ˆ
Ω

(XV + YW ) dm

=

ˆ
Ω

(XV + YW ) dm.

(5.63)

In order to control the last term in the chain of equality above we compute
d

dt

ˆ
Ω

(XV + YW ) dm =

ˆ
Ω
X
[
− σV − PHX (F1)

]
dm+

ˆ
Ω
V PHX (V ) dm

+

ˆ
Ω
Y
[
− σW − PHY (F2)

]
dm+

ˆ
Ω
WPHY (W ) dm.

(5.64)

Using the definitions of F1 and F2 in (5.47) and (5.48) and the property for the projection
operator we have

d

dt

ˆ
Ω

(XV + YW ) dm =

ˆ
Ω

(
− σXV − σYW + |V |2 + |W |2

)
dm

−
ˆ

Ω
(2m− 1)(X + Y ) dm

−
ˆ

Ω

ˆ
Ω
X(m)H ′

(
X(m)− Y (m′)

)
dm′ dm

−
ˆ

Ω

ˆ
Ω
Y (m)H ′

(
Y (m)−X(m′)

)
dm′ dm

−
ˆ

Ω
XA′ρ(X) dm−

ˆ
Ω
Y A′η(Y ) dm.

(5.65)
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Using assumption (AT) we can bound the terms involving the cross-interaction potential
H as follows

−
ˆ

Ω

ˆ
Ω
X(m)H ′

(
X(m)− Y (m′)

)
− Y (m)H ′

(
Y (m)−X(m′)

)
dm′ dm

= −
ˆ

Ω

ˆ
Ω
H ′
(
X(m)− Y (m′)

)(
X(m)− Y (m′)

)
dm′ dm ≤ 0,

thus, using assumption (H2) and (5.61), (5.65) can be bounded from above by

d

dt

ˆ
Ω

(XV +YW ) dm ≤
ˆ

Ω

(
−σXV −σYW+ |V |2 + |W |2−α|X|2−β|Y |2

)
dm. (5.66)

Note that for any A > 0 we have −XV ≤ X2A2 + V 2

4A2 . Then, applying this inequality
to −σXV and −σYW , we obtain the following inequality holding for any A1, A2 > 0:ˆ

Ω

(
− σXV − σYW + |V |2 + |W |2 − α|X|2 − β|Y |2

)
dm

≤−
ˆ

Ω
|X|2

(
α− σA2

1

)
dm−

ˆ
Ω
|Y |2

(
β − σA2

2

)
dm

+

ˆ
Ω
|V |2

(
1 +

σ

4A2
1

)
dm+

ˆ
Ω
|W |2

(
1 +

σ

4A2
2

)
dm.

(5.67)

By taking sufficiently small A1 and A2, we have that (5.66) is bounded from above by

d

dt

ˆ
Ω

(XV + YW ) dm ≤ −C1

ˆ
Ω

(
|X|2 + |Y |2

)
dm+ C2

ˆ
Ω

(
|V |2 + |W |2

)
dm (5.68)

for some constants C1, C2 > 0. Putting together estimates (5.63) and (5.68), we have
that

d

dt

ˆ
Ω

(
|X|2 + |Y |2 +XV + YW

)
dm

≤ 2

ˆ
Ω

(
XV + YW

)
dm− C1

ˆ
Ω

(
|X|2 + |Y |2

)
dm+ C2

ˆ
Ω

(
|V |2 + |W |2

)
dm.

(5.69)

Integrating in time inequality (5.69), for all T > 0 we obtain
ˆ

Ω

(
|X|2 + |Y |2 +XV + YW

)
dm |t=T −

ˆ
Ω

(
|X|2 + |Y |2 +XV + YW

)
dm |t=0

≤ 2

ˆ T

0

ˆ
Ω

(
XV + YW

)
dmdt− C1

ˆ T

0

ˆ
Ω

(
|X|2 + |Y |2

)
dmdt

+ C2

ˆ T

0

ˆ
Ω

(
|V |2 + |W |2

)
dmdt,

thus

C1

ˆ T

0

ˆ
Ω

(
|X|2 + |Y |2

)
dmdt ≤ C2

ˆ T

0

ˆ
Ω

(
|V |2 + |W |2

)
dmdt

+ 2

ˆ T

0

ˆ
Ω

(
XV + YW

)
dmdt

−
ˆ

Ω

(
|X|2 + |Y |2 +XV + YW

)
dm |t=T +C2,
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where C2 is a constant which depends on initial data. Proceeding as in (5.67) and using
the bound in (5.62), we have that

ˆ ∞
0

ˆ
Ω

(
|X|2 + |Y |2

)
dm < +∞. (5.70)

Combining estimates (5.62) and (5.70) we get
ˆ ∞

0

ˆ
Ω

(
|X|2 + |Y |2 + |V |2 + |W |2

)
dmdt < +∞,

hence, there exists a subsequence {tk}k such that
ˆ

Ω

(
|X(tk)|2 + |Y (tk)|2 + |V (tk)|2 + |W (tk)|2

)
dm→ 0 (5.71)

as tk → +∞. Since the operator F defined in (5.45) is a monotone operator, then

F(X,Y ) +
1

2

ˆ
Ω
|V |2 dm+

1

2

ˆ
Ω
|W |2 dm→ ` > 0

as t → +∞, and ` is unique. Moreover, Lemma 5.2 ensures that the operator F is
continuous, thus

1

2

ˆ
Ω
|V |2 dm+

1

2

ˆ
Ω
|W |2 dm+ F(X,Y ) |t=tk→ `

as tk → +∞. Using the coercivity of the external potentials Aρ and Aη and (5.71), we
have that ` is necessarily zero, hence the statement holds.

5.6 Simulations

This last Section is devoted to provide some numerical examples on the behaviour
of solutions to system (5.1). Numerical simulations will be performed by using the
discrete particle counterpart of (5.1), namely solving numerically (5.3). We recall that
the system of ODEs we are dealing with is the following

ẋi(t) = vi(t),

ẏj(t) = wj(t),

v̇i(t) = −σvi(t)−
∑
k 6=i

mkK
′
11

(
xi(t)− xk(t)

)
−
∑
k

nkK
′
12

(
xi(t)− yk(t)

)
,

ẇj(t) = −σwj(t)−
∑
k 6=j

nkK
′
22

(
yj(t)− yk(t)

)
−
∑
k

mkK
′
21

(
yj(t)− xk(t)

)
,

(5.72)

where xi and yj denote the particles positions of first and second species respectively, vi
and wj their velocities and mi and nj their masses, for i = 1, . . . , N and j = 1, . . . ,M .
For simplicity we assume all the particles having the same mass. By a normalisation in
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Figure 5.1: In this first example, we fix N = 160, and M = 150. All the potentials
are attractive. In particular we set Kρ(x) = −e−|x|

3

, Kη(x) = −e−|x|
4

,
Hρ(x) = Hη(x) = −e−|x|

2

.

Figure 5.2: Evolution under the action of attractive self potentials that are given
by K11(x) = −3e−|x|

2

, and K22(x) = −2e−2|x|3 , and repulsive cross-
potentials K12(x) = −|x|2, K21(x) = e−|x|

2

. In this example, N = 180,
M = 200.

the masses the total number of particles for each species, N and M respectively, will be
modified in each of the examples below in order to highlights possible different changes
in the solutions.

System (5.72) will be coupled with an uniform distributed set of particles in the
space interval [0, 1] and a random distrubution for the velocities. We then let the
particles evolve by using an explicit second order three steps Runge-Kutta method, (cf.
[45]) up to the first collision. In order to detect collisions between particles we fix a
tolerance parameter toll and we assume that it occurs when the distance between two
consecutive particles of the same species, for instance xi and xi+1, is smaller than toll.
Once two consecutive particles collide they are replaced by a single particle with new
position and velocity given by

xi+ 1
2
(t) =

xi(t) + xi+1(t)

2
,

vi+ 1
2
(t) =

vi(t) + vi+1(t)

2
,
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Figure 5.3: Two possible outcomes (top and bottom) for the evolution of the sys-
tem under the action of self-repulsive potentials K11(x) = 2e−|x|

2

and
K22(x) = e−|x|

3

and attractive cross-potentials K12(x) = |x|2 and
K21(x) = −e−3|x|2 . In both the simulations the numbers of particles are
fixed as N = 170 and M = 160, but initial velocities change (randomly).

and doubled mass, and we let the system evolve again with this new set of particles. In
all the simulations below we fix toll = 0.002.

We study numerical solutions to the system (5.72) both in case of smooth potentials
and in case of Newtonian self-potentials. Several examples are presented in the smooth
case, where we highlight the possibility of a sticky dynamics, both in attractive and
repulsive regime. Furthermore, we will compare solutions to second order system with
solutions to first order one as the increasing values of the damping parameter σ, also
comparing the Wasserstein distance between the solution to the second order system
and the solution to the first order system as σ varies. Wasserstein distance is com-
puted using its one-dimensional equivalence with the L2-norm at the level of monotone
rearrangements.

The first examples we provide concern the evolution of particles subject to the action
of radial smooth potentials. Figure 5.1 displays the sticky particle dynamics when all
the potentials are smooth and attractive. Instead, in Figure 5.2 the self-potentials are
attractive and the cross-potentials are repulsive, while in Figure 5.3 the self-potentials
are repulsive and the cross-potentials are attractive. In particular, we highlight how the
behaviour is strongly different by comparing two simulations performed with the same
potentials, number of particles and initial position, but different set of initial (random)
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Figure 5.4: Evolution under the action of attractive Newtonian self-potentials and
attractive Gaussian cross-potentials given by K12(x) = K21(x) = −e−|x|

2

.
The external potentials are Aρ(x) = |x − 1

2 |
2 and Aη(x) = 2|x − 1

2 |
2. In

this example, N = 200 and M = 210.

Figure 5.5: In this example, N = 180, M = 190, the self-potentials are Newtonian
attractive and the cross-potentials are equal and repulsive. In particular
they are K12(x) = K21(x) = 3e−|x|

4

. The external potentials are Aρ(x) =
1
2 |x−

1
2 |

2 and Aη(x) = 5|x− 1
2 |

2.

velocities.
We then show a couple of simulations in which the self-potentials are attractive

Newtonian, while the cross-potentials are symmetric, radial and smooth. In particular,
in Figure 5.4, the cross-potentials are attractive, indeed the particles collide, while in
Figure 5.5, they are repulsive and not all the particles collide. According to results in
Section 5.5 also the effect of external potentials is taken into account.

We then focus on the numerical investigation of the large damping regime. Figures
5.6 and 5.7 show a comparison between the particle evolution associated to the second
order system and the ones associated to the first order system (5.38), for various choices
of potentials. We highlight numerically the relevance of the damping parameter σ in
the evolution: increasing the value of σ solutions of the two different problems become
indistinguishable.

Finally in Figure 5.8, considering the same potentials in Figure 5.4, we display the
Wasserstein distance between the solution to the second order system and the ones to
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Figure 5.6: Solutions to the second order system (blue in the online version) and
solutions to first order system (5.38) (in red) under the action of the
following potentials are K11(x) = −e−|x|

3

, K22(x) = −e−|x|
4

, K12(x) =

K21(x) = −e−|x|
2

. In this simulation we set N = 160, M = 150 and
σ = 10 (top) and σ = 1000 (bottom).

the first order system for different values of σ. For small values of σ, the Wasserstein
distance grows initially, and then decays in time. When σ is bigger, the distance remains
controlled for all times.
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Figure 5.7: Solutions to the second order system (blue in the online version) and
solutions to first order system (5.38) (in red) under the action of the
following potentials are K11(x) = −e−|x|

2

, K22(x) = −e−3|x|3 , K12(x) =

|x|2, K21(x) = −e−2|x|4 . In this simulation we set N = 180, M = 190 and
σ = 5 (top) and σ = 900 (bottom).
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Figure 5.8: Behaviour of the Wasserstein distance between solutions of the first order
system and solutions of the second order system. The self-potentials are
Newtonian attractive potentials, while the cross-potentials are given by
K12(x) = K21(x) = −e−|x|

2

. Increasing the damping parameter Wasser-
stein distance remain controlled.
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