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Abstract. Classical results concerning Klein–Gordon–Maxwell type systems are
shortly reviewed and generalized to the setting of mixed local–nonlocal operators,
where the nonlocal one is allowed to be nonpositive definite according to a real
parameter. In this paper, we provide a range of parameter values to ensure the
existence of solitary (standing) waves, obtained as Mountain Pass critical points
for the associated energy functionals in two different settings, by considering two
different classes of potentials: constant potentials and continuous, bounded from
below, and coercive potentials.
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1. Introduction and Main Results

In this paper we shall deal with generalized Klein–Gordon–Maxwell (KGM) type
systems of the form{

Lαu +
[
V − (ω + eϕ)2

]
u = |u|p−2u in R

3,

Δϕ = e(ω + eϕ)u2 in R
3,

(1.1)

where ω ∈ R\{0}, e ∈ {±1}, V ∈ C(R3) is bounded from below, and p ∈ (2, 2∗).

Here 2∗ denotes the classical Sobolev critical exponent 2∗ =
2n

n − 2
in dimension

n = 3, that is 2∗ = 6. The operator Lα is a mixed local–nonlocal one of the following
form

Lα = Ls
α:= − Δ + α(−Δ)s, (1.2)

where α ∈ R, Δ denotes the classical Laplacian, and (−Δ)s, s ∈ (0, 1), denotes the
fractional Laplacian, which we shall introduce in the sequel.
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In the last two decades there was a growing interest around the KGM systems.
In [6,7], Benci and Fortunato introduced a mathematical model describing nonlin-
ear Klein–Gordon fields interacting with the electromagnetic field and proved the
existence of infinitely many radially symmetric solutions of (1.1) (when α = 0, that
is Lα = −Δ) only for 4 < p < 6, by using an equivariant version of the Mountain
Pass Theorem [1,4,40].

The case 2 < p ≤ 4 represents a more intriguing challenge, due to a lack of
compactness of Palais–Smale (PS) sequences, and the extension of [6, Theorem 1]
and [7, Theorem 1.2] was later achieved by D’Aprile and Mugnai in [23]. The authors
overcame the lack of compactness by requiring a control on ω by the potential
V = m2, with |m| > |ω|, times a function depending only on p (when 4 < p < 6 this
condition leads to the case considered by Benci and Fortunato).

A few years later, Azzolini, Pisani, and Pomponio [2,3], continuing along the
path laid out by Benci and Fortunato, proved in the electrostatic case the existence
of a ground state solution for the nonlinear Klein–Gordon–Maxwell system, refining
the relation between ω and V, introduced in [23], and studying the limit case when
the frequency of the standing wave equals the mass of the charged field.

The range p ∈ (2, 6) is not random neither restrictive, as shown by D’Aprile and
Mugnai in [24] when α = 0. They proved nonexistence results based on a suitable
Pohožaev identity and showed that whenever p ≤ 2 or p ≥ 6, u = ϕ = 0 is the
only solution to (1.1). In [23], the authors also applied the arguments of Benci and
Fortunato to the case of Schrödinger–Maxwell type systems.

The critical growth case was studied by Cassani in [22], by combining a
Pohožaev–type argument (to prove nonexistence of solutions with a suitable de-
cay at infinity, as in the case for radially symmetric solutions), and the reduction
method by Brézis–Nirenberg [18] (which allows to replace the first equation in (1.1)
by adding a lower order perturbation and recover the existence of Mountain Pass
type solutions). In particular, in [22], it has been showed that whenever |m| > |ω|
and p = 2∗ = 6, weak solutions of (1.1) vanish identically.

In 2005, Georgiev and Visciglia [34], inspired by the original work of Benci and
Fortunato, added an external Coulomb potential in the corresponding Lagrangian
density to the KGM equations and stated an existence result for these kinds of sys-
tems. Since 2014, a renewed interest on the Klein–Gordon–Maxwell type equations
with non-constant potentials (under suitable conditions) appeared on the scene,
starting from the works of He [35] and Ding and Li [28].

From a different perspective, a peculiar generalization is the one that involves
the fractional Laplacian. Indeed, a long list of possible applications seems to be
connected with fractional calculus as well it explained by Di Nezza et al. in [27]. In
this framework there is a recent and wide literature, to which this paper is inspired.
Servadei and Valdinoci generalized in [43] Laplace equations involving critical non-
linearities of Brézis and Nirenberg [18]. Before that, they also provided in [42] an
existence result for equations driven by a nonlocal integro-differential operator by
using both fractional spaces and the Mountain Pass Theorem.

Recently, an in-depth analysis of fractional KGM systems has begun as testified,
on the one hand, by the work of Zhang [45], who obtained a symmetric solution for
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a fractional KGM system by means of variational methods and, on the other hand,
by the work of Miyagaki et al. [37], who found the positive ground state solution
thanks again to the Mountain Pass Theorem.

The literature concerning mixed local–nonlocal operators Lα is pretty vast.
As partially expected, if α ≥ 0, our existence results (Theorems 1.1 and 1.2) are
applications of the variational methods introduced in [1,4,40] but, differently from
the case of bounded domains, we are in principle not allowed to extend trivially
the study to the case − 1

C < α < 0, where C > 0 is the constant of the continuous
embedding H1

0 (Ω) ⊂ Hs(Ω), with Ω bounded domain of R3.
Indeed, the situation becomes suddenly more delicate, mainly because Lα is

no more (in general) positive definite, the bilinear form naturally associated to it
does not induce a scalar product nor a norm, the variational spectrum may exhibit
negative eigenvalues and even the maximum principles may fail. It is well-known
that wrong signs of parameters may change the nature of the problem considered,
see for example [44], where a well-posed problem becomes ill-posed.

Without aim of completeness, we provide the interested reader with an overview
of recent techniques aimed to face these kind of issues, mostly oriented to the (el-
liptic) PDEs literature. For a very useful introduction to the variational analysis of
nonlinear problem with nonlocal operators, we suggest the book of Molica Bisci et
al. [38].

In the recent paper [36], Maione et al. proved the existence of a weak solution
of semilinear elliptic boundary value problems driven by a mixed local–nonlocal
operator for every possible value of the parameter α. This result is obtained by
means of a decomposition of the space of the solutions, deduced from the spectrum
of the operator Lα. An extension of this decomposition result for abstract Hilbert
spaces can be found in Appendix A.

Concerning interior regularity and maximum principles, Biagi et al. [8] gave
several results for elliptic operators of different orders, involving classical and frac-
tional Laplacian. The same authors also considered in [9] the qualitative properties
of solutions for the same kind of mixed operators as well as the shape optimization
problems [10,11]. Moving in a similar direction, Biswas and Modasiya supplied a
Faber–Krahn inequality and a one-dimensional symmetry result related to the Gib-
bons’ conjecture [15], and investigated on boundary regularity and overdetermined
problems [16].

Recently, De Filippis and Mingione [26] proved maximal regularity for solutions
of variational mixed problems in nonlinear degenerate cases. Furthermore, Garain
and Kinnunen [32] obtained, by adopting purely analytic techniques based on the De
Giorgi–Nash–Moser theory, several regularity results such as a Harnack inequality
for weak solutions and a weak Harnack inequality for weak supersolutions.

The relation with the mixed Sobolev inequalities was investigated by Garain
and Ukhlov [33], who proved that the extremal of such inequalities, associated with
an elliptic problem involving the mixed local and nonlocal Laplace operators, is
unique up to a multiplicative constant. From a different point of view, a very inter-
esting approach, which extended the classical Bernstein technique to the setting of
integro-differential operators, is due to Cabré et al. [20].
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Dipierro, Proietti Lippi and Valdinoci proposed a new environment in the mixed
operator setting, by considering a new type of suitable Neumann conditions, with
important implications to the logistic equation modeling population dynamics [29,
30]. A Brezis–Oswald approach was instead recently developed by Biagi, Mugnai,
and Vecchi, leading to the full characterization of the existence of a unique positive
weak solution of sublinear Dirichlet problems driven by a mixed local–nonlocal
operator [12–14].

Another compelling outlook on the topic regards the asymptotic analysis per-
formed by da Silva and Salort [25] and by Buccheri et al. [19]. Finally, a more exotic
application can be seen in [41], where Salort and Vecchi studied the existence of
the solution for Hénon-type equations driven by a nonlinear operator obtained, as
before, by combining a local and a nonlocal term.

In the present paper we reformulate the original problem of Benci and Fortu-
nato [6,7], replacing the classical Laplace operator in the Klein–Gordon equation
with the mixed local–nonlocal operator Lα defined in (1.2). For the reasons stated
in the previous lines, we focus in particular on the case where α can be negative,
since negative values of α make the problem much more challenging.

Following the arguments in [6,7], we obtain the generalized wave equation

∂2φ

∂t2
+ Lαφ + m2φ − |φ|p−2φ = 0.

By considering stationary solutions of the form

φ(x, t) = u(x) eiωt, u real function and ω ∈ R,

that are called standing waves, we get

Lαu + (m2 − ω2)u = |u|p−2u.

In order to state our main existence results, we consider the case in which ω > 0
and e = −1, in which the system (1.1) reduces to{

Lαu +
[
V − (ω − ϕ)2

]
u = |u|p−2u in R

3,

−Δϕ = (ω − ϕ)u2 in R
3.

(1.3)

Indeed, if (u, ϕ) is a solution of (1.1) for a fixed ω > 0 and e = −1, then (u, ϕ)
is also a solution of (1.1) with ω replaced by −ω and e replaced by −e. Moreover
(u, −ϕ) is a solution of (1.1) with either ω replaced by −ω or e replaced by −e.

In the present paper we shall consider two different classes of potentials V : R3 →
R, namely:
(I) constant positive potentials, that is V (x) = m2, with m > 0;

(II) continuous, bounded from below, and coercive potentials V, that is potentials
satisfying the assumptions:

• V ∈ C(R3);
• V0:= infx∈R3 V (x) > −∞;
• there exists h > 0 such that

lim
|y|→∞

|{x ∈ Bh(y) : V (x) ≤ M}| = 0 for all M > V0, (1.4)

which is trivially satisfied when lim|x|→∞ V (x) = ∞.
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To handle, as far as possible, these two cases together we set a common variational
framework by defining the space D1,2(R3) = C∞

c (R3)
‖∇ (·) ‖2 and, for V ∈ C(R3)

with V0 = infx∈R3 V (x) > −∞, also the space

W =
{

u ∈ H1(R3) :
∫
R3

(V − V0)u2 dx < ∞
}

.

Clearly W trivially reduces to H1(R3) in the case (I).
At first we deal with the case (I), which is the nonlocal version of [23], where

problem (1.3) becomes{
Lαu +

[
m2 − (ω − ϕ)2

]
u = |u|p−2u in R

3,

−Δϕ = (ω − ϕ)u2 in R
3.

(1.5)

We introduce the function α0 : (0, 1) × (0,∞) → (0,∞), which is defined as

α0(s, t):=s−s(1 − s)s−1t1−s for s ∈ (0, 1) and t ∈ (0,∞),

and given m > 0, ω > 0, and p ∈ (2, 6), we set

Ω = Ω(p,m, ω):=m2 − ω2 − (4 − p)+

p − 2
ω2.

We can now state the first main result of the paper.

Theorem 1.1. In the case (I) assume that
(a) when p ∈ [4, 6) we have m > ω > 0,
(b) when p ∈ (2, 4) we have m

√
p − 2 >

√
2ω > 0,

and that α > −α0(s,Ω). Then problem (1.5) admits infinitely many radially sym-
metric solutions (un, ϕn) ∈ H1(R3) × D1,2(R3).

We remark that by the assumptions of Theorem 1.1 one gets Ω ∈ (0,m2) and
consequently α0(s,Ω) is well-defined.

A comparison with the classical literature is now in order. Let us first observe
that, when α = 0 and p ∈ (4, 6), Theorem 1.1 recovers the original results of Benci
and Fortunato [6, Theorem 1] and [7, Theorem 1.2]. Moreover, the subsequent work
of D’Aprile and Mugnai [23] is also fully recovered when α = 0, in the complete
range p ∈ (2, 6). We recall that the authors proved in [24] that the interval (2, 6)
is sharp, in the sense that as long as p ≤ 2 or p ≥ 6, the system (1.5) admits only
the trivial solution. Unfortunately, the generalization of this result to our context
of mixed local–nonlocal operators is non-trivial. However, we feel we can conjecture
that the interval (2, 6) is sharp even in this more general context.

A more in-depth study regarding the role of α0 is, in our opinion, important
and useful to completely understand the significance of the theorem above.

As one can observe from Fig. 1, the limits at the boundary are

lim
s→0+

α0(s,Ω) = Ω = m2 − ω2 − (4 − p)+

p − 2
ω2;

lim
s→1−

α0(s,Ω) = 1.
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Figure 1 The graph (A) represents the behavior of α0(s,Ω) in the
interval s ∈ (0, 1), for three different fixed values of Ω: 1, 10, 1

10 . For
the same values of Ω, the graph (B) provides a representation of the
second derivative of α0(s,Ω) with respect to s. As one can appreciate
there are two flexes for Ω = 10 and Ω = 1/10.

In particular, we want to underline that when s → 0+ and s → 1− we get the same
parameter ranges obtained in [6,7,23]. On the one hand, s = 0 formally corresponds
to the operator −Δu + αu. In this case, by [6,7,23] the system (1.3) has infinitely
many solutions if

α + m2 > ω2 +
(4 − p)+

p − 2
ω2, that is α > −Ω.

On the other hand, s = 1 formally corresponds to the operator −(1 + α)Δu, which
is positively definite if and only if

1 + α > 0, that is α > −1.

Hence the range for α, given by the assumption α > −α0(Ω, s), seems to be sharp,
at least when s → 0+ and s → 1−. We conjecture that the range is sharp for all
s ∈ (0, 1).

The second main result of the paper is as follows.

Theorem 1.2. In the case (II) for all p ∈ (2, 6) and α ∈ R problem (1.3) admits
infinitely many solutions (un, ϕn) ∈ W × D1,2(R3).

We remark that, as in the case of the Theorem 1.1, Theorem 1.2 also recovers
the classical works of Ding and Li [28] and He [35], when the real parameter α
approaches the value 0. We also point out that a comparison with the literature
devoted to the case in which the operator Lα is purely fractional (i.e. Lα = (−Δ)s)
is not possible, since the parameter α is only coupled to the nonlocal part of the
operator, while the local part of Lα is fixed.

As in [6,7,23,28,35], the proof of Theorems 1.1 and 1.2 are based on an equi-
variant version of the Mountain Pass Theorem (see [1,4,40]). In the forthcoming
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work [21], the authors shall explore, by using variational techniques, the case of
Schrödinger–Maxwell equation driven by mixed local–nonlocal operators.

The paper is organized as follows. Section 2 is devoted to some preliminary
results, which apply to both cases (I) and (II). In Sects. 3 and 4 we shall respec-
tively consider the cases (I) and (II), giving the proofs of Theorems 1.1 and 1.2. A
comprehensive overview of spectral theory for mixed local–nonlocal operators finally
appears in Appendix A.

2. Assumptions, Notations, and Preliminary Results

We recall that the Sobolev space H1(R3) is defined as

H1(R3) = {u ∈ L2(R3) : ∇u ∈ L2(R3;R3)},

and it is a Hilbert space endowed with the norm

‖u‖2H1 :=‖u‖22 + ‖∇u‖22 for u ∈ H1(R3).

We denote by F the Fourier transform, defined for functions ϕ ∈ S(R3) (the
Schwartz space of rapidly decreasing smooth functions) by

Fϕ(ξ):=
1

(2π)
3
2

∫
R3

e−i〈ξ,x〉ϕ(x) dx for ξ ∈ R
3,

and then extended by density to the space of tempered distributions. By Plancherel
Theorem F is an isometric isomorphism from L2(R3;C) onto L2(R3;C).

Given any s ∈ (0, 1), the fractional Sobolev space Hs(R3) is equivalently defined
as

Hs(R3) =
{

u ∈ L2(R3) :
∫
R3

(1 + |ξ|2s)|Fu(ξ)|2 dξ < ∞
}

,

see e.g. [27, Section 3], and it is a Hilbert space when endowed with the norm

‖u‖2Hs :=
∫
R3

(1 + |ξ|2s)|Fu(ξ)|2 dξ for u ∈ Hs(R3).

Notice that H1(R3) is continuously embedded into Hs(R3) by Plancherel Theorem,
since for all u ∈ H1(R3) we have∫

R3
|ξ|2s|Fu(ξ)|2 dξ ≤ (1 − s)

∫
R3

|Fu(ξ)|2 dξ + s

∫
R3

|ξ|2|Fu(ξ)|2 dξ

= (1 − s)‖u‖22 + s‖∇u‖22.
Let (−Δ)su denote the fractional Laplacian of u, which is defined via Fourier

transform for functions ϕ ∈ S(R3) as

(−Δ)sϕ(x) = F−1(|ξ|2sFϕ(ξ))(x) for x ∈ R
3.

By Plancherel Theorem we have

Hs(R3) = {u ∈ L2(R3) : (−Δ)
s
2 u ∈ L2(R3)}

and

‖u‖2Hs = ‖u‖22 + ‖(−Δ)
s
2 u‖22.
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In particular, for all u ∈ H1(R3) and ε > 0, we have

‖(−Δ)
s
2 u‖22 =

∫
R3

|ξ|2s|Fu(ξ)|2 dξ ≤ (1 − s)ε− s
1−s ‖u‖22 + sε‖∇u‖22. (2.1)

Therefore, the fractional Laplacian can be interpreted as an operator

(−Δ)s : Hs(R3) → H−s(R3):=(Hs(R3))′,

defined for all u, v ∈ Hs(R3) as

〈(−Δ)su, v〉H−s(R3)×Hs(R3):=
∫
R3

(−Δ)
s
2 u(−Δ)

s
2 v dx. (2.2)

Remark 2.1. We recall that the fractional Sobolev space Hs(R3) can also be defined
via the Gagliardo seminorm [ · ]s,2 as

Hs(R3):=
{

u ∈ L2(R3) : [u]2s,2:=
∫
R3

∫
R3

|u(x) − u(x)|2
|x − y|3+2s

dx dy < ∞
}

.

Indeed, we have
1
2
C(s)[u]2s,2 =

∫
R3

|ξ|2s|Fu(ξ)|2 dξ for all u ∈ Hs(R3),

where the constant C(s) is given by

C(s):=
(∫

R3

1 − cos(x1)
|x|3+2s

dx

)−1

, (2.3)

see, for example [27, Proposition 3.4 and Proposition 3.6]. In particular, the frac-
tional Laplacian can be defined for ϕ ∈ S(R3) as

(−Δ)sϕ(x):=C(s) P.V.
∫
R3

ϕ(x) − ϕ(y)
|x − y|3+2s

dy for x ∈ R
3,

where P.V. denotes the Cauchy principal value, that is

P.V.
∫
R3

u(x) − u(y)
|x − y|3+2s

dy:= lim
ε→0+

∫
{y∈R3 : |y−x|≥ε}

u(x) − u(y)
|x − y|3+2s

dy,

and the constant C(s) is the one defined by (2.3).

For all α ∈ R we define the mixed local–nonlocal operator Lα as

Lαu:= − Δu + α(−Δ)su,

where Δu denotes the classical Laplace operator, while (−Δ)su is the fractional
Laplacian. As before we can interpret the mixed local–nonlocal operator Lα as an
operator

Lα : H1(R3) → H−1(R3):=(H1(R3))′,

to which we can naturally associate a bilinear form as follows.

Definition 2.2. The bilinear form Bα : H1(R3) × H1(R3) → R (associated to the
operator Lα) is defined for all u, v ∈ H1(R3) as

Bα(u, v):=
∫
R3

〈∇u, ∇v〉 dx + α

∫
R3

(−Δ)
s
2 u (−Δ)

s
2 v dx



Vol. 91 (2023) Klein–Gordon–Maxwell Equations 383

=
∫
R3

〈∇u, ∇v〉 dx + αC(s)
2

∫
R3

∫
R3

(u(x) − u(y))(v(x) − v(y))
|x − y|3+2s

dx dy.

Clearly Bα is well-defined and continuous on H1(R3) × H1(R3).

Let V ∈ C(R3) be a potential with

V0:= inf
x∈R3

V (x) > −∞,

this condition being clearly satisfied in both cases (I) and (II). The space of solutions
u of problem (1.3) is defined as

W :=
{

u ∈ H1(R3) :
∫
R3

(V − V0)u2 dx < ∞
}

,

endowed with the norm

‖u‖2W :=‖u‖22 + ‖∇u‖22 +
∫
R3

(V − V0)u2 dx.

Lemma 2.3. W is a Hilbert space with respect to ‖·‖W . Moreover, the space C∞
c (R3) ⊂

W is dense in W.

Proof. It is clear that W ⊂ H1(R3) is a linear subspace of H1(R3), and the map
‖ · ‖W : W → [0,∞) is a norm on W which is induced by a scalar product. We need
just to show that W is a closed subspace of H1(R3). Let (uk)k ⊂ W and u ∈ H1(R3)
be such that ‖uk − u‖W → 0 as k → ∞. Then, for a fixed k0 ∈ N

(V − V0)u2 ≤ 2(V − V0)(uk0 − u)2 + 2(V − V0)u2
k0

a.e. in R
3,

which implies that∫
R3

(V − V0)u2 dx ≤ 2
∫
R3

(V − V0)(uk0 − u)2 dx + 2
∫
R3

(V − V0)u2
k0

dx.

Hence u ∈ W, i.e., W is a closed subspace of H1(R3).
We first notice that C∞

c (R3) ⊂ W, being C∞
c (R3) ⊂ H1(R3) and∫

R3
(V − V0)u2 dx ≤ ‖u‖2L∞(R3) max

suppu
(V − V0) < ∞

for all u ∈ C∞
c (R3). Let u ∈ W and consider a sequence (χk)k ⊂ C∞

c (R3) of
functions satisfying 0 ≤ χk ≤ 1 in R

3, χk = 1 in Bk(0), and χk = 0 in R
3\Bk+1(0).

Clearly (uχk)k ⊂ W, every χku has compact support in R
3, and uχk → u in W as

k → ∞. Hence for all ε > 0 there exists k0 ∈ N such that

‖χk0u − u‖W <
ε

2
.

Let (ρj)j ⊂ C∞
c (R3) be a sequence of mollifiers in R

3. Then the sequence (ρj ∗
(χk0u))j is in C∞

c (R3) and ρj ∗ (χk0u) → χk0u a.e. in R
3 as j → ∞. Hence, there

exists j0 ∈ N such that

‖ρj0 ∗ (χk0u) − χk0u‖H1(R3) <
ε

2(1 + CV,k0)
, C2

V,k0
:= max

Bk0+1(0)
(V − V0).

Hence

‖ρj0 ∗ (χk0u) − χk0u‖W ≤ (1 + CV,k0)‖ρj0 ∗ (χk0u) − χk0u‖H1(R3) <
ε

2
,
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which gives

‖ρj0 ∗ (χk0u) − u‖W < ε.

Therefore C∞
c (R3) is dense in W. �

Since

‖u‖H1 ≤ ‖u‖W for all u ∈ W,

we derive that the embedding W ⊂ Lp(R3) is continuous and dense for all p ∈ [2, 6],
being 6 = 2∗ the critical Sobolev exponent for n = 3. In particular, there exists a
constant Cp > 0 such that

‖u‖p ≤ Cp‖u‖W for all u ∈ W. (2.4)

The space of solutions for the electrical potential ϕ of problem (1.3) is the
Hilbert space, already introduced in Sect. 1,

D1,2(R3) = C∞
c (R3)

‖∇ (·) ‖2
,

endowed with the norm

‖ϕ‖D1,2 :=‖∇ϕ‖2 for all ϕ ∈ D1,2(R3).

Since in the whole space R
3 the Poincaré inequality does not hold, we get

D1,2(R3) �= H1
0 (R3) = H1(R3).

In any case, D1,2(R3) is continuously embedded into L6(R3), i.e., there exists a
constant CD > 0 such that

‖ϕ‖6 ≤ CD‖ϕ‖D1,2 for all ϕ ∈ D1,2(R3).

We can now introduce the definition of weak solutions of (1.3).

Definition 2.4. A pair (u, ϕ) ∈ W × D1,2(R3) is called a weak solution of (1.3) if

Bα(u, v) +
∫
R3

V uv dx +
∫
R3

(ω − ϕ)2uv dx =
∫
R3

|u|p−2uv dx (2.5)

for all v ∈ W and∫
R3

〈∇ϕ,∇ψ〉 dx =
∫
R3

(ω − ϕ)ψu2 dx for all ψ ∈ D1,2(R3). (2.6)

To show that Definition 2.4 makes sense we state and prove the following result.

Lemma 2.5. The system is coherent, i.e. all terms in Definition 2.4 are well-defined,
whether u, v ∈ W and ϕ,ψ ∈ D1,2(R3).

Proof. Let us show that all the terms in (2.5) and (2.6) are well-defined for u, v ∈ W
and ϕ,ψ ∈ D1,2(R3). As observed before, the bilinear form Bα is well-defined and
continuous on W × W ⊂ H1(R3) × H1(R3). Moreover, by Hölder inequality,∣∣∣∣

∫
R3

V uv dx

∣∣∣∣ ≤
∣∣∣∣
∫
R3

(V − V0)uv dx

∣∣∣∣ + |V0|
∣∣∣∣
∫
R3

uv dx

∣∣∣∣
≤ ‖u‖W ‖v‖W + |V0|‖u‖2‖v‖2 < ∞
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for every u, v ∈ W. By the same arguments used in [7] we also have∣∣∣∣
∫
R3

(ω − ϕ)2uv dx

∣∣∣∣ ≤ ω2‖u‖2‖v‖2 + 2ω‖ϕ‖6‖u‖ 12
5
‖v‖ 12

5

+ ‖ϕ‖26‖u‖3‖v‖3 < ∞,∣∣∣∣
∫
R3

|u|p−2uv dx

∣∣∣∣ ≤ ‖u‖p−1
p ‖v‖p < ∞

for every u, v ∈ W and ϕ ∈ D1,2(R3). On the other hand∣∣∣∣
∫
R3

〈∇ϕ,∇ψ〉 dx

∣∣∣∣ ≤ ‖ϕ‖D1,2‖ψ‖D1,2 < ∞,∣∣∣∣
∫
R3

(ω − ϕ)ψu2 dx

∣∣∣∣ ≤ ω‖ψ‖6‖u‖212
5

+ ‖ϕ‖6‖ψ‖6‖u‖23 < ∞

for every u ∈ W and ϕ,ψ ∈ D1,2(R3). �
It is easy to see that regular solutions of (1.3) are actually weak solutions,

according to Definition 2.4. As usual, weak solutions of (1.3) can be found as critical
points of the functional F : W × D1,2(R3) → R, defined as

F (u, ϕ):=
1
2
Bα(u, u) +

1
2

∫
R3

V u2 dx − 1
2

∫
R3

(ω − ϕ)2u2 dx

− 1
p

∫
R3

|u|p dx − 1
2

∫
R3

|∇ϕ|2 dx.

As in [7], the functional F is Fréchet differentiable on W × D1,2(R3) and for all
u, v ∈ W and ϕ,ψ ∈ D1,2(R3) we have

F ′
u(u, ϕ)[v] = Bα(u, v) +

∫
R3

V uv dx −
∫
R3

(ω − ϕ)2uv dx −
∫
R3

|u|p−2uv dx,

F ′
ϕ(u, ϕ)[ψ] =

∫
R3

(ω − ϕ)u2ψ dx −
∫
R3

〈∇ϕ,∇ψ〉 dx.

Unfortunately, even though it seems to be natural to work with the functional F,
we are unable to endow the Hilbert space W × D1,2(R3) with a norm suitable to
apply the Critical Point Theory to F. Therefore, we look for another variational
characterization of problem (1.3).

First, we fix u ∈ W and we look for a solution ϕ(u) of (2.6). Since ϕ is a
solution of (2.6) if and only if −ϕ is a solution of (2.2) in [23], we can restate [23,
Proposition 2.2] is the following form (more suitable in the present context).

Lemma 2.6. For every u ∈ W there exists a unique ϕ(u) ∈ D1,2(R3) which solves (2.6).
Moreover,

ϕ(u) ≥ 0 in R
3 and ϕ(u) ≤ ω on the set {x ∈ R

3 : u(x) �= 0}.

Finally, if u is radially symmetric, then also ϕ(u) is radially symmetric.

Remark 2.7. In the general case in which ω ∈ R\{0} and e ∈ {±1} we deduce that
for every u ∈ W the unique solution ϕ(u) ∈ D1,2(R3) of (2.6) satisfies

− e

ω
ϕ(u) ≥ 0 in R

3 and − e

ω
ϕ(u) ≤ 1 on the set {x ∈ R

3 : u(x) �= 0}.
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Fixed u ∈ W, let ϕu:=ϕ(u) ∈ D1,2(R3) be the unique solution of (2.6). Then,
F ′

ϕ(u, ϕu)[ψ] = 0 for every ψ ∈ D1,2(R3) and for ψ = ϕu we get∫
R3

|∇ϕu|2 dx =
∫
R3

(ω − ϕu)ϕuu2 dx. (2.7)

This allows us to introduce the following functional, as done in [7].

Definition 2.8. Fix any function u ∈ W, let ϕu ∈ D1,2(R3) be the unique solution
of (2.6). We define the functional J : W → R by

J(u) :=
1
2
Bα(u, u) +

1
2

∫
R3

(V − ω2)u2 dx

+
ω

2

∫
R3

ϕuu2 dx − 1
p

∫
R3

|u|p dx. (2.8)

By the identity (2.7), we have

J(u) = F (u, ϕu).

Moreover, by standard arguments, the map u �→ ϕu from W into D1,2(R3) is of class
C1 (for a detailed proof, we refer to [24, Proposition 2.1]). Hence, the functional J
is Fréchet differentiable on W and

J ′(u)[v] = F ′
u(u, ϕu)[v] for all u, v ∈ W,

since F ′
ϕ(u, ϕu)[ϕ′

u[v]] = 0, that is

J ′(u)[v] = Bα(u, v) +
∫
R3

(V − ω2)uv dx + 2ω

∫
R3

ϕuuv dx

−
∫
R3

ϕ2
uuv dx −

∫
R3

|u|p−2uv dx for any u, v ∈ W.

Therefore, as in [4], a pair (u, ϕ) ∈ W ×D1,2(R3) is a weak solution of problem (1.3)
if and only if ϕ = ϕu and u is a critical points of J.

Hence, in order to find solutions of problem (1.3) it is enough to find critical
points of J on W. This is done be applying an equivariant version of the Mountain
Pass Theorem, in the form given by [40, Theorem 9.12] (see also [1, Theorem 2.13]
and [4, Theorem 2.4]). First, we recall the following definition.

Definition 2.9. Let f be a C1 function, defined on an infinite dimensional Banach
space X. We say that the functional f satisfies the Palais-Smale condition (PS) if
any sequence (un)n ⊂ X such that (f(un))n ⊂ R is bounded and f ′(un) → 0 in X ′,
as n → ∞, has a convergent subsequence.

Theorem 2.10. [40, Theorem 9.12] Let f be a even C1 function, defined on an infinite
dimensional Banach space X and such that f(0) = 0. Assume that X is decompos-
able as direct sum of two closed subspaces X = X1⊕X2, with dim X1 < ∞. Suppose
that:
(i) there exist δ, � > 0 such that

inf f(S� ∩ X2) ≥ δ,

where S�:={u ∈ X : ‖u‖X = �};
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(ii) for any finite dimensional subspace Y ⊂ X there exists R = R(Y ) > 0 such
that for any u ∈ Y with ‖u‖X ≥ R

f(u) ≤ 0;

(iii) f satisfies the (PS) condition.
Then, f has an unbounded sequence of positive critical values.

Notice that for the functional J : W → R defined in (2.8) we have
• J ∈ C1(W );
• J(0) = 0;
• J is even.

In the next two sections we prove that J, or a suitable restriction of it, satisfies the
assumptions of Theorem 2.10 in both the cases (I) and (II). The appropriate choice
of the functional will differ in the two cases.

3. Case (I): The Generalized KGM Equation

In this section we prove our existence result when

V (x) = m2 for all x ∈ R
3,

with m > 0. In this case W = H1(R3) and

‖u‖W = ‖u‖H1 for all u ∈ W = H1(R3).

To find critical points of J we shall restrict it to the subspace of radial functions

H1
r (R3):={u ∈ H1(R3) : u(|x|) = u(x) for any x ∈ R

3}.

This (standard) procedure is allowed by the following result.

Lemma 3.1. Under the assumptions of Theorem 1.1, u ∈ H1
r (R3) is a critical point

of J |H1
r (R

3) if and only if u is a critical point of J.

Proof. The arguments of [7, Lemma 4.2] continue to apply to the functional J
defined in (2.8), which is given by

J(u):=
1
2
Bα(u, u) +

m2 − ω2

2

∫
R3

u2 dx +
ω

2

∫
R3

ϕuu2 dx − 1
p

∫
R3

|u|p dx.

Considering that the function ϕu in the paper [7] corresponds to −ϕu in the present
one, J can be written as

J(u):=
α

2
‖(−Δ)

s
2 u‖22 + J0(u),

where J0 is the functional in [7].
The main argument there consists in the invariance of J0 under to O(3) group

action Tg on H1(R3) given by

Tgu(x) = u(g(x)), g ∈ O(3),

explicitly written as g(x) = Ox, where O is an orthogonal matrix.
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Now also u → ‖(−Δ)
s
2 u‖22 is invariant under the same action. This fact can be

established by using the Spectral Theorem or, in a more elementary way, by [27,
Proposition 3.6], that is the formula

‖(−Δ)
s
2 u‖22 =

∫
R3

|ξ|2s|Fu(ξ)|2 dξ.

Indeed, for any u ∈ S(R3) one has

F(Tgu) = Tg(F�),

and then

‖(−Δ)
s
2 Tgu‖22 =

∫
R3

|ξ|2s|F(Tgu)(ξ)|2 dξ =
∫
R3

|ξ|2s|Tg(Fu(ξ))|2 dξ

=
∫
R3

|ξ|2s|Fu(Oξ)|2 dξ =
∫
R3

|ξ|2s|Fu(ξ)|2 dξ = ‖(−Δ)
s
2 u‖22,

since O is orthogonal. �
We shall then use Theorem 2.10, with X = H1

r (R3), X1 = {0}, and X2 = X.

Lemma 3.2. Under the assumptions of Theorem 1.1 the functional J satisfies (i)
and (ii) of Theorem 2.10 in X = H1(R3), with X1 = {0} and X2 = H1(R3), and
consequently also in X = H1

r (R3), with X1 = {0} and X2 = H1
r (R3).

Proof. We first claim that there exist δ, � > 0 such that

inf J(S�) ≥ δ, (3.1)

where S�:={u ∈ H1(R3) : ‖u‖H1 = �}. Indeed, by (2.1) and by Lemma 2.6, for any
u ∈ H1(R3) and ε > 0 we have

J(u) = Bα(u, u) + m2−ω2

2 ‖u‖22 + ω
2

∫
R3

ϕuu2 dx − 1
p‖u‖p

p

≥ 1
2‖∇u‖22 − α−

2

(
sε‖∇u‖22 + (1 − s)ε− s

1−s ‖u‖22
)

+ m2−ω2

2 ‖u‖22 − 1
p‖u‖p

p

≥ 1
2

(
1 − α−sε

) ‖∇u‖22 + 1
2

(
m2 − ω2 − α−(1 − s)ε− s

1−s

)
‖u‖22 − 1

p‖u‖p
p,

where α−:= max{−α, 0} denotes the negative part of α. Let us consider the following
system {

1 − α−sε > 0,

m2 − ω2 − α−(1 − s)ε− s
1−s > 0.

(3.2)

The first inequality of (3.2) holds when α− = 0 and, elsewhere, trivially gives

ε <
1

α−s
.

The second inequality of (3.2) leads us to

α−(1 − s)ε− s
1−s < m2 − ω2.

Since by assumption

m2 − ω2 ≥ m2 − ω2 − (4 − p)+

p − 2
w2=:Ω > 0,
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the system (3.2) is satisfied whenever

(1 − s)
1−s
s (α−)

1−s
s

(m2 − ω2)
1−s
s

< ε <
1

α−s
.

Thanks to α > −α0(s,Ω), which implies

α− < α0(s,Ω) = s−s(1 − s)s−1Ω1−s ≤ s−s(1 − s)s−1(m2 − ω2)1−s,

there exists ε0 ∈ (0,∞) such that

c1:=1 − α−sε0 > 0, c2:=m2 − ω2 − α−(1 − s)ε
− s

1−s

0 > 0. (3.3)

Hence we get

1
2
Bα(u, u) +

m2 − ω2

2

∫
R3

u2 dx ≥ 1
2

min{c1, c2}‖u‖2H1 . (3.4)

Therefore, by using also (2.4), for any u ∈ S�, we have

J(u) ≥ 1
2

min{c1, c2}‖u‖2H1 − Cp
p

p
‖u‖p

H1

=
1
2

min{c1, c2} · �2 − Cp
p

p
· �p

= �2
(

1
2

min{c1, c2} − Cp
p

p
· �p−2

)
> 0,

where the last inequality is given by eventually setting

� <

(
p min{c1, c2}

2Cp
p

) 1
p−2

.

Thus, (i) is satisfied.
Let us prove (ii). We fix a finite dimensional space Y ⊂ H1(R3) and u ∈ Y.

By (2.1) there exists a positive constant K > 0 such that

J(u) ≤ K‖u‖2H1 − 1
p
‖u‖p

p → −∞ (3.5)

as ‖u‖H1 → ∞, since on Y all norms are equivalent.
Trivially we can replace H1(R3) with H1

r (R3) in (3.1) and (3.5), completing
the proof. �

Lemma 3.3. Under the assumptions of Theorem 1.1 the functional J |H1
r (R

3) satisfies
(iii) of Theorem 2.10.

Proof. Let us fix a (PS) sequence (un)n ⊂ H1
r (R3). Then, for all p ∈ (2, 6), we have

pJ(un) − J ′(un)[un] ≥
(p

2
− 1

) (Bα(un, un) + (m2 − ω2)‖un‖22
)

+ω
(p

2
− 2

) ∫
R3

ϕun
u2

n dx.

Note that the presence of the last term on the r.h.s. force us to distinguish between
two possible cases: the case 2 < p < 4 and the case 4 ≤ p < 6.
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Case 1. In the case 4 ≤ p < 6 and m > ω > 0, by (3.4) we immediately get

pJ(un) − J ′(un)[un] ≥
(p

2
− 1

)
min{c1, c2}‖un‖2H1 , (3.6)

being c1 > 0 and c2 > 0 the two constants defined in (3.3).
Case 2. Assume now 2 < p < 4 and m

√
p − 2 > ω

√
2(> 0). Then, being p/2− 2 < 0

and −ϕun
≥ −ω, for every ε > 0 we get

pJ(un) − J ′(un)[un] ≥
(p

2
− 1

)
Bα(un, un)

+
[(p

2
− 1

)
m2 −

(p

2
− 1

)
ω2 +

(p

2
− 2

)
ω2

]
‖un‖22

=
(p

2
− 1

)
Bα(un, un) +

[(p

2
− 1

)
m2 − ω2

]
‖un‖22

≥
(p

2
− 1

) (
1 − α−sε

) ‖∇un‖22
+

[(p

2
− 1

) (
m2 − α−(1 − s)ε− s

1−s
) − ω2

]
‖un‖22.

We consider now the following system{
1 − α−sε > 0,(

p
2 − 1

) (
m2 − α−(1 − s)ε− s

1−s
)

> ω2.
(3.7)

As before, the first inequality of (3.7) holds when either α− = 0 or

ε <
1

α−s
.

The second inequality of (3.7) leads us to

α−(1 − s)ε− s
1−s < m2 − 2ω2

p − 2
= m2 − ω2 −

(
4 − p

p − 2

)
ω2 = Ω.

Since Ω > 0 the system (3.7) is satisfied whenever

(1 − s)
1−s
s (α−)

1−s
s

Ω
1−s
s

< ε <
1

α−s
.

By noticing that α− < α0(s,Ω), we can find ε1 ∈ (0,∞) such that

d1:=
(p

2
− 1

) (
1 − α−sε1

)
, d2:=

(p

2
− 1

) (
m2 − α−(1 − s)ε

− s
1−s

1

)
− ω2

are both positive constants. Therefore

pJ(un) − J ′(un)[un] ≥ min{d1, d2}‖un‖2H1 . (3.8)

Since (J(un))n is bounded in R and (J ′|H1
r (R

3)(un))n is bounded in (H1
r (R3))′,

being (un)n a (PS) sequence, there exist two positive constants K1,K2 such that

J(un) ≤ K1 and |J ′(un)[un]| ≤ K2‖un‖H1 for all n ∈ N. (3.9)

Hence, by (3.6) and (3.8), setting

c3 =

{(
p
2 − 1

)
min{c1, c2}, in Case 1,

min{d1, d2}, in Case 2,
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we get

pK1 + K2‖un‖H1 ≥ c3‖un‖2H1 for all n ∈ N,

which implies that (un)n is bounded in H1
r (R3).

Therefore, there exist a subsequence, not relabeled, and u ∈ H1
r (R3) such that

(un)n converges to u weakly in H1
r (R3), strongly in Lp(R3) for any p ∈ (2, 6), and

a.e. in R
3. To conclude we show that the convergence in H1

r (R3) turns out to be
strong.

By (2.7), we deduce that the sequence (ϕun
)n ⊂ D1,2(R3) satisfies for all n ∈ N

‖∇ϕun
‖22 ≤ ω

∫
R3

ϕun
u2

n dx ≤ ω‖ϕun
‖6‖un‖212

5
≤ c5‖∇ϕun

‖2‖un‖2H1 ,

which implies that (ϕun
)n is bounded in D1,2(R3). Moreover, by (3.4) we have

min{c1, c2}‖un − u‖2H1 ≤ Bα(un − u, un − u) + (m2 − ω2)‖un − u‖22
= J ′(un)[un − u] − J ′(u)[un − u]

− 2ω

∫
R3

(ϕun
un − ϕuu)(un − u) dx

+
∫
R3

(ϕ2
un

un − ϕ2
uu)(un − u) dx

+
∫
R3

(|un|p−2un − |u|p−2u)(un − u) dx,

being c1 > 0 and c2 > 0 the two constants defined in (3.3). Since J ′(un) → 0 in
(H1

r (R3))′ and un ⇀ u in H1
r (R3) as n → ∞, it follows that the first two terms

converge to 0 as n → ∞. Moreover, as n → ∞,∣∣∣∣
∫
R3

(ϕun
un − ϕuu)(un − u) dx

∣∣∣∣
≤

(
‖ϕun

‖6‖un‖ 12
5

+ ‖ϕu‖6‖u‖ 12
5

)
‖un − u‖ 12

5
→ 0,∣∣∣∣

∫
R3

(ϕ2
un

un − ϕ2
uu)(un − u) dx

∣∣∣∣
≤ (‖ϕun

‖26‖un‖3 + ‖ϕu‖26‖u‖3
) ‖un − u‖3 → 0,∣∣∣∣

∫
R3

(|un|p−2un − |u|p−2u)(un − u) dx

∣∣∣∣
≤ (‖un‖p−1

p + ‖un‖p−1
p )‖un − u‖p → 0.

Hence the thesis follows. �

We can now conclude this section by collecting all the results given in the
previous lines in the proof of Theorem 1.1.

Proof of Theorem 1.1. The statement follows by Lemmas 3.1–3.3 and Theorem 2.10.
�
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4. Case (II): The KGM Equation with External Potential

In this section we consider problem (1.3) in the case (II), that is when the potential
V ∈ C(R3), with V0:= infx∈R3 V (x) > −∞, satisfies (1.4). Under these assump-
tions, by the same arguments used in [5] (see also [39]), we can prove the following
compactness result for the space W.

Lemma 4.1. Assume that V ∈ C(R3), with V0:= infx∈R3 V (x) > −∞, satisfies (1.4).
Then for all p ∈ [2, 6) the embedding W ⊂ Lp(R3) is compact.

Proof. We first consider the case p = 2. Let (uk)k ⊂ W be a bounded sequence
in W. Then there exists a subsequence (ukj

)j and a function u ∈ W such that
uj :=ukj

⇀ u weakly in W as j → ∞. Moreover, there exists a positive constant C
such that

‖uj‖W + ‖u‖W ≤ C for all j ∈ N.

For all fixed R > 0 we have that uj → u in L2(BR(0)) as j → ∞, since W ⊂ H1(R3)
and the embedding H1(R3) ⊂ L2(BR(0)) is compact. Hence, it remains to estimate
the integral ∫

R3\BR(0)

|uj − u|2 dx.

For all fixed M > V0, we set

A1(y):={x ∈ Bh(y) : V (x) ≤ M}, A2(y):={x ∈ Bh(y) : V (x) > M},

where h > 0 is the constant independent of M given by (1.4). We choose a sequence
of points (yi)i ⊂ R

3 such that R
3 = ∪∞

i=1Bh(yi) and each x ∈ R
3 is covered by at

most 23 = 8 of such balls. We have∫
R3\BR(0)

|uj − u|2 dx ≤
∑

|yi|≥R−h

∫
Bh(yi)

|uj − u|2 dx

=
∑

|yi|≥R−h

(∫
A1(yi)

|uj − u|2 dx +
∫

A2(yi)

|uj − u|2 dx

)
.

We separately estimate these two integrals. For the second one we have∫
A2(yi)

|uj − u|2 dx ≤ 1
M − V0

∫
Bh(yi)

(V − V0)|uj − u|2 dx.

To estimate the first one we fix q ∈ (2, 6). By Hölder’s inequality we then get∫
A1(yi)

|uj − u|2 dx ≤ ‖1‖
L

q
q−2 (A1(yi))

‖|uj − u|2‖
L

q
2 (A1(yi))

≤ |A1(yi)|
q−2
q ‖uj − u‖2Lq(Bh(yi))

.

Therefore
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∫
R3\BR(0)

|uj − u|2 dx

≤
∑

|yi|≥R−h

(
1

M−V0

∫
Bh(yi)

(V − V0)|uj − u|2 dx+ |A1(yi)|
q−2
2 ‖uj − u‖2Lq(Bh(yi))

)

≤ 8
M−V0

∫
R3
(V − V0)|uj − u|2 dx+ sup

|yi|≥R−h

|A1(yi))|
q−2
q

∑
|yi|≥R−h

‖uj − u‖2Lq(Bh(yi)).

Since W ⊂ H1(Bh(y)) and the embedding H1(Bh(y)) ⊂ Lq(Bh(y)) is continuous,
for all h > 0 and y ∈ R

3 we can find a constant Ch = Ch(q) > 0 such that

‖u‖Lq(Bh(y)) ≤ Ch‖u‖H1(Bh(y)) for all u ∈ W.

Notice that Ch is independent of y ∈ R
3. Hence, we can estimate∑

|yi|≥R−h

‖uj − u‖2Lq(Bh(yi))
≤ C2

h

∑
|yi|≥R−h

‖uj − u‖2H1(Bh(yi))

≤ 8C2
h‖uj − u‖2H1(R3) ≤ 8C2

h‖uj − u‖2W .

By combining the above inequalities we get∫
R3\BR(0)

|uj − u|2 dx

≤ 8
M−V0

∫
R3

(V − V0)|uj − u|2 dx + 8C2
h sup

|yi|≥R−h

|A1(yi)|
q−p

q ‖uj − u‖2W

≤ 8
M−V0

(‖uj‖W + ‖u‖W )2 + 8C2
h sup

|y|≥R−h

|A1(y)|
q−2

q (‖uj‖W + ‖u‖W )2

≤ 8C2

M−V0
+ 8C2

hC2 sup
|y|≥R−h

|A1(y)|
q−2

q .

Let us fix ε > 0 and choose M so large that

8C2

M − V0
<

ε

3
.

For such a fixed M, by (1.4) there exists RM > 0 such that

8C2
hC2 sup

|y|≥RM−h

|A1(y)| q−2
q <

ε

3
.

Furthermore, since uj → u strongly in L2(BRM
(0)), there exists j0 ∈ N such that∫

BRM
(0)

|uj − u|2 dx <
ε

3
, for all j ≥ j0.

Thus,

lim
j→∞

∫
R3

|uj − u|2 dx = 0,

and so uj → u strongly in L2(R3).
For all p ∈ (2, 6) we take θ ∈ (0, 1) such that

1
p

=
θ

2
+

1 − θ

6
.
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Then, by using Hölder’s inequality we have

‖uj − u‖Lp(R3) ≤ ‖uj − u‖θ
L2(R3)‖uj − u‖1−θ

L6(R3) → 0

as j → ∞, since uj → u in L2(R3) and (uj)j is bounded in W ⊂ L6(R3). �

In order to prove that the functional J satisfies the geometric assumptions (i)
and (ii) of the Theorem 2.10, we introduce a new operator, that is Lα,V : W → W ′,
defined as

Lα,V u = Lαu + V u for u ∈ W.

As done in Definition 2.2, we can naturally associate to Lα,V a bilinear form
Bα,V : W × W → R as

Bα,V (u, v):=Bα(u, v) +
∫
R3

V uv dx for all u, v ∈ W.

Notice that Bα,V is continuous on W × W and by (2.1) for all α ∈ R there exists a
constant γ = γ(s, α, V0) ≥ 0 such that

Bα,V (u, u) + γ‖u‖22 ≥ 1
2
‖u‖2W for all u ∈ W. (4.1)

Since the embedding W ⊂ L2(R3) is continuous, dense, and compact, thanks to
Lemmas 2.3 and 4.1, we can apply the spectral decomposition result given in Propo-
sition A.4. Hence, there exists an increasing sequence (λk)k of eigenvalues of Lα,V

satisfying

−γ < λ1 ≤ λ2 ≤ · · · ≤ λk → ∞ as k → ∞.

Moreover, for all k ∈ N the eigenvalue λk has finite multiplicity and there exists a
sequence of eigenvectors (ek)k ⊂ W corresponding to (λk)k, which is an orthonormal
basis of L2(R3). In particular, as show in Remark A.5, if we define

H1:={0}, P1:=W,

and for all k ≥ 2

Hk:= span{e1, . . . , ek−1} ⊂ W,

Pk:=
{

u ∈ W :
∫
R3

uej = 0for all j = 1, . . . , k − 1
}

,

then W is decomposable as direct sum of these two closed subspace W = Hk ⊕ Pk

for all k ∈ N, with dimHk = k − 1 < ∞.
Let k0 ∈ N be such that

λk0 > ω2. (4.2)

Then, there exists a constant c0 = c0(s, α, ω, V0) > 0 satisfying

Bα,V (u, u) − ω2‖u‖22 ≥ c0‖u‖2W for all u ∈ Pk0 . (4.3)

Indeed, in view of (4.1) and (A.1), for all u ∈ Pk0 we have

Bα,V (u, u) − ω2‖u‖22 = Bα,V (u, u) + γ‖u‖22 − (ω2 + γ)‖u‖22
=

(
1 − ω2 + γ

λk0 + γ

)(Bα,V (u, u) + γ‖u‖22
)
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+
(

ω2 + γ

λk0 + γ

) (Bα,V (u, u) + γ‖u‖22
) − (ω2 + γ)‖u‖22

≥ 1
2

(
1 − ω2 + γ

λk0 + γ

)
‖u‖2W =:c0‖u‖2W .

Lemma 4.2. Under the assumptions of Theorem 1.2 the functional J satisfies (i)
and (ii) of Theorem 2.10 in X = W, with X1 = Hk0 and X2 = Pk0 , where λk0 is
given by (4.2).

Proof. Let us prove (i). By (2.4) and (4.3), for all u ∈ X2 = Pk0 we have

J(u) ≥ 1
2
Bα,V (u, u) − ω2

2
‖u‖22 − 1

p
‖u‖p

p ≥
(

c0
2

− Cp
p

p
‖u‖p−2

W

)
‖u‖2W .

Hence, as in Lemma 3.2, there exist δ, � > 0 such that

inf J(S� ∩ X2) ≥ δ,

where S�:={u ∈ W : ‖u‖W = �}.
Let us prove (ii). By (2.1) there exists a constant K > 0 such that for all finite

dimensional space Y ⊂ W and u ∈ Y we have

J(u) ≤ K‖u‖2W − 1
p
‖u‖p

p → −∞

as ‖u‖W → ∞, since on Y all norms are equivalent. �

Lemma 4.3. Under the assumptions of Theorem 1.2 the functional J satisfies (iii)
of Theorem 2.10.

Proof. Let (un)n ⊂ W be a (PS) sequence. By using Lemma 2.6, the lower bound (4.1),
and that p ∈ (2, 6), for all n ∈ N we have

pJ(un) − J ′(un)[un]

=
(p

2
− 1

)
Bα,V (un, un) − ω2

(p

2
− 1

) ∫
R3

u2
n dx

+ ω
(p

2
− 2

) ∫
R3

ϕun
u2

n dx +
∫
R3

ϕ2
un

u2
n dx

≥ 1
2

(p

2
− 1

)
‖un‖2W − (γ + ω2)

(p

2
− 1

)
‖un‖22 − ω

∫
R3

ϕun
u2

n dx

≥ c1‖un‖2W − c2‖un‖22,
for two constants c1, c2 > 0.

Assume by contradiction that ‖un‖W → ∞ and define wn:= un

‖un‖W
for all n ∈ N.

Since ‖wn‖W = 1 for all n ∈ N, by Lemma 4.1 there exist a subsequence, not
relabeled, and a function w ∈ W such that as n → ∞

wn ⇀ w in W, wn → w in Lp(R3) for all p ∈ [2, 6).

In particular, since

c1 − c2‖wn‖22 ≤ pJ(un)
‖un‖2W

− J ′(un)[un]
‖un‖2W

→ 0 as n → ∞,
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we have

‖w‖22 ≥ c1
c2

> 0.

On the other hand, by Lemma 2.6, for all n ∈ N we have
1
p
‖un‖p

p ≤ 1
2
Bα,V (un, un) − J(un).

Therefore, since (un)n is a (PS) sequence, we deduce

0 <
1
p
‖wn‖p

p ≤ 1
2

Bα,V (un, un)
‖un‖p

W

+
|J(un)|
‖un‖p

W

≤ c3

‖un‖p−2
W

+
c4

‖un‖p
W

→ 0

as n → ∞, with c3, c4 > 0. Hence w = 0, which leads to a contradiction.
Since the sequence (un)n ⊂ W is bounded, there exist a subsequence, not

relabeled, and u ∈ W such that, as n → ∞,

un ⇀ u in W and un → u in Lp(R3) for all p ∈ [2, 6).

By (2.7) also the sequence (ϕun
)n ⊂ D1,2(R3) is bounded, since for all n ∈ N

‖∇ϕun
‖22 ≤ ω

∫
R3

ϕun
u2

n dx ≤ ω‖ϕun
‖6‖un‖212

5
≤ c5‖∇ϕun

‖2‖un‖2W .

We claim that un → u in W as n → ∞. Indeed, by (4.1) for all n ∈ N we have

1
2
‖un − u‖2W ≤ Bα,V (un − u, un − u) + γ‖un − u‖22

= J ′(un)[un − u] − J ′(u)[un − u] + (γ + ω2)‖un − u‖22
− 2ω

∫
R3

(ϕun
un − ϕuu)(un − u) dx

+
∫
R3

(ϕ2
un

un − ϕ2
uu)(un − u) dx

+
∫
R3

(|un|p−2un − |u|p−2u)(un − u) dx.

Since J ′(un) → 0 in W ′, un ⇀ u in W, and un → u in L2(R3) as n → ∞, it follows
that the first three terms converge to 0 as n → ∞. Moreover, as n → ∞∣∣∣∣

∫
R3

(ϕun
un − ϕuu)(un − u) dx

∣∣∣∣
≤

(
‖ϕun

‖6‖un‖ 12
5

+ ‖ϕu‖6‖u‖ 12
5

)
‖un − u‖ 12

5
→ 0,∣∣∣∣

∫
R3

(ϕ2
un

un − ϕ2
uu)(un − u) dx

∣∣∣∣
≤ (‖ϕun

‖26‖un‖3 + ‖ϕu‖26‖u‖3
) ‖un − u‖3 → 0,∣∣∣∣

∫
R3

(|un|p−2un − |u|p−2u)(un − u) dx

∣∣∣∣
≤ (‖un‖p−1

p + ‖un‖p−1
p )‖un − u‖p → 0.

Hence J satisfies (PS). �
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Similarly to what done in Sect. 3, we can now gather all the previous results
to prove Theorem 1.2.

Proof of Theorem 1.2. The statement follows by Lemmas 4.2–4.3 and Theorem 2.10.
�
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Appendix A: Spectral Theory for Mixed Local–Nonlocal
Operators

In this appendix we present a proof of the spectral decomposition result used in
Sect. 4, which is Proposition A.4. This proof of this result is quite standard in the
literature, we refer for example to [31, Theorem 1] and [17, Theorem 9.1]. For the
sake of completeness, we present it here in a more general abstract setting.

Let H be a separable (real) Hilbert space with scalar product ( ·, · )H and
corresponding norm ‖ · ‖H , and let V ⊂ H be a Hilbert subspace with scalar product
( ·, · )V and corresponding norm ‖ · ‖V . Assume that the embedding V ⊂ H is dense,
continuous, and compact. We identify H with its dual H ′, so the embedding V ⊂ H
induces the embedding H ⊂ V ′, defined as

〈h, v〉V ′×V :=(h, v)H for all h ∈ H and v ∈ V.

Notice that the embedding H ⊂ V ′ is dense and continuous by our assumption on
V and H.

Let B : V × V → R be a symmetric bilinear form on V satisfying:
• B is continuous, i.e., there exists a constant K > 0 such that

|B(v, w)| ≤ K‖v‖V ‖w‖V for all v, w ∈ V ;

• there exists γ ≥ 0 and β > 0 such that

B(v, v) + γ‖v‖2H ≥ β‖v‖2V , for all u ∈ V.

Definition A.1. We say that v, w ∈ V are B-orthogonal if B(v, w) = 0.

We associate to the bilinear form B a linear and continuous map, that is L : V →
V ′ given by

〈Lv, w〉V ′×V = B(v, w) for all v, w ∈ V.

Definition A.2. We say that λ ∈ R is an eigenvalue of L in V if there exists a vector
v ∈ V \{0} such that

Lv = λv in V ′,

or equivalently

B(v, w) = λ(v, w)H for all v, w ∈ V.

The vector v ∈ V \{0} is called eigenvector corresponding to the eigenvalue λ.

Definition A.3. Let λ ∈ R be an eigenvalue of L. We say that λ has finite multiplicity
if

{v ∈ V : Lv = λv}
is a finite dimensional linear subspace of V.

Proposition A.4. Under the previous assumptions, there exists an increasing se-
quence (λk)k of eigenvalues of L satisfying

−γ < λ1 ≤ λ2 ≤ · · · ≤ λk → ∞ as k → ∞.
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Moreover, for all k ∈ N the eigenvalue λk has finite multiplicity and there exists a
sequence of eigenvectors (ek)k ⊂ V corresponding to (λk)k satisfying
(a) (ek)k is an orthonormal basis of H;
(b) ek and ej are B-orthogonal for all k, j ∈ N with k �= j.

Finally, if we define P1:=V and

Pk:={v ∈ V : (v, ej)H = 0 for all j = 1, . . . , k − 1} for all k ≥ 2,

then for all k ∈ N we can characterize the eigenvalue λk as

λk:= min
u∈Pk\{0}

B(u, u)
‖u‖2H

, (A.1)

and the eigenvector ek corresponding to the eigenvalue λk realizes the minimum.

Proof. We define the bilinear form Bγ : V × V → R as

Bγ(v, w):=B(v, w) + γ(v, w)H for all v, w ∈ V,

and we consider the associated linear and continuous map Lγ : V → V ′ (notice that
Lγ and L are related by the relation Lγv = Lv + γv for all v ∈ V ). The bilinear
form Bγ is symmetric, continuous, and it satisfies

Bγ(v, v) ≥ β‖v‖2V for all v ∈ V. (A.2)

Therefore, by Lax–Milgram Theorem, the operator Lγ : V → V ′ is invertible and
we can consider its inverse (Lγ)−1 : V ′ → V which is still linear and continuous.

Since Lγ is invertible and the embedding V ⊂ H is dense, we derive that
λ ∈ R is an eigenvalue of L in V with eigenvector v ∈ V \{0} if and only 1

λ+γ

is an eigenvalue of Rγ :=(Lγ)−1 in H with eigenvector v ∈ H\{0}. The operator
Rγ : H → H is linear, continuous, and compact, since the embedding V ⊂ H is
compact. Moreover Rγ is injective and self–adjoint, being Bγ symmetric, and

(Rγh, h)H = Bγ(Rγh, Rγh) ≥ 0 for all h ∈ H.

Therefore, by [17, Theorem 6.9 and Theorem 6.11], there exists a decreasing
sequence (μk)k of eigenvalues of Rγ with μk > 0 and μk → 0 as k → ∞. Moreover,
every μk has finite multiplicity and there exists a orthonormal basis (ek)k of H given
by eigenvectors of Rγ associated to μk. Hence, if we consider

λk:=
1
μk

− γ for all k ∈ N,

we get that (λk)k is an increasing sequence of eigenvalues of L in V, with λk → ∞
as k → ∞ and such that every λk has finite multiplicity. Moreover, for all k ∈ N

the vector ek ∈ V \{0} is an eigenvector for λk and for all k, j ∈ N with k �= j

B(ek, ej) = λk(ek, ej)H = 0,

i.e., ek and ej are B-orthogonal.
Let us prove (A.1). By (A.2) the bilinear form Bγ is a scalar product on V

equivalent to the standard one. Moreover, for all k, j ∈ N with k �= j we have

Bγ(ek, ek) =
1
μk

‖ek‖2H =
1
μk

, Bγ(ek, ej) =
1
μk

(ek, ej)H = 0. (A.3)
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This implies that (
√

μkek)k is an orthonormal basis in V with respect to the scalar
product Bγ . In particular, we obtain

‖v‖2H =
∞∑

k=1

|(v, ek)H |2, Bγ(v, v) =
∞∑

k=1

|Bγ(v,
√

μkek)|2 =
∞∑

k=1

1
μk

|(v, ek)H |2.

Hence, we get (A.1) for all k ∈ N by exploiting the definition of Pk. �

Remark A.5. Let us define

H1:={0}, Hk:=span{e1, . . . , ek−1} ⊂ V for all k ≥ 2.

By (A.3) the closed linear subspaces Hk and Pk are Bγ-orthogonal. In particular, V
is decomposable as direct sum V = Hk ⊕ Pk for all k ∈ N.
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Università degli Studi di Perugia
Via Luigi Vanvitelli 1
06123 Perugia
Italy
e-mail: enzo.vitillaro@unipg.it

Received: July 4, 2023.
Accepted: August 24, 2023.


	Klein–Gordon–Maxwell Equations Driven by Mixed Local–Nonlocal Operators
	Abstract
	1. Introduction and Main Results
	2. Assumptions, Notations, and Preliminary Results
	3. Case (I): The Generalized KGM Equation
	4. Case (II): The KGM Equation with External Potential
	Acknowledgements
	Appendix A: Spectral Theory for Mixed Local–Nonlocal Operators
	References




