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A B S T R A C T

Unshearable and inextensible planar beams, in a static regime of finite displacements, are studied in this paper.
A nonlinear mixed model is derived via a direct approach, in which displacements and reactive internal forces
are taken as unknowns. The elasto-static problem is then addressed, and the role of the boundary conditions is
systematically discussed. The relevant solutions for selected classes of problems are pursued via a perturbation
method. It is shown that each considered class calls for a specific algorithm, accounting for a proper scaling
and expansion of the variables. Finally, the asymptotic solutions are compared with benchmark numerical
computations, grounded on finite-element analyses. The paper is focused on the case of longitudinal force
significantly smaller than the buckling load, leaving the case of large force to future developments, where a
different perturbation scheme is required.
1. Introduction

Slender beams, the only ones for which geometrical nonlinearities
entail a significant effect, have been investigated in the literature for
many decades (Reissner, 1973; Antman, 1973; Holden, 1972; Simo and
Vu-Quoc, 1988). Such class of beams is characterized by an essentially
shear-undeformable behavior (Timoshenko and Goodier, 1951). Real
beams, moreover, are also almost inextensible, since elongations are
much smaller than (nondimensionalized) bending curvatures. There-
fore, it is customary to neglect shear strains and elongations, and to
resort to an internally constrained model (Antman, 1974; Takahashi,
1979; McHugh and Dowell, 2018; Luongo and Zulli, 2013).

In such a perspective, purely flexible beams (i.e., unshearable and
inextensible, also named the Euler elastica), have often been consid-
ered in the literature, both in statics and dynamics, either as single
beams (Mata et al., 2007; Luongo et al., 1986; Rincón-Casado et al.,
2021), or as members of frames (Wood and Zienkiewicz, 1977; Con-
tento and Luongo, 2013). Models have been obtained either via con-
strained variational principles (Di Carlo et al., 1981; Pignataro et al.,
1990), in which the internal constraints are enforced via Lagrangian
multiplier, or direct approaches (Di Egidio et al., 2007), in which the
reactive internal stresses appear in the balance equations, together with
kinematic descriptors. In all the cases, and limiting to consider planar
beams, a different primary kinematic variable can be used (namely,
either the slope 𝜃 of the tangent to the axis line, or the transverse
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displacement 𝑣), the remaining ones (always including the longitudi-
nal displacement 𝑢) being related to the former ones by differential
relationships. Moreover, different forms of the balance equations can
be given, as a consequence of the application of the condensation of
the reactive stresses, which, however, introduce arbitrary integration
constants (Luongo and Zulli, 2013). The use of perturbation methods
in such kinds of differential systems might be not straightforward;
examples of their extensive use, specifically relevant to assemblies of
purely flexible beams, is given in Pignataro et al. (1980) and Rizzi
et al. (1980) where completely hand-worked applications dealing with
simple frames are presented.

In this context, it is worth underlining that, while the unshearability
can always be accepted, inextensibility is subordinated to the external
constraints. If these allow a free shortening of the beam, i.e., if they
allow the reduction of the chord connecting the two end-points with
respect to the original length of the beam (as, e.g., it occurs for a
hinged-supported beam), the inextensible model, although approxi-
mated, does not violate any kinematic prescription. In contrast, if the
constraints prevent the shortening (as, e.g., it happens for a hinged-
hinged beam), the inextensible model is kinematically not compatible,
since in finite kinematics transverse displacements entail elongations.
In such circumstances, the inextensible model must be abandoned, and
elongations accounted for. An exception, however, is expected to occur
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Fig. 1. Beam model: (a) triads ̄,, rotation 𝜃(𝑠) and displacement 𝐮(𝑠); (b) displacement of an infinitesimal beam element.
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when a non-zero shortening is assigned as imposed displacement of the
boundary constraints, respectful of compatibility, and for which it is of
interest to evaluate the associated state of stress.

In the literature, in spite of a considerable attention to internally
constrained beams and to perturbation methods able to deal with
them, it seems that a thorough and systematic analysis of the order
of magnitude of the quantities involved is still missing. Namely, the
following questions would desire to be answered. Are the internal stress
components, dual of the internal constraints, of the same order of
magnitude? Do they depend, and in which manner, on the boundary
conditions? Can the problem, as usual in dealing with a weak nonlinear
system, be brought to a sequence of linear problems, or do some cases
exist in which the generating solution cannot be linearized? How to
rescale data and unknowns so that a perturbation parameter appear
in the equations? Overall: which is the proper asymptotic treatment of
the equations governing the mechanics of inextensible and unshearable
beams?

An attempt to answer the previous questions is made here, so far
confining ourselves to static problems for a single beam. It will be
shown that, depending on the boundary conditions, which make the
beam non-redundant or redundant, in a sense to be specified later, as
well as on the magnitude of the longitudinal loads, specific asymptotic
treatments are required.

In particular, here, the position of the problem is provided, with
the formulation of the relevant equilibrium equations. The description
of the boundary conditions is also given, defining four different cases,
which call for different perturbation approaches. In particular, two of
the four mentioned cases are explicitly addressed here, namely those
for which the longitudinal force can assume small values, i.e., far from
the one which triggers buckling in the beam. However, the case of large
longitudinal force is left for future developments, as it requires different
treatment in a perturbation perspective.

Comparison with numerically exact solutions are also performed, to
validate the asymptotic solutions, and to check their range of validity.

The paper is organized as follows: Section 2 deals with model for-
mulation and strategy of solutions; Section 3 with the asymptotic treat-
ment; Section 4 with numerical analyses; Section 5 with Conclusions.
Finally, an Appendix supplies some details.

2. The beam model

In what follows, we derive the constrained problem for an in-
extensible and unshearable beam. We consider an initially straight
beam, modeled as one-dimensional polar continuum embedded in a
2D space (Luongo and Zulli, 2013). The beam is referred to a material
abscissa 𝑠 ∈ [0, 𝑙] along the axis, running from the left 𝐴 to the right
𝐵 points (Fig. 1-a), with 𝑙 the length of the line. We consider rigid
 |

2 
cross-sections which are normal to the axis, and attach to them an
orthonormal triad of directors, ̄ ∶= (�̄�𝑥, �̄�𝑦, �̄�𝑧), in which �̄�𝑥 is the
angent to the beam axis, �̄�𝑦 is the (in-plane) normal, and �̄�𝑧 is the
inormal, all independent of 𝑠. Therefore, indicating with �̄�(𝑠) the
osition of a generic point 𝑃 of the axis line at abscissa 𝑠, then �̄�′(𝑠) =
̄𝑥, where prime stands for differentiation with respect to 𝑠.

.1. Deriving the constrained field equations

.1.1. Kinematics
When the beam moves to the current configuration (Fig. 1), the

eam axis bends and occupies a smooth curve of ends �̂�, �̂�. Owing to
nshearability, the cross-sections remain normal to the curved axis, so
hat the triad ̄ changes into  =

(

𝐚𝑥(𝑠), 𝐚𝑦(𝑠), 𝐚𝑧 ≡ �̄�𝑧
)

, where 𝐚𝑥 =
os 𝜃(𝑠)�̄�𝑥 + sin 𝜃(𝑠)�̄�𝑦 is the tangent vector to the current axis line, 𝐚𝑦(𝑠)
he normal and 𝐚𝑧 the binormal; finally, 𝜃(𝑠) is the rotation, equal to
he angle between 𝐚𝑥 and �̄�𝑥. The derivative of the rotation is defined
s the bending curvature of the beam, i.e. 𝜅 ∶= 𝜃′(𝑠).

Bending of the beam entails that the position �̄� moves to the new
osition 𝐱 ∶= �̄�(𝑠)+𝐮(𝑠), where 𝐮(𝑠) ∶= 𝑢(𝑠)�̄�𝑥+𝑣(𝑠)�̄�𝑦 is the displacement
f 𝑃 . Owing to inextensibility, the tangent in the current configuration,
′ = 𝜆𝐚𝑥 must have unitary modulus 𝜆 = 1, i.e., �̄�𝑥 + 𝐮′ = 𝐚𝑥 must hold.
hen this vector relationship is projected onto the basis ̄, it follows

hat:
𝑢′ = cos 𝜃(𝑠) − 1,
′ = sin 𝜃(𝑠).

(1)

he scalar relationships (1) are internal constraints; their geometrical
eaning clearly emerges from Fig. 1-b. The relationships in Eq. (1) can

e integrated to express displacements in terms of rotations, namely:

𝑢(𝑠) = 𝑢𝐴 + ∫

𝑠

0
(cos 𝜃(𝑠) − 1)𝑑𝑠,

(𝑠) = 𝑣𝐴 + ∫

𝑠

0
sin 𝜃(𝑠)𝑑𝑠,

(2)

here 𝑢𝐴 ∶= 𝑢(0), 𝑣𝐴 ∶= 𝑣(0) are integration constants representing
isplacements at the left end. When 𝑠 = 𝑙, it also follows:

∫

𝑙

0
(cos 𝜃(𝑠) − 1)𝑑𝑠 = 𝑢𝐵 − 𝑢𝐴,

∫

𝑙

0
sin 𝜃(𝑠)𝑑𝑠 = 𝑣𝐵 − 𝑣𝐴,

(3)

here 𝑢𝐵 ∶= 𝑢(𝑙), 𝑣𝐵 ∶= 𝑣(𝑙) are displacements at the right end.
he conditions (1) express the fact that, because of inextensibility
and unshearability), the differences of the end displacements are not
ndependent of the rotation field. In particular, they state that, when
𝜃 < 𝜋∕2 (i.e., in the field of technical interest), then 𝛥 ∶= 𝑢 − 𝑢 < 0.
| 𝐵 𝐴
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Fig. 2. Element of a planar beam: (a) forces and stresses; (b) scalar components of stresses.
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The quantity 𝛥 is usually referred to as the shortening of the beam.
On the other hand, if 𝑢𝐴, 𝑣𝐴, 𝑢𝐵 , 𝑣𝐵 are freely assigned (respectfully of
𝛥 < 0), then 𝜃(𝑠) cannot be chosen arbitrarily, but it has to satisfy the
two integral constraints (1). For all these reasons, we will call Eqs. (3)
the (internal) compatibility conditions.

.1.2. Equilibrium
The balance equations, expressing the equilibrium of forces and

oments, in vector form are (see Fig. 2-a) (Luongo and Zulli, 2013):

′(𝑠) + 𝐩(𝑠) = 𝟎,
′(𝑠) + 𝐚𝑥(𝑠) × 𝐭(𝑠) = 𝐜(𝑠),

(4)

here 𝐭(𝑠) is the stress-force and 𝐦(𝑠) the stress-couple at the material
bscissa 𝑠; 𝐩 ∶= 𝑝𝑥(𝑠)�̄�𝑥 + 𝑝𝑦(𝑠)�̄�𝑦, 𝐜 = 𝑐 (𝑠) �̄�𝑧 are the linear density

of the external body forces and couples, respectively. For the sake of
simplicity, 𝐜(𝑠) = 𝟎 will be taken ahead. The following representation
(in ̄) is introduced: 𝐦(𝑠) ∶= 𝑀(𝑠)�̄�𝑧, 𝐭(𝑠) ∶= 𝑅(𝑠)�̄�𝑥 + 𝑆(𝑠)�̄�𝑦, in which
𝑀(𝑠) is the bending moment, 𝑅(𝑠) the longitudinal component and 𝑆(𝑠)
the transverse component of the force-stress (see Fig. 2-b). Note that
these latter are different from the more usual normal and shear forces,
which are instead defined in . By projecting the balance Eqs. (4) onto
the basis ̄, we obtain:

𝑅′ + 𝑝𝑥 = 0,

𝑆′ + 𝑝𝑦 = 0,

𝑀 ′ + 𝑆 cos 𝜃 − 𝑅 sin 𝜃 = 0.

(5)

After integrating the two equations ((5)-a,b), we get:

𝑅(𝑠) = 𝑅𝐵 + ∫

𝑙

𝑠
𝑝𝑥(𝑠)𝑑𝑠,

𝑆(𝑠) = 𝑆𝐵 + ∫

𝑙

𝑠
𝑝𝑦(𝑠)𝑑𝑠,

(6)

where 𝑅𝐵 ∶= 𝑅(𝑙), 𝑆𝐵 ∶= 𝑆(𝑙); consequently, the moment equation
((5)-c) reads:

𝑀 ′(𝑠) +
(

𝑆𝐵 + ∫

𝑙

𝑠
𝑝𝑦(𝑠)𝑑𝑠

)

cos 𝜃(𝑠) −
(

𝑅𝐵 + ∫

𝑙

𝑠
𝑝𝑥(𝑠)𝑑𝑠

)

sin 𝜃(𝑠) = 0. (7)

This is a differential equation for the unknown bending moment 𝑀(𝑠);
however, it involves two additional quantities, i.e., 𝑅𝐵 , 𝑆𝐵 , which
are generally unknown (and, therefore, referred to as redundant un-
knowns).
 k
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2.1.3. The constrained elastic problem
By assuming the linear elastic law 𝑀 = 𝐸𝐽𝜅(𝑠), in which 𝐸𝐽 is the

bending stiffness, the elasto-static problem is therefore governed by the
following integro-differential problem:

𝐸𝐽𝜃′′ +
(

𝑆𝐵 + ∫

𝑙

𝑠
𝑝𝑦𝑑𝑠

)

cos 𝜃 −
(

𝑅𝐵 + ∫

𝑙

𝑠
𝑝𝑥𝑑𝑠

)

sin 𝜃 = 0,

∫

𝑙

0
(cos 𝜃 − 1)𝑑𝑠 = 𝑢𝐵 − 𝑢𝐴,

∫

𝑙

0
sin 𝜃𝑑𝑠 = 𝑣𝐵 − 𝑣𝐴,

(8)

ith relevant boundary conditions, to be discussed soon. Here, Eq. ((8)-
) is the equilibrium equation descending from Eq. (7) and the def-
nition of the bending curvature, and Eqs. ((8)-b,c) are compatibility
onditions.

From a mechanical point of view, the relationships in Eqs. (8)
isplay the mixed (displacements and forces) nature of the approach;
rom a mathematical point of view, they constitute a mixed differential–
lgebraic problem in the unknown field 𝜃(𝑠) and constants. Once the
roblem is solved, then: (a) the bending moment follows from 𝑀(𝑠) =
𝐽𝜃′(𝑠); (b) the reactive stresses 𝑅(𝑠), 𝑆(𝑠) from the equilibrium equa-

ions (6); (c) the displacements 𝑢(𝑠), 𝑣(𝑠) from the kinematic compati-
ility (2).

.2. A discussion on the boundary conditions

If the beam is isolated, i.e., it does not interact with adjacent
eams, boundary conditions at the ends 𝐴 and 𝐵 alternatively prescribe
ither displacements and rotations 𝑢𝐻 , 𝑣𝐻 , 𝜃𝐻 or force- and couple-
tresses 𝑅𝐻 , 𝑆𝐻 ,𝑀𝐻 , with 𝐻 = 𝐴,𝐵. The six boundary conditions
nd the two integral equations ((8)-b,c) balance the six constants
𝐴, 𝑣𝐴, 𝑢𝐵 , 𝑣𝐵 , 𝑅𝐵 , 𝑆𝐵 and the two constants arising from integration
f the differential equation ((8)-a). To discuss the different classes
f existing problems, we observe that, due to the mixed nature of
ormulation: (a) the conditions prescribing rotations 𝜃𝐻 or bending
oments 𝑀𝐻 at the ends do not entail any differences in the procedure,

ince 𝑀𝐻 is active, and equilibrium is expressed in terms of rotations,
ccording to the spirit of the displacement method; (b) in contrast,
onditions on translations 𝑢𝐻 , 𝑣𝐻 , or, alternatively, on 𝑅𝐻 , 𝑆𝐻 , do
ffect the procedure, since 𝑅𝐻 , 𝑆𝐻 are reactive stresses, which are
alanced by compatibility conditions, according to the spirit of the
orce method. To exclude kinematically undetermined cases, we assume
hat, e.g., 𝑢𝐴, 𝑣𝐴 are always prescribed; then, according to conditions on
he translation of 𝐵, the local stresses 𝑅𝐵 , 𝑆𝐵 , can be, either: (i) both

nown, (ii) one known and the other unknown, or (iii) both unknown.
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Fig. 3. Representative systems: (a) non-redundant; (b) S-redundant; (c) R-redundant, (d) RS-redundant.
We call the unknown 𝑅𝐵 , 𝑆𝐵 the redundant stresses (which should not be
confused with the hyperstatic unknowns of the equilibrium equations
in terms of stresses — for instance, a beam hinged at 𝐴 and simply
supported at 𝐵, which is isostatic, possesses a redundant stress 𝑆𝐵 in
the mixed formulation).

By summarizing, we distinguish four classes of problems, according
to the nature of 𝑅𝐵 , 𝑆𝐵 : (1) non-redundant, (2) S-redundant, (3) R-
redundant, (4) RS-redundant. Systems representative of these classes
are, e.g. (see Fig. 3): (1) the clamped-free beam (Fig. 3-a), in which
no unknown stresses appear, since 𝑅𝐵 , 𝑆𝐵 are both prescribed (as
�̆�𝐵 , �̆�𝐵 , where the symbol ̆ indicates the prescribed value); (2) the
clamped-sliding beam (Fig. 3-b), in which only 𝑆𝐵 is unknown; (3)
the clamped-horizontally supported beam (Fig. 3-c), in which only 𝑅𝐵
is unknown; (3) the clamped-clamped beam (Fig. 3-d), in which both
𝑅𝐵 , 𝑆𝐵 are unknown. In cases (1), (2) the shortening 𝛥 ∶= 𝑢𝐵−𝑢𝐴 is free;
in cases (3), (4) it is prescribed. The relevant boundary conditions, and
the solution strategy for the four representative problems are discussed
in what follows:

• Non-redundant clamped-free beam:

𝑢𝐴 = �̆�𝐴, 𝑣𝐴 = �̆�𝐴, 𝜃𝐴 = �̆�𝐴,

𝑅𝐵 = �̆�𝐵 , 𝑆𝐵 = �̆�𝐵 , 𝐸𝐽𝜃′𝐵 = �̆�𝐵 ,
(9)

where use has been made of the constitutive law. Since the param-
eters 𝑅𝐵 , 𝑆𝐵 are known, as directly determined by the boundary
conditions, the field equation ((8)-a) can be integrated (with the
prescribed values at the boundaries of 𝜃𝐴, 𝜃′𝐵), to supply 𝜃(𝑠). Con-
sequently, the conditions ((8)-b,c) furnish the free displacements
𝑢𝐵 , 𝑣𝐵 , once the known values of 𝑢𝐴, 𝑣𝐴 have been accounted
for. Overall, the problem (8) degenerates into a sequence of
independent steps, as it also happens in the linear field.

• S-redundant, clamped-sliding beam:

𝑢𝐴 = �̆�𝐴, 𝑣𝐴 = �̆�𝐴, 𝜃𝐴 = �̆�𝐴,

𝑅𝐵 = �̆�𝐵 , 𝑣𝐵 = �̆�𝐵 , 𝜃𝐵 = �̆�𝐵 .
(10)

Now, 𝑅𝐵 is known, while 𝑆𝐵 is a redundant stress. The field
equation ((8)-a) and the boundary conditions on 𝜃𝐴, 𝜃𝐵 furnish
∞1 solutions, denoted as 𝜃(𝑠;𝑆𝐵). Then, substitution into the
compatibility conditions ((8)-c), leads to a nonlinear compatibility
equation for the redundant unknown. Once this has been solved,
Eq. ((8)-b) furnishes 𝑢𝐵 .

• R-redundant, clamped-horizontally supported beam:

𝑢𝐴 = �̆�𝐴, 𝑣𝐴 = �̆�𝐴, 𝜃𝐴 = �̆�𝐴,

𝑆𝐵 = �̆�𝐵 , 𝑢𝐵 = �̆�𝐵 , 𝜃𝐵 = �̆�𝐵 .
(11)

In this case, 𝑆𝐵 is known, while 𝑅𝐵 is redundant. The field
1
equation ((8)-a) and the boundary conditions on 𝜃𝐴, 𝜃𝐵 furnish ∞

4 
solutions, of type 𝜃(𝑠;𝑅𝐵). Then, substitution into the compatibil-
ity conditions ((8)-b), leads to a nonlinear compatibility equation
for 𝑅𝐵 . Successively, Eq. ((8)-c) furnishes 𝑣𝐵 .

• RS-redundant, clamped-clamped beam

𝑢𝐻 = �̆�𝐻 , 𝑣𝐻 = �̆�𝐻 , 𝜃𝐻 = �̆�𝐻 , 𝐻 = 𝐴,𝐵. (12)

Since 𝑅𝐵 , 𝑆𝐵 are both redundant, ∞2 solutions 𝜃(𝑠;𝑅𝐵 , 𝑆𝐵) are
found from the balance equation. The two compatibility condi-
tions ((8)-b,c), supply the coupled nonlinear compatibility equations
for the two redundant unknowns.

3. Asymptotic analysis

We now address the nonlinear elasto-static problem (8) for a single
beam. Since the field equation is nonlinear, and cannot be solved in
closed-form, we apply a perturbation method.

It is worth noticing that, for the first two types of boundary prob-
lems represented in Fig. 3-a,b, namely the non-redundant and the
𝑆-redundant cases, respectively, the longitudinal force 𝑅𝐵 is prescribed
and therefore it can assume either small values, i.e. much smaller than
the first buckling load, or large values, i.e. comparable or larger than
the first buckling load. However, in the boundary problems represented
in Fig. 3-c,d, namely the 𝑅-redundant and the 𝑅𝑆-redundant cases,
respectively, the imposition of a non-negligible shortening induces
large values for 𝑅𝐵 . The latter aspect is related to the inextensional
feature of the beam model, where an imposed shortening is necessarily
accompanied by transverse force or imposed displacement, and induces
large longitudinal reaction.

Here, we focus on the perturbation solution of the first two types of
boundary problems, namely the non-redundant and the 𝑆-redundant
cases represented in Fig. 3-a,b, respectively, when 𝑅𝐵 is significantly
smaller that the buckling load. However, the proper asymptotic treat-
ment of the remaining cases, namely the 𝑅-redundant and the 𝑅𝑆-
redundant cases, represented in Fig. 3-c,d, respectively, will be object of
future developments. Indeed, these latter boundary conditions require a
scaling for 𝑅 different from the one adopted in what follows, i.e., 𝑅𝐵 =
𝑂(1), to address the shortening problem properly. Coherently, the study
of the first two cases (Fig. 3-a,b) when 𝑅𝐵 = 𝑂(1), is also postponed to
future developments.

3.1. The non-redundant case

We study a clamped-free beam, for which the boundary condi-
tions (9) hold. The Fundamental Problem (8), consequently becomes:
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𝐸𝐽𝜃′′ +
(

�̆�𝐵 + ∫

𝑙

𝑠
𝑝𝑦𝑑𝑠

)

cos 𝜃 −
(

�̆�𝐵 + ∫

𝑙

𝑠
𝑝𝑥𝑑𝑠

)

sin 𝜃 = 0,

𝐴 = �̆�𝐴, 𝜃′𝐵 = �̆�𝐵∕𝐸𝐽,

𝐵 = �̆�𝐴 + ∫

𝑙

0
(cos 𝜃 − 1)𝑑𝑠, 𝑣𝐵 = �̆�𝐴 + ∫

𝑙

0
sin 𝜃𝑑𝑠.

(13)

irst, we transform nonlinearities in polynomial form, by Taylor-
xpanding the harmonic functions for small rotations 𝜃, i.e.:

os 𝜃 = 1 − 1
2
𝜃2 +⋯

sin 𝜃 = 𝜃 − 1
6
𝜃3 +⋯

(14)

Then, we have to properly rescale the known terms, in order a pertur-
bation parameter 0 < 𝜖 ≪ 1 appears; moreover, we rescale and expand
he unknowns in series of 𝜖. Thus, by assuming that the known-terms

are small quantities, we put:

𝑝𝑥 = 𝜖𝑝⋆𝑥 , 𝑝𝑦 = 𝜖𝑝⋆𝑦 , �̆�𝐴 = 𝜖�̆�⋆𝐴 , �̆�𝐵 = 𝜖�̆�⋆
𝐵 ,

�̆�𝐴 = 𝜖�̆�⋆𝐴, �̆�𝐴 = 𝜖�̆�⋆𝐴, �̆�𝐵 = 𝜖�̆�⋆
𝐵 , �̆�𝐵 = 𝜖�̆�⋆

𝐵 .
(15)

Then, we both order and expand the unknowns as (star omitted on all
variables):

𝜃(𝑠) = 𝜖𝜃1(𝑠) + 𝜖2𝜃2(𝑠) + 𝜖3𝜃3(𝑠) +⋯

𝑢𝐵 = 𝜖𝑢𝐵1 + 𝜖2𝑢𝐵2 + 𝜖3𝑢𝐵3 +⋯

𝑣𝐵 = 𝜖𝑣𝐵1 + 𝜖2𝑣𝐵2 + 𝜖3𝑣𝐵3 +⋯

(16)

Finally, substituting Eqs. (14)–(16) in Eqs. (13), and separately equat-
ing to zero the coefficients with the same power of 𝜖, we obtain the
perturbation equations:

Order 𝜖1:

𝐸𝐽𝜃′′1 = −�̆�𝐵 − ∫

𝑙

𝑠
𝑝𝑦𝑑𝑠,

𝜃𝐴1 = �̆�𝐴, 𝜃′𝐵1 = �̆�𝐵∕𝐸𝐽,

𝑢𝐵1 = �̆�𝐴, 𝑣𝐵1 = �̆�𝐴 + ∫

𝑙

0
𝜃1𝑑𝑠.

(17)

Order 𝜖2:

𝐸𝐽𝜃′′2 =
⎛

⎜

⎜

⎝

�̆�𝐵 +

𝑙

∫
𝑠

𝑝𝑥𝑑𝑠
⎞

⎟

⎟

⎠

𝜃1,

𝜃𝐴2 = 0, 𝜃′𝐵2 = 0,

𝑢𝐵2 = −1
2

𝑙

∫
0

𝜃21𝑑𝑠, 𝑣𝐵2 =

𝑙

∫
0

𝜃2𝑑𝑠.

(18)

Order 𝜖3:

𝐸𝐽𝜃′′3 = 1
2

(

�̆�𝐵 + ∫

𝑙

𝑠
𝑝𝑦𝑑𝑠

)

𝜃21 +
(

�̆�𝐵 + ∫

𝑙

𝑠
𝑝𝑥𝑑𝑠

)

𝜃2,

𝐴3 = 0, 𝜃′𝐵3 = 0,

𝐵3 = −∫

𝑙

0
𝜃1𝜃2𝑑𝑠, 𝑣𝐵3 = ∫

𝑙

0

(

𝜃3 −
1
6
𝜃31
)

𝑑𝑠.

(19)

ll the perturbation equations call for chain-solving the same linear
ifferential equation:

𝐸𝐽 𝑑2

𝑑𝑠2

]

𝜃𝑘 = 𝑞𝑘(𝑠), 𝑘 = 1, 2,… (20)

here the differential operator has been formally expressed in the
quare brackets, and 𝑞𝑘(𝑠) are know terms. By using the boundary
onditions, a unique 𝜃𝑘(𝑠) is evaluated; then, from the compatibility
onditions, 𝑢𝐵𝑘, 𝑣𝐵𝑘 are computed in turn. Thus, all the coefficients of
he series (16) are determined.

The perturbation equations possess the following mechanical mean-
ng. Order-𝜖1 equations are the equilibrium and compatibility equations
f the linear beam, for which equilibrium is enforced in the straight
5 
ndeformed configuration. Accordingly, while �̆�𝐵 enters in the moment
quation, �̆�𝐵 does not contribute to it. Moreover, linear kinematics
tates that, as a consequence on inextensibility, the longitudinal dis-
lacements at the ends are equal at this order, i.e., 𝑢𝐵 − 𝑢𝐴 = 0.
igher-order equations are still the equations for the linear beam,
ut carrying ‘fictitious loads’ and ‘fictitious distortions’ generated by
onlinearities. Thus, the order-𝜖2 equilibrium equation accounts for
ending moments caused by the known longitudinal forces, �̆�𝐵 , 𝑝𝑥,
cting on the deformed configuration, evaluated at the previous order.
imilarly, the order-𝜖3 equation considers: (a) the same forces acting on
n updated configuration and, (b) the transverse forces �̆�𝐵 , 𝑝𝑦, again,
hose arm, however, is modified to account for deformation. On the
ther hand, higher-order compatibility equations state that the free end
undergoes a longitudinal displacement, such that 𝛥 ∶= 𝑢𝐵 − 𝑢𝐴 < 0.
It should be noticed that, in an inextensible beam, the shortening

s a second-order effect. Therefore, while 𝑢𝐴, 𝑢𝐵 are individually first-
order quantities, their difference 𝑢𝐵−𝑢𝐴 is a second-order quantity. Said
in other words, 𝑢𝐴, 𝑢𝐵 are not only small, but nearly-identical.

3.2. The S -redundant case

We investigate the effects of the redundant constraints, when the
shortening is free. Considering a beam clamped at 𝐴 and constrained
by a slider at 𝐵, for which the boundary conditions (10) hold (Fig. 3-b).
For this case, we still assume here that the longitudinal force 𝑅𝐵 = �̆�𝐵
is small, of the same order of the integral of the transverse forces.

The Fundamental Problem (8) becomes:

𝐸𝐽𝜃′′ +
(

𝑆𝐵 + ∫

𝑙

𝑠
𝑝𝑦𝑑𝑠

)

cos 𝜃 −
(

�̆�𝐵 + ∫

𝑙

𝑠
𝑝𝑥𝑑𝑠

)

sin 𝜃 = 0,

𝜃𝐴 = �̆�𝐴, 𝜃𝐵 = �̆�𝐵 ,

∫

𝑙

0
(cos 𝜃(𝑠) − 1) 𝑑𝑠 = 𝑢𝐵 − �̆�𝐴, ∫

𝑙

0
sin 𝜃(𝑠)𝑑𝑠 = �̆�𝐵 − �̆�𝐴.

(21)

s before, we assume that all known-terms are of order 𝜖, according to:

𝑥 = 𝜖𝑝⋆𝑥 , 𝑝𝑦 = 𝜖𝑝⋆𝑦 , �̆�𝐴 = 𝜖�̆�⋆𝐴 , �̆�𝐵 = 𝜖�̆�⋆𝐵 ,

̆𝐴 = 𝜖�̆�⋆𝐴, �̆�𝐴 = 𝜖�̆�⋆𝐴, �̆�𝐵 = 𝜖�̆�⋆
𝐵 , �̆�𝐵 = 𝜖�̆�⋆𝐵 .

(22)

oreover, we order and expand the unknowns as (star omitted on all
ariables):

(𝑠) = 𝜖𝜃1(𝑠) + 𝜖2𝜃2(𝑠) + 𝜖3𝜃3(𝑠) +⋯

𝐵 = 𝜖𝑢𝐵1 + 𝜖2𝑢𝐵2 + 𝜖3𝑢𝐵3 +⋯

𝐵 = 𝜖𝑆𝐵1 + 𝜖2𝑆𝐵2 + 𝜖3𝑆𝐵3 +⋯

(23)

rom which the following perturbation equations are obtained:
Order 𝜖1:

𝐽𝜃′′1 + 𝑆𝐵1 = −∫

𝑙

𝑠
𝑝𝑦𝑑𝑠,

𝐴1 = �̆�𝐴, 𝜃𝐵1 = �̆�𝐵 ,

𝐵1 = �̆�𝐴, ∫

𝑙

0
𝜃1𝑑𝑠 = �̆�𝐵 − �̆�𝐴.

(24)

Order 𝜖2:

𝐽𝜃′′2 + 𝑆𝐵2 =
(

�̆�𝐵 + ∫

𝑙

𝑠
𝑝𝑥𝑑𝑠

)

𝜃1,

𝐴2 = 0, 𝜃𝐵2 = 0,

𝐵2 = −1
2 ∫

𝑙

0
𝜃21𝑑𝑠, ∫

𝑙

0
𝜃2𝑑𝑠 = 0.

(25)

Order 𝜖3:

𝐽𝜃′′3 + 𝑆𝐵3 =
1
2

(

𝑆𝐵1 + ∫

𝑙

𝑠
𝑝𝑦𝑑𝑠

)

𝜃21 +
(

�̆�𝐵 + ∫

𝑙

𝑠
𝑝𝑥𝑑𝑠

)

𝜃2,

𝜃𝐴3 = 0, 𝜃𝐵3 = 0,

𝑢𝐵3 = −
𝑙
𝜃1𝜃2𝑑𝑠,

𝑙
𝜃3𝑑𝑠 =

𝑙1 𝜃3𝑑𝑠.

(26)
∫0 ∫0 ∫0 6 1
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Fig. 4. Static response of the non-redundant beam at increasing �̆�𝐵 ∈ (0, 0.5)𝑃𝐶𝑅 and fixed values of �̆�𝐵 = 5, 10, 15 N: (a) 𝑢𝐵∕𝑙 ‰ vs. �̆�𝐵∕𝑃𝐶𝑅, (b) 𝑣𝐵∕𝑙 ‰ vs. �̆�𝐵∕𝑃𝐶𝑅; at
increasing 𝑆𝐵 ∈ (0, 0.4)𝑃𝐶𝑅 and fixed values of �̆�𝐵 = (−0.2, 0, 0.2)𝑃𝐶𝑅: (c) 𝑢𝐵∕𝑙 vs. 𝑆𝐵∕𝑃𝐶𝑅, (d) 𝑣𝐵∕𝑙 vs. 𝑆𝐵∕𝑃𝐶𝑅. The solid lines denote the perturbation solution, while the dashed
lines represent the numerical one. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
All the perturbation equations call for chain-solving linear differential–
algebraic systems in the unknowns 𝜃𝑘(𝑠), 𝑆𝐵𝑘. They are constituted by the
balance equation and the transverse compatibility condition, having the
following common form:
[

𝐸𝐽 𝑑2

𝑑𝑠2
1

∫ 𝑙
0(⋅) 𝑑𝑠 0

]

(

𝜃𝑘(𝑠)
𝑆𝐵𝑘

)

=
(

𝑞1𝑘(𝑠)
𝑞2𝑘(𝑠)

)

, 𝑘 = 1, 2, 3,… (27)

where the linear operator has been formally represented in the square
brackets, and where 𝑞1𝑘(𝑠), 𝑞2𝑘(𝑠) are known terms. Eqs. (27) are com-
bined with boundary conditions on 𝜃𝑘(𝑠), which allow the evaluation
of the integration constants. Once 𝜃𝑘(𝑠), 𝑆𝐵𝑘 are computed, the longi-
tudinal compatibility condition furnishes 𝑢𝐵𝑘. As a solution strategy,
(a) the field equation ((27)-a) (with the boundary conditions) is solved
for 𝜃𝑘(𝑠) as a function of 𝑆𝐵𝑘; (b) this latter is evaluated by the integral
equation ((27)-b); (c) finally, 𝑆𝐵𝑘 is substituted back in 𝜃𝑘(𝑠). Appendix
furnishes some details on the computational aspects.

It is useful to remark that the shortening 𝛥 = 𝑢𝐵 − �̆�𝐴 is a second-
order quantity and it depends on �̆�𝐵 only at the third-order, through
the product 𝜃1𝜃2 (weak effect). In contrast, first-order transverse dis-
placements and rotations prescribed at the ends, trigger a shortening
of second order, via 𝜃21 (strong effect). Note that the shortening can be
found to depend on the longitudinal force at second-order, when �̆�𝐵
becomes large (left for future developments).

4. Numerical results

Numerical simulations are carried out here to evaluate the response
of the inextensible beam by considering the different types of boundary
conditions discussed above. The values adopted for the mechanical
parameters are: 𝑙 = 3 m, 𝐸 = 3 GPa, 𝐽 = 1.71 ⋅ 10−6 mm4.
6 
The behavior of the beam is studied in the pre-critical condition to
analyze the nonlinear equilibrium paths when 𝑅𝐵 is much lower than
the values corresponding to the onset of buckling, i.e., the critical load
indicated as 𝑃𝐶𝑅. The asymptotic solution is systematically compared
to that obtained via a numerical procedure. The latter is derived by
the direct integration of the ensuing nonlinear ordinary differential
equations descending from an index-reduction procedure performed
on the original differential–algebraic equations, through the built-in
function of Wolfram Mathematica (Wolfram Research Inc, 2021).

4.1. Non-redundant case

The beam with the boundary conditions of Fig. 3-a, namely the non-
redundant case, is first analyzed. The considered longitudinal load at
the free end �̆�𝐵 is varied up to 0.5𝑃𝐶𝑅 that is a relatively large value,
but it is considered to explore the validity range of the perturbation
approach. The results are illustrated in Fig. 4; there (and in what
follows), positive values �̆�𝐵 are associated to a compressive load and 𝑢𝐵
is taken positive if directed opposite to the �̄�𝑥, as indicated in Fig. 1-a. In
particular, the longitudinal load is varied in the range �̆�𝐵 ∈ (0, 0.5)𝑃𝐶𝑅
at selected values of the transverse force applied at the free end, namely
�̆�𝐵 = 5, 10, 15 N and the solution is illustrated in terms of: 𝑢𝐵∕𝑙 ‰
vs. �̆�𝐵∕𝑃𝐶𝑅 in Fig. 4-a; 𝑣𝐵∕𝑙 ‰ vs. �̆�𝐵∕𝑃𝐶𝑅 in Fig. 4-b.

For the same problem, it is also considered the case where the
transverse load is varied in the range 𝑆𝐵 ∈ (0, 0.4)𝑃𝐶𝑅, and the solution
is illustrated in terms of: 𝑢𝐵∕𝑙 vs. 𝑆𝐵∕𝑃𝐶𝑅 in Fig. 4-c; 𝑣𝐵∕𝑙 vs. 𝑆𝐵∕𝑃𝐶𝑅
in Fig. 4-d. The perturbation solution is represented by the solid blue-
scaled lines, while the numerically one is denoted by the dashed lines.
It can be noted that the beam behavior is remarkably nonlinear even
when the longitudinal load is small. However, the proposed asymptotic

solution is in a general good agreement with the numerical one up to
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Fig. 5. Static response of the 𝑆-redundant beam at increasing 𝑅𝐵 ∈ (0, 0.5)𝑃𝐶𝑅 and fixed values of �̆�𝐵 = (1∕30, 1∕50, 1∕15)𝑙: (a) 𝑢𝐵∕𝑙 ‰ vs. 𝑅𝐵∕𝑃𝐶𝑅, (b) 𝑅𝐵∕𝑃𝐶𝑅 vs. 𝑆𝐵∕𝑃𝐶𝑅 (the
gray lines denote the corresponding linear solution); at increasing 𝑣𝐵 ∈ (0, 0.5)𝑙 and fixed values of �̆�𝐵 = (0, 0.1, 0.2)𝑃𝐶𝑅: (c) 𝑢𝐵∕𝑙 ‰ vs. 𝑆𝐵∕𝑃𝐶𝑅, (d) 𝑣𝐵∕𝑙 vs. 𝑆𝐵∕𝑃𝐶𝑅. The solid
lines denote the perturbation solution, while the dashed lines represent the numerical one. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
5
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P
p
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relatively large values of 𝑅𝐵 (remember that the perturbation scheme
assumes �̆�𝐵 small). In other words, a better agreement especially in
terms of 𝑢𝐵 for larger values of �̆�𝐵 would require a different pertur-
bation scheme, i.e., with �̆�𝐵 = 𝑂(1) which, by the way, could involve
the occurrence of the buckling phenomenon and induce the singularity
of the linear operator. This goes beyond the scope of the present work
and is left for future developments.

4.2. 𝑆-redundant case

Here, the beam is restrained as displayed in Fig. 3-b, namely we
are considering the 𝑆-redundant case. To emphasize the nonlinear
behavior and explore the perturbation solution validity, the range of
𝑅𝐵 is increased up to 0.8𝑃𝐶𝑅. The results are illustrated in Fig. 5 with

logic analogous to that adopted before. In particular, the longitudinal
oad is varied in the range �̆�𝐵 ∈ (0, 0.8)𝑃𝐶𝑅 at selected values of the
ransverse displacement prescribed at the free end, namely 𝑣𝐵 = �̆�𝐵,𝑘
ith �̆�𝐵 = (1∕30, 1∕50, 1∕15)𝑙 m and the solution is illustrated in terms
f: 𝑢𝐵∕𝑙 ‰ vs. �̆�𝐵∕𝑃𝐶𝑅 in Fig. 5-a; �̆�𝐵∕𝑃𝐶𝑅 vs. 𝑆𝐵∕𝑃𝐶𝑅 in Fig. 5-b. It
s also considered the case where the transverse displacement is varied
n the range 𝑣𝐵 ∈ (0, 0.5)𝑙 by taking �̆�𝐵 = (0, 0.1, 0.2)𝑃𝐶𝑅 and here the
olution is illustrated in terms of: 𝑢𝐵∕𝑙 ‰ vs. 𝑆𝐵∕𝑃𝐶𝑅 in Fig. 5-c; 𝑣𝐵∕𝑙
s. 𝑆𝐵∕𝑃𝐶𝑅 in Fig. 5-d. The same color legend of the previous case is
dopted, while the gray lines indicate the solution corresponding to the
inear problem. In this case, the agreement between the perturbation
nd the numerical solutions is very good also for larger values of �̆�𝐵 .
he great difference of the solution as compared to the gray lines
ndicates that the analyzed behavior is significantly nonlinear.

7 
. Conclusions

The nonlinear elastic problem for inextensible and unshearable
lanar beams has been discussed. A mixed displacement–force formu-
ation, well-known in literature, has been revisited. Here, however, a
ystematic discussion has been carried out on the role played by the
oundary conditions on the solution. Moreover, the order of magni-
ude of all the involved quantities has been thoroughly investigated.
erturbations methods have been implemented for different classes of
roblems, and results compared with exact numerical computations.
he following conclusions are drawn.

1. Depending on the boundary conditions, a single beam can ex-
hibit 0, 1 or 2 redundant stresses 𝑅𝐵 , 𝑆𝐵 , consisting of reac-
tive internal forces at end 𝐵, dual of the internal constraints.
Four classes of problems have been determined: non-redundant,
S-redundant, R-redundant, RS-redundant. In the former two
classes, the shortening (i.e. the reduction of the chord of the
beam) is free, while 𝑅𝐵 is assigned; the opposite occurs in the
latter two classes.

2. In the discussed perturbation schemes, all known and unknown
terms are taken small of the same order. The chain of the pertur-
bation equations is linear in the rotation field. The shortening,
however, is found to be as a second-order variable, difference of
two nearly-identical longitudinal displacements.

3. When a S-redundant system is dealt with, the chain of the
perturbation equations is linear in the rotation field and the
transverse force 𝑆𝐵 . The shortening is found to depend on the

longitudinal force only at third-order.
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Fig. 6. Shape-functions from Eq. (29).

4. Numerical results have shown a good accordance with the per-
turbation solutions, in all the analyzed cases. However, for mod-
erately large 𝑢𝐵 values, it is shown that some quantitative differ-
ences between the two solutions arise, as 𝑅𝐵 rapidly increases
and cannot be considered as a small quantity. In this case, a
proper perturbation scheme with 𝑅𝐵 = 𝑂(1) should be adopted,
leading to a better match for the two solutions, but this is object
of future developments.
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ppendix. Solution to Eqs. (24)–(26)

The perturbation Eqs. (24)–(26) are solved. To limit algebra, the
impler case 𝑝𝑥 = 𝑝𝑦 = 0 is considered. Eqs. (24) admit a (unique)
olution of the type:

𝜃1 = �̆�𝐴𝜒𝑎(𝑠) + �̆�𝐵𝜒𝑏(𝑠) +
(

�̆�𝐵 − �̆�𝐴
)

𝜒𝑣(𝑠),

𝐵1 = �̆�𝐴𝑘𝑎 + �̆�𝐵𝑘𝑏 +
(

�̆�𝐵 − �̆�𝐴
)

𝑘𝑣,

𝑢𝐵1 = �̆�𝐴,

(28)

here:

𝑎(𝜉) ∶= 1 − 4𝜉 + 3𝜉2, 𝜒𝑏(𝜉) ∶= 3𝜉2 − 2𝜉, 𝜒𝑣(𝜉) ∶=
6
𝑙
(

𝜉 − 𝜉2
)

,

𝑘𝑎 ∶= −6𝐸𝐽
𝑙2

, 𝑘𝑏 ∶= −6𝐸𝐽
𝑙2

, 𝑘𝑣 ∶= 12𝐸𝐽
𝑙3

, 𝜉 ∶= 𝑠
𝑙
,

(29)

are the well-known (exact) shape-functions (or Green functions) and
tiffness coefficients of the linear Euler–Bernoulli beam (see Fig. 6).
8 
When Eqs. (28) are substituted into the 𝜖2-order problem, and this
s solved in a similar way, we find expressions of the type:

𝜃2 = �̆�𝐵
(

�̆�𝐴𝜒𝑎𝑟(𝑠) + �̆�𝐵𝜒𝑏𝑟(𝑠) +
(

�̆�𝐵 − �̆�𝐴
)

𝜒𝑣𝑟(𝑠)
)

,

𝐵2 = �̆�𝐵
(

�̆�𝐴𝑘𝑎𝑟 + �̆�𝐵𝑘𝑏𝑟 +
(

�̆�𝐵 − �̆�𝐴
)

𝑘𝑣𝑟
)

,

𝑢𝐵2 = 𝑐𝑎𝑎�̆�
2
𝐴 + 𝑐𝑎𝑏�̆�𝐴�̆�𝐵 + 𝑐𝑏𝑏�̆�

2
𝐵 + 𝑐𝑣𝑣

(

�̆�𝐵 − �̆�𝐴
)2

+ 𝑐𝑣𝑎
(

�̆�𝐵 − �̆�𝐴
)

�̆�𝐴 + 𝑐𝑣𝑏
(

�̆�𝐵 − �̆�𝐴
)

�̆�𝐵 .

(30)

At the next, 𝜖3-order, we obtain:

𝜃3 = �̆�2
𝐵
(

�̆�𝐴𝜒𝑎𝑟𝑟(𝑠) + �̆�𝐵𝜒𝑏𝑟𝑟(𝑠) +
(

�̆�𝐵 − �̆�𝐴
)

𝜒𝑣𝑟𝑟(𝑠)
)

+ �̆�3𝐴𝜒𝑎𝑎𝑎(𝑠) + �̆�3𝐵𝜒𝑏𝑏𝑏(𝑠) +
(

�̆�𝐵 − �̆�𝐴
)3 𝜒𝑣𝑣𝑣(𝑠)

+ 3�̆�2𝐴�̆�𝐵𝜒𝑎𝑎𝑏(𝑠) + 3�̆�𝐴�̆�2𝐵𝜒𝑎𝑏𝑏(𝑠) + 3�̆�2𝐴
(

�̆�𝐵 − �̆�𝐴
)

𝜒𝑎𝑎𝑣(𝑠)

+ 3�̆�𝐴
(

�̆�𝐵 − �̆�𝐴
)2 𝜒𝑎𝑣𝑣(𝑠) + 3�̆�2𝐵

(

�̆�𝐵 − �̆�𝐴
)

𝜒𝑏𝑏𝑣(𝑠)

+ 3�̆�𝐵
(

�̆�𝐵 − �̆�𝐴
)2 𝜒𝑏𝑣𝑣(𝑠) + 6�̆�𝐴�̆�𝐵

(

�̆�𝐵 − �̆�𝐴
)

𝜒𝑎𝑏𝑣(𝑠),

𝐵3 = �̆�2
𝐵
(

�̆�𝐴𝑘𝑎𝑟𝑟 + �̆�𝐵𝑘𝑏𝑟𝑟 +
(

�̆�𝐵 − �̆�𝐴
)

𝑘𝑣𝑟𝑟
)

+ �̆�3𝐴𝑘𝑎𝑎𝑎 + �̆�3𝐵𝑘𝑏𝑏𝑏 +
(

�̆�𝐵 − �̆�𝐴
)3 𝑘𝑣𝑣𝑣 + 3�̆�2𝐴�̆�𝐵𝑘𝑎𝑎𝑏

+ 3�̆�𝐴�̆�2𝐵𝑘𝑎𝑏𝑏 + 3�̆�2𝐴
(

�̆�𝐵 − �̆�𝐴
)

𝑘𝑎𝑎𝑣 + 3�̆�𝐴
(

�̆�𝐵 − �̆�𝐴
)2 𝑘𝑎𝑣𝑣

+ 3�̆�2𝐵
(

�̆�𝐵 − �̆�𝐴
)

𝑘𝑏𝑏𝑣 + 3�̆�𝐵
(

�̆�𝐵 − �̆�𝐴
)2 𝑘𝑏𝑣𝑣 + 6�̆�𝐴�̆�𝐵

(

�̆�𝐵 − �̆�𝐴
)

𝑘𝑎𝑏𝑣,

𝐵3 = �̆�𝐵(𝑐𝑎𝑎�̆�2𝐴 + 𝑐𝑎𝑏�̆�𝐴�̆�𝐵 + 𝑐𝑏𝑏�̆�
2
𝐵 + 𝑐𝑣𝑣

(

�̆�𝐵 − �̆�𝐴
)2

+ 𝑐𝑣𝑎
(

�̆�𝐵 − �̆�𝐴
)

�̆�𝐴 + 𝑐𝑣𝑏
(

�̆�𝐵 − �̆�𝐴
)

�̆�𝐵).

(31)

qs. (28), (30) and (31) supply the coefficients of the series (23) solving
he problem. The 𝜒-functions and 𝑘-constants, appearing in Eqs. (30)
nd (31), assume cumbersome expressions not shown here.

eferences

ntman, S.S., 1973. The theory of rods. In: Linear Theories of Elasticity and
Thermoelasticity. Springer, pp. 641–703.

ntman, S.S., 1974. Kirchhoff’s problem for nonlinearly elastic rods. Quart. Appl. Math.
32 (3), 221–240.

ontento, A., Luongo, A., 2013. Static and dynamic consistent perturbation analysis for
nonlinear inextensible planar frames. Comput. Struct. 123, 79–92.

i Carlo, A., Pignataro, M., Rizzi, N., 1981. On the proper treatment of axial and shear
undeformability constraints in post-buckling analysis of beams. Int. J. Non-Linear
Mech. 16 (2), 221–229.

i Egidio, A., Luongo, A., Paolone, A., 2007. Linear and non-linear interactions between
static and dynamic bifurcations of damped planar beams. Int. J. Non-Linear Mech.
42 (1), 88–98.

olden, J.T., 1972. On the finite deflections of thin beams. Int. J. Solids Struct. 8 (8),
1051–1055.

uongo, A., Rega, G., Vestroni, F., 1986. On nonlinear dynamics of planar shear
indeformable beams. J. Appl. Mech. 53 (3), 619–624.

uongo, A., Zulli, D., 2013. Mathematical Models of Beams and Cables. John Wiley &
Sons.

ata, P., Oller, S., Barbat, A.H., 2007. Static analysis of beam structures under
nonlinear geometric and constitutive behavior. Comput. Methods Appl. Mech.
Engrg. 196 (45), 4458–4478.

cHugh, K., Dowell, E., 2018. Nonlinear responses of inextensible cantilever and
free–free beams undergoing large deflections. J. Appl. Mech. 85 (5), 051008.

ignataro, M., Rizzi, N., Di Carlo, A., 1980. Symmetric bifurcation of plane frames
through a modified potential energy approach. J. Struct. Mech. 8 (3), 237–255.

ignataro, M., Rizzi, N., Luongo, A., 1990. Bifurcation Stability and Postcritical
Behaviour of Elastic Structures. Elsevier Science Publisher.

eissner, E., 1973. On one-dimensional large-displacement finite-strain beam theory.
Stud. Appl. Math. 52 (2), 87–95.

incón-Casado, A., González-Carbajal, J., García-Vallejo, D., Domínguez, J., 2021.
Analytical and numerical study of the influence of different support types in the
nonlinear vibrations of beams. Eur. J. Mech. A Solids 85, 104113.

izzi, N., Di Carlo, A., Pignataro, M., 1980. A parametric postbuckling analysis of an
asymmetric two-bar frame. J. Struct. Mech. 8 (4), 435–448.

imo, J.C., Vu-Quoc, L., 1988. On the dynamics in space of rods undergoing large
motions - a geometrically exact approach. Comput. Methods Appl. Mech. Engrg.
66 (2), 125–161.

akahashi, K., 1979. Non-linear free vibrations of inextensible beams. J. Sound Vib. 64
(1), 31–34.

imoshenko, S., Goodier, J.N., 1951. Theory of Elasticity. Mc Graw-Hill Inc., New York.
olfram Research Inc, 2021. Mathematica, Version 13.1, 2021. Champaign, IL.
ood, R.D., Zienkiewicz, O.C., 1977. Geometrically nonlinear finite element analysis

of beams, frames, arches and axisymmetric shells. Comput. Struct. 7 (6), 725–735.

http://refhub.elsevier.com/S0997-7538(24)00202-X/sb1
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb1
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb1
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb2
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb2
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb2
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb3
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb3
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb3
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb4
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb4
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb4
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb4
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb4
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb5
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb5
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb5
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb5
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb5
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb6
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb6
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb6
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb7
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb7
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb7
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb8
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb8
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb8
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb9
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb9
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb9
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb9
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb9
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb10
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb10
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb10
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb11
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb11
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb11
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb12
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb12
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb12
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb13
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb13
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb13
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb14
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb14
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb14
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb14
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb14
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb15
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb15
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb15
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb16
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb16
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb16
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb16
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb16
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb17
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb17
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb17
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb18
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb19
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb20
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb20
http://refhub.elsevier.com/S0997-7538(24)00202-X/sb20

	Revisiting the nonlinear elastic problem of internally constrained beams in a perturbation perspective
	Introduction
	The beam model
	Deriving the constrained field equations
	Kinematics
	Equilibrium
	The constrained elastic problem

	A discussion on the boundary conditions

	Asymptotic analysis
	The non-redundant case
	The S -redundant case

	Numerical results
	Non-redundant case
	S-redundant case

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix. Solution to Eqs. eq:pert1slid–eq:pert3slid
	References


