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Abstract

Service Oriented Architecture (SOA) has been the leading paradigm for build-
ing large-scale systems through the reuse and composition of software services
for decades. Choreographies are a powerful and flexible composition approach
in which services are composed in a loosely coupled fashion and their interac-
tion is performed without relying on a central entity. By amplifying the loose
coupling, independence, and flexibility principles of SOA, Microservice Architec-
ture (MSA) has gained growing interest from companies and researchers. MSA
consists of a set of small, independent, and loosely coupled services that commu-
nicate through lightweight protocols. Microservices are easy to scale, maintain,
and deploy. Attracted by the advantages of MSA, companies are migrating their
legacy monolithic systems to microservices.

In this setting, a series of problems arise. First, in choreography-based sys-
tems, the realization of the distributed coordination logic required to enforce
the correct choreography realization requires automated support. The need for
building dynamic and user-centered systems also calls for the realization of chore-
ographies capable to adjust their behavior to the surrounding context and chang-
ing user preferences. Second, migrating monolithic systems to microservices is
a complex, time-consuming, and error-prone task that needs the support of ap-
propriate tools to assist software designers and programmers, from extracting a
proper architecture to implementing novel microservices. Third, in choreographed
microservice-based systems, proper support for the scalability of microservices
needs to be considered alongside the need for coordination required by chore-
ographies. The two functionalities must coexist while remaining functionally and
architecturally independent.

The work presented in this thesis aims at addressing the problems above by
proposing (i) a solution for the realization and synthesis of context-aware chore-
ographies, (ii) a fully-automated approach for the migration of monolithic systems
into MSA, and (iii) an architectural style for microservice-oriented choreographies
decoupling the coordination and load balancing capabilities of the system.

Keywords: Service composition, system decomposition, choreographies, coor-
dination, context-awareness, microservices, scalability, load balancing
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Chapter 1

Introduction

For decades, Service Oriented Architecture (SOA) has imposed as a software de-
sign and architectural pattern allowing to build large-scale systems by reusing,
composing, and integrating existing services. In SOA, the functionalities of a
system are organized as a collection of independent services which are composed
together and communicate with each other over the network through a stan-
dardized protocol, regardlessy of the technology underlying each service. Those
systems show enhanced flexibility since services can be added, removed, or re-
placed allowing the system to evolve over time without disrupting the overall
system [27, 44, 96].

Building upon the principles of SOA, choreographies represent a powerful and
flexible service composition approach in which participant services are loosely
coupled and their interaction is performed without relying on any central en-
tity [6, 9, 18, 37]. Services communicate in a peer-to-peer style (without the
asymmetry found in, e.g., client-server style or orchestration-based approaches),
autonomously take decisions, and, out of the blue, engage in the interaction by
performing tasks according to their imminent needs and local state. This setting
fosters the interoperation among different services provided by different compa-
nies and/or institutions in realizing larger value-added systems, in which none
of the involved parties is required to take full responsibility for controlling and
coordinating the global interaction.

As a further advancement of SOA, in recent years Microservice Architectures
(MSAs) gained growing interest from both research and industry for develop-
ing and deploying modern distributed applications. MSAs are built through the
composition of fine-grained, loosely coupled, and autonomous services that are
organized around specific business capabilities, running in autonomous processes
and communicating through lightweight protocols [42, 79, 93]. Microservices are
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1.1. Problem space

advantageous in terms of scalability, flexibility, and resilience, allowing for more
efficient use of resources and infrastructure and better support for continuous
integration and delivery [43, 93, 107]. In order to leverage these benefits, com-
panies are adopting microservices architecture to realize their systems, and they
are migrating their legacy monolithic architectures towards microservices [114].

1.1 Problem space

When dealing with choreography-based systems that are built by reusing and
composing services as third-party or black-box entities, the realization of the dis-
tributed coordination logic required to achieve the correct interaction is a complex
and error-prone activity [6, 9]. In fact, services involved in the choreography act
as active entities that concurrently perform tasks and autonomously take deci-
sions. They may not synchronize as prescribed by the choreography, and the
global collaboration may not follow the specification. Composing such services
and realizing the required distributed coordination calls for suitable automated
support that aids the development activities by providing correct-by-construction
and ready-to-use solutions to concurrency and realizability issues.

Besides showing the desired behavior emerging from the interaction of the in-
volved parties (i.e., composed services), systems are also required to offer context-
aware functionalities to allow users to access dynamic and customized functional-
ities. Systems can leverage their knowledge about the user and/or environment to
adapt their behavior according to the surrounding context. For instance, location-
awareness represents a crucial context dimension that allows users to access the
right services, at the right moment, in their current location. For this reason,
the tool support for the composition of services through choreographies is also
required to provide support for the realization of systems with context-aware
capabilities.

“Legacy” SOA systems, and – as a consequence – service choreographies rep-
resenting their realization, are typically composed of a limited number of large
and complex monolithic applications [107]. During their lifecycle, they may be-
come difficult to maintain, evolve, and scale [42, 93]. As said, companies may
benefit from the advantages of MSA by migrating their systems (or services –
even if only some of those that compose a SOA system) into microservices. How-
ever, the migration of monolithic systems to microservices is a difficult, complex,
and time-consuming task requiring much effort and specific skills [114]. If per-
formed manually, the quality of the decomposed system depends on the experi-
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1.1. Problem space

ence and knowledge of experts [68]. Hence, it requires tools and techniques that
can ease and drive the decomposition process. During the last years, several re-
searchers have been proposing migration solutions through tools or frameworks,
e.g., [33, 49, 59, 61, 64, 70, 82, 117, 128]. Most of the proposed approaches
are challenged by the difficult task of establishing the proper granularity of mi-
croservices or supporting the so-called “single responsibility principle”, i.e., a mi-
croservice must conform to and stay within a bounded context [43], which may
contain one or more aggregates [93]. More importantly, many of the proposed
approaches require different types of inputs such as use cases, domain models,
activity diagrams, business models [49], or even manual inputs [82, 117] provided
by system engineers having specific knowledge of the system to be decomposed.
The lack of models or specific system knowledge may limit the applicability of
these refactoring approaches. Moreover, once the new system architecture is
extracted, developers must define and implement the APIs that allow communi-
cation between microservices. Even if the new architectural style enables DevOps
and continuous delivery, the definition and implementation of interfaces remain a
time-consuming activity that needs tool support. Given the above, the migration
of monolithic systems into microservices requires tools that can assist develop-
ers and engineers during all the phases of the migration process (i.e., system
analysis, decomposition, microservice implementation), automatizing the whole
process without requiring models or users’ system knowledge.

As for “classical” service-oriented systems, also microservice-based systems
can be conveniently realized through decentralized composition approaches, like
choreographies, that permit furtherly enhance loose coupling, independence, and
flexibility. Such systems can benefit from the small size and isolation of microser-
vices to achieve enhanced scalability. In fact, microservices enable the replication
of those that are more exposed to growing loads in terms of the number of re-
quests and may represent a bottleneck for system performances. In this way, the
workload of each microservice can be distributed among a set of instances con-
currently running in different servers/hosts/containers [43] through load balancers
that actively route each incoming request toward one of the running instances of
the target microservice. In choreographed microservice-based systems, both load
balancing and coordination issues have to be taken into account. Here, load-
balancing capabilities must coexist with the distributed coordination needs of
the system. However, they should remain both functionally and architecturally
independent in order to cope with the loose-coupling, autonomy, and flexibility
principles of SOA and, being its evolution, MSA. This concern may arise both in

G. Filippone 3
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those scenarios where microservices are obtained after having decomposed coarse-
grained services from a “legacy” choreography-based system, and both in systems
that are built from scratch by composing new microservices as a choreography. In
literature, several approaches deal with scalability [14, 39, 50, 121, 124], but none
of them specifically address the scalability of choreography-based service-oriented
systems together with, yet by fully decoupling, coordination issues.

1.2 Solution space

In previous works [6, 9], choreography realization is enforced through the au-
tomated synthesis of additional software entities, called Coordination Delegates
(CDs) that, when interposed between the participant services, control their in-
teractions by running a distributed coordination algorithm and exchanging syn-
chronization messages. This thesis extends this approach by accounting for and
enabling the development of context-aware choreographies, allowing the specifi-
cation and the execution of the adaptable behavior of the choreography according
to the context. An enhanced version of CDs, called Context-aware Coordination
Delegates (caCDs), is introduced to dynamically adapt the choreography behav-
ior according to the context conditions. A Context Manager is introduced as
a new software entity that provides, at runtime, all the functionalities needed
for context sensing and evaluation. An ad-hoc built context metamodel allows
developers to describe all the context characteristics that have to be taken into
account for adaptation.

Concerning the challenges in the migration of monolithic systems into mi-
croservices, this thesis presents a bottom-up decomposition approach that fully
automates the decomposition process and identifies microservices having func-
tionalities combined together for each application’s bounded context, without
requiring manual inputs, system models, specific skills, or knowledge. The ap-
proach first performs Static Code Analysis (SCA) of the monolithic system to
produce a graph representation of the system with a method-level resolution, in
which arcs are weighted in order to represent the relevance of each of the relation-
ships between nodes. Then, graph nodes are clustered in communities to obtain
the granularity and the functionality scope of the services, while a combinatorial
optimization problem is solved to obtain the final set of microservices having the
minimum coupling. Given the resulting architecture, a synthesis algorithm au-
tomatically generates the code of the microservices by suitably moving methods
and classes of the monolith into the correct microservice, further identifying the

G. Filippone 4
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novel APIs that have to be exposed and implementing their controllers.
In order to deal with both scalability and coordination in microservice-based

systems, this thesis proposes a layered architectural style that allows realizing
scalable microservice-oriented choreographies. The architectural style is com-
posed of two main layers: a coordination and a load-balancing layer. The co-
ordination layer is needed to ensure that microservices behave as prescribed by
the choreography specification and avoid undesired interactions. It leverages the
notions of CDs as mentioned above to achieve coordination capabilities. The
load-balancing layer distributes the workload by properly routing the incoming
requests among the available microservice instances. This allows optimizing the
resource usage, avoids a single microservice instance being overloaded by incom-
ing requests, avoids bottlenecks, and hence maximizes the system performances.
The layered nature of the architectural style implies that the interactions are
balanced after being coordinated, hence avoiding the routing of undesired inter-
actions to microservices instances. The clear separation of the two layers allows
them to be agnostic to each other, hence totally decoupling their functionalities.

1.3 Working context

With the objective of bringing the adoption of choreographies to the develop-
ment practices adopted by IT companies, during the last decade, the activities of
our research group focused on developing automatic approaches to support the
realization of service choreographies. Moreover, by following the industrial and
research evolution of SOA towards the adoption of microservices, the activities
of the research group moved to the study and realization of automated tools in
support of the migration of monolithic systems into microservices. In this direc-
tion, this thesis has been supported by the EU CHOReVOLUTION1, INCIPICT2,
ConnectPA, and the SISMA projects.

The HORIZON 2020 CHOReVOLUTION project proposes a development
process for the automatic realization of choreography-based systems. It provides
the approach for coordinating service choreographies that is extended in this work
to support the realization of context-aware choreographies.

The INCIPICT (Innovating City Planning through Information & Commu-
nication Technologies) project aims at realizing an experimental optical network
to build a Metropolitan Area Network (MAN) for the city of L’Aquila, located in

1https://cordis.europa.eu/project/id/644178
2https://incipict.univaq.it
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the region of Abruzzo in central Italy. This network provides the essential sub-
strate for the delivery of different services, enabling the realization of dynamic
large-scale applications for L’Aquila city.

The POR FESR 2014-2020 ConnectPA Italian project collects the needs and
innovation requests of the Italian Public Administration (PA). The project goal
is to develop a choreography-based approach for the provisioning of IT solutions
for public administrations by implementing a platform capable of interconnecting,
composing, and coordinating geographically distributed services in order to create
dynamic and interoperable e-Government services for smart cities.

The MUR PRIN SISMA (Solutions for Engineering Microservice Architec-
tures) project contributes to the enhancement of the microservices architectural
style. It addresses their architectural design and the problem of migrating exist-
ing applications towards microservice architectures, the continuous deployment,
and the runtime management of microservices and the resources needed for their
efficient execution.

1.4 Contribution

The contribution of this thesis is advancing the state-of-the-art by:

• Proposing a novel solution to the realization of context-aware choreogra-
phies through automated synthesis;

• Proposing an automated approach to the decomposition of monolithic sys-
tems into microservices;

• Presenting a layered architecture for the composition of microservices that
considers the system’s coordination and load balancing needs decoupling
their roles.

1.5 Outline of the Thesis

This thesis is structured as follows:

Chapter 2 presents the background notions of the work, concerning (i) the auto-
mated synthesis and enforcement of service choreographies, (ii) microservice
architectures, and (iii) load-balancing approaches;

G. Filippone 6



1.5. Outline of the Thesis

Chapter 3 presents the approach for the realization of context-aware choreogra-
phies. It leverages a reference scenario related to the ConnectPA project as
a working example and for the evaluation of the approach;

Chapter 4 presents the approach for the automated decomposition of mono-
liths into microservices. The approach is evaluated among some well-known
publicly available monolithic systems and results are compared with other
related sota approaches;

Chapter 5 presents the layered architecture for the coordination and load-
balancing of microservice-based systems. A case study is presented and
the architectural style is shown at work on it. The layered architecture
is evaluated against its properties and the impact of the load-balancing
capabilities on the system is assessed through the case study;

Chapter 6 discusses the related works of the presented approaches;

Chapter 7 discusses the conclusions of the thesis and the future research di-
rections.

G. Filippone 7



Chapter 2

Background

This chapter provides background notions on the approaches for the service com-
position (orchestrations and choreographies) highlighting their peculiarities and
relationships. It also presents the automated approaches for the automated syn-
thesis of service choreographies which is leveraged and extended for the realization
of context-aware choreographies. Then, it provides basic notions about MSA as
well as approaches for load balancing. This information serves as a foundation
for the subsequent chapters of the thesis.

2.1 Service composition approaches

2.1.1 Orchestrations

Orchestrations are a centralized approach for the composition of software services
into a larger application in which the interactions are controlled by a single co-
ordinator service. Here, the control is always represented and realized from one
party’s perspective.

Figure 2.1 sketches the idea underlying this approach. All the services in-
volved in an orchestration are provider services (i.e., they only offer function-
alities through interfaces), and a centralized entity (the orchestrator), interacts
and coordinates these services being the only consumer of the functionalities pro-
vided by the services. When invoked by the orchestrator, provider services play
the “passive” role of executing black-box operations and providing the related
responses. Both the application and coordination logic are all centralized in the
orchestrator, and all composition/coordination issues can simply be solved from
within the orchestrator.

Orchestrations are good in those situations in which a single party needs to
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2.1. Service composition approaches

Orchestrator 

Figure 2.1: Orchestration

take the responsibility to centrally coordinate the interaction among different ser-
vices; they are not suitable to cross-enterprise employments where multiple parties
must collaborate, but none of them want to, or cannot, take the full responsibil-
ity for performing centralized coordination. This is where service choreographies
step in.

2.1.2 Choreographies

Choreographies are a decentralized composition approach in which participant
services communicate as peers without any central coordinator. The interactions
of services are described from a global perspective since the common goal of the
application is realized by the globally controlled collaboration of services, which
can autonomously perform tasks according to the global state of the choreogra-
phy [101]. Figure 2.2 sketches the idea underlying the notion of service chore-
ography, which can be summarised as follows: dancers dance following a global
scenario without a single point of control.

Service choreographies differ significantly from service orchestrations, where
one stakeholder (i.e., the orchestrator) centrally determines how to reach the
goal through cooperation with other services. Choreography does not rely on a
central coordinator since each involved service knows exactly when to execute
its operations and with whom to interact. Choreographies are a collaborative
effort focusing on the exchange of messages among several participants to reach
a common global goal.
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2.1. Service composition approaches

Figure 2.2: Choreography

2.1.3 Orchestrations vs. Choreographies

Both orchestrations and choreographies are used to create business processes
by composing services. Although these approaches differ significantly from the
coordination point of view, i.e., centralized vs. decentralized, they overlap some-
what [101]. Figure 2.3 illustrates their relationships and how they can coexist in a
large cross-enterprise application. Orchestrations refer to specific executable busi-
ness processes from one party’s perspective. Such business processes can interact
with both internal and external services. This is rather different in choreogra-
phy, which is highly collaborative and concerns the message exchanges among
multiple parties (i.e., external message exchanges that occur between services)
rather than a specific business process that a single party executes. As already
said, choreographies are particularly useful in those situations in which multiple
parties have to collaborate, but none of them wants to take the responsibility of
running a centralized orchestration, e.g., in Business-to-Business (B2B) transac-
tions. In B2B applications, which are by definition cross-enterprise, it is difficult
to specify the implementation of specific participants, and there is no central au-
thority for the overall flow. Conversely, inside organizations, orchestrations may
be advantageous due to their simpler specification and the simpler identification
of a central authority.

Although conceptually different, at the implementation level, the two ap-
proaches may overlap to some extent. A choreography might be realized as a set
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Choreography

Orchestration
Organization A

Orchestration
Organization B

orchestrato
r

orchestrator

Figure 2.3: Orchestration vs. Choreography

of distributed software entities implemented as BPEL or BPMN processes. How-
ever, the technology used to realize them does not matter. Rather, the real differ-
ence resides in their nature, purpose, and how they are specified. Orchestration-
oriented approaches consider a specification that is centralized and represents a
form of centralized coordination whose goal is to (re-)expose the resulting com-
posed system in a way that is amenable to further hierarchical composition. In-
stead, choreography-oriented approaches account for a specification that repre-
sents a form of distributed coordination of different participants collaborating to
achieve a global common goal. Thus, the purpose is to exploit this specification
to enable the prescribed collaboration in a fully-distributed way and let it emerge
while the participants interact. These two specifications can be exploited to-
gether, as shown in Figure 2.3, by reusing orchestration-based composed systems
as participants of a wider choreography-based system.

2.1.4 BPMN2.0 Choreography Diagram

The OMG’s BPMN 2 standard1 offers Choreography Diagrams, a practical nota-
tion for specifying choreographies that, following the pioneering BPMN process
and collaboration diagrams, is amenable to be automatically treated and trans-
formed into actual code. BPMN2 choreography diagrams focus on specifying the
message exchanges among the participants from a global point of view. A partic-
ipant role models the expected behavior (i.e., the expected interaction protocol)
that a service should be able to perform to play the considered role.

In BPMN2, choreography is modeled as a set of tasks that represent the
interactions among the participant services. A task is an atomic activity that

1https://www.omg.org/spec/BPMN/2.0.2/
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describes the message exchanges (request and optionally response) between two
participants. Each task is performed by an initiating participant, which sends a
message to the receiving participant and, optionally, receives a response message
when the task is complete.

Figure 2.4 shows a sample choreography in BPMN2 notation. Graphically, a
task is represented by a rounded-corner box, and it is labeled with the role names
of the participant services and the name of the task. The initiating participant
role name is contained in the upper white box; the receiving participant role
name is contained in the gray box at the bottom. Request and response message
names are attached to the initiating and receiving participant boxes, respectively.
By referring to the figure, for the task T1, the initiating participant Participant
A sends the message RequestMessage to Participant B, which replies with the
message ResponseMessage. Tasks are connected by an arrow, which represents a
sequence flow. The BPMN2 specification states that the initiating participant of a
choreography task must have been involved (as initiating or receiving participant)
in the previous choreography task.

Participant A

T2

Participant C

Participant C

T6

Participant D

Participant B

T3

Participant C

Participant C

T4

Participant A

++
Participant A

T1

Participant B

Participant C

T5

Participant B

++

Request Message

Response Message

Figure 2.4: Sample BPMN2 Choreography

The sequence flow can be controlled through gateways, which allow splitting
a flow into two or more parallel or alternative flows. Parallel gateways are rep-
resented graphically by rhombuses marked with the “+” symbol. They are used
to fork a flow in two or more parallel flows (diverging parallel gateway) and/or
synchronize and join two or more parallel flows (converging parallel gateway). In
the diverging case, the gateway creates parallel paths of the choreography that
are executed concurrently and that all the involved participants are aware of. In
the converging case, this gateway waits for all incoming flows to be completed
before triggering the flow through its outgoing arrow. Concerning the constraints
imposed by the BPMN2 standard specification, the initiating participant(s) of all
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the tasks immediately after the gateway must be involved in all the tasks that
immediately precede such gateway.

Exclusive gateways are represented by rhombuses marked with the “⇥” sym-
bol. They are used to create alternative paths (diverging exclusive gateway) ac-
cording to the result of the evaluation of a conditional expression and/or merge
alternative paths (converging exclusive gateway). According to the BPMN2 of-
ficial specification, the initiating participants of the choreography tasks immedi-
ately following the gateway must have sent or received the message that provided
the data upon which the conditional decision is made. Furthermore, like for the
parallel gateway, the initiating participants of the tasks following the gateway
must be involved in the task(s) immediately preceding the gateway.

Portions of choreography can be modularly specified through compound activ-
ities, named sub-choreographies, which define in their detail a flow of other tasks.
As shown in Figure 2.5, a sub-choreography is represented by a rounded-corner
box having a square with a “+” symbol inside. The labels of the participants that
initiate tasks in the flow are contained in white boxes, while the other participant
into gray boxes. In the expanded form, sub-choreographies explicitly show the
tasks in the body of the box instead of its name.

Participant C

Sub-choreography

Participant A

Participant B
Participant A

Task

Participant B
+

Figure 2.5: Sample choreography with sub-choreography activity

There are cases when there may be more than one possible service to be in-
volved in a choreography task. For example, there may be more than one shipping
service to be invoked according to, e.g., the selected destination. This situation
can be modeled in BPMN2 through a multi-insance participant. Graphically,
as shown in Figure 2.6, a multi-instance participant is represented by putting
a multi-instance marker (three vertical lines) in the participant band for that
participant.

Participant A

Task

Multi-instance Participant
III

Figure 2.6: Task with multi-instance participant
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BPMN2 Choreography diagrams also allow expressing looping tasks, events,
and several gateways besides the ones already discussed. However, we avoid
presenting them in this thesis for the sake of simplicity, since their knowledge is
not required to fully understand the work.

2.2 Automated choreography synthesis

The approach for the realization and coordination of service choreographies con-
sidered in this work, developed in the scope of the CHOReVOLUTION project,
leverages a synthesis tool that automatically generates the distributed coordina-
tion logic of the choreography [5, 6, 9, 10]. The tool provides a synthesis processor,
which takes as input the BPMN2 choreography diagram and the set of services
selected as participants to be composed into the choreography. As an output of
the synthesis process, a set of additional software entities called Coordination
Delegates (CDs) are automatically generated and properly interposed among the
participant services. They proxify the service interaction in order to realize the
specified choreography by running a distributed coordination algorithm [6]. CDs
allow developers to decouple the coordination logic – which is external to the
involved services since it resides in the CDs implementation – from the business
logic that resides in the implementation of the services. In this way, CDs are
able to perform external coordination while the services are completely agnostic
to possible coordination and concurrency issues.

S1

S4

Consumer

Business Logic Layer (Services)

CD

CD1 CD2

S2

CD3

S3

Coordination Layer (CDs)

Synch/Asynch communication
Client (required) interface
Server (provided) interface

Provider

Prosumer

Figure 2.7: Sample architectural description of a choreography with coordination

delegates

Figure 2.7 shows, through an informal notation, the architecture instance of a
system that realizes a sample choreography. The involved services (S1, S2, S3 and
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S4 in Figure 2.7) realize the functionalities and the business logic of the system
by interacting with each other and exchanging business messages. Their commu-
nication is proxified by CDs (CD1, CD2 and CD3 in Figure 2.7) which coordinate
the interaction between services, ensuring that (i) the messages are exchanged ac-
cording to the control flow prescribed by the choreography specification and that
(ii) no undesired interactions are performed (e.g., for a given service, a certain
message has to be received before that another message is sent). In general, for
each service that requires an interface from another service (i.e., a consumer or
prosumer service), a CD is deployed. Each CD coordinates many choreography
executions through a correlation mechanism that is realized by adding a chore-
ography ID in the messages sent by the consumer and prosumer services. The
choreography ID is unique for each execution of the choreography and it is shared
among all the CDs, consumer, and prosumer services. It is required to let CDs
check the current state of a given choreography execution and enforce the correct
sequence of interactions.

A

T1

B

M1

B

T2

C

M3

M2 M4

A

C

CDB

Provider-side 
business logic

Consumer-side 
business logic

B
3 M1

4 M2

7 Get(M3)

8 M3

11 M4

CDA

2 M1

5 M2

9 M3 10 M4

1 M1 6 M2

Figure 2.8: Coordination delegates interaction pattern

Figure 2.8 shows the interaction pattern of CDs in the most general case of a
sequence of two tasks involving a consumer (A), a provider (C ), and a prosumer
service (B). The prosumer logic is split into provider-side and consumer-side
business logic. Provider-side business logic offers the business functionalities of
the service when acting as a provider (i.e., when it is a receiving participant in a
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task), and needs to be implemented from scratch if no other existing services are
reused. Consumer-side business logic offers the message retrieval logic and mes-
sage construction logic: the former allows the CD to intercept and store messages
exchanged by the service; the latter is the logic needed for building messages sent
by the service as a consumer (i.e., when it is the initiating participant in a task).
As it is shown in the figure, the CD generated for the consumer A (CDA) receives
the message sent by the service A (M1) as first, hence forwarding it to the CD
generated for the prosumer B, which in turn forwards it to the provider side of B
(interactions 1 to 3). Then, the related response messages are sent back, hence
ending the execution of task T1 (interactions 4 to 6). In order to execute T2, CDB

asks the consumer-side of B for the message to be sent (M3 in the interactions 7
and 8), forwards it to C, intercepts the response and sends it back (interactions
9 to 11).

The automated synthesis of CDs is performed through a model-to-code trans-
formation that takes as input the participant models of the choreography. A
participant model describes the interaction protocol of a participant (i.e., a ser-
vice): it represents the expected behavior of a participant, as the sequence of
actions that it performs when interacting with other services and/or the en-
vironment. The participant model is a BPMN2 diagram, which is generated
through a model-to-model transformation (Choreography Projection) carried out
from BPMN2 the choreography specification [5, 9]. It is a partial view of the
choreography which considers only the flows and tasks in which a participant is
involved.

Participant A

T2

Participant C

Participant C

T4

Participant A
Participant A

T1

Participant B

+

Figure 2.9: Projection of the sample choreography over Participant A

Fig 2.9 shows the result of the choreography projection carried out from the
sample choreography in Figure 2.2 over Participant A. As said, it includes only
the tasks in which Participant A is involved and the flows connecting them.
From the set of participant models, the synthesis algorithm executed by the
synthesis processor is able to generate in a fully-automatic way the set of CDs
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needed for the choreography coordination. Referring to prosumer services, whose
structure is well defined according to the interaction pattern described above,
the synthesis processor generates their skeleton code, since both the provider-
side and the consumer-side business logic are application specific and need to be
implemented. However, developers have the only task of filling the skeleton code
that realizes the business logic of prosumers according to the application needs,
without having to focus on possible coordination and concurrency issues.

2.2.1 Choreography realizability enforcement

Coordination Delegates are not enough to coordinate the choreography if it is not
compliant with the BPMN2 specification (i.e., unrealizable choreographies). In
fact, CDs have only a partial view of the whole global interaction: their view is
limited to the state of the coordinated services. In fact, according to the inter-
action pattern described above, each CD receives (and then forwards) business
messages coming from (or directed to) its associated services, executing the co-
ordination algorithm with a partial view of the choreography, just following the
sequence of the exchanged messages that is prescribed by the choreography spec-
ification. In general, it can be required that the cooperation between services has
to be driven not only by the business messages exchange sequence but also by
the effects that some tasks may have on the whole system environment. For this
reason, it can happen that the task sequence may not fully respect the BPMN2
standard. In similar cases, in order to enforce the choreography realization, it is
needed that CDs exchange coordination messages so that they can have a larger
view of the system and then coordinate the interaction according to the global
state of the choreography. The exchange of coordination messages is performed
in a fully-distributed way, i.e., without a central point of control.

As analyzed in [6], this coordination is needed when the choreography spec-
ification contains independent sequences of messages and independent branches.
From a BPMN2 point of view, those cases are simply translated into task se-
quences that are not allowed in the BPMN2 specification. In particular, indepen-
dent sequences and independent branches are those sequences of tasks in which
the initiating participant of a task does not appear as a participant of the imme-
diately previous task(s). In other words, at run time, during the execution of the
interested sequences, there is no suitable message exchange between the involved
service instances that can “naturally” imply the correct synchronization of their
interaction from the inside, according to the choreography specification. In fact,
the initiating participant of a task does not have any knowledge of the execution
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state of the previous one(s), thus, there is no way for the participant to enforce
the synchronization of the sequence.

Participant A

CDParticipant A CDParticipant C

2 M1

4 SYNCH

3 M1 7 M2

1 Get(M1) 5 Get(M2) 6 M2

Participant B Participant D

Participant C

Participant A

T1

Participant B

M1

Participant C

T2

Participant D

M3

Figure 2.10: Coordination of independent sequence of tasks

Figure 2.10 shows the base case for an independent sequence of tasks, repre-
sented in BPMN2 syntax, together with its associated coordination architecture
that we are proposing. Here, the initiating participant of T2, Participant C, does
not appear as a participant of T1. The coordination of this kind of sequence is re-
alized through a synch message, which is sent from the CD handling the first task
of the sequence to the CD handling the following task, as soon as the first task of
the sequence is completed. Referring to Figure 2.10, after that CDParticipant A for-
wards the message M1 to Participant B (interaction 3), it sends the synch message
to CDParticipant C (interaction 4). Only after that CDParticipant C has received the
synch message, it can ask Participant C for the message M2 (interactions 5 and
6) that has to be sent to Participant D. In this way, CDParticipant C can extend its
view of the system including the status of the services that act in its environment
and with whom it has to coordinate, hence enforcing the correct choreography
execution.

The base case described above can be extended in order to realize the coordi-
nation mechanism for more complex cases, in which the independent sequence of
tasks goes through a parallel gateway (Independent sequences across independent
branches/parallel flows [6], as in Figure 2.11).
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Participant C

T2

Participant B

Participant D

T3

Participant E

+
Participant A

T1

Participant B

(a) Fork case

Participant A

T1

Participant B

Participant C

T2

Participant D

Participant E

T3

Participant B

+

(b) Join case

Figure 2.11: Independent sequences across independent branches

Following the same approach, the coordination mechanism can be realized
with synch messages sent from all the CDs that are handling the tasks im-
mediately preceding the gateway (as soon as each task is completed), to the
CDs associated with the initiating participants of the flows immediately follow-
ing the gateway. In particular, when the gateway node realizes a fork, like in
Figure 2.11a, a synch message will be sent by CDParticipant A to CDParticipant C

and CDParticipant D, letting them to continue the choreography execution in two
parallel flows; otherwise, when the gateway realizes a join (Figure 2.11b), there
will be two synch messages, sent by CDParticipant A and CDParticipant C, that will be
received by CDParticipant E: the latter will continue the execution of the choreog-
raphy with the task Choreography Task 3 only after it has received the two synch
messages, realizing the join mechanism. When, in the choreography model, the
two cases discussed are displayed together, i.e., a join node followed by a fork
node, the synch messages are sent by all the CDs preceding the join node to
all the CDs following the fork. In this way, CDs are aware of the state of the
choreography including tasks in which they are not involved, and a mechanism
for waiting for the correct choreography state before executing a task is realized
(distributed coordination for choreography realizability enforcement).

Since the CD generation is performed starting from the participant model,
the latter has to contain information about the coordination messages exchange.
For this reason, the BPMN2 specification is extended by introducing a new flow
node. It is automatically added in the participant model during the Choreography
Projection when one of the sequences described above is found. This node, called
Synch node, is defined through an extension of the BPMN2 metamodel, and it
is placed in the participant model before (or after) each task that composes an
independent sequence in which the participant is involved.

Figure 2.12 shows the metamodel of the BPMN2 extension needed to model
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Figure 2.12: Synch node metamodel

the Synch node. As an extension of the BPMN2 metaclass ChoreographyActivity,
the metaclass Synch is in relationship with the BPMN2 metaclass Participant
through two different relations. The activeParticipant relation holds the infor-
mation about which are the participants that are initiating the independent se-
quence and have to send the synch message (active participants means that they
perform a task which causes a change in the global state of the choreography and
send the synch message); the passiveParticipant relation holds the information
about which are the participants that should receive the synch message (they are
passive participants in the sense that they experience the context changes and
only receive the synch message). For instance, referring to the example in Fig-
ure 2.11a, Participant A will appear as an active participant, while Participant C
and Participant D will appear as passive participants in the synch model. Dur-
ing the generation process, when a Synch node is found, the synthesis processor
includes in the CDs implementation the primitives required to send or receive
synch messages, thus realizing the coordination logic of independent sequences.

2.3 Microservice Architecture

Microservice Architectures (MSAs) are an approach to building applications as
a set of small, well-defined, distributed, loosely coupled, and autonomous ser-
vices that are independently deployed and that work together by communicat-
ing through lightweight mechanisms. Each microservice implements a small and
well-defined business capability and it runs its independent process [79, 93]. From
the outside, each microservice of a MSA is an isolated black-box component –
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embracing the concept of information hiding – that exposes its limited set of
functionalities through networked interfaces. Microservices can be independently
implemented, tested, and deployed in isolation, while the only constraint for their
interoperation is the technology for letting them communicate (protocols and data
encoding) [43, 93].

MSA has been proposed to overcome some of the problems arising from
monolithic systems. In monoliths, all the interfaces, the business logic, and the
databases are packaged together into a single executable artifact that is deployed
and running on a single server. Due to their nature, specially when they are
big-sized, monoliths are difficult to maintain, evolve, and scale [42, 79, 93, 107].

Driven by the many advantages brought by MSA in response to the limitations
of monoliths (we discuss the most important in Subsection 2.3.2), companies are
migrating their legacy monolithic systems into microservices [114].

2.3.1 Architectural principles

MSAs are built according to a set of core principles [43, 85, 93]. In the following,
we describe the most important ones.

Bounded Context Bounded context involves grouping related functionalities
into the same business capability that is implemented by one microservice [43].
Realizing microservices around the business domains allows the identification of
service boundaries and their related functionalities: each microservice should re-
alize an end-to-end slice of the business domain. In this way, business capabilities
and system structure are aligned, thus making it easy to deliver functionalities
independently, identify where functionalities are, update them, or enroll new
ones [93].

Single Responsibility Functionalities related to the same business capability
should be independently delivered by a single microservice without depending
on other microservices. Each microservice should focus only on a precise fea-
ture without overlapping with other functions provided by different microservices.
This principle can be summarized by saying that each microservice should “do
one thing, and do it well”.

Lightweight Microservices should be small enough to be easily developed and
maintained by a small agile development team. Note that the size of a microser-
vice does not refer to the number of classes, lines of code, or computational
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complexity of its operation. Rather, it refers to the fine granularity of the func-
tionality that it provides, e.g., compared with the services composing a “classical”
SOA system. However, a microservice must be big enough to provide a complete
– yet single – business capability, being independent from other services and
enhancing the loose coupling.

Independency As said, each microservice should be operationally independent
from others, with the only form of communication occurring through the pub-
lished interfaces. The communication between microservices should be reduced to
the minimum to obtain high-cohesive and loose-coupled microservices. A change
in one microservices should have no – or very marginal – impact on other mi-
croservices in the system. This independence can be achieved by separating the
system functionalities in the right way according to well-defined boundaries.

2.3.2 Benefits

As already said, MSA brings a set of benefits – coming from the principles re-
ported above – that allow overcoming the limitations of monoliths, thus making
them advantageous over monolithic systems [42, 43, 79, 93, 107]. In the following,
we discuss the main benefits of MSAs, also in comparison with monoliths.

Scalability The small size and isolation of microservices allow the easy replica-
tion of those services that are more exposed to high loads and that may represent
a bottleneck for system performances. The reliance on domain-driven design and
high cohesion means that growing loads are likely to be experienced for a well-
defined and limited subset of microservices offering the functionalities that, in a
given scenario, are more stressed. This means that microservices can be scaled
independently according to their individual needs using x-axis scaling and z-axis
partitioning [1, 107]. They can be suitably distributed on different servers, hosts,
or containers, and, as a consequence, resources can be allocated efficiently by
deploying microservices on hardware or platforms that provide the best resources
according to their operational characteristics (e.g., CPU-intensive or memory-
intensive). This property is not achievable in monolithic applications, where all
the components are deployed together, and resource scaling or replication can
only be performed on the whole system.

Robustness Being modular, loosely coupled, and independent of each other, a
failure of one service does not have an impact on the entire system (or, in the worst
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cases, it only has a marginal impact). Even if some service stops working, other
services can continue to handle requests normally. Since microservices can be
independently deployed and their instances replicated, a given functionality can
be continued to be provided by the other running instances. Moreover, affected
microservices can be quickly restarted, fixed, or replaced independently, while in
monolithic systems it is needed to reboot or redeploy the whole application. These
features enhance the fault tolerance, availability, and reliability of microservice-
based systems.

Maintainability and ease of development Each microservice implements
a restricted amount of functionalities, making its code base relatively small and
easy to develop, debug, and maintain. Moreover, since they are independent and
loosely coupled, they can be developed, tested, and deployed in isolation. This
allows continuous delivery/deployment and continuous integration, with small
teams responsible only for one or a few microservices each, with high auton-
omy (they only need to define the interfaces for microservices interoperability,
if needed). New features or updates can be introduced with minimum effort by
operating only on the affected microservices, and they can be put into the produc-
tion environment by replacing old microservices with new ones, without stopping
and re-deploying the whole system. This reduces the development velocity and,
hence, the time-to-market.

Flexibility Each microservice composing a MSA can be implemented with a
different technological stack. Developers are free to choose the language/frame-
work/technology that is best suited for the microservice requirements, being the
interface for the network communication the only constraint that limits the choice
of developers. Moreover, thanks to their limited size, microservices are amenable
to be rewritten using different languages or technologies. Also, the trial of a new
technology is simpler and has a limited impact on the overall system, since in-
stances of the same service running with different technological stacks can coexist.
In monolithic systems, this can not happen, since the choice of the technology
impacts the whole system.

2.3.3 Drawbacks

Despite having the benefits described above, as for any technology, MSA is not a
silver bullet suitable for any context and any application. As for any architectural
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style, besides benefits, there are some drawbacks that should let the choice of
adopting microservices be done carefully [43, 107].

First, distribution introduces complexity to the system. Communication a-
mong services does not occur through simple method calls, but over the network,
hence requiring the definition of interfaces that must be shared possibly among
different development teams. The development of features involving multiple
microservices is not straightforward, and their testing and deployment need to be
planned carefully in order to coordinate all the involved teams. Also, it is required
to ensure data integrity and coordination among the whole set of microservices,
calling for an increase in the system’s complexity. Moreover, operations that in
a monolithic system can be simply performed locally, in a MSA may be split
across different microservices. This involves the communication and transmission
of data through the network, which can introduce latency to the system, being
an issue if there are performance constraints over the system. Finally, skills are
required to set up and manage the operational environment where microservices
are deployed and whose instances are orchestrated (e.g., Docker, Kubernetes).

Another important issue concerning MSA is deciding whether or not to adopt
this architecture. Starting the development of a new system from scratch by
choosing the MSA, thus applying the so-called greenfield approach [122], may
slow down the development process and increase the time-to-market. This is due
to the extra effort required by the identification of the microservices, which is
indeed a risky task that, if failing, may lead to incorrect system architecture. If
this happens, a huge effort may be required to fix the wrong architecture. Also,
splitting the domain model into microservices since the first rollout of a new
system may make its evolution difficult. This is the case of startup companies,
for which a monolithic-first approach [48, 100] can be advantageous: they can
first implement their system as a monolith, migrating to microservices afterward
to enable the system scale-up [93, 107].

However, as anticipated in the introduction of this work, the migration of
a monolith into microservices is difficult. Establishing the boundaries of each
microservice is not a trivial task and the refactoring process is time-consuming.
We will dive into this topic in Chapter 4.

2.3.4 SOA vs. Microservices

As reported by Richardson, some critics of MSA claim that they are nothing new
than SOA [107]. At a high level, they have some similarities, since both in SOA
and MSA the main driving principle is to build systems as a collection of loosely
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coupled services that communicate over the network.
SOA has been developed to break the difficulties in maintaining large mono-

lithic applications, by focusing on the reuse of services that can be shared in
different applications as black-box entities. SOA eases the maintenance of the
systems since services can be replaced in an effortless manner as long as the new
service shares the same communication protocol and semantics [93]. However,
SOA services are not required to be independent and self-contained with their
own interfaces and databases. They put the focus on the B2B communication and
on the service composition (orchestration and choreographies, as in Section 2.1)
rather than on the development and deployment [32, 85].

When Netflix presented its first MSA-like architecture, in 2013, it used the
term fine-grained SOA2. Also according to this definition, in a certain sense, mi-
croservices inherit the SOA principles and push them forward as a way of “doing
SOA right” [93]. MSA differ from SOA mainly for the technological stack under-
lying the service communication, and for their granularity. In fact, while SOA
applications typically exploit heavyweight communication protocols like SOAP
or leverage message processing through Enterprise Service Bus (ESB), microser-
vices communicate through lightweight protocols like REST or make use of simple
message brokers. Importantly, while each microservice is designed around a sin-
gle business capability that makes it reasonably small, services involved in SOA
are typically large, complex, monolithic services. As a consequence, a MSA may
result to be composed of dozens of tiny – yet completely independent – services,
while SOA systems are built of few larger, coarse-grained, services [107]. Given
this, it is easy to understand that when it comes to decomposing monolithic ap-
plications into microservices, we may consider as “monolith” not only the service
that realizes a standalone application but also one of the coarse-grained services
composing a SOA.

2.4 Load balancing approaches

Load balancing is a fundamental element for scalability in MSAs [1, 12]. Since in
these systems scalability is enhanced by the possibility of replicating microservice
instances, load balancing allows the distribution of the workloads among the in-
stances to optimize resource usage. Load balancing prevents a single microservice
instance from resulting overloaded by incoming requests, hence maximizing sys-
tem performance. This is done through one or more load balancers, that suitably

2http://techblog.netflix.com/2013/01/announcing-ribbon-tying-netflix-mid.html
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route requests toward one of the multiple running instances of a microservice. The
state of the art for microservice load balancing distinguishes between server-side
load balancing and client-side load balancing [80, 115]. Also, an hybrid approach,
made by composing these two, can be realized [7]. In the following, we describe
the main architectural characteristics of the three approaches.

2.4.1 Server-side load balancing

Server-side load balancing is a centralized approach for distributing requests
among microservice instances. Here, a load balancer acts as a proxy that receives
requests from clients or consumer microservices and forwards them to target mi-
croservices, distributing the workload. In a fully-centralized setting, a central
load balancer manages the workload of the instances of all microservice types,
having all the traffic passing through it.

LB

request channel

forwarding channel µs[1..k]

µs[1..y]

µs[1..x]

c[1..n]

2

3

1

Figure 2.13: Centralized server-side load balancer

Figure 2.13 shows a simple microservice-based system having a centralized
load balancer LB for the microservices µs1, µs2, and µs3. The labels µs[1,...,k]1 ,
µs[1,...,x]2 , and µs[1,...,y]3 indicate that we are considering k, x, and y running in-
stances for the microservices µs1, µs2, and µs3. In this example, LB receives
requests through the request channels (depicted with solid lines) from n instances
the client c and from the instances of µs1 and µs2 (note that microservices can
interact with each other, being in turn consumers of other microservices, hence
they can be prosumers). LB forwards the requests through the forwarding chan-
nels (depicted with dashed lines) to the instances of µs1, µs2, and µs3 in such a
way that their workload is distributed.

It is easy to see that, in the aforementioned load-balancing architecture, all the
traffic passes through the centralized load balancer. This enhances the security

G. Filippone 26



2.4. Load balancing approaches

of the system since the server-side load balancer “hides” the system’s internal
structure and prevents clients from directly interacting with services. However,
the load balancer may represent a bottleneck or a single-point of failure for the
system. A more decentralized setting for server-side load balancing considers
having a load balancer per microservice type instead of a central one. Each
load balancer proxifies the requests directed to a specific microservice type and
manages the workload of its instances only.

request channel

forwarding channel

µs[1..k]

µs[1..y]

µs[1..x]

c[1..n]

2

3

1

LB1:[1..k]

LB2:[1..x]

LB3:[1..y]

Figure 2.14: Decentralized server-side load balancer

Figure 2.14 shows the decentralized approach to server-side load balancing.
Each of the load balancers LB1, LB2, and LB3 proxifies the microservices µs1,
µs2, and µs3, respectively, and are in charge of balancing the workload of their
instances. This setting reduces the possibility of bottlenecks in the system, but
still, if one of the load balancers fails, all the instances of the controlled microser-
vice become unreachable. Moreover, the server-side load balancers (in both the
centralized and the decentralized setting) introduce an extra hop on the network
that may increase latency. These issues can be solved by adopting a client-side
load balancing approach.

2.4.2 Client-side load balancing

Client-side load balancing is a fully distributed approach, in which each client or
each instance of a prosumer microservice has its local load balancer. Each local
load balancer handles the requests coming from the client/prosumer microservice
and routes them to an instance of the target microservice balancing the target’s
instances workload.

Figure 2.15 shows the sample microservice-based system with client-side load
balancers. Differently from the server-side approach, in this setting, each client
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forwarding channel

µs[1..x]2

µs[1..k]

µs[1..y]3

1
c[1..n]

LB[1..x]
2

LB[1..k]
1

LB[1..n]
c

Figure 2.15: Client-side load balancer

or prosumer service instance has its own local load balancer, which is responsible
for routing the requests toward one of the target service instances.

In this setting, there are no bottlenecks, single points of failure, or extra
hops. On the other side, it is more difficult to evenly distribute the load among
the available microservice instances, while the information about the internal
network of the system can not be hidden and clients can directly interact with
services. Moreover, the client-side approach is not realizable if the clients are not
known, are not able to, or can not perform the load balancing.

2.4.3 A hybrid approach

The hybrid approach is realized by combining both client and server-side load
balancers and permits balancing their pros and cons. The main idea is to have
multiple instances of a server-side load balancer attached to client-side load bal-
ancers that route the traffic toward them. Each instance of a server-side load
balancer proxifies only a subset of the instances of a given microservice.

Figure 2.16 shows a sample microservice-based system with hybrid load bal-
ancing. Here, the client-side load balancers for the instances of the microservice
µs2, LB[1,...,x]

2 are all connected with the server-side load balancers LB1
1:[1,...,k] and

LB2
1:[k+1,...,z]. They proxify the interactions with two different subsets of instances

of the microservice µs1: the first balances the workload among the instances µs11
to µsk1, while the latter balances the workload among the instances µsk+1

1 to µsz1.
In this setting, the server-side load balancer does not represent a single-point

of failure. Rather, new load balancer instances (and new proxified microservice
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Figure 2.16: Client-side load balancer

instances) can be activated to enhance the scalability and performance when the
other instances are under heavy workloads. Also, microservice instances can be
suitably partitioned and their partitions dimensioned in such a way that for each
of them dedicated Service Level Agreements (SLAs) are provided, hence realizing
the so-called z-axis scaling [1, 107].

Summarizing, server-side and client-side approaches have different pros and
cons, with many factors influencing their effectiveness and their fitness to the
system requirements. Hybrid load balancing is not meant to be a substitutive
alternative to server-side or client-side approaches. It is a complementary alterna-
tive that provides some tradeoffs between the two and mitigates their cons. They
can all coexist in the system. However, the different strategies require different
architectures for supporting load balancing. For this reason, an architectural style
able to support all the presented approaches is desirable.

In Chapter 5 we present an architectural style capable of supporting the load
balancing strategies described above, we compare them, and we discuss in detail
the features emerging from their usage.
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Chapter 3

Synthesis of context-aware
choreographies

As discussed in the previous Chapter, SOA systems are realized by composing
third-party and ready-to-use services. They enable the realization of added-value
applications capable of benefitting from the interactions among the involved ser-
vices and offer complex and dynamic functionalities to users. In those systems,
context needs to be considered to provide the desired functionalities by adapting
the system behavior according to the current conditions of the execution envi-
ronment and users’ needs. However – being the services usually black-box and
owned by third parties – context awareness and proper adaptation can not be
realized by acting directly on the composed services; rather, it has to be realized
by acting on their interaction.

This chapter addresses the problem of realizing context-aware choreographies.
The proposed solution extends the CHOReVOLUTION approach for the au-
tomated composition and synthesis of service choreographies described in Sec-
tion 2.2. In the following, we first introduce the context and the challenges that
arise when dealing with context awareness. Then, we describe how we leverage
the BPMN2 notation to express the variability required to define the adaptable
behavior of context-aware choreographies. Next, we present the reference scenario
and discuss its intrinsic complexities. Finally, we present the approach in detail,
evaluate it against the reference scenario and discuss the experimental results.
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3.1 Dealing with context-awareness

Consistently with the definition given by Dey [41], we consider context-awareness
as the ability, of software systems, of using context information in order to dy-
namically adapt according to the user needs. Context-aware systems are able to
“sense” the context and react to changes by adapting their behavior [110].

Through the years, many definitions of context have been given in the liter-
ature, as many are the application domains in which context can be involved.
However, context is often defined by enumerating the characteristics describing
the application domain that is considered in each work [127].

Bauer and Novotny [20] reviewed the notions of context across the literature
and grouped all the different dimensions that have been taken into account when
representing context in three main categories: (i) social context, which includes
the information about user identity, preferences and habits, emotional state, social
and cultural environment, presence and behavior of other people; (ii) technology
context, including all the characteristics of the physical and virtual platform on
which the system runs, such as computing resources, performances, network;
(iii) physical context, including all the observable elements of the environment in
which the system operates, like the functional environment (e.g., indoor/outdoors,
car, home), weather, lighting, time, location, movement. A general definition
of context, which can in principle be accepted beyond any specific application
domain, can be found in [41] where the context is defined as “any information
that can be used to characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interaction between a user and
an application, including the user and applications themselves”.

A series of challenges that arise when dealing with context-aware systems
specifically concerns the representation of the context, the acquisition of the in-
formation, and the overhead introduced for the context management [109]. For
instance, the context model has to consider the heterogeneity of the sources of
information that are exploited in order to acquire context data. In fact, some
context data can be acquired from sensors placed in the environment, while other
data can be provided by the user and mobile devices that interact with the sys-
tem, or can be obtained from external sources like databases and web services.
Moreover, the context model has to allow deriving higher-level context facts from
the raw data obtained by, e.g., sensors and other external sources, and to allow
reasoning to decide whether any adaptation is necessary. In addition, the formal-
ism used to define the context models has to be easily understandable by system

G. Filippone 31



3.1. Dealing with context-awareness

designers [23]. Thus, in order to allow context-aware systems to adapt accord-
ing to the runtime context, a mechanism capable of acquiring information from
different sources, delivering it to the system, and providing context reasoning
functions is needed [23, 29, 60, 75].

With particular reference to SOA and choreographies, realizing context-aware-
ness means being able to adapt the interactions between participants according
to the context conditions. The adaptation has to be autonomous and automatic
and has to consider the dynamic nature of the context, which can change contin-
uously during the system runtime [96]. Accordingly, the notion of context-aware
adaptation we are considering in this work goes beyond the pure reconfiguration
of choreographed systems, which can be realized by modifying the choreogra-
phy specification and evolving the system accordingly (in response to changes
of functional or non-functional requirements [77]). Dynamic adaptation means
that the portions of the choreography requiring adaptation may not be fully
specified at design time. Rather, the choreography specification must be able to
express variability, hence allowing system designers to specify where adaptation
is required and what are the adaptation possibilities. Then, the variable context-
aware portions of the choreography (the ones that realize the adaptation) can be
left underspecified and be concretized at runtime when the context conditions are
known. That said, we consider three different levels of runtime adaptation for
context-aware choreographies:

• Message-level adaptation - to adapt the content of one or more messages
exchanged between the participants (context-aware messages);

• Participant-level adaptation - to select, at runtime, the instance(s) of a
participant service that has to be involved in a task. Participant instances are
selected among a pool of service instances that can play the participant’s role
(context-aware participant instantiation);

• Task-level or Task-flow-level adaptation - to select, at runtime, a suit-
able flow of tasks for a choreography portion that has to be executed, among a
set of possible interactions (choreography variants).

Note that, in performing the participant-level adaptation, we assume for the
sake of simplicity that all the selectable service instances share the same inter-
face and interaction protocol, i.e., they can be integrated without any interface
adaptation. This concern is already addressed in the CHOReVOLUTION frame-
work as described in [4]. Moreover, we assume that the selection of participant
services or variants can only occur when involved parties (i.e., the services to
be selected) are stateless or inactive, hence their substitution does not introduce
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inconsistencies in the system. These assumptions are discussed in Section 3.7.
In the following, we present how variability can be expressed in the BPMN2

choreography specification.

3.2 Expressing variability

As said in the previous section, realizing dynamic adaptation requires expressing
variability in the choreography specification. This calls for modeling constructs
that allow modeling underspecified portions of the BPMN2 choreography model.

Concerning the message-level adaptation realized through context-aware mes-
sages, there is no need to leave unspecified portions of the choreography. In fact,
the structure of the message must always be defined in the choreography spec-
ification since already the beginning and the content of the message is always
a runtime matter. To realize this kind of adaptation, it is enough to suitably
extend the message construction logic (as described in Section 2.2) in order to
take into account the runtime context information.

When defining tasks that require context-aware participant instantiation, we
express variability by using multi-instance participants (as described in Section 2.1
and in Figure 2.6) to specify that there exist several related participant services
that can be involved and dynamically selected.

In order to define at design time the choreography variants required to realize
the task-level or task-flow-level adaptation, we provide a novel choreography spec-
ification construct, called variation point, that allows system designers to specify
the alternative flows of message exchanges for those portions of the choreography
that are mission-critical or that can be more affected by context changes. In
these cases, the choreography alternatives realizing adaptation do not depend on
the content of business messages or the behavior of users and involved services.
Thus, alternatives cannot be specified by means of the usual alternative flows of
the BPMN2 choreography diagram. Yet, they represent pure variations of the
choreography and can be properly specified through the definition of variation
points [95]. Our concept of variation point differs from the one proposed for SPLs
and Systems Families [11, 86, 123], in the sense that, as explained, variants do
not represent different specifications of a choreography. They are only alternative
portions of the same choreography that are dynamically selected and executed at
runtime according to the current context conditions.

Variation points are not natively supported by BPMN2. In order to provide
developers with a means to specify them, we extend the BPMN2 metamodel with
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a novel modeling construct. A variation point contains information about the
participants involved in the alternative variants of the variation point, which are
defined as choreographies associated with it. As shown in Figure 3.1, variation
points are introduced through a novel ad-hoc metaclass in the BPMN2 meta-
model, realized as an extension of the ChoreographyActivity metaclass trough the
inheritance relation. The new VariationPoint metaclass owns a one-to-many re-
lationship with the novel ChoreographyVariant metaclass, which is an extension
of the Choreography metaclass. It allows associating the definition of the variants
with the variation point element.

Figure 3.1: BPMN2 metamodel extension for variation points

Variation points are represented graphically by using a construct that is simi-
lar to the sub-choreographies – without the “+” mark in the box body – containing
the information about the participants involved in the alternative variants: the
initiating participant of the first task of each variant is put into a white round-
cornered box; the other participants in the variants are put into grey boxes.
Figure 3.2 shows the graphical notation of the variation point in a sample chore-
ography with a task (Task) and a variation pooint (Variation Point). The first
tasks of the variants associated to the variation point are initiated by Participant
A and Participant B ; the other participant involved in the variants are Participant
C and Participant D.

From here on, we will refer to both variants and participants as adaptable
entities. The concretization of choreography variants and multi-instance partic-
ipants is realized at runtime by selecting, among a set of candidate variants or
participant services, those which are suitable according to the runtime context of
the system.
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Participant C

Variation Point

Participant A

Participant BParticipant A

Task

Participant B

Participant D

Figure 3.2: Sample choreography with variation point

3.3 Reference scenario

The scenario described in this section refers to a real use case implemented in
the ConnectPA project and shows how Public Administration (PA) systems can
be realized through composition of a number of services exposed by different
authorities. The system in our scenario aims to dematerialize and digitalize the
whole process, from the request to the payment, for billposting of posters in public
spaces of towns.

The “classical” procedure for public posting requires a citizen submitting a
request to the municipality. If free posting spaces are available, then the munic-
ipality sends the bill back to the citizen for enabling the payment. In order to
ease and dematerialize this process, municipalities expose their own services that
manage the billposting, allowing users to search for the available spaces in the
municipality’s territory, hence sending the posting request for a set of selected
spaces, and receiving the related bill. However, in most cases, the postings involve
different municipalities. Even if the municipalities expose their own services, cit-
izens have to repeat the process many times for each municipality, and there is
no integration with a unified payment service. For this reason, our system allows
interoperability among the services of different municipalities and other services
offered by the PA (e.g., a payment service for the PA).

The user interacts with the system through a mobile application that allows
his/her to pinpoint the geographical area in which he/she wants to affix posters
(by selecting a radius starting from his/her current position) and specify the
duration of the postings. Then, the system interacts with the services that handle
the billposting of each involved municipality and retrieves the list of available
spaces. The application shows the available spaces to the user so that he/she
can filter them and select the ones where he/she wants to affix posters. The
selected spaces are then added to a virtual cart. After the user has confirmed the
request, the system communicates with the services of each municipality in order
to get the payment bills. In the end, the user proceeds with the payment through
the mobile app. If the payment service is available, the payment is processed, a
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receipt is sent back to the user and the confirmation of the payment is sent to
the involved municipalities. Otherwise, a payment invoice is sent to the user that
can pay the bill offline.

Poster ServiceMobile APP

Cart Payment Service

Municipality 
Poster Service(s)

Figure 3.3: System connections

With reference to Figure 3.3, the system is realized as a composition of the
following participants:

• Mobile APP : it is the client of the system. It interacts with the other
participants for the request of posting spaces, the selection of the spaces,
and the confirmation of the request. Moreover, it allows the user to pay for
the bills required to affix posts.

• Poster Service: it is a prosumer service that includes some of the business
logic of the system. As a provider, it receives requests from the Mobile APP
to get the list of available spaces, the confirmation of the selected ones, and
the billings for the payments. As a consumer, it communicates with the
services of the municipalities and with the payment service.

• Payment Service: it is a prosumer service that offers the interfaces that
are needed to receive the information for the payments and to pay them.
As a consumer, it interacts with the municipalities in order to send the
confirmation of the paid bills.

• Cart : it is a provider service that exposes the interfaces needed to add,
remove, and get all the elements of a virtual cart.

• Municipality Poster Service(s): these are the provider services, offered by
the municipalities, that allow sending requests for public postings.

Figure 3.4 shows the BPMN2 diagram of the choreography specifying the way
the above mobile app and services must interact.

The multi-instance marker (i.e., a set of three vertical lines) is added to the
participant band of the choreography tasks to express variability needed for the
participant-level adaptation when the instances of a participant that have to be
involved in a task are not known a-priori. This is the case of the Municipality
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Figure 3.4: Reference scenario: Public billposting choreography

Poster Service. In the proposed use case, each municipality provides its own
service holding information related to the posting spaces in the municipality ter-
ritory: the service to be involved at runtime in the process is not known since it
depends on the locations selected by the user.

Variation points represent the underspecified portions of the choreography
needed for the task-level adaptation when a portion of the choreography to be
executed has to be selected at runtime. This is the case of Payment, which,
according to our scenario, has to consider the availability of Payment Service.
Figure 3.5 shows the two sub-choreographies that have been defined as variants.
The first (Variant A) models the interactions that occur if Payment Service is
available; the second (Variant B) models the interactions that occur otherwise.

Poster Service

Send Payment

Payment Service

paymentData

Payment Service

Payment Confirmation

Municipality Poster Service
III

paymentConfirmation

receipt

Poster Service

Reply With Receipt

Mobile App

receipt

(a) Variant A

Poster Service

Reply With Invoice

Mobile App

paymentInvoice

(b) Variant B

Figure 3.5: Choreoraphy variants for Payment variation point
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3.3.1 Arising complexities

The proposed scenario shows some complexities due to the possibility of hav-
ing race conditions, the presence of multi-instance participants, choreography
variants, and independent sequences of message exchanges. Depending on the
sequence or timing of the message exchange, a race condition arises when more
than one Mobile App is simultaneously attempting at gaining free posting spaces
from the same municipality. It is easy to see how this kind of race condition is
more difficult to manage in the presence of multi-instance participants. In fact,
multi-instance participants require dealing with multicast group communication
where the related message exchange is addressed to a group of participants “simul-
taneously”. This is the case of the multiple Municipality Poster Service instances
(see for instance the task Confirm post order). Possible race conditions, unknown
service instances, and independent sequences of message exchanges make things
worst. The sequence of tasks Confirm Post Request ! Get Billing represents an
independent sequence for which coordination is needed in order to enforce the cor-
rect choreography realization and prevent undesired interactions. The situation
here is even more complicated due to the presence of multi-instance participants,
whose number of instances is not known in advance. Race conditions and inde-
pendent sequences are then the main cause of undesired interactions, i.e., those
interactions that are not prescribed by the choreography but may occur if the
services were left free to interact without any control. That said, considering the
reuse of black-box services, and the risk of having undesired interactions, external
coordination exploiting additional synchronization messages is required. More-
over, for what concerns the mobile app, another important aspect, which further
complicates matters, is that it can autonomously engage in the interaction, out
of the blue, in the middle of the independent sequences, without synchronizing
with either the Poster Service or the Municipality Poster Service.

Beyond pure coordination issues, which can be addressed as explained in
Section 2.2.1, the scenario has also context-aware coordination issues. In fact,
since each municipality offers its own service for billposting, the system needs to
ask for the availability of posting spaces to the specific (location-based) service
that covers the area surrounding the user. For this reason, Municipality Poster
Service has been modeled as a multi-instance participant to support participant-
level adaptation. Thus, a dynamic service selection mechanism is needed in order
to correctly access and coordinate the right service at the right location. Also,
the request message sent to each service may differ in its content since the set of
involved services is not known a priori; rather, it requires message-level adaptation
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depending on the runtime context (user’s location). Moreover, the choreography
considers the availability of the Payment Service in order to let the user complete
the billposting process, even in case of unavailability of the payment system. The
alternative interactions that can occur according to the availability of the service
have been modeled through choreography variants that are associated with the
variation point. A mechanism for the dynamic selection and execution of the right
variant is needed in order to realize the task-level adaptation according to the
runtime context (service availability) and coordinate the service interactions in
the different scenarios. For these reasons, basic CDs described in Section 2.2 need
to be extended in order to handle those cases in which (i) a service or a variant
selection needs to be performed at runtime, (ii) the request messages have to be
composed according to the runtime context and then (iii) suitably coordinated
with the running choreography. This is where the novel approach described in this
thesis comes into play and makes the difference by introducing a mechanism for
the definition, acquisition, and manipulation of the context. A further advance
with respect to the state-of-the-art is represented by the new notion of Context-
aware Coordination Delegate (caCD) that, extending the behavior of CDs as
mentioned, permits bringing together the ability to solve the above-described
coordination issues together with the context-related ones.

3.4 Approach description

The novel approach for the automated synthesis of context-aware choreographies
proposed in this thesis extends the sota on choreography synthesis (Section 2.2)
by:

1. Defining a suitable context model;

2. Realizing means to acquire and manipulate the needed context information;

3. Implementing a method to select the candidate adaptable entities for the
context-aware adaptation at runtime, thus concretizing underspecified chore-
ography portions;

4. Executing the resulting adaptation.

Figure 3.6 overviews the approach. It considers three phases: system design,
choreography synthesis, and choreography refinement & enactment. In the design
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Figure 3.6: Approach overview

phase, system designers realize the BPMN2 choreography specification, the spec-
ification of choreography variants (if any), and the model of the context. These
artifacts are taken as input for the synthesis phase, during which a synthesis
algorithm performs a model-to-code transformation and generates: (i) the skele-
ton code of the prosumer services, (ii) the set of Context-aware Coordination
Delegates (caCDs), (iii) a Context Manager service and (iv) a Service Registry.
CaCDs are an enhancement of the basic CDs introduced in Section 2.2. Beyond
coordinating the service interactions, they allow sending context-related messages
and performing the runtime adaptation by invoking the selected service instances
or executing the selected choreography variant. The Context Manager is a service
that gets and holds information about the current context conditions by holding
an instance of the context model. The Context Manager acquires the context
by receiving context-carrying messages or by executing ad-hoc written acquisi-
tion functions and selects the adaptable entities through selection functions. The
Service Registry holds the description of all the service instances that can be se-
lected for the tasks with multi-instance participants. The Service Registry offers
an interface that is exploited by the Context Manager – in order to get the service
descriptions – and by the system administrators – in order to add new service
instances to the registry.

The implementation of the generated components is completed in the choreog-
raphy refinement phase. Here, developers provide the business logic of prosumer
services and the implementation of acquisition and selection functions of the Con-
text Manager. Then, the choreography can be deployed on a cloud infrastructure
and enacted: the resulting system will be able to “sense” the context and dy-
namically adapt by dynamically instantiating the underspecified portions of the
choreography.

In the following, we will describe how: (i) the context is modeled, (ii) the
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generated system handles the context information, and (iii) the adaptation is
performed. We will also portray some examples from our reference scenario to
better explain the process.

3.4.1 Context model

The context model allows defining:

• The context of the system and of adaptable entities;

• How the context is acquired;

• How the context is evaluated and how entities are selected.

Representation of the context information

The information that is needed to represent the context can be grouped into two
categories:

• System context, which includes all the attributes that are common to the
whole system (e.g., user preferences, physical and technological characteris-
tics of the environment, weather, location, availability of services, devices,
and common resources);

• Entities context, which describes the dynamic conditions of each adaptable
entity (e.g., performances and available resources) and their static prop-
erties that never change at runtime (e.g., service cost, location reference,
resource requirements).

Figure 3.7 shows the metamodel that allows defining the context model. The
model describes the context as a composition of the metaclasses SystemContext
and EntityContext. The metaclass ContextAttribute is used to define the dy-
namic characteristics of the context of both system and entities, while StaticPro-
perty metaclass allows the definition of the static properties of the entities con-
text. Each entity context is associated with an Entity Class. The latter allows
the description of the set of service instances of a multi-instance participant, or
the set of variants associated with a variation point.
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Figure 3.7: Context metamodel

Support for context acquisition

In order to deal with the heterogeneity of context sources, our approach considers
two different means for acquiring the runtime context data: ad-hoc acquisition
functions, or context-carrying messages.

Acquisition functions allow acquiring context data from any source, like the ex-
ternal environment, devices, or web services. They are declared as Context Source
for a context attribute through the AcquisitionFunction metaclass. During the
choreography synthesis, the skeleton code of the declared acquisition functions is
generated, while their implementation needs to be provided by developers in the
choreography refinement phase.

Further information about the context can be found in the content of busi-
ness messages exchanged by participants. In fact, choreographies may involve
devices equipped with sensors, which are able to provide runtime context data.
For instance, messages sent by client applications running on smartphones may
contain data about the user’s location. Those messages are already defined in
the BPMN2 choreography specification: we call them context-carrying messages.
Thus, when the value of a context attribute can be acquired from a context-
carrying message, the latter can be used as a context source instead of defining
an acquisition function. The definition of a ContextCarryingMessageSource
requires the XPath expression that allows extracting the needed context infor-
mation from the message. Unlike acquisition functions, the code needed for the
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acquisition of the context data from context-carrying messages is generated from
the context model and does not need any further refinement.

Support for context evaluation and entities selection

In order to provide support for the evaluation of the context and the selection of
the adaptable entities, the metamodel allows the definition of a selection function
for each entity class. The definition of an instance of the SelectionFunction
metaclass requires the reference to the context attributes that have to be eval-
uated and the cardinality of the result. For instance, a single result is required
when selecting a variant, while multiple results may be required for the selection
of the service instances for a multi-instance participant.

Note that the context model only allows the definition of the context attributes
and entity properties to be evaluated by the selection function and the cardinality
of the result. In fact, as for acquisition functions, during the modeling phase, the
selection functions are only defined, while their implementation is left to the
programmers and needs to be provided in the refinement phase. This means
that the selection function implementation is always responsible for, e.g., always
providing a default choice, ensuring consistency on the selected entities, and being
able to always return (at least) an adaptable entity for any possible combination
of the values of the context attributes and entity properties.

✦ Choreography Context

✦ System Context

✦ Context Attribute userLatitude [type: REAL]
✦ ContextCarryingMessageSource [messageName: "postRequest", queryString: "/locationCoordinates/latitude"]

✦ Context Attribute userLongitude [type: REAL]

✦ ContextCarryingMessageSource [messageName: "postRequest", queryString: "/locationCoordinates/longitude"]

✦ Context Attribute searchingRadius [type: REAL]

✦ ContextCarryingMessageSource [messageName: "postRequest", queryString: "/searchRadius"]

✦ Context Attribute paymentAvailability [type: BOOLEAN]

✦ AcquisitionFunction getPaymentAvailability

✦ Entity Context MunicipalityPSContext [belongsTo: MunicipalityPosterService]

✦ Static Property referenceLatitude [type: REAL]
✦ Static Property referenceLongitude [type: REAL]

✦ Entity Context PaymentVariantContext [belongsTo: PaymentVariant]

✦ Static Property paymentServiceRequired [type: BOOLEAN]

✦ Entity Class MunicipalityPosterService [type: CONCRETE_SERVICE]

✦ Selection Function selectMunicipalities [resultCardinality: MULTIPLE, evaluates: userLatitude, userLongitude, searchingRadius]

✦ Entity Class PaymentVariant [type: VARIANT]

✦ Selection Function selectPaymentVariant [resultCardinality: SINGLE, evaluates: paymentAvailaility]

Figure 3.8: Context model for the reference scenario

Figure 3.8 shows the context model of our reference scenario. The character-
istics that constitute the context are the user’s position, the selected searching
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radius, and the availability of the Payment Service. These are modeled into
the System Context through the context attributes userLatitude, userLongitude,
searchingRadius and paymentAvailability. Concerning the context sources of
these attributes, note that the data about the user’s position and the selected
searching radius can be provided by the Mobile App, which exploits the user’s
phone GPS sensors in order to acquire the GPS position, and obtains the search-
ing radius from the user’s input. The message postRequest, sent by the Mobile
App through the task Send post request, contains these data. Figure 3.9 shows the
XML schema of the message. postRequest can be exploited as context source for
the context attributes userLatitude, userLongitude and searchingRadius. Thus,
a ContextCarryingMessageSource is defined in the context model for each of
them, with the related XPath string: /locationCoordinates/latitude for the
user latitude, /locationCoordinates/longitude for the user longitude, and
/searchRadius for the searching radius. In contrast, an acquisition function is
defined in order to get the runtime value of paymentAvailability : getPaymentA-
vailability. The function allows checking the availability of the service by
contacting it.

<xsd:complexType name="postRequest">
<xsd:sequence>

<xsd:element name="requestID" type="xsd:string"/>
<xsd:element name="startDate" type="xsd:date"/>
<xsd:element name="endDate" type="xsd:date"/>
<xsd:element name="locationCoordinates">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="latitude" type="xsd:double"/>
<xsd:element name="longitude" type="xsd:double"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="locationName" type="xsd:string"/>
<xsd:element name="searchRadius" type="xsd:integer"/>

</xsd:sequence>
</xsd:complexType>

Figure 3.9: XML schema of the context-carrying message “postRequest”

Since the scenario involves a multi-instance participant and a variation point,
two different EntityClasses have been defined: MunicipalityPosterService and
PaymentVariant. For each of them, an entity context is defined. Municipali-
tyPSContext defines the properties of the Municipality Poster Service instances.
Since they are characterized by the location of the municipality – which never
changes at runtime – their entity context is composed by the static properties
referenceLatitude and referenceLongitude. PaymentVariantContext defines the
properties of the variants defined for the variation point. They are characterized
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by the availability of the Payment Service, i.e., the condition used to select a
variant. Thus, their entity context is composed by the paymentServiceRequired
property. Finally, for each of these two entity classes, a selection function has
been defined. For MunicipalityPosterService, the selection function selectMunic-
ipalityServiceInstances is defined. It evaluates the context attributes related to
the user location and the searching radius, and returns a result with a multiple
cardinality, selecting all the services whose reference location is in the selected
area. For the variation point, the function selectPaymentVariant is defined. It
evaluates the paymentAvailability context attribute and returns a single result
(the selected choreography variant).

3.4.2 Context-aware CDs

Context-aware Coordination Delegates (caCDs) are introduced to execute the
choreography adaptation at runtime. They manage:

• The execution of variants;

• The context-aware participant instantiation;

• The exchange of context-aware and context-carrying messages;

• The communication with the Context Manager.

The whole logic of caCDs is automatically generated.
For “normal” tasks, caCDs behave as basic CDs (see Figure 2.8), by also ex-

changing synch messages (Section 2.1) to coordinate independent sequences of
tasks. CaCDs execute an extended version of the interaction pattern of basic
CDs. This extension accounts for: caCDs involved in tasks with multi-instance
participants; CDs that handle the execution of a variant; caCDs whose supervised
participant sends a context-carrying message. Thus, in the following, we describe
the interaction pattern of the caCDs when: (i) receiving context-carrying mes-
sages, (ii) performing context-aware participant instantiation, and (iii) executing
choreography variants. In so doing, for the sake of simplicity, we consider the
Context Manager as a black-box entity. Its behavior will be discussed in Sec-
tion 3.4.3.

Exchange of context-carrying messages

Figure 3.10 shows the interaction pattern for a general case represented by a task
T1 in which a context-carrying message (message M1) is sent by a consumer A to
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a prosumer B. When receiving M1, the caCDA forwards it (as a basic CD would
also do, interactions 1 and 2), then it sends M1 to the Context Manager in order
to be processed (extension of the basic pattern, interaction 3). When handling
the response message, it behaves like a basic CD (interactions 6 and 7).

4 M1

5 M2

Context 
Manager

A

T1

B

M1

M2

A
1 M1

3 M1

caCDA

2 M1

6 M27 M2
BcaCDB

Figure 3.10: Context-aware CD interaction pattern for context-carrying messages

In our reference scenario, this interaction occurs for the task Send post request
since it involves the context-carrying message postRequest. When receiving this
message, the caCD of Mobile App forwards it both to the caCD of Poster Ser-
vice and to the Context Manager. The latter will get the values of the context
attributes user latitude, user longitude, and searching radius from the message
content.

Context-aware participant instantiation

Figure 3.11 shows the interaction pattern for a general task T2 in which a context-
aware participant instantiation is needed for a multi-instance participant C. In
order to execute the task, the caCDB asks the Context Manager for selecting the
instances of C that have to be involved (interaction 1). The Context Manager
returns the set of the endpoints of the selected instances, together with their
entities’ context and the system context (interaction 2). Then, caCDB will execute
the context-aware participant instantiation. For each service instance Ci in the
list, caCDB will: (i) get from B the instance of the message M3, related to
the context associated with the instance Ci (interactions 3 and 4); (ii) send the
message to Ci, receiving back the response (interactions 5 and 6); (iii) forward
the response message to service B (interaction 7).

The participant instances are invoked in parallel. Thus, interactions from 3
to 7 are concurrently executed for each selected service instance. Note that the
message M3 is built by considering the runtime context, which is provided by the
Context Manager alongside each selected service instance endpoint. In this way,
also the message-level adaptation can be realized, as discussed in section 3.1.
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Figure 3.11: Context-aware CD interaction pattern for context-aware participant in-

stantiation

In our reference scenario, the context-aware participant instantiation is per-
formed for the tasks Find Municipality Posting Spaces, Confirm Post Request,
and Payment Confirmation (in the Variant A of Figure 3.5). They all require
the runtime selection of the instances of Municipality Poster Service. For the
first two tasks, the interactions described above are performed by the caCD of
PosterService, since the latter is the initiating participant of the tasks. For the
task Payment confirmation, the instantiation is handled by the caCD of Payment
Service.

Variants execution

Figure 3.12 shows the interaction pattern for the selection and execution of a
choreography variant. Here, it is important to know which are the initiating par-
ticipants of the first task of the variants. That is, A and B in Figure 3.12. After
the execution of T1, the caCD of A (caCDA) asks the Context Manager for the
selection of the variant associated with the variation point VP1 (interaction 1).
The Context Manager returns the name of the selected variant (interaction 2).
Then, if the initiating participant of the selected variant is B, caCDA communi-
cates with caCDB in order to start the execution of a variant; otherwise, caCDA

starts the execution of the first task of the selected variant.
In our reference scenario, the selection of a variant (Figure 3.5) has to be

performed for the variation point Payment. The caCD of Mobile App asks the
Context Manager for the variant selection after the execution of Start Payment
Process. Variant A is selected if the payment service is available, Variant B
otherwise. Since for both of them the initiating participant is Poster Service, in
both cases, the caCD of Mobile App informs the caCD of Poster Service about
which variant has to be executed. Then, if the selected variant is Variant A, the
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Figure 3.12: Context-aware CD interaction pattern for variant selection

caCD starts the task Send Payment ; Reply With Invoice, otherwise.

3.4.3 Context Manager

The Context Manager holds the model instance of the context of both system
and entities, receives the context-carrying messages that are exchanged during
the choreography execution, and executes the acquisition and selection functions.
In the following, we describe how: (i) the context is represented in the Context
Manager; (ii) the context acquisition is performed; (iii) the entities are selected
at runtime.

Context model instance

The synthesis process transforms the context model into a set of Java classes,
which are instantiated at runtime. The Java classes contain, as class attributes,
the context attributes that have been defined in the model. At runtime, there
will be:

• An instance of the system context class;

• An instance of an entity context class for each adaptable entity (i.e., an
“entity context” instance for each instance of a participant service and for
each choreography variant).

The list of service instances is obtained by querying the Service Registry.
Moreover, when a new service is published into the registry, the latter will interact
with the Context Manager in order to update the list and create a new instance
of the entity class context.
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Figure 3.13: Class diagram of the context representation in the Context Manager

Figure 3.13 shows the class diagram that represents the context of our refer-
ence scenario. The context attributes defined in the system context model (shown
in Figure 3.8) are translated into the attributes of the class SystemContext.
The acquisition function getPaymentAvailability is translated into the method
getPaymentAvailability(). The class MunicipalityPSContext contains the
information of the homonymous entity class defined in the context model (Fig-
ure 3.8). The same holds for the PaymantVariantContext class. An instance
of SystemContext will dynamically hold the runtime information of the sys-
tem context, while there will be an instance of MunicipalityPSContext for
each instance of Municipality Poster Service in the registry, and an instance of
PaymentVariantContext for each of the two variants.

Context acquisition

As explained above, context information is acquired through context-carrying
message or acquisition functions. Once obtained the context information, the
Context Manager updates the values of the related attributes in the context
model instance.

When a context-carrying message is sent, the involved caCD forwards it to
the Context Manager. By means of an aptly defined XPath expression, the latter
extracts the value of all the context attributes for which the received message has
been defined as ContextCarryingMessageSource. In contrast, the values of the
attributes that have an acquisition function as a context source are obtained on
demand, when they are used for the entity selection.

Coming back to our scenario, the Context Manager receives the context-
carrying message postRequest that is used as a context source for the attributes
userLatitude, userLongitude, and searchingRadius. The Context Manager ex-
tracts the value from the message and updates the values of the userLatitude,
userLongitude, and searchingRadius attributes in the instance of the class Sys-
temContext. Instead, the value of the context attribute paymentAvailability is
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obtained by executing its defined acquisition function. This is done before the
execution of the selection function of the variants.

Entities selection

When a choreography variant needs to be executed or a context-aware participant
instantiation needs to be performed, the Context Manager selects the adaptable
entities by executing the selection function. When selecting a variant, the Context
Manager simply returns to the involved caCD the name of the selected variant.
When dealing with context-aware participant instantiation, once selected the ser-
vice instances through the selection function, the Context Manager obtains their
description (i.e., the service endpoints) from the service registry. Then, the Con-
text Manager returns the list of the endpoints of the selected instances, together
with their runtime context.

Figure 3.14: Context Manager behavior for the context-aware participant instantiaton

Figure 3.14 shows, through a BPMN diagram, the behavior of the Context
Manager for a general case of context-aware participant instantiation. When a
caCD needs to start the execution of a task requiring context-aware participant
instantiation, it asks for the selection of service instances to the Context Manager
(the interaction pattern of the caCD is depicted in Figure 3.11). After receiving
the message, the Context Manager executes the acquisition functions related to
(i) the adaptable entities to be selected and (ii) the system context attributes
that have to be evaluated. The results of the acquisition functions are stored into
the context model instance. Then, the Context Manager executes the selection
function, obtaining the list of the selected service instances. Next, it asks the
service registry for the endpoints of the selected instances and returns them to
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the caCD together with their associated context. For the sake of simplicity, we
avoid reporting the behavior for the variant selection: the behavior of the Context
Manager is the same, except for the communication with the Service Registry,
which is avoided since the Context Manager selects and returns to the caCD the
name of the variant to be executed.

Note that both the context evaluation and the entity selection are performed
before that participants are involved in the interaction. Thus, service instances
are selected only when they are “inactive” (i.e., only when it is not in the middle
of serving a request), hence their substitution cannot affect the consistency of the
overall choreography state. In order to avoid inconsistencies, we assume that:

• the service instances to adapt are stateless, i.e., there is no internal state to
be restored; rather, there can be a conversational state that is maintained
across every single invocation through message passing and/or “external”
session handling;

• the context conditions that are evaluated for the selection cannot change
between an instance selection and the next one (e.g., the context attributes
are acquired from context-carrying messages that are sent only once, as in
our reference scenario).

Moreover, as stated in Section 3.1, we also assume that all the service instances
of a multi-instance participant share the same interface and the same interaction
protocol, thus we do not focus on possible interface incompatibilities.

Concerning our scenario, the entity Context Manager performs the context-
aware participant instantiation when the instances of Municipality Poster Service
have to be dynamically selected. Since there are no acquisition functions to be
executed in this particular case, the Context Manager just executes the selection
function selectMunicipalityService-Instances. Then, it gets the endpoints
of the selected service instances from the Service Registry and returns them to
caCD Payment Service, which is in charge of performing their invocation. In order
to perform the adaptation needed for the variation point Payment, the Context
Manager first executes the acquisition function getPaymentAvailability to get
the current value of the paymentAvailability context property, then it executes
the selection function selectPaymentVariant. The name of the selected variant
is then returned to caCD Poster Service, which will execute the selected variant.
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3.5 Synthesis and refinement processes

This section describes how the synthesis process generates the components de-
scribed in the previous sections and how they are refined in the refinement pro-
cess. Figure 3.15 overviews the synthesis process. It is an extension of the process
described in Section 2.2, now including the generation of the software artifacts
described in the previous Section.
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Figure 3.15: Synthesis process overview

The process is performed by a synthesis processor, which takes as input the
choreography specification (Figure 3.4) including the specification of the variants
(Figure 3.5), the context model (Figure 3.8), and the XML schema of the messages
(Figure 3.9).

The synthesis process starts with the Choreography Projection. As explained
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in Section 2.2, it is a model-to-model transformation where the BPMN2 chore-
ography specification is used to create a participant model for each consumer
or prosumer service involved in the choreography. The participant model, still
in BPMN2 format, describes the sequence of message exchanges performed by
a participant. This model serves as input for the subsequent steps: prosumer
service generation and caCDs generation.

In the prosumer service generation and caCDs generation steps, prosumer
services and caCDs are generated for each participant whose model was obtained
in the previous step. This step utilizes the participant model and the XML
schema definition of the business messages exchanged with other participants.
It is important to note that only the skeleton code for the prosumer services is
generated, as the complete implementation of their business logic is application-
specific and requires manual completion. In particular, as described in Section 2.2,
the provider-side business logic of prosumers can be either implemented from
scratch or reused from an existing service, while the consumer-side business logic
needs to be implemented.

The next phase is the context model transformation. Here, given the context
model as input, a model-to-code transformation outputs the code of the Java
classes representing the context model instance, as described in Section 3.4.3. The
context model instance serves as input for the next Context Manager generation
step.

The Context Manager is generated by taking as input the context model, the
Java classes of the model instance, and the XML schema of the messages. These
inputs are needed to generate the skeleton of the acquisition and selection func-
tion, the code required to hold the runtime context data, and the management
of context-carrying messages, respectively. The Context Manager, as it is gener-
ated in this phase, requires further refinement through the implementation of the
selection and acquisition functions.

Next, the Service Registry is generated. The automated synthesis ends with
the generation of the architectural representation of the choreography, which
highlights the interdependencies among all the generated software artifacts and
the other third-party participants.

Figure 3.16 shows choreography architecture resulting from the synthesis phase
applied to the reference scenario. Besides the Context Manager and the Service
Registry, the synthesis processor generates the following artifacts:

• caCD MobileAPP, associated to the participant Mobile APP.

G. Filippone 53



3.5. Synthesis and refinement processes

Figure 3.16: Generated system architecture

• caCD Poster Service, associated to the participant Poster Service.

• caCD Payment Service, associated to the participant Payment Service.

• The skeleton code of the prosumer services Poster Service and Payment
Service. The former contains the logic needed to interact with the Mobile
App and handle the requests for posting spaces. It needs to be implemented
by following the skeleton code that has been generated. The latter can be
realized by reusing an existing payment service for its provider-side business
logic and implementing the consumer-side business logic only.

After the synthesis process, in the refinement phase, the implementation of
prosumer services logic and the selection and acquisition functions of the Context
Manager are completed. Figure 3.17 overviews this phase. Differently from the
synthesis, which is automatically performed, the refinement needs the manual
intervention of developers to fill the skeleton code of prosumer services and the
Context Manager. Concerning prosumer services, the code implementing the
message construction logic and the provider side business logic (Section 2.2) need
to be added to the already generated code. Concerning the Context Manager,
developers provide the implementation of the selection and acquisition functions
required to perform adaptation. After the refinement process, the choreography
is ready to be deployed and enacted.

With reference to our use case, the implementation of the prosumer services
is refined by providing the provider-side and the message construction logic of
Poster Service and Payment Service prosumers as explained above. Concerning
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Figure 3.17: Refinement process overview

the Context Manager, the synthesis process outputted the method declarations for
two selection functions (selectMunicipalities and selectPaymentVariant)
and an acquisition function (getPaymentAvailability), as defined in the context
model in Figure 3.8.

Figure 3.18 shows the implementation of the two selection functions. The
selectMunicipalities method takes as parameters the system context attributes
that have been defined in the context model (userLatitude, userLongitude, search-
ingRadius), the list of candidate adaptable entities (i.e., the list of Municipali-
tyPosterServiceInstance), and returns the list of selected ones. In particular, it
returns the list of municipalities (adaptable entities) whose distance from the
user’s position is less than searchingRadius. The distance between the municipal-
ity location and the user position is obtained by using the distance() method.
It has been aptly coded and computes the cartesian distance between the user co-
ordinates (userLatitude and userLongitude) and the reference coordinates of the
service, which are obtained from their context, as defined in the context model
and shown in the class diagram in Figure 3.13. For the sake of simplicity, the
proposed implementation of this function leverages the assumption that, in our
particular scenario, at least one instance of Municipality Poster Service is avail-
able in the searching area defined by the user through his/her position and the
selected searching radius. However, in general, as explained in Section 3.4.1, the
implementation of the selection function should always provide at least a default
choice: this can be achieved by improving the proposed selection function by
returning, e.g., the closest municipality whenever there are no municipalities in
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the searching area.
Concerning the implementation of the selectPaymentVariant method, it

returns the variant that requires the Payment Service (if the latter is available);
the one that does not require the service, otherwise.

public PaymentVariant selectPaymentVariant(boolean paymentAvailability, List<PaymentVariant> variants) {

return variants.stream().filter(e -> e.getContext().paymentServiceRequired == paymentAvailability).findFirst().get();
}

public List<MunicipalityPosterServiceInstance> selectMunicipalities(
double userLatitude, 
double userLongitude,
double searchingRadius,
List<MunicipalityPosterServiceInstance> instances) {

return instances.stream().filter(e ->
distance(e.getContext().referenceLatitude, e.getContext().referenceLongitude, userLatitude, userLongitude) <= searchingRadius

).collect(Collectors.toList());
}

Figure 3.18: Selection functions implementation

The acquisition function getPaymentAvailability has been implemented to
simulate the interaction with the service and return test values.

3.6 Evaluation

In this section, we describe how the system obtained from the previous section
has been set up in order to run experiments and we discuss the obtained results.
The experimentation purpose is to evaluate that: (i) the choreography execution
is correctly enforced by the caCD, i.e., the participant services interact as pre-
scribed by the choreography specification; (ii) caCD are able to achieve dynamic
adaptation of the system with respect to the context; (iii) the distributed coordi-
nation and adaptation layer of the system does not have any significant impact on
the choreography execution time, even when the number of concurrent requests
or the number of adaptable entities grows, i.e., the overhead introduced by the
Context Manager and caCDs for the adaptation is negligible.

The complete implementation of the system used for evaluation and the re-
lated documentation is publicly available for replicating the performed experi-
ments1. In the following, we describe the experimental setting. Then, we define
the metrics computed with the collected data. Finally, we report the obtained
results.

1https://github.com/sosygroup/connectpa-billposting-choreography
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3.6.1 Experimentation settings

For experimentation purposes, we deployed five different instances of Municipality
Poster Service, each referring to a different municipality. Each instance holds
information about the posting spaces available in its territory. Figure 3.19 shows
the geographical distribution of the five municipalities that have been considered.

Figure 3.19: Geographical distribution of the municipalities involved in the choreog-

raphy

The information about the instances of the Municipality Poster Service has
been put into the Service Registry through its API. When the choreography is
enacted, the Context Manager initializes the context of each of the instances with
information about the location of the municipalities.

In order to perform tests, the Mobile App is realized as an application that
simulates the presence of a varying number of users that concurrently interact
with the system. For each simulated user, the Mobile app sends a request by
selecting randomly the current user’s position and the searching radius. Then, in
order to simulate its autonomous behavior, the Mobile App attempts to perform
an interaction 1.5 seconds after the end of the previous one.

The sequence diagram in Figure 3.20 details the timing of the requests. For the
sake of simplicity, the diagram portrays only the interactions that occur between
the Mobile App, Poster Service, and Cart, without detailing the interactions that
occur between the other composed services. For each simulated user, the Mobile
App invokes the Add Space operation 1.5 seconds after that the Reply message is
received from Poster Service, then after 1.5 seconds it invokes Send Confirmation,
and so on, thus simulating the reasoning time of the human user.

The experimentation has been performed using six Virtual Machines (VMs)
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Poster ServiceCartMobile App

1.5s

1.5s

1.5s

Send post request

Reply

Add space

Send Confirmation

Get Billing

Start Payment Process

1.5s

Figure 3.20: Sequence diagram illustrating timing of the simulated Mobile App inter-

actions

installed in three distinct Server Machines (SMs). Each SM is equipped with 2
CPUs Intel Xeon E5-2650 v3, 2.3 GHz, 64 GB RAM, and 1 Gb/s LAN network;
each VM has 4 CPU cores and 4 GB of RAM. The operating system is Ubuntu
Server 20.10. Open Stack is the cloud infrastructure provider. Participant ser-
vices, CDs, and Context Manager have been deployed on the VMs as described
in Figure 3.21.

This deployment setting permitted us to experiment with a real scenario,
where services are offered by different providers, and also the instances of Mu-
nicipality Poster Service are geographically distributed, hence running simulta-
neously with real parallelism. The same holds for caCDs, Context Manager, and
Service Registry.

3.6.2 Data collection and metrics

Experiment data are collected by caCDs, Context Manager, and participant ser-
vices, which locally log the start and end timestamps of each task. They are
obtained only after that the execution is completed, in a way that the collection
of data does not interfere with the message exchange between participants and
CDs. Figure 3.22 shows the interaction pattern of services and CDs for the most
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SM1 SM2

SM3

VM5

VM1

VM4

VM3Context Manager
Municipality A Poster Service

Cart
Municipality B Poster Service

Service Registry

VM2

Poster Service
caCD Poster Service

Municipality C Poster Service
caCD Payment Service

Municipality D Poster Service
Payment Service

VM5 Municipality E Poster Service
caCD MobileApp

Figure 3.21: Services deployment scheme for the experimentation

general case as defined in Section 2.8 and the timestamps logged by the services.
Pure consumer services log the timestamp when sending the request message to
the receiving participant (start(T1) in the figure, being T1 the name of the task
for which the log has been generated), and when receiving the response message,
if any (end_c(T1)). Pure provider services log the timestamps when receiving
the request messages and when replying with a response message, if any (rec(T2)
and end_p(T2) in the example), or when their computation is complete, other-
wise. Prosumer services log the timestamps when receiving the request messages
(and when replying) if they play the role of provider (rec(T1) and end_p(T1)).
If they play the role of consumer, they log the timestamp when receiving the
request from the CD (start(T2)), and when receiving the response message, if
any (end_c(T2)). The Context Manager logs the timestamps when receiving the
request for the selection of an adaptable entity and when replying back with the
list of selected ones (interactions 1 and 2 in Figures 3.11 and 3.12), respectively
defined as sel_start(Tn) and sel_end(Tn) where Tn is the name of the activity
(task or Variation Point) requiring adaptation. CaCDs log the timestamp when
sending and receiving SYNCH messages.

By using the logged timestamps defined above, we measured the following
metrics:

• Task Execution Time: time between the first and the last logged times-
tamps. It is computed for each task as the difference between the timestamp
of the request received by the initiating prosumer and the timestamp of (i)
the received response (if the task is request-response) or (ii) the received
request message by the receiving participant (otherwise):
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Figure 3.22: Timestamps logged by participant services

ExecT ime(Tn) =

8
<

:
start(Tn)� end_c(Tn) if Tn has a response message

start(Tn)� end_p(Tn) otherwise
(3.1)

where Tn is the name of the task;

• Coordination Overhead : time between the end of a task and the start of
the following task, excluding the tasks that are initiated by full-consumer
services (i.e., the Mobile App in our use-case) or that require adaptation.
It is computed as the difference between the timestamp for the end of the
previous task and the timestamp of the request received by the initiating
prosumer:

Coord(Tn) = start(Tn)�max{end_c(Tn�1), end_p(Tn�1)} (3.2)

where Tn is the name of the task and Tn�1 is the name of the previous one;

• Adaptation Overhead : time between the receiving of the request for the en-
tity selection by the Context Manager and the start of the activity requiring
adaptation:
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Adapt(Tn) = start(Tn)� sel_start(Tn) (3.3)

where Tn is the name of the activity that requires adaptation;

• Entity Selection Time: time needed by the Context Manager to select the
adaptable entities and return the selection to the caCDs. It is computed as
the difference between the two timestamps logged by the Context Manager:

Sel(Tn) = sel_end(Tn)� sel_start(Tn) (3.4)

where Tn is the name of the activity that requires adaptation. Note that
this measure is already considered by the Adaptation overhead, but if ob-
served individually it can give us information about the specific overhead
introduced by Context Manager for the entities selection, in particular when
considering sets of selectable service instances of different sizes.

Data are collected by running the system with an increasing level of con-
currency through the simulation of a varying number of interacting users. In
particular, we run the test multiple times by simulating, at each run, a different
number of concurrent users from 1 up to 500. Moreover, we also simulate the
presence of a growing number of instances of Municipality Poster Service by repli-
cating the entries in the Service Registry. All the tests are also run by simulating
the availability or unavailability of the Payment Service. These settings stress
both the Context Manager in the selection process and the caCDs in the runtime
participant instantiation. In each of the described settings, the choreography is
run 20 times in order to reduce the impact of outliers and random performance
variations, hence improving the significance and consistency of the collected data.
Also, this allows us to compute the average value for all the metrics defined above.

3.6.3 Experiment results

This section reports the results obtained by running the experiments as set in the
previous section. Concerning our use case, experimental results show that: (i) the
choreography execution is enforced in the correct way; (ii) the context-awareness
capabilities are successfully realized; (iii) the overhead introduced by caCDs and
Context Manager is negligible even with a large number of concurrent users and
selected service instances, and its growth is linear with respect to the increase of
both the number of users and the number of selected instances.
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Choreography execution enforcement

Figure 3.23 shows a timeline of the average execution times of the tasks when a
single user is simulated. For the sake of simplicity, we report the tasks that are
executed when Variant A (Figure 3.5) is selected. For each task, the blue bar
represents the time during which the task is executed (i.e., the time between the
first and the last logged timestamps of the involved services). If the task belongs
to an independent sequence, a striped bar shows the time between the sending
of the message by the initiating participant to its associated CD (interaction 1
in Figure 2.10) and the forwarding of the message to the receiving participant
(interaction 2). For the tasks with multi-instance participants (marked with a “*”
in Figure 3.23) the blue bar shows the average execution times for all the involved
instances of Municipality Service.

0 1 2 3 4 5 6 7 8 9 10 11

Send Post Request

Find Posting Spaces *

Reply

Add Space
Send Confirmation

Get Selected

Confirm Post Request *

Get Billing

Start Payment Process

Send Payment

Payment Confirmation *

Reply With Receipt

Time (s)

Figure 3.23: Average execution time of choreography tasks

Tasks are executed by fully respecting the choreography specification. In fact,
although Mobile App can try to invoke tasks in a totally autonomous way, their
execution is enforced to follow the specification. Figure 3.24 shows the details of
the execution of the independent sequences of the choreography. The rhombus
represents the sending time of the SYNCH message by the caCD of Poster Service
to the caCD of Mobile App, for enforcing the sequence Confirm Post Request !
Get Billing. We can note that, since Mobile App tries to execute autonomously
the task Get Billing while Confirm Post Order is still being executed, the message
is not forwarded until the latter is completed and the SYNCH message is sent
(striped portion of the bar). Only after that the SYNCH message is received,
the caCD MobileApp forwards the request message and Get Billing is effectively
executed (filled portion of the bar for Get Billing).
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5,25 5,5 5,75 6 6,25 6,5 6,75 7 7,25

Confirm Post Request *

SYNCH

Get Billing

Time (s)

Figure 3.24: Details of the independent sequence execution

Impact on system performances

Table 3.1 reports the results of our experiments. For each experimental setting, we
report the average, minimum, and maximum values for the total task execution
time, total coordination overhead, total adaptation overhead, and total entity
execution time of each choreography run. The first six runs have been performed
by increasing the level of concurrency by simulating a growing number of users,
while the number of service instances in the Service Registry is fixed to the
five instances that we deployed. In contrast, in the last three runs, we fixed
the number of simulated users and we considered a growing number of service
instances in the service registry.

With a single user and 5 service instances, we measured an average total
adaptation overhead of 563ms. Of these, 476ms are needed for the evaluation
of the context and the selection of the adaptable entities, while the remaining
87ms are spent for the execution of the adaptation performed by the caCDs. If
considering the execution of a single adaptation, it requires an average of 141ms,
of which 119ms are needed for the entity selection. As a comparison, we measured
that the task Send Confirmation lasts 164ms, while the average execution time of
a choreography task is 501ms. The same can be said also with a higher degree of
parallelism: with 500 instances, we measured a total overhead for the adaptation
of 880ms (220ms for a single selection), while the average total time for the task
execution is 9200ms.

Figure 3.25 shows how the average times reported in Table 3.1 increase when
the degree of parallelism increases. We observe that, when the number of concur-
rent requests grows, the mean total overhead for the adaptation has a decreasing
weight with respect to the mean total execution time of the choreography tasks.
On average, without concurrent users, the total time spent for the selection of
the adaptable entities measures the 9.37% of the total task execution time; with
200 concurrent instances, it measures the 8.9%; with 500 concurrent instances,
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the 8.7%. For what concerns the overhead for the coordination, we note that this
overhead is even more negligible, since it represents only the 1,4% of the total
task execution time without any concurrent instances, while it lowers to the 1,3%
with 500 instances running concurrently.
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Figure 3.25: Trend of task execution time, adaptation overhead, and coordination

overhead at the increasing number of users

A linear regression analysis performed using the mean values of the overhead
shows that both adaptation and coordination overhead grow linearly with respect
to the number of concurrent users. In particular, concerning the adaptation over-
head, we observe that the value of the slope of the line is low (0.4933) – meaning
that the growth is very smooth – and the coefficient of determination r2 is very
close to 1 (0.9843) – meaning that the linear growth provides a good approxi-
mation. The same holds for the coordination overhead: here we observe that
the slope is very low (0.0564); whereas, r2 is 0.9872. The results concerning the
coordination overhead support the findings that have been obtained in previous
work concerning the enforcement of the correct choreography coordination [8],
thus confirming the high scalability of the coordinated system when handling a
high number of concurrent requests.

Finally, we observe how the adaptation overhead changes when the number
of service instances that are selected increases. Figure 3.26 shows how the adap-
tation overhead and the entity selection time grow when the number of selected
instances for the tasks with multi-instance participant increases. The linear re-
gression highlights that both the adaptation overhead and the selection time have
linear growth. Interestingly, we can note that the latter grows with a lower slope
than the whole adaptation overhead (0.2715 against 0.7741). This hints at the
fact that the selection process is only marginally affected by the number of in-
stances that can be selected. In contrast, the only instantiation process takes
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more time to be completed. In fact, by referring to Figure 3.11, we observe that,
while the selection function is executed only once regardless of the number of
service instances in the registry (interactions 1 and 2), the caCD asks the request
message to the initiating participant of the task for each selected instance (in-
teraction 3). This results in a higher number of interactions that are executed
in parallel and that (slightly) increase the overhead. On the other hand, we can
observe that the constant part of the overhead – represented by the y-intercept
of the line – is mainly related to the selection time (474.3ms, out of 561.83ms of
the whole adaptation constant part). This is due to the fact that, as explained,
the selection process is always executed once even if no suitable service instances
are found and selected: the context acquisition, the query on the service registry,
and the execution of the selection function represent computational steps that
are always needed and executed only once, when adaptation is required.
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Figure 3.26: Trend of adaptation overhead and entities selection time at the increasing

number of service instances

3.7 Discussion

This Chapter described the proposed approach for the automated composition of
services in context-aware choreographies. It is shown at work and evaluated on
the use case implemented in the context of the ConnectPA project. This system
be considered as a proof-of-concept of the proposed approach, showing its bene-
fits and functionalities. In particular, it showed how local-grade services owned
by public authorities can be composed in a wider, value-added system, benefit-
ting from the decentralization coming from choreographies and the context-aware
adaptation capabilities introduced with this work.
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Results obtained from the experimentation show that, in the scope of our
use case, the overhead introduced for the adaptation of the system is negligible,
especially if compared with the execution time of the choreography tasks. More-
over, the scalability of the coordination and adaptation layer is satisfiable, since
the time required for the adaptation grows linearly (with a very low rate) when
the number of users and service instances grows. On the other hand, experi-
mentation highlighted that the services realized and composed in the considered
use-case suffer from the raise in workload when a high number of users concur-
rently interact with the system. This results in a degradation of the performance
of the system. However, it is important to note that this issue does not concern
our approach; rather, the scalability of composed services (and, as a consequence,
of the system) can only be addressed by the institution or company that provides
them.

In general, the scalability of such systems can be enhanced by leveraging the
benefits brought by MSA, as explained in Section 2.3. This requires (i) the de-
composition of the services that are more affected by heavy workloads to support
better management of the resources, and (ii) load balancing to distribute the
workload among the replicated instances of microservices. This calls for both an
approach to the decomposition of monolithic services and an architecture support-
ing load balancing alongside the coordination needs of the system. In the next
chapters, we will address these issues by presenting an automated approach to
the decomposition of monoliths (Chapter 4) and an architectural style supporting
both coordination and load balancing (Chapter 5).

Before going into these aspects, we now discuss some aspects that may threaten
the validity of the proposed approach and experimental results.

3.7.1 Threats to validity

Internal Validity

The evaluation of the approach has been performed on a real use case related
to the ConnectPA project. Although this allowed us to test the approach on a
real scenario, this may limit the validity of the obtained results. In fact, in the
use case, there has not been the need to realize a context acquisition function
since the context information required for the adaptation features was only in
the content of the business messages (we only defined context-carrying messages
without the need for context acquisition functions). The execution acquisitions
function may increase the adaptation overhead, in particular with a high number

G. Filippone 67



3.7. Discussion

of concurrent users or adaptable entities. On the other hand, experiments high-
lighted that the selection function (which is executed with the same frequency
as adaptation functions, i.e., when adaptation needs to be performed) is very
marginally affected by the number of users or adaptable entities. However, more
tests are needed to have a more complete validation of the approach, in particular
concerning the adaptation process on use cases with more stringent performance
requirements. However, to overcome any possible loss in performance due to
the execution of both selection and acquisition functions, they may be executed
in an asynchronous way (when possible) or the Context Manager can be repli-
cated in multiple instances to support scalability, just as suggested above when
commenting on the scalability of the composed services.

External Validity

For the sake of simplicity, we presented the participant-level adaptation lever-
aging on the assumption that all the instances of a multi-instance participant
service share the same interface and the same interaction protocol. Although this
holds in our use case, often different service instances can offer the same function-
alities while exposing different interfaces. This assumption allowed us to focus
on context-aware adaptation rather than on other issues. However, in order to
deal with interface incompatibilities, we can introduce service Adapters, already
supported by the CHOReVOLUTION framework, as shown in previous works [4].
Adapters are software entities that are automatically synthesized from an ad-hoc
realized adapter model that takes into account the different behavior and inter-
faces of services. Adapters are interposed between services and bridge the gap
between their interfaces and their abstract description in the choreography model.
When a service instance with an incompatible interface (described in the adapter
model) is added to the Service Registry, an adapter can be synthesized to be used
when the instance is selected at runtime.

The service selection is a dynamic adaptation mechanism that does not rely
on pre-defined alternatives. Services can be added or removed at runtime from
the service registry without requiring any reconfiguration or redeployment. In
fact, the service selection function selects the services that are suitable according
to the context (of both system and entities) without knowing a priori the set of
candidate services instances. The instances are selected among those that are in
the registry right when the selection is performed. Context acquisition functions
can also provide information about the current service availability and/or their
QoS levels to allow the adaptation also according to the dynamic conditions of
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the participant services. In contrast, our task-level and task-flow level adapta-
tion (i.e., choreography variants) relies on a set of well-defined alternatives that
are defined since the early stages of the choreography modeling. The selection
function selects among a set of known alternatives, by returning the name of the
selected variant to the caCDs. It is clear that, in this case, adding a new variant
at runtime requires a reconfiguration of the system. However, we need to only
update the coordination protocol of the caCDs that handle the new variant, in
order to suitably coordinate the participant services, and – if needed – the selec-
tion function in the Context Manager to consider the updated set of adaptable
entities (i.e., variants among which the selection has to be performed).
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Chapter 4

Monoliths decomposition

As explained in Section 2.3, the principles driving Microservice Architecture
(MSA) support a series of characteristics that make this architectural style suit-
able for developing modern applications or re-engineering and modernizing ex-
isting monoliths systems. In particular, the refactoring process allows systems
to gain flexibility, scalability, and ease of maintenance (among the other advan-
tages), thus resolving some of the issues that may affect those systems. As a
consequence, enterprises can take advantage of these benefits by migrating their
systems to MSA. However, this process is complex, time-consuming, and error-
prone [67, 114].

One of the main challenges that any monolithic-to-MSA strategy has to face is
the identification of high-cohesive and loose-coupled microservices with the right
granularity and within the right bounded context [43]. Service granularity can be
defined as “the service size and the scope of functionality a service exposes” [62].
The problem in finding service granularity “is to identify a correct boundary (size)
for each service in the system” [63]. As for the bounded context, the problem is to
identify related functionalities and combine them into a single business capability,
or responsibility, which is then implemented as a service [43]. This holds both
for the migration of legacy and long-running monolithic systems, for “monolithic”
services composing a SOA-based system, and for recently-built systems realized
through a monolith-first approach [48, 93, 100, 107].

There exist different strategies to refactor a monolithic system into an MSA [49].
They can be classified into three categories: (i) top-down, forward-engineering
strategies, in which high-level monolithic domain artifacts (e.g., use cases, activ-
ity diagrams, etc.) are accounted for and decomposed to model and implement
the targeted microservices; (ii) bottom-up, monolithic re-engineering strategies,
in which the dependencies of a monolithic system are analyzed to extract reusable
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Figure 4.1: Overview of the decomposition approach

components, remove dependencies, and rewrite some existing applications by us-
ing the newly created microservices; and (iii) hybrid strategies, which suitably
combine (i) and (ii).

With the aim of automatizing the whole migration process, without any spe-
cific input, system model, or knowledge, this chapter proposes a bottom-up au-
tomated decomposition approach. The approach covers all the phases of the
migration (i.e., system analysis, architecture extraction, microservices implemen-
tation) in an automated way.

In the following, we describe in detail the phases of the proposed methodology
and we report the results obtained by comparing with other decomposition ap-
proaches at the state-of-the-art on well-known and publicly-available monolithic
systems.

4.1 Approach description

The methodology comprises four main phases (Figure 4.1):

1. Analysis : the source code is analyzed through static code analysis to pro-
duce an information graph representing the system at the method level;

2. Decomposition: the nodes of the information graph are clustered conve-
niently to find cohesive communities of both the complete graph and the
subgraph of the domain entities only;

3. Optimization: an optimization model is built to distribute different com-
munities into microservices in a loose-coupled way;

4. Refactoring : the source code of the microservices is generated by distribut-
ing methods and entities from the monolith to the identified microservices.
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4.1.1 Analysis

In analyzing the system, we leverage the fact that most of the languages and
frameworks used for building web services rely on layered architectures [106, 107,
117, 128]. In such architectures, methods in the presentation layer expose public
interfaces and catch incoming requests. Then, methods of the lower layers are
called, down to the persistence layer and the database [106]. Given this, we ana-
lyze the system and produce a graph representation that holds the relationships
among components (methods and classes) by taking into account the role of each
layer in the system. For the sake of generality, we abstract the exact number of
system layers by considering only two main layers: a “logic” layer that comprises
both presentation and business layers and a “persistence” layer.

The analyzer tool we have aptly realized parses the code to allocate the classes
containing the system’s business logic into each of the two layers and find classes
that define the domain entities of the system (i.e., classes that represent a concept
of the domain model, e.g, User, Person, Pet, etc.). In doing this, we leverage the
annotations that are used in most of the frameworks to define the technical role
of the classes (e.g., @Controller, @Service, @Repository, @Entity annotations
provided by Spring Framework1) to identify the layer of each class or whether it
represent a domain entity. The automated identification of such layers and entity
classes can be manually refined to obtain a more accurate analysis.

After having allocated classes in the layers, the tool inspects the classes to
find the declared methods and, going recursively deep into the code’s syntax tree,
collects the method calls and the references to the entities. Then, a node of the
graph is created for: (i) each method from classes of the logic and repository
layer, (ii) each entity class. Relationships between methods and entities are put
in the graph as directed arcs. We define five types of arcs, each representing a
particular relationship type:

• Calls arcs are added between method nodes when there is a method call
from one method to another;

• Uses arcs are added between methods and entities if there is a reference to
an entity in a method’s code, e.g., if an object is instantiated or its values
are accessed;

• Persists arcs are added between methods and entities if a method from the
persistence layer reads or writes a given entity on the database;

1https://spring.io
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• References arcs are added between entities if an entity references another
entity, thus representing the association, aggregation, and composition re-
lationships in the domain model;

• Extends arcs are added between entities if an entity extends another entity,
thus representing the generalization relationship.

The output of this phase is an information graph, realized as a directed graph
G = (V,A) in which a type ti 2 {Method, Entity} is assigned to each node
i 2 V , a relationship type rij 2 {Calls, Uses, Persists, References, Extends}
is assigned to each arc (i, j) 2 A. Moreover, a weight wij is assigned to each arc
(i, j). Weights define the relevance of the relationships between nodes: the higher
the weight of an arc, the more likely methods and/or entities at its endpoints
should be put into the same microservice. After the analysis, default weights
are assigned according to the type of the relationship. The default weight of
the Persists relationship is 1, while those of the Calls, Uses, References,
and Extends relationships are 0.8, 0.6, 0.2, and 0, respectively. In this way,
we set the Persists relationship as the most important, and the method call
relationship next to it. The reference and extends relationship weights are lower
to favor domain entities to be distributed into different microservices. As for the
system layers, weights can be manually refined to comply with specific application
domains and requirements.

Owner

Visit
Vet

Person

Pet
PetType

Figure 4.2: Information graph obtained for the Spring Petclinic project

Figure 4.2 shows a portion of the information graph obtained after the analysis
of the project Spring Petclinic2, which we will use as a reference use case through-
out this Chapter. For the sake of simplicity, the figure only portrays a small
portion of the complete graph. Circles represent methods: empty circles are the

2https://github.com/spring-projects/spring-petclinic
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methods from the logic layer, while dot-filled ones are from the persistence layer.
Hexagons represent entities. Black continuous arrows depict Calls relationships,
while grey continuous arrows depict Uses relationships. Dashed black arrows
outgoing from persistence-layer methods represent Persists relationships, while
the ones between entities depict References relationships. Dashed grey arrows
depict Extends relationship.

Such a graph can be seen as a reverse-engineered model of the whole sys-
tem. The Calls, Uses, and Persists relationships represent all the inter-
dependencies in the code, while the entity-to-entity relationships (References,
Extends) reproduce the structure of the domain model of the system. This allows
the identification of clusters of entities that possibly belong to the same bounded
context and portions of the application in which methods are strongly related to
each other and to a precise set of entities.

4.1.2 Decomposition

The problem of microservice extraction from a monolithic system naturally be-
comes a community detection problem when we represent it in the form of an
information graph [82]. Newman describes the term community as: “a subgraph
containing nodes which are more densely linked to each other than to the rest of
the graph, or equivalently, a graph has a community structure if the number of
links into any subgraph is higher than the number of links between those sub-
graphs" [92]. Therefore, selecting an appropriate community detection algorithm
is very important to identify microservice candidates of high quality.

To identity community candidates within a large network, the Louvain com-
munity algorithm has some better features than its related algorithms [24] such
as the GN algorithm [53, 92], the K-L algorithm [69], and the Spectral Bisec-
tion algorithm [15]. In fact, it has the lowest time complexity, higher cohesion,
and stability [82]. To detect communities, the Louvain algorithm maximizes a
modularity score, i.e., evaluating how much more densely connected the nodes
are within a single community but fewer connections between different communi-
ties [91]. Equations (4.1) and (4.2) define the modularity heuristic function [92]
that the Louvain algorithm optimizes to evaluate the partition of a community:

Q =
1

2m

X

(i,j)

"
Aij �

kikj
2m

#
�
�
ci, cj

�
, (4.1)
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�
�
u, v

�
=

8
<

:
1 when u = v

0 when u 6= v
, (4.2)

where Aij represents the weight on the edge connecting nodes i and j. For an
unweighted graph, a constant value is set such as one. The ki represents the sum
of the weights of all edges connected to node i :

ki =
X

j

Aij, (4.3)

where m is the sum of the weights of all edges in the graph, and ci is the
community to which node i currently belongs.

Being unsupervised, the Louvain algorithm does not require the number of
communities to be found or the size of the communities [28].

By applying the Louvain algorithm to our representation of the system, we
obtain a cohesive set of communities whose nodes are from all the system’s layers.
While this is good since communities consider relationships between nodes with
different roles in the system (i.e., entities, controller interfaces, business logic,
all required to offer complete functionalities) they cannot be generally taken as
acceptable microservice candidates. In fact, since there are no constraints over
the structure of the candidate microservices to be identified, communities may be
built only of Entity type nodes, or – on the contrary – only of Method type nodes,
hence, they may not realize complete and standalone microservices. Moreover,
there are no assurances about the right granularity of the communities. Since
there are no constraints over the number of microservices to be identified, they
are likely to be too fine-grained, especially if obtained from graphs representing
large systems with a high number of methods. Finally, given the above, commu-
nities may not succeed in wrapping all the nodes required to realize a business
functionality, i.e., to build microservices around bounded contexts.

Therefore, to overcome these issues, we applied the Louvain community detec-
tion algorithm on the information graph in two different ways: (i) on the complete
information graph, which overlaps all the architecture layers, to obtain cohesive
sets of nodes; (ii) on the subgraph having only the entities related with the per-
sistence layer, as it plays the most important role in maintaining the domain
context [36, 78, 81, 108].

Figure 4.3 overviews the applied decomposition phase. The whole information
graph obtained with the analysis phase is given as input to the Louvain Algorithm
to find communities of nodes. Moreover, the subgraph of the domain entities

G. Filippone 75



4.1. Approach description

Entity clusters

Communities

Information graph Domain entities
subgraph

Lo
uv

ai
n

A
lg

or
ith

m

Figure 4.3: Overview of the decomposition phase

is obtained from the information graph and is given as input to the Louvain
Algorithm to find communities of entity nodes only. For the sake of clarity, from
here on, we will use the term community for the communities obtained from the
whole graph, while we will use entity cluster for the communities obtained from
the domain entities subgraph.

Graph Communities from the complete graph

Owner

Visit
Vet

Person

Pet
PetType

Figure 4.4: Communities obtained from the complete information graph

The execution of the Louvain algorithm on the complete information graph
returns a set C of n communities C1, ..., Cn of nodes representing entities and
methods spreading across all architectural layers. Figure 4.4 shows the commu-
nities obtained for the Spring Petclinic application: each node in the figure is
color-coded to indicate the community it belongs to. As discussed above, these
communities can not be considered as complete microservices since they are too
fine-grained. For instance, methods related to the Owner entity are spread in
three different communities. This means each of them may not contain the full
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set of functionalities required to realize a business capability, i.e., they do not
identify a bounded context. Moreover, while being cohesive (e.g., blue nodes are
related to each other and all referencing the Owner entity) they would result in
a high-coupled microservice architecture. However, we can leverage the cohesive-
ness of the communities to obtain cohesion in the final microservice architecture.

Entity Clusters

We obtain the sub-graph of the domain entities by considering the set of nodes of
type Entity having relationships with the persistence layer and the arcs of type
References and Extends. The Louvain algorithm on this graph returns a set K
of m communities K1, ..., Km of nodes of type Entity (entity clusters).

Figure 4.5 shows the entity clusters obtained for Spring Petclinic. We obtained
two clusters. The first includes Vet and Person entities, and the second includes
Owner, Pet, Visit, and PetType entities. These two clusters identify as many
application contexts.

Owner

Visit
Vet

Person

Pet
PetType

Figure 4.5: Communities obtained from the sub-graph of persisted entities

We use communities and entity clusters to, respectively, obtain cohesion and
identify the granularity of the microservices in the optimization phase.

4.1.3 Optimization

The optimization of the microservice architecture is realized through an Inte-
ger Linear Programming (ILP) model that finds a solution to a variant of the
Multiway Cut problem formulation [22] to which we added constraints over the
structure of the microservices to be identified. The goal of the optimization is
to partition the nodes of the information graph into a set of m microservices –
where m is the number of entity clusters identified in the previous step – in such
a way that the coupling among microservices is minimized. We define coupling
as the sum of the weights of the arcs that connect microservices, as we will better
describe in this section.

We state the problem as follows:
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Given a graph G = (V,E), a type ti 2 {Method, Entity} for each node
i 2 V , a weight wij for each edge (i, j) 2 E, find a partition of V in m sets
{M1, ...,Mm} = M such that:

(i)
T

Mi = ;;
(ii)

S
Mi = V ;

(iii) each Mk 2 M contains at least one node i s.t. ti 6= Entity;
(iv) the sum of weights wij s.t. i 2 Mh, j 2 Mk, h 6= k is minimized.

Each of the sets M1, ...,Mm is a candidate microservice.

The problem stated above has been modeled with an ILP formulation through
the following decision variables, as in [22]:

xik =

8
<

:
1 if node i is in the microservice Mk

0 otherwise
(4.4)

yij =

8
<

:
1 if edge (i, j) has its endpoints into the same MS

0 otherwise
(4.5)

zkij =

8
<

:
1 if edge (i, j) has both its endpoints into MS Mk

0 otherwise
(4.6)

We define the following constraints:

zkij � xik  0 8Mk 2 M 8(i, j) 2 E (4.7)

zkij � xjk  0 8Mk 2 M 8(i, j) 2 E (4.8)

xik + xjk � zkij  1 8Mk 2 M 8(i, j) 2 E (4.9)

yij =
X

Mk2M

zkij 8(i, j) 2 E (4.10)

X

k

xik = 1 8i 2 V (4.11)

X

i2V |ti=Method

xik � 1 8Mk 2 M (4.12)

Constraints (4.7) to (4.11) are from the Multiway Cut problem formulation[22],
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while constraint (4.12) is a new one. We added it to ensure that methods are put
inside the microservices since they are needed to expose interfaces, offer function-
alities, realize microservice logic, etc.

The objective function (4.13) minimizes the coupling among microservices.
As mentioned before, it is defined as the sum of the weights of the arcs whose
endpoints belong to different microservices.

min
X

(i,j)2E

wij (1� yij) (4.13)

However, microservices obtained from the solution of this optimization model,
while having the lowest coupling, show a series of problems. In fact, the model
does not lead to an actual domain-driven decomposition, since domain entities are
free to be placed into any of the identified microservices. Hence, it may happen
that all the entities are put into a single all-containing microservice, while other
microservices may be small and built of only a few low-cohesive nodes, without
a real meaning from both an architectural and functionalities point of view. To
obtain a domain-driven decomposition and build microservices inside bounded
contexts, we distribute entities into microservices according to the entity clusters
identified in the previous phase (Section 4.1.2). Hence, we force each entity i in
the entity cluster Kk 2 K to be in the microservice k. We realize this by fixing
the x variables in (4.4) as follows:

xik = 1 8i 2 V iff i is in the entity cluster Kk. (4.14)

In order to gain cohesion, we force all the nodes from the same community to
be in the same microservice, so as to build microservices as a composition of the
high-cohesive communities found in the previous phase (Section 4.1.2). Hence,
we fix the y variables in (4.5) as follows:

yij = 1 8(i, j) 2 E iff i and j are in the same community. (4.15)

Notice that fixing x and y as in (4.14) and (4.15) can produce an infeasible
model if two entities from the same community are in different entity clusters. To
avoid this, we use a Fix-and-Relax approach. As shown in Algorithm 1, we first
fix x variables according to the entity clusters in K. Then, after fixing y variables
for a given community Cc 2 C, we check the model feasibility. If infeasible, we
relax the fixed y variables for all the nodes in the community Cc to keep the
model feasible.
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Algorithm 1 Fix-and-Relax algorithm for x and y variables
for entity cluster Kk 2 K do

for i 2 k do

Fix xik = 1
end for

end for

for community Cc 2 C do

for (i, j) 2 E do

if i 2 Cc & j 2 Cc then

Fix yij = 1
end if

end for

if model is infeasible then

for (i, j) 2 E do

if i 2 Cc & j 2 Cc then

Relax yij
end if

end for

end if

end for

Results obtained as a solution of this optimization model allow assigning nodes
of the information graph (i.e., methods and entities) to microservices. Figure 4.6
shows the architecture resulting from the optimization phase of the Spring Pet-
clinic application. Communities shown in Figure 4.4 have been merged in bigger
sets of nodes according to the entity clusters (Figure 4.5) and in such a way that
the coupling among obtained microservices is the minimum. We can also notice
that the identified microservices represent a vertical decomposition of the sys-
tem, in which each microservice contains methods from all the layers. Moreover,
nodes of each microservice are mainly connected to the domain entities that are
persisted by methods of the same microservice. These characteristics allow mi-
croservices to be autonomous, to be focused on a single responsibility and within
a bounded context, and to fully realize functionalities since each of them contains
methods to expose interfaces, realize the business logic, and access the database.

4.1.4 Refactoring

The solution of the optimization problem produces a graph representation of
the microservice architecture, in which methods and domain entity classes (i.e.,
nodes) are grouped into microservices. The implementation of the identified
microservices can be automatically realized by suitably “moving” methods and
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Figure 4.6: Result of the optimization

classes into the right microservice – hence reusing the monolith code – and gen-
erating the new API controllers needed to realize the (new) inter-microservice
communication. However, it is important to remark that this automated process
can be actually performed only if the code of the monolith is suitable to be reused;
if, for any reason, this can not be done, the skeleton code of the methods and API
interfaces can be still generated. These concerns are discussed in Section 4.3.

The refactoring step generates the implementation of the identified microser-
vices by (i) “moving” the code of each method into the right microservice; (ii)
adding new methods for exposing and consuming APIs (API controller synthesis
and API consumer synthesis); (iii) placing (and replicating) the domain entity
classes into all the microservices requiring them.

In the following, we describe the rules that allow the generation of API con-
trollers and API consumer methods and the replication of domain entities.

Rule 1: API Controller synthesis

An API controller method is generated for each method that is called from at least
one different microservice. That is, in each microservice Mk, an API controller
method i0 is generated for each method i 2 Mk s.t. exists an arc (j, i)|j /2 Mk. The
generated API controller will receive the API calls from outside the microservice
and will invoke the method i. If needed, the methods in the microservice Mk will
invoke the method i without using the API.

Figure 4.7 shows an example of the application of this rule. As in the previous
figures, methods are represented as circles, entities as hexagons, and microservices
– built as a set of methods and entities – are represented as dashed rounded-corner
boxes. The node representing the method m2 in the microservice M2 has an
ingoing edge from m1, which belongs to a different microservice (left-hand side).
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Figure 4.7: Example of API controller synthesis

The method m20 is generated as an API controller for m2 (right-hand side). It
allows exposing the API to the outside of the microservice and will be used to
invoke the method m2.

Rule 2: API Consumer synthesis

An API consumer method is generated to call methods that have been placed
into different microservices. For this reason, in each microservice Mk, a method
j0 is generated for each arc (i, j) s.t. i 2 Mk and j /2 Mk. The new method
contains the code needed to invoke the API related to the method j.

m3 m3'

M2
(API

consumer)

m1

M1

m3

M2

m1

m2

M1

m2

Figure 4.8: Example of API consumer syntesis

Figure 4.8 shows an example of the application of this rule. The nodes rep-
resenting the methods m1 and m2 in the microservice M1 have an outgoing
edge towards m3, which belongs to a different microservice (left-hand side). The
method m30 is generated in M1 as an API consumer for m3 (right-hand side).
It allows consuming the exposed API for j (as described in Rule 1) and, hence,
invoking the method j.

Rule 3: Entities replication

Alongside the API controllers and consumers, methods must have access to all
the required entity classes. Thus, all the entity classes that are referenced by a
method are copied into the microservice that hosts the method, together with all
the other entities connected to the first entity class. Moreover, also entities that
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are referenced by other entities have to be copied into the same microservice. In
other words, for each microservice Mk, an entity class e is put into the microservice
Mk iff there exists a method-to-entity or an entity-to-entity edge (i, e) s.t. i 2 Mk.

M2

m1

M1

e1

m2

M2

e1

m2

M1

e1'

m1

(a) Case A

M2

M1

e3

M2M1

e1

e2

e3'

e1

e3

e2

(b) Case B

Figure 4.9: Example of entities duplication

Figure 4.9 shows the application of the rule. It considers two cases. In the
first case (Figure 4.9a), the entity e1 in M2 is “used” by the method m1, which
is in the microservice M1 (left-hand side). The entity is replicated into the mi-
croservice M1 (right-hand side). In the second case (Figure 4.9b), the entity e3

in M2 is referenced by the entity e1, which is in the microservice M1 (left-hand
side). The entity is replicated into the microservice M1 (right-hand side). This
refactoring rule is applied iteratively until there are no dependencies between
entities spanning across different microservices.

4.2 Evaluation

The main goal of the evaluation is to assess whether our approach produces a
decomposed system that follows the main principles of microservice architectures
described in Section 2.3. In particular, we check that each microservice: (i) has a
well-modularized structure with low coupling and high cohesion, (ii) follows the
single responsibility principle, and (iii) independently offers functionalities. To
do this, we use cohesion and coupling metrics to quantify how much those design
principles are respected and evaluate the structure of the decomposition. Also,
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we use the IFN metric [65] to evaluate how much independently functionalities
are provided, as detailed below. Moreover, we assess the composition of the
bounded contexts realized tanks to the entity clustering. We compare the results
of the decomposition – before the refactoring phase is performed – with those of
other approaches at the state-of-the-art and reference architectures proposed in
the literature.

The complete implementation of the approach, its documentation, and all the
reported results are publicly available3.

In the following, we define the evaluation metrics. Then, we describe the
performed experiments. Finally, we report the obtained results.

4.2.1 Evaluation metrics

We compute the average coupling to quantify how much coupled are the microser-
vices in the obtained architecture. It is computed from the graph representation
of the obtained architecture (before the refactoring phase) as the ratio of the sum
of the weights of the arcs whose endpoint nodes are in different microservices and
the number of identified microservices:

AverageCoupling =
1

|M|
X

(i,j)2E|i2Mh,j2Mk,h 6=k

wij, (4.16)

where M is the set of identified microservices, Mh,Mk 2 M, and wij is the weight
of the arc (i, j). The less the average coupling, the less coupled a microservice
architecture is.

Similarly, we compute the average cohesion to quantify how much cohesive
are the obtained microservices. It is computed from the graph representation of
the obtained architecture as the ratio between the sum of the weights of inners
arcs (i.e., those arcs whose endpoints are in the same microservice) and the sum
of the weights of all arcs outgoing from the nodes of a microservice:

AverageCohesion =
1

|M|
X

Mk2M

innerk
outerk

, (4.17)

where M is the set of identified microservices. The values of innerk and outerk
are obtained as follows:

innerk =
X

(i,j)2E|i,j2Mk

wij, (4.18)

3https://github.com/sosygroup/from-monolith-to-microservices
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outerk =
X

(i,j)2E|i2Mk

wij. (4.19)

The optimal value that a microservice architecture can obtain for the average
cohesion is 1, indicating that the elements of each microservice are strongly inter-
related. A high cohesion value suggests that all the methods inside a microservice
have strong relationships with entities included in the same microservice. That
implies that a microservice with high cohesion may be well concerned with a
specific bounded context. Conversely, a poor microservice decomposition may
show a low cohesion since, e.g., many methods need to reference entities placed
in other microservices.

Regarding the independence of functionality, we use the IFN metric [65],
which measures the average number of interfaces exposed by a microservice. It
is defined as follows:

IFN =
1

|M|
X

Mk2M

ifnk, (4.20)

where M is the set of identified microservices and ifnk is the number of interfaces
exposed by the microservice k. According to our system representation, we define
an interface as a set of methods of the logic layer, without ingoing edges, that
are connected to the same set of entity nodes. A microservice focused on the
single responsibility principle is expected to have only one interface, i.e., to offer
functionalities related to a single entity. Hence, the lower the value of IFN (down
to 1), the most likely the microservice architecture is supposed to follow the single
responsibility principle.

Concerning the evaluation of the bounded contexts, we check the entities be-
longing to each microservice and compute the precision and the recall score with
respect to a reference microservice architecture used as a baseline. To obtain pre-
cision and recall, we reverse-engineer each microservice to identify its bounded
context(s) and collect its domain entities. We define the precision for the mi-
croservice k in the architecture d as the ratio between (i) the number of domain
entities that are both in the microservice k and in the baseline microservice(s)
concerning the same bounded contexts, and (ii) the number of domain entities of
the microservice k:

Precision(k, d) =
|Ek

d

T
Ek

B|
|Ek

d |
, (4.21)
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where Ek
d is the set of domain entities into the microservice k in the decomposition

d, and Ek
B is the set of domain entities into the microservice k of the baseline.

Similarly, we define the recall for the microservice k in the architecture d

as the ratio between (i) the number of domain entities in the microservice k

provided by the baseline and (ii) the number of domain entities that are both in
the microservice k and in the microservice k from the baseline:

Recall(k, d) =
|Ek

B|
|Ek

d

T
Ek

B|
. (4.22)

A high value of precision and recall means that a given microservice owns the
complete set of entities required to fully realize the bounded context, without
including “spurious” entities that may be related to different bounded contexts.

4.2.2 Performed experiments

To run the experiments, we have chosen publicly-available systems, implemented
in Java, whose architectures are monolithic, and that have been already used in
evaluating related works on the decomposition to microservices. Table 4.1 lists
the applications that we considered. For each of the considered projects, we show
the number of classes (test classes excluded), the number of lines of code, and the
number of domain entities and methods identified in the system analysis phase.

Project Classes Lines of code Entities

JPetStore 24 1409 9
Spring Petclinic 23 741 10

SpringBlog 46 1487 9
Cargo Tracking 104 4001 35

Table 4.1: Application used in the reported experiments

JPetstore4 is a Java web application built on top of the Spring Framework
realizing a simple e-commerce system. It is one of the most popular systems and
it is used as a reference application in many works [28, 66, 128, 129] (just to
mention a few). In [128], an expert decomposition has been proposed for this
system. It is a functionality-based vertical decomposition that “cuts” into slices

4https://github.com/mybatis/jpetstore-6

G. Filippone 86



4.2. Evaluation

all the layers of the system. We use it as a baseline for the comparison of the
results.

Spring Petclinic5 is a sample Spring Boot application realizing a veterinary
management system. Spring also released a version of this system featuring a
microservice architecture6 as an example of how to split monolithic applications
into a microservice-based system that uses the Spring framework. Being proposed
by the same organization that realized the monolithic system, it can be considered
a baseline for comparing our results.

SpringBlog7 is a simple blog system realized using many frameworks such as
Spring Boot, Hibernate, and Thymeleaf.

Cargo Tracking8 is a medium-sized system built on top of the Spring frame-
work. It is used as a reference system for many works, e.g., [13, 59, 81, 82]. In [13],
the expected decomposition of the domain model of this system is presented and
discussed. We use it as a baseline to evaluate the identification of the bounded
contexts and the clustering of the domain entities.

We performed experiments by running our approach for each of the four appli-
cations described above and obtained the decomposed microservice architecture
of the system. We collected the results and computed the value of the metrics
defined in Section 4.2.1. Moreover, to allow the comparison of our results with
the other state-of-the-art (sota) approaches and baseline solutions, we: (i) col-
lected the architectures resulting from each sota and the baselines, (ii) represented
them through the graph-based representation that we employ in this work, and
(iii) computed the value of the metrics by using the same default arc weights that
we used for the decomposition with our approach.

4.2.3 Experimental results

Table 4.2 reports the results of the decomposition of JPetstore. We report the
values of the defined metrics for the obtained microservice architecture accord-
ing to: our approach, four different sota approaches [28, 66, 111, 128], and the
baseline obtained from [128]. Besides the average coupling, average cohesion, and
IFN metrics, we also report (i) the number of method calls (Calls relationships)
across different microservices and (ii) the number of references from methods to
entities (Uses relationships) across different microservices. These two values al-

5https://github.com/spring-projects/spring-petclinic
6https://github.com/spring-petclinic/spring-petclinic-microservices
7https://github.com/Raysmond/SpringBlog
8https://github.com/citerus/dddsample-core
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low assessing how much microservices are autonomous and how much the offered
functionalities are self-contained in a single microservice. All the considered ap-
proaches produced 2 to 4 microservices. Interestingly, our approach outperforms
the four approaches and the baseline in all the metrics. It obtained the lowest
average coupling (0.87), the highest average cohesion (0.97, very close to the op-
timal value, 1), and the lowest IFN. The number of method calls is 3, as those of
the baseline, while there are no entity references from one microservice to another.
This suggests that: (i) the decomposition complies with the high-cohesion and
loose-coupling principles of microservice architectures, (ii) the functionalities of
each microservice are independent and self-contained, and (iii) the microservices
are built in the right way according to the bounded contexts of the system.

Table 4.3 reports and compares the results for the decomposition of Spring
Petclinic application. We report the metrics computed for the microservice ver-
sion of this application9 provided by Spring (baseline) and for the decomposition
approach presented by Kamimura et al. [68]. Our approach was able to find au-
tomatically two totally-independent microservices: the decomposition obtained
the lowest possible value for the coupling (0) and the highest possible value for
the cohesion (1), while there are no method calls or entity references across mi-
croservices. In contrast, both Kamimura et al. and the baseline show a higher
coupling and a lower cohesion. On the other hand, the IFN obtained by our
approach is slightly higher (2.0) than the others (1.7). This suggests that, in
this case, we found microservices with a lower granularity, being slightly less
accurate in following the single responsibility principle, but obtaining complete
independence.

Regarding the results obtained for the SpringBlog application, our approach
produced three microservices with a satisfiable low coupling (0.67) and high co-
hesion (0.99) with two method calls and two entity references across different
microservices. The IFN value is 1.67. As a comparison, Jin et al. [65] reported
the value of 2.167 for IFN for the decomposition obtained with their approach.

Besides the evaluations discussed above, we also assess the results in the identi-
fication of bounded contexts and their consequent identified microservices. While
JPetstore, Spring Petclinic, and SpringBlog are relatively simple systems with
few entities, Cargo Tracking System features a more complex domain model and
a wider set of functionalities. Thus, the identification of bounded contexts for
this system is not a trivial task, and it may require specific knowledge of the
system. In order to perform the evaluation, we applied our approach and reverse-

9https://github.com/spring-petclinic/spring-petclinic-microservices
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engineered the obtained decomposition to find the distribution into microservices
of the domain model entities. We then labeled the microservice with the name
of its emerging bounded context. Table 4.4 reports the distribution of domain
entities in each identified service by: our approach, Service Cutter [59], the ap-
proach by Baresi et al. [13], and the manually-obtained expected decomposition
provided in [13] as a baseline. The baseline consists of 4 microservices (i.e., 4
bounded contexts according to microservices are built): Voyage, Location, Plan-
ning, and Tracking. The interface analysis run by Baresi et al. was able to find 4
microservices as well, although with different bounded contexts (except for Plan-
ning). Service Cutter found 3 microservices: Location, Tracking, and Voyage &
Planning. As one can notice, bounded contexts are distributed into microser-
vices with a lower granularity (e.g., instead of having Voyage and Planning in
separate microservices, they have been put together). Also, our approach found
3 microservices: Tracking, Planning & Location, and Voyage, thus resulting in a
lower granularity than the baseline.

The Voyage microservice identified with our approach got 1 for both precision
and recall, while Tracking microservice got 1 for the precision and 0.5 for the
recall. Furthermore, if we compute the metric’s values for Planning & Location
by considering the union of the services Planning and Location from the baseline
solution, we obtain a precision of 0.83 and a recall of 1. The average value for
the precision and the recall on the three identified microservice is 0.94 and 0.83,
respectively. In comparison, Service Cutter was able to get 1 for the values of
both precision and recall for the microservices Location and Tracking. Also, if
we compute the metric’s values for Voyage & Planning by considering the union
of the services Voyage and Planning from the baseline solution, we obtain 1 for
both the metrics. These results suggest that, at least in this case, and despite
not being optimal in the identification of bounded contexts, our approach still
obtained comparable results. However, we remark that all the results have been
obtained in an automatic way, without requiring any further input or specific
knowledge of the system.

4.3 Discussion

Results obtained from the performed experiments highlight that the proposed ap-
proach is able to identify architecturally-meaningful microservices such that the
main principles of MSA are held. Measured metrics suggest that microservices
obtained through this approach are independent and self-contained, outperform-
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ing the related approaches whose results have been compared to. We have to
remark that these results have been obtained in a fully-automated way, hence
without any knowledge of the system, models, or the manual intervention of a
system expert.

4.3.1 Threats to validity

There are a series of factors that may challenge our approach. In the following,
we discuss the most important ones.

Internal validity

The evaluation has been performed on a set of metrics that are computed on the
same graph representation that we used in our approach. Besides the number of
used metrics (that we plan to expand in the future for a more accurate evalu-
ation), computing all of them by relying on the same system view may lead to
biased results. However, in the comparison of our solution with other microser-
vice architectures, in order to avoid other biases, we have taken baselines from
other works, so we have not been involved in their definition. Also, cohesion
and coupling-related metrics, together with IFN, despite being widely used for
evaluating decomposed architectures [28, 82, 117], do not guarantee that the ob-
tained architectures are the best-fitting for the applications domains and needs,
as many different architectures there may exist [51]. Moreover, we have tested
our approach only on a small set of projects, that were not very big both in the
number of classes and entities. Thus, we still need to test it on a wider variety
of systems in terms of both dimension and domain model complexity in order to
better assess the scalability of the approach.

External validity

By default, our tool assigns predefined weights to build the information graph
after the static code analysis. This permits to fully automate the process, while
sparing developers from the task of manual weight specification. However, the
default values cannot be generally taken as the best-fitting weights, since they
may be less accurate for specific systems, e.g., very big or complex systems. As
mentioned in Section 4.1.1, our tool allows developers to refine weights, e.g.,
according to application-specific requirements.

The use of static analysis as the only mean of system analysis may represent a
limitation of the approach. Without dynamic analysis, the tool is not aware of the
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actual number of method calls that are performed at runtime. This may lead to a
decomposition that may not optimize the number of runtime inter-microservices
calls. This may affect the system’s performance since inter-microservices calls
introduce overhead due to network communication. However, the approach can be
easily extended to consider data coming from dynamic analysis, by, e.g., including
the number of method calls performed at runtime into the information graph and
considering it in the optimization’s objective function.

The quality of the decomposition may naturally be affected by the bad quality
of the system’s source code (e.g., it does not follow OOP principles, it has very
badly designed classes, or there are code smells that reduce the separation of
concerns between classes). In fact, if the relationships among classes representing
the domain model are not reported in the code according to the OOP paradigm,
we may lose cohesiveness and fail to identify the clusters of entities. This may lead
to a bad identification of the system’s domain contexts and, as a consequence,
to failure in adhering to the single responsibility principle. The same holds if
the domain model is very big, complex, and highly interconnected. However, we
allow developers to adjust arc weights individually to identify the domain entities
that are more closely related, and we also allow them to adjust the entity clusters
to overcome these issues.

Finally, the presented approach has been designed and tested for analyzing
systems that are built by leveraging layered architectures. This limits the appli-
cability of the approach if systems to be decomposed follow other architectural
styles, e.g., the MVC pattern [106]. However, systems realized through the MVC
style are amenable to being decomposed with the approach proposed in this
work. In fact, like the three-layered architectures, also in the MVC there are
three components with well-defined roles and concerns. Classes from the “model”
component of the MVC pattern could be treated similarly as we do with domain
entities classes, and their clustering could drive the decomposition of the system
just like it is described in this work. A light refinement in the analysis step could
open this possibility. However, the applicability of the approach in those cases
would require more experimental evidence for its validation.

4.3.2 On the applicability of the approach

Experimental results concerning the proposed approach are encouraging and hint
at the fact that the approach can be furtherly developed and applied to the
refactoring of monolithic systems. In particular, it is suitable in those situations
in which the system to be migrated requires a reverse-engineering phase due to
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the lack of models or expertise. On the other hand, it may not be suitable
whether the system architecture is particularly eroded or the technological stack
of the system is getting obsolete. In that case, the automated refactoring phase
may not be a real advantage since the whole codebase of the system should be
rewritten or moved to a new technology or language. Interestingly, this approach
is particularly promising for all the cases in which systems are built by following
the “monolith-first” approach [48, 89, 93], requiring the migration only in order to
support, e.g., its growth or improve its scalability. In these cases, the system to be
migrated is likely to be fresh enough to adopt a modern technological stack, use
modern frameworks, and have a sound architecture. This allows the approach
to be able to perform the complete migration process, even implementing the
whole set of microservices by suitably moving or generating the code into the
right microservice.
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Chapter 5

Architectural style for scalable
choreography-based systems

Monolithic systems, like those considered for the migration in the previous chap-
ter, are not always meant to be standalone services that run in isolation without
interacting with any other service. Rather, as described in Section 2.3.4, they can
be involved in SOA systems and even composed as choreographies. As widely dis-
cussed in this thesis, choreography-based systems require a proper coordination
mechanism to ensure the correct system behavior and avoid undesired interac-
tions.

Importantly, systems are required to be scalable. They need to be able to
provide satisfiable performances under heavy loads [26], thus enhancing the user-
perceived performances and positively influencing the overall dependability of the
system [54]. Benefits brought by MSA in terms of scalability are one of the key
factors that may induce companies to migrate their monolithic services into mi-
croservices [114]. Either if obtained after having decomposed monoliths or not,
systems can be realized by composing (micro)services into choreographies, obtain-
ing the desired scalability and furtherly enhancing loose coupling and flexibility.

In such systems, it is needed that, beyond the coordination layer, a load
balancing layer is added to the system architecture to support the service scala-
bility, allowing the replication of service instances and distributing the workload
among them, thus supporting the realization of choreography-based systems in a
microservice style.

Given the above, in a choreographed microservice-based system, coordination
and load-balancing concerns coexist. They both must be taken into account to
realize the required coordination and allow the scalability of the system. However,
they represent two distinct functionalities that should remain independent and
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loosely coupled.
This chapter addresses this problem by presenting an architectural style ca-

pable of totally decoupling these two concerns. We first present a case study
able to highlight the complexities and the challenges to be addressed, then we
present the architectural style and show it at work on the case study. Finally,
we evaluate the architecture by discussing the several design alternatives enabled
by the architecture and report on the experiment conducted on the case study
system.

5.1 Case study

In this section, we present a case study that allows us to instantiate the chal-
lenges described above through an example system related to an online ticketing
platform. The system has been inspired by well-known applications such as Train
Ticket System1 and Sockshop2. It is designed with the specific purpose of realiz-
ing a motivating scenario whose characteristics allow emphasizing the needs for
both coordination and load balancing and stress the capabilities of the architec-
tural style. The system taken as an example consists of an application that allows
customers to browse, select, and buy tickets for sports events or shows. When a
customer selects the tickets, the system checks if the customer is allowed to buy
tickets, and if so, it will add the selected tickets to her cart and will reserve them
for a short period of time until it provides the requested checkout information.
If the user proceeds with the checkout within 10 minutes from the ticket selec-
tion, the payment is processed and the selected tickets are issued, printed, and
prepared for shipping. Otherwise, the temporary reservation is released and the
user cart is emptied.

The system is realized as a choreography resulting from the collaboration of
several microservices:

• Event Catalog : it owns the information about the events whose tickets are
sold on the platform;

• Ticket Portal Manager : it manages the ticket selling process by interacting
with the customer;

• Blacklist Service: it owns the list of blacklisted people from events (e.g.,
fans that are not allowed to enter stadiums, etc.);

1https://github.com/FudanSELab/train-ticket
2https://microservices-demo.github.io
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• Reservation Service: it owns the information about the tickets that have
been sold and the ones that are temporarily reserved because selected by
customers while the checkout is performed;

• Cart : it manages the user’s online cart;

• Checkout Manager : it manages the checkout process, by receiving the cus-
tomer checkout information and arranging the payment for the tickets that
the customer has in her online cart;

• Payment : it processes the payment;

• Ticketing Manager : it manages the ticket issuing process;

• Ticket Service: it emits tickets;

• Print Service: it manages the printing of the tickets;

• Shipping : it manages the shipping of tickets to customers.
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Figure 5.1: Online ticketing system choreography

Figure 5.1 portrays the BPMN2 choreography diagram of the system. Note
that, besides the microservices listed above, we modeled an extra participant,
Customer, representing the actor of the system that interacts with the application
by sending messages and receiving back replies through an application (e.g., a
web-based application, mobile app, etc.).
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5.1.1 Arising complexities

The realization of this system poses a series of challenges that have to be ad-
dressed. Some of them concern the problems of ensuring the correct service
coordination, in order to realize the interactions prescribed by the choreogra-
phy specification. Others concern the ability of the system to scale and remain
responsive even under high traffic demands.

First, it has to be considered that, since there are many customers attempting
to buy tickets, there are race conditions to be dealt with. In fact, when tickets
are selected by a customer, they are temporarily reserved in order to let her
complete the checkout process. For this reason, the checkout process needs to
be performed only after that the tickets have been reserved: if this does not
happen, some other customer may reserve the same tickets and proceed with the
checkout at the same time. This may happen if a customer attempts to perform
the checkout after that the 10-minute timeout has expired. These situations may
lead to errors and conflicts in the tickets assignment. For this reason, they clearly
represent undesired interactions that require proper coordination in order to be
avoided. As described in Section 2.2, these issues can be solved through the use
of CDs, suitably introduced in a Coordination Layer, capable of enforcing the
correct choreography behavior.

Moreover, the system has to be able to scale in order to guarantee responsive-
ness, availability, and satisfactory user-perceived performances. Stress to system
performances happens when the platform opens the sales for an important event
with many customers attempting to buy the tickets right on the opening. In
these situations, the number of requests that the system is required to handle
explodes. The performance of the system may get significantly worse for both
customers attempting to buy tickets for the new event and users that are on the
platform for other reasons. Hence, the system can result unresponsive or un-
available. In addition, different service-level agreements (SLAs) can be applied
to provide some users with high-performance guarantees. This means that the
interactions of certain kinds of users might be prioritized. For these reasons, a
load balancing system is needed to properly distribute the requests among the
available microservice instances, so as to keep the system available, responsive,
compliant to different SLAs, and to avoid the degradation of user-perceived per-
formances.

G. Filippone 99



5.2. Architectural style

5.2 Architectural style

The architectural style we propose, shown in Figure 5.2, is aimed at supporting
the scalable composition of microservices as choreographies.

For the sake of simplicity, in the description of the architectural style, we
consider the coordination layer without taking into account the challenges (and
related solutions) concerning context-awareness discussed in Chapter 3. For this
reason, in the following, we will consider only the “classical” CDs (Section 2.2)
when referring to the coordination layer of the architecture. It is easy to under-
stand that, as a straightforward extension, the coordination layer can be improved
by using caCDs to realize the context-awareness capabilities.

5.2.1 Architectural layers

The architectural style is organized in several layers:

• client-side layer: comprises pure client applications as well as the client-
side of prosumer services;

• coordination layer: contains the coordination logic;

• client-side load balancing layer: consists of the client-side load bal-
ancers;

• server-side load balancing layer: constituted by server-side load bal-
ancers;

• server-side layer: comprises pure provider services as well as the server-
side of prosumer services.

The coordination layer is enhanced to cope with the microservice style. In
fact, CDs now interact with many instances of fine-grained microservices. Hence,
they are replicated as multiple instances employing lightweight communication
mechanisms to support the replication of the instances of the coordinated mi-
croservices: an instance of a CD is deployed for each instance of the coordinated
microservice. As a consequence, also the scalability of the coordination layer is
improved with respect to the one presented in Section 2.2. However, CDs still
interact only with the other architecture components (i.e., there is no communica-
tion between the instances of the same CD) and they are agnostic of the number
of their replicated instances. Moreover, the association between CD instances and
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Figure 5.2: Architectural style

microservices instances prevents the possibility of the coordination layer acting as
a bottleneck and representing a single point of failure. The multi-instance nature
of both CDs and microservices requires load balancing mechanisms to support
scalability by distributing the workload across microservices instances. Thus, a
load balancing layer is added between the coordination and server-side layers.

The architectural style is flexible with respect to the coordination and the bal-
ancing of interactions. In fact, the interactions are coordinated and/or balanced
only when needed. Moreover, the two load balancer layers can be combined, lead-
ing to a hybrid approach for load balancing. As a result, the architectural style
enables the following architectural configurations:

1. interactions neither coordinated nor balanced,

2. interactions not coordinated but client-side balanced,

3. interactions not coordinated but server-side balanced,

4. interactions not coordinated but hybrid balanced,

5. interactions coordinated but not balanced,

6. interactions coordinated and client-side balanced,

7. interactions coordinated and server-side balanced,

8. interactions coordinated and hybrid balanced.
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These configurations can be divided into two main categories: coordinated
and not coordinated interactions. As explained in Section 2.2, the coordination of
interactions, when needed, enforces the control flow specified in the choreography
and avoids undesired interactions. Within each category, we can further identify
three sub-categories related to the load balancing approaches applied: client-
side, server-side, and hybrid load-balancing. As anticipated in Section 2.4, the
load balancing approaches have several pros and cons, for example, the server-
side approach provides security benefits but represents a single point of failure
and a bottleneck. On the contrary, the client-side approach does not represent a
bottleneck or a single point of failure but does not address security concerns. The
hybrid approach allows providing different resources availability, costs, or SLAs
through dedicated server-side load balancers, but at the same time, it impacts the
latency due to the proxy extra hops represented by the server-side load balancers.
The flexible nature of the architectural style permits designing a system using the
suitable load balancing approach(es) according to the system’s needs.

Concerning the relationships between coordination and balancing layers, we
highlight that layers are arranged so that CDs coordinate interactions before the
load balancing is performed, if needed. In other words, load balancers only han-
dle already-coordinated interactions. Hence, the coordination does not impact
the load balancer layer(s) since it is performed before that a load balancer routes
the request toward the target service instance. Also, the choreography ID, re-
quired for correlating messages for the purpose of coordination (as explained in
Section 2.2) is completely transparent to the balancing layers. In synthesis, each
layer has a specific concern and does not account for the functionalities offered
by other layers, being reciprocally agnostic and their functionalities completely
decoupled.

5.2.2 Architectural style at work

Figure 5.3 shows the architectural style applied to the online ticketing case study
described in Section 5.1. The resulting architecture, beyond handling normal
traffic conditions, is capable of dealing with the high traffic related to the ticket
sale for an important event by providing different SLAs to users. In fact, premium
users are guaranteed better performance and prioritized access to the system by
using dedicated microservices instances. In this scenario, the most stressed parts
of the system are Event Catalog, Reservation, and Ticket Service. Thus, for each
microservice, two server-side load balancers are employed to distribute the work-
load across the related microservices instances: LB1

EventCatalog and LB2
EventCatalog
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for Event Catalog, LB1
Reservation and LB2

Reservation for Reservation, LB1
Ticket Service

and LB2
Ticket Service for Ticket Service. Moreover, the CDs corresponding to the

participants interacting with these services, i.e., CDCustomer, CDTicketPortal and
CDTicketing, are equipped with client-side load balancers leading to a hybrid load
balancing. In this configuration of hybrid load balancing, a server-side load bal-
ancer is in charge of managing only the traffic generated by premium users. This
allows prioritizing premium users according to the related SLA. The hybrid ap-
proach is also employed for the microservices: Ticket Portal Manager, Checkout,
and Ticketing. Differently from the previous case, the related microservices in-
stances are balanced by a server-side load balancer per microservice type con-
nected with the client-side load balancers of the CDs: CDCustomer, CDCheckout and
CDTicketing. This configuration of the hybrid load balancing routes the traffic of
premium users to a dedicated subset of the microservices instances. In fact, the
involved microservices handle a light workload, hence it is enough to provide only
a dedicated subset of instances to comply with the SLA of premium users. The
instances of the microservices Customer, Cart, and Print are balanced only by the
client-side load balancers of the CDs they interact with, i.e., cLBPortal, cLBCheckout

and cLBTicketing. The hybrid load balancing is not required for Customer, Cart,
and Print. Indeed, due to their nature, they manage simpler and fewer requests
with respect to the other microservices, and hence their interactions can be prop-
erly balanced through client-side load balancers. Finally, the services: Blacklist
Service, Payment, and Shipping are represented as single-instances since they are
third-party existing services.
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Figure 5.3: Online ticketing system architecture
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5.3 Evaluation

The realization of a scalable choreography-based microservices system is obtained
through the combination of coordination and load-balancing mechanisms.

The Coordination Layer has been experimentally evaluated concerning the
system performances in Chapter 3, without detecting issues to consider it a bot-
tleneck. On the other hand, as already discussed, the overall scalability of the
system resulted to be weak due to the poor scalability of the involved services.
In fact, as shown in Section 3.6, with high demand rates, the execution times of
the involved services significantly grow, causing the degradation of user-perceived
performances. The same results have been obtained in previous work concerning
the approach for the coordination of service choreographies [8].

Thus, the evaluation conducted in this chapter focuses specifically on the load
balancing layers, i.e., client-side and server-side load balancing layers, with the
aim to evaluate their impact on the scalability of the system and, as a conse-
quence, on the user-perceived performances. Moreover, the evaluation also fo-
cuses on the support that the possible design alternatives for load balancing have
on some of the dependability attributes of the system.

Evaluations goals: the evaluation concerns the following three aspects of the
architectural style and answers the related Evaluation-Questions (EQs):

• Scalability support:

EQ1: How is scalability supported by the architectural style?

• Dependability support:

EQ2: How is dependability supported by the architectural style?

• User-perceived Performances impact:

EQ3: What is the impact of the load-balancing layers on the User-perceived
Performances?

Evaluations method: the evaluation is carried out both as an Argumenta-
tion and a Technical Experiment [73]. In particular, the Argumentation is used
to answer EQ1 by arguing the support of the design alternative with respect
to the following architectural properties: Load balancing scalability (LB Scal-
ability) and Server-side scalability (SS Scalability); whereas EQ2 is answered
by arguing about the architectural properties: User-perceived Performances (UP
Performances), Evolvability, Reliability, and Security. Moreover, to quantify the
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impact of the load-balancing layers on the UP Performances, and hence to an-
swer EQ3, a Technical Experiment concerning the implementation of the online
ticketing system (Section 5.1) has been conducted.

5.3.1 Evaluation of design alternatives

Table 5.1 summarizes the results of the evaluation of the design alternatives
with respect to the considered architectural properties. In particular, from the
several architectural configurations enabled by the proposed architectural style
(Section 5.2), we derived the following design alternatives: Client-Side Load Bal-
ancing, Server-Side Load Balancing and Hybrid Load Balancing. For each of
these design alternatives, the table reports if a specific architectural property is
supported in a poor (*), moderate (**), or good (***) way.

Table 5.1: Design alternatives evaluation

Design Alternative U
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Client-Side *** *** * * *** *
Server-Side * * ** *** * ***

Hybrid ** ** *** ** ** ***

Good: ***, Moderate: **, Poor: *

User-perceived performances Concerning User-perceived performances, the
client-side load balancer uses a direct connection with the server without intro-
ducing proxy extra hops. Moreover, it does not represent a bottleneck because
it handles the traffic of its local microservice instances in a distributed way [80].
Thus, the client-side load balancer supports the User-perceived performance in a
good way. Conversely, the server-side load balancer represents a bottleneck and
it introduces an extra hop [72, 97], hence, it supports the User-perceived perfor-
mance in a poor way. The hybrid load balancing mitigates these disadvantages.
In fact, the negative effects of the extra hop and the bottleneck represented by
the server-side load balancer are reduced if the system resources and the number
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of service instances per server-side load balancer are properly determined. Thus,
the hybrid load balancing supports user-perceived performance in a moderate
way.

Load balancing scalability Regarding scalability, we consider two dimen-
sions: load balancing scalability (LB Scalability) and server-side scalability (SS
Scalability). The former refers to the ability of the load balancer to scale with
respect to the number of interactions, whereas the latter involves the ability of the
load balancer to support the scaling of the microservice instances. Load balanc-
ing scalability is supported in a good way by the client-side load balancer since it
can add new load balancing capacity to the system each time a new microservice
instance appears. Server-side load balancer supports load balancing scalability in
a poor way because it can handle incoming requests by applying vertical scaling
up to the availability of the computational resources. The hybrid load balancer
allows a flexible form of scaling by adding or removing both service instances
and load balancer instances, and hence it supports load balancing scalability in
a moderate way.

Server-side scalability Server-side scalability is supported in a poor way by
the client-side load balancer since it does not manage the number of microservice
instances it can use. In fact, a client-side load balancer can’t understand whether
to add or remove microservice instances, it just distributes its requests among
the list of available instances and it can possibly lead to an uneven load distri-
bution [80]. Contrariwise, a server-side load balancer has a continuous awareness
of the workload of each microservice instance and hence, according to the traf-
fic, it can easily figure out whenever microservice instances should be added or
removed. Moreover, the knowledge of the traffic on the microservice instances
allows the server-side load balancer to implement more accurate balancing al-
gorithms. Thus, the server-side load balancer supports server-side scalability in
a better way with respect to the client-side. The hybrid load balancer employs
both the client-side and server-side load balancer, and hence it allows distributing
requests to suitably partitioned microservice instances complying with resources
availability, costs, or service-level agreements (SLAs). Therefore, the hybrid load
balancer supports server-side scalability in a good way.

Evolvability We consider evolvability as the degree to which a component im-
plementation can be changed without negatively impacting other components [47].
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A change in a local client-side load balancer implementation may impact the
balanced client service resulting in its re-deployment [115]. In fact, client-side
microservices may be tightly coupled with the implementation of their client load
balancers, (e.g., a microservice and its client load balancer are within the same
executable artifact). In such cases, they need to be re-deployed. This introduces
a high downtime, and hence a client-side load balancer supports evolvability in
a poor way. In a server-side load balancer, the downtime is limited because the
change affects only the load balancer [115]. This allows server-side load balanc-
ing to support evolvability in a good way. The hybrid load balancer supports
evolvability in a moderate way because it permits to mitigate the change impact.
This can be obtained by applying the change only on the server-side load balancer
whenever possible, restricting the implementation of the change on the client-side
load balancer only when strictly required.

Reliability Reliability from an architectural point of view can be defined as
the degree to which an architecture is susceptible to failure at the system level
in the presence of partial failures within components, connectors, or data [47].
Client-side load balancer due to its fully distributed nature does not represent a
single point of failure, and hence it supports reliability in a good way. Conversely,
the server-side load balancer introduces a single point of failure and it supports
reliability in a poor way. Hybrid load balancer ease this disadvantage by employ-
ing several server-side load balancers. Thus, it supports reliability in a moderate
way.

Security Regarding security, server-side load balancer hides the internal struc-
ture of both the application and the network because clients can’t contact directly
the microservice instances. Thus, server-side load balancer supports security in
a good way. On the contrary, client-side load balancer allows clients to directly
interact with the microservice instances, and hence it supports security in a poor
way. Hybrid load balancer, because of the presence of server-side load balancer,
mitigates completely the problems of the client-side load balancer, thus provid-
ing good support for security. In fact, in the hybrid setting the client-side load
balancer can only interact with the server-side load balancer, hence clients are
not aware of the internal network and possible malicious interactions are pre-
vented [7].
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5.3.2 Experimentation

As anticipated, we performed an experiment by implementing and running the
system presented in Section 5.1.

This experimentation had the purpose of evaluating the benefits of the pres-
ence of a load-balancing layer on the user-perceived performances, in particular
in those situations in which there is a high traffic load due to the presence of a
large number of users that are accessing the system. Thus, as an indication of the
user-perceived performances, we measured the response times for the tasks that
involve the Customer service (i.e., the user): (i) Get Events, (ii) Get Event Info,
(iii) Select Tickets (by measuring the time between the request sent by Customer
for that task and the reply message received for Tickets Temp Reserved), and
(iv) Request Checkout (by measuring the time between the request sent by Cus-
tomer and the reply message received for Return Tickets and Shipping Info). We
have run the system by executing the choreography with an increasing number
of concurrently interacting users and compared the obtained results for two dif-
ferent scenarios: (i) without any load balancing layer (unbalanced scenario), and
(ii) with the two load balancing layers by configuring the system as described in
Section 5.2.2 (balanced scenario).

The prototypal implementation of the system used for experimentation is
publicly available3.

Experimentation Setting

The goal of the experimentation is to specifically evaluate the impact of the load
balancing layers on the user-perceived performances, by comparing the results
obtained in the two different settings. Since the architecture only focuses on
coordination and load balancing, we avoid considering aspects such as how to
distribute, replicate and scale databases, being independent of our architectural
style. Also, we do not address the problem of guaranteeing consistency among the
distributed and possible replicated databases. Thus, we excluded the persistence
from our tests to avoid that results could be biased and influenced by possible
bottlenecks in the data access, since it may impact system performance.

In order to perform tests, Customer service has been implemented as an appli-
cation that simulates the presence of a varying number of users that concurrently
interact with the system. For each simulated user, it sends the requests to the
system according to the execution flow prescribed by the choreography definition:

3https://github.com/sosygroup/microservices-ticketing-system-prototype
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it first sends a message to execute Get Events task, then a message for Get Event
Info, then a message for Select Tickets, and at the end a message for Request
Checkout. The implementation of Customer is realized by leveraging the Locust4

load testing tool. It allows simulating the behavior of the user by considering
also thinking times (randomly selected in a range from 5 to 10 seconds) before
sending a message after receiving the response for the previous task. Tasks are
executed according to the behavior specified in the choreography, so to simulate
the correct sequence of interactions. In this way, we assume that Customer is
always behaving properly, i.e., it does not attempt to perform undesired interac-
tions as explained in Section 5.1, since the effectiveness of the coordination has
been already evaluated in Chapter 3 and in [8] and it is out of the scope of this
experimentation.

Data have been collected by the Customer service, which locally logs the
timestamps of each of the measured interactions listed above, in a way that
the collection of data does not interfere with the message exchanges between
microservices, CDs, and load balancers. Only when all the instances have been
executed, logs are collected and analyzed in order to extract the system response
times for each of the operations.

Each of the two scenarios has been tested by running the choreography multi-
ple times with an increasing number of concurrent simulated users, starting from
50 up to 10000, in order to simulate both situations with low traffic and situations
with very high traffic.

The experimentation has been performed using eight Virtual Machines (VMs)
installed in four distinct Server Machines (SMs). Each SM is equipped with
2CPUs Intel Xeon E5-2650 v3, 2.3 GHz, 64 GM RAM, and 1 Gb/s network.
Each VM has 4 CPU cores and 4 GB of RAM. The VMs are equipped with
Ubuntu Server 22.4 as operating system. Open Stack is the cloud infrastruc-
ture provider. Computational resources (CPU cores, RAM, network) of SMs are
equally allocated to VMs. Thus, we deployed all the components by following
a round-robin approach, except for the CDs, which have been conveniently put
(although not mandatory) into the same VM with the consumer or prosumer
services they coordinate. In this way, services are uniformly distributed into the
VMs to equally distribute the load among them and to avoid resources being
consumed in a uniform way. In general, our approach does not constrain the
deployment setting, being all the components free to be deployed according to
any strategy. The deployment settings related to the two scenarios mentioned

4https://locust.io
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above are described in Figure 5.4 (unbalanced scenario) and Figure 5.5 (balanced
scenario).
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SM2 SM4

Customer
CDCustomer

VM3

VM4 VM8
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CDTicketPortalManager

Checkout Manager
CDCheckoutManager

Ticketing Manager
CDTicketingManager
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Cart

VM1

VM2

VM7
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Figure 5.4: Deployment setting for the scenario without load balancing

Experiment Results

The chart in Figure 5.6 shows the results of the experimental runs. Dotted lines
describe the trend of mean response times of the four considered interactions in
the unbalanced scenario. Continuous lines, instead, describe the trend in the
balanced scenario.

The first thing that leaps into the eye is that in the unbalanced scenario, when
the number of concurrent users increases over 1000, the response times raise in a
significant way. In particular, the mean response time for the Checkout interaction
raises from 33.7 ms when there are 1000 concurrent users (medium load) to 65 ms
when there are 10000 concurrent users (very high load), hence doubling the value.
The same holds for the interactions Get Events (response time raising from 3 to
9 ms) and Ticket Selection (raising from 11 to 24 ms). Get Event Info showed
a response time raising from (3.2 to 4.9 ms). Despite the fact that the increase
in response times is sub-linear with respect to the increase in the number of
concurrent users (response times double when the number of concurrent users has
a ten-times growth), in this experimental setting a degradation of user-perceived
performance can be observed. On the contrary, in the balanced scenario, the
raise of the mean response times is reduced significantly (from 34.6 to 37 ms for
Checkout interaction). Thus, the load balancing resulted to be able to effectively
reduce the loss of user-perceived performances when the system undergoes high
demand rates.

Moreover, we can observe that with very low to medium loads (50 to 500 con-
current users), the mean response times for all the considered interactions in the
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Figure 5.5: Deployment setting for the scenario with load balancing layers (CDs are

equipped with local client-side load balancer)

balanced scenario are higher with respect to the unbalanced. This is likely due
to the presence of server-side load balancers, which require an extra-hop in the
message passing between the microservices involved in the interactions. However,
the difference between the mean response times in the two configurations is neg-
ligible (4.6 ms at most), while the load balanced setting significantly outperforms
the unbalanced one in supporting the system’s scalability and, hence, avoiding
the degradation of user-perceived performances.

5.4 Discussion

The evaluation of the proposed architecture highlighted how the load balancing
layers, in support of the composition of microservices and the distribution of
their workload, are able to enhance a number of non-functional properties (user-
perceived performances, scalability, evolvability, reliability, and security) of the

G. Filippone 111



5.4. Discussion

0

10

20

30

40

50

60

70

50 100 250 500 1000 5000 10000

R
es

po
ns

e t
im

e (
m

s)

Users

Get Events Get Event Info Ticket Selection Checkout
Get Events (LB) Get Event Info (LB) Ticket Selection (LB) Checkout (LB)

Figure 5.6: Experimentation results

system. The flexible nature of the architecture permits different design alterna-
tives, thus supporting these properties at different levels.

Importantly, the introduction of the load balancing layer in support of the
scalability of the system enabled a sensible reduction of the degradation of the
user-perceived performances. The experimental results highlighted that thanks to
the replication of the services that are more impacted by heavy request loads, the
system’s response time suffers very marginally from the increase in the number
of users in the system. Hence, the scalability problem suffered by choreographed
systems, as highlighted in Section 3.7, can be solved by (decomposing monoliths
to microservices and) replicating the most affected services and also introducing
a load balancing layer as proposed in this chapter.

5.4.1 Threats to validity

Some aspects may threaten the validity of both the presented approach and the
evaluation results. In the following, we discuss the most important ones.

Internal validity

The experimentation results were obtained by using a simple round-robin as the
load-balancing algorithm implemented into the load balancers. Also, the number
of selectable microservice instances was fixed at the deployment of the application,
without exploiting any dynamic creation or deletion of instances. In this more
dynamic setting, the obtained results might have been different. In fact, a more
complex load balancing algorithm may lead to a higher overhead, introduced by
the dynamic selection of the service instances and by the more intrinsic complexity
of the architecture (that would have required a service registry to keep track of
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the available instances). On the other side, the balancing of the workload could
have led to better results when the number of users was higher.

Moreover, the experimentation was performed only on the use case system:
although it focuses specifically on the load balancing and highlights the benefits
arising from its usage, the obtained data may be biased by some factors. For
instance, the measured performances may have been affected by the deployment
setting (although it is realized through a round-robin deployment on the available
VMs).

External validity

The architectural style does not account for the other software components re-
quired to realize the more complex balancing scenarios mentioned before. In
fact, it does not consider the use, e.g., of service registries, service discoveries,
or health checkers that allow the dynamic creation of instances and for their
selection. However, it is worth noting that these aspect does not influence the
architectural style, since the services implementing the discovery and the reg-
istry may be introduced in the architecture without affecting its main concerns
(realizing coordination and load balancing in a decoupled way).
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Related work

This chapter reports an overview of works related to the topics covered in this
thesis. In particular, we report related approaches at the state-of-the-art concern-
ing: (i) enforcement of choreography realizability, (ii) support for the realization
of context-aware systems, (iii) approaches to the decomposition of monoliths to
microservices, (iv) approaches to the composition of microservices, and (v) archi-
tectures for load balancing.

6.1 Choreography realizability and enforcement

Concerning the automated synthesis of choreographies and the choreography en-
forcement, our work leverages on the approaches presented in previous works [5,
6, 9], in which CDs are introduced and formally defined, and the automated
synthesis process is described and shown at work.

In the literature, many approaches have been proposed to deal with the foun-
dational problems of checking choreography realizability, verifying conformance,
and enforcing realizability [17, 19, 35, 55, 56, 76]. They propose formal means to
address these fundamental aspects of choreographies. However, they are based
on different interpretations of the choreography interaction semantics, in terms
of both the subset of considered choreography constructs, and the used formal
notations. Rather than addressing realizability and conformance of choreogra-
phy, the goal of this work and of the CHOReVOLUTION project before of this,
is to practically relize a choreography development process that comprizes all the
development activities, from the modeling to the runtime support, by supporting
the reuse of third-party services. In the following, we report the main approaches
and tools concerning the synthesis and enforcement of choreographies and the
composition of services.
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In the work of Gudemann et al. [56], choreography realizability is enforced
through the generation of monitors, which act as local controllers interacting
with their peers and the rest of the system in order to make peers respect the
choreography specification. The notion of monitor is similar to our notion of CDs,
since they coordinate the choreography by interacting with the other choreogra-
phy participants.

Farah et al. [46] address the realizability problem through an a-priori ver-
ification techniques using refinement and proof-based formal methods. Their
approach is different from ours in that it defines and realizes a notion of peer
projection that is correct by construction, avoiding the coordination from the
outside and the introduction of additional software entities needed for enforcing
realizability such as our CDs. Our approach, however, focuses on realizing a
choreography by reusing third-party (and black-box) services rather than gener-
ating from scratch the correct peers. Only the application-specific components,
together with the CDs, are generated.

Nguyen et al. [94] introduce data support for analysing interaction-based ser-
vice choreographies. This model uses data-aware interactions as the basic event.
The authors propose a top-down development process for data-aware service
choreographies by extracting a behavioral skeleton for each choreography par-
ticipant through projection. In this way, developers have only to complete the
skeletons with the business logic needed to realize the distributed application ac-
cording to the choreography specification. Differently from our approach, which
employs BPMN2 choreographies, their focus is on interaction-based service chore-
ographies.

The ASTRO toolset [118] supports the automated composition of services.
It aims to compose a service out of a business requirement and the description
of available external services. A planner component automatically synthesizes
the code of a centralized process that achieves the business requirement by inter-
acting with the available external services. Unlike our approach, ASTRO deals
with orchestration-based processes rather than decentralized choreography-based
ones.

6.2 Context-aware systems

The concept of variability is widely used in association with Software Product
Lines [11, 16, 123]. Several approaches have been introduced to facilitate the
development of variable service architectures in the context of service-oriented
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SPLs [25, 86, 104, 113, 116]. However, they mainly focus on the architectural
and development aspects of variability, without concerning the context-aware
runtime adaptation of the service composition. In the following, we report the
main approaches and frameworks that deal with the realization of dynamically
adaptable context-aware SOA systems.

Yu et al. [125] presented MoDAR, an approach to the development of dynam-
ically adaptive service-based systems. The approach considers the development
of two system models: a simplified business process (base model) and a variable
model, which consists of a set of rules that drive the dynamic behavior of the
system. A model-driven platform supports the semi-automatic transformation of
the code into an executable system. Our approach is similar in that their base
model is an underspecified model of the system, while (a part of) our variable
part is defined through variants, and selection functions drive the dynamic be-
havior. However, we are more focussed on the context-awareness adaptation and
we explicitly consider the context by defining its model.

Cubo et al. [38] proposed an extension of DAMASCO, a framework for the
service discovery and composition, by managing the variability of services and
context during the service composition at runtime. They describe the service
interfaces through a context profile that describes also the context information,
and they use feature models in order to specify the service variability. The com-
position consider the context features in the model to find matching services with
the adequate features, thus realizing adaptation. Differently from our approach,
Cubo et al. consider the context changes during the composition through discov-
ery means, while our adaptation is entirely performed at runtime with dynamic
service selection according to the runtime conditions. Moreover, while they as-
sume that context information is inferred by the client requests, we make use of
acquisition functions in order to get context information also from outside the
system.

Murguzur et al. [90] introduce LateVa. In this framework, runtime variability
is achieved through the definition of a base process model and process fragments.
A fragment describes a single variant realization for each of the variation point
defined into the base model. The latter is also annotated with endpoints from
which context data is gathered. A variability model defines the variants and
their context data mappings as feature models. At runtime, the fragment selector
service searches for an available fragment in a model repository that can realize
the required features. This approach tackles the adaptation challenge in a similar
way with respect to our solution for the task-flow-level adaptation – through the
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definition of variants that are associated to variation points. However, we also
explicitly consider the message and participant-level adaptation.

Bucchiarone et al.
De Sanctis et al. [40] presented an approach for designing and allowing the dy-

namic context-aware adaptation of service-based applications. Here, the adapta-
tion since the design time and allows dividing the adaptation and the application
logic in two separate models. This work leverages their previous works [30, 31],
in which abstract activities are defined at design time and are then refined at
runtime when adaptation is performed through the continuous integration of new
services. Unlike their approach, we avoid to model the adaptation process since
the adaptation is performed by choosing adaptable entities among a well-defined
set of candidates.

Riccobene et al. [105] show SCA-ASM, a formal framework for modeling and
executing service-oriented applications that are able to monitor and react to envi-
ronmental changes. The approach exploits multi-agents that execute a distributed
MAPE-K loop for monitoring the context, planning and execution adaptation
both at architectural and at behavioral level. MAPE-K loops are used also in the
work presented by Mongiello et al. [87], in which a service-oriented architecture
is built at runtime by defining a metamodel based on knowledge graphs to model
information about the environment around the user. Our approach differs from
these since our adaptation strategy evaluates the context on demand without
executing a control loop.

Calinescu and Rafiq [34] describe a method to automatically synthesize in-
telligent service proxies. They enable self-adaptation of a service-based system
through the runtime selection of suitable participants in a workflow. Differently
from our approach, they focus the selection to keep satisfying the high-level re-
quirements of the system, dynamically selecting the services by means of online
learning. In contrast, we focus the service selection on functional aspects rather
than on non-functional requirements satisfaction.

De Prado et al. [52] provide a scalable event-driven context-aware SOA ar-
chitecture that exploits data obtained from IoT devices and offers context-aware
REST services to the user. The approach described by the authors exploit an
enterprise service bus that incorporate data coming from IoT devices and allows
the communication between all involved agents. The context is managed by a
context broker and a context DB, which keep the context information updated
and provide the context information to the REST services. This approach focuses
on the collection of context data by also using complex event processing, while we
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gather context information from business messages and exploit them on demand
at runtime when selecting services.

6.3 Decomposition into microservices

The body of knowledge on this topic is wide and covers several aspects. In this
section, we only report those that are more similar and closely related to the
approach presented in this thesis, by considering the main common characteris-
tics: inputs required by the approaches, usage of static code analysis, graph-based
clustering, data-driven decomposition, and the leveraging of layered architectures.

Discussing the input requirements, some researchers using a top-down ap-
proach have involved the users to manually provide high-level domain informa-
tion, such as domain models, data-flow diagrams, or use cases [36, 59, 81]. Simi-
larly, Levcovitz et al. [78] manually categorized the database tables, established a
dependency graph of the code, and extracted the microservices from the bottom
up [49]. In contrast, our approach is not dependent on any manual input effort,
system models, and/or user’s system knowledge as it requires the monolith’s code
only.

Several researchers applied SCA to exploit the semantic information for clus-
tering using proximity measures or topic modeling [13, 28, 68, 84, 102, 108, 117].
In contrast, we perform SCA to understand the pre-existing system’s archi-
tecture to identify the structural elements (i.e., classes, methods, etc.) and
the relationships between them (i.e., method calls, class inheritance, etc.), like,
e.g., [45, 71, 74, 82, 98, 111, 117].

Representing the structural elements of the original software system in a
processable format, such as trees or graphs, is a widely exploited strategy, as
graph-based clustering may lead toward the identification of microservice candi-
dates [82]. Having a graph-based representation, some approaches [28, 82, 117]
applied the Louvain algorithm [24] to find candidates to increase modularity
value. Gysel et al. [59] in their visualization tool of Service Cutter applied Gir-
van–Newman’s algorithm [53] to find communities. Mazlami et al. [84] designed a
graph-cutting algorithm to generate microservices. Kamimura et al. [68] perform
graph clustering to find features based on program groups and data. In [103]
four self-developed graph-based algorithms are used to generate microservices.
Tyszberowicz et al. [119] represent a monolithic system in a bipartite graph and
then use the shortest path to find nodes closer to each other to find density-based
clusters. In contrast to the aforementioned approaches, we do not rely solely
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on graph clustering to find candidates. We apply the Louvain algorithm on two
different graph-based representations of the system to find highly cohesive com-
munities of nodes and clusters of domain entities. Instead of considering those
clusters as candidate microservices, they are used as input in the optimization
phase to obtain high-cohesive and low-coupled microservices.

The data-driven approaches are primarily top-down or hybrid, in which the
database is partitioned or the data-flow graphs of business logic are analyzed [65].
Romani et al. [108] have applied semantic analysis on the database schema to
find clusters, which are then mapped to topics for microservice identification.
They do not form any graph representation of the extracted information from
the database schema, however, they relate to us by focusing on the persistence
layer and persisted domain entities. Li et al. [81] extended the dataflow-driven
semi-automatic decomposition top-down approach of Chen et al. [36]. They map
the business logic’s code toward the data storage or the persistence layer. They
build a virtual data flow from the manual input to apply an algorithm to find
clusters or modules as microservices. However, differently from our approach,
they require manual intervention and system knowledge to analyze the business
logic and use cases and build the data-flow diagrams.

Some approaches leverage systems’ layered architectures [106] to identify mi-
croservices. Trabelsi et al. [117] extend the work in [2] and classify the source
code classes into three layers and identify three service types: entity, application,
and utility. After building a weighted graph representation of the system, they
apply the Louvain algorithm to group classes of each layer into services according
to their static relationships. Then, a fuzzy clustering algorithm is applied to clus-
ter services across different layers into candidate microservices. In [128], authors
assign each class to its related layer. By using two different similarity metrics
that favor a vertical decomposition, a hierarchical clustering algorithm builds a
dendrogram that is then suitably cut into a set of candidate microservices. In
contrast, we exploit layers to build the graph representation and assign weights to
the graph’s edges. Both clustering and optimization are performed on the graph
without considering the system layers explicitly, and allow methods from all the
layers to be included in each microservice. Vertical decomposition is obtained
through the inter-relationships between methods and methods and entities.

Finally, differently from all the approaches reported above, we represent and
decompose the system at the method-level resolution, even splitting classes if
needed, rather than considering classes as atomic units.

G. Filippone 119



6.4. Microservices composition approaches

6.4 Microservices composition approaches

Oberhauser presents Microflows [99], a lightweight and automated approach for
the orchestration of semantically-annotated microservices through agent-based
clients. Microservices are provided with semantic metadata in support for their
automated invocations. They are mapped to nodes and then represented in a
graph. Clients act as agents and execute a workflow by planning the shortest
path into the graph.

Yahia et al. [21] propose Medley, an event-driven microservice composition
platform. It is based on a DSL for producing an orchestration description without
the need to focus on the communication issues. The code is compiled into a
lower-level code and run on a event-based platform. Medley handles the service
adaptation according to service availability and supports horizontal scaling among
clusters of nodes.

The work by Monteiro et al. [88] aims to overcome the limitations of the
approaches proposed by Oberhauser and Yahia due to the dynamic location of
microservices. They propose the use of declarative business processes, which focus
on what should be done in order to achieve a business goal rather than all possible
alternative flows to be followed. The orchestration of microservices is realized
through the Beethoven platform. It is realized through a layered architecture,
whose core is the orchestration layer composed of an event bus and an event
processor that processes messages, handles tasks, and balances the workload.
The orchestration is modeled through a specific DSL.

Gutierrez-Fernandes et al. [58] propose the use of process engines as microser-
vice platform instead of using orchestrators when the business logic of microser-
vices involves complex workflows. Business process languages such as BPMN
can be used as a high-level language to define the microservices behavior and
their message passing. To this extent, Valderas et al.[120] defined a microservice
composition approach as a choreography of BPMN fragments. Their approach
considers the developement of a BPMN2 diagram representing the “big picture” of
the system, which is then splitted into fragments, each representing the behavior
of a microservice. A BPMN engine is used in order to deploy and execute the
microservices, while a message bus allows the communication among them.

Sun et al. [112] propose an approach to model variable microservice-based
system by using VxBPMN4MS, an extension of BPMN for supporting variabil-
ity. Microservices invocations are explicitly modeled in the business process and
are manipulated in the composition. After the modeling phase, the business pro-
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cess is automatically transformed in a microservice composition framework called
AMS implementing the business logic. The composition framework monitors the
microservice execution, handling variability and runtime exceptions.

Our approach leverages on a similar technique (BPMN2 diagrams) for the
modeling of the microservices choreography. However, while the reported ap-
proaches consider the microservices internal behavior, we only focus on their
interaction protocols, thus considering (micro)services as black-box entities that
have to be externally coordinated. Moreover, none of these approaches consid-
ered explicitly dependability aspects since they mainly focused on development
and composition issues. In contrast, our layered architecture leverages on the
automated choreography synthesis approach in [9] and provides specific support
for scalability in microservice composition through the load balancing layer.

Besides the aforementioned Medley and Beethoven, other approaches for the
microservice composition considered the use of a specifically-developed program-
ming language. In particular, the Jolie web-service oriented programming lan-
guage1 provides support for microservices development by shifting the focus from
the computation and frameworks to the communication and dependencies among
microservices [57]. By taking inspiration from WS-BPEL, Jolie allows defining
the interfaces and the workflow of each microservice, separating the definition of
the behavior of a microservice from its deployment.

6.5 Architectures for microservices load balancing

Many works in the state-of-the-art about load balancing are specifically aimed at
analyzing techniques and algorithms for efficiently performing the service selec-
tion process and optimizing the load balancing among the system computational
resources [3]. These are fundamental aspects since an efficient selection process
speeds up the communication among microservices, while an optimal balancing
strategy guarantees high performances when the system load increases. How-
ever, these aspects are out of the scope of this work, since we focused on the
architectural aspect rather than on a specific load balancing algorithm.

In [83], the author briefly discusses different load balancing strategies. Beyond
the server-side and the client-side strategies, the author portrays an “external”
load balancing strategy. Here, clients can communicate directly with the server,
after they have requested to an external load balancer which instance (i.e., which
URI) they have to connect to. In this external approach, there are neither extra

1https://www.jolie-lang.org
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ops nor proxified interactions, while the client complexity is smaller with respect
to a client-side approach, and the scalability and performances are improved
with respect to a server-side approach. However, the external load balancer still
represents a single point of failure, while clients have to still manage some com-
plexity (i.e., the communication with the external load balancer) and they must
be trusted.

In [80] Baker Street2, a framework for realizing client-side load balancing in
microservice systems, is presented. By following the architectural style of client-
side load balancing, each client service is provided with an instance of a local load
balancer that handles its local traffic. In order to manage the information about
the availability and location of the microservice instances, each instance has (i)
a health checker that registers the microservice to a global discovery service, and
(ii) a routing system that owns and updates a local list of the service instances.
When a microservice has to send a message, its routing systems proxify the
communication by routing the message to one of the available target microservice
instances. As argued by the author, while this approach owns all the advantages
of a client-side load balancing, it may distribute the load in an uneven way since
each load balancer may randomly route the traffic towards the same microservice
instances. The use of an hybrid approach, as envisioned in our architecture, would
allow the mitigation of this issue.

Niu et al. [97] argue that besides the overhead introduced by load balancers
that proxify the interaction among microservices, load balancing techniques ig-
nore the competition for shared microservices among different chains of requests
that connect a microservice to another. In order to overcome this issue, they
present a chained-oriented load balancing algorithm (COLBA), which balances
the microservice instances according to the request chains, isolating microservices
across them. Their approach allows steering requests only through microservices
that belong to the same chain. They address the challenge by modeling load bal-
ancing as a non-cooperative game and employ a convex optimization technique
to obtain an approximated optimal solution to the problem. Similarly, in [126]
is pointed out that the load on a microservice instance directly depends on the
load distributed on its predecessor instances in the request chain. Considering
this, the relationships between microservice instances are modeled as a directed
graph, and a QoS-aware load balancing problem is formulated. However, obtain-
ing such kinds of load balancing requires the knowledge of all the request chains
across the microservices, besides the fact that the load balancing would require a

2http://bakerstreet.io/
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complete update if some microservice changes and the request chains change as a
consequence. In contrast, our load balancing architecture is agnostic with respect
to the system’s topology, and it is robust with respect to the update, addition, or
removal of microservices. Moreover, similar advanced balancing techniques can
be still implemented as upgrades of the load balancers’ internal logic.
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Chapter 7

Conclusions and future work

This thesis reported the work done in the scope of Service Oriented Architectures
(SOAs), in particular on the composition of services and the decomposition of
monoliths into microservices. The thesis presented a three-fold contribution:

• It enhanced the approach at the state-of-the-art for the composition and
coordination of services into choreographies by proposing a solution for the
realization of context-aware choreographies;

• It proposed a novel fully-automated approach for the decomposition of
monolithic systems into microservices;

• It proposed an architectural style enabling the load balancing of microser-
vices in choreography-based systems.

All the presented approaches mentioned above have been evaluated by also
running experiments on use cases and the results obtained were satisfactory.

The short-term future work concerns further experimentations on all the solu-
tions presented in the thesis, in particular by leveraging a use case, possibly from
an industrial real-world case study, capable of showing the context-awareness,
decomposition, and load-balancing needs together.

Then, we plan to integrate the generation of the new software artifacts sup-
porting context awareness and load-balancing directly within the synthesis pro-
cess realized in the previous works [4–6, 9, 10].

Finally, we plan to address the limitations of the approach to the decomposion.
In particular, we plan to allow experts to provide their inputs during or after the
community detection phase as a further refinement step. This will improve the
quality of the obtained domain contexts, overcome the limitations concerning the
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clustering phase, and take into account possible application-specific requirements.
Moreover, we plan to improve the analysis phase by considering dynamic analysis
to optimize the overhead of inter-MS communications. This will also call for more
accurate metrics to be used as the objective function of the optimization phase.
We also plan to extend our tool by using machine learning techniques to classify
classes more accurately, especially when the system is large and complex.
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