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A B S T R A C T

In this paper, the robust stabilization problem by means of quantized sampled-data event-based
(QSE) controllers is investigated for nonlinear systems affected by state delays and unknown
disturbances. In particular, a methodology for the design of robust QSE stabilizers is provided
for control-affine nonlinear systems affected by unknown actuation disturbances and unknown
measurement errors. Firstly, the notion of Steepest Descent Feedback (SDF), continuous or not,
is suitably revised in order to deal with the robustification of event-based controllers. Then,
Input-to-State Stability (ISS) redesign methodologies are used to provide the robustification
term which is added to the SDF at hand in order to arbitrarily attenuate the effects of unknown
external disturbances affecting the considered control scheme. A spline approximation approach
is used in order to cope with the problem of the possible non-availability in the buffer of suitable
past values of the system state required for the correct application of the proposed robust QSE
controller. It is proved that there exist a suitably fast sampling and an accurate quantization
of the input/output channels such that: the robust QSE implementation of SDFs, continuous or
not, ensures the semi-global practical stability of the related closed-loop system, regardless of
the above disturbances, provided that the observation errors affects marginally the new added
control term. The stabilization in the sample-and-hold sense theory is used as a tool to prove the
results. The provided results include the case of non-uniform quantization of the input/output
channels and the case of aperiodic sampling. Applications are presented in order to validate
the results.

. Introduction

In the last years, the study of quantized sampled-data control systems has received a growing attention by the researchers because
f the huge utilization of digital devices in many practical engineering applications. Many approaches have been proposed in the
iterature concerning the stabilization problem of nonlinear delay-free/time-delay systems by means of quantized sampled-data
ontrollers (see, for instance, [1–8]).

A popular approach for the design of sampled-data stabilizers is the one based on the event-triggered control, which has been
roved to be successful in properly managing shared computation and communication resources in the digital world [9,10]. The main
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idea behind such an approach is to control the system whenever it really needs attention, by avoiding continuous-time state/output
monitoring and control updates unless they are necessary to satisfy a certain property, such as a stability one. Many methodologies
for the design of event-triggered controllers for nonlinear delay-free/time-delay systems have been provided in the literature (see,
for instance, [11–25] and references therein). In particular, as far as event-triggered control scheme are concerned, a handful of
results have been proposed in the literature for various class of nonlinear time-delay systems also in the sampled-data context (see,
among the others, [14,19,24,26–34]). In [32], an event-based controller is provided for nonlinear systems with state delays ensuring
the global asymptotic stability property of the related closed-loop system. The considered event-based mechanism is checked in
continuous-time basis and a proof of the avoidance of Zeno behaviors is provided. In [14,19,26], sampled-data event-based stabilizers
are designed for nonlinear systems with time-delay and results concerning the semi-global practical stability of the related closed-
loop systems are provided. The triggering conditions proposed in [14,19,26] are only examined at a sequence of state-sampling
instants so that a minimum inter-event time can be naturally guaranteed (i.e., Zeno behaviors are avoided). However, quantization
in the input/output channels and disturbances affecting the controller and the measurements of the system state are not considered
in [14,19,26].

To our best knowledge, results concerning event-based controllers for nonlinear systems with state delays have never been
rovided in the literature taking simultaneously into account: (i) the presence of sampling (also aperiodic); (ii) the presence of
uantization (also non-uniform) in both input/output channels; (iii) the arbitrary reduction of the effects of unknown actuation
isturbances and unknown observation errors affecting the event-based digital controller at hand; (iv) possible discontinuities in
he function describing the controller; (v) problems related to the possible non-availability in the buffer of suitable past values of
he system state required for the implementation of the controller at hand.

In this paper, we fill this gap by providing a methodology for the design of robust quantized sampled-data event-based (QSE)
ontrollers for the important class of control-affine nonlinear systems with state delays affected by unknown actuation disturbances
nd unknown observation errors. Firstly, the notion of Steepest Descent Feedback (SDF), induced by a class of Lyapunov–Krasovskii
unctionals, is used in order to design a QSE controller. Then, the proposed QSE controller is robustified with respect to arbitrarily
arge unknown actuation disturbances and suitably small unknown observation errors. In particular, the robustification of the
roposed QSE controller is performed by adding a new control term built up via the ISS redesign methodologies. It is assumed
hat the bounds of the involved unknown disturbances are a-priori known and that the observation errors do not affect or affect

marginally the new added control term. Implementation problems related to the possible non-availability in the buffer of suitable
past values of the system state required for the correct implementation of the proposed robust QSE controller are also taken into
account. In particular, such a drawback is overcome by exploiting a spline approximation approach. Then, it is proved that there exist
a suitably fast sampling and an accurate quantization of the input/output channels such that a proposed robust QSE implementation
of SDFs, continuous or not, ensures the semi-global practical stability property of the related closed-loop system with arbitrarily small
final target ball of the origin and regardless of the above disturbances. The stabilization in the sample-and-hold sense theory (see,
for instance, [8,14,19,26,35–42]) is used as a tool to prove the results. We highlight here that, in the proposed design procedure,
discontinuities in the function describing the SDF at hand are allowed. Furthermore, the case of time-varying sampling periods
and the case of non-uniform quantization of the input/output channels are included in the theory here developed. To our best
knowledge, it is the first time in the literature that theoretical results concerning the arbitrary reduction of the effects of arbitrarily
large unknown actuation disturbances and of suitably small unknown observation errors are provided in the context of the QSE
control of nonlinear systems with state-delays. The proposed results are validated through applications concerning: (i) a single-link
flexible joint robot arm with time delays; (ii) a particular class of nonlinear time-delay systems.

Notation N denotes the set of nonnegative integer numbers, R denotes the set of real numbers, R⋆ denotes the extended real
line [−∞,+∞], R+ denotes the set of nonnegative reals [0,+∞). The symbol | ⋅ | stands for the Euclidean norm of a real vector, or the
induced Euclidean norm of a matrix. For a given positive integer 𝑛 and for a symmetric, positive definite matrix 𝑃 ∈ R𝑛×𝑛, 𝜆max(𝑃 )
and 𝜆min(𝑃 ) denote the maximum and the minimum eigenvalue of 𝑃 , respectively. For a given positive integer 𝑛 and a given positive
real 𝐻 , the symbol 𝑛𝐻 denotes the subset {𝑥 ∈ R𝑛 ∣ |𝑥| ≤ 𝐻}. The essential supremum norm of an essentially bounded function
s indicated with the symbol ‖ ⋅ ‖∞. For a positive integer 𝑛, for a positive real 𝛥 (maximum involved time-delay): 𝑛 and 𝑊 1,∞

𝑛
denote the space of the continuous functions mapping [−𝛥, 0] into R𝑛 and the space of the absolutely continuous functions, with
ssentially bounded derivative, mapping [−𝛥, 0] into R𝑛, respectively; 𝑛 denotes the space of bounded, right-continuous functions,
ith possibly a finite number of points with jump-type discontinuity, mapping [−𝛥, 0) into R𝑛. For 𝜙 ∈ 𝑛, 𝜙[−𝛥,0) is the function

n 𝑛 defined, for 𝜏 ∈ [−𝛥, 0), as 𝜙[−𝛥,0) (𝜏) = 𝜙 (𝜏). For a positive real 𝐻 , for 𝜙 ∈ 𝑛, 𝑛𝐻 (𝜙) = {𝜓 ∈ 𝑛 ∣ ‖𝜓 − 𝜙‖∞ ≤ 𝐻}. The
ymbol 𝑛𝐻 denotes 𝑛𝐻 (0). For a continuous function 𝑥∶ [−𝛥, 𝑐) → R𝑛, with 0 < 𝑐 ≤ +∞, for any real 𝑡 ∈ [0, 𝑐), 𝑥𝑡 is the function in
𝑛 defined as 𝑥𝑡(𝜏) = 𝑥(𝑡+ 𝜏), 𝜏 ∈ [−𝛥, 0]. For a positive integer 𝑛 and for 𝑥 ∈ R𝑛, the symbol 𝑄𝑛𝑥 denotes a finite subset of R𝑛. For a
ositive integer 𝑛, for S = R𝑛 (or R+), 𝐶1(S;R+) denotes the space of the continuous functions from S to R+, admitting continuous
partial) derivatives; 𝐶1

𝐿(S;R
+) denotes the subset of the functions in 𝐶1(S;R+) admitting locally Lipschitz (partial) derivatives. A

ontinuous function 𝛾 ∶R+ → R+ is of class 0 if 𝛾(0) = 0; of class  if it is of class 0 and 𝛾(𝑠) > 0, 𝑠 > 0; of class  if it is of
lass  and strictly increasing; of class ∞ if it is of class  and unbounded. The symbol ◦ denotes composition (of functions). For
ositive integers 𝑛, 𝑚, for a function 𝐹 ∶ 𝑛 × R𝑚 → R𝑛 Lipschitz on bounded subsets of 𝑛 × R𝑚, and for a functional 𝑉 ∶ 𝑛 → R+

ipschitz on bounded subsets of 𝑛, the derivative in Driver’s form (see [43] and the references therein) 𝐷+𝑉 ∶ 𝑛 × R𝑚 → R⋆, of
he functional 𝑉 , is defined, for 𝜙 ∈ 𝑛 and 𝑢 ∈ R𝑚 as

𝐷+𝑉 (𝜙, 𝑢) = lim sup
𝑉 (𝜙ℎ,𝑢) − 𝑉 (𝜙)

(1)
2

ℎ→0+ ℎ
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where for 0 ≤ ℎ < 𝛥, 𝜙ℎ,𝑢 ∈ 𝑛 is defined, for 𝑠 ∈ [−𝛥, 0], as

𝜙ℎ,𝑢(𝑠) =

{

𝜙(𝑠 + ℎ), 𝑠 ∈ [−𝛥,−ℎ)
𝜙(0) + (𝑠 + ℎ)𝐹 (𝜙, 𝑢), 𝑠 ∈ [−ℎ, 0].

2. Preliminaries

Let us consider a control-affine nonlinear system (the plant) described by the following retarded functional differential equation
(RFDE) [44,45],

𝑥̇(𝑡) = 𝑓 (𝑥𝑡) + 𝑔(𝑥𝑡)𝑢(𝑡), 𝑡 ≥ 0 a.e.

𝑥(𝜏) = 𝑥0(𝜏), 𝜏 ∈ [−𝛥, 0]
(2)

where: 𝑥(𝑡) ∈ R𝑛, 𝑥0, 𝑥𝑡 ∈ 𝑛; 𝛥 > 0 is the maximum involved time delay, assumed to be known; 𝑢(𝑡) ∈ R𝑚 is the input signal;
𝑓 ∶𝑛 → R𝑛 is a function, Lipschitz on bounded subsets of 𝑛; 𝑔∶𝑛 → R𝑛×𝑚 is a function, Lipschitz on bounded subsets of 𝑛; 𝑛 and
𝑚 are positive integers. It is assumed that the initial state 𝑥0 ∈ 𝑊 1,∞

𝑛 (see [19,46], and, for a detailed discussion, Remark 6 in [46]).
For the reader’s convenience, we recall here classes of Lyapunov–Krasovskii functionals very helpful in the context of the robust

stabilization problem of nonlinear time-delay systems by means of quantized sampled-data controllers. In particular, we recall the
definition of smoothly separable functionals and of invariantly differentiable functionals [19,41,47,48]. Such notions will be the
key tools to introduce a suitable class of candidate Lyapunov–Krasovskii functionals by which the proposed robust QSE controller
is derived (see forthcoming items (a)–(d), Remarks 1, 2, Definition 3, (12), (13) and (15)).

Definition 1. A functional 𝑉 ∶𝑛 → R+ is said to be smoothly separable if there exist a function 𝑉1 ∈ 𝐶1
𝐿(R

𝑛;R+), a locally Lipschitz
functional 𝑉2 ∶𝑛 → R+, functions 𝛽𝑖 ∈ ∞, 𝑖 = 1, 2, such that, for any 𝜙 ∈ 𝑛, the following hold

𝑉 (𝜙) = 𝑉1(𝜙(0)) + 𝑉2(𝜙)

𝛽1(|𝜙(0)|) ≤ 𝑉1(𝜙(0)) ≤ 𝛽2(|𝜙(0)|).
(3)

As in [48], the formalism used in the classical definition of invariantly differentiable functional [47], is here suitably modified
for the purpose of formalism uniformity over the paper. For any given 𝑥 ∈ R𝑛, 𝜙 ∈ 𝑛 and for any given continuous function
 ∶ [0, 𝛥] → R𝑛 with  (0) = 𝑥, let 𝜓 (𝑥,𝜙,)

ℎ ∈ 𝑛, ℎ ∈ [0, 𝛥), be defined as 𝜓 (𝑥,𝜙,)
0 = 𝜙 and, for ℎ > 0,

𝜓 (𝑥,𝜙,)
ℎ (𝑠) =

{

𝜙 (𝑠 + ℎ) , 𝑠 ∈ [−𝛥,−ℎ) ,
 (𝑠 + ℎ) , 𝑠 ∈ [−ℎ, 0) .

Definition 2. A functional 𝑉 ∶R𝑛×𝑛→R+ is said to be invariantly differentiable if, at any point (𝑥, 𝜙)∈R𝑛×𝑛:

• for any continuous function  ∶ [0, 𝛥] → R𝑛 with  (0) = 𝑥, there exists the right-hand derivative
𝜕𝑉

(

𝑥,𝜓 (𝑥,𝜙,)
ℎ

)

𝜕ℎ

|

|

|

|

|ℎ=0
and such

derivative is invariant with respect to the function  ;
• there exists the derivative 𝜕𝑉 (𝑥,𝜙)

𝜕𝑥 ;
• for any continuous function  ∶ [0, 𝛥] → R𝑛 with  (0) = 𝑥, the following equality holds for any 𝑧 ∈ R𝑛, for any ℎ ∈ [0, 𝛥),

𝑉
(

𝑥 + 𝑧, 𝜓 (𝑥,𝜙,)
ℎ

)

− 𝑉 (𝑥, 𝜙) = 𝜕𝑉 (𝑥,𝜙)
𝜕𝑥 𝑧 +

𝜕𝑉
(

𝑥,𝜓 (𝑥,𝜙,)
𝑙

)

𝜕𝑙

|

|

|

|

|𝑙=0
ℎ + 𝑜(

√

|𝑧|2 + ℎ2), with lim
𝑠→0+

𝑜(
√

𝑠)
√

𝑠
= 0.

In the following, the proposed procedure for the design of robust QSE stabilizers is presented. In particular, the proposed design
ethodology is based on the Artstein’s approaches (see, for instance, [19,35,36,38,42,49–51]) making use of control Lyapunov–
rasovskii functionals for the design of stabilizers. According to such approaches, as a first step of the proposed design procedure,

n the following a class of candidate Lyapunov–Krasovskii functionals is introduced. In particular, let 𝑉1 ∶R𝑛 → R+ and 𝑉2 ∶𝑛 → R+

be two Lipschitz on bounded subsets functions. Then, we denote here with  the set of candidate Lyapunov–Krasovskii functionals
𝑉 ∶ 𝑛 → R+ defined for 𝜙 ∈ 𝑛, as

𝑉 (𝜙) = 𝑉1(𝜙(0)) + 𝑉2(𝜙), (4)

where 𝑉2 ∶ 𝑛 → R+ is defined for 𝜙 ∈ 𝑛 as 𝑉2(𝜙) = 𝑉2(𝜙[−𝛥,0)) and satisfying the following properties:

(a) the functional 𝑉 is smoothly separable with related functions 𝛽1, 𝛽2 as in (3);
(b) the function (𝜙, 𝑢) → 𝐷+𝑉2(𝜙, 𝑢), 𝜙 ∈ 𝑛, 𝑢 ∈ R𝑚, is Lipschitz on bounded subsets of 𝑛 × R𝑚 where the derivative in Driver’s

form (see (1)) of the functional 𝑉2 is computed with respect to the function 𝐹 (𝜙, 𝑢) = 𝑓 (𝜙) + 𝑔(𝜙)𝑢 with 𝑓 and 𝑔 in (2);
(c) the functional 𝑉 ∶ R𝑛 ×𝑛 → R+ defined, for 𝑥∈R𝑛, 𝜙∈𝑛, as 𝑉 (𝑥, 𝜙)=𝑉1(𝑥)+𝑉2(𝜙), is invariantly differentiable;
(d) there exist functions 𝛾𝑖, 𝑖 = 1, 2, of class ∞, such that, for any 𝜙 ∈ 𝑛,

(5)
3

𝛾1(|𝜙(0)|) ≤ 𝑉 (𝜙) ≤ 𝛾2(‖𝜙‖∞).
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Remark 1. Notice that, the items (a)–(d) are satisfied by a very large class of Lyapunov–Krasovskii functionals, including standard
complete quadratic ones (see, for instance, [48,52–56]). For instance, the following standard functional

𝑉 (𝜙) = 𝜙𝑇 (0)𝑃𝜙(0) +

0

∫
−𝛥

𝜙𝑇 (𝜏)𝑄𝜙(𝜏)𝑑𝜏, 𝜙 ∈ 𝑛, (6)

fulfills items (a)–(d) with functions 𝛽1(𝑠) = 𝛾1(𝑠) = 𝜆min(𝑃 )𝑠2, 𝛽2(𝑠) = 𝜆max(𝑃 )𝑠2, 𝛾2(𝑠) = (𝜆max(𝑃 ) + 𝛥𝜆max(𝑄))𝑠2. The invariant
ifferentiability property, as here connected with the smooth separability one (see items (a) and (c)), has been proved to be very
elpful in order to apply ISS redesign methodologies for the robustification of stabilizers for control-affine nonlinear time-delay
ystems (see [40,48] and the references therein). In particular, from a technical point view, as shown in forthcoming Lemma 2,
he smooth separability property turns out to be very helpful to derive suitable Lyapunov–Krasovskii functionals involving lower
nd upper bounds in terms of the supremum norm (see forthcoming points (f.1), (f.2), (f.3) and, in Lemma 2, points (c.1), (c.3)
nd (c.4)). Such Lyapunov–Krasovskii functionals will be exploited for the stability analysis of the considered QSE control system.
he invariant differentiability property (see the item (c)) is here introduced to ensure that the derivative related to the candidate
yapunov–Krasovskii functional 𝑉2(𝜙) evaluated along the solution of system (2) does not involve the control input 𝑢. As shown in
orthcoming Lemmas 1 and 2, in the context of systems with state delays, such a requirement turns out to be very helpful from a
obustification point of view. For more details, the reader is referred to the proof of Lemma 1 reported in [40] where only the case
f robust sampled-data controllers is investigated without taking into account the presence of quantization, spline approximation
trategies and event-based updates. We highlight also that, in the forthcoming Section 5, it is shown how a standard functional of
he form (6) can be easily used to apply the control design methodology proposed in this paper. In particular, the proposed results
re applied to a mechanical system with state delays (see, for instance, [57]) and to a class of nonlinear time-delay systems.

In the following, the well-known notion of Steepest Descent Feedback (SDF) (see, [35,36,42] for the delay-free case and [19,40]
or the delayed case) is revised in order to deal with the design of robust QSE controllers.

efinition 3. Let 𝑉 ∈  . A locally bounded function 𝑘 ∶ 𝑛 → R𝑚, continuous or not, is said to be a SDF for the system described
y (2), induced by 𝑉 , if there exist positive reals 𝜂, 𝜇, 𝑝̄, a function 𝑝 in 𝐶1

𝐿
(

R+;R+), of class ∞ and satisfying 𝑑𝑝(𝑠)
𝑑𝑠

≤ 𝑝̄, a function
𝛼 of class 0 such that 𝐼𝑑 − 𝛼 is of class ∞, a real 𝜈 ∈ {0, 1}, such that, for any 𝜙 ∈ 𝑛, the following conditions hold

𝜈𝐷+𝑉 (𝜙, 𝑘(𝜙)) + 𝜂max
{

0, 𝐷+𝑝◦𝑉1
(

𝜙, 𝑘(𝜙)
)

+ 𝜇𝑝◦𝑉1
(

𝜙(0)
)

}

≤ 𝛼(𝜂𝜇𝑒−𝜇𝛥𝑝◦𝛽1(‖𝜙‖∞)), (7)

𝑓 (0) + 𝑔(0)𝑘(0) = 0, (8)

here: 𝛽1 is the function of class ∞ in Definition 1; the derivative in Driver’s form (1) of the functional 𝑉 is computed with respect
o the function 𝐹 (𝜙, 𝑢) = 𝑓 (𝜙) + 𝑔(𝜙)𝑢 with 𝑓 and 𝑔 in (2).

Let us introduce the following assumption.

ssumption 1. There exist a functional 𝑉 ∈  and a related SDF 𝑘 for the system described by (2) (see Definition 3).

emark 2. Notice that, inspired by the well-known Artstein’s approaches proposed in the literature (see, for instance, [19,35,36,
8,42,49–51]), from a practical point of view, Assumption 1 can be checked by exploiting the procedure consisting in the following
teps:

s.1 define a candidate Lyapunov–Krasovskii functional 𝑉 ∈  (see, for instance, (6) in Remark 1);
s.2 try to find a locally bounded function 𝑘, continuous or not, satisfying (7) (i.e., a SDF 𝑘 according to Definition 3).

It is here highlighted that, inequality (7) concerns robustness of negative definiteness, with respect to a small perturbation term,
f the functional derivative (see Remark 2 in [41]). Taking into account that in Definition 3, discontinuities in the function describing
he SDF at hand are allowed, no kind of stability property is ensured for the continuous-time closed-loop system described by (2) with
(𝑡) = 𝑘(𝑥𝑡). On the other hand, in the particular case of SDFs described by Lipschitz on bounded subsets functions, from Theorem
.5 in [41], inequality (7) implies the global asymptotic stability property of the related continuous-time closed-loop system.

. Digital event-based implementation

In this section, the proposed robust QSE implementation of SDFs is presented. Firstly, for the presentation of the proposed
igital event-based controller, the notions of quantizer (see, for instance, [2]), of partition (see [36,41]) and of spline approximation
see [19]) are recalled. Such notions will be used for the characterization of the digital framework under study (see forthcoming
ig. 1).

For a given positive integer 𝑁 , a quantizer is a function 𝑞𝑦 ∶ R𝑁 → 𝑄𝑁𝑦 (see the Notation Section) such that, for some given
positive real 𝐸 (range of the quantizer) and 𝜇𝑦 (error bound of the quantizer), the following implication holds (see, for instance, [2]):

𝑁

4

|𝑦| ≤ 𝐸 → |𝑞𝑦(𝑦) − 𝑦| ≤ 𝜇𝑦, 𝑦 ∈ R . (9)
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Fig. 1. Control scheme.

Definition 4. For a positive integer 𝑙, a partition 𝜋 = {𝑡𝑗 , 𝑗 = −𝑙,−𝑙+1,…} of [−𝑙𝛥,∞) is a countable, strictly increasing sequence
𝑡𝑗 ∈ [−𝑙𝛥,∞), with 𝑡0 = 0, such that 𝑡𝑗 → ∞ as 𝑗 → ∞. The diameter of 𝜋, denoted diam(𝜋), is defined as sup𝑗≥−𝑙 𝑡𝑗+1−𝑡𝑗 . The dwell time
of 𝜋, denoted dwell(𝜋), is defined as inf 𝑗≥−𝑙 𝑡𝑗+1−𝑡𝑗 . For a given 𝑎 ∈ (0, 1], 𝛿 > 0, 𝜋𝑎,𝛿 is any partition 𝜋 with 𝑎𝛿 ≤ dwell(𝜋) ≤ diam(𝜋) ≤ 𝛿.

Remark 3. Notice that, Definition 4 aims at characterizing the sampled-data framework here considered by partitioning the time
axis into sampling intervals [𝑡𝑗 , 𝑡𝑗+1), 𝑗 = −𝑙,−𝑙 + 1,…. We highlight that, in Definition 4, the positive real 𝑎 ∈ (0, 1] is introduced in
order to consider the case of non-uniform sampling in which, for 𝑗 = −𝑙,−𝑙 + 1,…, 𝑎𝛿 ≤ 𝑡𝑗+1 − 𝑡𝑗 ≤ 𝛿, with 𝛿 representing the upper
bound for the sampling period.

For given 𝛿 < 𝛥 (𝛥 > 0), 𝑎 ∈ (0, 1], let 𝑙 be the smallest positive integer such that 𝑙𝑎𝛿 ≥ 𝛥. Let 𝑙,𝑎,𝛿 ⊂ R𝑙+1 be the set defined as
follows (see [19])

𝑙,𝑎,𝛿 =
{

𝑤 =
(

𝑤0 ⋯ 𝑤𝑙
)𝑇 ∈ R𝑙+1, 𝑤𝑘 ∈ [−𝑙𝛿, 0], 𝑘 = 0, 1,… , 𝑙,

𝑤0 = 0, 𝑤0 −𝑤𝑙 ≥ 𝛥, 𝛿 ≥ 𝑤𝑘 −𝑤𝑘+1 ≥ 𝑎𝛿, 𝑘 = 0, 1,… , 𝑙 − 1
}

.
(10)

Let 𝑃𝑙,𝑎,𝛿 ∶ R𝑛(𝑙+1) × 𝑙,𝑎,𝛿 → 𝑛 be the function defined (see [19]), for 𝑧=
(

𝑧𝑇0 ⋯ 𝑧𝑇𝑙
)𝑇 ∈R𝑛(𝑙+1), 𝑤=

(

𝑤0 ⋯ 𝑤𝑙
)𝑇 ∈ 𝑙,𝑎,𝛿 and

𝜏 ∈ [−𝛥, 0], as follows

(𝑃𝑙,𝑎,𝛿(𝑧,𝑤))(𝜏) = 𝑧𝑘+1 +
𝜏 −𝑤𝑘+1
𝑤𝑘 −𝑤𝑘+1

(𝑧𝑘 − 𝑧𝑘+1), (11)

where 𝑘 is the smallest integer in {0, 1,… , 𝑙 − 1} such that 𝑤𝑘 ≥ 𝜏 ≥ 𝑤𝑘+1. Fig. 1 illustrates the considered QSE control scheme
in presence of actuation disturbances and measurement errors. In the following points (i) and (ii), the actuation disturbances and
measurement errors under investigation (see the control scheme in Fig. 1) are described. In particular, for a given partition 𝜋𝑎,𝛿 (see
Definition 4),

(i) the actuation disturbances are characterized by an unknown function 𝑑(𝑡):

(i.a) assumed to be continuous in any interval [𝑡𝑗 , 𝑡𝑗+1) with possible discontinuities in the sampling instants 𝑡𝑗 , 𝑗 ∈ N;
(i.b) satisfying |𝑑(𝑡)| ≤ 𝑑, ∀𝑡 ∈ R+, with 𝑑 a known positive real;
(i.c) such that there exists finite lim𝑡→𝑡−𝑗+1

𝑑(𝑡), 𝑗 = 0, 1,….

(ii) the measurement errors affecting the quantized sampled-data output channel are characterized by an unknown sequence
𝑒 ∶ N → 𝑛, satisfying ‖𝑒𝑗‖∞ ≤ 𝑒, 𝑗 = 0, 1,…, with 𝑒 a known positive real.

In the following, for the first time in the literature of nonlinear time-delay systems, the ISS redesign methodologies (see, for
nstance, [40,42,58–60]) are used for the robustification of QSE stabilizers, induced by SDFs, with respect to actuation disturbances
5
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and measurement noises (see Fig. 1). In particular, a new control term is designed and added to the SDF at hand in order to arbitrarily
attenuate the effects of the disturbances considered in points (i) and (ii). To such an aim, under Assumption 1, let:

– 𝑆 ∶ 𝑛 → R𝑚 be the function defined, for 𝜙 ∈ 𝑛, as follows

𝑆(𝜙) =
(

𝜕𝑉1(𝑥)
𝜕𝑥

|

|

|𝑥=𝜙(0)
𝑔(𝜙)

)𝑇
, (12)

where 𝑉1 is the function related to the SDF at hand (see Definition 3);
– 𝑘̃ ∶ 𝑛 → R𝑚 be the function defined, for 𝜙 ∈ 𝑛, as follows

𝑘̃(𝜙) = 𝑘(𝜙) − 𝜔𝑆(𝜙), (13)

where: 𝜔 > 0 is a control tuning parameter to be chosen (see forthcoming Theorem 1); 𝑘 is the SDF in Assumption 1 (see also
Definition 3).

emark 4. Notice that, in order to cope with nonlinear systems affected by state delays, the robustification term −𝜔𝑆(𝜙) (see
12) and (13)) has been here designed by the introduction of suitable Lyapunov–Krasovskii functionals which are invariantly
ifferentiable and smoothly separable (see, for instance, [40] for the case of sampled-data controllers without quantization, spline
pproximation strategies and event-triggered updates). In particular, the robustification term −𝜔𝑆(𝜙) (see (12)) is here designed by
xploiting the Lie derivative of the function 𝑉1 along the vector field 𝑔. In the literature concerning nonlinear systems, the term
𝜔𝑆(𝜙) (see (12)) is commonly called 𝐿𝑔𝑉 control term (firstly introduced in [60]) and it has been widely used to solve robust
ontrol problems in many contexts (see, for instance, [40,42,58–64] and the references therein) which, however, do not include
he framework here considered (see Fig. 1). We highlight that, to our best knowledge, it is the first time in the literature that a
obustification approach based on 𝐿𝑔𝑉 control terms is successfully applied to QSE stabilizers induced by (continuous or not) SDFs.

In the following, some useful functionals are introduced for the presentation of the event-based mechanism which will be
xploited for the update of the controller at hand. In particular, under Assumption 1 and taking into account the positive reals
, 𝜇, 𝜈 and the functions 𝑝 and 𝑉 related to Definition 3, let:

f.1) 𝑉3 ∶ 𝑛 → R+ be the functional defined, for 𝜙 ∈ 𝑛, as
𝑉3(𝜙) = sup𝜃∈[−𝛥,0] 𝑒𝜇𝜃𝑝◦𝑉1(𝜙(𝜃));

f.2) 𝑉∞ ∶ 𝑛 → R+ be the functional defined, for 𝜙 ∈ 𝑛, as 𝑉∞(𝜙) = 𝜈𝑉 (𝜙) + 𝜂𝑉3(𝜙);
f.3) ∞ ∶ 𝑛 × R𝑚 → R be the functional defined, for 𝜙 ∈ 𝑛, 𝑢 ∈ 𝑅𝑚, as follows

∞(𝜙, 𝑢) = 𝜈𝐷+𝑉 (𝜙, 𝑢) − 𝜂𝜇𝑉3(𝜙)
+𝜂max{0, 𝐷+𝑝◦𝑉1(𝜙, 𝑢) + 𝜇𝑝◦𝑉1(𝜙(0))}.

(14)

In the following, the proposed QSE controller is provided. For a given positive real 𝜎 ∈ (0, 1), for given positive reals 𝜇̄ and 𝜇̃ in
(0, 1], for a given partition 𝜋𝑎,𝛿 (see Definition 4), for given quantizers 𝑞𝑥 ∶ R𝑛 → 𝑄𝑛𝑥 and 𝑞𝑢 ∶ R𝑚 → 𝑄𝑚𝑢 (satisfying (9)), the
proposed robust QSE controller for the system (2) when affected by measurement errors and actuation disturbances (see Fig. 1 and
the considered disturbances in points (i) and (ii) above) is described by

𝑢(𝑡) = 𝑞𝑢(𝑢̃𝑖𝑗 ) + 𝑑(𝑡) = 𝑞𝑢

(

𝑘̃
(

𝑞𝑥
𝑖𝑗

)

)

+ 𝑑(𝑡),

𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1), 𝑗 = 0, 1,… , 𝑡𝑗 , 𝑡𝑗+1 ∈ 𝜋𝑎,𝛿 ,
(15)

where:

∙ 𝑘̃ is the function in (13);
∙ 𝑞𝑥

𝑗 = 𝑃𝑙,𝑎,𝛿(𝐵
𝑞𝑥
𝑆 (𝑗), 𝐵 (𝑗)), 𝑗 = 0, 1,…, with 𝑃𝑙,𝑎,𝛿 the function defined in (11) (see Fig. 2)

∙ 𝐵𝑞𝑥𝑆 ∶ N → R𝑛(𝑙+1) and 𝐵 ∶ N → R𝑙+1 are defined (recursively) as

𝐵𝑞𝑥𝑆 (0) =
⎛

⎜

⎜

⎝

𝑞𝑥(𝑥̄0(0) + 𝑒0(0))
⋮

𝑞𝑥(𝑥̄0(𝑡−𝑙) + 𝑒0(𝑡−𝑙))

⎞

⎟

⎟

⎠

,

𝑞𝑥(𝑥̄0(𝜏) + 𝑒0(𝜏)) =

{

𝑞𝑥(𝑥0(𝜏) + 𝑒0(𝜏)) 𝜏 ∈ [−𝛥, 0]
𝑞𝑥(𝑥0(−𝛥) + 𝑒0(−𝛥)) 𝜏 ∈ [𝑡−𝑙 ,−𝛥]

𝐵𝑞𝑥𝑆 (𝑗) =
(

𝑞𝑥(𝑥(𝑡𝑗 ) + 𝑒𝑗 (0))
0𝑙𝑛×1

)

+
(

0𝑛×𝑙𝑛 0𝑛
𝐼𝑙𝑛 0𝑙𝑛×𝑛

)

𝐵𝑞𝑥𝑆 (𝑗 − 1),

𝐵 (0) =

⎛

⎜

⎜

⎜

⎜

⎝

0
𝑡−1
⋮
𝑡−𝑙

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐵 (𝑗) =
(

01×𝑙 0
𝐼𝑙 0

)

(

𝐵 (𝑗 − 1) − (𝑡𝑗 − 𝑡𝑗−1)
⎛

⎜

⎜

⎝

1
⋮
1

⎞

⎟

⎟

⎠

)

,

(16)
6

𝑗 = 1, 2,…;
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Fig. 2. An example of the spline approximation method here used (see 𝑞𝑥
𝑗 in (15)).

∙ the sequence 𝑖𝑗 , 𝑗 = 0, 1,…, is defined as 𝑖0 = 0 and, for 𝑗 ≥ 1, 𝑖𝑗 = 𝑗 in the event that (see (f.3))

−∞(𝑞𝑥
𝑗 , 𝑞𝑢(𝑢̃𝑖𝑗−1 )) + 𝜎∞(𝑞𝑥

𝑗 , 𝑞𝑢(𝑢̃𝑗 )) ≤ 𝐻(𝑞𝑥
𝑗 ), (17)

and 𝑖𝑗 = 𝑖𝑗−1 otherwise;
∙ the function 𝐻 ∶ 𝑛 → R+ is defined, for 𝜙 ∈ 𝑛, as follows

𝐻(𝜙) = 𝑑
(

𝜈(1 − 𝜎) + 4𝜂𝑝̄(1 + 𝜎)
)

(

|𝑆(𝜙)| +
𝑒 + 𝜇̄ + 𝜇̃

𝜔

)

+ 3(1 + 𝜎)𝐿𝑒, (18)

∙ 𝜂, 𝜈 and 𝑝̄ are the positive reals in Definition 3;
∙ 𝜔 is the control tuning parameter in (13);
∙ 𝐿 is a suitable control tuning parameter to be chosen (see forthcoming Theorem 1);
∙ 𝑒 and 𝑑 are the bounds of the involved observation errors and actuation disturbances, respectively (see points (i) and (ii)

above).

emark 5. Notice that, the knowledge of infinite dimensional measurements 𝑞𝑥(𝑥𝑡𝑗 (𝜏) + 𝑒𝑗 (𝜏)), 𝜏 ∈ [−𝛥, 0] is not needed for the
orrect implementation of the proposed robust QSE controller (15). Indeed, spline approximation methodologies (see [19]) are
ere used in order to obtain an approximation of the infinite dimensional variable 𝑞𝑥(𝑥𝑡𝑗 (𝜏) + 𝑒𝑗 (𝜏)), 𝜏 ∈ [−𝛥, 0], by interpolating the

available quantized sampled-data measurements 𝑞𝑥(𝑥(𝑡𝑗 )+𝑒𝑗 (0)) (see (11) and 𝑞𝑥
𝑗 in (15)). In Fig. 2, an example of the interpolation

method here considered is reported.

Remark 6. Notice that, the proposed triggering condition (17) is checked just at times 𝑡𝑗 , 𝑗 = 0, 1,…, guaranteeing a minimum
dwell-time 𝑎𝛿 between two consecutive sampling instants (see Definition 4). Hence, no continuous-time monitoring of the state
variables is needed and possible Zeno behaviors are avoided by sampling with dwell-time.

Remark 7. Notice that, in (16), 𝐵𝑞𝑥𝑆 and 𝐵 describe buffers of length (𝑙+1)𝑛 and 𝑙+1 collecting, respectively, the quantized sampled-
data state measurements affected by the noises 𝑒𝑗 , 𝑗 = 0, 1,…, and the times elapsed between a sampling and the following. The
informations in 𝐵𝑞𝑥𝑆 and 𝐵 (see (16)) are used in order to obtain an approximation of suitable past values of the system variables
via (11) that are not available in the buffer and which are needed for the implementation of the controller.

In the next section, semi-global practical stability results will be provided for the QSE closed-loop system described by (2)–(15)
(see Fig. 1). For the reader’s convenience, in the following, for the first in the literature, the notion of semi-global practical stability
is provided in the context of nonlinear time-delay systems exploiting QSE controllers and affected by actuation disturbances and

𝑛

7

measurement errors. In the forthcoming Definition 5, for a given sequence 𝑒 ∶ N →  (see point (ii) in Section 3), we will consider



Nonlinear Analysis: Hybrid Systems 52 (2024) 101463M. Di Ferdinando et al.

i

e

the function 𝐵𝑒𝑆 ∶ N → R𝑛(𝑙+1) defined (recursively) as:

𝐵𝑒𝑆 (0) =
⎛

⎜

⎜

⎝

𝑒0(0)
⋮

𝑒0(𝑡−𝑙)

⎞

⎟

⎟

⎠

, 𝑒0(𝜏) =

{

𝑒0(𝜏) 𝜏 ∈ [−𝛥, 0]
𝑒0(−𝛥) 𝜏 ∈ [𝑡−𝑙 ,−𝛥]

𝐵𝑒𝑆 (𝑗) =
(

𝑒𝑗 (0)
0𝑙𝑛×1

)

+
(

0𝑛×𝑙𝑛 0𝑛
𝐼𝑙𝑛 0𝑙𝑛×𝑛

)

𝐵𝑒𝑆 (𝑗 − 1), 𝑗 = 1, 2,… .

(19)

Definition 5. The QSE closed-loop system described by (2)–(15) is said to be semi-globally practically stable by fast sampling and
accurate quantization if, for any positive reals 𝑒 and 𝑑 (bounds of the involved measurement errors and actuation disturbances), for
any positive reals 𝑅 (radius of the ball of the initial states), 𝑟 (radius of the final target ball) and 𝑞, with 0 < 𝑟 < 𝑅, for any positive
reals 𝑎, 𝜇̄, 𝜇̃ in (0, 1] and 𝜎 ∈ (0, 1), there exist positive control tuning parameters 𝛿 (sampling period), 𝐸1, 𝜇𝑥 (range and quantization
error bound of the output quantizer 𝑞𝑥), 𝑈 , 𝜇𝑢 (range and quantization error bound of the input quantizer 𝑞𝑢), 𝜔 (control parameter
n (13)), 𝐿 (control parameter in (18)) and positive reals 𝐸 (overshoot) and 𝑇 (settling time) such that: for any initial condition
𝑥0 ∈ 𝑛𝑅, satisfying ess sup𝜃∈[−𝛥,0]

|

|

|

𝑑𝑥0(𝜃)
𝑑𝜃

|

|

|

≤ 𝑞, for any unknown actuation disturbance as in point (i), for any unknown observation
rror as in point (ii) and satisfying

sup
𝑥̃ ∈ 𝑛(𝑙+1)

𝐸
√

𝑙+1

|𝑆(𝑃𝑙,𝑎,𝛿(𝑥̃ + 𝐵𝑒𝑆 (𝑗), 𝑤)) − 𝑆(𝑃𝑙,𝑎,𝛿(𝑥̃, 𝑤))| ≤
𝑒
𝜔
, ∀𝑤 ∈ 𝑙,𝑎,𝛿 , (20)

the corresponding unique, locally absolutely continuous solution exists ∀𝑡 ≥ 0 and, furthermore, satisfies

‖𝑥𝑡‖∞ ≤ 𝐸, ∀𝑡 ≥ 0, ‖𝑥𝑡‖∞ ≤ 𝑟, ∀𝑡 ≥ 𝑇 . (21)

4. Main results

In the following, the main results of the paper are provided. In particular, we will show that, under Assumption 1, there
exist suitable control tuning parameters 𝜔 and 𝐿 (see (15)–(17)), a suitably fast sampling 𝛿 and an accurate quantization of the
input/output channels (i.e., ranges and error bounds for the quantizers 𝑞𝑥 and 𝑞𝑢 in (15)) such that the semi-global practical stability
property of the closed-loop system (2)–(15) (see Definition 5) is ensured regardless of the unknown actuation disturbances 𝑑 (see
point (i) and Fig. 1 in Section 3) and of the unknown observation errors 𝑒 (see Fig. 1 and point (ii) in Section 3). In the following,
we will consider functions 𝛼𝑖, 𝑖 = 1, 2, of class ∞, defined for 𝑠 ∈ R+ as follows

𝛼1(𝑠) = 𝜂𝑒−𝜇𝛥𝑝(𝛽1(𝑠)), 𝛼2(𝑠) = 𝜈𝛾2(𝑠) + 𝜂𝑝(𝛽2(𝑠)), (22)

blue where: 𝜂, 𝜇 and 𝜈 are the positive reals in Definition 3; 𝑝 is the function in Definition 3; 𝛾2 and 𝛽𝑖, 𝑖 = 1, 2, are the functions
related to the Lyapunov–Krasovskii functional 𝑉 ∈  (see items (a) and (d)).

Theorem 1. Let Assumption 1 hold. Let 𝑎, 𝜇̄ and 𝜇̃ be arbitrary reals in (0, 1]. Let 𝜎 be an arbitrary real in (0, 1). Then, for any positive
reals 𝑟, 𝑅, 𝑞, 𝑑 and 𝑒 with 0 < 𝑟 < 𝑅, for any positive real 𝐸 > 𝑅 with 𝛼1(𝐸) > 𝛼2(𝑅), there exists a positive real 𝜔̄ such that for any 𝜔 ≥ 𝜔̄,
there exist positive reals 𝛿, 𝑇 , 𝑈 , 𝐿, 𝐸1, 𝜇𝑥 and 𝜇𝑢, such that: for any state quantizer 𝑞𝑥 with error bound 𝜇𝑥 and range 𝐸1, for any input
quantizer 𝑞𝑢 with error bound 𝜇𝑢 and range 𝑈 , for any initial state 𝑥0 ∈ 𝑊 1,∞

𝑛 ∩ 𝑛𝑅, and satisfying ess sup𝜃∈[−𝛥,0]
|

|

|

𝑑𝑥0(𝜃)
𝑑𝜃

|

|

|

≤ 𝑞, for any
partition 𝜋𝑎,𝛿 = {𝑡𝑗 , 𝑗 = −𝑙,−𝑙 + 1,…}, where 𝑙 is the smallest (nonnegative) integer such that 𝑙𝑎𝛿 ≥ 𝛥 and {𝑡−𝑙 , 𝑡−𝑙+1,… , 0} ∈ 𝑙,𝑎,𝛿 , for
any signal 𝑑 ∶ R+ → R𝑚 of unknown actuation disturbance as in point (i), for any signal 𝑒 ∶ N → 𝑛 of unknown observation error as in
point (ii) and satisfying (20) the corresponding unique locally absolutely continuous solution of the QSE closed-loop system, described by
(2)–(15), exists ∀𝑡 ≥ 0 and, furthermore, satisfies:

𝑥𝑡 ∈ 𝑛𝐸 , ∀𝑡 ≥ 0, 𝑥𝑡 ∈ 𝑛𝑟 , ∀𝑡 ≥ 𝑇 , (23)

i.e., the QSE closed-loop system described by (2)–(15) is semi-globally practically stable by fast sampling and accurate quantization (see
Definition 5).

Proof. The proof of Theorem 1 is reported in Appendix.

Remark 8. Notice that, the main challenge addressed in this paper and overcome with the results provided in Theorem 1 concerns:
how to design stabilizers for the system (2) taking simultaneously into account the following aspects (see Fig. 1): (a.1) the presence
of sampling (possibly aperiodic); (a.2) the presence of quantization (possibly non–uniform) in both input/output channels; (a.3)
the arbitrary reduction of the effects of unknown actuation disturbances and unknown observation errors affecting the event-
based digital controller at hand; (a.4) possible discontinuities in the function describing the controller; (a.5) problems related
to the possible non-availability in the buffer of suitable past values of the system state required for the implementation of the
8
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controller at hand. To our best knowledge the framework reported in Fig. 1 has never been investigated in the literature of
nonlinear time-delay systems. Theorem 1 provides, for the first time in the literature, stability results for nonlinear systems with
state delays affected by actuation disturbances and measurement errors and making use of QSE controllers based on (continuous or
not) SDFs (i.e., taking simultaneously into account the aspects (a.1)-(a.5)). The simultaneous consideration of the aspects (a.1)-(a.5)
introduces several difficulties in the stability analysis of the related closed-loop system which are addressed and solved by suitably
reformulating the stabilization in the sample-and-hold sense theory [8,14,19,26,35–42], here used as a tool to prove the proposed
results (see the proof of Theorem 1 reported in the Appendix). For instance, differently from the frameworks commonly studied in
the literature (see, for instance, [10,14,19,20,22,26,65,66] and the references therein), the following difficulties are here addressed
and overcome: (d.1) how to cope with sampled-data event-based controllers based on (continuous or not) SDFs in presence of
quantization and unknown external disturbances; (d.2) ensure the efficacy of the added 𝐿𝑔𝑉 control term against unknown external
disturbances when implemented in presence of sampling, quantization, spline approximation strategies, and event-triggered updates.
Indeed, as far as (d.1) is concerned, it is well-known that, event-triggered mechanisms based on Lyapunov functions require the
evaluation of the related Lyapunov derivatives along the solution of the closed-loop system under study in order to be correctly
applied (see, for instance, [10,14,19,20,22,26,65,66] and the references therein). In presence of unknown actuation disturbances
and unknown measurement errors, the exact evaluation of the related Lyapunov derivatives is prevented because of the required
knowledge of the signals describing the involved uncertainties. Moreover, in the case of nonlinear systems with state delays, such an
evaluation requires the knowledge of the infinite dimensional variable 𝑥𝑡 which, in a real practice, is unavailable due to technological
constraints. The Lyapunov–Krasovskii event-triggered mechanism (17) overcomes these drawbacks by exploiting, in the evaluation
of the related derivatives, only the quantized sampled-data measurements acquired at sampling instants 𝑡𝑗 (i.e. 𝑞𝑥(𝑥(𝑡𝑗 ) + 𝑒𝑗 (0))) and
the bounds of the involved disturbances (i.e. 𝑑 and 𝑒) together with a spline interpolation methodology to obtain an approximation
of the required infinite dimensional variables (see (11), 𝑞𝑥

𝑗 in (15), (17), Fig. 2 and Remark 5). As far as (d.2) is concerned, we
highlight here that, in the literature of nonlinear systems with state delays, the robustification property of the added 𝐿𝑔𝑉 control
term (see (12), (13)) has been proved just in the context of sampled-data control (see [40]). On the other hand, the efficacy of the
robustification term (12) has never been proved by taking into account the simultaneous presence of sampling, quantization, spline
approximations and with an event-triggered strategy exploited for its updates. In Theorem 1, for the first time in the literature,
theoretical results concerning the arbitrary reduction of the effects of arbitrarily large unknown actuation disturbances and of
suitably small unknown observation errors are provided in the context of the QSE control of nonlinear systems with state-delays. We
highlight also that, results concerning the quantized sampled-data implementation of stabilizers possibly described by discontinuous
functions have never been provided in the literature of nonlinear systems with state delays, not even for the case without event-based
update strategies (see Definition 3 and Theorem 1).

Remark 9. Notice that, in Theorem 1, the signals 𝑑 and 𝑒 are unknown and characterize the involved actuation disturbances
and measurement errors, which affect the proposed QSE controller (15) when closed in the loop with system (2) (see Fig. 1 and
points (i), (ii) in Section 3). In order to arbitrarily attenuate the effects of such disturbances, the term −𝜔𝑆(𝜙) (see (12)) has been
added to the SDF at hand (see (13)). In particular, the results provided in Theorem 1 are valid for any actuation disturbance with
arbitrarily large bound as described in point (i) of Section 3. On the other hand, in Theorem 1, the involved measurement errors are
supposed to be suitably small so that the robustification term −𝜔𝑆(𝜙) (see (12)) is marginally affected by these errors (see (20)).
This fact can happen, for instance, when the robustification term depends on state variables that can be measured better than
other state variables, or when the variation of the robustification term is sufficiently slow with respect to measurement errors. We
highlight that, taking into account that discontinuities in the function describing the SDF at hand are allowed (see Definition 3),
even small measurement errors may turn in serious performances deterioration of the feedback control law. Then, the robustification
of quantized sampled-data event-based SDFs is significant also in the case of suitably small measurement errors (see (20)).

Remark 10. Notice that, in the proof of Theorem 1 (see the Appendix), a methodology for the computation of an upper bound
for the sampling period 𝛿, of upper bounds for the quantization errors 𝜇𝑥, 𝜇𝑢, of quantizers ranges 𝐸1, 𝑈 , of control parameters
𝜔, 𝐿, and of a settling time 𝑇 is provided (see Steps (1)–(10) soon after Lemma 2 and (A.29)). According to our experience,
such steps may well provide a conservative upper bound for the sampling period as well as a conservative quantization of the
input/output channels. The source of such conservatism may be the use of Lipschitz constants of many involved functions as well as
lower and upper bounds of Lyapunov–Krasovskii functionals and derivatives. On the other hand, the results provided in Theorem 1
are of the existence type, and the study of the conservativeness of the sampling frequency as well as of the quantization in the
input/output channels is beyond the aim of this work, and is left for future investigations. We highlight here that, to our best
knowledge, it is the first time in the literature of nonlinear systems with state-delays that a methodology for the design of QSE
controllers, robustified with respect to arbitrarily large unknown actuation disturbances and suitably bounded unknown observation
errors and ensuring the semi-global stability property of the related closed-loop system regardless of the mentioned disturbances, is
provided.
9
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5. Applications

5.1. Application to a single-link robot arm

In the following, the results stated in Theorem 1 are applied to a single-link flexible joint robot arm with time delays. Let us
onsider a robot arm described by the following nonlinear time-delay system [57,67]:

.
𝑞1,1(𝑡) = 𝑞1,2(𝑡),
.
𝑞1,2(𝑡) = −𝑝1 sin(𝑞1,1(𝑡)) + 𝑝2(𝑞2,1(𝑡) − 𝑞1,1(𝑡))

− 𝑝3𝑞1,1(𝑡 − 𝛥1) cos(𝑞1,2(𝑡 − 𝛥1)),
.
𝑞2,1(𝑡) = 𝑞2,2(𝑡),
.
𝑞2,2(𝑡) = −𝑝4𝑞2,2(𝑡) + 𝑝5(𝑞1,1(𝑡) − 𝑞2,1(𝑡)) − 𝑝6(𝑞2,2(𝑡 − 𝛥2) sin(𝑞1,1(𝑡 − 𝛥2))

+ 1.2𝑞21,2(𝑡 − 𝛥2)𝑞2,1(𝑡 − 𝛥2) − 𝑢(𝑡)),

(24)

where: 𝑞𝑖,1, 𝑞𝑖,2 ∈ R, 𝑖 = 1, 2, are the positions and velocities of the link and the actuator, respectively; 𝑝1 = 𝑚𝑔𝑙
𝑀 , 𝑝2 = 𝐾

𝑀 , 𝑝3 = 1
𝑀 ,

𝑝4 = 𝐵
𝐽 , 𝑝5 = 𝐾

𝐽 , 𝑝6 = 1
𝐽 are the involved parameters; 𝛥1 = 1[s] and 𝛥2 = 2[s] are the involved time-delays related to the

nterconnection between the link-side subsystem and the actuator-side subsystem which is often accompanied by energy transfer that
eads to the time-delay phenomenon. See [57,67] for more details concerning the model (24) and related parameters. Let 𝜒1 ∈ R and
3(𝑡) be the desired position for the link and actuator, respectively. Let us define 𝑥1(𝑡) = 𝑞1,1(𝑡)−𝜒1, 𝑥2(𝑡) = 𝑞1,2(𝑡), 𝑥3(𝑡) = 𝑞2,1(𝑡)−𝜒3(𝑡),
4(𝑡) = 𝑞2,2(𝑡) −

.
𝜒3(𝑡). From (24), we obtain the following error system

.
𝑥1(𝑡) = 𝑥2(𝑡),
.
𝑥2(𝑡) = −𝑝1 sin(𝑥1(𝑡) + 𝜒1) + 𝑝2(𝑥3(𝑡) + 𝜒3(𝑡) − 𝑥1(𝑡) − 𝜒1)

− 𝑝3(𝑥1(𝑡 − 𝛥1) + 𝜒1) cos(𝑥2(𝑡 − 𝛥1)),
.
𝑥3(𝑡) = 𝑥4(𝑡),

.
𝑥4(𝑡) = −𝑝4(𝑥4(𝑡) +

.
𝜒3(𝑡)) + 𝑝5(𝑥1(𝑡) + 𝜒1 − 𝑥3(𝑡) − 𝜒3(𝑡))

− 𝑝6((𝑥4(𝑡 − 𝛥2) +
.
𝜒3(𝑡 − 𝛥2)) sin(𝑥1(𝑡 − 𝛥2) + 𝜒1)

+ 1.2𝑥22(𝑡 − 𝛥2)(𝑥3(𝑡 − 𝛥2) + 𝜒3(𝑡 − 𝛥2))) −
..
𝜒3(𝑡) + 𝑝6𝑢(𝑡).

(25)

Let 𝑘̄ ∶ 𝑛 → R be the function, defined for any 𝜙 ∈ 𝑛, as follows

𝑘̄(𝜙) = 𝜙1(0) + 𝜒1 +
1
𝑝2
(−𝑘1𝜙1(0) − 𝑘2𝜙2(0) + 𝑝1 sin(𝜙1(0) + 𝜒1)

+ 𝑝3(𝜙1(−𝛥1) + 𝜒1) cos(𝜙2(−𝛥1))), 𝑘1, 𝑘2 > 0.
(26)

By choosing 𝜒3(𝑡) = 𝑘̄(𝑥𝑡), from (25) we obtain

.
𝑥(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

.
𝑥1(𝑡).
𝑥2(𝑡).
𝑥3(𝑡).
𝑥4(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝐴𝑥(𝑡) +

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0

𝑓4(𝑥𝑡) + 𝑝6𝑢(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0
−𝑘1 −𝑘2 𝑝2 0
0 0 0 1
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, (27)

where:
𝑓4(𝑥𝑡) = −𝑝4(𝑥4(𝑡) + 𝑘̄1(𝑥𝑡)) + 𝑝5(𝑥1(𝑡) + 𝜒1 − 𝑥3(𝑡) − 𝑘̄(𝑥𝑡))

− 𝑝6((𝑥4(𝑡 − 𝛥2) + 𝑘̄2(𝑥𝑡)) sin(𝑥1(𝑡 − 𝛥2) + 𝜒1)

+ 1.2𝑥22(𝑡 − 𝛥2)(𝑥3(𝑡 − 𝛥2) + 𝑘̄3(𝑥𝑡))) − 𝑘̄4(𝑥𝑡);

𝑘̄1(𝑥𝑡) =
.
𝜒3(𝑡); 𝑘̄2(𝑥𝑡) =

.
𝜒3(𝑡 − 𝛥2); 𝑘̄3(𝑥𝑡) = 𝜒3(𝑡 − 𝛥2); 𝑘̄4(𝑥𝑡) =

..
𝜒3(𝑡);

(28)

the functions 𝑘̄𝑖 ∶ 𝑛 → R, 𝑖 = 1,… , 4, are readily defined in (28). Notice that system (27) is in the form (2) with 𝑥𝑡 ∈ 4 and
𝛥 = 2𝛥1 + 2𝛥2.

According to the proposed design procedure, let 𝑉1 ∶R4 → R+ and 𝑉2 ∶4 → R+ be the functions defined, for 𝑥 ∈ R4 and 𝜙 ∈ 4

as follows

𝑉1(𝑥) = 𝑥𝑇 𝑃𝑥, 𝑉2(𝜙) = 0, (29)

where 𝑃 is the symmetric positive definite matrix satisfying 𝐴𝑇 𝑃 +𝑃𝐴 = −𝐼4 with 𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0
−𝑘1 −𝑘2 𝑝2 0
0 0 0 1
0 0 −𝑘3 −𝑘4

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑘3, 𝑘4 > 0. Notice

that, functions 𝑉1 and 𝑉2 in (29) satisfy points (a)–(d) in Section 2 with functions 𝛽1(𝑠) = 𝛾1(𝑠) = 𝜆min(𝑃 )𝑠2, 𝛽2(𝑠) = 𝛾2(𝑠) = 𝜆max(𝑃 )𝑠2.
Now, taking into account the considered candidate Lyapunov–Krasovskii functional 𝑉 (see (4)) obtained from (29), in the following,
10
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=
𝛿

we try to find a SDF according to Definition 3. In particular, taking into account (27) and the functions 𝑉1, 𝑉2 in (29), for any 𝜙 ∈ 4,
the following equality holds:

𝐷+𝑉 (𝜙, 𝑢) = 2𝜙(0)𝑇 𝑃𝐴𝜙(0) + 2𝜙(0)𝑇 𝑃
[

0 0 0 𝑓4(𝜙) + 𝑝6𝑢
]𝑇 . (30)

From (30), by choosing 𝑢 = 𝑘(𝜙), where 𝑘 ∶ 𝑛 → R is the function defined, for 𝜙 ∈ 𝑛, as follows

𝑘(𝜙) = 1
𝑝6
(−𝑓4(𝜙) − 𝑘3𝜙3(0) − 𝑘4𝜙4(0)), 𝑘3, 𝑘4 > 0, (31)

we obtain

𝐷+𝑉 (𝜙, 𝑘(𝜙)) ≤ −|𝜙(0)|2. (32)

Then, taking into account (32) and by choosing, for instance, 𝑝 = 𝐼𝑑 , 𝜈 = 1, 𝜂 > 0, 𝜇 = 1
𝜆max(𝑃 )

, 𝛼̄ = 0, inequality (7) is satisfied. It
follows that the function 𝑘 in (31) is a SDF for the system (27) according to Definition 3 (i.e. Assumption 1 is satisfied in this case).
It follows that all the conditions to apply Theorem 1 are satisfied for this case.

In the performed simulations: the initial state of system (24) has been chosen equal to
(

𝑞1,1(𝑡 + 𝜏) 𝑞1,2(𝑡 + 𝜏) 𝑞2,1(𝑡 + 𝜏) 𝑞2,2(𝑡 + 𝜏)
)𝑇

0, 𝜏 ∈ [−𝛥, 0]; the desired position of the link 𝜒1 has been chosen equal to 1; a uniform sampling period (i.e. 𝑎 = 1) equal to
= 0.01[s] and quantizers based on the round-to-nearest method with 𝑄4

𝑥 = {𝑥 ∈ R4
| 𝑥𝑖 = ±0.0001𝑗, 𝑖 = 1,… , 4, 𝑗 = 0, 1,… , 105}

and 𝑄𝑢 = {𝑢 ∈ R| 𝑢 = ±0.01𝑗, 𝑗 = 0, 1,… , 1000} have been chosen; the controller parameters in (31) are chosen equal to 𝑘𝑖 = 5,
𝑖 = 1,… , 4; an actuation disturbance 𝑑 (𝑡) = sin (𝑡) + 𝑑𝑟(𝑡) has been considered where 𝑑𝑟(𝑡) = 𝑑𝑟(𝑗), 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1), 𝑗 = 0, 1,…, with 𝑑𝑟(𝑗)
taken from the interval [−0.5, 0.5] by emulation of the uniform probability density function; observation errors 𝑒1 (𝑗) = 10−5 sin

(

𝑡𝑗
)

,
𝑒2 (𝑗) = 10−5 cos

(

𝑡𝑗
)

, 𝑒3 (𝑗) = 10−5 sin
(

𝑡𝑗
)

and 𝑒4 (𝑗) = 10−8 cos
(

𝑡𝑗
)

, 𝑗 = 0, 1,…, have been considered; the parameters related to
the robustification term (see (12)) and to the triggering mechanism (see (17)) have been chosen equal to 𝜔 = 20, 𝜇 = 10−5,
𝜇̃ = 10−5, 𝜇̄ = 10−5 and 𝐿 = 200; different values of the parameter 𝜎, related to the triggering mechanism (see (17)), have been
considered. The simulation results, in the case 𝜎 = 0.1, are shown in Fig. 3. In particular, Fig. 3 compares the performances of the
proposed robustified digital event-based controller with the ones related to the robustified digital time-triggered controller, to the
non-robustified digital event-based controller (i.e., 𝜔 = 0) and to the non-robustified digital time-triggered controller (i.e., 𝜔 = 0).
The robust event-triggered solution with 𝛿 = 0.01[s] achieves very good performances similar to the ones of the robust time-triggered
solution, in spite of lower average frequency of control updates with respect to the robust quantized sampled-data time-triggered
controller with the same sampling interval (around 11.9% of the sampling intervals). Moreover, it is clear from Figures 3 that
the proposed robustified digital event-based controller can drastically reduce the effects of actuator disturbances and observation
errors, forcing the state variables to a neighborhood of the origin which is much smaller than the one with the non-robustified
digital event-based/time-based controller. Simulations fully validate the theoretical results.

5.2. Application to a particular class of nonlinear time-delay systems

In this subsection, the proposed results are applied to a particular class of nonlinear time-delay systems in control-affine form.
Let us consider the nonlinear time-delay system described by the following RFDEs:

.
𝑥1(𝑡) = 𝑓1(𝑥𝑡),
.
𝑥2(𝑡) = 𝑓2(𝑥𝑡) + 𝑔(𝑥𝑡)𝑢(𝑡),

(33)

where: 𝑥𝑡 =
(

𝑥1,𝑡
𝑥2,𝑡

)

∈ 𝑛+1, 𝑥1,𝑡 ∈ 𝑛, 𝑥2,𝑡 ∈  is the system state; 𝑓1 ∶ 𝑛+1 → R𝑛 is a function Lipschitz on bounded subsets of 𝑛+1

and, such that there exists a symmetric positive definite matrix 𝑃 ∈ R𝑛×𝑛 satisfying, for any 𝜙 =
(

𝜙1
𝜙2

)

∈ 𝑛+1, 𝜙1 ∈ 𝑛, 𝜙2 ∈ ,

2𝜙1(0)𝑇 𝑃𝑓1(𝜙) ≤ −𝜎1|𝜙1(0)|
2 + |𝜙2(0)|𝜎2(𝜙), (34)

with 𝜎1 a positive real and 𝜎2 ∶ 𝑛+1 → R a known function Lipschitz on bounded subsets of 𝑛+1; 𝑓2 ∶ 𝑛+1 → R is a known
function Lipschitz on bounded subsets of 𝑛+1; 𝑔 ∶ 𝑛+1 → R is a known function Lipschitz on bounded subsets of 𝑛+1 and satisfying
𝑔min < 𝑔(𝜙) < 𝑔max, ∀𝜙 ∈ 𝑛+1, where 𝑔min and 𝑔max are positive reals; 𝑢(𝑡) ∈ R is the control input. According to the proposed design
procedure, let 𝑉1 ∶R𝑛+1 → R+ and 𝑉2 ∶𝑛+1 → R+ be the functions defined, for 𝑥 ∈ R𝑛+1 and 𝜙 ∈ 𝑛+1 as follows

𝑉1(𝑥) = 𝑥𝑇 𝑃𝑥, 𝑉2(𝜙) = 0, (35)

where, 𝑃 =
(

𝑃 0̄
0̄𝑇 1

)

, with 𝑃 the matrix in (34) and 0̄ ∈ R𝑛 a vector of zeros. Notice that, the functions 𝑉1 and 𝑉2 in (35)

satisfy points (a)–(d) in Section 2 with functions 𝛽1(𝑠) = 𝛾1(𝑠) = 𝜆min(𝑃 )𝑠2, 𝛽2(𝑠) = 𝛾2(𝑠) = 𝜆max(𝑃 )𝑠2. Now, taking into account
the considered candidate Lyapunov–Krasovskii functional 𝑉 (see (4)) obtained from (35), in the following, we try to find a SDF
according to Definition 3. In particular, taking into account (34) and the functions 𝑉1, 𝑉2 in (35), for any 𝜙 ∈ 𝑛+1 and for any
𝑢 ∈ R, the following equalities/inequality hold:

𝐷+𝑉 (𝜙, 𝑢) = 2𝜙(0)𝑇 𝑃
(

𝑓1(𝜙)
𝑓2(𝜙) + 𝑔(𝜙)𝑢

)

= 2𝜙1(0)𝑇 𝑃𝑓1(𝜙) + 2𝜙2(0)(𝑓2(𝜙) + 𝑔(𝜙)𝑢)
2

(36)
11

≤ −𝜎1|𝜙1(0)| + |𝜙2(0)|𝜎2(𝜙) + 2𝜙2(0)(𝑓2(𝜙) + 𝑔(𝜙)𝑢).
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Fig. 3. In the first four panels, the evolutions of 𝑥𝑖(𝑡), 𝑖 = 1, 2, 3, 4 are reported. In the last two panels, the evolution of the state variable 𝑞1,1(𝑡) and a zoom of
the control input 𝑢(𝑡) is reported.

From (36), by choosing 𝑢 = 𝑘(𝜙), where 𝑘 ∶ 𝑛+1 → R is the function defined, for 𝜙 ∈ 𝑛+1, as follows

𝑘(𝜙) = −
0.5sign(𝜙2(0))𝜎2(𝜙) + 𝑓2(𝜙) + 𝜎3𝜙2(0)

𝑔(𝜙)
, (37)

with 𝜎3 > 0 a positive tuning parameter, we obtain

𝐷+𝑉 (𝜙, 𝑘(𝜙)) ≤ −𝜎1|𝜙1(0)|
2 − 2𝜎3|𝜙2(0)|

2 ≤ −min{𝜎1, 𝜎3}|𝜙(0)|
2. (38)

Then, as far as inequality (7) is concerned, taking into account (38) and by choosing, for instance, 𝑝 = 𝐼𝑑 , 𝜈 = 1, 𝜂 > 0,
𝜇 =

min{𝜎1, 𝜎3}
𝜆max(𝑃 )

, 𝛼̄ = 0, then, for any 𝜙 ∈ 𝑛+1, the following inequality holds

𝜈𝐷+𝑉 (𝜙, 𝑘(𝜙)) + 𝜂max
{

0, 𝐷+𝑝◦𝑉1
(

𝜙, 𝑘(𝜙)
)

+ 𝜇𝑝◦𝑉1
(

𝜙(0)
)

}

≤

− min{𝜎1, 𝜎3}|𝜙(0)|
2 ≤ 0.

(39)

It follows that the function 𝑘 in (37) is a SDF for the system (33) according to Definition 3 (i.e. Assumption 1 is satisfied in this
case). It follows that all the conditions to apply Theorem 1 are satisfied for this case. Notice that, the proposed SDF 𝑘 in (37) is
discontinuous.

Example Let us consider a nonlinear time-delay system described by
.
𝑥1(𝑡) = 𝑥2(𝑡),
.
𝑥2(𝑡) =−𝑥1(𝑡)−𝑥2(𝑡)+𝑥22(𝑡)𝑥3(𝑡)+𝑥

2
1(𝑡−𝛥)𝑥3(𝑡)+𝑥

3
3(𝑡)−𝑥3(𝑡)𝑥3(𝑡−𝛥),

.
𝑥3(𝑡) = 𝑥22(𝑡)𝑥3(𝑡) + 3𝑥1(𝑡) + 𝑥2(𝑡−𝛥) + 𝑢(𝑡),

(40)
12
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Fig. 4. In the first three panels, the evolutions of 𝑥𝑖(𝑡), 𝑖 = 1, 2, 3 are reported. In the last panel, a zoom of the control input 𝑢(𝑡) is reported.

here: 𝑥𝑡 =
⎛

⎜

⎜

⎝

𝑥1,𝑡
𝑥2,𝑡
𝑥3,𝑡

⎞

⎟

⎟

⎠

∈ 3, 𝑥1,𝑡, 𝑥2,𝑡, 𝑥3,𝑡 ∈  is the system state; 𝑢(𝑡) is the control input; 𝛥 is the involved time-delay. Notice that,

ystem (40) is in the form (33) with the functions 𝑓1 ∶ 3 → R2, 𝑓2 ∶ 3 → R and 𝑔 ∶ 3 → R defined, for 𝜙 ∈ 3, as follows

𝑓1(𝜙) =
(

𝜙2(0)
−𝜙1(0)−𝜙2(0)+𝜙2

2(0)𝜙3(0)+𝜙2
1(−𝛥)𝜙3(0)+𝜙3

3(0)−𝜙3(0)𝜙3(−𝛥)

)

,

𝑓2(𝜙) = 𝜙2
2(0)𝜙3(0) + 3𝜙1(0) + 𝜙2(−𝛥), 𝑔(𝜙) = 1.

(41)

Moreover, system (40) satisfies the condition (34) by choosing, for instance, 𝑃 =
(

1.5 0.5
0.5 1

)

. Indeed, as far as condition (34) is

concerned, taking into account, for any 𝜙 ∈ 3, the following equalities/inequality hold

2𝜙1(0)𝑇 𝑃𝑓1(𝜙) =
(

3𝜙1(0) + 𝜙2(0) 𝜙1(0) + 2𝜙2(0)
)

𝑓1(𝜙) = −|𝜙1(0)|
2

− |𝜙2(0)|
2 + 𝜙3(0)(𝜙1(0) + 2𝜙2(0))(𝜙2

2(0) + 𝜙
2
1(−𝛥) + 𝜙

2
3(0) − 𝜙3(−𝛥)) ≤

− |𝜙1(0)|
2 − |𝜙2(0)|

2 + |𝜙3(0)|𝜎2(𝜙),

(42)

where, in this case, 𝜎2 ∶ 3 → R is the function defined, for 𝜙 ∈ 3, as follows

𝜎2(𝜙) = |(𝜙1(0) + 2𝜙2(0))(𝜙2
2(0) + 𝜙

2
1(−𝛥) + 𝜙

2
3(0) − 𝜙3(−𝛥))|.

In the performed simulations: the initial state has been chosen equal to 𝑥0(𝜏) = 1, 𝜏 ∈ [−𝛥, 0]; a uniform sampling period (i.e. 𝑎 = 1)
equal to 𝛿 = 0.01[s] and quantizers based on the round-to-nearest method with 𝑄3

𝑥 = {𝑥 ∈ R3
| 𝑥𝑖 = ±10−5𝑗, 𝑖 = 1, 2, 3, 𝑗 = 0, 1,… , 106}

and 𝑄𝑢 = {𝑢 ∈ R| 𝑢 = ±0.001𝑗, 𝑗 = 0, 1,… , 104} have been chosen; the controller parameter in (37) is chosen as 𝜎3 = 2; an actuation
disturbance 𝑑 (𝑡) = sin (𝑡) + 𝑑𝑟(𝑡) has been considered where 𝑑𝑟(𝑡) = 𝑑𝑟(𝑗), 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1), 𝑗 = 0, 1,…, with 𝑑𝑟(𝑗) taken from the interval
[−0.1, 0.1] by emulation of the uniform probability density function; observation errors 𝑒1 (𝑗) = 10−5 sin

(

𝑡𝑗
)

, 𝑒2 (𝑗) = 10−5 cos
(

𝑡𝑗
)

and 𝑒3 (𝑗) = 10−8 cos
(

𝑡𝑗
)

, 𝑗 = 0, 1,…, have been considered; the parameters related to the robustification term (see (12)) and to the
triggering mechanism (see (17)) have been chosen equal to 𝜔 = 10, 𝜇 = 10−5, 𝜇̃ = 10−5, 𝜇̄ = 10−5 and 𝐿 = 20; different values of the
parameter 𝜎, related to the triggering mechanism (see (17)), have been considered. The simulation results, in the case 𝜎 = 0.3 and
𝛿 = 0.01[s], are shown in Fig. 4. As for the precedent case (see Section 5.1), simulations show the very good performances of the
proposed robust event-triggered solution and its efficacy in drastically reducing the effects of actuator disturbances and observation
errors with a lower average frequency of control updates with respect to the robust time-triggered solution (around 12.2% of the
sampling intervals). Simulations fully validate the theoretical results.

6. Conclusions

In this paper, the robust quantized sampled-data event-based (QSE) control problem for nonlinear systems with state delays
has been studied. In particular, a methodology for the design of robust QSE stabilizers for nonlinear systems affected by state-
13

delays, actuation disturbances and observation errors has been provided. The stabilization in the sample-and-hold sense theory
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has been used as a tool in order to prove the semi-global practical stability of the related QSE closed-loop system. The proposed
theoretical results have been validated through applications concerning: (i) a single-link flexible joint robot arm with time delays;
(ii) a particular class of nonlinear time-delay systems. Numerical simulations fully validates the results by showing: (i) the good
performances of the proposed robust QSE controller comparable with the ones of the robust time–triggered solution, in spite of
lower average frequency of control updates; (ii) the efficacy of the proposed robust QSE controller in the rejection of unknown
actuation disturbances and unknown measurement errors.
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Appendix. Proof of Theorem 1

Firstly, two useful lemmas are provided which will be helpful for proving Theorem 1. In particular, Lemma 13 and Lemma 14
in [40] are here recalled and adapted to the notation used in the present paper.

Lemma 1 (See Lemma 13 in [40]). Let Assumption 1 hold. Let 𝑘̃ be the function defined in (13) with given positive real 𝜔. Let 𝛾 be an
arbitrary positive real and 𝐷 = (−𝛾, 𝛾)𝑚 ⊂ R𝑚. Let 𝛼4 be the function of class  defined, for 𝑠 ∈ R+, as follows

𝛼4(𝑠) =
(𝜈 + 𝜂𝑝̄)𝑠2

4𝜔
,

where 𝜂, 𝜈 and 𝑝̄ are the positive reals in Definition 3. Then, for any 𝜙 ∈ 𝑛 and for any 𝑑 ∈ 𝐷 the following inequality holds:

𝜈𝐷+𝑉 (𝜙, 𝑘̃(𝜙) + 𝑑) + 𝜂max{0, 𝐷+𝑝◦𝑉1(𝜙, 𝑘̃(𝜙) + 𝑑) + 𝜇𝑝◦𝑉1(𝜙(0))} ≤
𝛼(𝜂𝜇𝑒−𝜇𝛥𝑝◦𝛽1(‖𝜙‖∞)) + 𝛼4(|𝑑|).

(A.1)

Lemma 2 (See Lemma 14 in [40]). Let Assumption 1 hold. Let the functional 𝑉3, 𝑉∞ and ∞ as defined in points (f.1), (f.2) and (f.3)
f Section 3. Let 𝛼𝑖, 𝑖 = 1, 2, be the functions of class ∞ defined in (22). Let 𝛼3 be a function of class ∞, for 𝑠 ∈ R+, as

𝛼3(𝑠) = (𝐼𝑑 − 𝛼̄)(𝜂𝜇𝑒−𝜇𝛥𝑝◦𝛽1(𝑠)),

here 𝛽1 is the function of class ∞ related to the smooth separability property of the functional 𝑉 and 𝛼̄ is the function in Definition 3.
et 𝛾 be an arbitrary positive real and 𝐷 = (−𝛾, 𝛾)𝑚 ⊂ R𝑚. Let 𝛼4 be the function of class ∞ in Lemma 1. Then, the following conditions
old:

(c.1) 𝛼1(‖𝜙‖∞) ≤ 𝑉∞(𝜙) ≤ 𝛼2(‖𝜙‖∞), ∀𝜙 ∈ 𝑛;
(c.2) the function (𝜙, 𝑢) → ∞(𝜙, 𝑢) is Lipschitz on bounded subsets of 𝑛 × R𝑚;
(c.3) 𝐷+𝑉∞(𝜙, 𝑢) ≤ ∞(𝜙, 𝑢), ∀𝜙 ∈ 𝑛, ∀𝑢 ∈ R𝑚;
(c.4) ∞

(

𝜙, 𝑘̃(𝜙) + 𝑑
)

≤ −𝛼3(‖𝜙‖∞) + 𝛼4(|𝑑|), ∀𝜙 ∈ 𝑛, ∀𝑑 ∈ 𝐷.

Let:
(1) 𝑟, 𝑅, be any positive reals, 0 < 𝑟 < 𝑅;
(2) 𝑎, 𝜇̄, 𝜇̃ ∈ (0, 1] and 𝜎 ∈ (0, 1) be arbitrarily fixed;
(3) 𝑞 be any positive real and 𝑥0 ∈ 𝑊 1,∞

𝑛 ∩ 𝑛𝑅 satisfying ess sup𝜃∈[−𝛥,0]
|

|

|

𝑑𝑥0(𝜃)
𝑑𝜃

|

|

|

≤ 𝑞;
(4) 𝑒1, 𝑒2, 𝐸 be positive reals satisfying:

0 < 𝑒2 < 𝑒1 < 𝑟 < 𝑅 < 𝐸, 𝛼1(𝐸) > 𝛼2(𝑅), 𝛼1(𝑟) > 𝛼2(𝑒1); (A.2)

(5)

𝐸1 = 𝐸 + 𝑒, 𝐸2 = 𝐸1 + 1, 𝐿̃ = sup𝜙1∈𝑛𝐸2 , 𝜙2∈
𝑛
𝐸1

|

|

|

𝑘(𝜙1) − 𝑘(𝜙2)
|

|

|

,

𝐿̄ = sup𝜙1∈𝑛𝐸 , 𝜙2∈𝑛𝐸
|

|

|

𝑘(𝜙1) − 𝑘(𝜙2)
|

|

|

, 𝐿 = sup𝜙1∈𝑛𝐸1 , 𝜙2∈
𝑛
𝐸

|

|

|

𝑘(𝜙1) − 𝑘(𝜙2)
|

|

|

,

𝜔 ≥ 𝜔̄ = max
{

1,
(𝜈 + 𝜂𝑝̄)(𝑑 + 𝑒 + 𝜇̄ + 𝜇̃ + 𝐿̄ + 𝐿̃ + 𝐿)2

𝜎𝛼3(𝑒2)

}

,

𝑈 = sup 𝑛
|

|𝑘̃(𝜙)||, 𝑈 = 𝑈 + 1 + 𝑑.

(A.3)
14

𝜙∈𝐸2 | |
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(6) 𝑀 , 𝐿, 𝐿𝑆 be positive reals such that the following inequalities hold, ∀𝜙1, 𝜙2 ∈ 𝐸𝑛2 and ∀𝑢1, 𝑢2 ∈ 𝑚
𝑈

:

|𝑓 (𝜙1, 𝑢1)| ≤𝑀,
|𝑆(𝜙1) − 𝑆(𝜙2)| ≤ 𝐿𝑆‖𝜙1 − 𝜙2‖∞,
|∞(𝜙1, 𝑢1) −∞(𝜙2, 𝑢2)| ≤ 𝐿(‖𝜙1 − 𝜙2‖∞ + |𝑢1 − 𝑢2|);

(A.4)

(7) 𝑞 = max{𝑞, 𝑀} with 𝑀 the positive real in (A.4);

(8) 𝛽 = 𝜔𝜎𝛼3(𝑒2) −
(𝜈 + 𝜂𝑝̄)(𝑑 + 𝑒 + 𝜇̄ + 𝜇̃ + 𝐿̄ + 𝐿̃ + 𝐿)2

2
;

(9) 𝛿, 𝜇𝑥, 𝜇𝑢 be positive reals and 𝑞𝑥 be a state quantizer with range 𝐸1 and error bound 𝜇𝑥 such that:

𝛿 < min{1, 𝛥}, 0 < 𝜇𝑥 ≤ 1, 0 < 𝜇𝑢 ≤ 1, 𝑒2 + 𝛿𝑀 < 𝑒1, 𝑅 + 𝛿𝑀 < 𝐸,

𝛼1(𝑟) > 𝛼2(𝑒1) +
2
3
𝛽𝛿
𝜔
, 2𝐿𝑆𝑞𝛿 ≤

𝜇̄
𝜔
,

𝛽
3
> 2𝜔𝐿(2 + 𝜎)(2𝑞𝛿 + 𝜇𝑢 + 3𝜇𝑥),

sup
𝑥̃0 ,… , 𝑥̃𝑙 ∈ 𝑛𝐸1

|

|

|

|

𝑆(𝑃𝑙,𝑎,𝛿(
⎛

⎜

⎜

⎝

𝑞𝑥(𝑥̃0)
⋮

𝑞𝑥(𝑥̃𝑙)

⎞

⎟

⎟

⎠

, 𝑤)) − 𝑆(𝑃𝑙,𝑎,𝛿(
⎛

⎜

⎜

⎝

𝑥̃0
⋮
𝑥̃𝑙

⎞

⎟

⎟

⎠

, 𝑤))
|

|

|

|

≤ 𝜇̃
𝜔
, ∀𝑤 ∈ 𝑙,𝑎,𝛿 .

(A.5)

(10) 𝑞𝑢 be an input quantizer with range 𝑈 and error bound 𝜇𝑢.
Let us consider a partition 𝜋𝑎,𝛿 . Let 𝐵𝑥+𝑒𝑆 ∶ N → R𝑛(𝑙+1) and 𝐵𝑥𝑆 ∶ N → R𝑛(𝑙+1) be defined (recursively) as

𝐵𝑥+𝑒𝑆 (0) =
⎛

⎜

⎜

⎝

𝑥̄0(0) + 𝑒0(0)
⋮

𝑥̄0(𝑡−𝑙) + 𝑒0(𝑡−𝑙)

⎞

⎟

⎟

⎠

, 𝐵𝑥𝑆 (0) =
⎛

⎜

⎜

⎝

𝑥̄0(0)
⋮

𝑥̄0(𝑡−𝑙)

⎞

⎟

⎟

⎠

,

𝑥̄0(𝜏) + 𝑒0(𝜏) =

{

𝑥0(𝜏) + 𝑒0(𝜏) 𝜏 ∈ [−𝛥, 0]
𝑥0(−𝛥) + 𝑒0(−𝛥) 𝜏 ∈ [𝑡−𝑙 ,−𝛥],

𝑥̄0(𝜏) =

{

𝑥0(𝜏) 𝜏 ∈ [−𝛥, 0]
𝑥0(−𝛥) 𝜏 ∈ [𝑡−𝑙 ,−𝛥]

𝐵𝑥+𝑒𝑆 (𝑗) =
(

𝑥(𝑡𝑗 ) + 𝑒𝑗 (0)
0𝑙𝑛×1

)

+
(

0𝑛×𝑙𝑛 0𝑛
𝐼𝑙𝑛 0𝑙𝑛×𝑛

)

𝐵𝑥+𝑒𝑆 (𝑗 − 1),

𝐵𝑥𝑆 (𝑗) =
(

𝑥(𝑡𝑗 )
0𝑙𝑛×1

)

+
(

0𝑛×𝑙𝑛 0𝑛
𝐼𝑙𝑛 0𝑙𝑛×𝑛

)

𝐵𝑥𝑆 (𝑗 − 1), 𝑗 = 1,…

(A.6)

In the following, we denote with: 𝑃 𝑥𝑗 the function 𝑃𝑙,𝑎,𝛿(𝐵𝑥𝑆 (𝑗), 𝐵 (𝑗)); 𝑃 𝑥+𝑒𝑗 the function 𝑃𝑙,𝑎,𝛿(𝐵𝑥+𝑒𝑆 (𝑗), 𝐵 (𝑗));

Firstly, we notice that, for any 𝑥̃ =
(

𝑥̃𝑇0 ⋯ 𝑥̃𝑇𝑙
)𝑇 , 𝑥̃𝑖 ∈ 𝑛𝐸 , 𝑖 = 0,… , 𝑙 and for any 𝑒 =

(

𝑒𝑇0 ⋯ 𝑒𝑇𝑙
)𝑇 , 𝑒𝑖 ∈ 𝑛𝑒 , 𝑖 = 0,… , 𝑙, we

have |𝑥̃𝑖 + 𝑒𝑖| ≤ 𝐸1, 𝑖 = 0,… , 𝑙 and, consequently, for any 𝑤 ∈ 𝑙,𝑎,𝛿 , ‖𝑃𝑙,𝑎,𝛿(𝑥̃+ 𝑒,𝑤)‖∞ ≤ 𝐸1. Moreover, for any 𝑥̃ =
(

𝑥̃𝑇0 ⋯ 𝑥̃𝑇𝑙
)𝑇 ,

𝑥̃𝑖 ∈ 𝑛𝐸1
, 𝑖 = 0,… , 𝑙, we have |𝑞𝑥(𝑥̃𝑖)| ≤ 𝐸1 + 1 = 𝐸2 and, consequently, for any 𝑤 ∈ 𝑙,𝑎,𝛿 , ‖𝑃𝑙,𝑎,𝛿(𝑥̃, 𝑤)‖∞ ≤ 𝐸2. From such

considerations, it follows that ‖𝑥+𝑒
0 ‖∞ ≤ 𝐸1 and ‖𝑞𝑥

0 ‖∞ ≤ 𝐸2. Then, for any 𝑑 ∈ 𝑚
𝑑

, 𝑞𝑢(𝑢̃0) + 𝑑 ∈ 𝑚
𝑈̄

. Let us consider the solution
of the QSE closed-loop system (2)–(15). We show first that the solution exists in [0, 𝑡1]. Otherwise, by contradiction, if the solution
blows up, there exists a time 𝜏 ∈ [0, 𝑡1) such that |𝑥(𝑡)| < 𝐸, 𝑡 ∈ [0, 𝜏), and |𝑥(𝜏)| = 𝐸. But, from (A.4), (A.5), for 𝑡 ∈ [0, 𝜏], the
inequalities hold:

|𝑥(𝑡)| ≤ |𝑥0(0)| + ∫ 𝑡0 |𝑓 (𝑥𝜃) + 𝑔(𝑥𝜃)(𝑞𝑢(𝑢̃0) + 𝑑(𝜃))|𝑑𝜃 ≤ 𝑅 + 𝛿𝑀 < 𝐸. (A.7)

Thus, taking 𝑡 = 𝜏, the absurd inequality arises 𝐸 < 𝐸. Therefore, the solution exists in [0, 𝑡1] and, by (A.7), it follows that 𝑥𝑡 ∈ 𝑛𝐸 ,
𝑡 ∈ [0, 𝑡1]. Let 𝑊 (𝑡) = 𝜔𝑉∞(𝑥𝑡), 𝑡 ∈ [0, 𝑡1], with 𝑉∞ ∶ 𝑛 → R+ provided in Lemma 2. Taking into account point (c.3) in Lemma 2 and
Steps (6), (9), (10), for any fixed 𝑡 ∈ (0, 𝑡1], for some 𝑡∗ ∈ [0, 𝑡], the following equalities/inequalities hold:

𝑊 (𝑡) −𝑊 (0) = ∫ 𝑡0 𝜔𝐷
+𝑉∞(𝑥𝜏 , 𝑞𝑢(𝑢̃0) + 𝑑(𝜏))𝑑𝜏 ≤

𝑡
(

1
𝑡
∫ 𝑡0 𝜔∞(𝑥𝜏 , 𝑞𝑢(𝑢̃0) + 𝑑(𝜏))𝑑𝜏

)

= 𝑡𝜔∞(𝑥∗𝑡 , 𝑞𝑢(𝑢̃0) + 𝑑(𝑡
∗)) =

𝑡𝜔∞(𝑥∗𝑡 , 𝑞𝑢(𝑢̃0) + 𝑑(𝑡
∗)) − 𝑡𝜔∞(𝑥0, 𝑢̃0 + 𝑑(𝑡∗))+

𝑡𝜔∞(𝑥0, 𝑢̃0 + 𝑑(𝑡∗)) − 𝑡𝜔𝜎∞(𝑥0, 𝑢̃0 + 𝑑(𝑡∗)) + 𝑡𝜔𝜎∞(𝑥0, 𝑢̃0 + 𝑑(𝑡∗)) ≤
𝑡𝜔𝐿(2𝑞𝛿 + 𝜇𝑢) + 𝑡𝜔(1 − 𝜎)∞(𝑥0, 𝑢̃0 + 𝑑(𝑡∗)) + 𝑡𝜔𝜎∞(𝑥0, 𝑢̃0 + 𝑑(𝑡∗)),

(A.8)

here, 𝑑(𝑡∗) = 𝑑(𝑡∗) if 𝑡∗ < 𝑡1 and 𝑑(𝑡∗) = lim𝑡→𝑡−1
𝑑(𝑡) if 𝑡∗ = 𝑡1 and, by suitably repeating the reasoning in [8] (see, also, [41]),

𝑥𝑡∗ − 𝑥0‖∞ ≤ 2𝑞𝛿. Now, we notice that, 𝑥
0 ∈ 𝑛𝐸 , 𝑥+𝑒

0 ∈ 𝑛𝐸1
and 𝑞𝑥

0 ∈ 𝑛𝐸2
. Then, taking into account (A.4) and (A.5), the

ollowing equality/inequalities hold:

|𝑆(𝑞𝑥
0 ) − 𝑆(𝑥+𝑒

0 )| =

|𝑆(𝑃𝑙,𝑎,𝛿(𝐵
𝑞𝑥
𝑆 (0), 𝐵 (0))) − 𝑆(𝑃𝑙,𝑎,𝛿(𝐵𝑥+𝑒𝑆 (0), 𝐵 (0)))| ≤

𝜇̃
𝜔

|𝑆(𝑥) − 𝑆(𝑥 )| ≤ 𝐿 ‖𝑃 𝑥 − 𝑥 ‖ ≤ 2𝐿 𝑞𝛿 ≤ 𝜇̄
,

(A.9)
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where, by suitably repeating the reasoning in [8], ‖𝑃 𝑥0 − 𝑥0‖∞ ≤ 2𝑞𝛿. Taking into account (A.3) and (A.9), let 𝑣𝑖 ∈ 𝑚1 , 𝑖 = 1,… , 6,
be such that:

𝑘(𝑞𝑥
0 ) = 𝑘(𝑥+𝑒

0 ) + 𝐿̃𝑣1, 𝑘(𝑥+𝑒
0 ) = 𝑘(𝑥

0 ) + 𝐿𝑣2, 𝑘(
𝑥
0 ) = 𝑘(𝑥0) + 𝐿̄𝑣3,

𝑆(𝑞𝑥
0 ) = 𝑆(𝑥+𝑒

0 ) +
𝜇̃
𝜔
𝑣4, 𝑆(𝑥+𝑒

0 ) = 𝑆(𝑥
0 ) +

𝑒
𝜔
𝑣5, 𝑆(𝑥

0 ) = 𝑆(𝑥0) +
𝜇̄
𝜔
𝑣6.

(A.10)

Then, taking into account point (c.4) in Lemma 2 and (A.10), the following equalities/inequality hold:

∞(𝑥0, 𝑢̃0 + 𝑑(𝑡∗)) =
∞(𝑥0, 𝑘̃(

𝑞𝑥
0 ) + 𝑑(𝑡∗)) = ∞(𝑥0, 𝑘(

𝑞𝑥
0 ) − 𝜔𝑆(𝑞𝑥

0 ) + 𝑑(𝑡∗)) =
∞(𝑥0, 𝑘(𝑥0) − 𝜔𝑆(𝑥0) + 𝐿̃𝑣1 + 𝐿𝑣2 + 𝐿̄𝑣3 − 𝜇̃𝑣4 − 𝜇𝑣5 − 𝜇̄𝑣6 + 𝑑(𝑡∗)) ≤

−𝛼3(‖𝑥0‖∞) +
(𝜈 + 𝜂𝑝̄)(𝑑 + 𝑒 + 𝜇̄ + 𝜇̃ + 𝐿̄ + 𝐿̃ + 𝐿)2

4𝜔
.

(A.11)

From (A.8), taking into account (A.5) and (A.11), for 𝑡 ∈ [0, 𝑡1], the following inequality holds

𝑊 (𝑡) −𝑊 (0) ≤ 𝑡𝜔𝐿(2𝑞𝛿 + 𝜇𝑢) − 𝑡𝜔𝜎𝛼3(‖𝑥0‖∞)+

𝑡
(𝜈 + 𝜂𝑝̄)(𝑑 + 𝑒 + 𝜇̄ + 𝜇̃ + 𝐿̄ + 𝐿̃ + 𝐿)2

4
≤

𝛽
3
𝑡 − 𝑡𝜔𝜎𝛼3(‖𝑥0‖∞) + 𝑡

(𝜈 + 𝜂𝑝̄)(𝑑 + 𝑒 + 𝜇̄ + 𝜇̃ + 𝐿̄ + 𝐿̃ + 𝐿)2

4
.

(A.12)

Let us now consider the following two cases: (1) ‖𝑥0‖∞ ≤ 𝑒2; (2) ‖𝑥0‖∞ > 𝑒2. As far as case (1) is concerned, by using again the
first inequality in (A.7) and from (A.5), the following inequality holds, for any 𝑡 ∈ [0, 𝑡1],

|𝑥(𝑡)| ≤ 𝑒2 + 𝛿𝑀 < 𝑒1.

From point (c.1) in Lemma 2, it follows

𝑊 (𝑡) ≤ 𝜔𝛼2(𝑒1), 𝑡 ∈ [0, 𝑡1].

As far as case (2) is concerned, we have that

−𝛽 > −𝜔𝜎𝛼3(‖𝑥0‖∞) +
(𝜈 + 𝜂𝑝̄)(𝑑 + 𝑒 + 𝜇̄ + 𝜇̃ + 𝐿̄ + 𝐿̃ + 𝐿)2

4
.

Therefore, from (A.5), we have, for any 𝑡 ∈ [0, 𝑡1],

𝑊 (𝑡) ≤ 𝑊 (0) +
𝛽
3
𝑡 − 𝛽𝑡 = 𝑊 (0) − 2

3
𝛽𝑡.

Let us introduce the following claim, which will be proved later.

Claim 1. The solution 𝑥(𝑡) of (2)–(15), exists in [0,+∞) and, furthermore, 𝑥𝑡 ∈ 𝑛𝐸 , ∀𝑡 ≥ 0.

Notice that, taking into account the control input in (15), Claim 1 and the same reasoning used in the first interval [0, 𝑡1], for
any 𝑑 ∈ 𝑚

𝑑
, 𝑞𝑢(𝑢̃𝑖𝑗 ) + 𝑑 ∈ 𝑚

𝑈
, 𝑗 = 1,…. Let 𝑊 (𝑡) = 𝜔𝑉∞(𝑥𝑡), 𝑡 ∈ R+. Taking into account the reasoning used in the interval [0, 𝑡1],

points (c.3) in Lemma 2 and Steps (6), (9), (10), for any fixed 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1], 𝑗 ≥ 1, for some 𝑡∗ ∈ [𝑡𝑗 , 𝑡], the following inequalities
old:

𝑊 (𝑡) −𝑊 (𝑡𝑗 ) ≤ 𝜔(𝑡 − 𝑡𝑗 )∞(𝑥∗𝑡 , 𝑞𝑢(𝑢̃𝑖𝑗 ) + 𝑑(𝑡
∗)) ≤

𝜔(𝑡 − 𝑡𝑗 )
(

∞(𝑥∗𝑡 , 𝑞𝑢(𝑢̃𝑖𝑗 )+𝑑(𝑡
∗))−∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗 +𝑑(𝑡

∗))+∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗 +𝑑(𝑡
∗))

−𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡
∗)) + 𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡

∗))
)

≤

𝜔(𝑡 − 𝑡𝑗 )𝐿(2𝑞𝛿+𝜇𝑢) + 𝜔(𝑡 − 𝑡𝑗 )
(

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗 +𝑑(𝑡
∗))−𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗+𝑑(𝑡

∗))

+𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡
∗))

)

,

(A.13)

where, 𝑑(𝑡∗) = 𝑑(𝑡∗) if 𝑡∗ < 𝑡𝑗 and 𝑑(𝑡∗) = lim𝑡→𝑡−𝑗
𝑑(𝑡) if 𝑡∗ = 𝑡𝑗 and, by suitably repeating the reasoning in [8] (see, also, [41]),

‖𝑥𝑡∗ − 𝑥𝑡𝑗 ‖∞ ≤ 2𝑞𝛿. Taking into account Claim 1, we notice that, 𝑥
𝑗 ∈ 𝑛𝐸 , 𝑥+𝑒

𝑗 ∈ 𝑛𝐸1
and 𝑞𝑥

𝑗 ∈ 𝑛𝐸2
, 𝑗 = 0, 1,…. Then, taking into

account (A.4) and (A.5), the following equality/inequalities hold:

|𝑆(𝑞𝑥
𝑗 ) − 𝑆(𝑥+𝑒

𝑗 )| =

|𝑆(𝑃𝑙,𝑎,𝛿(𝐵
𝑞𝑥
𝑆 (𝑗), 𝐵 (𝑗))) − 𝑆(𝑃𝑙,𝑎,𝛿(𝐵𝑥+𝑒𝑆 (𝑗), 𝐵 (𝑗)))| ≤

𝜇̃
𝜔

|𝑆(𝑥
𝑗 ) − 𝑆(𝑥𝑗 )| ≤ 𝐿𝑆‖𝑃 𝑥𝑗 − 𝑥𝑡𝑗 ‖∞ ≤ 2𝐿𝑆𝑞𝛿 ≤

𝜇̄
𝜔
,

(A.14)

where, by suitably repeating the reasoning in [8], ‖𝑃 𝑥0 − 𝑥0‖∞ ≤ 2𝑞𝛿. Taking into account (A.3) and (A.14), let 𝑣𝑖 ∈ 𝑚1 , 𝑖 = 1,… , 6,
be such that:

𝑘(𝑞𝑥
𝑗 ) = 𝑘(𝑥+𝑒

𝑗 ) + 𝐿̃𝑣1, 𝑘(𝑥+𝑒
𝑗 ) = 𝑘(𝑥

𝑗 ) + 𝐿𝑣2, 𝑘(
𝑥
𝑗 ) = 𝑘(𝑥𝑡𝑗 ) + 𝐿̄𝑣3,

𝑆(𝑞𝑥 ) = 𝑆(𝑥+𝑒) +
𝜇̃
𝑣 , 𝑆(𝑥+𝑒) = 𝑆(𝑥) + 𝑒 𝑣 , 𝑆(𝑥) = 𝑆(𝑥 ) +

𝜇̄
𝑣 .

(A.15)
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Then, taking into account point (c.4) in Lemma 2 and (A.15), the following equalities/inequality hold:

∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡
∗)) =

∞(𝑥𝑡𝑗 , 𝑘̃(
𝑞𝑥
𝑗 ) + 𝑑(𝑡∗)) = ∞(𝑥𝑡𝑗 , 𝑘(

𝑞𝑥
𝑗 ) − 𝜔𝑆(𝑞𝑥

𝑗 ) + 𝑑(𝑡∗)) =
∞(𝑥𝑡𝑗 , 𝑘(𝑥𝑡𝑗 ) − 𝜔𝑆(𝑥𝑡𝑗 ) + 𝐿̃𝑣1 + 𝐿𝑣2 + 𝐿̄𝑣3 − 𝜇̃𝑣4 − 𝜇𝑣5 − 𝜇̄𝑣6 + 𝑑(𝑡

∗)) ≤

−𝛼3(‖𝑥𝑡𝑗 ‖∞) +
(𝜈 + 𝜂𝑝̄)(𝑑 + 𝑒 + 𝜇̄ + 𝜇̃ + 𝐿̄ + 𝐿̃ + 𝐿)2

4𝜔
.

(A.16)

Moreover, taking into account (15), (17) and (A.13), we have that

𝜔
(

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗 + 𝑑(𝑡
∗)) − 𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡

∗))
)

=

⎧

⎪

⎨

⎪

⎩

𝜔(1 − 𝜎)∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡
∗)) 𝑖𝑗 = 𝑗,

𝜔
(

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 + 𝑑(𝑡
∗)) − 𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡

∗))
)

𝑖𝑗 = 𝑖𝑗−1.

(A.17)

Taking into account (A.16), if 𝑖𝑗 = 𝑗 (trigger), the following inequality holds:

𝜔(1 − 𝜎)∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡
∗)) ≤

− 𝜔(1 − 𝜎)𝛼3(‖𝑥𝑡𝑗 ‖∞) + (1 − 𝜎)
(𝜈 + 𝜂𝑝̄)(𝑑 + 𝑒 + 𝜇̄ + 𝜇̃ + 𝐿̄ + 𝐿̃ + 𝐿)2

4
.

(A.18)

In the case that 𝑖𝑗 = 𝑖𝑗−1 (no trigger), the triggering condition (17) is false and, consequently, the following inequality holds:

∞(𝑞𝑥
𝑗 , 𝑞𝑢(𝑢̃𝑖𝑗−1 )) − 𝜎∞(𝑞𝑥

𝑗 , 𝑞𝑢(𝑢̃𝑗 )) ≤ −𝐻(𝑞𝑥
𝑗 ). (A.19)

For simplicity in the notation, in the following we will call with: 𝛹1(𝜙, 𝑢) the function 𝐷+𝑝◦𝑉1(𝜙, 𝑢) + 𝜇𝑝◦𝑉1(𝜙(0)) and with 𝛹2(𝜙, 𝑑)

the function 𝑑𝑝
𝑑𝑠

|

|

|

|𝑠=𝑉1(𝜙(0))

𝜕𝑉1
𝜕𝑥

|

|

|

|𝑥=𝜙(0)
𝑔 (𝜙) 𝑑. Taking into account (14), the following equalities hold

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 + 𝑑(𝑡
∗)) = 𝜈𝐷+𝑉 (𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 + 𝑑(𝑡

∗)) − 𝜂𝜇𝑉3(𝑥𝑡𝑗 )
+𝜂max{0, 𝛹1(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 + 𝑑(𝑡

∗))} =

𝜈𝐷+𝑉 (𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 ) + 𝜈
𝜕𝑉1
𝜕𝑥

|

|

|

|𝑥=𝑥(𝑡𝑗 )
𝑔
(

𝑥𝑡𝑗
)

𝑑(𝑡∗) − 𝜂𝜇𝑉3(𝑥𝑡𝑗 )

+𝜂max{0, 𝛹1(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 + 𝑑(𝑡
∗))} + 𝜂max{0, 𝛹1(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 )}

−𝜂max{0, 𝛹1(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 )} =

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 ) + 𝜈
𝜕𝑉1
𝜕𝑥

|

|

|

|𝑥=𝑥(𝑡𝑗 )
𝑔
(

𝑥𝑡𝑗
)

𝑑(𝑡∗)

+𝜂max{0, 𝛹1(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 ) + 𝛹2(𝑥𝑡𝑗 , 𝑑(𝑡
∗))} − 𝜂max{0, 𝛹1(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 )}.

(A.20)

Moreover, by exploiting the same reasoning used in (A.20), we have that

∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡
∗)) = ∞(𝑥𝑡𝑗 , 𝑢̃𝑗 ) + 𝜈

𝜕𝑉1
𝜕𝑥

|

|

|

|𝑥=𝑥(𝑡𝑗 )
𝑔
(

𝑥𝑡𝑗
)

𝑑(𝑡∗)

+𝜂max{0, 𝛹1(𝑥𝑡𝑗 , 𝑢̃𝑗 ) + 𝛹2(𝑥𝑡𝑗 , 𝑑(𝑡
∗))} − 𝜂max{0, 𝛹1(𝑥𝑡𝑗 , 𝑢̃𝑗 )}.

(A.21)

Then, taking into account (A.20) and (A.21), the following equality/inequality hold:

𝜔
(

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 + 𝑑(𝑡
∗)) − 𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡

∗))
)

=

𝜔
(

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 ) − 𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 )
)

+ 𝜔𝜈(1 − 𝜎)
𝜕𝑉1
𝜕𝑥

|

|

|

|𝑥=𝑥(𝑡𝑗 )
𝑔
(

𝑥𝑡𝑗
)

𝑑(𝑡∗)

+𝜔𝜂
(

max{0, 𝛹1(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 ) + 𝛹2(𝑥𝑡𝑗 , 𝑑(𝑡
∗))} − max{0, 𝛹1(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 )}

)

+𝜔𝜎𝜂
(

max{0, 𝛹1(𝑥𝑡𝑗 , 𝑢̃𝑗 )} − max{0, 𝛹1(𝑥𝑡𝑗 , 𝑢̃𝑗 ) + 𝛹2(𝑥𝑡𝑗 , 𝑑(𝑡
∗))}

)

≤

𝜔
(

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 ) − 𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 )
)

+ 𝜔𝜈(1 − 𝜎)
𝜕𝑉1
𝜕𝑥

|

|

|

|𝑥=𝑥(𝑡𝑗 )
𝑔
(

𝑥𝑡𝑗
)

𝑑(𝑡∗)

+4𝜔(1 + 𝜎)𝜂𝑝̄𝑑
|

|

|

|

𝜕𝑉1
𝜕𝑥

|

|

|

|𝑥=𝑥(𝑡𝑗 )
𝑔
(

𝑥𝑡𝑗
)

|

|

|

|

.

(A.22)

From (12) and (A.15), we notice that

𝜕𝑉1 |
|

|

𝑔
(

𝑥𝑡𝑗
)

= 𝑆(𝑥𝑡𝑗 )
𝑇 = 𝑆(𝑞𝑥

𝑗 )𝑇 −
𝜇̃𝑣𝑇4 + 𝑒𝑣𝑇5 + 𝜇̄𝑣𝑇6 . (A.23)
17

𝜕𝑥
|𝑥=𝑥(𝑡𝑗 ) 𝜔
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𝑠

s
t
t

R

Taking into account (A.23), from (A.22), the following inequality holds:

𝜔
(

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 + 𝑑(𝑡
∗)) − 𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡

∗))
)

≤

𝜔
(

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 ) − 𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 )
)

+

𝜔
(

𝑑
(

𝜈(1 − 𝜎) + 4𝜂𝑝̄(1 + 𝜎)
)

(

|𝑆(𝑞𝑥
𝑗 )| +

𝜇̃ + 𝑒 + 𝜇̄
𝜔

)

)

.

(A.24)

Then, taking into account (18), (A.4) and (A.24), the following inequalities hold:

𝜔
(

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 + 𝑑(𝑡
∗)) − 𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡

∗))
)

≤

𝜔
(

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 ) − 𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 )
)

+

𝜔
(

𝑑
(

𝜈(1 − 𝜎) + 4𝜂𝑝̄(1 + 𝜎)
)

(

|𝑆(𝑞𝑥
𝑗 )| +

𝜇̃ + 𝑒 + 𝜇̄
𝜔

)

)

+𝜔
(

∞(𝑞𝑥
𝑗 , 𝑞𝑢(𝑢̃𝑖𝑗−1 )) − 𝜎∞(𝑞𝑥

𝑗 , 𝑞𝑢(𝑢̃𝑗 ))
−∞(𝑞𝑥

𝑗 , 𝑞𝑢(𝑢̃𝑖𝑗−1 )) + 𝜎∞(𝑞𝑥
𝑗 , 𝑞𝑢(𝑢̃𝑗 ))

+∞(𝑞𝑥
𝑗 , 𝑢̃𝑖𝑗−1 ) −∞(𝑞𝑥

𝑗 , 𝑢̃𝑖𝑗−1 ) + 𝜎∞(𝑞𝑥
𝑗 , 𝑢̃𝑗 ) − 𝜎∞(𝑞𝑥

𝑗 , 𝑢̃𝑗 )
)

≤

𝜔
(

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗−1 ) − 𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 )
)

− 3𝜔(1 + 𝜎)𝐿𝑒

+𝜔
(

−∞(𝑞𝑥
𝑗 , 𝑞𝑢(𝑢̃𝑖𝑗−1 )) + 𝜎∞(𝑞𝑥

𝑗 , 𝑞𝑢(𝑢̃𝑗 )) +∞(𝑞𝑥
𝑗 , 𝑢̃𝑖𝑗−1 )

−∞(𝑞𝑥
𝑗 , 𝑢̃𝑖𝑗−1 ) + 𝜎∞(𝑞𝑥

𝑗 , 𝑢̃𝑗 ) − 𝜎∞(𝑞𝑥
𝑗 , 𝑢̃𝑗 )

)

≤
−3𝜔(1 + 𝜎)𝐿𝑒 + 𝜔(1 + 𝜎)𝐿𝜇𝑢 + 𝜔(1 + 𝜎)𝐿‖

𝑞𝑥
𝑗 − 𝑥𝑡𝑗 ‖∞ ≤

𝜔(1 + 𝜎)𝐿‖
𝑞𝑥
𝑗 − 𝑥+𝑒

𝑗 + 𝑥+𝑒
𝑗 − 𝑥

𝑗 + 𝑥
𝑗 − 𝑥𝑡𝑗 ‖∞

−3𝜔(1 + 𝜎)𝐿𝑒 + 𝜔(1 + 𝜎)𝐿𝜇𝑢 ≤
−3𝜔(1 + 𝜎)𝐿𝑒 + 𝜔(1 + 𝜎)𝐿𝜇𝑢 + 𝜔(1 + 𝜎)𝐿(2𝑞𝛿 + 3𝜇𝑥 + 3𝑒) ≤
𝜔(1 + 𝜎)𝐿(𝜇𝑢 + 2𝑞𝛿 + 3𝜇𝑥).

(A.25)

Then, taking into account (A.19), (A.25), from (A.17), we have that, for 𝑗 ≥ 1, the following inequality holds:

𝜔
(

∞(𝑥𝑡𝑗 , 𝑢̃𝑖𝑗 + 𝑑(𝑡
∗)) − 𝜎∞(𝑥𝑡𝑗 , 𝑢̃𝑗 + 𝑑(𝑡

∗))
)

≤

𝜔(1+𝜎)𝐿(𝜇𝑢+2𝑞𝛿+3𝜇𝑥)+(1−𝜎)
(𝜈 + 𝜂𝑝̄)(𝑑 + 𝑒 + 𝜇̄ + 𝜇̃ + 𝐿̄ + 𝐿̃ + 𝐿)2

4
.

(A.26)

From (A.13), and taking into account (A.5), (A.26), for 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1], 𝑗 ≥ 1, the following inequality holds

𝑊 (𝑡) ≤ 𝑊 (𝑡𝑗 ) + (𝑡 − 𝑡𝑗 )
𝛽
3
− (𝑡 − 𝑡𝑗 )𝜎𝜔𝛼3(‖𝑥𝑡𝑗 ‖∞)

+ (𝑡 − 𝑡𝑗 )
(𝜈 + 𝜂𝑝̄)(𝑑 + 𝑒 + 𝜇̄ + 𝜇̃ + 𝐿̄ + 𝐿̃ + 𝐿)2

4
.

(A.27)

Then, taking into account of both cases ‖𝑥𝑡𝑗 ‖∞ ≤ 𝑒2 and ‖𝑥𝑡𝑗 ‖∞ > 𝑒2 (see cases (1) and (2) in [0, 𝑡1]), for any 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1], 𝑗 = 0, 1,…,
we obtain:

𝑊 (𝑡) ≤ (𝑊 (𝑡𝑗 ) −
2
3
𝛽(𝑡 − 𝑡𝑗 ))𝐻(‖𝑥𝑡𝑗 ‖∞ − 𝑒2)

+𝜔𝛼2(𝑒1)𝐻0(𝑒2 − ‖𝑥𝑡𝑗 ‖∞).
(A.28)

The symbols 𝐻0 and 𝐻 denote Heaviside functions defined, for 𝑠 ∈ R, as follows: 𝐻0(𝑠) = 1 if 𝑠 ≥ 0, 𝐻0(𝑠) = 0 if 𝑠 < 0; 𝐻(𝑠) = 1 if
> 0, 𝐻(𝑠) = 0 if 𝑠 ≤ 0.

Notice that, by induction reasoning with (A.28), for any integer 𝑗 ≥ 0, the inequality holds 𝑊 (𝑡𝑗 ) ≤ 𝜔𝛼2(𝑅). From here on, by
uitably exploiting (A.28), the same steps used in the proof of Theorem 5.3 in [41] can be properly repeated, in order to prove that
he solution 𝑥(𝑡) of the closed-loop system (2)–(15), exists for all 𝑡 ∈ R+ and, furthermore, satisfies 𝑥𝑡 ∈ 𝑛𝐸 , ∀𝑡 ∈ R+ (Claim 1 holds
rue) and 𝑥𝑡 ∈ 𝑛𝑟 , ∀𝑡 ≥ 𝑇 , with

𝑇 =
3𝜔𝛼2(𝑅)
𝛽𝑎

+ 1. (A.29)

The reader can refer to steps from (5.15) to (5.23) in [41] with 𝑘2 = [ 3𝜔𝛼2(𝑅)𝛽𝑎𝛿 ] + 1. The proof of the theorem is complete.
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