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Abstract

This Ph.D thesis describes the acquired expertise and the work done dur-
ing my PhD program started in 2018 and finished in 2022. The research
objective is to investigate new resource management schemes in novel
flexible architectures for the 5G Radio Access Network.

Flexibility can be achieved in several different ways: by flexible archi-
tectures, by the softwarization of network functions, by enabling flexible
topologies, etc.

In this thesis, we start by reviewing in chapter 1 the landscape of the
newest radio access configurations that have been accepted and deployed
to build the new generation of 5G networks. For each of them, we provide
details about their architectures. Simultaneously, we provide the benefits
stemming from their deployment as radio access network infrastructure.

Then, in chapter 2, we show the benefits of the software programmability
of the network through the network function virtualization and software-
defined networking, which opens the way to the new paradigm of network
slicing. Network slicing allows the creation of several logical networks on
top of a unique physical infrastructure by instantiating a set of virtualized
network functions dedicated to specific services and configurations which
can be deployed in strategic nodes into the physical network. In par-
ticular, the work developed for this thesis focuses on flexible numerology
and bandwidth part management. The flexible approach to management
is based on virtualization and software-defined networking paradigms and
has been tested in a 5G Radio Access Network exploiting millimetre-waves
transmission. This study resulted in a developed allocation algorithm for
bandwidth parts which is SDN-assisted.

Finally, we analysed the benefits of assuming a flexible network topol-
ogy through the new cell-free paradigm, which gives major performance
improvements when coupled with the massive MIMO technology enabled
by high-frequency transmissions, like e.g. the millimeter-waves. Hence,



the chapter 3 includes all the maths fundamentals which we developed
to demonstrate the validity of the Cell-Free Massive MiMo technique in
a 5G context, where innovative services with high requirements in terms
of QoS, bandwidth and latency, should be supported. We focus on the
ultra reliable low latency communication and the enhanced Mo-
bile BroadBand services and show their performance in a scenario with
flexible resource allocation, where the orthogonality of assigned resources
is relaxed between the two coexisting services.

The last chapter, i.e., chapter 4, presents, as future development work,
the use of artificial intelligence, and in particular the reinforcement learn-
ing, to optimize the resource allocation of transmission systems. We pro-
vided ideas for modelling the considered radio access networks that are
presented in this closing chapter with all its theoretical fundamentals.
The reinforcement learning-based approaches have been widely used to
manage issues such as energy and spectrum allocation efficiency.

Finally, we draw a conclusion from this broad study on flexibility at the
level of resource management in 5G radio access networks.
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Chapter 1

Flexible 5G Radio Access network
architecture

One of the main issues limiting the evolution process toward a new 5G radio access
network is the monolithic architecture of the legacy system. Due to the low flexibility
degree in the absence of network programmability, the time to in-field deployment
of the network innovations or upgrades is too large and often it is not acceptable.
To overcome this limitation and introduce the required flexibility for the 5G radio
access network, network and software engineers decided to extend the application of
virtualised-based solutions, already applied in the core network, even in the radio
access segment. Due to this consideration, this chapter has been arranged as follows:
in the sec 1.1: Next Generation of 5G based Radio Access Networks, we
describe all the flexible radio access network architectures that have been developed
and deployed eg. Cloud, heterogeneous, virtualized and fog radio access network,
in the sec 1.2: Network Function Virtualization (NFV) and Software De-
fined Network (SDN) paradigms, we describe the enabling software mechanisms
allowed the development of the aforementioned radio access configuration, in the sec
1.3: Network Slicing on Radio Access Network we introduce the new con-
cept of network slicing limited to the radio access segment that can be considered
the unexpected breakthrough technology stemming from the combination of flexible
radio architecture, network function virtualization and software-defined networking
approach. In sec sec 1.4: New Promising massive MIMO system: The Cell-
free massive MIMO , we introduce the newest radio configuration that has been
named Cell-free massive MIMO that is the most promising configuration asset offering
huge performance level fetching the expected 5G service radio requirements.
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1.1 Next Generation of 5G-based Radio Access
Networks

Along with the history of mobile network evolution, every architectural innovation is
driven by new requirements of mobile communication services that cannot be sat-
isfied by legacy systems, which have inherited shortages in their outdated archi-
tecture. This consideration represents the know situation of the legacy 4G Net-
work (4Gn). This situation pushed the research community to start the evolution
process towards the Fifth Generation of Mobile Communication System (5G MCS).
The 5G MCS or simply 5G Network (5Gn), aims to deliver a ubiquitous mobile ser-
vice with enhanced Quality of Service (QoS). This enhanced QoS comes together
with the expected and rapid increments of user density, traffic volume, and data
rate. This enables new use cases for different vertical industrial applications such
as automobiles, public transportation, medical care, energy, public safety, agricul-
ture, entertainment, manufacturing, and so on. This new converting process towards
5Gn has to be supported by a novel technological solution aiming to convert the
legacy network infrastructure into something which can sustain those new use cases.
The first attractive solution is to redesign the network architecture starting from
the rebuilding of the radio access network Radio Access Network (RAN). Different
RAN architectures have been designed to fulfil the requirements of 5G-related new
uses-cases. In particular, during the evolution process towards 5G RAN, among the
presented and studied architectures it is possible to identify the milestones which are
Cloud-RAN (CRAN), Heterogeneous Cloud-RAN (H-CRAN), Virtualized
Cloud-RAN (V-CRAN), and Fog Cloud-RAN (F-CRAN). Each RAN archi-
tecture has different features ranging from flexibility, reduced energy consumption,
reduced operations expenditure, and intelligent and optimized resource allocation
strategy system giving, in turn, enhanced spectrum efficiency and optimal overall
network performance.

1.1.1 CRAN

The CRAN has been proposed by IBM under the name Wireless Network Cloud
(WNC) as in [1]. Later, it was described with further details in the white paper [2].
According to it and represented by the fig.1.1, the main concept behind CRAN is
the separation of all BBUs from their corresponding RRHs and pooling them into a
centralized, cloudified, shared and virtualized BBU pool. Every RRH is connected
through a fronthaul link to its corresponding BBU pool. Every BBU pool can support
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up to tens of RRHs, and be connected through a backhaul link with the core network
as in [3]. This kind of radio access network introduced the expected benefits it has

Figure 1.1: CRan from [4]

been designed for. In particular, CRAN, with the centralization of base-band pro-
cessing, decreased the overall Capital Expenditures (CAPEX) and Operational Ex-
penditures (OPEX) of mobile networks, moreover with its virtualization, the CRAN
reduced energy consumption, improved spectral efficiency, and network throughput
and facilitated load balancing. In this type of architecture, the functionalities of the
radio segments can be divided between Base Band Unit (BBU) and Radio Remote
Head (RRH). This give us in turn 2 types of CRAN which are Fully centralized and
Partially centralized. In the first one the functionalities of Layer-1, Layer-2, Layer-
3 are all located in BBU. In the latter one, the functionalities are split between
BBU and RRH. Specifically, Layer-1’s functionalities are located at RRH, Layer-2
and Layer-3’s functionalities remain in the BBU. This configuration introduces low
transmission bandwidth because the base-band processing has been moved to the
RRH while introducing fewer flexibility challenges when the need to upgrade the net-
work comes, as described in [4]. This kind of architecture has been extensively studied
from different points of view such as energy consumption, security, performance spec-
trum sharing, CAPEX and OPEX and mobility management. As shown in [5], [6], [7],
the centralization of base-band-processing has reduced the number of BBU and the
usage of cooperative radio technologies introduced lower interference between RRHs.
These both features give us in turn less energy consumption. From the security point
of view in [8] [9] [10] threats together with possible solutions have been identified
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and proposed. From the CAPEX and OPEX points of view, in [11] [12] [13] [14],
the authors showed that proper deployment strategies for BBU and RRH can reduce
the CAPEX and OPEX expenditures and contemporary fulfil the QoS requirements.
About performance, the author in [15] [16] [17] shown that CRAN architecture, due
to its high flexibility, can introduce great benefits both Dl (increments ranging in
40%-70% ) and Ul transmission (the increment is by up 2-3 folds). The evolution
towards 5Gn pushed the spectrum to its theoretical limit and on the other side, the
deployment of different RAN technologies makes the network dense. This forced the
researcher to design new spectrum allocation mechanisms to increase spectrum effi-
ciency. One of the possible ways to increase such efficiency is the deployment of the
CRAN as shown in [18] [2]. Here the authors proposed new schemes for spectrum
allocation leveraging this architecture to improve spectrum efficiency. Related to the
mobility management, CRAN introduced benefits as shown in [19] [20]. In particu-
lar in [19] the authors, thanks to CRAN architecture, show how their algorithm can
introduce a better QoS, while in [20] CRAN plays a significant role in decreasing of
handover delay, moreover, it eliminates the risk of end-user losing its connection.

1.1.2 H-CRAN

Hybrid solutions in the RAN have been designed to limit the side effect of the possibly
disruptive converting process towards 5Gn. This means that considering the obtained
performance of CRAN, the next step in the evolution process was integrating that
architecture with the legacy systems. This led to what we call a hybrid solution and
in literature is defined as H-CRAN. H-CRAN has been designed to decouple both
control and user planes. This enhances the functionalities and performance of CRAN
architecture, in which control plane functions are only implemented in the macro
BSs. This hybrid solution provides, in turn, both the benefits coming from CRAN
architecture and legacy radio access network that is improved spectral efficiency and
higher data rates. As depicted in fig.1.2 and presented even in [21] [22], H-CRAN
consists of two cellular layouts, the macro BSs (High Power Nodes (HPNs)) cellular
layout and the small BSs or RRHs cellular layout. The (HPNs) are mainly deployed
to enhance network coverage and control network signalling. Then, we have also
the small cells and RRHs which are aimed to guarantee improved network capacity
and fulfil the diverse requirements of QoS of various end-users. Also, in this RAN
architecture we can identify three main features which are:
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Figure 1.2: H-CRAN from [4]

1. Cloud and Real-Time virtualized BBU pool: The scattered BBUs are
integrated into one single BBU pool which is connected also with (HPN)s to
coordinate RRH and (HPN)s communications.

2. Improved transport network where all RRHs are connected to its corre-
sponding BBUs located in the BBU pool. Both RRHs and BBUs are intercon-
nected via low latency and high bandwidth fronthaul links such as optical fibre.
BBUs are connected with the macro base station and high power nodes via S1
and X2 which are respectively the data and control interfaces.

3. Heterogeneous composition: In this kind of RAN macro base stations, small
base stations, and RRHs can coexist. The macro base stations control the
network, manage mobility, and improve performance; whereas small cells and
RRHs increase system capacity and decrease transmission power. The radio
functionalities are implemented in the RRHs whereas the upper layer ones are
implemented in the BBU pool. The HPNs instead are equipped with all the
network functionalities.

H-CRAN has been extensively studied by the researcher. As shown in [21] [23] [24]
[25], H-CRAN has been evaluated from the energy and performance point of view. In
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particular, in these works, the authors focused on both Dl and Ul data rates, and ex-
plored mechanisms to enhance the throughput and fulfil the QoS requirements. Also,
they focused on the power allocation strategies to minimize the energy consumption
of the H-CRAN. As in [26] , resource allocation is also a key aspect to consider.
They analysed the state of the art and derived challenges to allow the evolution of
such radio access networks. The authors, in [27] focused on the resource allocation
strategies that have been designed to assign resource blocks to users to fulfil specific
service-related requirements. In particular, they focused on three levels namely the
spectrum, the infrastructure and the network. They provided resource allocation
strategies introducing improved management of the radio resources. Additional ex-
ample of improved management of radio resources introducing benefits in terms of
system efficiency can be find in [28] and [29]. About CAPEX and OPEX expendi-
tures, it is worth mentioning the work [11], where the authors proposed a theoretical
framework to evaluate the CAPEX and OPEX of H-CRAN deployment. They have
shown that such cloud ran based-deployment allows the telco operator to save up to
15% of the deployment cost of legacy 4Gn.

1.1.3 V-CRAN

Along with the evolution of radio access networks, another evolution process was
occurring in the core network segment. The key enabling factors for the process in the
core network were mainly Network Function Virtualization (NFV) and the Software
Defined Network (SDN) approach. After extensive studies focusing on the application
of these two factors on the core network, SDN and NFV have been extended even on
the RAN. Numerous challenges came along with this extension because of wireless
network features. However, the application of SDN and NFV on the RAN allowed
the design of a new type of radio access network that follows the trend of the already
presented RAN and it is known as V-CRAN. An example of V-CRAN architecture
is presented in the fig.1.3. As described in [30] V-CRAN is composed by

• Digital Unit Cloud (DU Cloud) hosting all the commercial servers provid-
ing baseband processing and also the layer 2 and layer 3 related functions. All
DUs are interconnected via layer 2 switch also used for signalling among them.

• Time-Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON)
is composed of a single Optical Line Terminal (OLT) and multiple Optical
Network Unit (ONU)s. The OLT is connected with the DU cloud providing
each DU with an optical transceiver and a Line Card (LC). The LC conducts
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Figure 1.3: V-CRAN from [4]

optical-electrical conversion and delivers the traffic. All LCs of every single
OLT are connected with a Wavelength-Division Multiplexed Multiplexer/De-
Multiplexer (WDM-MUX) to separate traffic based on wavelength. An ONU is
located remotely from DU Cloud and at the end of every optical channel aiming
to enlarge the coverage of a TWDM-PON. It is co-located with an RU and is
equipped with a re-configurable transceiver.

• Fronthaul: that is higher bandwidth and lower latency network used to ex-
change data and signalling between Radio Units (RUs) and DUs. To fulfil all
these requirements, the utilization of optical channels over a single fibre is con-
sidered one of the viable candidates for V-CRAN’s fronthaul. The fronthaul
shares high-capacity optical channels among V-BSs using TWDM-PON tech-
nology.

• Virtualized Base Station (V-BS) it is a virtualized base station. The virtu-
alization can be done at the hardware level, reducing the OPEX and increasing
energy efficiency or flow level increasing the efficiency of resource multiplexing
as described in [31]. The V-BS shares radio equipment at the hardware level
and runs multiple protocol stacks of a BS in the form of software

• Virtualized Passive Optical Network (VPON) is defined as a set of ONUs
sharing one or more wavelengths. The VPON can be also seen as a virtualized
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channel that is used to connect users with the DU. Every DU in the DU Cloud
is dedicated to a single VPON using LC. It specifically means that multiple
RUs of a VPON are dynamically grouped and controlled by a single DU located
in the DU Cloud. According to the operational condition of the network, the
VPON can be dedicated or not.

Additional details related to this radio access configuration can be found in the doc-
ument [32]. Even the V-CRAN has been extensively studied by researchers from a
different perspective. An example of V-CRAN can be found in [33] where the au-
thors present a virtualization framework of Base Station in the LTE network called
‘‘OpeNB’’. The proposed framework utilizes SDN, OpenFlow, and virtualization tech-
nology in the RAN and more specifically in the BS. Regarding performance, it is worth
mentioning the following works. In [34], the authors propose a framework assigning
limited rule space to maximize the number of social IoT groups contemporary satis-
fying latency in V-CRAN context. In [35], the authors analyse the performance of
V-CRAN in terms of throughput, system stability and fairness considering two re-
source allocation strategies: Dominant Resource Fairness and Proportional Fairness.
In [36], the authors design the macro-level and the micro-level metrics of virtualiza-
tion of Base station (BS) to evaluate the performance of the virtualized base station.
Even in V-CRAN, resource allocation plays a key role and it has been the subject of
different studies. In [37], the authors propose an algorithm of resource negotiation for
network virtualization in the context of a heterogeneous LTE-A network to achieve
on-demand delivery of radio resources. In [38] instead, the authors investigate the
resource virtualization, coordination, and its dynamical allocation by a hypervisor
among different virtual operators. Also in [39], a framework for resource allocation
is provided by the authors. Regarding energy consumption, in [39]the authors shows
also that the KORA framework guarantees optimal performances to the negligible
energy consumption cost of almost 7%. In [40], The authors claim that the proposed
scheme reduces average power consumption by 65%, 6% and 3% less than for the
Distributed Baseline, the First Fit Decreasing, the Heuristic Simulating Annealing
algorithms respectively. In [41] and [40], CAPEX and OPEX expenditures has been
analyzed. In particular, the cost analysis has been integrated into their used models
optimizing either the energy efficiency or the system performance.
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1.1.4 F-CRAN

It is expected that in the next years the volume of traffic and the device connectivity
density in the 5G network will reach a magnitude that never has been seen. It is
expected to have scenarios with billions of connected devices such as cars, sensors
and so forth. This will have a huge impact on the performance of the radio access
segments. To sustain such a huge increment, the cloud-based ran technology solution
appears to be the most attractive. However, the previous solutions have limitations
such as large end-to-end delays, traffic congestion, processing of huge amounts of
data and expensive cost of deployment. Therefore, a new cloud-based architecture
overcoming these limitations has been proposed by CISCO in [42] with the name of
”FOG computing”. The main idea is the extension of cloud computing near the user
premises when you need it. As described also in [43], FOG computing allocates a large
amount of processing, storage, communication, control, configuration, measurement,
and management functions at the edge of the mobile network. The extension of
this idea in the radio access segment led to the definition of a new cloud-based ran
architecture also known as F-CRAN. As you can see in the fig.1.4, this new type
of architecture is composed by terminal layer,network access layer,cloud computing
layer.

• As shown in fig.1.4, the Fog Access Points (F-APs) in the network access layer
and Fog User Equipments (F-UEs) in the terminal layer are considered as the
mobile fog computing layer. In the terminal layer, F-UEs do also access the
HPN to receive information related to system signalling. Moreover, the neigh-
bouring F-UEs can communicate with each other in the terminal layer using
D2D communication mode where an additional F-UE acts as a relay (F-UE5
and F-UE6 which are using F-UE7 as the relay).

• The network access layer is composed of HPNs and F-APs. The HPNs are
deployed to provide system information related to signalling to all F-UEs in
the area. However, the F-APs process and forward the data received from
the F-UEs. F-APs and HPNs are interfaced with the BBU pool in the cloud
computing layer through fronthaul and backhaul links, respectively.

• In the cloud computing layer, the BBU pool is compatible with that of H-CRAN.

F-CRAN has been studied from various dimensions such as performance, energy con-
sumption, and resource allocation. In particular, the authors in [44] considers the
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Figure 1.4: F-CRAN from [4]

F-CRAN with hierarchical content caching. Each F-AP is equipped with an indi-
vidual cache and a part of requests can be responded to locally. The stochastic
geometry is also used for deriving the average ergodic rate for the content transmis-
sion and queuing theory has been utilized to retrieve the waiting delay and latency
ratio. In [45], the authors focused on the maximization of energy efficiency taking
into account delay constraints and resource reuse constraints. In [46] instead, the
authors focused on the minimization of the Dl latency in F-CRAN. Moreover, the
authors in [47] study a latency-centric understanding of the degrees of freedom in high
signal-to-noise ratio regime in the F-CRAN with limited available resources such as
fronthaul capacity, cache storage sizes, power and bandwidth of the wireless channel.
Also, the previous works, [48] [45] [47] and [49] can be considered as an example of
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energy efficiency studies. About resource allocation, it is worth mentioning the follow-
ing studies, [50] [51] [52] , where the authors investigate different resource allocation
strategies. In particular, they focused on how to provide a good trade-off between
communicating and computing resources in a time domain in F-CRAN scenario.

1.2 Network Function Virtualization (NFV) and
Software Defined Network (SDN) paradigms

In this section, we describe the key enabling software technologies that are making
possible the evolution process towards the 5G RAN networks. These software tech-
nologies are SDN, NFV, and Network Slicing (NS). These technologies have
been widely used to design the RAN that we presented in section 1.1. The SDN
approach represents a new way of thinking about the networks. As depicted by the
fig 1.5 the legacy systems, such as 4Gn, are vertically integrated. This means that

Figure 1.5: SDN based networks vs Traditional networks from [53]

the control plane and data plane are paired together. This integrating approach to
traditional networks makes it difficult to manage and hard to configure them when
the need for an upgrade comes up. Given this main limitation, an attractive solu-
tion appeared to be a separation of the control plane from the user plane. The SDN
architecture is depicted in fig. 1.6. It consists of three layers: infrastructure layer,
control layer and application layer. The infrastructure layer is the bottom one and
it is composed of all network devices and hardware. As shown in the architecture,
the infrastructure layer interacts with control layer via control plane interfaces, also
known as southbound interfaces. The control layer can be composed of multiple SDN
controllers. All the network logic is centralized in this layer and possibly distributed
among these multiple controllers. Also, these can communicate by specific interfaces
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Figure 1.6: SDN architecture

that in literature are known as east and ovest bounds. The application layer then is
the upper one, where service providers, network operators and application developers
operate to fulfil their business demands such as bandwidth, traffic, access control,
QoS, energy usage and so forth. The 5G mobile network infrastructure is based on
SDN. This will help operators to provide efficient communication between applica-
tions and services in the cloud and end-users. The deployment of SDN in 5G mobile
network increases efficiency in the allocation of radio resources through centraliza-
tion and seamless mobility over diverse radio access technologies. In literature, there
are many studies covering the application of SDN onto the 5GRAN. For example,
the [54] can be considered the early application of software-defined networking on
the radio access segment. Here, the authors model an architecture where the SDN
controller adjusts bandwidth for each radio Access Point Access Points (AP) and
BBU dynamically. The deployed SDN controller has the responsibility of manage-
ment and selection of routes for all RAN and core network connections. In [55],
the author present a radio architecture leveraging the SDN approach called ”Soft-
Air”. In [56], instead, the authors propose a multi-tiered cloud controller scheme and
event processing mechanism for the Software-Defined Wireless Network (SDWN) ar-
chitecture of 5G mobile communication. Also in the paper [57], the authors present
the architecture of an SDN-supported system, OpenFlow standard, and alternatives
for the deployment of SDN-based protocols and services. The NFV architectural
framework is illustrated in fig. 1.7, which is proposed by the ETSI [58]. The ETSI
NFV framework consists of three parts: the Network Functions Virtualization Infras-
tructure (NFVI), Virtualized Network Function (VNF), and NFV Management and
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Figure 1.7: NFV architecture from [58]

Orchestration (NFV MO). The NFVI corresponds to the data plane providing virtual
resources to the VNFs to be executed. The VNF is the software implementation of a
network function and can run over the NFVI. The VNF corresponds to the applica-
tion plane and consists of connected VNFs, that, in this context, can be considered
applications as well. The NFV MO part of the architecture corresponds to the control
plane. It is responsible for the orchestration and life-cycle management of hardware
and software network resources, which are used to support the virtualization-based
process. Moreover, the management and the orchestration entity have the respon-
sibility to build connection among different VNFs and interacts with the OSS/BSS
landscape. This component allows the ETSI framework to interact with existing net-
work management. The NFV system is driven by a set of metadata consisting of the
requirements for service, VNFs, and infrastructure allowing the NFV MO to properly
deliver the required service. Considering the 5G RAN architecture, most of the user
plane and control plane functions can be virtualized. The virtualization of functions
in 5G RAN introduces benefits in several network aspects such as energy consump-
tion and efficiency in resource allocation. According to their architectures, SDN and
NFV can be integrated among themselves. This is because they have highly com-
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plementary features, as shown in [59], [60], [61]. Also in [62] the author, investigate
the deployment of NFV in software-defined NFV architecture. The authors present
software-defined NFV architecture and describe also the relationship between SDN
and NFV. In [63], the authors survey recent papers related to the deployment of NFV
along with SDN to highlight the advantages and disadvantages of both approaches.

1.3 Network Slicing on Radio Access Network
The adoption of SDN and NFV created the landscape for a breakthrough technology
known as Network Slicing NS. The main idea of NS is depicted in the fig.1.8. As you
can see, the NS allows the telco-operator to partition the network in a structured,
elastic, scalable, programmable and automated manner. Those network partitions
have a different level of isolation. Also, they have their specific characteristics and
will be considered as a single logical entity of the same physical shared network. Each
use-case/business scenario can exploit this network entity according to the needs. Be-

Figure 1.8: NSidea from [4]

fore going deep into the details, it is worth noting that NS has implied a re-engineering
of both the core network and radio access network. The core network adopted the
software architecture paradigm known as Service Oriented Architecture (SoA). SoA
allows telco-operator to avoid disruptive changes in the legacy systems. This means
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Figure 1.9: From 4G to 5G core network

a cheaper converting process from 4Gn towards 5Gn. In fig.1.9 you can see the no-
disruptive converting process that from 4Gn ended up in 5Gn. As you can see the first
step was the separation of the control plane and user plane functionalities according to
the SDN approach. The second step was the re-arrangement of those obtained func-
tionalities from the previous step in services according to the SoA paradigm. After
that, following the NFV paradigm, those services can be considered a pool of network
functions that can be instantiated and chained together to provide the needed service.
About the RAN instead, the converting process produced a new architecture that is
presented in 1.10. Such architecture corresponds to the straightforward application
of the SDN approach on legacy radio components. Some of them have been removed
and others have been specifically designed. Also, the migration from the 4G radio
access network has been characterised by the following prototyping new generation
of radio access network (NG-RAN) architectures cornerstones that are:

• non-standalone (NSA) NG-RAN

• stand alone (SA) NG-RAN

(NSA) NG-RAN can be considered the intermediate architecture integrating the New
radio configuration and the legacy network system of LTE. Instead, the (SA) NG-RAN
architecture prototype consists in a set of connected 5G base station (gNB)s, with a
5G core network through a set of logical interfaces. Also, these gNBs can be inter-
connected through the Xn interface to improve mobility and management functions.

19



The gNB’s functionalities are sometimes distributed. In that case, the resulting ar-
chitecture is formed by a central unit 5G base station controlling unit (gNB-CU)
controlling one or more distributed units 5G base station distributed unit (gNB-DU)
through the F1 interface. A distributed unit is connected to a remote radio head
RRH, i.e., the actual radio transceiver. Moreover, according to the SDN approach
that introduced the separation of functionalities, the central unit can be split into
two parts, one for control plane functions gNB-CU-CP and one for user plane func-
tions gNB-CU-UP. Interested readers can find further details about this architecture
in [64]. However, going back to the fig.1.8 showing the system architecture of network
slicing, also presented in [65], is possible to observe that technically it is composed by
Core Network (CN) slices, RAN slices and radio slices. Each slice in CN is built with
a composition of chained Network Functions (NF) together. The network functions
can be shared among multiple slices or they are tailored to a specific slice. Generally,
there are two slices at least plus pairing functions connecting all of them. The first
pairing function is between CN slices and RAN slices, and the second pairing function
is between RAN slices and radio slices. The paring function routes communication be-
tween the radio slice and its appropriate CN slice. The pairing function between RAN
and CN slices can be static or semi-dynamic configurations to achieve the required
network function and communication. Network slicing has been widely studied. For
example, in [66] the authors studied the deployment of the network slice from the
profit point of view. In this work, the main purpose is the optimization of profit
modelling of traditional telecommunication networks by exploiting the knowledge of
the network slice. Moreover in [67] the authors designed an algorithm that allocates
requests of network slices, which maximizes the total revenue of the network. A com-
prehensive work accounting for different aspects related to the network slice is [68].
In particular, they review the state of the art restricted to the network slice with
a particular interest in resource allocation, virtualization technologies, orchestration
process and isolation function. Also, they provide use cases that can be handled with
NS and then they list the existing challenges related to NS deployment.

1.4 New Promising Massive MiMo System: The
Cell-Free Massive Mimo

In this section, we introduce the recent and appealing massive MiMo system also
known as Cell-free massive mimo (Cf-maMiMo). It is expected that this technological
breakthrough copes with these new demands of QoS related to the deployed services
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Figure 1.10: Overall architecture NG-RAN

in 5Gns. In Cf-maMiMo, a large number of distributed access points are connected
to a central processing unit and serve a smaller number of users over the same time-
frequency resources. This system can be flexibly integrated with various emerging
techniques and technologies for 5G to benefit from improved performance from dif-
ferent perspectives. Despite the substantial reported theoretical gains of Cf-maMiMo
systems, the full picture of practical scalable deployment of the system is not clear
yet. As described in [69], the conventional embodiment of massive MiMo systems
is the co-located ones in which macro BSs are equipped with a massive number of
antennas communicating simultaneously with a smaller number of users at the same
time-frequency resource through beamforming. According to the works [70] [71] [72],
the large system dimensions lead to favourable propagation where the channels of
different users are asymptotically orthogonal. Hence, simple linear pre-coding and
detection techniques can be employed at (BS)s for downlink (DL) data transmission
and Ul data detection, respectively. Also, It has been shown that the deployment of
co-located massive MiMo systems can significantly deliver high data rates as well as
enhanced link reliability, coverage, and/or energy efficiency. Nevertheless, the sys-
tem suffers from performance degradation for cell-edge users due to the lower channel
gain from the serving cell as well as the initiated interference from neighbouring cells.
The side effect of co-located massive MiMo deployment systems deployment is the
distributed massive MiMo. As presented also in [18], this MiMo system has a large
number of distributed single or multiple-antennas-equipped APs that are connected
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with a central process unit by high-speed fibre or wireless backhaul/fronthaul links.
This kind of MiMo system has been widely studied, as in [73] [74], and results show
that it outperforms co-located system in terms of better data rate values, also it
provides a good level of QoS even for those users that are located at the cell-edge
thanks to the high provided diversity gain. This is because each user at the edge
receives large-scale components from different APs. Recently, an alternative to the
distributed massive MiMo system has been proposed. It is known in the research and
the industrial environment as Cf-maMiMo. As you can see from the fig.1.11 and also

Figure 1.11: Overall architecture of Cf-maMiMo from [75]

presented in the seminal work [76] of Marzetta et. all, in the Cf-maMiMo system
all APs are connected to a CPU. It allows them to serve all users over the same
time-frequency resources through applying spatial multiplexing techniques e.g [77].
The performance of Cf-maMiMo system is compared with that of small-cell systems
in terms of the achievable Dl and Ul data rates [78]. As in [79] [80] the Cf-maMiMo
outperforms its competitor and can provide a uniformly good service for all users
within the coverage area with a tailored power allocation mechanism. Due to its
performance, the Cf-maMiMo operation is strongly recommended for beyond-5G net-
works due to its ability to assure seamless mobility support without overhead due
to handovers. This in turn will provide improved QoS fulfilling the 5G expected
requirements. As presented in [81], the Cf-maMiMo combines the best aspects of
ultra-dense cellular networks with the cellular massive MiMo technology to overcome
their respective weaknesses. In particular, due to the main properties which are many
geographically distributed APs whose coverage area is not divided into disjoint cells
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and each UE is served by all the surrounding APs, the massive MiMo processing
resolves the interference situation that limits conventional ultra-dense networks and
leads to a network free from cells. Moreover, the large number of distributed AP
antennas allows for mitigating the large SNR variations that usually limit the effi-
ciency of conventional cellular massive MiMo. As described in the [76] the original
motivation behind Cf-maMiMo was to design a new network infrastructure capable
of providing uniform area throughput. A Cf-maMiMo system can also be viewed as a
user-centric network because each UE will only be influenced by the signals from the
closest surrounding APs. Such organization can exploit the flexibility of the presented
RAN architecture in the section 1.1, such CRAN, H-CRAN and so forth.

1.5 Summary
In this chapter, we introduced the state of the art of the 5G-based radio access
networks. In particular, we emphasised their architectures and how they evolved from
the early version, represented by the Cloudyfied radio access network, also known as
C-RAN, towards the more complex, represented by the FOG-CRAN. A common trend
in this architecture is represented by the need for flexibility. Then, we shifted our
focus to the new networking paradigms, SDN and NFV, which are considered the main
enabling software mechanisms supporting the deployment of those architectures. The
extreme integration of both provides what today is known as Network Slicing. This
represents the main technological breakthrough for the introduction of radio access
network flexibility from the software point of view. Last, but not least, we introduced
the concept of the Cell-free massive mimo that recently has been recognised as one
of the radio access network configurations providing topology flexibility.
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Chapter 2

Bandwidth Part Management

During the evolution process toward a 5G radio access network, the main issues were
the lack of flexibility and programmability. A most promising solution to overcome the
problem of the lack of programmability is the adoption of software-defined networking
approaches in radio access networks. This means that, in this network segment, it is
expected the deployment of an SDN-controller leveraging the new radio technologies
eg. Flexible numerology, and Bandwidth part. In other terms, it is expected that
the new SDN controllers are equipped with core functionalities able to sustain the
Bandwidth Part Management activity including the underlying concept of flexible
numerology and bandwidth part. Due to this consideration, this chapter is arranged
as follows: In sec: 2.1 Flexible numerology, we introduce the concept of Flexible
numerolgy (Fn) which represents the essential fundamental for the definition of
bandwidth part. This last one is explained, instead, in the sec: 2.2 Definition of
the Bandwidth Part. The sec: 2.3 The Bandwidth part management, we
explain why dynamic bandwidth part management plays a vital role in the evolution
process toward 5G network. In the sec: 2.4Dynamic selection of numerology
and bandwidth part for effective ORAN slicing, we introduce the realised work
on bandwidth part management showing that a dynamic and SDN-assisted version
of it performs better than the static one.

2.1 Flexible Numerology
The Long Term Evolution (LTE) waveform has a fixed structure that is optimized
for applications requiring a high data rate. However, there exist others applications
that cannot be supported due to the inflexibility of the waveform. The technical
specification [82] allows us to understand the limited flexibility of the LTE. In par-

25



ticular, the extended cyclic prefix configuration which is utilized by macro-cell BSs
at all times to keep the system operating at larger delay spreads, introduces reduced
spectral efficiency. The The 5G eco-system has been designed for providing a wide
variety of services that have to be contemporarily deployed. As described in [83],
this can be done by introducing flexibility in waveform parameters. This flexibility
gives us, in turn, the chance to make Enhanced Mobile Broadband (Embb) experi-
ence possible everywhere, including highly mobile User Equipment (UE), connected to
macro-cells. Also, it enables reduced latency values and improved reliability transmis-
sion, also known as ultra-reliable and low latency communications Ultra reliable low
latency communication (Urllc) and massive machine type communicationsmachine
to Machine Type Communication (mMTC) for suitable scenarios e.g smart cities or
high-density connection-based scenarios. To achieve this flexibility feature, a new de-
gree of freedom in waveform designing progress has been introduced and it is known
as flexible numerology. This one takes over the fixed numerology characterizing the
legacy LTE system. As described in [82], NR allows simultaneous multi-numerology
utilization. Flexible numerology has been widely studied. For example, the authors
in [84] focus on the design of multi-numerology systems. Specifically, the authors de-
vise a framework that provides simultaneously numerous services in a unified frame
radio and their results show the achievements of better frequency spread immunity
and spectral efficiency by exploiting the doubly dispersive channel characteristics of
the users. Multi-numerology systems with similar performance and results have been
also studied in [85], [86], [87]. Due to the specification [82], it holds that higher nu-
merology indexes correspond to larger Sub Carrier Spacing, ranging from 15 and 480
kHz by following the equation:

∆f = 15× 2µ KHz (2.1)

The numerology µ depends on different factors (i.e., service requirements, deployment
type, carrier frequency, etc.). It allows the definition of different sub-carrier spaces
mitigating inter-carrier interference and phase noise at mm-Wave frequencies. As
sub-carrier space widens, the TTI assumes smaller values ranging from 1 ms to 31.25
µs. Other parameters also change from numerology to numerology. In fig. 2.1
are summarised all the numerologies which have been standardised by 3GPP and it
shows the different sub-carrier spacing that we can use to design the proper waveform
according to the needs. Moreover, based on different numerology we have different
time slot lengths, fig. 2.2, and per slot number of symbols. Also, according to
numerology and type of cycle prefix (normal or extended), we can have a different
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Figure 2.1: Flexible numerology from [88]

arrangement of the radio frame. Despite the multiple chosen numerology, the length
of the radio frame and the length of the sub-frame remain the same, that is 10 and
1 ms respectively. Fig. 2.3 summarises all the possible radio frame configurations.
Here, we can see how the numerology affects the duration of time slots in the time
sub-frame and also how it affects the dimensions of the resource grid. Moreover is
possible to observe how the physical resource block is arranged.

2.2 Definition of the Bandwidth Part
The flexible numerology enabled a breakthrough radio technology that is called Bandwidth
Part (BWP). As described in [90] one of the reasons for introducing BWP is to sustain
the UE bandwidth adaptation to reduce device power consumption. The idea behind
this is that UE may use a wide bandwidth when a large amount of data is scheduled
while being active on a narrow bandwidth for the remaining time. Moreover, another
reason behind their introduction is to support the heterogeneous UE devices’ capa-
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Figure 2.2: time slot duration following the chosen numerology from [88]

Figure 2.3: Frame configurations and resource grid from [89]
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bilities. As described in [91], usually a base station may support a very wide channel
bandwidth which may not be supported by some UEs. In this context, the BWP pro-
vides a mechanism to flexibly assign radio resources such that the signals for a UE are
confined in a portion of BS channel bandwidth that the UE can support. At a high
level, the BWP is a set of contiguous resource blocks which are configured within a
channel bandwidth. According to the fig.2.4 New radio defines frequency ranges that

Figure 2.4: Introduction to BWP from [92]

are FR1 and FR2 ranging from 410 – 7125 MHz and 24.25 – 52.6 GHz respectively. In
each FR, 3GPP further defines operating bands which are frequency bands associated
with a certain set of radio frequency requirements. Within operating bands, operators
may have different amounts of spectrum allowing them to define several frequency
bands according to the required services. Their range goes from several MHz to a few
GHz. Moreover, NR supports a range of channel bandwidths from 5 – 400 MHz which
are also referred to as the bandwidth of an NR carrier. These NR carriers are used
to accommodate diverse spectrum scenarios while limiting implementation complex-
ity. The number of resource blocks Resource Block (RB)s that may be configured in
channel bandwidth, shall meet the specified minimum guard-band requirements. An
RB consists of 12 consecutive subcarriers in the frequency domain. Starting from a
common entry point known as “Point A”, specifically a BWP consists of a set of
contiguous RBs with given numerology on a given carrier that belongs to
a common set of RBs. For each serving cell of a UE, the network configures at
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least one downlink (DL) BWP. It can be configured four BWP at most. The only
constraint is that at most one Dl BWP can be active at a given time. Similarly, It
can be done for the Ul configuration. Specific BWPs can be activated in a given time:

• Initial up/dl link BWP: these BWPs are used for initial access before a
radio resource control connection is established. They are indexed with zero
and are also referred to as BWPs 0. During the initial access, the UE performs
a cell search based on a synchronisation signal block that is composed of a pri-
mary synchronisation signal, secondary synchronisation signal, and a physical
broadcast channel. Also, the UE needs to read the System Information Block 1
carrying important information related to the initial ul/dl BWP configuration.
Block 1 is transmitted on the PDSCH, which is scheduled by Dling control in-
formation on the PDCCH using the control resource set with index zero. Before
the UE reads block 1, the UE’s initial dL-BWP has the same frequency range
and numerology as those of the control resource set. After its reading, the UE
follows the initial ul/dl configuration contained in it and uses them to carry out
the random-access procedure to request the setup of a radio resource control
connection. the procedure describing the initial access of the UE in the system
is provided in [93] and [94].

• default BWP For a serving cell, the network may configure the UE with a
BWP inactivity timer indicating, for example, that the UE has no scheduled
transmission and reception for a while on the currently active BWP. This offers
the chance for the UE to switch its active BWP to the default one for power-
saving reasons. This BWP can be configured, otherwise uses the same that it
has already configured as initial dl-BWP.

• first active BWP The first active DL and UL BWPs are the active DL and
UL BWPs upon RRC (re-)configuration for a Special Cell or activation of a
Secondary Cell. In particular, according to the memberships of the cell to
the master or secondary group, the special cell can be the one where the UE
performs the connection or re-establishment procedure(master) or performs ran-
dom access for radio resource control re-configuration(secondary).

The BWPs have configuration options that are also known as common and dedicated
parameters. The first one is cell-specific, while the seconds are UE-specific. Given a
specific dl-BWP with a non-zero index, the common parameters are frequency domain
location, bandwidth, Sub Carrier Spacing, and Cyclic Prefix. The dl-BWP dedicated
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parameters are PDCCH, PDSCH, semi-persistent scheduling, and radio link monitor-
ing configurations. For the ul-BWP with non zero indexes instead, the set of common
parameters includes those related to random access, PUCCH, and PUSCH. The dedi-
cated ones include PUCCH, PUSCH, SRS, configured grant, and beam failure recovery
configurations. For BWP with index 0 the possible configuration options are:

1. Option 1 with cell-specific parameters limiting the functionality of the specific
BWP. Usually, this kind of option is used to configure BWPs that have to be
temporarily used, for example during the initial-access procedure.

2. Option 2 with both cell-specific and UE-specific allow the full-featured BWP.
This configuration is appealing in deployments where multiple ul/dl-BWPs are
not needed. In this case, the network can set up a fully operational connection
with a UE by only configuring this BWP with index zero using this option.

Moreover, New Radio supports configurations of up to four “RRC-configured” ul/dL-
BWPs. The ul/dL-BWP with index zero following the Opt 1 only has cell-specific
parameters and is not counted as an “RRC- configured”BWP. Therefore, additional
four ul/dL-BWPs (with different indexes) may be consecutively configured. The
ul/dL-BWP with index zero following the Opt 2 has both cell-specific and UE- specific
parameters and thus is counted as an “RRC-configured” BWP. Therefore, additional
three ul/dL-BWP may be consecutively configured. Another important aspect of

Figure 2.5: BWP configuration options from [92]

BWP is the switching operation. As we said, at a given time, only one BWP can
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be active in both ul/dl links. In Frequency Division Domain (FDD), Dl and Ul can
independently switch BWP but for time division domain (TDD), both downlink and
uplink should simultaneously switch BWP. The BWP switching can be :

• RRC signaling based: The network can impose BWP switching using RRC
re/configuration. This means that, upon receiving RRC re/configuration of ac-
tive dl-BWP - and/or ul-BWP for serving primary cell, the UE activates that
dl-BWP and/or ul-BWP properly indicated by respectively IDs. For a sec-
ondary cell, the UE doesn’t activate the dl-BWP and/or ul-BWP immediately
after receiving the RRC (re-)configuration, instead, the activation of the corre-
sponding BWP is done at the time of secondary cell activation. If the network
doesn’t want to impose a BWP switch, the IDs of BWPs; are not declared and
inserted in the RRC (re-) configuration message.

• DCI based: in 5G NR, DCI format 01 (uplink grant) and DCI format 11 (down-
link assignment) are used to indicate BWP to be used. The field Bandwidth
Part Indicator relates to the BWP in which the frequency resources provided
via this DCI are located. This field is configured and can take 1 or 2 bits
depending upon the number of UL/DL BWPs configured by RRC, excluding
the initial ul/dL BWP. If the bandwidth part indicator field in DCI format
01 indicates a UL BWP different from the currently active UL BWP, the UE
shall set the active UL BWP to the UL BWP indicated by this field in the DCI
format 01. If the bandwidth part indicator field in DCI format 11 indicates a
DL BWP different from the currently active DL BWP, the UE shall set the
active DL BWP to the DL BWP indicated by this field in the DCI format 11.
If a UE does not support active BWP change via DCI, the UE ignores the bit
field Bandwidth Part Indicator;

• the MAC entity itself upon initiation of Random Access procedure:
this kind of BWP switching operation is described by the fig.2.6; The MAC
entity, upon initiation of an RA procedure on a serving cell, may perform BWP
switching depending on whether or not PRACH occasions are configured for
the active UL BWP. For the uplink, as PRACH occasions are not configured
for active UL BWP, the MAC layer switches the active UL BWP to the initial
uplink BWP. For the downlink, the switching will happen only if the serving
cell is SpCell; in this case, the active DL BWP should also be switched to the
initial downlink BWP. Instead of uplink, as PRACH occasions are configured
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for active UL BWP, no need to switch active UL BWP. For the downlink,
switching will happen only if the serving cell is SpCell and only if the BWP-id
of active DL BWP is different from the BWP-id of active UL BWP; in this
case, the active DL BWP should also be switched to the same BWP-id as the
active UL BWP. The ultimate goal here is to bring both active UL BWP and
active DL BWP onto the same BWP-id. After performing appropriate BWP
switching (Case1 or Case2), the UE performs the RA procedure on the activated
DL BWP of the SpCell and the activated UL BWP of the serving cell on which
the RA procedure is triggered.

Figure 2.6: Mac entity based BWP switching operation from [95]

• Timer based: The network may configure an inactivity timer (BWP-InactivityTimer),
which is used to switch the active downlink BWP after an amount of inactivity
time specified by the timer field BWP-InactivityTimer. The expiry of the inac-
tivity timer associated with a cell switches the active BWP to a default BWP
configured by the network (if configured). If the default downlink BWP is not
configured, the switching happens to the initial downlink BWP. In fig.2.7 is
described the inactivity timer-based switching operation.

2.3 The Bandwidth part management
The SDN approach paved the way toward a more flexible and programmable radio ac-
cess network. As we can see in [96] and [97], from the architectural perspective several
early-stage approaches have been introduced with no real and practical implementa-
tion. In the next years, in the state of the arts, SDN-enabled RAN architectures
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Figure 2.7: timer based BWP switching operation from [95]

have been introduced e.g. [98] [99]. In particular, [98], that is FlexRAN, and Em-
Power [99] represents the first SDN-enabled RAN architectures providing flexibility
and programming in the radio access network. FlexRAN separates the data plane
from the control plane of RAN according to the SDN logic and is implemented on top
of the existing open-source LTE platform OpenAirInterface [100]. Instead, EmPower
has been designed for WiFi and applied on srs LTE [101] to enable the concept of
SD-RAN. As in [102] also, the SDN approach allows the network designers of SDN
based radio resource management (SDN-RRM) to take over the distribution across
the network of the resource radio manager radio resource management (RRM). This
is because, the RRM is not able to sustain the optimal task of allocating resources,
implementing handovers, managing interference, and balancing load between cells
in a scenario resulting from the network densification in the path towards 5G net-
works [102]. It is worth noting that the main purpose of the SDN approach in the
radio access network is the introduction of the flexibility and programmability of the
radio segment itself. This flexibility can be introduced on different levels. This is
because the element that we can consider to be programmable are those that have
been modified along the path toward the 5G network. This means that, according
to the SDN approach, we can assume that a SDN based controller monitoring the
operational radio network condition thanks to its southbound APIs, can change nu-
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merology, choose the right bandwidth part according to the equipped algorithms or
even change the algorithms, to fulfil the required QoS. In this context, we proposed
and present the following work.

2.4 Dynamic selection of numerology and
bandwidth part for effective ORAN slicing

2.4.1 Introduction

The evolution process towards the 5G network, sees its final stage as a caterer of new
services and improved technological assets. The new services 5G network is designed
to support, are grouped in: Enhanced Mobile Broadband (EMBB), which leverages
the high system capacity and the extremely expected throughput of 5G network
for a better user experience, namely, augmented reality, streaming online gaming;
Ultra-Reliable Low Latency Communication (URLLC), services leveraging reliable
communications while fulfilling low latency requirements(self-driving car, industry
automation); Machine to Machine Communication (mMTC), services characterized
by a higher level of connection density, such as a smart city. For each category, 5G
network has to guarantee specific target performance. For example, it is expected
that for a URLLC service low latency and reliable low bit error rate are the main
requirements to meet. It is expected that for an EMBB service the throughput is
the main requirement to guarantee, whereas for mMTC service the high connection
density should be taken into account as the first requirement. Additional requirements
can be extracted from the coexistence of multiple services on the same network. All
these requirements represent the starting point of the evolution process towards the
5G network.

A limitation of legacy mobile networks is the scarce flexibility, both software and
hardware. This lack of flexibility can be observed in every network segment. For
example, in radio access networks, the rigid and fixed structure of the radio frame
according to the LTE system is not able to sustain all the expected scenarios. This is
because this radio frame based on single numerology doesn’t guarantee the required
performance at all. In particular, for services with stringent latency requirements,
the frame radio of LTE produces a Time Transmission Interval(TTI) that doesn’t
guarantee the target latency values of specific services. From here, the need for TTI
reduction can be achieved with a flexible radio frame. From the software point of
view, the scarce flexibility extends the time to in-field deployment innovation. The
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rigid and monolithic architecture of legacy systems implies the development of such
innovation in a distributed fashion. This approach is more time-consuming than a
centralized one because the network is seen as multiple entities (nodes) which have to
cooperate instead of a single-working entity. The improvement of network flexibility
is the following step in the evolution process towards the 5G network. To provide
flexibility, recent enabling mechanisms have been introduced.

Flexible Numerology (FN) is defined by 3GPP in [103]. Compared to LTE cellular
system, the major difference is that the 5G radio supports multiple sub-carrier spac-
ing. LTE has a fixed sub-carrier spacing of 15 kHz, whereas, 5G has the sub-carries
space set {15, 30, 60, 120, 240} kHz, corresponding to different values of numerology
µ ∈ {0, 1, 2, 3, 4}1. This allows us to define radio frame structure with shorter TTI as
long as we keep selecting a higher value of numerology. By the way, this cannot be
the only driving factor for the structure of the radio frame. In fact, according to the
authors in [104], the selection of numerology should be taken considering for example
processing delay of signalling activity related to the higher value of numerology and
also traffic pattern characteristics.

Bandwidth parts (BWPs) represent another tool to increase the flexibility of 5G
networks. Base stations are generally equipped with more computational resources
compared to the UE. Due to this, signalling processing is more challenging in UE
concerning a base station. Additionally, the FN introduces more complexity to signal
to process. To address this complexity, the BWP has been introduced. Fundamentals
on BWPs can be found in [105]. With the concept of bandwidth part, it is possible to
divide the same carrier into multiple sub-carriers. Each of them has its numerology,
thanks to FN, and other signal characteristics. The interested reader can find further
details on [92]. This enables UEs to be configured to operate with the same carrier
using customized numerologies and bandwidth sizes that fulfil user requirements in
terms of latency, throughput, energy and spectrum efficiency.

2.4.1.1 Related Works

FN together with BWPS necessitates the study of switching mechanisms. In partic-
ular, the switching operation has been defined in 3GPP rel-15. The impact of the
switching mechanism has been studied in [106]. In particular, the authors studied
the impact of the BWP Inactivity Timer and BWP Switch Delay. They have shown
that under certain conditions the reduction of frequency of switching operation is a
key aspect for reduced energy consumption at the cost of higher latency and lower

1the sub-carrier spacing is defined as ∆f = 2µ × 15 kHz
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throughput. In [107], the authors introduce an early form of bandwidth part adaption
mechanism leveraging openair-interface and Flex-ran controller. Their results show
that a relevant factor to be considered when defining an intelligent mechanism is the
processing time wasted to evaluate the functionalities at the physical layer. This time
is also linearly dependent on the number of UEs.

Instead in [108], the authors provide an iterative algorithm and a mathematical
framework to address the bandwidth part adaption in a controlled manner. Also,
this work represents an early mechanism that takes into account the coexistence of
multiple services on the same network. In [109], the authors studied the impact of
RAN slice bandwidth partitioning on slice performance but they do not focus on
scheduling just selecting a simple Round Robin for their work.

Thus, the Bandwidth Part Manager (BWPM) is the software module responsible
to handle the set of available bandwidth parts. It decides to place multiple BWPs on
the same carrier to optimize the network’s KPIs in different and dynamic manners.

The BWPM decides which BWP has to be bound to which network flow to match
the requested QoS and it can properly modify the single BWP features, such as
scheduling policies (Proportional Fair, Round Robin). An example of how alternative
scheduling policies can introduce benefits (such as latency below 1 millisecond) can be
found in [110]. Another example of an alternative scheduling policy can be also found
in the work [111]. Here, the authors present a service discipline for BWP allocation
based on the QoS requirements. In the work [112], the authors propose a dynamic
BWP allocation scheme that switches between two multiplexing methods, dynamic
multiplexing and orthogonal slicing, to minimize the impact of uRLLC traffic on
eMBB traffic.

To increase flexibility, the rigidity of legacy system have to be addressed even
from the software point of view. Recent enhancements have seen the adoption of the
Software-Defined Network (SDN) approach to convert the software architecture of
the Radio Access Network (RAN). In particular, the SDN-based approach converts
the view of the RAN segment from a set of distributed entities to a single one. This
implies new ways to design and deploy software applications which are, generally,
easier concerning the past. In other terms, the RAN is more programmable and
easier to control thanks to the single entity view which allows a centralized design
and deployment of software applications.

A relevant application of the SDN approach in the evolution towards 5G network
is provided in [113]. Here, the authors introduced the concept of a Software Defined
Radio Controller to centralize the control logic of the legacy system. In particular,
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it is expected that a pool of distributed controllers can introduce benefits in radio
access network management. The authors assess that these controllers, according to
the SDN approach, can communicate with each other thanks to East/West bounds
while South bounds can monitor the RAN segment, which the controllers supervise,
to provide a holistic vision of it. A further specialization of this controller has been
introduced in [114]. The authors defined the ”Radio Intelligent Controller (RIC)”
to allow the adoption of machine learning mechanisms as well. In particular, this
controller has been designed to handle two types of applications based on control-
loop time. The RIC presents a ”non-real-time” sub-module for applications requiring
a control-loop time greater than 1 second. The ”real-time” sub-module is used to run
applications with control-loop time requirements below or equal to 1 second.

This architecture proposal is in line with the more recent effort of the O-RAN
definition. The softwarization of RAN components imposes new technical challenges
to avoid vendor-locking software chains. The O-RAN Alliance specification aims at
enabling full open cooperation between vendors. Authors in [115] show a compre-
hensive overview of the O-RAN specifications, architectures and operations giving a
glimpse of what is possible to do with O-RAN including xApps, rApps and AI/ML
algorithms applied to O-RAN. In [116] authors shows how xApps and rApps may be
used to provide a large-scale evaluation of ML-driven applications to control cellular
networks in Colosseum and Arena test-beds.

2.4.1.2 Contribution

From the aforementioned research, the selection of the bandwidth part and the nu-
merology have not been taken into consideration. Hence, to the best of our knowledge,
we want to extend the study related to the process of bandwidth part selection, show-
ing that a combination of the O-RAN approach and smart selection method allows
us to achieve benefits in terms of data rate and latency for the end users. Hence, the
contribution of this work is the following,

• we propose a software architecture of a radio controller acting as Bandwidth
Part Manager (BWPM). This BWPM is equipped with two bandwidth part
selection algorithms leveraging SDN functionalities to collect radio access net-
work data. This data will be used to affect the bandwidth part selecting process
to introduce benefits in terms of data rate and latency.

• we propose a bandwidth part and numerology selection algorithms that we
named ”Slice Aware” (SA) and compare it with a baseline ”Physical Resources
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Aware” (PRA) approach. The first algorithm adapts BWPs according to user
requirements expressed in terms of latency, instead, the second selects the BWPs
according to physical resource block assignment history.

• we perform a comparison of the two O-RAN Assisted BWPM strategies based
on performance indicators such latency and experienced throughput.

2.4.1.3 Paper organization

The rest of the paper is organized as follows. In section 2.4.2.1 System Model, we
present the theoretical model of the key parameter indicators we studied, in sections
2.4.3.2 Slice Aware algorithm and 2.4.3.1 Physical Resource Block Aware
algorithm we present the algorithms respectively. In section Experimental Setup,
we present the experimental settings and describe our simulation campaign. In section
Result and Evaluation, we argue the obtained results. In a section Conclusion
we draw conclusions and the future directions of this work.

2.4.2 System Model

This section gives an overview of our system model architecture in 2.4.2.1. Perfor-
mance metrics in 2.4.2.2 show our validation metrics.

2.4.2.1 System Architecture

Fig. 2.4.2.1 exhibits the system architecture under consideration. The architecture is
composed of a set of gNBs which are controlled by an O-RAN service management
and orchestration controller which is responsible for:

• monitoring users’ performances

• monitoring bandwidth part and slices

• managing slices and bandwidth part life-cycles

In particular, Fig. 2.8 shows that, according to our Control Loop, the main func-
tionalities are Data Collection and feedback and Policy and Control. It is
possible to implement an O-RAN-assisted BWPM xApp that, following the Control
Loop and according to the network’s condition, can alter the configuration of already
available BWPs or possibly add new ones for a specific service. This way it is possi-
ble to extend the network slice up to the end user, through the radio segment. This
allows us to overcome the issue of QoS’s worsening related to fixed bandwidth part
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Figure 2.8: System Model Architecture

management which may not be suitable for supporting 5G-related network services
because it doesn’t consider the changes over time of the network’s operating condi-
tion. In detail, the Data Collection and feedback is executed by the customized
Ran Monitor xApp software component collecting state S by the gNBs that it
supervises through the O1 interface. The observed state S represents the network
operating condition of RAN and it is defined as follows: let U = {1, 2, ...., N} be
the set of N users and B the set of available BWPs in the base station of a cellular
system. Then, S is defined as {B, (L(B), P (B))i∈U , T (B), H(B)} where:

• B = {bj|j ∈ {0, 1, 2, 3, 4}}is the set of available bandwidth parts with progres-
sive numerology µ ∈ {0, 1, 2, 3, 4}. For B we define total ordering property:
∀(bk, bj) ∈ B2 ∧ bk ̸= bj, bk < bj ⇐⇒ µ(bk) < µ(bj). Also, as interchangeable
notation, µ(bj) = µ(j) represents the numerology of bandwidth part bj ∈ B

and bj = j represents the bandwidth part bj ∈ B ;

• L(B) is the measured L latency ∀bj ∈ B ;

• P(B) is the set of transmitted packet ∀bj ∈ B ;

• T(B) is the set of threshold value ∀bj ∈ B ;

• H(B) is the history of assigned physical resource block ∀bj ∈ B ;
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• (L(B), P (B))i∈U is the registered LUP latency and transmitted packet for each
j ∈ B and for each user in i ∈ U .

Such S represents the holistic RAN state that is monitored by the RAN Monitor
rApp of our prototype O-RAN assisted BWPM. Then, S is converted in a special
format (SSA, SPRA) and provided to customized BWPM. The customized BWPM,
instead, executes the Policy and Control enforcement. With it, the BWPM gets
the SSA or SPRA state and performs a BWP selection algorithm. The BWP selection
algorithm produces as output b2, which is the BWP that the scheduler has to use for
the transmission of the current packet. Further details on SPRA will be provided in
Sec. 2.4.3.1, instead, for the SSA we refer to Sec. 2.4.3.2.

2.4.2.2 Performance Metrics

In this work, we focus on the study of downlink performance. Packets are first
processed at the Core Network and then sent to the gNBs for transmission to the
mobile users. Since we are interested in the evaluation of the impact of different
BWPM strategies on the RAN performance we assume a zero contribution for core
components [117]. This is reasonable because it is expected that the next RIC should
be located near the gNBs, increasing network efficiency [118], and every decision-
making process applied to RAN has to be based on RAN KPIs such as latency radio
or more specific ones.

Fig. 2.9 provides a graphical representation of the adopted latency modelling. The
gNB is equipped with a queue where packets are stored before being transmitted.
When a packet has to be transmitted to scheduled users, it is converted before in a
transport block or possibly a set of code blocks3 and then is sent to the specific users.

The packet flow of the N UE packets coming from Core and stored in the queue
is modelled according to a traffic model based on what we assume to be Poissonian.
When a packet is removed from the queue, it has to be processed by the gNB. The
radio protocol stack impacts the radio latency, in a sense that, the overhead of the
internal processing procedure that allows a packet to be converted to a transport
block or possibly in a set of code blocks, introduces delays that have to be considered
to properly evaluate the radio latency. Then, after the packet has arrived at the
user side, it has to be processed from UE. Considering the aforementioned delays

2b = SA(SSA) or b = PRA(SPRA)
3This depends on the size of the packets that have to be transmitted
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Figure 2.9: Latency model

contributing to the radio latency, according to [117] also, we can model such latency
as follows:

L = Lqueue + Lfa + Ltx + Lbs
p + Lue

p (2.2)

where:

• Lqueue is the time spent by a packet in a buffer/queue; it depends on the number
of users that can concurrently transmit.

• Lfa is the delay due to the frame alignment which depends on the frame struc-
ture and the duplexing mode (FDD, TDD).

• Ltx is the transmission delay based on the radio channel condition, payload size,
available resources, transmission errors and re-transmissions;

• Lbs
p and Lue

p are the packets’ processing delays at gNB and UEs respectively;
these depend only on the machine’s capabilities.

and according to [119], corresponds to the one-way transit time between a packet
being available at the IP layer of the sender UE/BaseStation and the same packet
being available at the receiver BaseStation/UE. L depends on several factors, and the
goal of minimizing it can be achieved employing different techniques [117] belonging
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to different areas such as advanced multiple access schemes, advanced modulation,
and coding scheme, packet/frame structure, etc.

As stated in Sec. 2.4.1, in this work we also considered the experienced throughput
of each user. This key parameter indicator has been defined as follows: let’s consider
the user’s flow i, the set B of the available bandwidth parts indexed with j, the
number of transmitted packets with bandwidth part j ∈ B for the ith-flow P (j)i.
Then, the total number of transmitted packets Ti of the flow i is given by the sum
over B set during the simulation as follows:

Ti =
∑
j∈B

P (j)i (2.3)

. Then, for each of the ith-flow’s packet k, we consider also the partial delay δk. The
sum of partial delays ∆Ti

can be defined as follow:

∆Ti
=

Ti∑
k=1

δk (2.4)

The value of the experienced throughput T i
h for the user i is defined by the following:

T i
h =

Ti

∆Ti

(2.5)

2.4.3 Bandwidth-part selection algorithms

In this section, we describe the two algorithms we developed as core decision-making
functions for our O-RAN-assisted bandwidth part manager. Both algorithms take
as input the relevant information state we collected from the observed radio access
network. As output, they provide the bandwidth part that the scheduler must use
to send the current packet to the specific user. Further details are provided in the
dedicated section for each algorithm.

2.4.3.1 Physical Resources Aware algorithm

This method considers the Physical Resource Blocks (PRBs) assigned to transport
blocks (TBs). The idea behind this strategy is to always prioritize BWPs with higher
numerology since they are expected to introduce lower latency (due to higher subcar-
rier spacing and lower symbol time). The packets are assigned to lower numerology
BWPs only when the higher ones are saturated and no resources are available.

The PRB is the smallest radio resource which can be assigned to transmit data.
It comprises 12 sub-carriers spanning in one slot with different slot lengths according
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to FN. Instead, the TB consists of a set of bits with a specific size. In particular, the
medium access control (MAC) layer organizes the data into the TB and transmits it
to the physical layer(PHY) using PRBs to transmit it to the receiver. Additionally, in
5G NR, the maximum transport block size is 1,277,992 bits [120]. When the TB’s size
exceeds the thresholds, a TB is segmented in multiple code blocks (CBs) as shown in
Fig. 2.10. Further details on TB processing are described in [121]. The code block
consists of up to 8448 bits. Both the transport block and the code block have a cyclic
redundancy check (CRC) attached. Due to the difference in the size of the TBs and
CBs, the CRC processing scheme for TB is slightly different for CBs. Both TB and
CB need PRBs to be transmitted to the receiver. We define SPRA the state provided
to the PRA algorithm.

Figure 2.10: Segmented Transport Block

The SPRA state’s components that PRA analyses are {T (B), H(B), B}. Let’s
define MAXρ(j) as the maximum number of physical resource blocks which can be
assigned given specific numerology associated with the BWP j and ratio r ∈ (0, 1].
For each j ∈ B we define threshold value t(j) = r ·MAXρ(j) used to limit the usage
of BWPs and the T (B) = {t(j)|j ∈ B} the threshold values set in accordance. Given
Tw = 1, 2, 3, ..., tw, let’s H(B) = {h(j)|j ∈ B} the set where h(j) = {ρk|k ∈ Tw} is
the PRBs assignment-based history indicating ρk as the amount of assigned PRBs
to the current k TB or possibly CB. At this point, for each j ∈ B, we evaluate the
bandwidth part occupation Bj

Occ as:

Bj
Occ =

∑
ρk∈h(j) Wρk · ρk∑

ρk∈h(j) Wρk

(2.6)

The bandwidth part pick is based on Bj
Occ, in particular, the method checks whether

this value is less than the corresponding threshold value t(j) ∈ T (B). This method
keeps selecting the same BWP, if and only if, Bj

Occ < t(j) holds, otherwise it will se-
lect the first next eligible BWP. By the way, this method will rarely change the BWP
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Table 2.1: Notations for PRA algorithm

Notation Description
SPRA Observed state PRA is interested in.
B BWPs set.
T (B)i Set of Threshold values.
t(j) Threshold value for j ∈ B.
r Ratio value ∈ (0, 1).
MAXρ(j) Maximum amount of assignable Physical Resource Blocks specific for j ∈ B.
H(B) History of PRBs assignements for all BWPs.
h(j) History of PRBs assignments for j ∈ B.
Tw Time window.
Bj

Occ Bandwidth part occupation based on H(B).
Wρ Weight of specific assignment ρ ∈ h(j).
ρ Amount of assigned PRBs to the current TB or eventually CBs.
ρk∈Tw kth-amount of assigned PRBs to kth-TB or possibly kth-CBs.
bwp Selected BWP j ∈ B.

because the assigned PRBs to TBs decrease as long as the system keeps transmit-
ting. The system is consuming data during transmission and this implies smaller and
smaller TBS corresponding to the smaller amount of PRBs that have to be assigned.

To address this situation and force the method to change BWP, we introduce
a time window Tw and the ratio r and we set different weights Wρ for the PRBs
assignments. In particular for ρ = MAXρ(j) the Wρ ≫ Wρ′ with ρ′ ̸= MAXρ(j). It is
clear that the change of BWP, at this point, stems from the number of full-available
PRB assignments, namely ρ = MAXρ(j), we have in h(j) and the settings of Tw and
ratio r.

It is worth noting that at the initial stage, namely when we have |h(j)| < tw, the
PRA keeps using the first configured and available BWP j, that is the bwp = 1 with
µ = 0. Also in a full swing condition, if Bj

Occ < t(j) doesn’t hold for all available
BWPs j, the system keeps using the same used BWP in the last transmission. This
information corresponds to the j ∈ B such that ρtw ∈ h(j).

2.4.3.2 Slice Aware algorithm

We call SSA the part of the holistic RAN state S the Slice Aware algorithm is inter-
ested in. It is defined as: SSA = {(L(B), P (B))i∈U , L, B, } where:

• L(B) = {L(j)|j ∈ B} represents the average of registered LUP for each BWP
j;
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Algorithm 1: Physical Resources Aware
Result: bwp
SPRA = {(T (B), H(B), B};
Tw;
bwp = 1;
Find = false;
for each j ∈ B do

evaluate Bj
Occ according to (2.6);

if Bj
Occ < t(j) then
bwp = j;
Find = true;
break;

end
end
if Find = true then

return bwp;
else

return bwp = j ∈ B s.t. ρtw ∈ h(j);
end

• P (B) = {P (j)|j ∈ B} represents the number of transmitted packets for each
BWP j;

• (L(B), P (B))i∈U represents the user-based data composition of the L(B), P (B)

for each user i;

• L = {Li|i ∈ U} represents the set of user-based LUP requirements.

• B represents the set of available and configured BWPs;

The idea behind SA is to find the first bandwidth part with the highest LUP

satisfying the user’s latency requirement Li ∈ L. In other terms, given full swing
condition of the cellular system and the set BWP, for each out-going packet belonging
to the data flow of users i, the method selects BWP j such that L(j)i < Li and
L(j)i = max{L(B)i}4.

The full-swing condition is determined by the guarding expression of the first if-
statement acting as the filter. Basically, given a user i, it checks if the number of

4To address the situation where you have multiple and equal values for the max values in L(B)
the method resolves it with the pick of the BWP with lower numerology. This especially happens
at the initial stage where the registered values of LUP are equal to 0 hence suitable candidates to
be max values of L(B)
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Algorithm 2: Slice Aware (SA)
Result: j ∈ B
SSA = {(L(B), P (B))i∈U , L, B, };
X = 1;
bwp = 1;
P̂ = C · |B|;
if P (X[i])i > ⌊P̂ /(|B| −X[i])⌋ then

j = argmaxj{L(j)i ∈ L(B)i|L(j)i ≤ Li};
if j ∈ BWP then

X[i] = j;
else

j = X[i];
end

else
j = X[i];

end
return j;

transmitted packets with BWP X[i] is greater than ⌊P̂ /(|B|−X[i])⌋ where P̂ = C ·|B|
with C ∈ N. This condition depends on the available BWPs in the system and P̂ .
The definition of P̂ comes up from the analysis of the cellular system’s behaviour.
The result of this analysis is the existence of different transient times for each BWP.
In particular, every time we change BWP, the variance of the registered LUP is way
higher than the one in a full-swing condition of the system. This means that to
properly choose the next BWP, we need to avoid transient time. To account this
situation we estimates a filter value corresponding to ⌊P̂ /(|B| −X[i])⌋.

This guarantees SA selects BWP based on filtered registered LUP values. If
P (X[i])i > ⌊P̂ /(|B| − X[i])⌋ holds then SA starts searching a new BWP or even-
tually keeps selecting the old one, otherwise the selecting process of the BWP is
immediately delayed after the transient time. To support the selection process we
additionally define the vector X containing the used BWP in the last transmission.
In particular, this vector has |X| = |U | and X[i] ∈ B represents the used BWP in
the immediately previous transmission related to the traffic flow of user i ∈ U .

Additionally, if the evaluation process of Slice Aware’s SSA takes into account
the bandwidth part with the highest numerology, namely 5th BWP5, the immediate
result is the 5th BWP. This means that the system either for the first time selects as
new BWP the one with the highest numerology or keeps using the same of the last

5It is the BWP with µ(5) = 4
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Table 2.2: Notation for SA algorithm

Notation Description
SSA Observed state SA is interested in.
B Set of available BWPs in the system.
L Set of LUP requirements.
Li i ∈ U -based LUP requirement.
L(B) B-based registered LUP latency values.
P (B) B-based number of transmitted packets .
(L(B), P (B))i i ∈ U -based registered LUP latency and B-based transmitted packets
(L(j), P (j))i Registered LUP latency and transmitted packets with j ∈ B for ith-user
X Vector of used BWPs j ∈ B in last transmission.
X[i] j ∈ B used BWP in last transmission for user i ∈ U .

transmission which was the 5th BWP. In both cases, SA selects the 5th BWP which
is the one which is expected to be characterized by lower latency. This cannot be
improved simply because BWP with higher numerology than 4 has not been defined
[103] and lower BWPs are not enough to satisfy the condition L(j)i < Li. It is worth
noting that if the condition L(j)i < Li doesn’t hold for the 5th BWP, SA will keep
using the BWP with the highest numerology that has been stored within the vector X
the first time it has been used. In Table 2.2 are summarized all the used parameters.

2.4.4 Results and Evaluation
2.4.4.1 Simulation Scenario

R

gNB

UE1

UE2 UEN

5G Core Remote Host

Figure 2.11: System Cellular

We consider the simulation scenario represented in Fig. 2.11. According to the
service area dimension defined in [122] and [123], and urban macro scenario charac-
teristics, we consider a single Base Station (BS) with users being randomly placed
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Table 2.3: Physical Settings

Physical Parameters Values
BS Height 25 m.
Channel condition Line of sight.
Scenario Urban macro.
Shadowing no.
Ue height 1,5 m.
BWPs 5.
Numerology {0,1,2,3,4}.
Central frequency 28 GHz.
Bandwidth 100 Mhz.
Scheduler Proportional Fairness.

around it at a distance R. Also, according to [123], the height of the base station is
25 meters, instead, to simulate a hand-managed device the height of user equipment
is 1,5 meters. We assume the absence of shadowing effects for the propagation model
and the Line of Sight channel condition for the path loss model. The base station
is equipped with a component carrier and 5 full-featured BWPs with progressive nu-
merology according to the definition of BWP set in Sec. 2.4.2.1. The default BWP
is the 1st with µ(1) = 0, instead, the others have higher numerology values and can
be used to transmit additional traffics and benefit from them [92]. The main fea-
tures of BWPs include a central frequency of 28 GHz, a bandwidth of 100 MHz and
Proportional Fairness as a scheduling policy. UEs are configured such that they can
process the signals coming from the base station. So, based on network operational
condition needs, they can process all the BWPs. The table 2.3 lists all the physical
settings adopted. We consider 3 sets of users U1, U2, U3 such that |U1| = 10, |U2| = 20

,|U3| = 30. Also, we consider users belonging to three slices Sl = {a, b, c} differing
among themselves for the LUP requirements. Slice a imposes LUP requirement to be
maximum 2ms, slice b sets LUP requirement to 3ms, and slice c has LUP require-
ment equal to 4ms. This requirement doesn’t change over time. Then each pool of
users is uniformly distributed in the classes. The traffic template [122] corresponds
to the URLLC discrete automation. This type of traffic template defines a packet
size D which is smaller than 1358 bytes and greater than 256 bytes. Therefore we set
D = 1000 bytes. Further details can be found in [122].

Based on Sec. 2.4.3.1, we need to set the time window and the ratio r to affect
the usage of BWPs. To simulate stress conditions and force the algorithm to change
the BWP, we set Tw = 1 and r = 99%. In this way, the bandwidth part occupation
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is only related to the last physical resource block assignment. Thus, the likelihood of
BWP change is higher than the situation with larger Tw. This because is very likely
BOcc = 100%. Based on Sec. 2.4.3.2, given the set of LUP and established that they
don’t change over time, we need to define the value of our packet filter, that is the
value of constant C. In this work, C = 10.6

The simulations are organized as follows: for each pool of user U1, U2, U3 we
executed the first simulation with the algorithm PRA as the BWPM selection method.
Then, we executed a second simulation with SA as the BWPM selection method. The
simulation time is 5 minutes for all six experiments. All the simulations were executed
on Ns3-simulator which was integrated with a millimetre wave radio environment
[104]. Table.2.4 lists all the simulation settings.

2.4.4.2 Results

In this section, we present and discuss the obtained results. The obtained data from
two simulations are grouped and analyzed by LUP requirements. Figs. 2.12 to 2.14

Figure 2.12: Slice a latency violation

analyze the experienced latency violation for different classes of users and compare
the performance of the 2 proposed BWPM strategies, i.e., SA and PRA. The latency

6This value has been obtained experimentally during the evaluation of system behaviour’s tran-
sient.
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Table 2.4: Simulation Settings

U |U |

U1 10
U2 20
U3 30
User Class LUP Note
a 2 ms The users are

uniformly dis-
tributed on all
classes

b 3 ms
c 4 ms
TFT D Note

Discrete Automation 1000 B
256B ≤ D ≤
1358B [122]

Algorithms Settings Note
PRA Tw = 1, r =

99%
Simulation time
5 minutes

SA C = 10
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Figure 2.13: Slice b latency violation

violation is defined as Lv = |LUP −Li| where LUP is the registered user plane latency,
while Li is the user plane latency requirement for the user i. It is worth noting that
the probability value corresponding to a latency violation equal to zero, that is the
absence of latency violation, is 0.7 with SA (dashed line) and 0 with PRA for the
slice a user. For slice b the values are almost 1 for SA (dashed line) and less than
0.1 for PRA. Analogous results can be observed for slice c users. As expected, PRA
represents a feasible solution, but our O-RAN-assisted BWPM equipped with SA as
the BWP selection method performs better than the PRA method.

Figs. 2.15 and 2.16 we show the impact of the number of users on latency and
latency violation for the Slice Aware strategy. In Fig. 2.15, we plot the experienced
latency based on the number of users. As one can see, the higher the number of
users, the higher the probability of having high latency values. Additionally, the
indented curve trends are related to the user distribution onto the set Cl. This is
what we expect because the network load corresponding to 30 users is higher than
the network load of 10 users. In other words, the amount of data that the base station
has to process grows with the number of users and this means that the queuing time
discussed in Sec. 2.4.2.2 grows as well. Also, this can be observed from the latency
violation viewpoint, as in Fig. 2.16 where we plot latency violation for the different
number of users. This plot shows that the probability of having zero violation during
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Figure 2.14: Slice c latency violation

Figure 2.15: Experienced latency vs. Number of users

transmission is above 0.5 and decreases with the increase of users. Fig. 2.17 shows
the comparison between SA and baseline method PRA by only considering U3, i.e.
30 users scenario. In Fig. 2.17, we compare the obtained latency values with the
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Figure 2.16: SA latency violation user pool-based comparison

Figure 2.17: Experienced latency SA and PRA comparison

PRA method, and the obtained latency values with SA, represented with dashed
lines and related to all slices. Results show that, although the PRA strategy tends to
utilize higher numerologies which are characterized by lower latency, the SA strategy
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performs better in terms of experienced latency. This is because it does not offer low
latency BWPs to users with higher latency constraints thus, efficiently distributing
traffic among BWPs and avoiding queuing of traffic at the gNB.

Figure 2.18: Throughput comparison between PRA and SA

According to the definition of users experienced data rate of Eq.2.5, we can derive
the following consideration, that is, for the same Ti, ∆Ti

is the main responsible for
the variation of T i

h. A flow of packets transmitted with BWP with high numerology
values produces δk very small respect to one with BWP with lower numerology. This
produces ∆Ti

values in accordance. So, for the same Ti, we have T i
h very high for SA

concerning PRA, simply because the BWPM equipped with SA tends to use BWP
with high numerology to fulfil the user LUP requirements. The consequence of this
is that the registered throughput with SA, on average, is 5 times higher than the
registered one with PRA, as shown in Fig. 2.18.

2.4.5 Conclusion

The 5G network is continuously evolving. It is expected that this flexible network
environment will include different technological solutions to provide any kind of ben-
efit. Recent enhancements in 5G network will leverage enabling mechanisms, such
as flexible numerology and bandwidth parts. Additionally, it is worth mentioning
Software Defined Networking approach together with virtualization and O-RAN will
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be beneficial as well. In this work, we investigated the dynamic selection of the band-
width part. In particular, we propose an O-RAN-assisted BWPM equipped with
BWP selection algorithms called Slice Aware and Physical Resources Aware xApp.
The obtained results show that the BWPM equipped with SA xApp performs bet-
ter than PRA xApp in terms of experienced latency although the latter tends to
prioritize higher numerology with lower latency. The future direction of this work
will take into account an alternative version of O-RAN-assisted BWPM, according to
the newest enhancements of Radio intelligent controllers including machine learning
approaches such as Reinforcement learning at the edge as rApp. Moreover, it is also
worth investigating the performance of the considered system in the case of multiple
base station scenario and the how they are affected if we considered different height
based-positioning of the base stations.

2.5 Summary
In this chapter, we introduced the main radio access technologies allowing the evolu-
tion of the radio access networks towards 5G. We are referring to the flexible numerol-
ogy, bandwidth part and its management. The review of the state of the art allowed
the definition of the problem that has been addressed in the work titled Dynamic
selection of numerology and bandwidth part for effective ORAN slicing.
By experimental activity, we showed that dynamic selecting mechanisms for numerol-
ogy and bandwidth parts, supported by the SDN networking paradigm, introduced
tangible benefits which can meet the 5G QoS requirements for the considered services.
This is in contrast with the results obtained by their static alternatives.
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Chapter 3

Resource Management in a
Cell-Free Massive MIMO scenario

In this chapter, we introduce Resource Management in a Cell-Free Massive MIMO
scenario. Due to its huge performance capabilities, the Cell-Free Massive MIMO is
the most promising radio access network configuration that can be used to fulfil the
requirements stemming from the network densification together with the new 5G ser-
vices. This kind of configuration has specific resources that have to be efficiently
managed to fulfil the expected quality of services of new 5G scenarios including the
coexistence of multiple services. Due to this consideration, this chapter has been
arranged as follows: in the sec: 3.1 Introduction and Motivation, we introduce
the cell-free massive MiMo and we explain the motivation leading to the deployment
of this configuration. In the sec: 3.2 User-Centric Cf-MiMo, we present a de-
tailed description of cell-free massive MiMo configuration and it has been arranged
as follows:

• in sec: 3.2.1 System model for Ul and Dl, we present the most used
theoretical fundamentals modelling the Ul and Dl transmitted signals;

• in sec: 3.2.2 Resource Allocation: Pilot Assignment Algorithms and
Power Control/Allocation Schemes, we review the most used algorithms
and schemes to allocate the cell-free massive MIMO resources, that are pilot
sequences and power.

In sec:3.3 Multiplexing URLLC and eMBB Traffic by Cell-Free Massive
MIMO Spatial Diversity, we present the current progress of the work named
”Multiplexing URLLC and eMBB Traffic by Cell-Free Massive MIMO Spatial Diver-
sity”. Here, we define a theoretical framework for performance evaluation of such a
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system, based on closed form expressions for the spectral efficiency and the through-
put of eMBB and URLLC services in this new asset. We show the advantages of
the cell-free massive MIMO to support such heterogeneous services while guarantee-
ing their specific QoS requirements. Here, we propose a way to handle the resource
management of the cell-free massive MIMO to sustain the coexistence of multiple
services.

3.1 Introduction and Motivation
The mobile networks have been designed for providing devices access to a variety
of data services anywhere in a wide geographical area. The main provided service
in this area was voice calls. However, this service has been taken over by packet
transmission. So the service quality of the network is represented by the level of the
data rate that can be delivered in each location within the coverage area. The prop-
agation environment determines the coverage area. Since the received signal power
decreases quadratically, with the propagation distance, a traditional mobile network
infrastructure consists of a set of geographically distributed APs that the UEs can
choose between. The APs are deployed at elevated locations to improve the coverage
area. The cellular network is composed of APs and UEs that select the strongest one
to connect to the network. The location of the UE for which the AP is selected is
called a cell. In this architecture, the main reason for the performance degradation
experienced by the users is that the user close to AP experiences better SNR with
respect to the ones close to the edge of the cell and also it will experience interference
related to the neighbourhood. Hence the SINR is lower than SNR. Since the data
rate is an increasing function of the SNR, in each cell each user could experience
large data rate variations. The best conditions are near the centre of the cell and the
worst are at the edge. The legacy cellular network was designed with the purpose
of avoiding call drops. These call drops could be avoided by providing SNR above a
specific threshold in each cell. Anyway, there weren’t benefits to being far from the
thresholds. When the cellular network started to sustain the data transmission the
main property changed. In particular, the new property is that the UEs request the
same data services everywhere in the coverage area. Hence, the UEs near the centre
of the coverage only need to be connected part of the time, while the UEs at the
edge of it must be turned on for a much larger fraction of time. So, at a given time
instance, the majority of active UEs are at the cell edges and their performance will
determine how the customers perceive the QoS of the network as a whole. To sustain
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this property, massive MiMo technologies have been deployed. With these technolo-
gies, the cellular networks started benefiting substantially data rate improvements.
Despite these gains, in the cells remained data rate variations not negligible. These
variations, in a society where it is supposed to have a ubiquitous wireless connec-
tion, are not admissible. Moreover, Since the legacy cellular network was designed
for low-rate voice call drop service instead of uniform high data rate service, they
are not eligible for the new generation of services of 5Gns. This uniform high data
rate everywhere pushed the researcher to consider new cellular architectures. The
promising architecture, in this context, is represented by the Cf-maMiMo.

3.2 User Centric CF-MiMo
As described in [81], the Cf-maMiMo is defined as ultra dense network where the
APs are cooperating to serve the UEs by joint coherent transmission and reception
while making use of the physical layer concepts from the cellular Massive MIMO area.
The fig.3.1 represent this MIMO system. As you can see from fig.3.1, the Cf-maMiMo

Figure 3.1: Cf-maMiMo ideal concept from [124]

59



has L APs, each equipped with N antennas, that are geographically distributed over
the coverage area. Also let M = N × L denote the total number of AP antennas
in the network. The APs are jointly serving K single-antenna UEs. More precisely,
each UE is communicating with a subset of the APs, which is selected based on the
UE’s needs. The APs are connected via fronthaul links to CPUs, which facilitate the
AP coordination. The mathematical definition of an ultra-dense network is L ≫ K

implying also M ≫ K, that is the total number of AP antennas is much larger
than the total number of UEs as in a conventional massive MIMO system; The
main operating condition in the cell-free network is that whenever the APs focus the
transmission towards a particular UE, the focus area will be sufficiently small so that
no other UE is receiving experiences high interference. The cooperation of APs refers
to User-Centric features of the Cf-maMiMo systems. Given the main idea of all the
APs serving the specific UE, in practical systems, it is reasonable to think that the
UE is served by a subset of APs that is called a cluster. This is the idea of allowing
the user based APs cluster composition. For different users, we could have
different clusters that possibly could overlap. This overlapping afterwards is because
cluster membership of specific AP condition holds for different users and disjointing
cluster composition is not mandatory. This condition is related to the no-negligible
contribution in terms of performance experienced by different users and that specif
AP. In this context, the practical benefits are:

• reduced fronthaul signalling when only a subset of the APs must receive the
downlink data intended for the UE and send their corresponding estimates of
the uplink data to the CPU;

• reduced computational complexity when each AP needs to process signals of
only a subset of the UEs.

3.2.1 System Model for Ul and Dl

To define a proper system model for the Cf-maMiMo, we need to consider the co-
herence time-frequency block Tc × Bc, represented in fig.3.2, where Tc is a coherence
time, that is the portion of time in which the channel is time-invariant, and Bc is the
coherence bandwidth that is a frequency range in which the channel is constant also
know as the frequency-flat condition. In this way, the channel between two antennas
can be described by only one scalar coefficient and also if we assume the random
realization in each coherence block, then the systems can be studied one block at a
time without loss of generality (block-fading model). A signal fitting into this block
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Figure 3.2: Cf-maMiMo Tc × Bc coherence block from [81]

can be described by N = Tc ×Bc complex-valued samples. These parameters can be
also called transmission symbols or simply symbols. A common approximation of the
coherence time is Tc = λ/(4η) where where λ is the wavelength and η is the velocity of
the UE instead for Tc = 1/(2Td) where Td is the time difference between the earliest
and last propagation path (channel delay spread). Also we consider Cellular Massive
MIMO TDD protocol. This one allows the APs to estimate the channel realizations,
according to block-fading model and channel reciprocity. In particular, to estimate
the channel realization between the APs and all users, the APs needs only the Ul
pilots transmission [76], [75], [81]. The N samples, then, are distributed among the
phases of the systems that are Ul training (τp samples), Dl-transmission(τd samples)
and Ul-transmission(τu samples) as in fig.3.3. Hence N = τp + τu + τd. Moreover,

Figure 3.3: Cf-maMiMo Tc × Bc coherence block samples distribution from [81]

the most efficient way to estimate the channels is to consider a TDD protocol where
each coherence block is used for both Ul and Dl transmissions. So we need only to
transmit pilots only in the Ul and based on them each AP can then estimate the
channels between itself and all the UEs. These channel estimates, then, can be uti-
lized for both Ul and Dl. By applying coherent pre-coding in the Dl based on the
channel estimates, the channel vector to each UE is transformed into a positive scalar
channel. This scalar channel can be deduced at the UE from the Dl data signals,
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without sending explicit pilots. According to the scenario depicted by the fig. 3.1 we
define the channels between the AP m and users k as:

gmk =
√

βmkhmk (3.1)

where hmk is the small-scale fading, and βmk is the large-scale fading. Additionally
hmk, m = {1, ...,M} and k = {1, ...K}, are independent and identically distributed
(i.i.d.) RVs following CN (0, 1) . As in [78], the justification of the assumption of
independent small-scale fading is that the APs and the users are distributed over a
wide area, and hence, the set of scatterers is likely to be different for each AP and each
user. Given the coherence block’s composition, during the training phase, the K users
send simultaneously their τp-length pilot sequence to the APs., Let √

τpϕk ∈ Cτp×1,
||ϕk||2 = 1 the sequence of the user k, we can define the received τp × 1 pilot vector
from the AP m as follow:

Y m =
√
τpρp

K∑
k=1

gmkϕk +Wm (3.2)

where ρp is the normalized signal-to-noise ratio (SNR) of each pilot symbol and Wm

is a vector of additive noise at the AP m. The elements of Wm are i.i.d.RVs following
CN (0, 1). At the begin of the training phase, the AP m receive the pilot vector
described in eq.ne 3.2. Then, it treats this vector as the real observation that it is
going to use to derive the channel estimates ˆgmk for each users k it serves. Moreover,
the channel estimates can be derived directly at AP or be delegated to CPU. In the
last case the AP acts as relay and sends the pilot vector to the CPU. Since the channel
vectors are independent, there isn’t loss of the optimally if they are evaluated at the
CPU. According to the definition of the coherence block and its distribution among
phases, the τp samples allow the definition of τp orthogonal pilot sequences. This
means that if in the system there are K ≥ τp users, due to the pilot-sharing, those
users will experience inter-user interference. So, given two pilot sequences k1 and k2

and according to TDD protocol, it even holds that

ϕH
k1
ϕk2 =

{
1 if k1 = k2 ∈ KE

0 otherwise
(3.3)

So based on the pilot vector of eq.ne 3.2, to evaluate the channel estimates, the generic
AP m needs to remove the interference by evaluating the projection of Y m onto ϕH

k ,
that is ϕH

k Y m for each user k. Let’s

ỹmk = ϕH
k Y m =

√
τpρpgmk︸ ︷︷ ︸

Desired−Signal

+
√
τpρp

K∑
k′=1

gmk′ϕ
H
k ϕk′︸ ︷︷ ︸

Pilot−Contamination

+ϕkWm︸ ︷︷ ︸
Noise

(3.4)
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the evaluation of the projection. According to the 3.3, we can rearrange it as in the eq.
ne 3.4 where the first term contains the desired channel scaled by a power coefficient
we early described, while the second term represents the inter-user interference due
to the pilot-sharing, also known as Pilot-Contamination, and then we have the
noise term. At this point, we can apply the MMSE estimation process to retrieve the
channel estimates as follow:

ĝmk =
E{ỹmkgmk}
E{|ỹmk|2}

ỹmk = θmkỹmk (3.5)

with

θmk ≜
√
τpρpβmk

τpρp
∑K

k′=1 βmk′ |ϕH
k ϕk′ |2 + 1

(3.6)

It is worth noting that τp ≥ K, we can choose ϕ1, ..., ϕK pair-wisely orthogonal, and
hence the inter-user interference term disappears. Then gmk is independent from
gmk′ with k ̸= k′. However, the limited length of the coherence interval, implies that
holds the condition τp < K, so mutually non-orthogonal pilot sequences must be used
throughout the network. This implies that the channel estimates ˆgmk is degraded
due to the pilot-sharing interference that is expressed by the second term of the eq.
3.4. The channel estimation error is also defined as g̃mk ≜ gmk − ĝmk. Since we use
MMSE estimator, ĝmk is uncorrelated with g̃mk. Since gmk is Gaussian distributed,
as described in 3.5, ĝmk is the MMSE estimate of gmk. This gives in turn that ĝmk

and g̃mk are independent.
In the Dl-transmission phase, the APs treat the channel estimates ˆgmk as the

true channels, and use conjugate beam-forming to transmit signals to the K users.
The signal can be defined as follow:

xm =
√
ρdl

K∑
k=1

√
ρmkĝ

H
mksk (3.7)

with E{|xm|2} ≤ ρdl and E{|sk|2} = 1. Moreover according to the channel model
of eq. 3.1, the previous constraint can be rewritten as:

∑K
k=1 ρmkγmk ≤ 1 for all m

where

γmk = E{|ĝmk|2} =
√
τpρpβmkθmk (3.8)
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The generic user k will receive the following signal:

rk =
M∑

m=1

gmkxm + wk =

=
M∑

m=1

gmk
√
ρdl

K∑
k′=1

√
ρmk′ ˆgmk′

Hsk′ + wk =

=
√
ρdl

M∑
m=1

K∑
k′=1

√
ρmk′ ˆgmk′

Hgmksk′ + wk

(3.9)

where wk is additive noise following CN (0, 1). Then, the user will detect sk from rk.
As in the work [76], we can re-arrange the signal of eq.ne 3.9 as follow:

rk =
M∑

m=1

gmkxm + wk =
√
ρdl

M∑
m=1

K∑
k′ ̸=k,k′=1

√
ρmk′ ˆgmk′,k′

Hgmksk′ + wk =

=
√
ρdl

M∑
m=1

√
ρmk ˆgmk

Hgmk︸ ︷︷ ︸
DSk

sk +
√
ρdl

M∑
m=1

K∑
k′ ̸=k,k′=1

√
ρmk′ ˆgmk′

Hgmk︸ ︷︷ ︸
UIk,k′

sk′ + wk︸︷︷︸
Nk

=

= DSk + UIk,k′ +Nk

(3.10)

From the eq.ne 3.10, we can derive the formula for the spectral efficiency SEk as
follow:

SEDl
k = log

(
1 +

|DSk|2

E{|UIk,k′ |2}+ 1

)
(3.11)

To get the achievable data rate for Dl transmission for each user k we can use the
expression: RDl

k = Bc × τd × SEDl
k according to [125].

In the Ul-transmission phase the K users send simultaneously their data to the
APs. Before sending the data, each k user weights its symbol sk, E{|sk|2} = 1,with
the power control coefficient √

ρk and 0 ≤ ρk ≤ 1. So, the received signal during the
Ul-transmission can be defined as follow:

ym =
√
ρul

K∑
k=1

gmk
√
ρksk + wm (3.12)

where ρul is the normalized uplink SNR and wm is additive noise at the AP m. Also
here wm are i.i.d.RVs following CN (0, 1). To detect the transmitted symbol sk the
AP m multiplies the received signal ym with the conjugate of its (locally obtained)
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channel estimate ˆgmk. Then, the obtained quantity ĝHmkym is sent to the CPU via a
backhaul network. The CPU will detect the symbol sk from:

rk = ĝH
mkym =

M∑
m=1

K∑
k′=1

ĝHmk(gmk′
√
ρulρk′s

′
k + wm) =

=
M∑

m=1

K∑
k′=1

(
√
ρulρk′ ĝ

H
mkgmk′s

′
k + ĝHmkwm) =

=
M∑

m=1

K∑
k′=1

√
ρulρk′ ĝ

H
mkgmk′s

′
k +

M∑
m=1

ĝHmkwm

(3.13)

where:

ĝH
mk =


ĝH1,k
ĝH2,k
...
ĝHM,k

 (3.14)

is the combining vector for the users k. As in 3.10 and considering that the channel
can be defined as the sum of the channel estimates ĝmk and the channel estimation
error g̃mk,that is gmk = g̃mk + ĝmk, 3.13, also according to [81] can be re-arranged as
follow:

rk =
M∑

m=1

√
ρulρkĝ

H
mkgmksk +

M∑
m=1

ĝHmkwm =

=
M∑

m=1

√
ρulρkĝ

H
mkgmksk +

M∑
m=1

K∑
k ̸=k′,k′=1

√
ρulρk′ ĝ

H
mkgmk′s

′
k +

M∑
m=1

ĝHmkwm =

=
M∑

m=1

√
ρulρkĝ

H
mkĝmk︸ ︷︷ ︸

DSĝ

sk +
M∑

m=1

√
ρulρkĝ

H
mkg̃mk︸ ︷︷ ︸

DSg̃

sk +
M∑

m=1

K∑
k ̸=k′,k′=1

√
ρulρk′ ĝ

H
mkgmk′︸ ︷︷ ︸

UIk,k′

s′k+

+
M∑

m=1

ĝHmkwm︸ ︷︷ ︸
N

=

(3.15)

Where DSĝ is the desired signal over estimated channel that can be used to detect
the Ul transmitted data, DSg̃ is the desired signal over unknown channel that can be
considered as additional interference term, UIk,k′ is the inter-users interference and
N is the noise term. the SEUl

k can be derived as follow:

SEU
k = E{log2(1 +

|DSĝ|2

E{|DSg̃|2}+ E|UIk,k′ |2 + E{|N |2}
)} (3.16)
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Given SEU
k for a specific user k, its data rate can be derived as follow RUl

k = Bc ×
τu × SEUl

k .

3.2.2 Resources Allocation: Pilot Assignment Algorithms
and Power Control/Allocation Schemes

In this section, we survey the most used techniques for the allocation of resources in
a cell-free massive MiMo system. The main resources are Pilot sequences and Power.
Hence, in the following section, we are going to survey Pilot Assignment Algorithms
and Power Allocation Schemes. Generally, in a transmission system, the channel
state information plays a vital role to provide a good level of performance. That
information is usually acquired through pilot transmission in the Ul pilot training
phase. Moreover, in the real system, the condition of having orthogonal pair-wise pi-
lot sequences compels the UEs to share one pilot sequence at least. This phenomenon,
which is also known as Pilot Contamination, reduces the channel estimation qual-
ity and makes the transmission less effective and harder to reject interference between
those users sharing that pilot sequence. Thus, a properly designed pilot assignment
procedure is critical to have good performance in the Cf-maMiMo system. Many pilot
assignment procedures have been studied. The Random Assignment Procedure has
been introduced in [126]. Here, each UE is randomly assigned a fixed pilot from the
orthogonal pool and uses this pilot during the entire transmission. The drawback of
this procedure is that neighbouring users occasionally could share the same pilot se-
quences generating mutual interference hard to suppress. The next algorithm, which
has been introduced in [76] and [127], is based on the greedy approach. It assigns to
the users the pilot sequence that minimizes the Pilot contamination. The authors
in [76] and [127] asses that greedy-based pilot assignment procedures can converge to
local optimum value but are unlikely to provide a globally optimal pilot assignment.
With the work [128], user-center clustering has been introduced. Here the UEs are
clustered into groups based on different large-scale information e.g.large-scale coeffi-
cients, UEs and APs location and distance. The clustering-based approach has been
widely studied in [129], [130], [131]. Moreover in [130] and [131] the authors model
the interference as graph. Here, the vertexes, representing UEs, are connected if at
least an AP serves them. The objective of these algorithms is to colour the UEs with
the fewest colours. The final assignment is achieved by updating the interference
graph. The authors of [132] propose an iterative approach based on the Hungarian
algorithm. With this algorithm, each UE and its neighbouring UEs are assigned with
mutual orthogonal pilots following the Hungarian algorithm. When the performance
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measures reach convergence or the iterations reach the allowed maximum number,
the algorithm provides the final pilot assignment. All the aforementioned algorithms
present limits in the sense that they might not be feasible for practical implementa-
tion because their complexity grows polynomially with the dimensions of the cell-free
system, that is the number of UEs and APs. In other terms, they suffer from a lack
of scalability. This consideration led the network engineers to the development of
scalable algorithms as in [133], [134], [135]. Specifically, in [133], each UE selects its
AP master, then each master AP informs a limited set of neighboring APs that it is
going to serve that UE on specific assigned pilot. The neighbouring APs can decide
whether join in serving that user or not according to its status. The scalability is
achieved by providing the UE with the least bad pilot without performing optimiza-
tion to provide a fairly pilot assignment. The authors in [134] and [135] used the
K-means based approach for user clustering. The clusters are based on location and
interference relationship between the cell-free actors UEs and APs. The UEs in the
same cluster are assigned with orthogonal pilots. The approach in [134] divide the
network into subareas, however it doesn’t prevent the neighbouring UEs belonging to
different cluster from pilot sharing. This issue has been solved by the authors in [135].
Additional information about pilot assignment procedures can be found in the sur-
vey [136]. According to the literature, the general consideration is that the algorithms
with more complicated processing mechanisms and employing more information on
cell-free actors and communication environment conditions will offer better perfor-
mance. However, these kinds of algorithms are either unscalable or heuristic. This
forces the network engineers to investigate further alternatives to introduce scalability
by the exploitation of machine learning, thanks to its powerful signal processing abil-
ity in a heavily loaded network condition or user-centric clustering-based approach
for the optimized pilot assignment or based ones. In a cell-free massive MiMo system,
to have good performance, the available resources have to be efficiently handled. This
holds even for power. To be more precise, given the K users in the system, they have
to select appropriate transmit power for the Ul transmission, while the APs must allo-
cate transmit power for Dl transmission. The procedure related to the power resource
in a cell-free massive MiMo system is called power control for the UL-transmission
and power allocation for DL-transmission. Generally, the power allocation/control
procedure is regulated by a system-wide utility function that has to be optimized.
The structure of the utility function implies the type of optimization problem that
has to be solved and so the approach to solving it. According to the literature, the
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most common types of optimization problems are max-min fairness, max sum SE,
and max EE.

3.2.2.1 Max-Min fairness

The goal is to maximize the lowest SE among all the UEs in the network, which
leads to uniform service, while the channel conditions will determine how good that
service quality is. Since the SE of UE k is an increasing function of the effective SINR,
maximizing the lowest SE is equivalent to maximizing the lowest effective SINR among
all the UEs. There are several instances of the max-min fairness problem that can be
shown to be convex or quasi-convex. Thus the optimal solution can be obtained by
exploiting the bisection search, and the convex optimization as in [137], Geometric
Programming as in [78] [79]. Moreover, there are instances of the max-min fairness
problem that are non-convex, in which case one can sometimes find a local optimum
by alternating optimization, which partitions the optimization variables into several
sets and cyclically optimizes one at a time while keeping the other variable sets
fixed [138] [139].

Although the aforementioned algorithms optimize the transmit power for all UEs
to maximize the lowest SE in a system-wide manner, it is unavoidable that their com-
putational complexities grow unboundedly with the number of the UEs, K, which
makes these algorithms unscalable. Hence, distributed and heuristic schemes are
needed to obtain scalable power control in large, practically implementable CF net-
works. Each device makes a local decision with limited involvement from the other
devices. Fractional power control is a classical heuristic scheme in Ul multi-user sys-
tems. The principle of fractional power control is controlling the UE transmit power
to compensate for a fraction of the path-loss differences among the UEs that are par-
tially served by the same APs, where UE k selects its Ul to transmit power as in [81]
and [134]

ρk =
mini∈Sk

(
∑

i∈Mi
βil)

v∑
k∈Mk

βkl
(3.17)

where
∑

k∈Mk
βkl denotes the total channel gain from user k to the APs that serve it.

v ∈ [0, 1] indicate the power control behaviour. Specifically, v = 0 means that all the
users transmit at the maximum power (full power transmission). A larger value of v
implies each user to compensate for the variations in the total channel gain among
the users in i ∈ Sk, which promotes more fairness. Fraction power allocation can
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be used in the downlink, in which case AP l selects the downlink power allocation
coefficient for user k proportionally to the channel gain, βkl, as in [81]

ρkl =
(βil)

v∑
i∈Dl

βv
kl

(3.18)

if k ∈ Dl otherwise ρkl = 0. The exponent v implies the power allocation behaviour.
A larger value of v gives a higher emphasis to the UEs according to their respective
channel gains. Dl represent the set of the served users by the access point l.The v = 0

implies to allocating more power to the UEs in better channel conditions, which seems
to be contrary to the max-min fairness concept. Apart from traditional optimiza-
tion and heuristic methods, ML can be utilized to design power control/allocation
methods. Such an approach cannot provide a better solution than the one found
by classical optimization methods, but it could potentially lower the computational
performance as in [140] There are ML-based schemes proposed to solve the max-min
fairness problem in Cf-maMiMo as in [141]. Here, the authors proposed to approxi-
mately solve the max-min fairness problem using the local CSI by training a neural
network to identify a mapping between that local CSI and the optimal solution to
the system-wide max-min fairness problem.

3.2.2.2 Max Sum Spectral Efficiency (Max Sum SE)

A side effect of the max-min SE fairness problem is that a few UEs could degrade
the overall system performance with bad channel conditions. However, in a large
network is highly likely that the majority of the users reach larger SEs while affecting
the users in the worst conditions. This is because the UE only causes interference to
a small subset of neighbouring UEs. This consideration led the network engineers to
consider the maximization of the sum SE representing the overall SE performance of
the network instead of the SE achieved by a specific UE. The max sum SE problem
is usually not convex. So it is impossible to obtain the optimal solution and therefore
we need to settle for a local optimal value. The Successive Convex Approximation
(SCA) is a promising methodology to handle the no-convexity of the ”Max Sum SE”
problem. As you can see in [142] [143] [144] SCA employs convex optimization where
the non-convex term is substituted by its convex approximation. The aforementioned
methods search for a local optimum due to the no-convexity of the problem. This
allows the utilization of ML-based schemes because they have the potential of finding
a better solution. Examples of this ML-based methods are [145] [146]. using Artificial
Neural Networks (ANNs) In particular in [145] the authors use an artificial Neural

69



Network taking UE positions as input and the power control policy as output. Instead,
the authors in [146] proposed a deep neural network-based power control method.

3.2.2.3 Max Energy Efficiency (Max EE)

The designing of large Cf-maMiMo network can be oriented on finding out “how
much energy it takes to reliably transmit a certain amount of information”. So the
evaluation of energy efficiency is considered a good performance indicator of the
system. Usually the energy efficiency is defined as:

EE = B

∑K
k=1 SEk

Ptotal

(3.19)

where the B is the bandwidth and Ptotal is the total power consumption including
four terms: the transmit power, a term accounting for the analogue processing of the
transceiver chains, a term accounting for the digital signal processing, and a term
for the fronthaul connections. Even this problem is a no-convex one. Hence, the
SCA technique can provide local optimum value. In [147] the authors considered the
EE maximization problem in an millimeter waves (mmWaves) Cf-maMiMo system.
Here, they show that the problem is a no-convex. Moreover, they proposed a suc-
cessive power-bound maximization method, that due to the merging of alternating
optimization and sequential convex programming, provides the optimized values for
the transmit power of each AP while keeping the transmit power of other APs fixed.
As can be observed in [148], second-order methods performed very well, however they
don’t scale with the network size. This led network engineers to develop a first-order
method to solve the ”Max EE” problem. As you see in [149], the authors proposed
a first-order method for the non-convex programming to the EE maximization prob-
lem that achieves the same performance with less run time than the second-order
methods.

3.3 Multiplexing URLLC and eMBB Traffic by
Cell-Free Massive MIMO Spatial Diversity

3.3.1 System Model

We consider the cell free massive MIMO downlink scenario represented in Fig. 3.4,
with M APs, equipped with a single antenna, serving K single-antenna users. We
assume a transmission scheme based on conjugate beamforming, which is one of the
most prominent forms of linear precoding. Conjugate beamforming is based on a
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pre-coding matrix proportional to the conjugate of the estimated channel matrix.
In the time-domain, it is also known as “time-reversal beamforming,” because it is
equivalent to take the convolution of each transmitted symbols’ sequence with its
respective conjugated and time-reversed impulse-response estimate, and sum over
the K correlations. Its reverse link counterpart, at the received side, is the matched-
filtering.

The users are randomly distributed in a large area. This system supports two types
of services, namely eMBB and URLLC, using network slicing and cell free massive
MIMO. We model the network slicing by associating the contemporary multiple radio
data streams of URLLC and eMBB users in the access network to one of the two
partitions of the pool of K = KU∪KE users, with KU = {1, 2, . . . , i, . . . , h} and KE =

{h+1, . . . , h+i, . . . , K}, which are linked to the set of APs M = MU∪ME partitioned
in the two subsets MU = {1, 2, . . . ,mu, . . . , |MU |} and ME = {1, . . . ,me, . . . , |ME|}.
The RAN slices associated to the two considered services are defined as:

eMBBslice
def
= (ME, KE) (3.20)

URLLCslice
def
= (MU , KU) (3.21)

3.3.2 URLLC and eMBB Multiplexing by
Network Slicing Cf-maMiMo

We assume a cell-free massive MIMO-OFDM system as in [150], where in downlink
(DL) transmissions the Nsc = 2400 subcarriers are divided into multiple resource
blocks (RB), which are allocated to UEs such that the specific service requirements

Figure 3.4: Cf-maMiMo downlink scenario.
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Figure 3.5: Resource block allocation scheme in a coherence interval: (a) each UE
occupies all RBs for eMBB; (b) each UE occupies only one RB for URLLC.

are fulfilled. According to the 5G new radio (NR) standard, we assign 12 subcarriers
to a RB, such that the bandwidth of each RB is 12∆f , with ∆f = 7.5 kHz.

In the time domain, according to the massive MIMO operation, the subcarriers
and time samples are grouped to fit the coherence interval (CI), which consists of
a number of subcarriers and time samples over which the channel response can be
approximated as constant and flat-fading. If the coherence bandwidth is Bc and the
coherence time is Tc, then each CI contains N = Bc · Tc complex-valued samples1.

Fig. 3.5 shows the RB allocation scheme in a CI, where we distinguish the CSI
acquisition phase, labeled by “UL-training,” and the data transmission phase, labeled
by “DL-Trans.” Actually, the total number of N samples is distributed among the
training phase, which uses Np samples, and the DL and UL transmissions, which use
Nd and Nu samples, respectively, such that N = Np +Nd +Nu [81]. In this work we
focus only on the training phase and downlink transmission, hence we have Nu = 0.

To multiplex the two considered heterogeneous services, namely the eMBB and
URLLC, we adopt the resource allocation scheme shown in Fig. 3.5. Since the eMBB
is designed to meet the demand for high-data rate transmission, each UE occupies
all subcarriers, i.e., each UE is enabled to transmit with maximum bandwidth. For
the URLLC case, we assume that multiple UEs can be scheduled for transmission
in the same coherence interval, as the size of URLLC packets is much smaller than
that of eMBB. Theoretically, assuming that each RB serves k URLLC UEs, the
cell-free massive MIMO-OFDM system can support a total of kNsc/12 URLLC UEs
transmitting simultaneously [150].

1A common rule of thumb is the following:

• Tc = 1/(4 · v) with v equal to user’s velocity;

• Bc = 1/(2Td) where Td is the delay difference between longest and shortest path.
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We formalize the RB allocation scheme described above by assuming that the
URLLC utilizes a fraction δB of the coherence bandwidth Bc and a fraction of the
downlink transmission time, as explained in Sec. 3.3.6. This model reflects in the
calculation of the data rates for the two services.

In the following, we analyze the training phase and propose the best suitable
scheme for coexisting URLLC and eMBB services (Sec. 3.3.3); we also present two pi-
lot assignment schemes, one simply random and the other based on a greedy selection
(in Sec. 3.3.4).

3.3.3 Training phase

The application of network slicing to cell free massive MIMO imposes a re-planning
of the training phase. By design, the training phase is performed in uplink. Let’s
N

(E)
p and N

(U)
p be the number of samples assigned to the training phase of eMBB and

URLLC services, respectively.
According to the strategies provided in [151], we distinguish the following three

cases, shown in Fig. 3.6, which differ in the applied configurations for the CIs training
and transmission phases:

1. Independent Training: URLLC and EMBB users are independently trained
in different CIs followed by its own DL transmission in the same CI. This means
that the full set of N samples available in a CI are assigned either to eMBB
(i.e., N = N (E)) or to URLLC (i.e., N = N (U)) users during the full duration of
a CI. Being N = Np+Nd, the samples for the training phase are N

(E)
p and N

(U)
p

and the samples for the DL transmissions are given by either N (E)
d = N −N

(E)
p

or N
(U)
d = N −N

(U)
p , respectively.

2. Contemporary Training: URLLC and eMBB users are contemporarily
trained in the same CI, followed by contemporary DL transmissions in the
same CI. This means that Np = max{N (E)

p , N
(U)
p } for both services. In other

terms, for both services, the system uses Np samples for the UL training phase
and the remaining Nd = N −Np ≤ N −max{N (E)

p , N
(U)
p } for DL transmission.

Also, Np = max{N (E)
p , N

(U)
p } guarantees orthogonality between users but it is

not sufficient to prevent the interference between services.

3. Sequential Training: URLLC and eMBB users are sequentially trained
in the same CI, followed by contemporary DL transmissions in the same CI.
Hence, we have Np = N

(E)
p + N

(U)
p ≤ 2 ·max{N (E)

p , N
(U)
p }, with the constraint
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Figure 3.6: Possible UL-training and DL-transmission schemes

that one type of users is silent while the other performs the training phase.
Therefore, the DL accounts a number of samples Nd = N − Np ≤ N − 2 ·
max{N (E)

p , N
(U)
p }.

To define independent pilot sequences using N
(U)
p training samples for URLLC

users and N
(E)
p training samples for eMBB users, we assume that

N (U)
p = |KU | (3.22)

N (E)
p = |KE|. (3.23)

The conditions (3.22) and (3.23) imply that user-coherent interference doesn’t exist.
However, the orthogonality is not ensured between PU and PE, giving rise to inter-
service interference.

Depending on the applied training phase configuration, under the assumption of
per service pairwise orthogonality of the sequence pilot sets, we have:

1. For independent training, URLLC and eMBB users will not experience any
kind of inter-users or inter-service interference. Hence, based on the type of users
which is active in the current CI, the signal received by the m-th AP during
the training phase will by either: ym = U + wm or ym = E + wm for all Np
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samples in the CI for each of the two services, where the three contributions are
related respectively to the training of the KU URLLC users, i.e., U ∈ CN

(U)
p ×1,

and the KE eMBB users, i.e., E ∈ CN
(E)
p ×1, and, finally, to the noise term wm ∈

Cmax{N(E)
p ,N

(U)
p }×1. The elements of the three terms are all i.i.d random variables

distributed according to a complex normal distribution, i.e., ∼ CN (0, 1). It is
important to observe that the sum of the complex vectors U, E, wm is defined
for equal-size vector spaces.

2. For contemporary training, URLLC and eMBB users will experience only
inter-service interference and the signal received by the m-th AP is

ym = U + E +wm (3.24)

for Np = max{N (E)
p , N

(U)
p } samples in the CI.

3. For sequential training, URLLC and eMBB users will not experience any
kind of user or inter-service interference, as in the first case, and similarly the
signal received by m-th AP results either ym = U + wm or ym = E + wm,
respectively for the N

(U)
p and N

(E)
p samples in the CI.

Despite the independent training and the sequential training provide no interfer-
ence among both users and services, it presents significant drawbacks. In the first
case of independent training, as shown in Fig. 3.6, each available CI is assigned to
the sole transmission of either URLLC or eMBB, with subsequent under-utilization
of the available resources (more evident in the case of URLLC transmissions, based
on a very short payload), and increase of URLLC latency. Hence this scheme is not
suitable to fulfil URLLC latency requirements.

Also the third scheme, i.e. the sequential training, is not suitable because it vi-
olates both reliability and latency requirements for the URLLC, being the training
done in the absence of interference; instead, the transmissions are simultaneous to
eMBB traffic, but rely in a pilot assignment based on non-accurate channel estima-
tions, which impacts the reliability of URLLC transmissions. Moreover, the sequential
training implies the introduction of a delay that increases the URLLC latency.

Hence, for the optimal coexistence of URLLC and eMBB services, due to their
specific QoS requirements, the only possible scheme is the contemporary trainings of
URLLC and eMBB users in the same CI. This is the scheme adopted throughout the
subsequent analyses presented in this paper.
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Based on the type of service, i.e., URLLC and eMBB, we define two sets of pilot
sequence signals PE and PU as:

PU = {
√

N
(U)
p ρuφ

(U)
i ∈ CN

(U)
p ×1|i ∈ KU} (3.25)

PE = {
√

N
(E)
p ρeφ

(E)
j ∈ CN

(E)
p ×1|j ∈ KE} (3.26)

where

{
√

N
(U)
p ρuΦ

(U)} ∈ CN
(U)
p ×|KU |

and
{
√

N
(E)
p ρeΦ

(E)} ∈ CN
(E)
p ×|KE |

are the sets Φ(U) = [φ
(U)
1 . . .φ

(U)
i . . .φ

(U)
KU

] and Φ(E) = [φ
(E)
1 . . .φ

(E)
j . . .φ

(E)
KE

] of N (U)
p -

length and N
(E)
p -length pilot signals to be assigned to URLLC and eMBB users, with

ρu and ρe the UL pilot powers.
Hence, for the contemporary scheme, the general expression for the signal received

by the m-th AP during the training phase of the massive MIMO conjugate beamform-
ing scheme, when all K users transmit the pilots simultaneously, is given by (3.24)
with

U =

√
N

(U)
p ρu

∑
i∈KU

g
(U)
mi φ

(U)
i

E =

√
N

(E)
p ρe

∑
i∈KE

g
(E)
mi φ

(E)
i (3.27)

The channel gains g
(U)
mi and g

(E)
mi are defined as [76]

g
(U)
mi =

√
β
(U)
mi h

(U)
mi for all i ∈ KU (3.28)

g
(E)
mi =

√
β
(E)
mi h

(E)
mi for all i ∈ KE, (3.29)

with the large scale fading coefficients β(E)
mi and β

(U)
mi , and the small scale fading coeffi-

cients h
(U)
mi ∼ CN (0, 1) and h

(E)
mi ∼ CN (0, 1), modeled as i.i.d. complex Gaussian RVs

according to Sec. 2.5.2 of [81]. The assumption of independent small-scale fading is
fully justified in the proposed scenario, because the APs and the users are distributed
over a wide area, such that the set of scatterers is likely to be different for each pair
AP-user.
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Given the two sets of pilot sequence signals PU and PE defined in (3.25) and (3.26),
for each of the two sets of users KU and KE, we can derive the following projections.
For the user i ∈ KE the projection is given by:

ỹ
(E)
mi ≜ φ

(E)H
i ym = φ

(E)H
i [U + E +wm] (3.30)

where U and E are given by (3.27).
Taking into account the assumption of the pair-wise orthogonality, i.e.:

φ
(U)H
i φ

(U)
t =

{
||(φ(U)

t )||2 = I t if t = i ∈ KU

0 otherwise

the projection for the user i ∈ KE simplifies to:

ỹ
(E)
mi =

√
N

(E)
p ρeg

(E)
mi +

√
N

(U)
p ρu

∑
s∈KU

g(U)
ms φ

(E)H
i φ(U)

s

+φ
(E)H
i wm

(3.31)

Similarly, for the user j ∈ KU the projection is given by:

ỹ
(U)
mj ≜ φ

(U)H
j ym =

√
N

(U)
p ρug

(U)
mj +

+

√
N

(E)
p ρe

∑
t∈KE

g
(E)
mt φ

(U)H
j φ

(E)
t +φ

(U)H
j wm

(3.32)

given the pair-wise orthogonality condition in the eMBB case:

φ
(E)
i Hφ(E)

s =

{
||(φ(E)

s )||2 = Is if s = i ∈ KE

0 otherwise

The second term in both (3.31) and (3.32) represents the network slicing pilot
contamination.

Based on the received projection ỹ
(U)
mj or ỹ

(E)
mi , the CPU evaluates the MMSE

estimates ĝ
(U)
mj and ĝ

(E)
mi for the users belonging to the sets KU and KE, needed to

apply the precoding for the conjugate beamforming.
By assumption, the large scale fading coefficients ĝ

(U)
mj are known to be complex-

gaussian distributed, i.e., ∼ CN (0, β
(U)
j ), hence the MMSE estimator for the URLLC

case is

ĝ
(U)
mj =

E
{
g
(U)
mj ỹ

(U)
mj

}
E
{
|ỹ(U)

mj |2
} ỹ

(U)
mj = c

(U)
mj ỹ

(U)
mj (3.33)
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where

c
(U)
mj =

√
N

(U)
p ρuβ

(U)
mj

1 +

√
N

(E)
p ρe

∑
t∈KE

β
(E)
mt |φ

(U)H
j φ

(E)
t |2

(3.34)

and, as in [78], the mean square value γ
(U)
mi is defined as:

γ
(U)
mj = E

{
|ĝ(U)

mj |2
}
=

√
N

(U)
p ρuβ

(U)
mj c

(U)
mj =

=
N

(U)
p ρu(β

(U)
mj )

2

1 +

√
N

(E)
p ρe

∑
t∈KE

β
(E)
mt |φ

(U)H
j φ

(E)
t |2

(3.35)

Being the channels of the single-antennas APs statistically identical, γ(U)
mj is the

same for all MU APs [78].
The channel estimation error is defined as ϵ(U)

j = ĝ
(U)
j −g

(U)
j where ϵ(U)

j ∼ CN (0, β
(U)
j −

γ
(U)
j ) is independent from ĝ

(U)
j ∼ CN (0, γ

(U)
j ). The mean square error has a variance

of E{|ϵ(U)
j |2} = β

(U)
i − γ

(U)
j [81].

Similar derivations can be done to obtain the channel estimate ĝ
(E)
mi for i ∈ KE.

3.3.4 Pilot assignment procedures

We consider two PAs, customized for the specific scenario of Cf-maMiMo URLLC
and eMBB sliced services.

The Random PA is a very simple assignment method constrained only by the
user’s type. With this strategy the user will randomly receive a pilot out from the
pilots’ set. Users of different services that are in close vicinity could experience inter-
service interference which is not taken into account for the selection of the assigned
pilots.

The Greedy PA, instead, accounts for the inter-service interference, i.e. for the
network slice pilot contamination. The pilot contamination is expressed for the two
services by the terms

∑
t∈KE

g
(E)
mt φ

(U)H
i φ

(E)
t and

∑
s∈KU

g
(U)
ms φ

(E)H
i φ

(U)
s in (3.31) and

(3.32). Their variances are given by:

E

{
|
∑
t∈KE

g
(E)
mt φ

(U)H
i φ

(E)
t |2

}
=
∑
t∈KE

β
(E)
mt |φ

(U)H
i φ

(E)
t |2

E


∣∣∣∣∣∑
s∈KU

g(U)
ms φ

(E)H
i φ(U)

s

∣∣∣∣∣
2
 =

∑
s∈KU

β(U)
ms |φ

(E)H
i φ(U)

s |2
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Each user will be assigned the pilot sequence which minimizes the network slice
pilot contamination summed over all the APs, according to the type of service. For
the user j ∈ KU the assigned pilot is found by solving (P1), for the user i ∈ KE by
solving (P2):

argmin
φ

(U)
j

∑
m∈MU

∑
t∈KE ,

φ
(U)
j =φ

(E)
t

β
(E)
mt |φ

(U)H
j φ

(E)
t |2 (P1)

argmin
φ

(E)
i

∑
m∈ME

∑
s∈KU ,

φ
(E)
i =φ

(U)
s

β(U)
ms |φ

(E)H
i φ(U)

s |2 (P2)

3.3.5 Downlink transmission

Let su, with u ∈ KU and E {|su|2} = 1, be the symbol to be transmitted to URLLC
users, and se, with e ∈ KE and E {|se|2} = 1, the symbol to be transmitted to eMBB
users. We assume that the symbols are uncorrelated, i.e., E {|sesu|2} = 0. Based
on the assumption of channel reciprocity for the single-antenna APs, the signals
transmitted by the AP mu ∈ MU and the AP me ∈ ME, by applying the conjugate
beamforming precoding based on the MMSE channel estimation, can be written as:

xmu∈MU
=
∑
u∈KU

√
N

(U)
p ρuĝmu,usu (3.36)

xme∈ME
=
∑
e∈KE

√
N

(E)
p ρeĝme,ese (3.37)

with the conditions E{|xmu |2} ≤ ρu, E{|xme |2} ≤ ρe.
In this Cf-maMiMo scenario, the generic i-th user receives a signal resulting from

the superposition of (3.36) and (3.37). In particular, the signals received by the
URLLC user u ∈ KU and the eMBB user e ∈ KE are expressed as (in the following
we omit the superscripts (U) and (E) to improve the clarity of the expressions - the
terms are distinguished by the subscripts):
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ru =
∑

mu∈MU

gmu,uxmu +
∑

me∈ME

gme,uxme + nu =

=
∑

mu∈MU

∑
u′∈KU

√
N

(U)
p ρugmu,uĝmu,u′su′+

+
∑

me∈ME

∑
e∈KE

√
N

(E)
p ρegme,uĝme,ese + nu

(3.38)

and

re =
∑

me∈ME

gme,exme +
∑

mu∈MU

gmu,exmu + ne =

∑
me∈ME

∑
e′∈KE

√
N

(E)
p ρegme,eĝme,e′se′+

+
∑

mu∈MU

∑
u∈KU

√
N

(E)
p ρegmu,eĝmu,usu + ne

(3.39)

that can be expressed in a compact form [152] as:

ru = Susu + Tusu + Iu,u′su′ + Iu,ese + nu (3.40)

where:

Su = E

{ ∑
mu∈MU

√
N

(U)
p ρugmu,uĝmu,u

}

Tu =
∑

mu∈MU

√
N

(U)
p ρugmu,uĝmu,u

− E

{ ∑
mu∈MU

√
N

(U)
p ρugmu,uĝmu,u

}

Iu,u′ =
∑

u′∈KU
u′ ̸=u

∑
mu∈MU

√
N

(U)
p ρugmu,u′ ĝmu,u′

Iu,e =
∑
e∈KE

∑
me∈ME

√
N

(E)
p ρegme,uĝme,e

are, respectively, a deterministic factor Su scaling the desired signal of the URLLC
user u ∈ KU given by the conjugate beamforming precoding; the contribution Tu

in the received signal related to the beamforming uncertainty gain; the interference
Iu,u′ with the signals by other URLLC users u′ ∈ KU \ {u}, which is Iu,u′ = 0 under
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our assumption of orthogonality between users of the same service; the inter-slice
interference Iu,e between the URLLC user u and all eMBB users; and the effective
noise nu perceived by the user u.

3.3.6 Performance metrics

We define three metrics to measure the performance of the proposed Cf-maMiMo
system with network slicing applied to URLLC and eMBB served users: the spectral
efficiency, the achievable average data rate and the outage probability.

The DL spectral efficiency for users u ∈ KU , under the condition M >> K, is
defined as [152]:

SEu = log2

(
1 +

|Su|2

E {|Iu,u′ |2}+ E {|Iu,e|2}+ 1

)
=

= log2

(
1 +

|Su|2

E {|Iu,e|2}+ 1

) (3.41)

where, as derived in the Appendix 3.3.9:

|Su|2 = N (U)
p ρu

( ∑
mu∈MU

γmu,u

)2

(3.42)

and
E
{
|Iu,e|2

}
= N (E)

p ρe
∑
e∈KE

∑
me∈ME

γme,eβme,u. (3.43)

The expression (3.41) holds under the condition M >> K, as demonstrated in
[153], which analyses the achievable data rates based on the number of the APs for
downlink transmission, showing that for large values of M the contribution of the
beamforming uncertainty gain in the received signal is negligible.

For the user e ∈ KE we define the corresponding terms Se, Ie,e′ and Ie,u and
derive the expression for the spectral efficiency. However, in light of the adopted RB
allocation strategy, since the eMBB payload has a bigger size than the URLLC, we
assume that URLLC DL transmissions are “puncturing” the DL time slot, resulting
in the utilization of a portion of the total DL time Td.

The DL time slot is given by Td = Tc(1−Np/N), with N = BcTc. We identify two
portions in Td: the contention-based DL transmission time defined as Tcb = wcbTd,
where simultaneous URLLC and eMBB transmissions cause inter-service interference;
and the contention-free DL transmission time Tcf = Td−Tcb, where only eMBB users
transmit and will not experience any kind of inter-user or inter-slice interference. The
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weighting factor wcb ∈ (0, 1
2
) represents the estimated time fraction of simultaneous

DL transmissions.
Hence, the total spectral efficiency for eMBB users is:

SEe = SEcb
e + SEcf

e (3.44)

where

SEcb
e = log2

(
1 +

|Se|2

E {|Ie,e′ |2}+ E {|Ie,u|2}+ 1

)
= log2

(
1 +

|Se|2

E {|Ie,u|2}+ 1

)
SEcf

e = log2

(
1 +

|Se|2

E {|Ie,e′ |2}+ E {|Ie,u|2}+ 1

)
= log2

(
1 + |Se|2

)
are, respectively, the contention-based eMBB spectral efficiency term SEcb

e related to
Tcb and the contention-free eMBB spectral efficiency term related to Tcf .

Therefore, we may define the achievable data rate for DL transmission of user
u ∈ Ku, RDL

u , and user e ∈ Ke, RDL
e , as functions of the spectral efficiency SEu and

SEe, the coherence bandwidth Bc, the contention-based DL transmission time Tcb and
the contention-free DL transmission time Tcf as:

RDL
u = δB · Bc · Tcb · SEu (3.45)

RDL
e = Bc · {Tcb · SEcb

e + Tcf · SEcf
e } (3.46)

where δB is the fraction of the coherence bandwidth assigned to URLLC users ac-
cording to our RB assignment scheme.

Finally, we define the outage probability as a metric to evaluate the scalability of
Cf-maMiMo supporting network slicing. The eMBB and URLLC services have specific
payload size requirements bu and be, respectively. The outage probability refers to a
network operating condition that doesn’t support the transmission of packets of these
fixed sizes of bu and be bits. Then, if Rth

u = f(bu) and Rth
e = f(be) are the data rate

threshold values for the URLLC and eMBB services,
the outage probability for the specific user is defined as

P out
u = Pr

[
RDL

u < Rth
u

]
for u ∈ KU (3.47)

P out
e = Pr

[
RDL

e < Rth
e

]
for e ∈ KE (3.48)
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3.3.7 Performance evaluation

We investigate the performance of the proposed network sliced Cf-maMiMo system
for different sizes of the pool of users, that is 20 ≤ K ≤ 200, still fulfilling the design
condition of cell-free massive MiMo, M >> K, being M = 200 the total number of
APs in the area with M = ME +MU and |ME| = |MU |.

3.3.7.1 Simulation Setup

We consider a square area of 1 km2 with M APs and K users, with MU = M/2

APs and KU = K/2 users (UEs) assigned to URLLC and ME = M/2 APs and
KE = K/2 UEs assigned to eMBB. To avoid boundary effects and to imitate a
network spread over an infinite area, the square is wrapped around. Regardless of
service, during the UL training phase we assume a maximum transmission power of
ρtotu = ρtote = 100 mW for each user. For the DL transmission, the available maximum
total power is ρtotu = ρtote = 200 mW . The APs apply a centralized power allocation
scheme and assign to each users an amount of power given by

ρumk = ρtotu

(βu
km)

v∑
(k,m)(β

u
km)

v

with k ∈ KU , m ∈ MU and v ∈ [0, 1]. The value of v = 0 implies that the assigned
power is a fraction of the total available power. The value of v = 1 implies that
the assigned power relies on the channel condition between the access point m and
the considered user k. Similarly, for the eMBB APs and users. According to [81], we
assume that the length of a CI is 200 ≤ N ≤ O(104), where N = 200 corresponds to a
network with high mobility and high channel dispersion, whereas N = O(104) reflects
a network with low user mobility and low channel dispersion. We set N = 5 ∗ 104.
The APs are deployed in a urban dense micro-cell scenario matching the 3GPP model
for the 2 GHz band. According to that model, for each m-AP and k-UE, we evaluate
the channel gains as:

βkm[dB] = −30.5− 36.7 log10(dkm/1m) + Fkm (3.49)

where the dkm is the 3D distance from the m-th AP of k-th UE and Fkm ∼ N (0, 42)

is the shadowing term. The shadowing fading from the pair m-th AP and k-th UE
to the pair j-th AP and i-th UE has a correlation given by:

E[FkmFij] =

{
422∆ki/9 m if m = j

0 if m ̸= j
(3.50)
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Figure 3.7: Spectral efficiency of the two services URLLC (lower plot) and eMBB
(upper plot) multiplexed in the same area in the CfmaMiMo system for the two
considered PAs. For the eMBB, the spectral efficiency is shown for both scenarios
with and without URLLC traffic.

where ∆ki is the distance of user k from user i. The second row reflects the shadowing
effects for different APs that is assumed to be zero. The reason is that APs are
typically distributed in the network at a distance larger than tens of meters and
purposely deployed to view the deployment area from different directions than other
APs. The coherence bandwidth is assumed to be Bc = 1 MHz. Finally, the eMBB
packet payload size is set to be = 1500 bytes and the URLLC size to bu = 32 bytes,
according to the standard.

3.3.7.2 Results and Discussions

We show the average spectral efficiencies and the cumulative distribution functions
(CDFs) of the throughput of URLLC and eMBB users for the two different pilot
assignment schemes against the number of users. To show the benefits of the spatial
diversity offered by the Cf-maMiMo, we analyze also the case of eMBB traffic only,
without any interference from URLLC users. The average spectral efficiency vs. the
number of UEs per service is depicted in Fig. 3.7 for the eMBB with and without
URLLC traffic (upper plot) and for the URLLC (lower plot). As expected, in a
single-service deployment scenario, the spectral efficiency is higher with respect to
the multi-service scenario and this reflects in a higher throughput of the eMBB users
in the absence of URLLC traffic, as shown in Fig. 3.8 for the two exemplary cases
of 40 and 100 UEs. Apparently, the PA scheme does not have any impact on the
performance, but this point deserves further investigations.

The Fig.s 3.8 and 3.9 represent the CDFs of the throughput for the eMBB and
the URLLC services, respectively, for the two considered pilot assignment schemes
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Figure 3.8: CDFs of the eMBB throughput for different numbers of UEs for the two
considered PAs.

in the proposed cell-free massive MiMo radio access network. We notice that the
throughput does not show any improvement when the more sophisticated greedy PA
scheme is applied. Increasing the number of users from 10 to 100 per service, while
keeping constant the number of APs, M = 200, produces at first an improvement
of the throughput (from 10 to 40 UEs), but then a slight performance downgrade in
the case of multiplexed eMBB and URLLC. This is related to the main condition of
the cell free massive MiMo asset, that is M >> K, i.e. the number of APs must be
much greater than the number of served users. Indeed this effect is not evident in the
eMBB CDFs without URLLC traffic, because in this case the number of APs is twice
the number of UEs. When M approaches the number of UEs in the area, the spectral
efficiency expression (3.41) should account also for the beamforming uncertainty gain.

For the URLLC, we observe a similar behavior, with the throughput re-scaled
according to the URLLC traffic characteristics. Moreover, Fig. 3.9 shows that for low
levels of interference, i.e. for small numbers of users (i.e., 10 or 40), the greedy PA
scheme slightly outperforms the random PA; instead, at high interference regimes,
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Figure 3.9: CDFs of the URLLC throughput for different numbers of UEs for the two
considered PAs.

i.e. with 70 or 100 users per service, the adopted PA scheme does not have any effect.
Finally, looking at the intersection between the throughput CDFs curves and the

reference values per service Rth
u and Rth

e reported in Fig.s 3.8 and 3.9, we may infer
that the service slicing in the proposed Cf-maMiMo RAN guarantees the fulfillment
of the QoS requirements for eMBB users with a probability of 100%, whereas for the
URLLC the outage probability remains at acceptable levels.

3.3.8 Conclusion and future directions

In this work we studied the coexistence of URLLC and eMBB service on a cell free
massive MIMO RAN. In particular, we devised a new theoretical model accounting
for new assumptions related to network slicing applied to the CfmaMiMo to multiplex
the heterogeneous services.

We introduced two customized procedures to assign pilot sequences to users,
namely the Random PA and Greedy PA, where the latter has been defined with
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the purpose of minimizing the network slice pilot contamination. The results show,
however, that in the proposed configuration the PA choice does not influence the
performance except in a low interference regime. This point deserves further investi-
gations.

Future directions of this work include the performance evaluation of the same
system with different propagation conditions and different precoding techniques, also
relaxing the assumption of the orthogonality between the two sets of pilot sequences.
Finally, we plan to study alternative pilot procedure assignments, including imple-
mentations based on reinforcement learning algorithms.

3.3.9 Derivation of the SE terms

In the following we report the detailed calculations of the terms Su and Iu,e of the
closed-form expression (3.41) for the spectral efficiency. We remind that for a user
i served by the m-th AP the channel estimation error is ϵmi = ˆgmi − gmi, and, as
in [81], the following conditions hold: E{ϵmi ˆgmi} = 0 and E{ϵmi(ỹ

(U)
mi )

H} = 0. This
is due to the fact that the channel estimation error ϵmi and the estimates ˆgmi are
jointly Gaussian distributed, thus they are uncorrelated. For the Su term in the SE
expression we have:

|Su|2 =

∣∣∣∣∣E
{ ∑

mu∈MU

√
N

(U)
p ρugmu,uĝmu,u

}∣∣∣∣∣
2

=

∣∣∣∣∣
√

N
(U)
p ρuE

{ ∑
mu∈MU

gmu,uĝmu,u

}∣∣∣∣∣
2

.

(3.51)

By expressing gmu,u in terms of the estimation error ϵmu,u, we have:

E

{ ∑
mu∈MU

gmu,uĝmu,u

}
=

= E

{ ∑
mu∈MU

(ĝmu,u − ϵmu,u) ĝmu,u

}
=

= E

{ ∑
mu∈MU

(ĝmu,uĝmu,u − ϵmu,uĝmu,u)

}
=

= E

{ ∑
mu∈MU

|ĝmu,u|
2 −

∑
mu∈MU

ϵmu,uĝmu,u

}
=

=
∑

mu∈MU

E
{
|ĝmu,u|2

}
−

∑
mu∈MU

E {ϵmu,uĝmu,u}

(3.52)
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With the condition E{ϵmi ˆgmi} = 0, we have

|Su|2 =

∣∣∣∣∣
√

N
(U)
p ρu

∑
mu∈MU

γmu,u

∣∣∣∣∣
2

=

= N (U)
p ρu

( ∑
mu∈MU

γmu,u

)2
(3.53)

where γ(mu,u) is defined in (3.35).
With the same considerations, we can obtain the term Iu,e:

E
{
|Iu,e|2

}
=

∣∣∣∣∣E
{∑

e∈KE

∑
me∈ME

√
N

(E)
p ρegme,uĝme,e

}∣∣∣∣∣
2

=

=

∣∣∣∣∣
√
N

(E)
p ρeE

{∑
e∈KE

∑
me∈ME

gme,uĝme,e

}∣∣∣∣∣
2

.

(3.54)

By expressing gme,u in terms of the estimation error ϵme,u:

E

{∑
e∈KE

∑
me∈ME

gme,uĝme,e

}
=

= E

{∑
e∈KE

∑
me∈ME

(ĝme,u − ϵme,u) ĝme,e

}
.

(3.55)

Defining

GUE = E

{∑
e∈KE

∑
me∈ME

ĝme,uĝme,e

}
(3.56)

and

Cϵĝ = E

{∑
e∈KE

∑
me∈ME

ϵme,uĝme,e

}
, (3.57)

we have
|Iu,e|2 = N (E)

p ρe |GUE − Cϵĝ|2 =

= N (E)
p ρe

(
G2

UE + C2
ϵĝ − 2GUECϵĝ

)
.

(3.58)

With some algebra, we have:

G2
UE =

∑
e∈KE

∑
me∈ME

E
{∣∣ĝ(me,u)

∣∣2}E
{
|ĝme,e|

2} =

=
∑
e∈KE

∑
me∈ME

γme,uγme,e,
(3.59)
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C2
ϵĝ =

∑
e∈KE

∑
me∈ME

E
{
|ϵme,u|

2}E{|ĝme,e|
2} =

=
∑
e∈KE

∑
me∈ME

(βme,u − γme,u) γme,e.
(3.60)

With the condition E{ϵmi ˆgmi} = 0, we have

GUECϵĝ =

=
∑
e∈KE

∑
me∈ME

E {ϵme,uĝme,u}E {ĝme,eĝme,e} = 0 (3.61)

and (3.58) simplifies to

|Iu,e|2 = N (E)
p ρe

∑
e∈KE

∑
me∈ME

[γme,e·

· (γme,u + βme,u − γme,u)] =

= N (E)
p ρe

∑
e∈KE

∑
me∈ME

γme,eβme,u.

(3.62)

3.4 Summary
In this chapter , we introduced the cell-free massive mimo radio access network topol-
ogy together with the motivation which pushed researches and engineers to the in-
field deployment. The benefits, such as huge and constant data rate or high coverage,
coming from its capabilities, allow the cell free massive mimo of outperforming the
legacy systems. This also justifies its huge deployment in different contexts. The
main aspects of this topology such as training, uplink and downlink phases have been
presented and used in the presented research work titled Multiplexing URLLC
and eMBB Traffic by Cell-Free Massive MIMO Spatial Diversity. In this
work, we devised a new theoretical model accounting our network slicing view with
the purpose of multiplexing multiple services, then we compared customized proce-
dures handling the assignment of the resources and discovered that in low interference
regime the performance are not affected by the chosen procedure.

89



90



Chapter 4

Artificial Intelligence-Supported
Resource management

In this section, we introduce the Reinforcement Learning approach. This kind of
approach belongs to the field of machine learning. Due to the capability of finding
optimal solutions for network problems even with partial knowledge of the network
scenario that the model is observing, the RL-based models are the most promis-
ing modelling methodology to overcome complex modelling issues of network prob-
lems. To understand the reason behind this huge potential we arrange this chapter
as follows: in sec: 4.1 Reinforcement Learning, we introduce the reinforcement
learning methodology including its mathematical fundamentals. In particular, in
sec 4.1.1 Markov Decision Process, Markov Game, Mean Field Game, we
present the Markov Decision Process and its alternative models following the config-
uration of the observed environment. These alternatives are Markov Game and the
Mean field game. Moreover, in sec: 4.1.2 Value and Q-value functions, optimal
policy, Q-learning, we introduce the concept of value functions, Q-value function,
optimal policy and the basic Q-learning technique. In sec: 4.1.3 Value-based tech-
niques and 4.1.4 Policy-based techniques, we introduce the most used technique
to solve the RL-based problems. Then in the sec: 4.2 From Reinforcement to
Deep Reinforcement Learning we explain why the classical Reinforcement Learn-
ing (RL)-based modelling design process of the network problem may shift to the Deep
Reinforcement Learning (DRL)-based one. Then in the sec: 4.3 DRL-based Ra-
dio Resource Management, we provide a list of interesting works touching on the
covered topic of the DRL applied to radio resource management. Instead, in the sec:
4.4 Example of RL based-modelling applied to the presented problems,
we provide basic ideas related to the application of RL-framework on the presented
problems. Those ideas focus on the definitions of the fundamental elements of the
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MDP process that eventually can be used to develop fully RL-based projects related
to the presented topics.

4.1 Reinforcement Learning
In this section, we present the basic framework of Reinforcement learning. This
framework is known in the RL-based literature as the ”Agent-Environment” inter-
acting framework or simpler RL-environment. As in fig.4.1, we have an environment

Figure 4.1: Reinforcement Learning Environment [154]

that is observed by an agent. According to the current environment’s state, the Agent
selects an action that will be applied to the environment. This will produce a state
shift towards the next stage in the environment. From the Agent’s point of view,
this is a decision-making control loop that takes in input a state and according to
the inner criteria of the decision-making function of the agents, produces, as output,
an action that will be applied to the observed environment. The control-loop execu-
tion is regulated by specific functions that can evaluate the goodness of the executed
action and its implied state. Precisely, according to the fig.4.2, the task of the RL
is to calculate a behaviour strategy, also known as policy, with the purpose of
maximizing a satisfaction criterion. In detail, this Agent-Environment frame-
work consists of a decision-maker, called the ”Agent”, operating in an environment
represented by the state st. The agent can take certain action at , as a consequence of
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Figure 4.2: Explanation of Reinforcement learning working-flow [154]

the evaluation of the current state st . After choosing an action at time t, the agent
receives reward rt+1 and finds itself in a new state st+1 depending on the current state
and the chosen action. The mathematical foundations of RL are based on presented
Markov Decision Process (MDP) in 4.1.1. Moreover, in sec.4.1.1, we introduce also
the alternatives of the MDP that are known as the Markov game and Mean Field
Game. Also, we introduce the concept of value functions and optimal policy.

4.1.1 Markov Decision Process, Markov Game, Mean Field
Game

The MDP is the basic describing formalism of RL environment. In particular, it
is a discrete-time stochastic control process. The MDP can be described by a tuple
(S,A, p, r), where S is a the states set, A is the actions set, p : (S × A) −→ (S) is a
transition probability function giving the probability to reach state st+1 from state st

and the execution of action at. The r : (S × A) −→ (R) is the reward function giving
the reward rt that is the obtained immediate reward after action at is performed.
The fig.4.3 describe the MDP’s fundamental property. It means that the future of

Figure 4.3: Markov decision process description [154]

the process only depends on the current state, and the agent has no interest in the
full history. Formally the probability of being in the state st+1 depends only by the
previous state st and the performed action at. It can be described as follow:

p(st+1|s0, a0, ..., st, at) = p(st+1|st, at) (4.1)
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where p is the transition probability function earlier described. As we said before,
the task of the agent in the RL-the based framework is to find the best behaviour
strategy or policy maximizing a satisfaction criterion. Formally, let’s this policy π

a function mapping a state s with action a, that is π : (S) −→ (A). The goal of the
MDP consists in finding the optimal policy π∗ that maximizes the reward function.
The MDP can be finite or infinite time horizon. Due to these features, the objective
function changes. In particular,

π∗ = argmaxπ

{
E{
∑T

t=0 γr(st, π(st))} finite time horizon T
limT→∞ infE{

∑T
t=0 γr(st, π(st))} infinite time horizon T

(4.2)

where γ ∈ [0, 1] allows the definition of discounted values for the rewards. The γ

factor defines how important the future rewards respect the current one. In other
terms, if γ = 0, the agent is said to be ”myopic” because it tries to maximise always
the current rewards. In contrast, if γ −→ 1, the agent will strive for a long-term higher
reward. With MDPs, generally, we assume that the system’s state is fully observable

Figure 4.4: Deep Reinforcement Learning Taxonomy [154]

by the agent. However, in many cases, the agent only observes a partial state of
it. This is the case of a complex scenario where the formalisation of the whole
state of the environment is very complex or impossible. However, the MDP with
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partially observed state, that is called Partially Observed Markov Decision Process
(POMDP), can be altered with the introduction of observation of the system and
observation probability function. In this case, the POMDP can be formalised as the
tuple (S,A, p, r, Ω,O). The difference respect with to the classical MDP definition is
the presence of Ω,O components. Precisely O : (Ω×S×A×S) −→ [0, 1] is a function
returning the probability that the agent obtains the observation o ∈ Ω1 after action
at ∈ A is taken at state st ∈ S and the agent moves to state st+1 ∈ S.At each
iteration, the agent being in the state st, selects an action at based on its belief about
the current state st, i.e. b(st), and observes the immediate reward rt and current
observation o. Based on the observation o and its belief about the current state b(st),
the agent, then, updates its belief about the new state st+1, i.e., b(st+1). The update
is regulated according to [155] by the following:

b(st+1) =
O(o|st, at, st+1)

∑
s∈S p(st+1|st, at)b(st)∑

st+1∈Ω O(o|st, at, st+1)
∑

s∈S p(st+1|st, at)b(st)
(4.3)

. Similarly to MDP model, the agent in POMDP aims to find the optimal policy π

to maximize its expected long-term discounted reward defined as in 4.2. Since the
radio access network is a complex network segment, it is reasonable to think that a
single agent monitoring the whole segment is not tractable. Therefore is preferable
the definition of a multi-agent framework for solving network problems. To model
a multi-agents framework, the basic MDP has to be converted either in a Markov
Game (MG) or and Mean Field Game (MFG). The MG, in game theory, is a
dynamic game with probabilistic transitions played by multiple players/agents. The
MG is defined as the tuple (I, S, {Ai}i∈I , p, {ri}i∈I) where

• I ≜ {1, ..., i, ...I} set of players;

• S ≜ {S1, ..., Si, ...SI} is the global states space set where Si is the Si’s states
space set.

• {Ai}i∈I are the set of actions space and Ai is the action space set of agent i

• {ri}i∈I is the set of payoff functions defined as ri : (S × A1 × ... × AI) −→ R.
The payoffs are obtained after the executions of all the actions of the agents.

• p : (S × A1 × ... × AI) −→ [0, 1] is the transition probability function of the
Markov game

1instead Ω is the set of observation
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In the Markov Game, all the agents start at initial state s0 and after the observation
of the current state st, they will select an actions at = {at, ..., ait, ...aIt} and after the
execution, they will receive the payoff rit from the application of the reward function
and the new observation. Contemporary, the system will transit to the new state
st+1 according to the probability p(st+1|st, at). In this game the agents try to find
their optimal policy Π = {π∗

1, ..., π
∗
i , ...π

∗
I} that is called Game’s Equilibrium.

The equilibrium of the game corresponds to a situation where the expected long-run
rewards functions provide the optimal values, that is E{

∑∞
t=0 γr

i
t(st, π

∗(st))}. When
the number of the player and state set is finite the game equilibrium is called Nash
Equilibrium. With an infinite state set, the reward payoff is the discounted one.2. In
general, a N -stochastic games become hard to analyse when N −→ ∞. In this case, the
MFG is a useful framework to manage such games where there are N = {1, 2, ..., N}
players. The basic idea of MFG is the following:

• Assume that N players are identical, indistinguishable and interchangeable
(Homogeneous Hypothesis).

• Assume that the reward and the dynamic for each player are known.

• So, when N −→ ∞ the global state S of the all players can be split in Si
t and pop-

ulation state S−i
t with population distribution µt(s

i
t) = limN−→∞

∑N
j ̸=i,j=1 Isjt=sit

N
.

Isjt=sit
= 1 when sjt = sit and 0 otherwise.

• Due to the Homogeneous Hypothesis of the players, it is possible focus on rep-
resentative player i and solve the problem of maximizing the expected long-run
payoff E{

∑∞
t=0 γr

i
t(st, πt(st, µt(st)), µt(st))|s0 = s} with the constraint st+1 ∼

P(st, at, µt)

Hence, according to the main setting-idea of MFG, at time t, after the representative
player chooses her action at according to some policy πt, she will receive reward
rt(st, at, µt) and its state will evolve under a controlled stochastic dynamics of a
mean-field type P (.|st, at, µt). Here, the policy πt depends on both the current state
st and the current population state distribution µt such that π : P(S) −→ P(A).
However, in the classical MFG, the reward r and the dynamic for each player P are
unknown. This allows us to cover the major part of possible scenarios. In that case,
at time t, after the representative player i chooses the action at according to some
policy π : (S × P(S) −→ P(A), it will receive a reward rt(st, at,Lt) and its state will

2Further details about the stochastic game can be found in [156]
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evolve according to P (.|st, at,Lt). The objective of the player is to solve the following
control problem E{

∑∞
t=0 γr

i
t(st, πt(st, µt(st)),Lt)|s0 = s} with st+1 ∼ P(st, at,Lt).

Here, {Lt}∞t=0 with Lt = Pst,at ∈ P(S × A) has marginal distributions at for the
population action and µt for the population state. According to this setting, also
known as the general version of MFG, we can define the game’s equilibrium according
to the [157] as: given the game profile G∗ = ({L∗

t}∞t=0,{π∗
t }∞t=0), G∗ represent a Nash

equilibrium if

1. for any πt and fixed {L∗
t}∞t=0 and initial state s ∈ S

E{
∞∑
t=0

γrit(st, π
∗
t (st, µt(st)),L∗

t )|s0 = s} ≥ E{
∞∑
t=0

γrit(st, πt(st, µt(st)),L∗
t )|s0 = s}.

(4.4)

2. Pst,at = L∗
t for all t ≥ 0, where st, at∞t=0 is the dynamics under the policy π∗

starting from s0 ∼ µ∗
0,with at ∼ π∗

t (st, µ
∗
t ), st+1 ∼ P (|st, at,L∗

t ), andµ∗
t being

the population-state marginal of L∗
t .

When {L∗
t}∞t=0 is fixed the condition 1 captures the optimal π∗. The condition 2

ensures the “consistency” of the solution that is, it guarantees that the state and
action distribution flow of the single player does match the population state and
action sequence L∗. Further detail about MFGs can be found in [157].

4.1.2 Value and Q-value Functions, Optimal Policy,
Q-Learning

In the section 4.1.1 we have introduced the expected long-run reward function that is
used to manage the agent decision-making. By the way, it can be defined as follow:

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
T∑

k=0

γkrt+k+1 (4.5)

and called ”Return Rt”. To find the optimal policy π∗ as in 4.2, we have to define
the ”Value-function V”. This Value-function describes how it is beneficial for an
agent to reach a given state s. This depends on the agent policy π of course. This
value can be defined as:

V π(st) = E{Rt|st = s} = E{
T∑

k=0

γkrt+k+1|st = s} (4.6)
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Similarly, the ”Action-Value function Q” represents the value of taking action a

in state s under a policy π as:

Qπ(st, at) = E{Rt|st = s, at = a} = E{
T∑

k=0

γkrt+k+1|st = s, at = a} (4.7)

The presented problem in 4.2 can be rewritten according the definition of 4.7 or 4.6
as follow:

π∗ = argmaxπQ
π(s, a) (4.8)

π∗ = argmaxπV
π(s) (4.9)

To find the optimal policy π, we need to find the optimal values maxπQ
π(s, a) or

maxπV
π(s). As described in [158] and [159],those optimal values are obtained by

solving the Bellman equation:

Q∗(st, at) = r(st, at) + γE{maxat+1Q
∗(st+1, at+1)} (4.10)

V ∗(st) = γEπ{r(st, at) +maxatV
∗(st+1)} (4.11)

4.1.3 Value-based Techniques

The most used equation is the eq. 4.10 and it can be solved by using the Value-based
technique. The first one we introduce is the Q-learning. It retrieves the optimal
values of the eq. 4.8 iteratively using the defined Bellman equation updating rule
as:

Q(st, at) = Q(st, at) + αt[rt(st, at) + γmaxαt+1Q(st+1, at+1)−Q(st, at)] (4.12)

where αt is the learning rate that defines how much the new information contributes
to the value of the existing Q(st, at). The main idea behind the updating-rule 4.12
relies on finding the time difference between the current Q(st, at) and the predicted
rt(st, at) + γmaxαt+1Q(st+1, at+1) − Q(st, at)

3. This algorithm uses the previous up-
dating rule to build all possible Q-values for each (st, at) pair. The termination state
is reached when a certain number of iterations are executed or when all Q-values have
converged. In this case, we have the optimal policy π∗ determining the optimal action
to take in each state such that Qπ∗

(st, at) is maximized for each state in the space set.

3More details about the Q-learning algorithm can be found in [158].
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In other terms, the policy π∗ says that in any state we take the action that will get
the highest cumulative reward. Q-learning technique suffers from the curse of dimen-
sionality, in the sense that, this technique can be applied only to problems with low
dimensionality of both state and action spaces. This afterwards makes Q-learning-
based approaches not scalable. To overcome this limitation, the Deep Q Network
(DQN) technique has been developed. This technique inherits the benefits of clas-
sical Q-learning. The main idea is to replace the table in the Q-learning algorithms
with a deep neural network trying to approximate the Q values. The approximating
function, represented by the deep neural network, is Q(st, at, |Φ) where Φ is the vector
containing the vector parameters of the DNN. The fig.4.5 shows an example of DQN-

Figure 4.5: Deep Q network learning architecture example [154]

based architecture. Here the replay memory is denoted by D, and it is mainly used
to break the correlation between the training samples, i.e., (st, at, rt, st+1), by mak-
ing them independently and identically distributed i.i.d. Those training samples are
stored in the replay memory and the agent will select a mini-batch to train the neural
network. To enhance the stability of the DQN model, the target Q network is used,
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whose weights will be periodically updated to track those of the main Q network.
The DQN approach is usually used to find the optimal policy π∗. This means that
the Agent, by using the neural networks, will evaluate the derived optimal Q-value
function from the iterative Bellman Equation:

Q(st, at) = r(st, at) + γmaxat+1Q(st+1, at) (4.13)

and the DQN algorithm is then optimized by iteratively updating the weights Φ of
its neural network to minimize the following Bellman loss function:

L(Φ) = Est,at,rt,st+1∈D[r(st, at) + γmaxat+1Q(st+1, at|Φ′)−Q(st, at|Φ)]2 (4.14)

where Φ′ is the vector containing the parameters of the Q target network. This kind
of algorithm can be applied in each scenario with a discrete set of actions. However,
there are limitations to its usage. This limitation emerges when the set of the action
is continuous and it requires quantization. This, in turn, makes the DQN architecture
quantization errors prone. Moreover, the DQN algorithm tends to overestimate the
Q-values, which can degrade the training process and lead to sub-optimal policies. To
enhance the DQN, double DQN has been developed. With the classical DQN, the
overestimation results from the positive bias caused by the max operation employed in
the Bellman equation. Specifically, the root cause is that the same training transitions
are utilized in selecting and evaluating an action. In [160], the authors proposed a
solution to this problem. They propose two Q-value functions. One is for selecting the
best action and the other one is for evaluating the best action. The action selection
is still based on the online training parameters Φ. Φ′, instead, is used to evaluate
the action. with this approach, the value of the policy is still estimated based on the
current Q values and the training parameters are updated via switching between Φ

and Φ′. In particular, according to [160], the evaluation of target Q value follows:

Q(st, at) = r(st, at) + γQ(maxat+1Q(st+1, at|Φ), Φ′) (4.15)

and as Bellman loss function, double-DQN uses the following:

L(Φ) = Est,at,rt,st+1∈D[r(st, at) +Q(maxat+1Q(st+1, at|Φ), Φ′)−Q(st, at|Φ)]2 (4.16)

With these changes, double DQN solves the aforementioned problem of the Q−value

overestimation. However, it still suffers from some shortcomings. An alternative ver-
sion providing an enhancement to the classical DQN and double DQN is represented
by the presented approach named Dueling DQN in [161]. They proposed a new
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point of view of the Q value function. They assess that this function can be ex-
pressed by the sum of two terms. One evaluates the being in a particular state, also
known as state-value V (s), and the second evaluates the importance of selecting a
particular action given a state called A(s, a). So, the Q value function is expressed
as Q(s, a) = V (s) + A(s, a), then they suggest having two main independent paths
of fully-connected layers instead of having only a single path as the case in the basic
DQN. These paths will estimate the terms V (s) and A(s, a) and then will be com-
bined to provide Q(s, a). Here the loss function is the same as in previous techniques,
DQN and double DQN.

4.1.4 Policy-based Techniques

The policy-based techniques are part of the policy gradient family methods. They
provide an alternative way to solve the MDP problems having high dimensionality and
continuous action spaces. Recall that, the main object is the Q-value. If the Q-values
are known, the optimal policy is defined by selecting actions that maximize the Q-
values in each state. However, in environments with continuous action spaces, the Q
function cannot be obtained as it is impossible to conduct a full search in a continuous
action space to obtain the optimal action. Hence, the value-based approaches are
inapplicable to problems characterized by their continuous action space, and the
policy-based methods are applied instead. With the policy-based techniques, we avoid
calculating Q values and directly obtain the optimal policy π∗ = πΦ∗ that maximizes
the agent’s expected accumulated reward J defined as follows:

J(Φ) = EπΦ
[
∞∑
t=0

γtr(st, at)]
2 (4.17)

The policy gradient approaches learn the optimal network training parameters Φ∗ via
performing gradient ascent on the function J .

∇ΦJ(Φ) = EπΦ
[

T∑
t=0

∇logπΦ(at|st)QπΦ(st, at)] (4.18)

In this formula, the function QπΦ(st, at) is unknown. By the way, some algorithms
have been developed to estimate this value and they are REINFORCE Algorithm,
Actor-Critic Algorithm, A3C Algorithm, Deep Deterministic Policy Gradient (DDPG)
Algorithm. The main idea of The REINFORCE algorthm is the increment of the
certainty of good actions and reduction of the certainty of bad actions. Respect
with Deep Q-learning approach, the REINFORCE algorithm does needn’t a replay
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buffer during training. Although this enhances its convergence speed, it needs much
more interaction with the environment. Also, since it depends on the probabilities
returned by the network, which incorporate uniform random agent behaviour, the
REINFORCE algorithm performs the exploration process. Then, the target network
isn’t required in the REINFORCE algorithm as the Q values are obtained from the
experiences in the environment. The disadvantage of the REINFORCE algorithm is
that it suffers from high variance, meaning that any small shift in the return leads to a
different policy. This limitation motivated the actor-critic algorithms. The main idea
of Actor-Critic Algorithm A2C is the reduction of the variance that will enhance
the convergence speed and stability of the policy gradient method. This approach
utilises the accumulated discounted reward J to obtain the gradient of the policy
J , which provides the direction that enhances the policy. The critical part of the
algorithm reduces the variance of gradient estimates since it utilises various samples4.
The selection of the best action in any state is based on Q(s, a) = V (s) + A(s, a). A
Bellman-based and trained deep neural network is used to estimate V (s). Then, the
estimated value is used to obtain the policy gradient and update the policy network
such that the probabilities of actions with good advantage values are increased. Hence,
the actor is the policy network π(a|s) that takes actions by returning the probability
distribution of actions, while the critic network evaluates the quality of the taken
actions, V (s). This algorithm is also called the advantage actor-critic method (A2C).
The updated rules of the training parameters of the Actor and Critic neural networks
follow the rule already shown in [158]. The asynchronous advantage actor-critic
algorithm A3C is used to solve the high variance issue in gradients that results
in non-optimal policies. The A3C algorithm conducts a parallel implementation of
the actor-critic algorithm, where the actor and critic share the network layers. A
global Neural network is trained to output action probabilities and an estimate of
the advantage function. Several parallel actor learners are instantiated with copies
of both the environment and training parameters of the global neural network. Each
learner independently interacts with the environment and gathers training transitions
to derive the gradients concerning its parameters. Learners then will propagate their
gradients to the global neural network to update its weights. This mechanism ensures
a periodic update of the global model with diverse transitions from each learner. The
Deep Deterministic Policy Gradient (DDPG) Algorithm, represented by the
fig.4.6, belongs to the actor-critic family, and it combines both Q-learning and policy
gradients algorithms. It consists of actor and critic networks. The actor-network takes

4whereas the REINFORCE algorithm utilises only a single sample trajectory.
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the state as its input, and it outputs the exact ”deterministic” action, not probability
distribution over actions as in the actor-critic algorithm. Whereas the critic is a Q

value network that takes both the state and action as inputs and outputs the Q-value
as a single output. As shown in [162], the DDPG is based on the DPG algorithm
where both the policy and critic are deep neural networks. The DDPG algorithm
creates a copy of both the actor and critic networks to compute the target values.
The weights of these two target networks are then updated to slowly track the weight
of the learned network to provide more stable training. Then the critic network is
updated to minimize the Bellman loss function as in [162].

Figure 4.6: Deep Deterministic Policy Gradient Architecture provide in [154]

4.2 From Reinforcement to Deep Reinforcement
Learning

In classical tabular RL, such as the Q-learning-based technique, usually, state and ac-
tion spaces are small enough for the approximate value functions to be represented as
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arrays or tables. In this condition, it is simple to find the optimal policy with specific
methods, as in [158], inefficient way. However, these previous methods suffer from a
difficult design issue when they come to real-world implementations. To overcome the
problem of the tabular representation, we can design a parameterised value function
with a weight vector. It is the case of a deep neural network that, at this point,
can solve the problem without complete knowledge of the aforementioned state and
action sets. When a deep neural network is used to implement the decision-making
process of the agent, we are using a deep reinforcement learning methodology to solve
a specific problem. DRL can complete complicated tasks with lower prior knowledge
thanks to its ability to learn from scratch. So, the need of shifting from classical RL
to DRL stems from the following considerations:

• curse of dimensionality. It refers to the fact that space and action sets cannot
be stored following the tabular form. To overcome this issue, as in [163], function
approximation is used to obtain features from models, value functions or policies
and then attempts to generalise from them to construct an approximation of
the entire function by deep neural networks.

• Exploration-exploitation dilemma In classical tabular-based RL, the uncer-
tainty about the reward function and transition probabilities can be quantified
as confidence intervals or posterior environment parameters. In DRL instead,
an agent starts accumulating information about the environment, it has to nav-
igate a trade-off between learning more about the environment (exploration) or
pursuing the most promising strategy with the experience gathered (exploita-
tion). Moreover, in DRL different settings are applied. One is that the agent
explores only when the learning opportunities are valuable enough so that it
can perform well without a separate training phase. Another one is that the
agent follows a training policy during the first phase of interactions with the
environment to accumulate training data and hence learn a test policy.

• Convergence and stability. For RL, only tables and linearly parameterised
approximating functions can be used to guarantee convergence. When prior
knowledge is not available to guide the selection of basis functions, a large
number of basis functions must be defined to evenly cover the state-action
space and this is impractical in high-dimensional problems. To address this
problem, non-linear approximating functions, eg. Deep Neural networks, have
been applied to obtain features of certain parts of states with replay buffers and
target networks.
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Given this consideration, for a practical system is preferable to use DRL-based ap-
proaches.

4.3 DRL-based Radio Resource management
The DRL-based approaches have been used to address different radio resource issues
such as power allocation, and spectrum allocation. However, these approaches have
been widely used to solve even other issues such as access control, rate control, and
the joint use of these radio resources. In this section, we present a list of interesting
works related to power and spectrum allocation56.

4.3.1 DRL for Power Allocation

In this section, we present a list of interesting works related to the issue of power
allocation that has been addressed with DRL-based approaches. The energy-efficient
communication is achieved via efficient power allocation to ensure high QoS, better
coverage, and enhanced data rate. Power allocation is involved in important network
operations such as modulation and coding schemes, path loss compensation, interfer-
ence management, etc. On the other hand, almost all modern user devices and IoT
sensors are battery-powered with very limited battery capacity and charging capa-
bilities. Hence, designing energy-efficient resource allocation schemes, protocols, and
algorithms becomes fundamental in dynamic wireless network environments. The
classical approaches are iterative and model-driven. Moreover, they are typically ex-
ecuted in a centralized fashion in which a network controller has full channel state
information. In such a mechanism, BSs, wireless APs, and/or user devices require to
wait until the centralized controller’s iterations converge and send the outcome back
over backhaul links. These approaches become impracticable in a large-scale sys-
tem where is hard to obtain accurate and instantaneous channel state information.
Hence, DRL techniques are used instead due to their superiority in obtaining optimal
power allocation policies based on limited CSI. In [164] the authors propose a multi-
agent Q-learning-based model to address the problem of downlink power control and
rate adaptation in cellular systems. The agent is a network entity that resides in
the cell, such as an eNB. The action space is discrete, corresponding to allocating
downlink transmit power of the cell. The state space comprises four elements; cell
power, average reference signal received power, average interference, and cell reward.

5To be coherent with the covered topic my PhD studies program
6About other issues that are not treated here, we invite the interested to read the work [154]
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The reward function is continuous and defined based on the α-fair resource alloca-
tion utility function. It is defined by the performance indicator associated with all
users in the radio cell. Their results show that the agent quickly learns the power
control policy to provide significant energy savings and fairness across the network
users. In [165], the authors propose single and multi-agent actor-critic DRL methods
to address the problem of downlink sum-rate maximization through power allocation
in multi-cell, multi-user cellular networks. In their model, the agents are the BSs.
Their state space is continuous and comprises network CSI and the transmit power
allocation by previous BSs. The action space is continuous too and corresponds to
the power allocation, while the reward function is the cellular network sum SE. Ex-
perimental results demonstrate that their DRL-based method can achieve higher SE
than conventional optimisation algorithms. The authors of [166] address the problem
of throughput maximisation in CRANs via power allocation in vitalised 5G networks.
They propose a multi-agent DQN-based DRL algorithm to solve the problem in which
the agents are each linked between RRH and the user. The action space correspond-
ing to the transmit power is discrete, The state space representing the current partial
CSI and the respective power set is continuous. The reward of each slice is discrete,
defined as a function of the sum of its tenants’ rates. Given this model, the results of
their simulation show that their proposed scheme achieves a higher sum rate compared
to greedy search-based power allocation approaches. The authors in [167] design a
multi-agent DQN and DDPG-based DRL framework to address the problem of power
control in a Heterogenous network. In this model, the APs are the agents and they
are equipped with a local DNN. The state space of each local DNN is continuous
and represents the local state information, while the local action space is continuous
and represents the transmit power. The method they propose is called multiple-
actor-shared-critic (MASC). Its main idea is the following: we have a collection of
multiple and identical actor DNNs and only a shared critic DNN. Historical global
information is provided to the critic DNN, and the output of the critic DNN will
evaluate whether the output power of each actor DNN is optimal or not from a global
view. The reward function is continuous and is based on the data rate between each
AP and its associated user. Simulation results show that their proposed algorithm
outperforms better respect with their competitors in terms of both convergence rate
and computational complexity. In [168] proposes a distributive multi-agent DDPG-
based DRL algorithm to address the problem of sum-rate maximization via contin-
uous power control in wireless mobile networks. In this model, the transmitter is
considered as the agent and the agent’s state is a combination of features such as the
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local information, interfering neighbours, and interfered neighbours groups. The ac-
tion is expressed by the choice of the transmit power level, while the reward function
is based on the sum rate of the sum-rate maximisation problem. Their results show
that the method gives better performance than the conventional approaches. In [169]
the authors propose a data-driven approach based on a multi-agent DQN algorithm to
address the downlink power control in dense 5G cellular networks. Here, the agents
are the BSs, whose state space is continuous. It is composed of path gain, SINR,
Dl rate, and downlink power. The action space is discrete and it is represented by
the Dl power, while the reward is a function of the network-wide harmonic mean of
throughput. Their simulation results show that their approach performs better than
the fixed power allocation approach. In particular, this method can improve data
rates at the cell edge while ensuring reduced transmitted power.

4.3.2 DRL for Spectrum Allocation

In this section, we present a list of interesting works related to the issue of spectrum
allocation that has been addressed with DRL-based approaches. In modern wireless
networks, a massive number of user devices may request to simultaneously access
the wireless channel. This may imply overload and congest the channel causing
communication failure and unreliable QoS. Hence, efficient communication schemes
and protocols must be developed to address this issue. These schemes may include
various access scheduling and prioritization techniques. Moreover, modern wireless
networks require dynamic load balancing and access management methods to support
the massive capacity and connectivity requirements of future wireless networks while
utilizing their radio resources efficiently. Anyway, the major part of the optimization-
based models which you can define to meet those requirements, belong to the set of
combinatorial and no-convex problems requiring perfect information to obtain optimal
solutions. The acquisition of this information is impracticable in real systems and this
forced the network engineer to use other kinds of methodologies. In this context, DRL-
based techniques have attracted considerable interest recently due to their robustness
in making optimal decisions in dynamic and stochastic environments such as wireless
networks. In [169] the authors proposed a distributed multi-agent DQN. In their
approach, the agents are each user. The action space is discrete and includes the
transmit power change for each channel. The state space is discrete and corresponds
to the transmit power on wireless channels. The reward is a continuous function
based on the spectrum efficiency and the penalty related to the interference with
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primary users. Experimental results show that the proposed model with network-
based DQN achieves a higher reward with both the achievable data rate and primary
user protections. The authors in [170] presented a DRL-based model to address the
problem of dynamic spectrum allocation in distributed wireless networks. They design
a channel access scheme to maximize channel throughput according to fair channel
access. The agents are the users. The action space is discrete and includes the action
”0” indicating if the user does not attempt to transmit packets during the current
time slot, and the action 1 indicating if it has attempted to transmit. The state space
is also discrete and consists of four main elements that are

• each user action was taken on the current time slot;

• channel capacity (which could be negative, positive, or zero);

• a binary acknowledgement signal showing if the user transmits successfully or
not;

• a parameter that enables each user to estimate other users’ situations.

The reward is a discrete binary function that takes the value of ”1” if the user trans-
mits successfully; otherwise, it is ”0” meaning that the user transmitted with col-
lision. Their results show that the proposed DRL-based model can maximize the
total throughput while trying to make fair resource allocation among users. In [171]
the author proposes a multi-agent deep recurrent Q-network-based model to address
the problem of dynamic spectrum allocation in dynamic heterogeneous environments
with partial observations. The considered scenario includes users sharing multiple
independent radio channels. The users are the agents. The action space is discrete
and it includes the chances of transmitting in a particular band or waiting during
the next time slot. The state-space set is discrete and it includes the information
indicating whether the channels are occupied, idle, or unknown. The reward function
is discrete. It returns two per-channel values that are 100 for successful transmission
and −50 for collision. With their results, the authors show that the proposed model
handles various dynamic communication environments, and its performance outper-
forms the ”myopic” conventional methods. Moreover, the performance is very close
to classical and optimisation-model-based approaches. In [172], the authors present
a multi-agent DRL network model combining recurrent neural networks and DQN
that addresses the problem of finding the optimal dynamic spectrum allocation policy
that jointly maximizes channel utilization and minimizes the packet loss rate. In the
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model, each user acts as an agent which has a discrete action space including the
choice of a channel for transmission at time slot t. The state space is discrete and it
is composed of three components that are

1. a binary transmission condition η, which is 1 if the transmission is successful
and 0 otherwise;

2. the channel selection action

3. the channel status indicator after each dynamic access process.

The reward is a discrete binary function which takes a positive value if η = 1, other-
wise it takes the value of 0. Their results show that their model

1. reduces the packet loss rate from 0.8 to around 0.1;

2. outperforms Slotted-Aloha and DQN in terms of reducing collision probability
and channel idle probability by about 60%;

3. enhances the transmission success rate by around 20%.

The last work that we present is [173]. Here, the authors addressed the problem of
dynamic spectrum allocation in cognitive radio networks. To solve this problem, they
proposed an uncoordinated and distributed multi-agent DQN model. In this model,
the cognitive radios are the agents. They have a discrete action space including the
possible transmit powers. Also, the state space is discrete and it includes a state
indicating whether the limits for dynamic spectrum allocation are being met or not.
This value depends on the relative throughput change at all the primary network
links. Moreover, they use a discrete reward function based on the throughput of the
links and the environment’s state. Their experimental results show that their model
finds policies that yield performance within 3% of an exhaustive search solution, and
it finds the optimal policy in nearly 70% of cases.

4.4 Example of RL-based-modelling applied to
the presented problems

In this section, we just provide the main idea of how to apply the RL paradigm to the
presented problems. In particular, we provide a way to describe the Markov decision
process that can be used to model the presented problems. The main purpose of this
work is to demonstrate that the RL approaches can perform well in this context(in
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the sense that they solve the problem first) and then, by comparison, they can even
perform better concerning the classical approaches.

4.4.1 Dynamic selection of numerology and bandwidth part
for effective ORAN slicing

The first step for applying the RL paradigms is the definition of the basic elements
composing the Markov decision process which are: the States Set, Actions Set and
Reward function. Given the nature of the system is impossible to define a transition
probability function. Given the considered system cellular, its state S corresponds to
already defined. So, S = {SSA, SPRA}. About the Actions Set, we can consider the
one including the change of the BWP selecting algorithm. So, this set can be defined
as follow: A = {a1, a2} with a1 = ”Take over SA algorithms with PRA” and a2 =
”Take over PRA algorithms with SA”. About the reward function, we can use the
α-fair function as in [174]. This function can be defined as follow:

R(x) =
1

1− α

∑
xi∈X

wi(h(xi)
1−α − 1) (4.19)

with α ∈ (0,∞) as a scalar coefficient, h : X −→ R as a transfer function. The X is
the set of all radio measurements or performance indicators associated with the radio-
observed environment and used for the definition of the performance measurement.
The x = [x1, . . . , x|X|] is the vector of performance indicators belonging to the set
X. So, in this work, a possible definition of the performance indicators’ set is the
following X = [LUP , Th]. The wi value is the weight associated with each performance
indicator. Hence, h has to be designed to account for all the features in X. When
this function refers to the single user i each reward Rt(x) can be approximated to a
different values, according to the values of α and weights wi as described in [164]. This
enables the agent node to optimize a different performance metric that can either be
associated with individual user devices or the whole cellular radio network. According
to the RL theory, the variable is used to define the state. to solve the problem we
declared in the dedicated section of the work, we need to use an algorithm that doesn’t
need to know all the information about the observed environment. This means that
they needn’t store all the possible combinations of state-action in a tabular. The
most promising methodology that can be used is DQN or DDQN.
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4.4.2 Effective Multiplexing of URLLC and eMBB Traffic
by Cell-Free Massive MIMO Spatial Diversity

Following the reason of the previous section, even for this work, we have to convert the
system model into something that can be managed according to the RL framework.
So, we need to describe the observed scenario following the main idea of the Markov
Decision Process. Therefore, we need

• State set S. The state of the observed system can be defined as follow: S =

{SEmbb, SUrllc} with SEmbb = {Th1, Th2, . . . , Th|KE |} and SUrllc = {Th1, Th2, . . . , Th|KU |}
representing the value of the observed throughout in the system on per-service
based.

• Action set A = {a1, a2, a3, a4} representing all the possible action which the
agent can execute in the observed system. In particular

– a1 = ”Change pilot procedure assignment from CGPA to CRPA”

– a2 = ”Change pilot procedure assignment from CGPA to CRPA”

– a3 = ”Set Equal Power Allocation Scheme v = 0”

– a4 = ”Set Channel gain based Power Allocation Scheme v = 1”

• Even here we can use the α-fairness function. Our transformation function
h is related to the outage probability metrics that is the function of the
throughput of the user. These performance metrics are associated with the
event describing a situation where the current operational condition of the
network doesn’t sustain the transmission of packets of fixed size(bu for
URLLC and be for EMBB). This means that the maximization of the reward
is constrained by the reference values, which are Rth

u and Rth
e , representing the

requirements of both considered services in the system. According to the values
of α it is possible to design agents with different levels of behaviours related to
the fairness of the resource allocation.

Even in this case, since the variables describe the environment the agent has to
interact with, we cannot use tabular-based reinforcement learning approaches. We
have to equip our agent with a Deep neural network to approximate the values of each
pair action state that will be used to find the optimal policy to solve the considered
task related to resource management. So, the most promising approaches, that have
been selected to be the decision-making core of the agent are DQN and DDQN.
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Chapter 5

Summary

In this chapter, we present the theoretical elements of the new promising Artificial
intelligence-based approach, that is reinforcement learning, leading the conversion of
5G into an automatic ecosystem never seen before. The potential of reinforcement
learning has been further increased when it’s been combined with deep learning.
This is the case of Deep reinforcement learning. Given the width of the topic we
limited the argumentation of deep reinforcement learning to the power and spectrum
allocation. Accordingly, we reviewed the most used algorithms and mechanisms.
Then we proposed the eventual application of the presented approach to our previous
works. The research activity is still on going.
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Chapter 6

Concluding remarks and future
directions

This broad study on 5G radio access networks has evidenced a few techniques that can
be used to enable flexibility in resource management with a consequent improvement
in performance. The main approaches, introducing the required flexibility for the
next generation of the radio access networks, are softwarization expressing mainly
itself with the application of new software network paradigms eg. NFV and SDN
and lastly with the NS and their alternative RL-based variation, and the adoption
of new radio access network topology such the cell-free massive MIMO. For network-
paradigms-based softwarization, we provide the presented work in sec 2.4 showing that
the benefits associated with the extension of the SDN into the RAN are remarkable
and can justify the softwarization of the RAN segment. Instead, for the flexible
radio topology-based- approach, we presented the work in sec 3.3 where we show
that even this methodology produces remarkable benefits justifying the deployment
of this cell-free based scheme in the next generation of the radio access network.
Moreover, the acquired expertise allows me to define specific future directions for
the presented work. One of them is the re-arrangement of the studied problems
according to the Reinforcement Learning-based fashion way. Other future directions
include the design of smarter resources allocating mechanisms considering additional
information concerning the ones that we have used here. Of course, this will lead to
comparison studies between these competing algorithms that will be based on specific
key performance indicators. Contemporary to this, this broad study allowed me to
brush up on capabilities already acquired during my university career and acquire
new ones which will be useful for the next future.
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This thesis is dedicated in loving memory of Bucci Ernesto.
As I promised to both of us,

Dad, I’ve finally done it.
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