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Abstract 

Non-Intrusive Load Monitoring (NILM) is the process that allows obtaining 

information about the electrical loads powered by an electrical system through a 

single measurement performed in a single point of the system itself. 

Systems based on this process provide an alternative solution to the more 

traditional intrusive one. NILM requires a reduced number of equipment and less 

occupied space, even if it presents a greater complexity in terms of processing the 

acquired data. In fact, this solution is much simpler, from the hardware point of 

view, as it requires the measurement of a voltage and a current, or often even just 

the current. However, the complexity shifts to the processing section, which must 

identify the absorption of the individual devices through the use of appropriate 

algorithms. 

The information required from an electrical loads monitoring system may 

concern their status (ON/OFF) or the electrical quantities involved in their 

operation. This information must be made available in a more or less short time 

depending on the application in which the measuring system is used. 

The most common application is to monitor the electricity consumption of 

different devices within a residential home. In this case the information must be 

updated on time intervals of the order of days or weeks. 

Today, new NILM systems are used in numerous innovative applications in 

residential environments. For example, some human activity recognition (HAR) 

and ambient assisted living (AAL) systems are based on disaggregated appliance 

activity data. Innovative commercial and industrial applications are based on the 

NILM technique, such as to implement predictive maintenance. Energy 

disaggregation is also applied to manage the generation and storage of energy in 

smart grids. Therefore, the times in which it is necessary to have information about 

the state or the electrical quantities of a load are drastically reduced, down to a few 

seconds. 



 

 

In the first part of this thesis the current state-of-the-art of NILM systems will be 

defined, paying particular attention to the most significant contributions. 

Subsequently, the applications of these systems in industrial and residential 

contexts will be described in detail. 

In the second part, three different systems will be proposed having different 

characteristics both from the point of view of the electrical quantities measured, the 

sampling frequency and the signal processing section. More specifically, the 

experimental systems created, based on a microcontroller, use Machine Learning 

algorithms to process the signals obtained from the measurement section. For each 

of the proposed systems, a wide range of measurements on test systems were carried 

out, in order to effectively evaluate their performance in real conditions. 

In the references, for better clarity, the publications resulting from this thesis are 

reported at the beginning [1]-[12]. 
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Chapter 1 

1Introduction 

The analysis of the energy consumed by individual devices powered by an 

electrical system makes it possible to identify the least efficient or malfunctioning 

devices, and to implement the appropriate actions aimed at reducing electrical 

energy consumption. Furthermore, it is possible to identify the maximum 

absorption peaks and their allocation over time. 

An analysis of this type can be conducted through intrusive load monitoring 

(ILM) systems or non-intrusive load monitoring (NILM) systems. 

In the first systems, a transducer is installed on each equipment, to measure the 

energy consumption of each individual load. These systems provide very accurate 

results, but are often too complicated to implement in an existing system, mainly 

due to space constraints that do not allow easy installation of transduction and 

communication systems. 

Non-intrusive systems measure the total absorbed power, from which the 

individual contributions relating to each load are “disaggregated”. In other words, 

the specific energy consumption model of the different electrical loads, referred to 

as "signature", is utilized. This second solution is much simpler, from the hardware 

point of view, as it requires the measurement of a voltage and a current, or often 

even just the current. However, the complexity shifts to the processing section, 

which must identify the absorptions of the individual devices through the use of 

suitable algorithms [6]. 

The type of analysis to be applied also depends on the type of installation, which 

must be defined first. The NILM system can be placed in the switch box inside a 

property or even at a long distance from it. In the first case, the NILM is a 

miniaturized system with an embedded microcontroller. This system is capable of 

acquiring and processing the signals locally. In the second case, the system is a 

computer, which processes the data transmitted to a cloud database by the local 
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smart energy meter. Local systems are capable of acquiring voltage and current 

(even with sampling frequencies of some kilohertz) processing them in real-time 

and displaying the results or storing them on a remote server [13]. Remote systems 

can only use data (normally related only to the active power) available in the cloud 

with measurement frequencies ranging from 1 Hz to 3 Hz due to limited data 

transmission and storage capabilities [14]. 

It is important to acknowledge that the widespread availability of NILM 

measurement systems is currently a significant challenge in the industry. Despite 

the presence of companies developing NILM solutions [15]-[17], they tend to focus 

on business-to-business (B2B) services, rather than offering business-to-consumer 

(B2C) sales of hardware. This is primarily due to the fact that NILM technology is 

mainly utilized for energy management and monitoring in commercial and 

industrial settings, rather than in residential homes. These companies typically offer 

a wide range of services, such as energy audits, monitoring and reporting, and 

energy efficiency consulting, to businesses and organizations. This approach allows 

them to closely collaborate with customers to gain a deep understanding of their 

specific energy usage patterns, and provide tailored solutions aimed at reducing 

energy consumption and costs. However, this presents a problem as it makes it 

difficult to compare the NILM systems proposed by research with commercially 

available NILM systems, as the latter are not readily accessible to the general 

public. 

The International Electrotechnical Commission (IEC) has defined a standard [18] 

to provide classification of NILM sensing devices for use in NILM systems, 

according to the state of the art of NILM technologies. As defined by the standard, 

a NILM system consists of: 

• a NILM sensing device (NSD) connected to the electrical installation and 

producing data relevant for load signature identification; 

• NILM analytics using the data output from the NSD and producing 

information to the users about their energy usage. 
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Figure 1.1: Element of a NILM System. 

 

 

The performance of the NILM system depends on the characteristics of the NSD 

and on the characteristics of the NILM analytics.  

The standard classifies NSD according to three essential parameters: 

• input sampling frequency, the frequency at which the electrical signals 

are sampled by the NSD; 

• output rate, the rate at which the NSD produces data that can be used by 

NILM analytics; 

• data bit rate, the average bit-per-second (bps) over an hour at which the 

electrical signals are quantified by the NSD. 

 

It also defines the classification of NSDs based on the three essential parameters 

according to Table 1.1, Table 1.2 and Table 1.3. 

 

Table 1.1: Classification of NSDs according to the input sampling frequency. 

Input 

sampling 

frequency 

f 

Parameters 

only 
< 5 kHz 

5 kHz ≤  f  

< 8 kHz 

8 kHz ≤  f  

< 100 kHz 

100 kHz ≤  

f  < 1 MHz 
≥ 1 MHz 

Class P 1 2 3 4 5 
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Table 1.2: Classification of NSDs according to output data rate. 

Output data 

rate d 
> 30 min 

30 min≧ d > 

1 min 

1 min ≧ d > 

1 s 

1 s ≧ d > 0.1 

s 
≤ 0.1 s 

Class E D C B A 

 

Table 1.3: Classification of NSDs according to the data bit rate. 

Data bit rate 

b 
< 100 bps 

100 bps ≤ b 

< 1 kbps 

1 kbps ≤ b < 

10 kbps 

10 kbps ≤ b 

< 100 kbps 
≥ 100 kbps 

Class L M H S X 

 

NSDs belonging to class P do not provide samples of electrical waveforms, but 

rather provide measurements or estimates of electrical parameters (such as active 

power, reactive power, power factor, harmonic distortion, etc.). An example of 

NSDs belonging to class P are classic power meters for residential use that provide 

only measurements of electrical parameters. On the other hand, power quality 

instrumentation or dedicated measurement systems can also provide waveforms in 

detail. Therefore, in this case they would fall into classes 1, 2, 3, 4 or 5 depending 

on their sampling rate. 

According to the standard, if an NSD includes the ability to work at multiple 

sample rates, output data rates or data bit rates, the manufacturer must provide a 

class for each. 

It also specifies that for NSDs using information related to transient events, the 

data bit rate depends on the occurrence of the transient events, and the rate of 

occurrence used for classification shall be indicated. 

The core of NILM systems lies in the analytics section, thus in its ability to use 

the data produced by the NSD. 

The NILM problem can be formulated as in (1.1). 

𝑌(𝑡) = ∑𝑦𝑛(𝑡)

𝑀

𝑛=1

+ 𝜀(𝑡) (1.1)  

where 𝑌(𝑡) is the measured aggregate signal, 𝑦𝑛(𝑡) is the contribution of the 𝑛-

th of the 𝑀 loads, and 𝜀(𝑡) is the sum of the noise and estimation error. The purpose 

of a NILM system is to obtain 𝑦𝑛(𝑡) signals from measuring only the 𝑌(𝑡) signal. 

Electric loads have a unique energy consumption scheme, or signature, as shown 

in Fig.1.2, which allows the disaggregation algorithms to distinguish them starting 

from the aggregate load measurements. The effectiveness of the disaggregation 

algorithm improves with the uniqueness of the signatures. 
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Figure 1.2: Aggregate load due to different individual load types. 

 

The concept of NILM, introduced by G. W. Hart in the early 1980s, has been the 

subject of research for several years. Since 2010 there has been a great focus on 

these research topics, mainly oriented to the residential sector. Despite the growing 

importance of energy efficiency, the residential sector still lags behind in adopting 

load monitoring systems. This leads to a pervasive use of energy-inefficient 

equipment, thus limiting the potential for energy savings and increased efficiency. 

As proposed by Hart [19], appliances can be classified according to their 

operational states as follows: 

 

Type 1) electric loads with two operating states (ON / OFF); 

Type 2) electric loads with a finite number of operating states, also called 

finite state machines (FSM). The switching pattern of these appliances 

makes it possible for the disaggregation algorithm to identify their 

operation;  

Type 3) electrical loads with continuously variable power absorption, 

without a fixed number of states, therefore known as continuously 

variable devices (CVD). Therefore, it is very difficult to disaggregate this 

type of equipment from aggregate load measurements; 

Type 4) electric loads that remain active for days or weeks, consuming 

energy at a constant rate, and are therefore called “permanent 

consumption devices” [20]. 
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The use of traditional algorithms makes it easy to recognize Type 1 electrical 

loads, as was also proposed by Hart in his early work. Difficulties arise when Type 

2 and particularly Type 3 electrical loads are present, which therefore require 

appropriate modeling. Over the past decade, advances in parallel processing and 

machine learning (ML), as well as greater availability of computing resources, have 

enabled the development of increasingly sophisticated algorithms for estimating 

energy consumption. These systems have been able to process large amounts of 

data, using artificial intelligence algorithms to identify consumption patterns and 

estimate the behaviors of each electrical loads. This made it possible to develop 

NILM systems capable of estimating the consumption of different types of 

electrical loads with a higher level of accuracy than traditional algorithms. 

Chapter 2 will address in detail the current state of the art of algorithms used for 

energy disaggregation.
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Chapter 2 

2State-of-the-art in methods for energy 

disaggregation 

This section analyzes the state of the art relating to NILM systems. Various 

techniques have been proposed in the literature, which differ in the sampling 

frequency of the signals, in the different approach used to recognize the device, in 

the algorithmic technique used. The proposed techniques have evolved over time; 

it is therefore interesting to analyze the state of the art following this evolution. 

Since Hart proposed the first NILM system in the 1980s, there have been 

significant developments. Over the next two decades, research on this topic focused 

on finding new signatures capable of uniquely identifying devices (active power, 

reactive power, power factor, harmonic content, inactive currents, transient 

information, etc.) for then develop classifiers capable of providing indications on 

the basis of these signatures. This type of approach often involves the detection of 

events upstream of their classification. 

Once an event has been detected, the features (and then the signature) associated 

with the appliance that caused it are extracted. This type of approach can therefore 

be divided into three basic steps: event detection, feature extraction and load 

identification. 

Consequently, these techniques can be grouped within a framework called 

"event-based". By "event" is meant a change of electrical parameters in the 

aggregate signal. This definition was needed when, from 2010 onwards, researchers 

started proposing "non-event based" approaches. These systems therefore no longer 

included the event detection phase. In these systems the concept of "features / 

signature" is lost, as the features used by the models are the aggregate power signal 

itself. 
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Deep Learning (DL), Factorial Hidden Markov Models (FHMM) and 

Discriminative Sparse Coding (DSC) based systems are examples of algorithm 

groups that fall into the "non-event based" category. 

Over the years, manuscripts that have proposed overviews of NILM systems have 

used different criteria for the subdivision of approaches. 

In addition to this subdivision linked to the "event based" or "non-event based" 

approaches, another important approach refers to the sampling frequency, which 

defines "high frequency" and "low frequency" techniques. 

In general, "low frequency" refers to sampling rates of 1 Hz or less. Almost all 

"non-event based" systems fall into this category, conversely almost all "event-

based" systems fall into the "high frequency" category. However, there are "event-

based" systems that involve processing the sampled signal in low frequency. The 

sampling frequency of 1 Hz guarantees a good resolution as regards the detection 

of the transition.  

The "high frequency" techniques have a sampling frequency that exceeds 

100/120 Hz. Consequently, there is an almost total absence of proposed algorithms 

operating in the frequency between 1 Hz and 100/120 Hz. Sampling above 

100/120 Hz makes it possible to extract information on the harmonic content of 

voltage and current, useful for classifying some types of devices. With higher 

sampling rates (of the order of ten kilohertz) it is also possible to analyze transient 

characteristics on electrical signals such as overshoot, rise times, settling times, etc. 

A further subdivision, often used in literature, is that of NILM systems based on 

"macroscopic" and "microscopic" characteristics, referring to the extractable 

characteristics from the measured signals at "low frequency" and "high frequency" 

respectively.  
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2.1 Event-based methods 

The Event-based NILM systems provide for the classification of an appliance 

starting from the detection of an event caused by it. As mentioned above, these 

systems have three distinct steps: event detection, feature extraction and load 

identification. To correctly apply this technique, it is necessary to define a 

mathematical characterization, and therefore a signature, of the appliances to be 

recognized. These signatures will then be compared, through a classifier, with the 

one extracted following an event. After the identification of the load, the energy 

disaggregation takes place through the knowledge of the operating sequences of the 

appliance. 

2.1.1 Event detection 

The techniques that propose algorithms for detecting events by means of high 

sampling frequency measurements have been discussed in an extensive literature. 

The papers [21] and [22] can be mentioned as a basic reference. 

In [21] an event detection system based on goodness-of-fit (GOF) test is 

proposed. The authors use a sliding window technique on the measured power 

signal by comparing each window with the previous one. The purpose of the test is 

to determine the similarity between the two distributions originating from the 

measured sample windows. 

Given the two distributions, the 𝜒2 test is carried out, by adding the square of the 

differences between the theoretical and observed frequencies, weighted on the 

theoretical frequencies: 

𝜒2 =∑
(𝑥𝑖 − 𝑦𝑖)

2

𝑦𝑖

𝑘

𝑖=1

> 𝜒2
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 (2.1)  

where 𝑥𝑖  and 𝑦𝑖  are the frequencies relative to the i-th bins of the theoretical 

distribution and of the observed distribution, respectively. 𝜒2
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 is the 

threshold beyond which the presence or absence of an event is established. 

In [22] the authors propose a NILM system that acquires voltage and current at a 

sampling frequency of 30 kHz. The DBSCAN clustering algorithm is used to 

determine the presence of an event by identifying two adjacent steady states. The 

authors state that this system is insensitive to outliers due to transients and is able 

to detect small changes in power, as the algorithm does not provide for the use of 

thresholds. Once the event is detected, the system creates a vector consisting of 50 

elements representing: the rms values of both the total and the fundamental currents, 
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the proportion of the 1st - 45th order of the rms current value with respect to the 

rms value, the value of the fundamental current and the cosine value of the 1st, 3rd 

and 5th order of the phase angle of the harmonic current. This vector will constitute 

the input of an ANN which will identify the load. 

In [23] the authors propose an event-based system using a low sampling rate 

(1/3 Hz). The events are detected by observing the maximum and minimum peaks, 

also defining the rise and fall intervals in order to compare the power differences 

detected in the events with an established threshold.  

2.1.2 Features extraction 

After the detection of an event, the system proceeds with the extraction of some 

characteristics with which to obtain a signature of the devices. The parameters of 

interest can be related to both stationary and transitory conditions. Over the years, 

a significant effort in NILM research has focused on exploring different signatures. 

The characteristics in stationary conditions are typically measured around the 

detected event, adopting a low sampling frequency. Examples of features in steady 

state conditions are changes in active and reactive power, power factor, changes in 

rms current or rms voltage. These features have been widely used in literature to 

build an electric signature in the form of vectors or matrices [6],[19],[24]-[33]. 

While these features are easy to extract, they often have an overlap problem. The 

term overlap refers to the condition in which an electrical signature fails to uniquely 

represent a load. For example, two appliances that absorb the same active power 

with a high power factor can often lead to misidentification. 

Furthermore, the behavior of the appliances in steady state conditions is not well 

defined, so that numerous ambiguities may arise regarding the electrical power 

supply parameters and their operating cycle. 

It is also demonstrated that the steady-state features are susceptible to power 

disturbances [34]. 

The detection of the transient characteristics allows to overcome the problem, as 

the analysis is performed only at the on and off transients of the devices. These 

characteristics, however, require particularly high sampling frequencies, in order to 

correctly detect the trend of the signal during the transitory. The reduced duration 

of these phenomena means that, in most cases, the simultaneous insertion of 

different devices can be excluded. Conversely, the measurement of these features 

requires a more complex hardware configuration and higher computing 

requirements. 

Examples of works in which electrical signatures have been built with transient 

features are [34]-[45]. 
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Not even the transitory characteristics, however, proved to be fully capable of 

uniquely representing household appliances. Therefore, approaches based on 

hybrid signature composed of features in steady state and transient conditions have 

been proposed [46]-[49]. 

In addition to the traditional characteristics, transformation techniques are 

adopted such as Short Time Fourier Transform (STFT) [50], analysis based on the 

cepstrum [51], Wavelet Transform (WT) [34] and S Transform (ST) [52] on the 

aggregate signal to get some advanced, unique and hidden features. 

A brief description of the different features used in the literature for NILM is 

described as follows: 

1) Active Power P: This characteristic is generally integrated by measuring the 

duration and the appliance’s frequency of use. 

2) P–Q Plan: Step changes in the active and reactive power Q allow easy 

identification of the ON / OFF status of high-power equipment. 

3) Combination of the P–Q Plane with Extended Transient Characteristics: It 

is suitable in identifying devices with relatively long transients and 

significant peaks of power. 

4) Characteristics Based on P, Q, I, and V at Low Frequencies: These 

combinations exhibit good performance in identifying ON / OFF appliances. 

5) P–Q and Harmonic Planes: The harmonic content or the spectrum of high-

frequency sampled currents is usually combined with the P–Q 

characteristics. 

6) Short-Time Fourier Transform (STFT): The spectral envelopes allow the 

identification of nonlinear and variable load devices. 

7) V–I trajectories: It is suitable in identifying loads, starting from the signal 

shape. 

8) Nonactive current: It is suitable in identifying some special equipment. 

9) Unconventional features: The analysis of voltage–noise spectrum or 

electromagnetic interference voltage noise has been proposed by several 

authors. 

2.1.3 Load identification 

The last step in an event-based NILM system is load identification, which is 

performed in most cases using ML algorithms that perform well as classification 

systems. 

As described in [23], in a ML based appliance identification technique, a 

classification algorithm identifies the appliance using the signatures obtained from 

the event. Numerous supervised ML algorithms have been proposed in literature 
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including, K Nearest Neighbor (KNN) [24]-[26],[31],[44],[53], Naive Bayes 

[30][31], Decision Tree (DT) [34],[54],[55], Support Vector Machine (SVM) 

[4],[10],[26][56]-[58], Principal Component Analysis (PCA) [59] and Artificial 

Neural Network (ANN) [22],[27],[42],[44],[56],[54],[60],[61].  

Differential Evolution and PSO have been proposed to adjust the training 

parameters of the model in order to speed up the training phase of the ANNs and 

improve its accuracy [32],[56],[61]. Other ML algorithms that have been used as 

classifiers are random forest [62], CNN [1],[9],[63],[64], Long Short Term Memory 

(LSTM) networks [65]-[67], self organizing map [49],[68],[69], competitive 

autoassociative ANN [70][70] and bagging and boosting [56],[71],[72]. In some 

works, hybrid or multiple classifiers have been proposed with the aim of improving 

the accuracy in identifying loads as in [47],[73]. Attempts have been made for 

handling noisy data using fuzzy logic based classifiers as in [45],[74]. A hybrid 

Neuro-fuzzy classifier with fuzzy C means clustering is reported in [73] to handle 

appliance classification in ambiguities and uncertain environments. Few NILM 

algorithms use time-series data for the classification of the appliance. 

Some algorithms classify appliances based on time series. In these systems, after 

the event detection, the ML algorithm performs the classification using as input a 

raw data window from the time series or characteristics extracted from them [75]-

[78]. 

Finally, unsupervised [48],[74] and semi-supervised learning algorithms 

[79],[80], graph signal processing [81]-[84], and successive elimination steps with 

Maximum a Posteriori estimator [85] have been proposed. 

2.1.4 Event-based system example: the Hart’s algorithm 

This algorithm, proposed by George Hart in 1985 [19], is often used as a baseline 

model for the NILM problem. The overall algorithm can be broken up into eight 

steps: 

1. Measurements 

2. Normalization 

3. Edge Detection 

4. Clustering 

5. ON/OFF Matching 

6. Separating Simultaneous Changes 

7. Transfer to Central Facility 

8. Identification. 

The author states that each of these steps can be performed in several alternative 

ways. 
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In his work he first describes the most suitable way and then shows several 

options that may be appropriate in certain circumstances. 

 

Measurements 

The power and voltage of the buildings are measured with a sampling rate of 1 

Hz. A "power vector" is defined containing 4 measurements relating to the real and 

reactive power measured for the two phases that supply the system. This is mainly 

because in the United States, the energy is distributed with two 120 V phase cables, 

180 ° out of phase with respect to a neutral, and the neutral cable itself. 

 

Normalization 

From this data, the real and reactive parts of the power are adjusted every second 

to correct for the fact that utility allows the line voltage to vary, using the following 

formula: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑃𝑜𝑤𝑒𝑟 ∙ (
120

𝑉𝑜𝑙𝑡𝑎𝑔𝑒
)
2

 (2.2)  

 

The choice of exponent 2 is due to the assumption that the power is proportional 

to the square of the voltage. This normalizes the power to what it would have been 

if the utility voltage were the nominal 120 V. In this way the power variations 

caused by the line voltage are eliminated. 

 

Edge Detection 

The third phase of the method consists in detecting variations in the power, using 

the following procedure consisting of two phases, illustrated in Figure 2.1 for 

hypothetical power measurements: 

 

Figure 2.1: Edge detection. 
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The system divides the sequence of power measurements into time periods where 

power is stable and in others where it changes. A steady period is defined to be one 

of a certain minimum length in which the load does not vary more than a specified 

tolerance. The remaining periods, in between the steady periods, are defined to be 

the periods of changes. The current embodiment of the devices uses two seconds as 

the minimum length and 15 W or VAr as the allowable tolerance in the definition 

of a steady period. Note that a time period is defined to be steady if, and only if, all 

the measured quantities in the measurement vector remain steady. If any of the 

components are changing, the period is "changing". 

For each time period in which the power is changing, the system calculates the 

total power change over the period by subtracting the constant power level detected 

before the start of the change from the constant power level at the end of the change. 

The effect of noise is reduced by averaging all measurements (of each vector 

component) during each steady period, to obtain noise-reduced steady values. The 

change, or transition, for each period of change is therefore a four-component 

vector, computed by subtracting the average of all measurement vectors in the 

previous steady period from the average of the measurement vectors in the 

subsequent steady period. 

It is important to note that this description is only appropriate if a long stream of 

four-component measurements at one-second intervals can be stored in the 

measurement system, referred to as the Load Monitor. The Load Monitor prototype 

described by the author uses an edge detection algorithm which is a dynamic 

version of the static description just described. It produces the same effect by means 

of a small number of sufficient statistics, without the need to memorize a long 

stream of measurements. 

The dynamic Edge Detection algorithm uses a buffer structure that calculates the 

average of the measured electrical power. Every time a new sample (at a sampling 

frequency of 1 Hz) is acquired, the average is updated using the (2.3) that takes into 

account both the new sample and the previous average.  

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = (
𝑁

𝑁 + 1
) ∙ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 + (

1

𝑁 + 1
) ∙  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 (2.3)  

 

If a change in power exceeds a pre-set threshold value, it marks the end of a 

steady state and the beginning of a transient state, which is used to identify the use 

of a specific appliance. This process continues with the constant updating of the 

average with new samples. 
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Clustering 

The detected changes are subsequently grouped into "clusters". A change set is 

simply a set of changes, all roughly equal (in all components). For example, Figure 

2.2 shows a hypothetical one-dimensional example in which many changes have 

been observed and which can be grouped into four clusters, relative to the measured 

electrical power. Each change is approximately 200 W, 500 W, -200 W or -500 W. 

 

 

Figure 2.2: Example of clusters. 

 

Cluster analysis allows for some tolerance in the variation measured each time 

an appliance is powered on or off. For example, the data in Figure 2.2 could refer 

to a residence with a 200 W and a 500 W appliance. Each time the first appliance 

is switched on, the total power increases by approximately 200 W (not necessarily 

exactly by 200 W). This is due to both changes in conditions when the unit is turned 

on and noise in the metering system. Similarly, the cluster of variations of about 

500 W results from the times that this device turns on. Change groups with negative 

power levels result from switching off the devices. 

In general, the real data is more complex than shown in the simple example 

above. There are likely to be several dozen clusters, because typically in a residence 

there are dozens of household appliances. However, there are more types of 

information available than in this one-dimensional example. The independent 

components of the transition vectors allow grouping into a larger number of 

dimensions. For example, it is possible to adopt a four-dimensional clustering to 

separate equipment that draws the same real and reactive power, but are located on 

different phases. The clustering technique used in the load monitoring prototype 

has several new features that allow it to function recursively in dynamic 

implementation. 

 

ON/OFF Matching 

The observed changes between the ON and OFF clusters of each appliance are 

grouped into pairs, based on their time coordinates. Each ON/OFF pair corresponds 

to a single cycle of appliance usage. For example, if there is a change of about 

200 W at 6:00 and a negative change of about 200 W at 9:00 (with no other changes 
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by any of these clusters in the meantime), they are grouped into a single appliance 

cycle. From this the algorithm calculates that the 200 W appliance has been on for 

three hours and consumed 600 Wh of energy. Changes that are not part of an ON / 

OFF toggle are ignored unless they can be detected by the method described in the 

next section. 

 

Separating Simultaneous Changes 

From time to time two appliances may turn on or off at the same time (or one 

turns on and one off), or in rapid succession so that the second appliance is turned 

on before the transient of the first is over. When this occurs, the variation calculated 

with the previously described method (Edge Detection) will be the sum of the 

variations that would have been observed if the two appliances had been switched 

at different times. For example, if the 200 W and 500 W appliances are switched 

on almost simultaneously, a 700 W increase in the total energy consumption of the 

house is observed. 

This 700 W change is easily interpreted by the facts that: 

A. It rarely happens (e.g. the cluster of 700 W changes is very small; perhaps 

containing only one example). 

B. It occurs, in time, between two ON or two OFF transitions of some 

appliances, which could not both be paired by the matching procedure 

above (eg. if the 700 W change occurs between two -200 W changes in a 

row, probably a change of +200 W is missing, similarly if the change of 

700 W starting between two changes of -500 W, a +500 W is missing). 

C. The observed change is approximately the sum of the two missing 

changes (e.g. 700 = + 200 + 500). 

When all three of these conditions occur, the unusual observed transition is 

"broken apart" into its two simultaneous components, and the procedure continues 

as if the two components were available for matching ON's and OFF's as above. 

Thus the load monitor "understands" that the 700 W change was really two 

independent appliance transitions which happened to occur at the same moment. 

 

Transfer to Central Facility 

The final step of the method is to output the characteristics of the observed 

devices. This includes a description of the clusters in the signature space, and 

parameters that specify their electrical power consumption such as their total power 

consumption. The energy for any appliance during a given hour is simply the sum 

of the energy consumed in each of the observed cycles (as calculated in the ON / 

OFF correspondence section) that occurred during the specified hour. 
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Identification 

Each pair of ON / OFF clusters (a positive and negative cluster of the same size) 

represents a separate two-state appliance or appliance component (e.g. the heater 

and motor components of a dishwasher can be viewed as two ON clusters / OFF 

separate). The algorithm must examine the properties of the clusters and try to 

identify the class of household appliances of each (e.g. "refrigerator", "dishwasher 

heater" etc.). To do this, a table of appliance classes and their properties will be 

provided. The algorithm will check each cluster against the classes in the table to 

see which element in the table is closest to each observed cluster pair. 

The properties used will include real and reactive components of the turn-on 

transitions. For example, refrigerators as a class are expected to be approximately 

4000 W. Weather related correlation factors can also be included, through the 

introduction of appropriate sensors. Space heating can be identified by the fact that 

it comes on more frequently when it is cold outside. Air conditioners should be 

identifiable by their positive correlation with temperature.  

The table will also contain timing information, such as the average length of time 

per ON/OFF cycle of the appliance and the number of cycles per day. Expected 

time-of-day and time-of-year properties can also be used (e.g. lights are used more 

often at night, electric lawn mowers are used more often in the day and in the 

summer).  

However, Hart did not wish to rely too heavily on temporal expectations, as this 

could cause the load monitor to fulfill its own prophesies, and find only predictable 

results. For example, if the table erroneously claimed that lights are only used in 

the evening, and someone has turned on the lighting all day, there would be a danger 

of the load monitor misidentifying the lights and calling them by another name. 
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2.2 Non-event based methods 

Non-event-based NILM systems have been introduced in the last decade, so they 

can also be considered as an evolution of the other systems. They use as input a 

window of samples of the aggregate signal (therefore time series data), which are 

processed continuously, without waiting for the occurrence of events. For this 

reason, this type of system is particularly suitable for low frequency measured 

signals. Indeed, it was developed precisely to allow the processing of signals 

acquired with reduced frequencies, for which the detection of events is more 

difficult. The processing techniques are therefore different from those previously 

discussed. 

In some cases, the disaggregation problem is formulated as a blind source 

separation (BSS) problem, that is, the problem of recovering a signal from a set of 

mixed signals. 

This section describes the main approaches used for the implementation of non-

event-based NILM systems, as follows: 

• Combinatorial Optimization; 

• Discriminative Sparse Coding; 

• Hidden Markov Model Approaches; 

• Deep Learning. 

 

Non-event-based NILM systems have several advantages over their event-based 

counterpart. Some of the non-event-based NILM methods are in fact independent 

of the number of appliances that form the aggregate signal. Consequently, the 

problem of scalability and adaptability to the varying number of appliances in the 

electrical system is automatically solved. On the other hand, these techniques are 

relatively less accurate than event-based ones. However, the most recent Deep 

Learning-based systems have shown to have a generalization capacity on unseen 

scenarios, such as to make the lower performances in terms of accuracy absolutely 

acceptable. 

2.2.1 Combinatorial optimization 

The combinatorial optimization algorithm (CO) [86] is considered as a basic 

algorithm in the NILM literature. The main assumption in CO is that each appliance 

can be in a given state (1 of K, where K is a small number), where each state has an 

associated power consumption. The goal of the algorithm is to assign states to 

household appliances, in order to minimize the difference between the household 

aggregate reading and the sum of the energy consumption of the different household 
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appliances. The time complexity of CO has an exponential relationship to the 

number of devices and therefore does not fit well. 

The total load clearly depends on which appliances are switched on at any given 

time. Assuming that there are n appliances, numbered from 1 to n, and let a(t) be 

an n-component Boolean vector describing the state of the n switches at instant t: 

 

𝑎𝑖(𝑡) {
1,   if appliance 𝑖 is on at 𝑡
0,   if appliance 𝑖 is off at 𝑡

 

 

for 𝑖 = 1…  𝑛. 

(2.4)  

 

the vector a(t) modulates the power consumption of the individual appliances. 

A multiphase load with p phases can be modeled as a p-vector in which each 

component is the load on one phase. The total load p-vector is the sum of the 

individual appliance load p-vectors for those appliances switched on at any given 

point in time. This will be a vector function of time that steps in characteristic 

increments each time an appliance switches on or off. For 𝑖 = 1…  𝑛, let Pi be the 

p-vector of the power that the i-th appliance consumes when it is operating.  

For the two-phase circuit of Figure 2.3, each Pi is a two-component complex 

vector. The real and imaginary parts for the complex power in the j-th component 

of the vector correspond to the real and reactive power consumed on the j-th phase. 

One of the two components is zero for 120 V appliances, as only one phase is 

involved; the two components are equal for balanced 240 V appliances; and an 

arbitrary vector represents an unbalanced 240 V appliance. Then we model: 

 

𝑃(𝑡) =∑𝑎𝑖(𝑡)

𝑁

𝑖=1

𝑃𝑖 + 𝑒(𝑡) (2.5)  

 

where P(t) is the vector of the aggregate power consumption measured on the p 

phases and e(t) is a small noise or error term. 

The model suggests a straightforward criterion for estimating the state of the 

individual appliances: if the p-vectors for each of the n appliances are known, the 

measure of the aggregate power P(t) is known, the n-vector a(t) is the vector that 

minimizes the vector e(t) at time t. This is a combinatorial optimization problem: 

 

𝑎̂(𝑡) = arg min
𝑎

| 𝑃(𝑡) − ∑𝑎𝑖

𝑁

𝑖=1

𝑃𝑖| (2.6)  
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This problem is computationally problematic and cannot be expected to be solved 

exactly, except with exhaustive techniques which are impractical, unless the number of 

devices n is very small. However, it is possible to devise heuristic algorithms that 

provide reasonable solutions most of the time. 

Although mathematically attractive, there are a number of difficulties in estimating 

a(t) with this algorithm. The fundamental problem with this approach is that the 

complete set of Pi are never known. In fact, it is not clear whether a residence should 

be modeled as having a well-defined number n of appliances, because appliances come 

and go due to purchases, visitors, seasonal changes, etc. If this algorithm were used in 

the presence of unknown devices, it would mistakenly attempt to describe their 

behavior as a combination of other known devices. Besides, a small change in the 

measured P(t) would often be analyzed as a large change in the switching process, a(t), 

with a number of appliances turning on or off simultaneously, such that the net change 

approximates the observed change the best possible.  

For example, suppose a residence contains four loads of sizes P1 = 100, P2 = 200, 

P3 = 300, and P4 = 401 W.  

If the measured total load at time t is 500 W, the best estimate is that the second and 

third appliances are on, i.e., a(t) = [0,1,1,0], as that uniquely gives e(t) = 0. If a moment 

later, at time t + ∆t, the measured load increases slightly to 501 W, the best estimate 

would then be a(t + ∆t) = [1,0,0,1], which again has e(t + ∆t) = 0, but implies that every 

appliance changed state in a short interval ∆t. The intuition that every appliance in a 

residence could not change state simultaneously reflects the knowledge of the physical 

independence of different appliances. 

This suggests the following criterion which is not described in the model (2.5). 

Switch Continuity Principle: In a small amount of time, only a small number of 

appliances is expected to change state in a typical load. 

Unfortunately, it is rather difficult to quantify this principle in a meaningful way that 

would lead to an improvement to (2.6). Perhaps (2.6) could be modified for NILM 

applications by adding a right-hand term proportional to the number of state changes 

in a(t). 

The Hart's proposed algorithm addresses the problem as follows: given the timing 

and size of the step changes, it is possible to examine a given list of Pi (and the Pi 

negatives) to determine which appliance turned on (or turned off) causing any changes. 

This is the essence of this NILM algorithm, with further refinements to be discussed 

below. Note that this approach does not suffer from the problem described above 

regarding the example of increasing power from 500 W to 501 W. A variation of 1 W 

is too small to be considered a step change. 
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The method is not even confused by an incomplete set of Pi. By specifying a 

tolerance condition for the match, the system simply ignores any observed changes that 

are not close enough to any of the given Pi. In this way, a list of the devices of interest 

to be monitored can be provided and all other activities are ignored. This model is still 

somewhat simplistic, however, and can be improved in many ways, to handle 

simultaneous state changes of more than one appliance, non-power signatures, multi-

state appliances, etc. 

A problem, that can only be partially solved, is that household appliances with 

electrically identical consumption cannot be distinguished. For example, it may not be 

possible to separately totalize the power consumed by two 1200 W resistive appliances 

on the same phase, for example a toaster and a quartz space heater. 

 

 

Figure 2.3: Typical U.S. residential electrical system. 

 

To take into account the presence of multi-state appliances, it is necessary to 

redefine the model. 

At a given time, an appliance can only be in a single state, expressed 

mathematically as: 

∑𝑧𝑡,𝑘
𝑛

𝐾

𝑘=1

= 1 (2.7)  

 

The power consumption by n-th appliance in k-th state at time t is given by: 

 

𝜃𝑡,𝑘
𝑛 = ∑𝑧𝑡,𝑘

𝑛

𝐾

𝑘=1

𝜇𝑘
𝑛 (2.8)  
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where 𝜃𝑡,𝑘
𝑛  is the measured power sequence for n-th appliance and 𝜇𝑘

𝑛  is the 

power draw by n-th appliance in k-th state. 

The overall power consumption of all appliances at a given time t is given by: 

 

𝑥̂𝑡 = ∑∑𝑧𝑡,𝑘
𝑛

𝐾

𝑘=1

𝜇𝑘
𝑛

𝑁

𝑛=1

 (2.9)  

 

The error in power signal (unaccounted power) after the load assignment is given 

by: 

 

𝑒𝑡 = |𝑥𝑡 −∑∑𝑧𝑡,𝑘
𝑛

𝐾

𝑘=1

𝜇𝑘
𝑛

𝑁

𝑛=1

| (2.10)  

 

Combinatorial optimization seeks to find the optimal combination of appliances 

in different states which will minimize this error term, using the following state 

assignment scheme: 

 

𝑧𝑡 = arg min
𝑧𝑡

|𝑥𝑡 −∑∑𝑧𝑡,𝑘
𝑛

𝐾

𝑘=1

𝜇𝑘
𝑛

𝑁

𝑛=1

| (2.11)  

 

where 𝑧𝑡 is the set of  n boolean vectors 𝑧𝑡
𝑛, each of these vectors has a number 

of elements equal to the number of possible states for the n-th appliance and has 

only one element different from 0 (and equal to 1) corresponding to the state in 

which the n-th appliance is at time t. 

The corresponding predicted power draw by n-th appliance is given by: 

 

𝑦𝑛 = {𝜇𝑧1𝑛
𝑛 , … , 𝜇𝑧𝑇𝑛

𝑛 } (2.12)  

 

The state space size of this optimization function is KN, implying that it is 

exponential in the number of appliances. 

Batra et al. [87] described an Improved NILM using load Division and 

Calibration (INDiC), which provides preprocessing procedures that can simplify 

NILM computation and improve the overall disaggregation accuracy. These 

procedures can basically be classified as data cleansing (time series 

synchronization, downsampling and calibration) and problem division into 

subproblems (network load assignment). They presented INDiC-CO (INDiC using 
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Combinatorial Optimization for NILM) but INDiC can be used with any NILM 

approach. 

 

Load division 

Across many countries, electrical distributions are planned such that different 

loads are connected to different phases.  

Since implementing NILM typically involves separate monitoring of different 

electrical phases, load division can be applied to perform efficient disaggregation. 

Considering p phases in a house, one can operate by first performing the automated 

assignment of the loads (for a total of N loads in the house) to the individual phase 

(with the result that the Ni loads are assigned to the i-th phase). 

This division of the load between different phases results in an exponential 

reduction of the state space for the disaggregation of each phase separately (the size 

of the state space for the i-th phase is given by KNi ). The CO formulation for the i-

th phase after load division is given by the following optimization function: 

 

𝑧𝑡 = arg min
𝑧𝑡

|𝜃𝑀𝑖 −∑∑𝑧𝑡,𝑘
𝑛

𝐾

𝑘=1

𝜇𝑘
𝑛

𝑁

𝑛=1

|          ∀    𝑖 ∈  {1, … , 𝑝} (2.13)  

 

where p is the number of phases and 𝜃𝑀𝑖 is the measured power sequence for the 

i-th phase. 

The corresponding predicted appliance power sequence for n-th appliance is 

given by: 

 

𝑦𝑛 = {𝜇𝑧1𝑛
𝑛 , … , 𝜇𝑧𝑇𝑛

𝑛 } (2.14)  

 

CO with load division is subject to the following constraints: 

1) The sum of number of loads assigned to different mains must be equal to 

the total number of loads. This is given by: ∑ 𝑁𝑖
𝑝
𝑖=1 = 𝑁. 

2) At any given time, an appliance can only be in a single state which is given 

by:  

∑ 𝑧𝑡,𝑘
𝑛𝐾

𝑘=1 = 1 . 

3) An appliance can belong to one and only one phase. 

4) The sum of power consumption of all appliances assigned to i-th phase is 

always lesser than or equal to the total power of the phase (i.e. 𝑒𝑡 term for 

i-th phase will be non negative). 
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Time series synchronization 

Aggregate power and appliance power are typically measured using different 

hardware. As an example, in REDD [88] TED meters are used to measure the 

aggregate power and Power House Dynamics are used to measure appliance 

circuits. It is so possible that some hardware malfunctions occur during the data 

collection process or that the data is not properly aligned over time. In this step we 

make sure that the mains power and appliance power time series start and end at the 

same time. Additional missing data is handled using techniques such as forward 

filling (padding). 

 

Downsampling 

When running CO, transients and fluctuations in the power signal need to be filtered 

out. Transients occur due to the high starting current of the appliance, while 

fluctuations are a consequence of the small voltage fluctuations and oscillatory 

nature of the appliances. Figure 2.4 show both filtering of starting current (left) and 

voltage fluctuations (right) by downsampling. Filters such as moving mean / 

median can be used to sample a time series in a time window, whereby the value 

assigned to the filtered series for a time window is the mean / median of the original 

series occurring during that time window. 

 

 

Figure 2.4: Effect of downsampling appliance data. 

 

Assigning Loads to phases 

This step aims to identify the mapping between appliances and phases. Since an 

appliance can belong to a single phase, the mapping is a one-to-one function. Since 

patterns corresponding to appliances with a higher peak power are generally easier 

to extract from the phase signal, we first sort the appliance in descending order of 

peak power. 

Starting from the appliance with the highest peak load, one appliance is analyzed 

at a time and its power is compared at each moment with the power of each of the 

phases. If the power of the appliance is greater than the power of the appliance 
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assigned to that phase, the appliance is assigned to the other phase. If the system is 

unable to assign a fixture to phases using this approach, it finds the times when 

events occur in the fixture's power series. These events should be a subset of times 

for the phase this appliance is assigned to. The threshold used to find these events 

should be properly chosen to ensure that minor voltage fluctuations are not counted 

as events. 

Once an appliance has been assigned to a phase, using one of these two filters, 

its power supply sequence is subtracted from the corresponding phases, to simplify 

the assignment of the network to the other appliances. Figure 2.5 (left) shows the 

assignment of the refrigerator to phase 2, since during this time the refrigerator 

power is greater than that of phase 1. It can also be seen that the events in phase 2 

and the refrigerator power series occur simultaneously. 

 

 

Figure 2.5: Load Assignment and Clustering. 

Clustering 

The number of states associated with a device (appliance) are identified on the 

basis of previous knowledge relating to its internal structure [89]. For example, a 

refrigerator is a compressor appliance and has three states in ascending order of 

power request (compressor off, compressor on, defrost mode). The corresponding 

cluster assignment is shown in Figure 2.5 (right). 

 

 

Figure 2.6: Need for and utility of Calibration. 
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Appliance Power Calibration 

Power measured by appliance level meters may need calibration due to several 

reasons, including: 

• Difference in the measurement devices can result in different measurements 

for the same appliance. To illustrate this difference, the authors measured 

their refrigerator power with 3 different devices: i) jPlug; ii) Current Cost 

CT; and iii) EM6400 smart meter. Figure 2.6 (left) illustrates the power 

measurement by each of these devices. There is a difference in approx. 10 W 

in measurements reported by jPlug and Current Cost. jPlug gives 

comparable results to EM6400. 

• Voltage fluctuations from the grid resulting in power measurement 

fluctuations. 

• Missing meta data - labeling the appliance level power consumption as real 

or apparent power. 

Motivated by such requirements, INDiC introduces measurement calibration. In 

comparison to appliance data, mains data is usually measured with better precision 

devices. Thus, they keep mains data as a reference and calibrate appliance data 

against it. In the clustering step, value of appliance power at each time is associated 

with corresponding cluster state (k ∈ {1, · · ·, K}). Since in off state (k =1) appliance 

power consumption is almost zero, it does not require any calibration. 

The times of the events are identified by detecting the instants when the appliance 

switches from a lower state (k) to a higher state (k + 1). In these instants the ratio 

between the entity of the power variation that occurs in the assigned mains and in 

the appliance is calculated. This ratio serves as a corrective multiplication factor for 

a particular state of the appliance. The cluster centroids obtained in the previous 

step are multiplied by this factor to obtain the calibrated cluster centroids. 

 

This process is shown in Figure 2.6 (right), where it is observed that the 

refrigerator power in state 2 of 162 W was changed to 214 W after calibration (with 

steps 2), with a calibration factor of 1.34. 

By following these steps, combinatorial optimization is performed separately for 

both phases as described above. 
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2.2.2 Discriminative sparse coding 

To examine sparse coding methods and their application to disaggregation 

activities, the terminology of the energy disaggregation domain will be used, 

although the algorithms can equally apply to other domains as well. Formally, it is 

assumed that k different classes are defined, which in the present case correspond 

to categories of devices such as televisions, refrigerators, heaters, etc. 

For every i = 1,…, k, a matrix 𝑿𝑖 ∈ ℝ𝑇×𝑚 is defined where, where each column 

of 𝑿𝑖  contains one week of energy consumption (measured every hour) for a 

particular house and for that particular type of device. Thus, for example, the j-th 

column of 𝑿𝑖, denoted as 𝑥1
(𝑗)

, can contain the weekly energy consumption for a 

refrigerator (for a single week in a single house) and 𝑥2
(𝑗)

 could contain the weekly 

energy consumption of a heater (for this same week in the same house).  

Therefore assuming that the matrix 𝑿𝑗 is that relating to the fridge, we will have: 

 

𝑿𝑗 = 𝑿𝑓𝑟𝑖𝑑𝑔𝑒 = [

𝑥ℎ𝑜𝑢𝑠𝑒 1 (00:00)
(𝑓𝑟𝑖𝑑𝑔𝑒)

⋯ 𝑥ℎ𝑜𝑢𝑠𝑒 𝑚 (00:00)
(𝑓𝑟𝑖𝑑𝑔𝑒)

⋮ ⋱ ⋮

𝑥ℎ𝑜𝑢𝑠𝑒 1 (23:00)
(𝑓𝑟𝑖𝑑𝑔𝑒)

⋯ 𝑥ℎ𝑜𝑢𝑠𝑒 𝑚 (23:00)
(𝑓𝑟𝑖𝑑𝑔𝑒)

] 

 

(2.15)  

The aggregate power consumption on all types of devices is indicated as 𝑿̅ =

∑ 𝑿𝑖
𝑘
𝑖=1  so that the j-th column of 𝑿̅, 𝑥̅(𝑗) , contains a week of aggregated energy 

consumption for all devices in a given house. At training time, it is assumed to be able 

to access the energy readings of the single device 𝑿1, . . . , 𝑿𝑘 (obtained for example 

from plug-level monitors in a small number of instrumented homes). At test time, 

however, it is assumed to access only to the aggregate signal of a new set of data points 

𝑿̅′ (as would be reported by smart meter), and the goal is to separate this signal into its 

components, 𝑿̅1
′ , … , 𝑿̅𝑘

′ . 

The sparse coding approach to source separation [90], [91], which forms for the basis 

for this disaggregation approach, is to train separate models for each individual class 

𝑿𝑖 , then use these models to separate an aggregate signal. Formally, sparse coding 

models the i-th data matrix using the approximation 𝑿𝑖 ≈ 𝑩𝑖𝑨𝑖 where the columns of 

𝑩𝑖 ∈ ℝ𝑇×𝑛  contain a set of n basis functions, also called the dictionary, and the 

columns of 𝑨𝑖 ∈ ℝ𝑛×𝑚 contain the activations of these basis functions. 

Sparse coding additionally imposes the constraint that the activations 𝑨𝑖 are sparse, 

i.e., that they contain mostly zero entries, which allows us to learn overcomplete 

representations of the data (more basis functions than the dimensionality of the data). 
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A common approach to achieving this sparsity is to add an ℓ1 regularization penalty to 

the activations. 

Since energy usage is an inherently non-negative quantity, we impose the further 

constraint that the activations and bases be non-negative, an extension known as non-

negative sparse coding [92],[93]. Specifically, we will consider the non-negative sparse 

coding objective. 

 

min
𝑨𝑖≥0,𝑩𝑖≥0

(
1

2
‖𝑿𝑖 −𝑩𝑖𝑨𝑖‖𝐹

2 + 𝜆∑(𝑨𝑖)𝑝𝑞
𝑝,𝑞

)     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     ‖𝒃𝑖
(𝑗)
‖
2
≤ 1,     𝑗 = 1, … , 𝑛 (2.16)  

where ‖𝑌‖𝐹 = √∑ ∑ |𝑦𝑝,𝑞|
2𝑛

𝑞=1
𝑚
𝑝=1  is the Frobenius norm. 

 

We can interpret the first term of the sparse coding objective as a reconstruction term 

which tries to force the algorithm to provide a good representation of 𝑿𝑖 and the second 

term as a sparsity penalty which forces our representation of 𝑿𝑖  to be sparse. The 

constant 𝜆  is a scaling constant to determine the relative importance of these two 

contributions. Put simply, we're just trying to solve a problem (disaggregation in this 

case) using as little resources as possible. 

The constraint ‖𝒃𝑖
(𝑗)
‖
2
≤ 1  is necessary as otherwise we could minimize 

1

2
‖𝑿𝑖 − 𝑩𝑖𝑨𝑖‖𝐹

2  as much as we want, making 𝑩𝑖  large enough to compensate. We 

want to avoid this behavior as we are looking for vectors containing as few nonzero 

and large values as possible. 

After using the above procedure to find representations 𝑨𝑖 and 𝑩𝑖 for each of the 

classes 𝑖 = 1, . . . , 𝑘, we can disaggregate a new aggregate signal 𝑿̅ ∈ ℝ𝑇×𝑚′
 (without 

providing the algorithm its individual components). We concatenate the bases to form 

single joint set of basic functions and solve the optimization problem. 

 

𝑨̂𝑖:𝑘 =  arg min
𝑨𝑖:𝑘≥0

(
1

2
‖𝑿̅ − [𝑩1 ⋯ 𝑩𝑘] [

𝑨1

⋮
𝑨𝑘

]‖

𝐹

2

+ 𝜆∑(𝑨𝑖)𝑝𝑞
𝑝,𝑞

) (2.17)  

 

We then predict the i-th component of the signal to be: 

 

𝑿̂𝑖 = 𝑩𝑖𝑨̂𝑖  (2.18)  
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Kolter et al. [94], who first proposed this approach, focused on the disaggregation of 

electricity using hourly data; they specifically examine the generalization capability of 

their algorithm using a dataset with 590 houses and power consumption over a period 

of over two years. 

The dataset was provided by Plugwise, a European manufacturer of plug-in 

monitoring devices. Each device is labeled with one of 52 device classes, which have 

been further reduced to ten major categories of electrical devices: lighting, TV, 

computer, other electronic devices, kitchen appliances, washing machine and dryer, 

refrigerator and freezer, dishwasher, heating / cooling, and a varied category. 

 

2.2.3 Hidden Markov models 

In probability theory, a Markov model is a stochastic model used to model 

randomly changing systems [95]. It is assumed that future states depend only on the 

current state, not on the events that occurred before it (that is, it assumes the Markov 

property). Generally, this assumption enables reasoning and computation with the 

model that would otherwise be intractable (a problem that can be solved in theory but 

for which in practice any solution takes too many resources to be useful). For this 

reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable 

for a given model to exhibit the Markov property. 

A hidden Markov model (HMM) is a Markov model in which the sequence is made 

up of discrete variables. In addition, each discrete variable emits a single continuous 

variable, which is dependent upon the value of the discrete variable. Furthermore, in a 

HMM the chain of discrete variables is not observed, while the continuous variables 

are observed. Figure 2.7 shows the graphical structure of a HMM, where the discrete, 

hidden variables are represented by the sequence 𝒛 = (𝑧1, … , 𝑧𝑇), and the continuous, 

observed variables are represented by the sequence 𝒙 = (𝑥1, … , 𝑥𝑇) , where T is the 

length of the sequence (the number of time slices in the model). The value of each 

discrete variable 𝑧𝑡 corresponds to one of K states, while each continuous variable can 

take on the value of any real number. 

 

Figure 2.7: Hidden Markov Model. 
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The behaviour of a HMM can be completely defined by three parameters. First, the 

probability of each state of the hidden variable at t = 1 can be represented by the vector 

π such that: 

 

𝜋𝑘 = 𝑝(𝑧1 = 𝑘) (2.19)  

 

Second, the transition probabilities from state i at t-1 to state j at t can be represented 

by the matrix A such that: 

 

𝐴𝑖,𝑗 = 𝑝(𝑧𝑡 = 𝑗|𝑧𝑡−1 = 𝑖) (2.20)  

 

Third, the emission probabilities for 𝑥  are described by a function governed by 

parameters which is commonly assumed to be Gaussian distributed. The probability 

density of the standard Gaussian distribution (standard normal distribution, with zero 

mean and unit variance) is often denoted with the Greek letter ϕ. The normal 

distribution is often referred to as 𝑁(𝜇, 𝜎2) . Thus when a random variable 𝑋  is 

normally distributed with mean 𝜇 and variance 𝜎2, one may write: 

 

𝑋 ~ 𝑁(𝜇, 𝜎2) (2.21)  

 

Therefore, the probability that the hidden state 𝑧𝑡 emits the variable 𝑥𝑡 can be written 

as: 

 

𝑥𝑡|𝑧𝑡, 𝜙 ~ 𝑁(𝜇𝑧𝑡 , 𝜎𝑧𝑡
2 ) (2.22)  

 

Equations (2.19), (2.20) and (2.22) can be used to calculate the joint likelihood of a 

HMM: 

 

𝑝(𝒙, 𝒛|𝜃) = 𝑝(𝑧1, 𝜋)∏𝑝(𝑧𝑡|𝑧𝑡−1

𝑇

𝑡=2

, 𝑨)∏𝑝(𝑥𝑡|𝑧𝑡

𝑇

𝑡=1

, 𝜙) (2.23)  

where the set of all model parameters is represented by 𝜃 = {𝜋, 𝑨, 𝜙} 

There exist two common goals when applying a HMM to a real world problem. First, 

one aim is to infer the model parameters 𝜃 given a sequence of continuous variables x. 

Second, another aim is to determine how the model parameters 𝜃 and a sequence of 

continuous variables x can be used to infer the optimal sequence of discrete states z. 

These problems will be referred to as learning (or training) and inference respectively. 
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Learning in the context of HMMs refers to finding values for the model parameters 

which best explain the training data. The state of the art in terms of maximum 

likelihood estimation is the Expectation Maximisation (EM) algorithm (also known as 

the Baum-Welch algorithm). However, approximate methods are more commonly 

used due to their support for fully Bayesian inference. 

Inference in the context of HMMs refers to finding values for hidden variables which 

maximise the model's joint likelihood. The Viterbi algorithm is the state of the art in 

this context, and provides an efficient solution to the problem with complexity that 

scales linearly in the length of the chain. The Viterbi algorithm considers each time 

slice in sequence, and evaluates the probability of each transition from the previous 

time slice to the current time slice. However, only the transition with the maximum 

probability leading to each state in the current time slice is retained. By propagating the 

maximum probability of each state forwards through the subsequent time slices, the 

algorithm guarantees that the most probable sequence of states will be retained. When 

the maximum probabilities of each of the state has been propagated to the final time 

slice, the probability of each sequence is known. Since a unique transition leading to 

each state was retained, a single path exists from the most probable state in the final 

time slice backwards through each previous time slice representing the most probable 

joint sequence of states. The complexity of exact inference in a HMM is O(K2T), where 

K is the number of states and T is the number of time slices. 

The formal steps in the Viterbi algorithm to find the best single sequence of states 

are as follows: 

 

1. Initialization 

By defining 𝛿𝑡(𝑧𝑡) the probability of the optimal sequence of states that produced 

the series of observations 𝑥1, … , 𝑥𝑡 and ending with the state 𝑧𝑡, we can write that: 

 

𝛿1(𝑧1) = 𝑝(𝑧1, 𝜋) ∙ 𝑝(𝑥1|𝑧1, 𝜙)  (2.24)  

 

That is, the probability that 𝑥1 is observed at the initial time t = 1 is given by the 

product between the initial probability 𝑝(𝑧1, 𝜋)  that 𝑧1  occurs and the probability 

𝑝(𝑥1|𝑧1, 𝜙) that 𝑧1 emits 𝑥1. 

 

2. Recursion 

for   2 ≤ 𝑡 ≤ 𝑇   and   1 ≤  𝑧𝑡  ≤ 𝑁  

𝛿𝑡(𝑧𝑡) = max
1 ≤𝑧𝑡−1≤𝑁

[𝛿𝑡−1(𝑧𝑡−1) ∙ 𝑝(𝑧𝑡|𝑧𝑡−1, 𝑨) ∙ 𝑝(𝑥𝑡|𝑧𝑡, 𝜙)] 
(2.25)  
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The observation 𝑥𝑡  at time t is known, the hidden state 𝑧𝑡−1 will be the one that 

determines the maximum product of the probability 𝛿𝑡−1(𝑧𝑡−1), i.e. the probability of 

the optimal sequence of states that produce the series of observations 𝑥1, … , 𝑥𝑡−1 and 

ends with the hidden state 𝑧𝑡−1, the transition probability 𝑝(𝑧𝑡|𝑧𝑡−1, 𝑨) from the state 

𝑧𝑡−1 to the state 𝑧𝑡 and the emission probability 𝑝(𝑥𝑡|𝑧𝑡, 𝜙). 

 

3. Backward flow 

Once the end of the sequence has been reached, the probability 𝛿𝑇(𝑧𝑇), i.e. the 

probability of the optimal sequence of states that produced our entire series of 

observations 𝑥1, … , 𝑥𝑇 and ending with the state 𝑧𝑇, is known. 

 

𝑧𝑇 = arg max
1 ≤𝑧𝑇≤𝑁

[𝛿𝑇−1(𝑧𝑇−1) ∙ 𝑝(𝑧𝑇|𝑧𝑇−1, 𝑨) ∙ 𝑝(𝑥𝑇|𝑧𝑇 , 𝜙)] (2.26)  

 

Known 𝑧𝑇, the sequence of hidden states can be deduced by going backwards as: 

 

𝑧𝑡 = arg max
1 ≤𝑧𝑡≤𝑁

[𝛿𝑡(𝑧𝑡) ∙ 𝑝(𝑧𝑡+1|𝑧𝑡 , 𝑨) ∙ 𝑝(𝑥𝑡+1|𝑧𝑡+1, 𝜙)]         ∀ 𝑡 = 𝑇 − 1, 𝑇 − 2,… , 1 
(2.27)  

 

The factorial hidden Markov model (FHMM) is an extension of the HMM in which 

there are multiple independent Markov chains of hidden variables, 𝒛(1),…, 𝒛(𝑁), where 

N is the number of chains. In this model, each observation is dependent upon multiple 

hidden variables. The graphical model of a FHMM is given by Figure 2.8. 

 

 

Figure 2.8: Factorial Hidden Markov Model. 

 

Similar to (2.23), the joint likelihood of a FHMM can be calculated by: 
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𝑝(𝒙(1:𝑁), 𝒛|𝜃) = ∏𝑝(𝑧1
(𝑛), 𝜋)∏∏𝑝(𝑧𝑡

(𝑛)|𝑧𝑡−1
(𝑛)

𝑁

𝑛=1

, 𝑨)

𝑇

𝑡=2

∏𝑝(𝑥𝑡|𝑧𝑡
(1:𝑁)

𝑇

𝑡=1

, 𝜙)

𝑁

𝑛=1

 (2.28)  

 

where 1 : N represents a sequence of appliances 1,…, N. 

However, the computational complexity of both learning and inference is greater 

for FHMMs compared to HMMs. This is due to the conditional dependence of the 

Markov chains given the observed variables. There are two possible solutions to 

perform learning and inference in a FHMM. The first is to transform the FHMM 

into a large HMM and perform learning and inference as discussed above. The 

alternative is to keep the factorial structure of the graphical model but use 

approximate techniques for inference. The FHMM can be transformed into an 

equivalent HMM, which will allow standard HMM inference methods to be applied 

to the model. This can be achieved by using a single Markov chain with KN states, 

one for each combination of states in the FHMM, resulting in a computational 

complexity of O(K2NT) for exact inference. Since the computational cost is clearly 

exponential in the number of chains, N, the model will therefore become 

computationally intractable for large N. Alternatively, approximate methods 

provide more tractable inference methods. 

FHMM is very well suited to the NILM problem, and has found wide use 

[14],[88],[96]-[103]. Generally, in these works each device is represented by an 

HMM with Ki states. The state of the i-th appliance is represented by a vector Sit = 

(Sit1, Sit2, · · · , SitKi )
T where Sitk=1 when appliance i at instant t is in state k. All other 

elements of the vector will be 0. Parameters such as the power drawn by each fixture 

in k-states, initial probabilities and model transition probabilities will be learned 

during a training phase. Given the model parameters, the goal is to infer the time 

sequence of the hidden states Si for each appliance. 

 

2.2.4 Deep Learning 

Machine learning is the field of study that gives computers the ability to learn 

without being explicitly programmed [104]. Unlike traditional programming, which 

provides a list of more or less complex rules defined by the programmer in order to 

obtain certain outputs, machine learning automatically learns patterns and 

correlations in order to be able to solve extremely complex problems. In problems 

for which existing solutions require a lot of manual adjustments or long lists of 

rules, a machine learning algorithm can often simplify the code and achieve better 

performance. Sometimes they allow to find solutions to problems that otherwise 

would not be solved through traditional approaches. These algorithms are used to 
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process large amounts of data in order to discover patterns that are not immediately 

apparent. They are also used in situations where the algorithm needs to dynamically 

adapt to new patterns in the data or when the data itself is generated as a function 

of time, such as stock price prediction, in this case we speak of online learning. 

Deep learning (DL) is a type of ML that trains a computer to perform human-like 

activities, such as speech recognition, image identification, or prediction-making. 

Instead of organizing data to perform predefined equations [105], DL sets basic 

parameters on the data and trains the computer to learn on its own, by recognizing 

patterns using some levels of processing. DL applications use a layered structure of 

algorithms called the artificial neural network (ANN) since they vaguely imitate the 

interconnected structure of the human brain to provide multilevel functionality 

[106], [107]. 

In the human brain, when a neuron is “activated” it sends an electrical impulse to 

other neurons along axons. ANNs consist of a network of very simple elements 

according to a distributed, massively parallel structure capable of learning and thus 

generalizing. Generalizing means producing outputs at inputs not encountered 

during training. Due to their structure, DL algorithms have greater generalization 

capability than traditional ML algorithms. 

The fundamental element of an ANN is therefore the artificial neuron, which 

typically has many inputs and only one output, as shown in Figure 2.9. Each input 

has an associated weight, which determines the strength of the connection to the 

next neuron. The activation of the neuron is a function of the weighted sum of the 

inputs. The ANNs are trained by presenting a set of examples (training set) as input 

to the network. The response provided by the network for each sample is compared 

to the desired response. The difference (error) between the two is evaluated and, on 

the basis of this difference, the weights are adjusted. This process is called back-

propagation and is repeated on the entire training set until the network outputs error 

below a pre-set threshold. 

 

Figure 2.9: Training process for a single artificial neuron. 
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The output of the neuron, i.e. the signal with which the neuron transmits its 

activity to the outside, is calculated by applying the activation function to the 

weighted sum of the inputs. Often, in the literature, the weighted sum of inputs is 

referred to as "net". A threshold was also included in the neuron model represented 

in Figure 2.9, which has the effect of lowering the input value to the activation 

function. 

In some cases, instead of considering the threshold, its opposite is considered, 

called bias, which can therefore be seen as the weight associated with a further input 

channel with a constant value equal to 1. The bias is indicated as b in (2.29). 

 

𝑦̂ = 𝑓 (∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏) = 𝑓 (∑𝑤𝑖𝑥𝑖

𝑛

𝑖=0

) (2.29)  

where 𝑏 = 𝑤0 and 𝑥0 = 1. 

ANNs implement a feature extraction process. Feature extraction means a set of 

techniques that make it possible to obtain new features by creating combinations of 

those already known. These techniques make it possible to reduce the 

dimensionality of the datasets and discover new more significant characteristics for 

the purpose of the objective to be achieved, be it a regression or a classification. 

The extraction is performed by finding the coefficients 𝑤1, … , 𝑤𝑛 which allow to 

obtain the new feutures by combining the available feutures together. By 

incorporating all the neurons into a single model, an ANN is obtained in which each 

column of neurons represents a layer of the network, each connection has a certain 

weight and the output of a previous layer will be the input of the next layer. 

In general, there is no information about the features of the intermediate layers 

and it is not even possible to interpret them. The only usable information are those 

present within the dataset, i.e. the starting features and the target, for this reason the 

intermediate layers are known as hidden layers. 

Since it is not known a priori which features to combine together to extract a new 

one, each output node of one layer is connected to each input node of the next layer. 

For this reason, these are called dense neural networks. The training algorithm will 

then estimate the intensity of each connection and therefore its relative weight. 

An ANN can also have more than one hidden layer, in this way the neural 

network will continue to extract other features from those already extracted 

reaching an even higher level of abstraction. An ANN with two or more hidden 

layers is called a deep neural network. Figure 2.10 shows an example of a deep 

neural network. 
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Figure 2.10: Architecture of a deep neural network. 

 

The number of nodes of a hidden layer and the number of hidden layers are 

hyperparameters to be defined, since it is not possible to know in advance the 

number of features to extract. The number of nodes in a hidden layer is independent 

of that of the other paths. The number of hyperparameters to optimize for a deep 

neural network therefore increases as the number of hidden layers increases. 

Back propagation, mentioned above, is the technique by which the ANN 

parameters are optimized to minimize the cost function. A cost function provides a 

measure of the distance between the implemented model and the ideal model, i.e. 

the one that always returns the correct result.  

In general, therefore, through the cost function it is possible to evaluate the 

quality of an ML model. There are different types of cost functions, for regression 

problems the most common is the sum squared residuals (RSS) [108] while for 

classification problems it is the Log Loss [109].  

Back propagation is based on Gradient Descent, which is the process shown in 

Fig. 2.9. The learning algorithm, or Back-propagation, performs a number of 

complete passes of the training dataset. This number is referred to as epochs. 

Therefore, each time the entire dataset has passed through ANN, an "epoch" has 

passed. An epoch can consist of one or several batches. Generally, a data set is 

divided into a number of batches, and each of these batches has a batch size 

corresponding to a number of samples. 

The batch number defines how many parts the entire dataset will be divided into 

during the training phase to train ANN on the entire dataset. At the same time, the 

batch size is the number of samples (training samples) that the algorithm must 

process on before updating the weights. Thus, the batch size is an indicator of how 

quickly the ANN weights are updated. 
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1) Full Batch Gradient Descend, in this case all the examples in the training 

set are used in one batch. At each epoch, the value of the cost function 

will tend to decrease to a predetermined optimal value. 

This approach has the following limitations: 

• is relatively inefficient for large datasets, as loading the entire 

dataset into memory can be very computationally expensive; 

• has low dynamics, since to improve the model with new data it is 

necessary to retrain it on the entire dataset; 

• it is susceptible to the local minima problem. 

 

2) Stochastic Gradient Descend, which counteracts the limitations of Full 

Batch Gradient Descend by running the algorithm on a single example of 

the training set at a time. 

Unlike Full Batch Gradient Descend, it is most likely that the cost 

function does not decrease steadily but tends to oscillate. An epoch is 

completed when the Stochastic Gradient Descend is passed for each 

example in the training set. At the end of each epoch, it is a good idea to 

shuffle the examples within the training set to prevent cycles from 

forming. 

Stochastic Gradient Descend presents several advantages: 

• weighs little in the memory, as it is sufficient to load only one 

example at a time; 

• has high dynamics, as to update the model it is possible to perform 

a SGD pass only on the new data; 

• due to fluctuations in the cost function it is less sensitive to the 

problem of local minima. 

In contrast, it has excessive fluctuations of the cost function, the global 

minimum point is likely to be missed. 

 

3) Mini Batch Gradient Descend, consists of running one step of the 

Gradient Descend on a given number of examples of the training set at a 

time (batch size). 

Again, the epoch ends when the algorithm is passed for each example in 

the training set. As with Stochastic Gradient Descend, the cost function 

tends to fluctuate but in a smaller way. Recommended batch size values 

range from 32 to 512, moving by powers of 2. 
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In addition to densely connected ANNs, there are two other main classes of 

ANNs: 

• Convolutional neural networks (CNN), widely used for computer vision 

applications. They exploit a process mathematically known as 

"convolution." In mathematics, convolution is an integral that expresses 

the superposition of one function over another. These particular ANNs 

analyze the input through a series of filters known as kernels. Kernels are 

matrices (in the 2-D case) that shift over the input data, used to extract 

features from images. 

• Recurrent neural networks (RNN), capable of creating an internal 

network memory that allows the output of one execution to be passed to 

the next by creating a loop that connects the same hidden layer between 

different executions, as shown in Fig. 2.11. An RNN processes sequences 

by iterating the elements of the sequence and maintaining a state that 

contains information about what it has seen previously. 

When RNNs are trained on very long sequences, they run into two 

problems typical of these architectures: vanishing gradients and 

exploding gradients. The former occur when the gradients used to 

calculate the weights start to vanish, i.e. they become small numbers close 

to zero.  As a result, the network does not learn. The opposite problem is 

that of exploding gradients. This problem is solved by cutting the 

gradients. The vanishing gradient problem is solved by particular types 

of RNNs, namely Long-Short Term Memory (LSTM) and Gated 

Recurrent Units (GRU). 

 

Figure 2.11: Structure of a RNN. 

 

Although densely connected ANNs have been widely proposed as load signature 

classifiers in event-based systems, their main contribution has been in the 

development of non-event-based systems. 
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The first to propose such an approach were Kelly and Knottenbelt [110], using 

three different types of neural networks. The most significant results are those 

shown by the architecture the authors refer to as Denoising AutoEncorder (dAE). 

AutoEncoders (AEs) are neural networks trained to reconstruct their input by 

passing it through a compact vector representation. The input is then first encoded 

and then decoded to be reconstructed. 

The dAEs are AEs that attempt to obtain a clean target from a noisy input, as may 

be the case with removing reverberation from an audio recording, or removing grain 

from an old photograph. In the case of NILM, the energy disaggregation can be 

seen as a denoising problem, in which one tries to recover the "clean" signal of the 

power profile absorbed by the single appliance from the background "noise" 

consisting of the absorptions of the other appliances. 

Kelly and Knottenbelt's also introduced the concept of sequence-to-sequence 

architectures for energy disaggregation, that is, networks that map an output 

sequence from an input sequence of identical length. By adopting sliding window 

processing, such an approach leads to multiple predictions for a single timestamp. 

Therefore, the mean of the predictions is considered as the result. Subsequent to 

their work, other researchers have proposed similar architectures in order to 

improve the obtained performance [111]-[113], including trying to use reduced 

lengths for the output sequence, thus defining a sequence-to-subsequence approach 

[114]-[128]. A significant breakthrough was achieved when Zhang et al. proposed 

a sequence-to-point architecture [113], assuming that the midpoint element of the 

sequence can be represented as a nonlinear regression of the input window.  

These architectures generally consist of feedforward elements, that are special 

convolutional elements. In fact, the latter are used about twice as often as recurrent 

elements. In recent years, elements such as dilated convolutions [129]-[133], the 

attention mechanism [134]-[136], generative adversarial networks (GANs) 

[134],[137]-[140] have also been adapted in architectures for NILM. 
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Chapter 3 

3Applications in industrial and 

residential context 

Research on NILM systems, in addition to focusing on theoretical models, also 

focuses on the large-scale implementation of these systems. In this context, other 

application fields have been identified, in addition to the classic one previously 

described. Access to information relating to the energy consumption of individual 

household appliances certainly helps consumers to have a greater awareness of bill 

costs. This allows them to improve their behavior in terms of optimizing 

consumption. Studies have shown that the potential bill savings for consumers who 

are provided with detailed information on the consumption of individual appliances 

can exceed 12% [141].  

However, the potential applications of NILM systems in the residential and 

industrial fields are not limited to information aimed at saving energy. This chapter 

describes the most concrete applications in which NILM systems have been 

successfully employed in recent years: 

 

1) Energy tariffs recommendation systems: By analyzing energy 

consumption patterns and the usage of individual appliances, energy 

providers can offer customized tariff plans to customers, resulting in cost 

savings for both the consumer and the provider.  

2) Microgrid & Smart Home Energy Management Systems: NILM can also 

be integrated into energy management systems for Smart Homes and 

Microgrids. These systems can provide real-time monitoring and control 

of energy consumption, allowing for efficient distribution of energy 

resources and reduction of waste. 



Chapter 3, Applications in industrial and residential context 

41 

3) Demand Response in Smart Grids: Energy disaggregation system can 

play a crucial role in Demand Response systems, which are used to 

manage and balance energy demand on a larger scale. By accurately 

predicting energy consumption patterns, NILM can help to prevent 

overloading of the grid and ensure a stable energy supply. 

4) Anomaly Detection and Maintenance: By monitoring energy 

consumption patterns of individual appliances, NILM systems can detect 

abnormal usage and alert the user to potential issues, allowing for 

proactive maintenance and reducing the risk of equipment failure. 

5) Disaggregation of regional demand: This technology can be applied at 

the electrical substation level for energy consumption disaggregation. 

This can provide valuable insights for distribution network operators, 

allowing them to better understand and manage the status of the network. 

6) Ambient Assisted Living: NILM systems can provide real-time 

monitoring of daily activities and enable personalized care and support 

for elderly or disabled individuals. 

It is easily conceivable that these techniques could also find other types of more 

innovative applications in the future. 
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3.1 Energy tariffs recommendation systems 

The detail of domestic energy consumption is still largely invisible to millions of 

users and this is one of the main causes of much waste. Consumption feedback is 

necessary for energy saving, even if it is not always sufficient because it is difficult 

to understand for most consumers. 

A direct feedback could therefore be extremely valuable, especially for the 

savings deriving from the daily use of household appliances. In the longer term and 

on a larger scale, informative billing and annual energy reporting can promote 

investment and influence behaviour. Savings of the order of 5-15% and 0-10% have 

been recorded for direct and indirect feedback, respectively [142]. The direct 

(immediate) feedback refers to instantaneous measurements of power or energy and 

their communication. Indirect feedback, on the other hand, includes all the 

information deriving from the periodic processing of energy consumption, such as 

for example the comparison with consumption periods other than the one recorded, 

the comparison with other households or with a target indicated to the user via 

monitor. 

The potential contribution of a NILM system in the home is therefore not 

negligible. An instant and easily accessible display can provide the consumer with 

adequate information on the various appliances, showing the increase in 

consumption due to kettles, ovens, refrigerators, washing machines, dishwashers, 

etc. . Information on the contribution of individual consumption to the total energy 

consumption of a home could also be provided on the bill, as a general guide. 

A display that shows information on energy use is very useful at home, for 

viewing instantaneous consumption, the cost over the period and the history, with 

the option of also viewing information on tariffs. 

Feedback on consumption is a valuable learning tool and must be seen within the 

whole context. Its impact varies according to the circumstances, but can sometimes 

also be improved by accompanying feedback with advice and information, as 

shown in Fig. 3.1. 

Fisher et al. [143] developed a customized system of energy recommendations. 

The system connects to an energy rate comparison website and estimates annual 

costs based on personal usage profiles.  

Through a NILM algorithm, the deferrable loads (washing machine, dryer, 

dishwasher, etc.) are detected by measuring the aggregate power.  Based on user 

profiles, the system provides comparisons of the user’s current energy tariffs to the 

tariffs available on the market, and provides advice on how much the user can save 

by shifting detected deferrable loads to off-peak times. The system estimates the 
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annual costs on the basis of the consumption forecast obtained from the 

measurements collected and on the basis of the various tariffs available. Knowing 

the contribution of deferred loads and their periods of use, the system also makes 

forecasts on the basis of the shift of these loads at time bands subject to cheaper 

prices. During the study, the system found cheaper tariffs for 9 out of 10 

participants, with an estimated annual saving of £35 to £391 by switching to a 

cheaper tariff. In addition, the system calculated additional savings of between £26 

and £110 by switching 20% of deferrable loads to the cheapest nightly rate. 

 

  

Figure 3.1: User interface of an energy recommendation system. 
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3.2 Energy management systems 

An EMS allows the user to measure and control the use and production of energy 

within a plant. Due to the benefits offered to both the consumers and distributors of 

electricity, EMSs are becoming increasingly important for reducing consumption. 

The most demanding sector, from the point of view of electricity consumption, is 

represented by buildings, which consume 40% of the total primary energy [144]. 

An EMS first and foremost analyzes the electrical energy consumption of 

appliances in order to schedule their use. In addition, it manages the flow of 

electrical power from renewable sources and storage when they are locally 

available. 

3.2.1 EMS for smart homes and microgrids 

NILM techniques allow for the real-time detection of devices that are active. 

They can be used within EMSs, providing information on the electrical 

consumption of individual appliances. To apply these techniques advantageously, 

it is firstly important to classify the load devices on the basis of the programmability 

or, otherwise, of their use. The former are devices whose operation cannot be 

delayed (e.g., lighting, kitchen, or refrigerator). The latter devices can operate in 

variable time intervals based on the price of energy (e.g., washing machines and 

dryers). Heating, Ventilation, and Air Conditioning (HVAC) systems are 

particularly important to this aim. 

The EMS allows the programming of the switching on of household appliances, 

giving higher priority to appliances that consume more energy. In addition to power 

consumption, the switching times, operating range, and frequency of use for each 

class of equipment are important parameters for load management. These 

parameters are provided by NILM systems. In [145],[146], the reduction in the cost 

of electricity is achieved by formulating the problem as a minimization problem, 

taking into account the scheduling flexibility of household appliances by 

consumers. The results show that the system can reduce the cost of energy for 

consumers in a meaningful way. These load scheduling techniques facilitate the 

time shift of existing loads in off-peak periods, so costs are minimized. 

Çimen et al. [147] propose an NILM-based EMS to manage the operation of 

household appliances, in coordination with renewable sources and batteries within 

a residential microgrid. Residential grids include energy storage systems, some 

distributed generation units and one or more homes. These electrical systems can 

be used both in connected mode and in stand-alone mode, thanks to their flexible 

structure. Fig 3.2 shows the structure of the proposed microgrid. 
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Figure 3.2: The microgrid structure with generation and storage sections. 

 

On the power supply side, the energy sources include the public grid, a 

photovoltaic system, a wind turbine, and an energy storage system unit. Each 

system is managed by a microcontroller, through the information obtained from a 

NILM system, such as appliance activations, turn-on and turn-off times, power 

absorbed in the various operating conditions, and periods preferred by the user. The 

system optimizes the energy supplied by renewable source plants by minimizing 

the absorption of electricity from the grid. 

In [148], Xia et al. propose an EMS that allows minimization of the cost of 

domestic electricity while satisfying the needs of comfort and safety. The system 

consists of a first module called the Solar Energy Management System which 

maximizes solar energy utilization, and a second module called the Appliances 

Scheduling System which minimizes the electricity load during peak hours. Using 

this EMS, the running time of the appliance is automatically programmed based on 

considerations concerning the preferences of the family, the day-ahead electricity 

price, and the historical data of electricity use. At the same time, the system uses 

the photovoltaic system and the storage systems in order to consume the minimum 

amount of energy from the grid. In the two subsystems that make up the EMS, a 

smart meter is used to collect the reading of the household’s overall energy 

consumption and transmit it to the energy disaggregation module. 

The framework modules, shown in Fig. 3.3, are described below. 
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Figure 3.3: The EMS framework which illustrates the smart switch management system and the 

necessary modules. 

 

• Energy generation prediction module: this module generates a forecast 

based on historical meteorological data for the considered position. 

• Solar energy management module: this module controls the switch 

starting from the output of the previous block, the state of the battery, and 

the price of electricity. The various loads can be powered by both the solar 

system and the electricity grid; therefore, the system will include a 

controlled switch capable of connecting both power sources by absorbing 

energy from one or the other source. Therefore, this module optimizes the 

use of the collected solar energy. When the photovoltaic energy 

production exceeds the load demand, the photovoltaic energy is used as a 

priority, and the surplus energy is stored in the storage system. Only in 

the event that the photovoltaic energy (generated during the day or stored 

during the night) is not sufficient to support all the appliances in 

operation, does the system absorb energy from the grid. 

• Energy disaggregation module: in order to implement efficient 

programming, the EMS should be aware of the details of the runtime of 

each device to deduce the activities of users on an average day. The 

preferences and habits of users are deduced on the basis of this detailed 

information at the appliance-level by imposing a certain level of priority, 

so as not to upset their routine too much. Therefore, to obtain appropriate 

planning strategies for a certain household, the consumption patterns of 

each appliance are key information. 

• Classifier module: this module is designed to discriminate between the 

programmable and non-programmable devices. The classification 

            

           

          

                  

                

             

                 

              

             

                       

             

                              

           

                 

          

      

                     

      

               

       

                            



Chapter 3, Applications in industrial and residential context 

47 

process is based on various parameters such as the flexibility and user 

preferences for each device. Initially, the classification module generates 

a profile of user preferences, preset according to the varied devices and 

historical data. 

• Appliances scheduling module: this module classifies appliances as 

programmable or non-programmable and is responsible for programming 

the start time of programmable ones. 

 

3.2.2 NILM systems in EMS 

The optimal scheduling of appliances is traced back to an optimization problem, 

formulated as (3.1), solved through dynamic programming algorithms to search for 

sequences of states of each appliance that lead to a lower cost of electricity at the 

end of the day: 

 

min(𝑐𝑜𝑠𝑡 = ∑∑ 𝑐(𝑡) ∙ 𝑝𝑚,𝑖(𝑡) ∙ 𝑡

𝑡𝑛

𝑡=𝑡1

𝑁

𝑖=1

) (3.1)  

 

where cost is the sum of the costs of the energy absorbed by the grid, N is the 

number of schedulable appliances 𝑡 ∈  {𝑡1, … , 𝑡𝑛} is a set of discrete time intervals 

over a whole day (configurable by each user), and 𝑐𝑡 is the price of electricity over 

the interval t. 

The problem appears to be a constrained optimization problem since the time 

intervals that can be taken into consideration in the search for the minimum must 

be compatible with the information on the user behavior of the appliances, obtained 

from energy disaggregation. 

Each appliance is characterized by a working mode m which is associated with 

both a specific power absorption, 𝑝𝑚 , and a different impact on the result. For 

example, a dishwasher that performs a wash in eco mode has a reduced energy 

consumption as it heats less water, but takes longer to finish the cycle, with a 

consequent impact on user comfort. Therefore, the optimization algorithm must 

find a working mode that minimizes the cost of the bill while maintaining certain 

levels of comfort. 

To take into account the user’s satisfaction, the parameter s is introduced, which 

is equal to one when the appliances work in the period preferred by the user and 

decreases as this period varies. Its distribution model can be changed by a factor ξ, 
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depending on the degree of tolerance. Fig. 3.4 shows the distribution of user 

satisfaction as a function of a hypothetical appliance operating time. 

 

 

Figure 3.4: User satisfaction level and degree of tolerance. 

 

The scheduling algorithm must therefore also try to maximize the user’s comfort 

level. This problem can be formulated as in (3.2): 

 

max(𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = ∑ ∑𝑠𝑖(𝑡)

𝑁

𝑖=1

𝑡𝑛

𝑡=𝑡1

) (3.2)  

 

where 𝑠𝑖(𝑡) corresponds to the user satisfaction value, introduced above, at time 

𝑡 for appliance i. 

As previously introduced, the parameters necessary for scheduling household 

appliances can be obtained with the aid of the NILM algorithm. As an example, 

Fig. 3.5 shows the power distributions of two appliances over 24 h. 

 

Figure 3.5: Power distribution of a dishwasher and a washing machine. 
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We obtained these distributions by processing the power measurements available 

from the REFIT dataset [149], which provides aggregate and appliance-level power 

metering for several homes over a period of approximately two years. The red curve 

rep-resents the power distribution, calculated with the power measurements at the 

appliance level. We obtained the blue curve by processing the corresponding 

aggregate power signal through an artificial Sequence-to-Point neural network, 

implemented in accordance with [113]. Since the REFIT dataset contains 

aggregated power and power supply data at the appliance level for 21 homes, data 

from homes that had washing machines and dishwashers were used for training the 

model. A house not seen during the training phase was therefore chosen to obtain 

the analysis shown in Fig. 3.5. The peaks indicate the periods when the device is 

used most frequently. Therefore, if the appliance is scheduled outside the gray 

dotted lines, customer satisfaction could be reduced according to the curve in Fig. 

3.4. 

Similarly, in [150] the authors propose a NILM system based not on DL as in 

[147], but on Bayesian theory. The proposed system also provides for the 

scheduling of appliances in order to optimize the power flows in a Smart Home. In 

[151] the IoT criteria for implementing an EMS based on NILM are outlined. In 

particular, the cited work refers to FHMM algorithms, but what was said can also 

be extended to other approaches such as DL, Combinatorial Optimization, and 

event-based. 

An NILM system serving an EMS must have a high level of disaggregation 

accuracy; therefore, it must be able to determine, as closely as possible, the energy 

consumption profiles at the appliance level. It must also be able to provide 

information on the status (ON or OFF) in which the devices are positioned in order 

to guarantee correct feedback in scheduling. Comparing EMSs based on NILM with 

those based on ILM, it is clear that the main drawback linked to the use of NILM 

systems lies in their lower accuracy in estimating information, as can also be 

guessed from Fig. 3.5. In fact, NILM algorithms will always present greater 

uncertainty in estimating consumption and appliance status compared to intrusive 

systems. However, the use of NILM systems allows one to obtain the necessary 

feedback for energy management through a single installation, which represents a 

significant advantage, especially for those homes that were not born “smart”. 
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3.3 Demand response in smart grids 

The spread of energy production plants from non-programmable renewable 

sources, such as wind and sun, requires greater flexibility of the electricity system, 

to ensure grid stability. With energy being difficult to store on a large scale, the 

balance between supply and demand can sometimes be delicate. To meet these 

needs, active demand management programs are created, ensuring greater 

flexibility and efficiency in the energy infrastructure. 

Demand Response (DR) refers to the active management of energy demand, 

which involves the modulation of energy demand by commercial and industrial 

consumers as market conditions change. For example, in Italy this method was 

introduced by the Regulatory Authority for Energy, Networks and the Environment 

(ARERA) and is used by the operator of the national electricity transmission grid 

(Terna). DR mechanisms allow commercial and industrial consumers to respond to 

market signals by increasing or reducing their energy consumption, with the aim of 

responding to peaks in the de-mand or supply of electricity. This allows for greater 

flexibility and stability of the grid, and more efficient use of infrastructure and 

energy resources. 

As an example of the functioning of the DR, we can consider the following steps. 

• The network operator foresees a network stability problem and sends a 

balancing request to the aggregator (i.e., the intermediary between the 

dispatcher and the end users). 

• The aggregator notifies its customers of the dispatching. 

• The customer manually or automatically implements the modulation plan 

to reduce the load. 

• The customer receives remuneration in exchange for the dispatch 

capacity. 

The DR solution makes it possible to generate revenue for consumers based on 

their flexibility. With DR, grid operators can reduce energy consumption at peak 

times and consequently, the production of additional energy, improving grid 

stability. The two forms of DR already consolidated are: 

• DR associated with network interuption tolerance: the consumer 

voluntarily chooses to reduce their withdrawals from the grid without 

notice via disconnection in exchange for an economic consideration (the 

minimum power is 1 MW). 

• DR linked to multi-hour tariffs: prices change according to the band and 

day of withdrawal, thus stimulating users to consume energy in moments 

of lower load and less grid congestion. 
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• There is also a third innovative form of DR: The Market for Dispatching 

Services (MDS), a tool through which the national operator procures the 

resources necessary to manage and control the system. 

In addition to large production plants or industrial loads, even users who have 

residential energy storage systems can offer balancing services to the electricity 

grid. It is therefore also possible for residential users to actively contribute with 

their energy storage system, rather than passively with simple 

connection/disconnection. The end user can choose, based on the opportunities 

present in the MDS, whether to withdraw or sell, store, or consume energy. To 

manage the storage system, the aggregator installs a communication and remote-

control system. 

 

3.3.1 The role of NILM in DR programs 

A further step towards an increasingly distributed and sustainable model can be 

obtained by integrating NILM systems into DR programs aimed at residential users. 

As already discussed for the EMSs, NILM systems allow the aggregator to know 

the flexibility parameters of a user, making it possible to formulate an advantageous 

offer that does not affect the comfort of families. 

Lucas et al. [152] proposed an algorithm for estimating the flexibility of the 

different electrical loads for DR purposes. The interactions between the actors are 

shown in Fig. 3.6. The request for a DR in a certain time window is reported by the 

network operator to the aggregator or to the Balance Service Provider (BSP). The 

BSP evaluates availability and flexibility, on the basis of user data, made available 

by an NILM system. The BSP interacts with the network operator and subsequently 

with the users. In particular, the NILM system provides information about the 

flexibility of users by analyzing the timestamps relating to the operating intervals. 
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Figure 3.6: Illustration of the interaction between the actors in a DR sequence. 

 

Fig. 3.7 shows an example of the information supplied by an NILM system, 

obtained in a similar way to that described for Fig. 3.5. The figure illustrates a case 

relating to the operating cycle of a dishwasher over a 24 h window. It should be 

noted that the greater length of the operating cycle, indicated by the actual 

measurement, is characterized by very low power consumption, which is therefore 

negligible. In fact, the NILM system in this particular case demonstrates an 

excellent generalization capability. 

 

 

Figure 3.7: Example prediction of the user’s flexibility in using the dishwasher, obtained by 

processing data related to a house in the REFIT dataset not seen during the training phase. 

 

The applicability of NILM systems within smart grids was evaluated in [153]. In 

particular, the following were evaluated: the opportunity of deferred use of 
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electrical loads during the handling of consumption peaks; the possibility of 

proposing discount deals or time-of-use pricing programs to incentivize customers 

to postpone part of their energy demand; and finally, the potential of customers to 

defer loads. 

This study was also conducted using the REFIT dataset [149]. Since the goal is 

to simulate a small smart grid, they assumed that the REFIT houses were connected 

to the same sub-grid, focusing the analyses over a three-month period (April to June 

2014). The houses were chosen because, being in the same region of England, they 

are subject to the same climatic conditions. Therefore, by adding the profiles of 

total power absorbed by them, it was possible to simulate a smart grid. 

In analyzing the total energy consumption in the different days of the week, some 

interesting trends were noted. Weekends have a higher average energy consumption 

than weekdays (which is predictable, as occupants leave for work and/or school 

reasons). The energy consumption profile presents peaks during a 5 h block in the 

evening from approximately 16:00 to 21:00 and similarly during a smaller 3 h block 

in the morning from approximately 5:00 to 8:00 (in line with typical school/working 

hours). Two energy peaks also occur on weekends, with an evening peak from 

around 16:00 to 21:00 and a peak in the morning from around 7:00 to 11:00. 

However, although it is lower than in the morning and evening, energy consumption 

even remains high during the day. 

Based on these models, peak and off-peak hours were defined. Peak periods of 

consumption can increase the risk for the grid, so the goal is to find opportunities 

to level demand by encouraging customers to change their behavior. The loads that 

have the greatest advantage in terms of deferral were identified by carefully 

examining the energy consumption of the various houses and appliances during 

peaks in energy consumption at the grid level. As previously discussed, appliances 

such as washing machines, dryers and dishwashers are potentially deferrable 

appliances, as they do not have a great impact on comfort (i.e., they do not affect 

lifestyle by changing mealtimes or free time), so attempts are made to postpone 

these loads at off-peak hours. 

Table 3.1 shows a summary of the power consumption including the total and de-

ferrable loads (dishwasher, washing machine, dryer, etc.) for each home, during 

peak and off-peak periods, and the consequent potential cost savings. In off-peak 

periods, no distinction is made between deferrable and non-deferrable loads as there 

is no need to move them. The analysis in Table 3.1 assumes that loads such as 

dishwashers, washers and dryers are disaggregated through an NILM system, which 

produces estimates subject to accuracy limits. To this aim, they conducted further 

analysis on the influence of the accuracy of NILM disaggregation on the total loss 
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of revenue in a variable rate DR program. At the design stage, it is essential to 

understand how disaggregation inaccuracies affect the estimation of results in DR 

programs, as this allows decisions to be made that take into account the opportune 

margin of uncertainty. It is also essential to be able to rely on extremely efficient 

NILM systems, which allow one to obtain results that are as truthful as possible. 

 

Table 3.1: Potential savings achievable with load deferral. 

 

  

 Peak Periods 
Off-Peak 

Periods 
% of total 

load 

during 

peak 

periods 

% of total 

load 

during 

peak 

periods 

that is 

deferrable 

% of total load 

during peak 

periods if all 

deferrable load 

is moved to off-

peak 

Total 

energy 

cost under 

flat tariff 

($) 

Total 

energy 

cost under 

variable 

tariff 

without 

load 

deferral ($) 

Total 

energy 

cost under 

variable 

tariff with 

load 

deferral ($) 

Potenital 

savings from 

switching 

tariffs ($) 

Likely to 

switch 

tariffs and 

change 

behavior? 

Total 

energy 

cost 

assuming 

cheaper 

option is 

selected 

($) 

House 
Deferrable 

load (kWh) 

Non-

deferrable 

load (kWh) 

Total load 

(kWh) 

Total load 

(kWh) 

1 11.6 296.9 308.5 376.2 45.1% 1.7% 43.4% 136.9 126.8 123.3 13.6 yes 123.3 

2 92.4 370.1 462.5 304.7 60.3% 12.0% 48.2% 153.4 177.1 149.4 4.1 yes 149.4 

4 23.8 305.4 329.3 381.2 46.3% 3.4% 43.0% 142.1 134.3 127.2 14.9 yes 127.2 

5 189.4 587.3 776.6 562.2 58.0% 14.1% 43.9% 267.8 299.9 243.1 24.6 yes 243.1 

6 14.2 412.0 426.2 503.7 45.8% 1.5% 44.3% 186.0 174.3 170.1 15.9 yes 170.1 

7 171.0 350.4 521.4 412.4 55.8% 18.3% 37.5% 186.8 203.1 151.8 35.0 yes 151.8 

8 34.8 444.6 479.5 752.5 38.9% 2.8% 36.1% 246.4 205.4 195.0 51.4 yes 195.0 

10 112.9 606.2 719.1 624.0 53.5% 8,4% 45.1% 268.6 282.9 249.0 19.6 yes 249.0 

12 33.1 345.5 378.6 279.1 57.6% 5.0% 52.5% 131.5 146.5 136.5 -5.0 no 131.5 

13 83.7 564.3 648.0 395.8 62.1% 8.0% 54.1% 208.8 246.6 221.5 -12.7 no 208.8 

15 43.4 234.8 278.2 288.5 49.1% 7.7% 41.4% 113.3 111.8 98.8 14.6 yes 98.8 

16 81.0 533.3 614.4 558.3 52.4% 6.9% 45.5% 234.5 242.9 218.6 15.9 yes 218.6 

17 8.9 300.8 309.7 298.0 51.0% 1.5% 49.5% 121.5 123.3 120.6 0.9 yes 120.6 

18 36.4 389.4 425.8 463.6 47.9% 4.1% 43.8% 177.9 172.2 161.3 16.6 yes 161.3 

19 3.4 260.6 264.1 270.1 49.4% 0.6% 48.8% 106.8 105.9 104.9 1.9 yes 104.9 

20 23.7 309.8 333.5 325.8 50.6% 3.6% 47.0% 131.9 133.0 125.9 6.0 yes 125.9 

Total 963.7 6311.4 7275.4 6796.1       2814.2 2886.0 2597.0 217.3   2579.3 
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3.4 Anomaly detection and maintenance 

As previously discussed, NILM systems continuously monitor the absorption of 

individual devices connected to the electrical grid. An innovative application is to 

use these systems to detect anomalies in electrical loads. To accomplish this task, 

the NILM systems, in addition to estimating the energy consumption of the 

appliance, must also be able to faithfully determine the power absorption profile 

over time, which is then analyzed by the anomaly identification systems. 

 

3.4.1 Anomaly detection with NILM 

In the works [154]-[156], the first NILM systems for the detection of anomalies 

were proposed. These systems make it possible to identify faults in air conditioners, 

refrigeration systems, and waste disposal systems powered by autonomous circuits. 

Rashid et al. [157] presented a study on the ability of an energy disaggregation 

system to identify the anomalies of household appliances inside an apartment. The 

algorithm, based on a Factorial Hidden Markov Model (FHMM), starts from the 

measurement of the aggregate power supplied by the smart meter and is based on 

pre-established rules to estimate the type of anomaly and its temporal position. 

The study focuses on the analysis of refrigerators and air conditioners, as 

common, high-consumption, compressor-based appliances. Any failure of the 

compressor, or of any other part that affects it, is reflected in the profile of absorbed 

power. Depending on the type of fault, the durations of the ON and OFF conditions 

differ significantly from the nominal ones, although these deviations could also be 

due to different causes. 

For example, an elongated duty cycle may be due to a clogged air conditioner 

filter, its incorrect configuration or a failure of the refrigerator door. Similarly, a 

higher switching frequency between the ON and OFF states can occur, due to 

damage in the compressor, short circuits, or refrigerant leaks. Appliances such as 

refrigerators have different absorption profiles depending on the time of day, as 

shown in the Fig 3.8. 
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Figure 3.8: Power profile of the refrigerator during 24 h. 

 

Furthermore, a malfunction can result in both higher and lower power 

consumption. Therefore, using the total daily consumption to estimate anomalies 

may not be accurate. As can be seen from Fig. 3.8, both anomalous conditions result 

in a daily energy consumption higher than that of normal behavior. An observation 

based solely on daily energy consumption does not explain the type of anomaly, 

i.e., if there was a problem with an elongated duty cycle or more frequent switching 

between the ON and OFF state. For these reasons, the authors have proposed an 

analysis of the average energy consumption taking into account the characteristics 

of the device; the method is called UNUM. UNUM is an anomaly detection 

algorithm consisting of a training and a test phase. During the training phase, the 

statistical model of the device is built, starting from the profile of the power 

absorbed during normal operation. During the test phase, the input is the profile of 

the power absorbed by the device during the day, and the algorithm issues 

indications on the presence or absence of anomalies. 

The identification of the ON / OFF states of the compressor occurs through a 

clustering algorithm known as k-means [158], which provides two clusters 

corresponding to the states and the relative power measurements. Note that the 

power absorbed during the OFF state is not zero because a device can continue to 

absorb power even when the compressor is OFF. 

The time of the power measurements at the extremes that define the single state 

are identified. From these measurements, we calculate the duration, 𝐷𝑠, and the 

energy consumed in each state, 𝐸𝑠. For both the ON and OFF states, the means of 

the 𝐷𝑠  and 𝐸𝑠  are calculated, associating them with 𝐷̅ and 𝐸̅ , respectively. 

Furthermore, the standard deviation of 𝐸𝑠, denoted by 𝜎𝑒, is calculated. During the 

analysis, it was observed that the air conditioner and the refrigerator draw power 

differently at different times of the day, which is logical. Fig. 3.8 shows the 
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signature of the work cycle of the appliance during the day and night, and 

significant differences are noticed. Therefore, separate models were built: one for 

the day (06:00–18:00 h) and the other for the night. 

The algorithm first takes the data on the power profile absorbed by a device and 

calculates all the parameters described above. Next, the method described below is 

used to decide if the profile has anomalies and, if so, what kind of anomalies they 

are (increased duty cycle or switching frequency): 

 

a. If an appliance frequently passes from the ON to the OFF state and vice 

versa, as for “abnormal behavior 2” in Fig. 3.9, in an ON / OFF cycle, it will 

consume less energy than in the normal case (presenting, however, a higher 

consumption in the overall operating time). Therefore, an anomaly 

associated with “anomalous behavior 2” must be identified as follows: 

 

𝐸𝑡𝑒𝑠𝑡
𝑖 < 𝐸̅𝑖 − 𝑛 ∙ 𝜎𝑒

𝑖 ,       ∀ 𝑖 ∈  {𝑂𝑁, 𝑂𝐹𝐹} (3.3)  

 

where {𝑛 ∈  𝑅|𝑛 > 0} is a control parameter that determines how many 

standard deviations from the historical profile should be tagged as an 

anomaly. Intuitively, n controls the granularity of the anomaly: a small value 

of n means that an anomaly is flagged if a minor deviation is observed and 

vice versa. 

 

b. If an appliance remains in its ON state for an excessively long period 

(prolonged work cycle), the energy consumed within a cycle will be greater 

than normal: 

 

𝐸𝑡𝑒𝑠𝑡
𝑂𝑁 > 𝐸̅𝑂𝑁 + 𝑛 ∙ 𝜎𝑒

𝑂𝑁 (3.4)  

 

c. If an appliance remains on for a prolonged period and remains off for a 

longer period than normal, this is not an anomaly, because it is a condition 

that occurs when the appliance is switched on after a long period: 

 

𝐸𝑡𝑒𝑠𝑡
𝑂𝑁 > 𝐸̅𝑂𝑁 + 𝑛 ∙ 𝜎𝑒

𝑂𝑁           Λ          𝐷𝑡𝑒𝑠𝑡
𝑂𝐹𝐹 > 𝐷̅𝑂𝐹𝐹 + 𝑛 ∙ 𝜎(𝐷) (3.5)  

 

This set of rules allows the UNUM algorithm to indicate the status of the anomaly 

in an informative way, so as to allow a quick decision-making process on which 
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type of anomaly is present and, since two separate models are used for day and 

night, in which part of the day the anomaly occurs. 

 

 

Figure 3.9: Hypothetical cases of elongated duty cycle (abnormal behavior 1) and increased 

switching frequency (abnormal behavior 2). 

 

To evaluate the effectiveness of the UNUM algorithm, the data obtained by the 

NILM system were processed, comparing the results with those obtained by 

applying the algorithm to the data measured directly on the appliance. 

The following metrics were used to indicate the accuracy of both the NILM and 

anomaly detection systems: 

 

𝐴𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝐴𝑁𝐸) =
∑ |𝑦𝑡

𝑎 − 𝑦̂𝑡
𝑎|𝑡

∑ 𝑦𝑡
𝑎

𝑡
 (3.6)  

 

where 𝑦𝑡
𝑎 represents the power measured at the appliance level for the appliance 

𝑎 and 𝑦̂𝑡
𝑎 represents the corresponding estimate provided by the NILM algorithm. 

The lower the ANE value, the more precise the disaggregation algorithm will be for 

the appliance 𝑎: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.7)  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.8)  

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.9)  

 

With precision, the percentage of true anomalies detected is taken into 

consideration and compared to the total number of anomalies detected (and 
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therefore alarms triggered). In addition, the percentage of true anomalies detected 

is maintained and compared to the total number of anomalies (detected or not) and 

compared to the recall. The higher the F1 score’s value, the more accurate the 

anomaly detection algorithm will be. 

The results showed that a good number of abnormal cases for an appliance can 

be correctly identified if the ANE is less than 0.1. The choice of the NILM 

technique is therefore determined by the ANE value achieved for the household 

appliances of interest. 

It was observed that as control parameter n increases in the UNUM algorithm, 

the recall decreases. This is because, as n increases, observations with a lower 

standard deviation are treated as normal observations, thus increasing false negative 

results. At the same time, an increase in 𝑛 makes it less likely that small deviations 

are considered anomalies, resulting in fewer false positives (and therefore false 

alarms) and a higher precision value. An accurate choice of the control parameter n 

based on the trade-off between recall and precision is therefore essential. 

 

3.4.2 Condition-based maintenance 

Condition-Based Maintenance (CBM) refers to all those activities aimed at 

maintenance, which are based on the data collected by monitoring the status of the 

equipment. This type of maintenance differs from the traditional one, which instead 

is performed on a scheduled basis or when faults occur. Failure alerts are provided 

from the collected data to help plan equipment repairs or replacements. 

The goal of a CBM system is to detect minor failures and take action before they 

turn into more dangerous failures. These minor faults are often invisible to operators 

and therefore require analysis of the electrical power measurement. An NILM 

system can allow CBM to be an effective tool by detecting and identifying both 

equipment signatures and their anomalous behaviors. An important feature of these 

systems is the presence of a user interface that helps the operator make operational 

decisions in an intuitive way. An NILM system was deployed aboard the United 

States Navy [159] to monitor energy and faults in electrical installations with 

minimal invasiveness, thereby installing a minimum number of sensors to monitor 

various loads on board. The loads monitored by the NILM Dashboard [160] are 

motors, engines, generators, and pumps. The monitored loads are all the ON/OFF 

type (Type I), with the exception of a diesel purifier, which is an FSM and for which 

each state is considered separately. The NILM systems installed on ships have two 

primary objectives: the first is to detect anomalies to improve the functioning of the 

system, and the second is to give operators better awareness by identifying the 
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operating programs of the equipment. The NILM system used is an event-based 

system, i.e., a first algorithm is used to detect events, and then an artificial neural 

network, trained to identify anomalous situations starting from the measurement of 

active and reactive power on the three phases, is used. 

In this way, the NILM system detects all those events that occur as a result of 

status changes of the various loads, thus acquiring knowledge on the operating 

programs of the individual equipment. 

More specifically, there are five parameters for diagnostics: 

• the active and reactive power absorbed in stationary conditions; 

• the power factor; 

• the time between activation and shutdown, indicated as Average Run 

Duration; 

• the total time in which the equipment is operational over 24 h, indicated 

as the Total Run Time; 

• the number of discrete operations per day, indicated as Daily Actuations. 

 

These metrics help detect degradation in equipment material, such as that which 

occurs from mechanical wear and corrosion. The wear of a motor bearing can be 

reflected as a change in power consumption [161], while corroded heaters could be 

reflected as a change in power factor. The NILM system monitors heaters and 

pumps which are controlled by automatic closed-loop systems based on thermostats 

or tank-level sensors. Therefore, the Daily Actuations, total run time and average 

run duration are also useful in identifying sensor and automation failures that could 

cause too frequent stimulation or insufficient operation. In fact, a failed thermostatic 

controller or a broken tank indicator can cause excessively long or repeated periods 

of equipment activation [162]. However, it is important to note that frequent pump 

activations or even a single long activation are not necessarily cause for alarm. This 

is taken into consideration by monitoring the 24 h average of the Average Run 

Duration, power, and power factor parameters, and taking into account the Daily 

Actuations and Total Run Time. The 24 h evaluation prevents false alarms 

following brief anomalies. Depending on whether the loads are activated less or 

more frequently, stricter controls are necessary, so the period can be easily adjusted 

for various applications. 

In [163], techniques were presented to identify progressive failures starting from 

measurements obtained through a NILM system and provide analysis of vibrations, 

materials, and the analyzed electrical signatures. In the work presented in [155], 

performances obtained using FHMM are shown, and in [164] the authors propose 
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a similar system for the detection of anomalies on the consumption patterns of 

household appliances, but instead based on an autoencoder. 

The CBM parameters described above are communicated on the NILM 

dashboard through diagnostic indicators divided into three levels of signaling, 

namely, healthy operation, fault warning, and definitive fault alarms, as shown in 

Fig. 3.10. Establishing the correct threshold for each region of the indicators is 

critical in order to be usable by the ship’s crew. Several techniques were proposed 

to determine the failure thresholds related to industrial applications. In [165], the 

authors proposed a statistical process control (SPC) method, where an NILM 

system collects data that are used for SPC analysis. The deviation in parameters 

from historical data is an indication of a possible failure. SPC allows for the exact 

determination of when a deviation should determine a fault warning and how much 

deviation is acceptable. The system defines a center line, a lower control limit 

(LCL), and an upper control limit (UCL). If a parameter reaches the lower or upper 

control limits, warnings are issued. SPC analysis defines the center line as the 

arithmetic mean of the various parameters considering a standard normal 

distribution for each parameter. In this application, a normal distribution does not 

adequately fit the data. The best results are obtained using a Weibull distribution, 

typical of many machinery reliability applications [165]. 

 

 

Figure 3.10: The NILM dashboard which reports the measured parameters and the related 

alarm thresholds. 

 

An interesting consideration is that if an operator knows that some piece of 

equipment should be in operation, but the NILM-based CBM system shows no 

activity, i.e., the daily actuations have dropped to zero, there is evidence of a failure. 

This can happen for several reasons and is not necessarily indicative of equipment 

failure. First, it could indicate a complete failure of some piece of equipment. 

Second, it could be due to a broken sensor, as a result of which the load does not 
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turn on, even when it should. Alternatively, it could be due to a degraded part of the 

equipment, which causes a change in absorption compared to the value considered 

normal by the NILM, so the load is actually functioning but the NILM does not 

consider it to be so. 

However, to help a user identify abnormal behavior, an NILM-based CBM 

system should track changes not only in the behavior of the equipment in terms of 

the number of starts and stops but also in the power draw of the device. The problem 

lies in the impracticability of training NILM systems on all anomalous signatures 

because the variations depend on the type of anomaly. Therefore, the NILM 

identification algorithms are trained on the data obtained during correct operations. 

Nevertheless, a priori knowledge of the operation of the equipment can help define 

the equipment even in its degraded state. CBM and electromechanical fault 

detection systems can be developed cost-effectively and quickly through the use of 

NILM systems. The load analysis discussed in [157] shows that through a selection 

of statistical parameters, these systems can analyze a wide range of system 

anomalies and assess the health of individual equipment. 
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3.5 Disaggregation of regional demand 

Distributed energy resources (DER) refer to the decentralized production of 

electricity through small self-production units located in different sites and 

connected to the distribution network. This model is distinct from the traditional 

centralized model which relies on a small number of large power plants connected 

to the transmission grid. These resources, found both in remote locations such as 

wind farms and in proximity to end users like cogeneration plants, are generally 

connected to low voltage distribution networks.  

DERs play a crucial role in the development of sustainable smart cities, but 

monitoring loads on a distributed network can be challenging for distribution 

network operators. Additionally, it is not practical to install sensors for every 

resource on the network. To address these problems, the NILM technique has been 

adapted to monitor DERs connected to regional substations, as demonstrated in 

[166]. Specifically, the system was used to disaggregate regional demand into 

traditional load, flexible load and distributed generation components, as shown in 

Figure 3.11. 

 

 

Figure 3.11: Energy disaggregation at LV substation level.  

 

The electricity generated by distributed sources such as photovoltaics or small 

wind turbines is considered a negative load. As a result, the power obtained by 

adding the total load and the distributed generation allows for multiple 

disaggregation solutions, each made up of different combinations of distributed 

loads and generators. Therefore, using NILM systems to separate these two 

contributions can result in non-unique solutions. To address this issue, the authors 
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propose a three-step approach. The first step consists in predicting the traditional 

load, consisting of loads geographically connected at fixed points and temporally 

invariant in terms of quantity, using the latest generation NILM systems based on 

long-term historical data. The residual of this forecast is deemed a forecast error, 

linked to distributed generation and flexible load. In [166], flexible load refers to 

electric vehicles connected to a substation which vary in time due to mobility. 

Additionally, their charging and discharging patterns can vary widely depending on 

the brand and charging mode. 

This approach can be formulated as in (3.10). 

 

𝑃𝑠𝑢𝑏 = 𝑃𝑡𝑟𝑑 + 𝑃𝐷𝐸𝑅 + 𝑃𝐸𝑉 (3.10)  

 

where 𝑃𝑠𝑢𝑏 is the output power from the regional substation, 𝑃𝑡𝑟𝑑 is the power 

relative to the traditional load, 𝑃𝐷𝐸𝑅 is the power supplied by the distributed energy 

resources and 𝑃𝐸𝑉 is the power absorbed by the electric vehicles. 

The 𝑃𝑡𝑟𝑑 is derived using a NILM system trained on historical data. The error in 

the estimate can be defined as in (3.11). 

 

𝐸𝑟𝑟𝑡𝑟𝑑 = 𝑃𝑡𝑟𝑑 − 𝑃̂𝑡𝑟𝑑 

 
(3.11)  

Consequently, the difference between the output power from the substation and 

the power estimated by the NILM system is: 

 

∆P = 𝑃𝑠𝑢𝑏 − 𝑃̂𝑡𝑟𝑑 = (𝑃𝑡𝑟𝑑 + 𝑃𝐷𝐸𝑅 + 𝑃𝐸𝑉) − (𝑃𝑡𝑟𝑑 − 𝐸𝑟𝑟𝑡𝑟𝑑)
= 𝑃𝐷𝐸𝑅 + 𝑃𝐸𝑉 + 𝐸𝑟𝑟𝑡𝑟𝑑 

(3.12)  

 

𝐸𝑟𝑟𝑡𝑟𝑑  is almost a white noise while 𝑃𝐷𝐸𝑅  and 𝑃𝐸𝑉  show a strong periodicity 

(daily for 𝑃𝐷𝐸𝑅  and from 1 to 7 days for 𝑃𝐸𝑉), therefore a spectral analysis was 

adopted in order to reduce the high frequency components of ∆P. In particular, 

empirical mode decomposition (EMD) [167] was used, which allows to decompose 

non-stationary data sets into a finite and often small number of components. These 

components are described as intrinsic mode functions (IMFs) and form a complete 

and nearly orthogonal basis for the original signal. 

In this process, a total of 𝑛 IMFs are obtained with a final residue 𝑟𝑛. The filtered 

residual value ∆P∗ can then be rewritten as in (3.13). 

 

∆P∗ = ∑𝐼𝑀𝐹𝑖 + 𝑟𝑛

𝑛

𝑖=1

 (3.13)  
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Frequencies decrease as 𝑛 increases. Since the first 𝑢  IMFs usually carry the 

most oscillating (high frequency) components, the error 𝐸𝑟𝑟𝑡𝑟𝑑  is mainly 

distributed in this part. The specific value of 𝑢  is determined by the frequency 

components of the IMFs. In general, the high frequency components are mainly 

concentrated in the first IMF. Reconstructing the remaining low frequency IMF and 

the residual 𝑟𝑛 we obtain the (3.14). 

 

𝑃𝐷𝐸𝑅 + 𝑃𝐸𝑉 = ∑ 𝐼𝑀𝐹𝑖 + 𝑟𝑛

𝑛

𝑖=𝑢+1

 (3.14)  

 

The second step consists in deducing 𝑃𝐷𝐸𝑅 , that is the contribution of the 

distributed energy resources. In the study taken as an example, the case in which 

the production of energy from distributed generators is exclusively photovoltaic 

(PV) was considered. Therefore, a widely used formula for estimating PV 

production is given in (3.15). 

 

𝑃𝑃𝑉 = 𝐴 ∙ 𝑅 ∙ 𝑃𝑅 ∙ 𝜂 (3.15)  

 

where 𝑃𝑃𝑉 indicates the power produced (kW), A indicates the total area of the 

panels (m2), 𝜂 is the efficiency of the solar panels, 𝑅 is the incident radiation (kW/ 

m2) and 𝑃𝑅 is a performance ratio (or coefficient loss, between 0.5 and 0.9, usually 

set at 0.75, as 𝑅 and 𝜂 do not take into account shading). It is assumed that in a short 

period of time (the study in question considers 10 days) the installed area is a 

constant and the other coefficients are relatively stable. Downstream of these 

assumptions, we can write the (3.16). 

 

𝑃𝐷𝐸𝑅 = 𝑃𝑃𝑉 = 𝐾 ∙ 𝑅 (3.16)  

 

A peak matching analysis was proposed to estimate the value of 𝐾 for the area 

and period studied. ∆P∗ consists of only a mixture of EV load and PV generation. 

The idea is to look for a period in which a local minimum of the negative part of 

∆P∗, which will be denoted by ∆P∗̅̅ ̅̅ ̅, matches with the local maximum of the incident 

radiation 𝑅, known on the base of the meteorological data being the meteorological 

conditions similar in the whole studied region. It is assumed that if the local 

maximum of solar irradiation matches with the local negative minimum of ∆P∗̅̅ ̅̅ ̅, the 

PV generation is predominant in the period considered. The estimated value of the 

𝐾 coefficient can be described as: 
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𝐾̂ =
1

𝑍𝛼=1
∑∑𝛼

(∆P∗̅̅ ̅̅ ̅)𝑖
𝑖𝑑𝑥𝑖

(𝑅)𝑗
𝑖𝑑𝑥𝑗

𝑞

𝑗=1

𝑝

𝑖=1

      𝛼 = {
1      |𝑖𝑑𝑥𝑖 − 𝑖𝑑𝑥𝑗| < 𝜀

0      |𝑖𝑑𝑥𝑖 − 𝑖𝑑𝑥𝑗| > 𝜀
 (3.17)  

 

where 𝑖𝑑𝑥𝑖 is the index of the i-th local minimum of ∆P∗̅̅ ̅̅ ̅ and 𝑖𝑑𝑥𝑗 is the index of 

the j-th local maximum of 𝑅. Obviously 𝑖𝑑𝑥𝑖, 𝑖𝑑𝑥𝑗 ∈ [1, 𝑛]  where 𝑛 is the length 

of the signal considered. 𝑝 and 𝑞 are the number of peaks respectively of ∆P∗̅̅ ̅̅ ̅ and 

of 𝑅. (∆P∗̅̅ ̅̅ ̅)𝑖
𝑖𝑑𝑥𝑖 is the value of the i-th peak of ∆P∗̅̅ ̅̅ ̅ e (𝑅)𝑗

𝑖𝑑𝑥𝑗
 is the value of the j-th 

peak of 𝑅. 𝛼 is the match indicator, its value is equal to 1 when two peaks match, 

otherwise it is equal to 0. When the difference between the two indices 𝑖𝑑𝑥𝑖 and 

𝑖𝑑𝑥𝑗  is less than a certain threshold 𝜀 , then the two peaks will be considered 

corresponding. 𝑍𝛼=1 is the number of matched peaks. 

Consequently, we have that: 

 

𝑃𝐸𝑉 = ∆P∗ − 𝐾̂𝑅 (3.18)  

 

At this point the output power measured from the substation has been 

disaggregated into the three contributions described above. In [166], the 𝑃𝐸𝑉  is 

further processed in order to determine the number of electric vehicles and the 

charging modes (slow, fast and extra fast charging) through limited activation 

matching pursuit (LAMP) [168]. 

The method described, called Regional-NILM, provides a way to estimate the 

real-time status of DERs without costly monitoring and data privacy issues. 

Fig. 3.12 summarizes the entire procedure in three steps: 
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Figure 3.12: The flowchart of a regional demand disaggregation system.  

 

Future research could investigate the use of deep neural network to manage the 

entire process, through multi-input structures able to process the output measured 

power from the substation and the incident solar radiation and directly provide the 

three power contributions. 
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3.6 Ambient assisted living 

The concept of Ambient Assisted Living (AAL) represents a set of technological 

solutions (including home automation systems) designed to make the home 

environment active, smart, and collaborative. It must be effective in supporting 

independent living and be able to provide greater safety and well-being in carrying 

out the Activities of Daily Livings (ADL). These solutions go beyond the 

technological content, but also include aspects of design and the analysis of the 

needs of society, psychology, and medicine. This differentiates AAL from home 

automation, which is specifically focused on technology and automation in the 

home environment. Despite this, both technologies have something in common. 

Almost all AAL projects are focused on home automation. Knowing a person’s 

ability to undertake normal ADL is an essential part of the AAL, as it allows for the 

diagnosis to be made. There are several ADLs that can be deduced from the data 

obtained with smart meters or sensors installed in the home, using NILM algorithms 

[169]. The following list highlights the main ADL that can be detected through a 

patient’s interaction with their electrical devices: 

• Eating patterns: for the purpose of detecting abnormal or altering changes 

in eating habits. These types of behavioral changes provide key indicators 

regarding the patient’s overall health. 

• Sleep Patterns: changes in sleep patterns can provide insight into a 

patient’s mental and physical well-being. Sleep disturbances are often key 

indicators of various mental health problems. 

•  outine alterations: it is vital for detecting changes in a patient’s behavior 

and forms a fundamental part of the AAL system, in order to facilitate an 

independent life. Identifying a change of course, especially in more 

serious conditions such as dementia, may indicate the need for immediate 

intervention. 

Nory et al. [170] proposed an NILM system that monitors the ADL starting from 

the identification of active electrical devices within the home. The algorithm 

identifies the various powered devices, recording information on their switching 

ON or OFF, from which it obtains useful information for the AAL purposes. For 

example, detecting a light turning on indicates that someone is entering a room. 

Consequently, every device in the house is virtually transformed into an additional 

sensor, without disturbing the user’s privacy. 

Specifically, the authors analyzed four activities (preparing and consuming food, 

hygiene, dressing, and grooming) in four periods (i.e., morning, day, evening, and 

night) and two additional activity levels (day and night). 
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Table 3.2 shows the relationships between rooms, appliances, and ADL. 

However, the relationship between individual appliance activation and ADL is not 

inductive. To this aim, a factor 𝑝𝑖𝑗 was defined that determines the weight of an 

appliance 𝑖  in 𝐴𝐷𝐿𝑗 . If the appliance is very representative of an activity, this will 

have a high weight for the classification of the activity; therefore, this weighing 

process allows one to take into account the functionality of each appliance. For 

example, the coffee machine, which is used frequently in the morning, receives the 

maximum weight in the “breakfast”    .  n the contrary, the kitchen light 

receives the minimum (not zero) because there is a lower ratio between the 

“feeding” activity and the kitchen light. In the event that a room is only equipped 

with lighting, the room lights will have the higher weight in detecting this activity. 

 s an example, for “hygiene” activity detection, the bathroom light will be the main 

indicator, unless another appliance such as a hair dryer is currently being used. 

Downstream of this, if at a certain moment a certain subset of active devices is 

detected, the activity carried out at that moment will be the one that maximizes the 

weight factors, in accordance with (3.19): 

 

𝐴𝐷𝐿(𝑡) = arg max
𝐴𝐷𝐿𝑗

(∑𝑝𝑖𝑗 ∙ 𝑟𝑖(𝑡)

𝑁

𝑖=1

) (3.19)  

 

where 𝑁  is the number of appliances and 𝑟𝑖  is equal to 1 if appliance i has 

occurred, otherwise it is 0. 

 

Table 3.2: Relationships between rooms, appliances, and ADL. 

Room Appliance ADL 

Kitchen Kitchen light, fridge, furnace, boiler, dishwasher Cooking, eating 

Toilets Toilet light, heater Continence 

Bathroom Bathroom light, hairdryer, heater Grooming 

Other room Light of the room Other 

 

Zhang et al. [171] used a Latent Dirichlet Allocation (LDA) algorithm [172] to 

create a model of the use of household appliances that allowed them to deduce the 

activities carried out by the occupants, starting from their absorption profiles. It is 

a probabilistic model used mainly for text processing, which deduces the semantic 

meaning of a document by analyzing the similarity between the distribution of the 

terms of the document with that of a specific topic. In a similar way, given a certain 

time interval, the states in which the appliances are found in that time interval are 

used to infer the activity (or activities) in progress. A system of this type can be 
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created using the information of an NILM system, allowing the costs and 

intrusiveness of the sensors to be minimized. 

An AAL system makes the home smart by digitizing it through smart sensors and 

appliances that form a network capable of providing automated services to the user 

based on their lifestyle. To provide these services, the house equipped with an AAL 

system can use information from NILM systems, such as those described above, to 

primarily monitor the resident’s activities.   general scheme of the system is shown 

in Fig. 3.13. The system is therefore able to analyze the data collected on the 

activities of the resident in his environment. Based on this analysis, the digital 

environment can offer tailor-made services for the resident and assist them in their 

daily life. Data from the NILM-based AAL system are transmitted over Wi-Fi to 

the homes of family members, friends, healthcare assistants, and doctors. In this 

way, it is possible to constantly monitor the health of the resident. In the event of 

an accident or emergency, rapid assistance can be provided through direct 

communication between the participants. It is evident that an NILM system 

designed for AAL applications must be able to determine the state (ON or OFF) of 

the various monitored devices. In this case, it is no longer necessary to know the 

absorbed electrical quantities. For example, in [173],[174], systems are proposed 

that are able to infer the ADLs starting from the power profile of each appliance, 

identifying normal and anomalous patterns. This type of approach is limiting 

compared to the systems described previously as it would not allow reactive 

interventions in a short time. Therefore, an easy-to-install system that allows the 

status of the various electrical loads to be analyzed is ideal for an application of this 

type [2]. 

 

Figure 3.13: General scheme of systems using NILM in AAL, which makes it possible to 

identify the ADLs within a monitored apartment, often also thanks to the use of auxiliary 

sensors. 
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Chapter 4 

4Design, implementation and 

metrological characterization of 

innovative NILM systems 

During the course of the Ph.D., extensive research activities were undertaken, 

leading to the development of three distinct NILM systems. Chapter 2 of the thesis 

extensively discusses NILM systems and their two macro-categories: event-based 

and non-event-based systems. In order to conduct a comprehensive study, three 

systems were implemented, each with different characteristics and capabilities. 

 

• The first proposed system, discussed in Chapter 5, is an event-based 

system that samples the absorbed current signal at a high frequency of 

10 kHz. The proposed system differs from most algorithms in that it 

detects the event and classifies the device through a single process, 

whereas most algorithms require a separate device identification phase. 

Moreover, this system is unique in its ability to recognize appliances 

from the measurement of the absorbed current alone. This feature 

allows the added advantage of making galvanically isolated 

measurement systems that are easy to install through CTs.  

 

• The second system, discussed in Chapter 6, is a non-event-based 

system that processes an active power signal available at a significantly 

lower frequency of 1/8 Hz. Despite the lower frequency, this system 

has a high generalization capability that allows it to be installed on an 

electrical system without prior knowledge of the loads it will be 
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monitoring. The system, implemented on a single-chip microcontroller 

based on the ARM (Advanced RISC Machine) architecture, has been 

metrologically characterized by a long 12-month test phase. It updates 

the energy disaggregation data every 8 seconds and provides detailed 

information about the energy consumed by individual loads, as well as 

their status. 

 

• The third proposed system, discussed in Chapter 7, is particularly 

innovative and departs from the definitions of NILM systems used in 

the literature. This system is based on the injection of a variable-

frequency signal into a generic electrical socket of the system being 

monitored. The identification of electrical loads connected to the 

electrical system is done by processing the obtained frequency response 

using ML algorithms. Therefore, it does not rely on processing time 

sequences of absorptions in order to detect changes (as in event-based 

systems) or consumption patterns (as in non-event-based systems). 

This approach overcomes the typical problems of NILM systems in 

identifying multistate or continuous variable load appliances. 

Additionally, the system presents a simplified connection mode 

compared to traditional NILM systems, as it can be installed directly 

on an electrical socket. 

 

All the three proposed systems underwent an extensive testing phase, where their 

performance in real-world scenarios was evaluated. The systems differed in the type 

of approach, the different sampling frequencies used for signal acquisition, the 

characteristics of the hardware required, and the type of contribution they can make 

to the context in which they are applied. These systems represent significant 

advancements in the field of NILM and can be applied in the various contexts 

discussed in Chapter 3. 
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Chapter 5 

5A high sampling rate event-based 

NILM system 

The first NILM system that has been implemented is a system designed to be 

installed inside a home. This system is capable of acquiring and processing the 

overall user current. The proposed solution is a DL-based NILM system. It adopts 

a CNN, a particular type of ANN [175],[176], as previously explained in the 

Chapter 2. 

A salient aspect of CNNs is that they are suitable for processing complex input 

data, such as multidimensional arrays. In the proposed application, the CNN 

processes the Short-Time Fourier Transform (STFT) of the total current. Although 

in most algorithms an event detection step is followed by device identification, in 

this work, event detection and classification of the related device are performed by 

the same and unique process. 

The operational characteristics of the proposed system are verified by extensive 

measurements. The results obtained from field applications are also included and 

discussed. 
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5.1 Analyzed load signature features 

Although NILM has been investigated for over two decades, no systematic 

selection of the electrical characteristics that allow for unequivocal load 

discrimination has been presented yet. Therefore, the identification of the most 

significant set of electrical parameters that allow them to be distinguished remains 

one of the biggest challenges. 

The load characteristics, as already explained in Chapter 2, can be classified into 

stationary and transient-state characteristics based on the state of the measured 

waveform they represent. The load signature proposed in this chapter is based on 

the transient characteristics. More specifically, the transient characteristics are 

represented by the spectrogram of the derived rms current signal. By deriving the 

rms current, the steady states are filtered and all transient information is maintained. 

In this way, it is possible to classify an event, regardless of the load conditions 

present. 

The load signature allows the action of a device to be identified when it comes 

into operation by measuring only the overall current of the monitored system. First, 

the current effective (rms) value is calculated by processing the acquired raw 

current with a sliding window technique, as follows: 

 


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where k is the kth measured current sample, 𝑁 is the number of samples per cycle, 

𝑖(𝑛) is the sampled signal, and 𝑛 is the summation index. 

At the next step the derivative of this signal is calculated, obtaining the signal 

𝐼𝑟𝑚𝑠 (𝑛)
′  shown in Fig. 5.1, whose pulses represent the transient states of the rms 

current. The location of the pulse in the derived signal identifies the instant in which 

a certain event occurred.  

This impulsive signal is successively processed by the STFT through the 

following known standard transformation [177], [178]: 
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Figure 5.1: Variation with time of the rms current 𝑰𝒓𝒎𝒔 (left) and its derivative 𝑰𝒓𝒎𝒔
′ . 

 

Each specific event can be distinguished based on its spectral content and located 

in a precise time instant. In the above formula, 𝑤  is the window function, and 

𝐼𝑟𝑚𝑠 (𝑛)
′  is the sampled signal to be transformed (i.e., the derivative of the rms 

current value). 

The current is processed cyclically at 1 s acquisition intervals, following the 

described procedure. Each acquisition slot is processed (to calculate rms and the 

derivative) by adopting an overlap of 500 ms to ensure correct analysis. It is also 

processed for transient events, which can be fragmented into two successive slots. 

The STFT is implemented by processing ten-cycle (200 ms) windows with an 

overlap of 4/5 of the processing window. 

To keep track of the type of event (switching ON or OFF), as the spectrograms 

of a device are often identical for both cases, the spectrogram described in (5.2) is 

multiplied by the sign of the cumulative sum, evaluated on the rms current signal, 

as follows: 
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where 𝐼𝑟𝑚𝑠 (𝑛) is the rms value of the current described in (5.1), 𝑁 is the number 

of samples, and 𝑆𝑁 is the value of the cumulative sum. The final signal 𝑆(𝑖,𝑗) can be 

obtained in the form of a 101 × 26 matrix, as follows: 
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𝑆(𝑖,𝑗) = 𝑆𝑇𝐹𝑇(𝑚,𝜔) ∙ 𝑠𝑔𝑛(𝑆𝑁)

= ∑ 𝐼𝑟𝑚𝑠 (𝑛)
′ 𝑤(𝑛−𝑚)𝑒

−𝑖𝜔𝑛

∞

𝑛=−∞

∙ 𝑠𝑔𝑛 (∑(𝐼𝑟𝑚𝑠 (𝑛) − 𝐼𝑟𝑚𝑠 (𝑛−1))

𝑁

𝑛=1

) 

(5.4)  

 

Two examples of the obtained spectrograms are shown in Fig. 5.2 for the case of 

a microwave oven. The spectrograms obtained by processing the currents flowing 

through different loads are used as inputs to the neural network described in the 

following section. This network provides a response every 500 ms, indicating the 

presence or absence of events in the signal, and the type of device involved. 

 

 

Figure 5.2: Spectrograms obtained during switch ON (left) and OFF (right) of a microwave 

oven. 
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5.2 Deep Learning system 

Based on the use of complex algorithms, DL provides systems, which are capable 

of analyzing massive amounts of data, recognizing patterns, and making predictions 

or decisions without being explicitly programmed to perform these tasks. As 

introduced in Chapter 2, the    systems operate by “learning and improving from 

experience”. 

This learning ability does not imply that a DL system is capable of understanding 

what it is analyzing, learning from its experiences, and making decisions based on 

that understanding. Indeed, the real capabilities of such a system can be summarized 

considering that if particular behaviors have occurred in the past, it is possible to 

predict if they can happen again. It also means that if there are no past cases, then 

there are no predictions. Therefore, the analysis of previous cases is essential for 

achieving prediction results. Also, the number of cases is generally high.  

ANNs are essential parts for the implementation of DL systems. Each node in the 

ANN receives its input from other nodes or from an external source and calculates 

its output by applying a function, called activation function (AF), to the weighted 

sum of its inputs. A bias value is added to this sum. The application of the AF 

specifically introduces nonlinearities, aiming to emulate the way humans analyze 

real-world data [179]. The connection between one node and another is performed 

by a number (weight), which can be positive (one node excites another) or negative 

(one node inhibits another). The greater the weight, the greater the influence one 

node exerts on another. If the final sum is above a certain threshold, the node 

generates an output. 

 

5.2.1 Proposed Convolutional Neural Network 

In this work, a particular ANN type, namely, the CNN, is adopted [180] because 

of its capability of processing complex inputs such as multidimensional arrays. 

More specifically, CNNs are designed to exploit the intrinsic properties of some 2-

D data structures, in which there is a correlation between spatially close elements 

(local connectivity). The CNNs are capable of reducing the number of operations 

required by converting the input into modules, which are easier to process. 

Thus, compared with ANNs, the number of parameters can be reduced. As a 

result, CNNs are widely used in the processing of audio and video signals [181]-

[183]. 

To this aim, a CNN suitable to process the current spectrograms was designed. 

The proposed system, which is shown in Fig. 5.3, includes different layers: an input 
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level (for signal loading), three groups of convolution, Relu, and max pooling layers 

(for feature extraction from the input), and a group of flatten, fully connected, and 

softmax layers, which use data from the convolution layers to generate the output. 
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Figure 5.3: Structure of the proposed CNN. 

 

In the proposed CNN: 

1) The first layer is the input layer, which holds the raw data related to the 

acquired current. These data are preprocessed through the STFT; each 

input is a 101 × 26 matrix (frequency × time). 

2) The convolution layer, which is the core block of a CNN, detects the 

presence of specific features in the input spectrogram through the 

application of relevant filters. Instead of processing one matrix element 

at a time, the convolution layer collects restricted portions (square 

patches) of data and forwards them through a number of filters. Each of 

the applied filter seeks a different input parameter, such as a special 

behavior of the spectrum in a time instant or a particular evolution of a 

harmonic over time.   filter’s spatial dimensions are smaller than the 

input signal. A filter is also a square matrix, equal in size to the patch, 

with a set of learnable parameters. Each convolutional layer applies a 

certain number of filters to its input. In this work, three convolutional 

layers with different numbers of filters (32 in the first convolution layer, 

64 in the second, and 32 in the third) were applied. 

The filters were convolved (slided) across the width and height of the 

input, and the dot products (between these two matrices) at any position 

were computed. The result is 2-D arrays (feature maps) that give the 

responses of the filters at every spatial position. 

3) AFs can be either linear or nonlinear. Networks with nonlinear AFs are 

preferred, since they allow nodes to learn more complex data structures, 
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even if they require more work in the initial configuration (training). In 

the proposed network, the AF used at each filter output is the Relu (z), an 

elementary rectified linear unit (RELU), whose piecewise linear 

characteristics are presented in Fig. 5.4 [179]. 

 

 

Figure 5.4: RELU AF. 

 

4) The activation maps are fed into a pooling (downsampling) layer, which 

processes one patch at a time, like a convolution. The pooling layer 

operates on each feature map independently and resizes it spatially using 

the max operation. The max pooling collects the largest value from one 

input patch, places it in a new matrix (next to the max values from other 

patches), and discards the rest of the information contained in the 

activation maps. This layer is inserted between successive convolution 

levels to progressively reduce (in this study by approximately 50%) the 

spatial dimensions of the representation (width, height), keeping the depth 

intact, to reduce the number of parameters and related calculations. 

5) The Flatten layer transforms the entire pooled feature map matrix into a 

single vector (1 × 384). 

6) The flattened feature vector is forwarded through a fully connected layer, 

which executes a multiclass classification using the following softmax 

AF: 
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This function maps K elements of the non-normalized flattened feature vector 𝑧𝑘 

to a probability distribution over the predicted K output classes. The softmax applies 

an exponential function to each element 𝑧𝑘 and then divides it by the sum of all 
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these exponentials. Each K output value represents the probability that an input 

belongs to that particular class. In this study, five different loads were analyzed.  

Therefore, the problem’s setting required the definition of ten different classes 

associated with each device’s    and  FF transients and an additional class 

(number 5 in Table 5.1), which is related to the “no event occurred” case. The 

definition of classes is shown in Table 5.1. 

 

Table 5.1: Class definition. 

Class Event 

0 Microwave oven switched off 

1 Oven switched off 

2 Induction hob switched off 

3 Toaster switched off 

4 Light switched off 

5 No events detected 

6 Light switched on 

7 Toaster switched on 

8 Induction hob switched on 

9 Oven switched on 

10 Microwave oven switched on 

 

Each of the 11 values in this output layer corresponds to a class score: the result 

is the class with the greatest probability. The number 10 indicates the number of 

events selected and represents the specific application, which was selected as a 

reference. It is possible to identify a larger number of events by changing the 

architecture of the CNN. 

 

5.2.2 CNN configuration 

As a general remark, it can be considered that the correct functioning of the 

proposed NILM system can be ensured by optimally designing the architecture of 

the CNN network (number and type of layers and nodes). It is also necessary to 

adequately define the AFs and set the network by assigning the appropriate values 

for the filter weights. After designing the network, as described in Section 5.2.1, 

the weights of each filter can be defined using the procedure described in the 

following. 

When the CNN operation is started for the first time, the filters are configured by 

assigning default values to the individual weights. Thus, the results obtained cannot 

be optimal. The filter weights’ adjustment is accomplished through the training 

process, which consists of two distinct phases [184]. 
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1) Forward Propagation. A reference input signal is fed into the input layer. 

The nodes in the hidden layers apply the defined mathematical operations 

to these numerical values. The result is sent to the output layer, which 

generates the final result (classification). 

2) Backward Propagation. By comparing the generated output with the 

expected one, the error value can be calculated. This calculation is based 

on which new (better) filter parameter values are defined. 

This cycle is repeated for a new signal, which is obtained from a reference set of 

input data, until the error falls below a predetermined threshold. Obviously, the 

performance strongly depends on the set of reference examples selected for 

training. Therefore, these examples must be representative of the real type of the 

electrical load present. The more data available to the system, the more accurate the 

load identification will be. 

Beyond its unusual name, the so-called training phase is, in fact, an optimization 

process capable of finding the best solution among all possible ones. During this 

process, an input data set is mapped to an output data set. The optimization process 

is based on a function, which represents the error occurring in the network. If the 

value of this function (which is called cost or loss function) is low (low loss), this 

means a better system performance. In this study, the function selected was the 

logarithmic loss [109]. 

At the end of this phase, the network is configured by assigning optimal values 

for the filter weights based on the analyzed reference data, that is, the values that 

allow the best event detection and the best load identification. The value of the 

achieved loss function during configuration was approximately 0.008. 

After this phase, tests were conducted to verify the behavior of the system for a 

set of test signals, other than the reference set. The verification of the correct 

network configuration was completed by checking whether the system provided the 

correct answers for inputs other than those considered as a reference. In this work, 

the reference set adopted consists of 11500 signals and the test set of 2876 signals. 

The time required for the network training was approximately 7 minutes. 
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5.3 Experimental results 

As part of the development phase, the proposed algorithm was implemented and 

tested to evaluate its performance with real data. 

 

5.3.1 Proposed system setup 

The measurement system includes an Agilent U2542A data-acquisition module 

with a 16-bit resolution. The sampling frequency was set to 10 kHz. The current 

signal was acquired using a TA SCT-013 current transducer. The CNN network 

was implemented on a desktop computer (based on the Windows 10 × 64-bit 

operating system) using the open-source Python 3.7 from Anaconda [185]. Python 

is the programming language mostly used in artificial intelligence (AI) applications 

due to the availability of numerous libraries for continuous data acquisition and 

processing. 

To systematically evaluate the performance of NILM techniques, it is essential 

to use a set of reference data. The main tests were conducted on signals directly 

acquired from a real system because of the flexibility regarding both the sampling 

frequency and the generation of multiple events. Other tests were conducted on 

signals belonging to a public data set. 

The proposed measurement system was installed on a test system, which was 

designed to generate electrical loads created by domestic users, as part of the 

“nonintrusive infrastructure for monitoring loads in residential users” research 

project. 

The electrical system, which is located in the Electrical Engineering Laboratory 

of the  niversity of  ’ quila (I), allows the generation of electrical loads in a single 

or simultaneous way. These loads correspond to the loads generated by the most 

common household appliances and are integrated in a structure similar to that of a 

residential building to reproduce the real problems of conditioning and 

measurement of the signals. 

5.3.2 Results obtained with the acquired signal 

Before conducting experimental measurements, the current measurement 

channel was calibrated using the Fluke 6100A power-supply standard. More 

specifically, a reference current was generated and applied to the SCT-013 current 

transducer. The current was acquired through the Agilent U2542A data-acquisition 

system, and the data were processed to calculate the rms value. In this way, the 

entire signal acquisition and processing path were tested. The system was calibrated 
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with ten different current values, ranging from 2 A to 20 A. The maximum 

uncertainty obtained was approximately ±1.3%. 

Subsequently, the performance of the NILM system was assessed by conducting 

acquisitions, during which various loads were turned ON and OFF for a total of 

over 519 events. 

Regarding the NILM systems, no standard and consolidated techniques can be 

found in the literature to evaluate the performance of event detectors. Since the 

purpose of an NILM system is to disaggregate consumption for each of the devices 

in question, their performances were analyzed to verify the achievement of these 

objectives, which in summary are correct identification and classification of the 

events. 

The first thing verified was the ability to correctly identify the ON and OFF 

events, which were also performed in rapid succession, and to correctly classify the 

device that produced a particular event. The proposed system was found to be 

capable of correctly identifying the insertion of loads, even by performing 

maneuvers at very short time intervals, up to approximately 500 ms. An example 

of the acquired signal representing the current variation for a 1 min window is 

presented in Fig. 5.5. This signal was extracted from the overall acquisition process. 

The effective value of the measured current and the relative system responses are 

also shown in this figure. It can be observed that the system is capable of detecting 

all the events. 

 

 

Figure 5.5: Sequence of events: variation in the rms current (above) and detected events 

(below). 
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Since the electrical load signature proposed in this work is based on the transitory 

characteristics, the system defined is not capable of classifying two different 

devices when the events associated with them are exactly superimposed. 

Tests were conducted to verify the system’s ability to detect temporally close 

events. Fig. 5.6 shows that a toaster’s switch on occurs approximately 400 ms after 

a microwave oven’s switch on and the consequent system response. It is possible 

to observe how the system perfectly distinguishes the two events and classifies them 

correctly (events 10 and 7). A third event in the interval between 6 s and 7 s can be 

observed in Fig. 5.6. 

 

 

Figure 5.6: Switch ON of a toaster 400 ms after the switch on of a microwave 

oven (above) and detected events (below). 

 

This transient is normally produced by the microwave oven under examination 

approximately 3 s after its start. The double transient is very common in many 

household appliances. In an oven, for example, the electronic section is activated 

first followed by the heating section. The proposed system was configured to filter 

this transient, classifying it as a nonevent (5), being linked to the first correctly 

recorded insertion. It was verified that the system is capable of identifying nearby 

events up to 300 ms. 

The percentage of events, which were correctly detected, was compared with the 

total number of real events by adopting the following definitions. 

1) Number of true power-ON events: 𝑂𝑁𝑇 

2) Number of true power-OFF events: 𝑂𝐹𝐹𝑇 

3) Number of windows with no events: 𝑁𝐸𝑇 
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4) Number of power-ON events identified: 𝑂𝑁𝑖 

5) Number of power-OFF events identified: 𝑂𝐹𝐹𝑖 

6) Number of no events identified as no events: 𝑁𝐸𝑖 

7) Number of correctly classified power-ON events: 𝑂𝑁𝑐 

8) Number of correctly classified power-OFF events: 𝑂𝐹𝐹𝑐 

9) Error in the identification of power-ON events 

100
T

Ti
on,ident

ON

ONON
%E

−
=  (5.6)  

10)  Error in the identification of power-OFF events 

100
T

Ti
off,ident

OFF

OFFOFF
%E

−
=  (5.7)  

11) Error in the identification of no events 

100
T

Ti
ne,ident

NE

NENE
%E

−
=  (5.8)  

12) Error in the classification of power-ON events 

100
T

Tc
on,class

ON

ONON
%E

−
=  (5.9)  

13) Error in the classification of power-OFF events 

100
T

Tc
off,class

OFF

OFFOFF
%E

−
=  (5.10)  

 

The absolute values relating to these parameters are presented in Table 5.2. 

From Table 5.2, it can be observed that the system is capable of perfectly 

identifying all the OFF events. An error of approximately 3% was recorded 

regarding the ON events. This error value is essentially linked to the multiple 

oscillations of the current signal produced by some devices during the activation 

phase. Regarding the classifier performance, errors of 1.84% were recorded during 

the ON phases and 1.21% during the OFF phases, respectively. 

For a better evaluation of the system performance, precision, recall, and F1-score 

metrics were also used [186]. These parameters, already mentioned in Chapter 3 in 

Section 3.4.1, were obtained using the number of true positive (TP), false positive 

(FP), true negative (TN), and false negative (FN) as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.11)  
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.12)  

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5.13)  

 

TNFP

FP
FPR

+
=  (5.14)  

 

FNTP

FP
FPP

+
=  (5.15)  

 

The calculated results are presented in Table 5.3. 

 

Table 5.2: Errors measured during the processing of the acquired signals. 

Number of processed windows 2883 

Number of total events 519 

Number of true power-on events ONT 272 

Number of true power-off events OFFT 247 

Number of windows with no events NET 2364 

Number of power-on events identified ONi 281 

Number of power-off events identified OFFi 247 

Number of no-events identified as no-events NEi 2355 

Error in the identification of power-on events Eident,on (%) 3.31% 

Error in the identification of power-off events Eident,off (%) 0.00% 

Error in the identification of no events Eident,ne (%) 0.38% 

Number of correctly classified power-on events ONc 267 

Number of correctly classified power-off events OFFc 244 

Error in the classification of power-on events Eclass,on (%) 1.84% 

Error in the classification of power-off events Eclass,off (%) 1.21% 

 

 

Table 5.3: Scores achieved with the acquired signals. 

TP TN FP FN Precision recall FPR FPP F1-score 

518 2354 10 1 0.981 0.998 0.004 0.019 0.989 
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The system was capable of correctly classifying 511 of 519 overall events. The 

obtained basic accuracy during classification [186], which is defined as 

 

100
matchespossibleTotal

matchesCorrect
%Acc =  (5.16)  

 

 

is 98% with the acquired signals. 

The errors obtained during the classification phase can be tabulated using the 

error matrix [187]. This is shown in Table 5.4. Each column of the matrix represents 

instances in a predicted class, whereas each row represents instances in an actual 

class. 

 

Table 5.4: Error Matrix 
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Microwave oven 

switched off 
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Induction hob 

switched off 

Toaster switched 

off 

Light switched off 

No events detected 

Light switched on 

Toaster switched 

on 

Induction hob 

switched on 

Oven switched on 

Microwave oven 

switched on 
 

47 0 0 0 0 0 0 0 0 0 0 

0 52 2 0 0 0 0 0 0 0 0 

0 1 31 0 0 0 0 0 0 0 0 
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0 0 0 0 60 0 0 0 0 0 0 
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  Events found 

 

The second type of tests is related to the measured duration between the ON and 

OFF events, being linked to the energy consumed. The results shown in Fig. 5.7 

show a rapid succession of switch ON (event 9) and OFF (event 1) for the oven. 

The obtained results, which are tabulated in Table 5.5, show a maximum relative 

error of 2.68%. However, it should be noted that this value is related to the reduced 

activation time (11.2 s), which was produced during the test. With longer intervals, 

for example 49.8 s, the relative error is reduced to 0.40%. 

The absolute error essentially depends on the duration of the window used for 

processing the STFT. The reduction of this window results in a reduction in this 
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error. However, the processing time increases. The value of the window duration 

selected allows a good compromise, considering that the activation times of the 

loads are normally much greater than those selected in the test. 

 

Figure 5.7: Oven switch ON and OFF. 

 

Table 5.5: Errors measured during a succession of ON and OFF switching. 

Event 
Actual 

time 

Measured 

time 

Actual 

time interval 

[s] 

Measured 

time interval 

[s] 
Error [%] 

1 0:03.8 0:04.0 
11.2 11.5 2.68 

2 0:15.0 0:15.5 

3 0:19.2 0:19.5 
20.8 21.0 0.96 

4 0:40.0 0:40.5 

5 0:44.2 0:44.5 
30.5 30.5 0.00 

6 1:14.7 1:15.0 

7 1:19.0 1:19.5 
40.6 40.5 −0.25 

8 1:59.6 2:00.0 

9 2:04.8 2:05.0 
49.8 50.0 0.40 

10 2:54.6 2:55.0 

11 2:59.2 3:00.0 
60.3 60.0 −0.50 

12 3:59.5 4:00.0 

13 4:04.3 4:04.5 
20.7 21.0 1.45 

14 4:25.0 4:25.5 

15 4:33.8 4:34.0 
20.4 20.5 0.49 

16 4:54.2 4:54.5 

 

The system’s performance was further evaluated by investigating its behavior 

with respect to distinguishing currents flowing in small loads in the presence of 

significant current values. To this purpose, Fig. 5.8 shows an acquisition in which 

a lamp is switched on (0.54 A) while more than 10 Arms are already flowing in the 
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system (this represents 5% of the total load). The system proved to be efficient even 

under these operating conditions by identifying the event and correctly classifying 

the device. 

 

Figure 5.8: Lamp switch ON. 

 

5.3.3 Results obtained with the BLUED dataset 

To make comparisons between the obtained results, tests were also conducted 

using the Building-Level fUlly-labeled data set for Electricity Disaggregation 

(BLUED), which is a residential electricity-usage public data set. This data set 

includes voltage and current measurements for a single-family house in the United 

States, sampled at 12 kHz for an entire week [188]. 

The current signal, which was extracted from the data set, was processed as 

described previously. Specifically, the spectrograms of 59587 windows of 1-s 

duration were processed by the CNN, and 59587 output values were obtained. This 

data set was randomly divided into two parts: 80% for network training and 20% 

(11918 windows) for its performance evaluation. In the windows analyzed, 3887 

switch-ON events and 4014 switch-OFF events were observed, whereas 4017 

windows were free of events. 

For the elaboration of the BLUED data set, the CNN was modified by extending 

the classification of Table 5.1 to 69 different classes, to detect the ON and OFF 

states of 34 different types of devices. The obtained results are presented in Table 

5.6. The scores achieved with the BLUED data set are tabulated in Table 5.7. 
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The obtained basic accuracy (5.16) with the BLUED data set is 87.9%. The data 

processing value of the data set is lower than that obtained by processing the signals 

acquired. This is due to the greater number of devices the system must identify. 

 

 

 

Table 5.6: Errors measured during the processing of the BLUED dataset. 

Number of processed windows 11918 

Number of total events 7901 

Number of true power-on events ONT 3887 

Number of true power-off events OFFT 4014 

Number of windows with no events NET 4017 

Number of power-on events identified ONi 3890 

Number of power-off events identified OFFi 4006 

Number of no-events identified as no-events NEi 4022 

Error in the identification of power-on events Eident,on (%) 0.08% 

Error in the identification of power-off events Eident,off (%) 0.20% 

Error in the identification of no events Eident,ne (%) 0.12% 

Number of correctly classified power-on events ONc 3569 

Number of correctly classified power-off events OFFc 3377 

Error in the classification of power-on events Eclass,on (%) 8.18% 

Error in the classification of power-off events Eclass,off (%) 15.87% 

 

 

Table 5.7: Scores achieved with the BLUED dataset. 

TP TN FP FN precision Recall FPR FPP F1-score 

7890 4011 6 11 0.998 0.998 0.001 0.001 0.998 
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Chapter 6 

6A low sampling rate non-event-based 

NILM system 

The third proposed system is a non-event-based system that processes the 

sampled "low-frequency" absorbed active power signal. The proposed solution is 

based on a CNN, implemented on an Arm Cortex-M7 microcontroller. Specifically, 

it is a sequence-to-point approach, first proposed in [113], which demonstrated a 

significant performance improvement over previously used approaches. The 

algorithm has been tested on several public datasets; in particular, its generalization 

capability was also tested [122]. Several public datasets were used in [122]. This 

approach was tested by providing the system with data on houses belonging to 

datasets different from the one presented in the training phase. However, these 

datasets do not allow the full potential of these systems to be evaluated. This is due 

both to the randomness of the sub-monitored loads in the different homes within 

the same dataset, and to the reduced flexibility of sampling frequencies, that are 

always fixed. 

Another major problem, from a metrological point of view, is related to the great 

difficulty, if not impossibility, of knowing the uncertainty associated with the 

measurements of the quantities (current, power) of the datasets. 

Cloud-based energy disaggregation systems generally consist of sending energy 

consumption data to a remote server, where it is processed and made available for 

user access from anywhere via a Web browser. These solutions are convenient 

because it does not require dedicated hardware to process the data, even if some 

disadvantages are present. For example, sending data to a remote server involves 

some latency and depends on the quality of the Internet connection, thus risking 



Chapter 6, A low sampling rate non-event-based NILM system 

92 

being subject to service interruptions. In addition, processing data remotely 

involves greater complexity in data management and security. 

In contrast, an Edge solution, such as the one proposed, consists of processing 

energy consumption data directly on the device installed at the facility to be 

monitored. Then the processed data can be accessed locally or transmitted to a 

remote server via an Internet connection. This approach has several advantages over 

Cloud solutions. For example, Edge solutions are able to process data in real time, 

eliminating the latency present in Cloud solutions. They are easier to install and 

manage, as they do not require a reliable Internet connection. This also makes these 

types of systems cheaper than their Cloud counterparts even if the more knowledge 

in managing real-time systems is required. In addition, data access is limited only 

to authorized devices at the monitoring site, meaning there are no costs associated 

with transmitting data or maintaining a remote server. 

Ultimately, Edge solutions for NILM offer greater reliability, privacy, security, 

and convenience than Cloud solutions. 

This chapter therefore proposes an Edge system for energy disaggregation that 

can be installed in an electrical system, without any a priori knowledge of the 

electrical system and its loads.  

Moreover, a comprehensive architecture for a measurement system designed for 

the monitoring and acquisition of various electrical quantities generated by 

household appliances is presented. The system captures the aggregate consumption 

of the electrical system and individual appliances, and wirelessly transmits this 

information to a central concentrator. The captured data also includes the 

disaggregated information produced by the NILM system, which effectively 

provides both individual and overall consumption. Utilizing this data, the 

performance of NILM systems can be thoroughly characterized and evaluated. The 

data are metrologically suitable, being acquired and processed with a single-phase 

board meter certified in class 0.2. 

The implementation of both the measurement architecture and data processing 

software, as well as the results obtained from the system are described. The system 

was installed in two different houses in Italy for a period of six months each. 

Therefore, the testing phase lasted a total of twelve months, from January 2022 to 

February 2023 (inclusive).  
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6.1 NILM as a nonlinear regression problem 

As previously introduced, the model implemented in the system proposed in this 

chapter is a non-event-based DL model. This model is also based on a supervised 

learning mode. This category of systems involves showing both input samples and 

expected output samples during the training phase. This is therefore referred to as 

labeled datasets. For non-event-based NILM systems, a dataset is labeled when both 

the time sequence of the aggregate absorbed power signal and the time sequences 

related to the power absorbed by individual appliances (or related to their ON/OFF 

state) are provided. The data pairs (𝑋𝑡, 𝑌𝑡)  are therefore available, where 𝑋𝑡 

indicates the reading of the aggregate absorbed power, and  𝑌𝑡 indicates the reading 

of the absorbed power at the appliance-level.  The goal of a supervised non-event-

based model is to learn the relationship between 𝑋 and 𝑌. In this way, the problem 

formulated in (6.1) can be approached as a nonlinear regression. 

 

𝑋 = 𝑓(𝑌) (6.1)  

 

The approach used in this work is of the sequence-point type. Given an aggregate 

power reading window, an ANN is trained for it to exclusively predict the midpoint 

of an appliance-level power reading window. In this way, the overall time series is 

obtained through sliding window processing. 

By indicating with 𝑡 the generic instant of time and with 𝑊 the length of the 

window, for each window 𝑋𝑡:𝑡+𝑊−1  is estimated the power absorbed by the 

appliance monitored in the central point of the window 𝑌
𝑡+

𝑊

2

.  

This approach is based on the assumption that the central point 𝑌
𝑡+

𝑊

2

 can be 

represented as a nonlinear regression of the input window 𝑋𝑡:𝑡+𝑊−1, and thus that 

the estimate of the power absorbed by a household appliance in a certain instant of 

time should not only be influenced by past power readings, but also by future ones. 

Many of the models used to represent the relationship f between 𝑋 series and 𝑌 

series are subject to important limitations. Models such as FHMM are strongly 

influenced by the presence of unknown appliances, base load, and noise. 

Implementation of these models therefore requires explicit modeling of these 

variables. 

In contrast, the use of DL models does not need to model them explicitly. In fact, 

DL models separate the consumption profile of an appliance by treating everything 

else as background.  
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Desired characteristics such as individual appliance consumptions, transitions 

between ON and OFF states, and duration of operation are learned automatically 

by the neural network and do not require any manual extraction. 

In fact, this process does not require the use of specific information about 

consumption sources or their power profiles, which means that the model is able to 

generalize to new consumption sources that might appear over time. Thus, this 

model can be used to separate independent signals associated with different 

consumption sources in a wide range of situations without the need for specific 

information about consumption sources or their power profiles. 

6.1.1 Model configuration 

The implemented sequence-to-point model consists of convolutional layers, so it 

falls into the category of CNNs. As already explained, CNNs are particular ANNs 

designed to exploit the inherent properties of certain two-dimensional data 

structures in which there is a correlation between spatially close elements (local 

connectivity). 

The same process can be applied to one-dimensional data sequences. A one-

dimensional (1D) CNN is very effective for deriving features from a fixed-length 

segment of the overall dataset, where it is not important where the feature is located 

in the segment. CNNs work the same whether they are 1-, 2-, or 3-dimensional. The 

difference lies in the structure of the input data and how the filter and the 

convolution kernel acts on the data. 

In this work, a suitable 1D CNN was implemented to process a time sequence of 

the aggregate power signal, in order to predict the midpoint of the time sequence of 

the absorbed power at the appliance level. Since the only dimension in a time series 

is time, the kernel will flow in only one direction, as shown in Fig. 6.1. 
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Figure 6.1: Operation of the first 1D Conv layer on a time sequence. 

 

A 1D convolutional layer extracts, for each kernel, 1D local patches (i.e., 

subsequences) of the original sequence through a sliding window processing. It then 

applies an identical transformation to each patch. For each kernel, since the same 

transformation is applied to each patch, a pattern learned at a certain position in the 

sequence can also be recognized at a different position. This makes the 1D CNN 

translation invariant (for temporal translations). 

The proposed 1D CNN involves the following building block: 

1) The first is the input layer. In this layer, data are pre-processed through a 

sliding window technique such that each input contains 599 samples of 

the aggregate active power reading. The data are sampled at a sampling 

rate of 1/8 Hz, so each input sequence covers a time interval of 4792 

seconds. 

 

2) A first 1D convolutional layer. In the first 1D convolutional layer, 30 

filters (or kernels) of length 10 (kernel size) are defined, which allow 

ANN to learn 30 different features. In these layers, the step (stride) with 

which the kernel moves along the input sequence is also defined. The 

number of filters that are applied in each layer is a hyperparameter, which 

is chosen by the programmer. The features that each filter will learn, and 

thus the weights to assign to the filter, are the result of training. In this 

work, a stride equal to 1 has been defined. A kernel of size 10 moving 

along an input sequence of size 599 with a stride equal to 1 will produce 

an output sequence of 590 elements. However, a padding process was 

used in order to fill the input sequence with a certain number of zeros at 
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the beginning and end of the sequence, in order to output the same number 

of elements as the input sequence (599). The output of the first 1D 

convolutional layer is thus an array of 30 x 599 neurons. That is, 30 output 

sequences resulting from applying 30 filters on the input sequence. 

3) The second 1D convolutional layer. The result of the first 1D 

convolutional layer is directly fed into the second layer. Also in this layer, 

30 filters are defined to be trained. Although the input of this layer is now 

two-dimensional instead of one-dimensional (a 30 x 599 matrix), the 

transformation applied by this layer is still a 1D convolution. Therefore, 

the kernels will move along a single (temporal) direction. The dimension 

chosen for the kernels in this layer is 8. The kernels in this case will no 

longer be vectors of length equal to the imposed kernel size (1 x 8) but 

will be a 30 x 8 matrix. Fig. 6.2 illustrates the process of kernels in the 

second 1D convolutional layer. 

 

 

 

Figure 6.2: Operation of a filter of the second 1D Conv layer. 

 

4) Third, fourth and fifth 1D convolutional layers. Three more 1D 

convolutional layers were added to learn higher-level features. The kernel 

number of layers three, four and five is 40, 50 and 50 respectively. The 

kernel size is 6, 5 and 5, respectively. The stride was also kept equal to 1 
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for these additional three layers. The padding process was provided for 

all convolutional layers. All neurons in the five 1D convolutional layers 

predict using the ReLU activation function. 

5) A flatten layer. This is a layer that transforms the entire output matrix of 

the fifth and final 1D convolutional layer into a single vector (1 × 29950). 

6) A dense layer. This layer reduces the output dimension from 29950 to 

1024 from the flatten layer. The neurons in this layer also use the ReLU 

activation function. 

7) An output layer. This layer provides the value of the midpoint of the 

appliance power reading, therefore this layer has a single neuron. This 

neuron receives the weighted sum of the 1024 output elements from the 

previous layer as input. It then applies a linear activation function, which 

is effectively the same as applying no activation function at all. 

Fig. 6.3 shows the overall structure of the implemented 1D CNN. 

 

 
 

Figure 6.3: CNN configuration. 

 

6.1.2 Training settings 

In the last decade, alongside the proposals for new NILM algorithms, a fair 

amount of public datasets have been made available to allow researchers to compare 

the performance of their systems. These datasets differ in sampling frequency, 

quantity of homes monitored, availability or not of sub-monitored data (i.e. 

measurements made directly on household appliances or other loads). Even when 

sub-monitored data is available, it is not always synchronized with the aggregate 

power measurement. 

The requirements that a good dataset should have, in order for it to evaluate the 

performance of a DL-based NILM systems, are: 
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1) sampling frequency of 1 Hz or more, which allows to evaluate the impact 

of the latter on performance, being able to obtain all the lowest 

frequencies starting from the original data; 

2) synchronous measurements of aggregate and appliance-level quantities 

for all quantities; 

3) sufficient number of houses (at least > 1); 

4) sufficient class number of household appliance; 

5) acquisition period sufficiently long, in order to have a sufficient amount 

of data for training. 

To date, the most complete datasets in this regard are ECO [189] and 

ENERTALK [190]. ECO provides aggregate measurements of active power, 

voltage, current and power factor at 1 Hz for 6 different homes and 18 different 

classes of appliances; however only active power at appliance-level is available. 

ENERTALK, on the other hand, provides both aggregated and appliance-level 

active and reactive power measurements at 15 Hz for 22 homes, however it has a 

small number of measured appliance classes. 

The main datasets used for training DL-based NILM systems and their 

characteristics are listed below: 

• The Reference Energy Disaggregation Data Set (REDD) [88], which 

provides both high frequency data, i.e. voltage and current measured at 

15 kHz, and low frequency, measured at a frequency of 1 Hz. 

• The United Kingdom domestic appliance-level electricity (UK-DALE) 

dataset [191], which contains data from 5 houses providing both 

aggregate power and appliance level measurements at 1/6 Hz. 

• The REFIT dataset [149] provides aggregate and appliance-level power 

measurements for 21 homes at a sampling rate of 1/8 Hz. However, not 

all 21 homes have the most common appliances on which NILM systems 

are trained. 

The REFIT dataset is the largest among the datasets mentioned. Therefore, 

although the low sampling rate does not allow for making assessments about its 

influence on performance, the wide availability of examples allows for a 

sufficiently robust NILM system. The training phase was consequently carried out 

using the latter dataset. The proposed system utilizes a CNN to identify and 

recognize individual household appliances. The focus was on developing a NILM 

system capable of separating the electrical power consumption of the three major 

household loads - dishwasher, washing machine, and fridge - from the total 

consumption. This decision was made as these loads are among the most commonly 

targeted by NILM system developers for disaggregation services in the market [17]. 
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It is therefore necessary to train the DL model individually, training it only with 

data from that household appliance. The REFIT dataset contains measured 

consumption data for 21 UK homes, but since not all of them contain data for the 

three loads mentioned above, Table 6.1 shows the homes used to train each model 

and the total number of samples available. 

 

Table 6.1: Houses from the REFIT dataset used for the training phase. 

 Training set Validation set 

 Houses Samples Houses Samples 

Dishwasher 5, 7, 9, 13, 16, 20 35984834 18 5007721 

Washing machine 2, 5, 7, 8, 9, 15, 16, 17 49588126 18 5007721 

Fridge 2, 5, 9, 15 25559502 12 5859544 

 

Table 6.1 also shows the houses and the relative number of samples used as the 

validation set. The validation set plays a crucial role in the training process of DL 

models, as it allows to evaluate the model's ability to generalize to unseen data. The 

validation set is especially vital as it provides a continuous assessment of the 

model's performance during training, by monitoring it at the end of each epoch. 

This helps to avoid a common problem in DL called overfitting [192], where the 

model becomes too tightly fitted to the training data, hindering its ability to perform 

well on new data. 

Prior to utilizing the data for training, it is crucial to preprocess it. The 

preprocessing involves normalizing the data using the (6.2). 

 

𝑥𝑘 − 𝑥̅

𝜎𝑥
 (6.2)  

 

where 𝑥𝑘 is the k-th sample, 𝑥̅ is the mean of the aggregate or appliance-level 

power reading and 𝜎𝑥 is the standard deviation of the aggregate or appliance-level 

power reading. Once the data has been normalized, it can be fed into the models for 

training. 

The CNN networks were implemented on a desktop computer (based on the 

Windows 10 × 64-bit operating system) using Tensorflow [193] for the model 

development and training. The adopted cost function, implemented in Tensorflow, 

is the mean squared error (MSE) (6.3), applied to each batch during the training 

phase. 
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𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑖 − 𝑌̂𝑖)

2
𝑁

𝑖=1

 (6.3)  

 

where 𝑌𝑖  is the actual value, 𝑌̂𝑖  is the predicted value and 𝑁 is the number of 

processed samples. 

The parameters of the CNN are update after one iteration of every batch of data. 

The batch size chosen for training is 1000, so the neural network parameters were 

updated every 1000 samples. Each model has been trained for 10 epochs.  

The Adam optimizer [194] was selected to drive the models training process. 

Adam is a highly efficient optimization algorithm that has proven to be a popular 

choice among practitioners in the field of DL. It operates by utilizing an adaptive 

learning rate that is dynamically adjusted based on the mean and variance of the 

gradients of the cost function, with respect to the weights of the ANN. During the 

training phase, Adam continuously monitors the mean and variance of the gradients, 

allowing it to effectively fine-tune the learning rate. By increasing the learning rate 

for slowly changing weights and decreasing it for rapidly changing weights, Adam 

effectively eliminates oscillations and accelerates convergence towards the global 

minimum solution. 
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6.2 Architecture of the proposed system 

The proposed architecture is based on a distributed data acquisition system, 

communicating on a Wi-Fi network.  

The first device developed (NILM System in Fig. 6.4) is able to measure the 

aggregate active power and disaggregate it through the model described in Section 

6.1. In addition to measuring active power, this system also measures reactive 

power, voltage, and current, which, however, do not come into play in the 

performance evaluation of this NILM system.  This NILM system consists of: 

• a measurement unit, consisting of an EVALSTPM32 board; 

• a processing unit, consisting of a NUCLEO-H743ZI2 board; 

• an ESP32 Wi-Fi module for connection to a WLAN. 

The main device has been placed immediately downstream of the general power 

meter located at the user's connection point, so that the aggregate active power can 

be measured. 

In addition, a number of ad hoc power meters have also been developed, 

consisting of: 

• a measuring unit, consisting again of a EVALSTPM32 board; 

• a USR-W610 Wi-Fi module for connection to a WLAN. 

 These appliance-level power meters allow measurement of electrical quantities 

(active power, reactive power, rms voltage and rms current) related to the operation 

of individual household appliances.  

A wireless local area network (WLAN) has been established using a star 

topology, where both the NILM system and the appliance-level power meters are 

connected to the concentrator via Wi-Fi network. More specifically, the 

implemented communication and data archiving infrastructure, concisely 

schematized in the right part of the Fig. 6.4, consists of: 

• an access point (AP), which creates the wireless network where all nodes are 

connected; 

• an INTEL NUC NUC5i7RYH system, which is the master of the network 

where a Python script manages the nodes connected to the network, 

downloading the measurement data and storing the data on a MySQL 

database; 

• an external hard disk for storing the MySQL database. 

Furthermore, a web server has been developed based on Node-RED to check the 

whole system and plot few point of measurement data. 

The proposed system is shown in Fig. 6.4.  
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To facilitate clear and concise understanding of the connections involved that are 

schematized in Fig. 6.4, the Fig. 6.5 provides a detailed view of the EVALSTPM32 

board's phase and neutral conductor connections for voltage and current 

measurements. In the voltage measurement circuit, the N terminal was deliberately 

left unconnected to the neutral conductor. This was because the shunt for the current 

measurement is already placed at the same potential as the N terminal, which 

eliminates the need for a separate connection. 

 

 

Figure 6.4: The proposed architecture. 
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Figure 6.5: Pin connections of the EVALSTPM32 board for voltage and current measurement.  
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6.2.1 NILM system and appliance-level power meters 

The pre-trained DL models, described in Section 6.1, were uploaded to an 

NUCLEO-H743ZI2 board.  This is a high-performance microcontroller from 

STMicroelectronics, based on the ARM Cortex-M7 architecture. This board is part 

of the STM32H7 series and offers a range of advanced features, including a 

floating-point unit, hardware encryption, and up to 2MB of flash memory. The 

NUCLEO-H743ZI2 also includes a variety of communication interfaces, including 

Ethernet, USB, CAN, and various serial ports. It is designed for use in a wide range 

of applications, including industrial automation, motor control, and consumer 

electronics. The microcontroller can be programmed using a variety of integrated 

development environments (IDEs) and supports a range of development tools and 

software libraries provided by STMicroelectronics. 

The IDE used for this work is STM32CubeIDE. The models were implemented 

through X-CUBE-AI, that is an expansion package dedicated to AI projects running 

on STM32 Arm® Cortex®-M-based MCUs. The X-Cube AI core engine, 

schematically shown in Fig. 6.6, offers an NN mapping tool to create and implement 

a pre-trained DL model for embedded systems with limited hardware resources.  

 

 

Figure 6.6: The X-Cube AI core engine.  

 

The generated STM32 NN library can be integrated into an IDE project or 

makefile-based build system. The code generator quantizes weights, bias, and 

activations from floating point to 8-bit precision and maps them onto a specialized 

C implementation for supported kernels. This technique aims to reduce the model 

size, improve CPU and hardware accelerator latency, and reduce power 

consumption without sacrificing model accuracy.  

A validation mechanism is provided to compare the accuracy of the generated 

model with the uploaded DL model using the same input tensors (fixed random 

inputs or custom dataset). The scheme of the validation engine is shown in Fig. 6.7. 
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Figure 6.7: AI validation firmware embedding the tested C model. 

 

 The NUCLEO-H743ZI2 board receives input data for models via an 

EVALSTPM32 board. 

The measurement unit is realized by an EVALSTPM32 board. The 

EVALSTPM32 board is a class 0.2, single-phase meter, that acquires the power line 

current with a shunt transducer. The board has SPI/UART pins available to interface 

a microcontroller for application development. The EVALSTPM32 provides 

instantaneous voltage and current waveforms and calculates RMS values of voltage 

and currents, as well as active, reactive and apparent power and energies. The 

EVALSTPM32 is a mixed signal IC family consisting of an analog and a digital 

section. The analog section consists of up to two programmable gain low-noise low-

offset amplifiers and up to four 2nd order 24-bit sigma-delta ADCs, two bandgap 

voltage references with independent temperature compensation, a low drop voltage 

regulator and DC buffers. The digital section consists of digital filtering stage, a 

hardwired DSP, a digital front-end (DFE) and a serial communication interface. 

Power data registers inside the board can supply instantaneous measurements or 

filtered measurements. The bandwidth of wide band waveforms is 3.6 kHz, which 

means up to the 72nd harmonic of a 50 Hz signal. 

To connect the EVALSTPM32 to the NUCLEO-H743ZI2, the SPI interface is 

used, configured with a clock frequency of 10 MHz and full duplex transmission 

mode. The configuration of the SPI on the NUCLEO-H743ZI2 is done using the 

STM32CubeIDE HAL library. Once the SPI is configured, the firmware on the 

NUCLEO-H743ZI2 requests the reading of active power, reactive power, rms 

current, and rms voltage data from the EVALSTPM32 using the SPI protocol.  

Communication takes place when the NUCLEO-H743ZI2 sends the request and 

the EVALSTPM32 replies with the requested data. Once the data is read, the 

NUCLEO-H743ZI2 processes the active power data using the models described 

above, to obtain appliance-level active power information. Once the data is 

processed, the NUCLEO-H743ZI2 uses the ESP32 module to connect to the WiFi 

network and send the data to the concentrator, using the response-response protocol 

based on TCP. The ESP32 module is configured as a client and communication 
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occurs asynchronously. A response-response protocol allows for bidirectional 

communication between the NUCLEO-H743ZI2 and the concentrator, with the 

ability to send data in both directions. The described NILM system is shown in the 

photo of Fig. 6.8. 

 

Figure 6.8: The implemented NILM system. 

 

As schematized in Fig. 6.4, each appliance-level power meter consists of one 

EVALSTPM32 measurement unit, connected to the WLAN via a USR-W610 

converter. The USR-W610 is a serial to Wi-Fi and Ethernet converter capable of a 

bidirectional transparent transmission between RS-232 / RS-485 and Ethernet / Wi-

Fi. It allows to assign work details, implement transparent transmission of serial 

data and TCP/IP data packet via converter. 

The USR-W610 supports two wireless interface: 

• AP: Access point, central node of a wireless network. In general, a wireless 

router is an AP, through which other wireless terminals can connect to each 

other. 

• STA: Station, terminal of a wireless network, such as PDA or mobile phone. 

 

Moreover, the USR-W610 supports six operating modes: 
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• transparent transmission mode,  

• serial port command mode,  

• HTTP Client mode,  

• Modbus TCP to Modbus RTU mode, 

• Modbus RTU to Modbus TCP mode, 

• AT command mode. 

 

The USR-W610 can open a TCP socket as server or client. To better implement 

the proposed WLAN network architecture schematized in Fig. 6.4, each wireless 

module has been set for receiving TCP message through the TCP socket server side. 

The TCP data are then converted by the wireless module for the RS-232 interface. 

The EVALSTPM32 board adopts a request-response serial communication 

handshake so, the bidirectional TCP server socket connection can address the 

requirement of the communication protocol. The modules are addressed by a static 

IP address stored in the USR-W610 network configuration, to ensure a point-to-

point communication. The Fig. 6.9 shows one of the appliance-level power meters. 

 

 

Figure 6.9: One of the appliance-level power meters. 
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6.2.2 Central concentrator and web server 

The main part of the whole system is the Intel NUC NUC5i7RYH, which 

provides management of the nodes connected to the network, downloading 

measurement data and storing them on a MySQL database. The system is based on 

5th generation Intel Core i7-5557U processor (3.1 GHz up to 3.4 GHz Turbo Dual 

core, 4 MB Cache, 28W TDP). The Intel NUC supports Intel Hyper-Threading 

Technology and with 16 GB – DDR3 memory a Windows 7 OS has been used to 

manage the system. 

The application program has been written in Python [185], an object-oriented 

programming language suitable, among other uses, for developing distributed 

applications, scripting, numerical computing and system testing. 

The tasks performed by the main program are as follows: 

• establish the connection with the NILM system and all the appliance-level 

power meters; 

• send the read request to each node connected to the network and receive the 

data; 

• store the data in a MySQL database. 

The access to the power meter is done through the multi-threading approach: the 

python script manages a number of threads equal to the number of the power meter, 

to ensure that all communication ends in the sampling time (8s). At the end, all 

acquired data are stored in a MySQL record.  

The timestamp is synchronized using the NTP protocol. The Fig. 6.10 shows a 

flowchart of the main program. 

A web server allows supervision of the data during the monitoring period. The 

interface is developed in Node-RED [195], a programming tool for wiring together 

hardware devices, APIs and online services. This user interface shows, for each 

monitored load, 4 different graphs for rms voltage, rms current, active power and 

reactive power. The graphs show a time window corresponding to the last hour of 

acquisition, therefore 450 points considering the sampling frequency of 1/8 Hz, 

comparing the aggregate quantities in each of them with the quantities at the 

household appliance level. The data is taken directly from the MySQL database. 

Figs. 6.11 and 6.12 show the web server and the overall installed system, 

respectively. 
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Figure 6.10: The main program. 

 

 

 

Figure 6.11: The Web Server. 
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Figure 6.12: The overall installed system. 

6.2.3 Calibration of the measurement unit 

To ensure that the measured values are metrologically valid, a series of 

measurements were previously performed on the power meters. A Fluke 6100A 

Electrical Power Standard was initially used for the verification process. This is a 

highly accurate voltage and current standard, that provides a reference for 

measuring electrical power and energy. Once the power meters were verified, more 

detailed measurements were conducted using a 1-phase measuring system for 

harmonics and flicker, the HARMONICS-1000. This system allows for 

simultaneous generation of load voltage and current, allowing for more detailed 

assessment of the accuracy and reliability of power meters under different operating 

conditions. 

The procedure used in the following calibration is based on an approach 

presented in detail in the ISO publication "Guide to the Expression of Uncertainty 

in  easurement (G  )” [196]. 

A calibration provides the transducer response as a function of the applied 

quantity in form (6.4), deriving the 𝐾𝑖 coefficients from a least-squares fit to the 

calibration data.  
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𝑅 = 𝐾0 +∑𝐾𝑖𝑉
𝑖

𝑁

𝑖=1

 (6.4)  

 

where 𝑅  is the transducer response, 𝑉  is the applied quantity, 𝐾𝑖  are the 

coefficients characterizing the transducer and 𝑁  is the polynomial order of the 

calibration function. A polynomial order of 1 was chosen for this work, which is 

equivalent to a linear interpolation. To conduct the measurements, a variable 

resistor of known magnitude was used as the load. Data was acquired over a range 

of resistances, from 23 Ω to 136 Ω, and the load was powered at voltages ranging 

from 220 V to 240 V. In total, voltage, current, and active power were acquired at 

15 different points. Fig. 6.13 shows the calibration setup used in the measurement 

process. The response of the transducer 𝑅𝑗 was measured for each of the different 

input voltages 𝑉𝑗, currents 𝐴𝑗, and active powers 𝑃𝑗. The 𝐾𝑖 coefficients in (6.4) are 

calculated from a least-squares fit of the sets of measurements (𝑉𝑗 , 𝑅𝑗
𝑉), (𝐴𝑗 , 𝑅𝑗

𝐴), 

 (𝑃𝑗 , 𝑅𝑗
𝑃). 

 The uncertainty associated with the variation of the measured data from the fitted 

curve is represented by the standard deviation 𝑢𝑟 in (6.5).  

 

𝑢𝑟
2 =

∑ (𝑑𝑗
2)𝑁

𝑗=1

(𝑛 − 𝑚)
 (6.5)  

 

where 𝑑𝑗  are the differences between the transducer inputs and the responses 

calculated by (6.4), 𝑛 is the number of individual measurements in the calibration 

measurement set, and 𝑚 is the order of the polynomial plus one. 

In order to account for measurement variability, the coefficient of variance 𝑐𝑉 

was calculated according to (6.6). 

 

𝑐𝑉 =
𝑢𝑟
𝜇

 (6.6)  

 

where 𝜇  represents the mean of the set of measurements. The results of the 

calibration process indicated that the coefficient of variance obtained for voltage, 

current, and active power were 0.11%, 0.13%, and 0.87%, respectively. 

To further ensure the reliability and accuracy of the measurement system, a 

characterization of the noise present on the input channels was conducted. Intrinsic 
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noise in the acquisition and measurement system can negatively impact the 

identification of loads and compromise the accuracy of the measurements. The 

results of the noise characterization indicated that the level and type of noise present 

on the input channels were below the resolution of the measuring system ADC. This 

means that the noise was not a significant factor in the measurements and did not 

affect the accuracy of the results obtained.  

Overall, these calibration and noise characterization procedures ensured the 

reliability and accuracy of the measured values and provided a solid foundation for 

the subsequent analysis and interpretation of the data. 

 

 

Figure 6.13: The calibration setup. 
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6.3 Experimental results 

 

As part of the development phase of proposed system, the implemented prototype 

has been tested, in order to evaluate its performance in real-world scenarios. To 

achieve this, the NILM system, along with appliance-level power meters, were 

installed in two houses located in central Italy - one in Marche and the other in 

Abruzzo. 

Over the course of 12 months, from February 2022 to January 2023, the system 

collected, processed and archived the data of each of the two houses, in each for six 

consecutive months. This extensive testing phase ensured that the system's 

performance was thoroughly analyzed and its effectiveness verified under various 

operating conditions. 

In short, as previously discussed, the system is designed to acquire data at a 

sampling rate of 1/8 Hz. The DL algorithm, implemented in the NUCLEO-H743ZI2 

board, processes time windows of 599 points, which is equivalent to 4792 seconds 

or approximately 80 minutes. The algorithm starts processing when a new active 

power measurement is available, i.e. every 8 seconds.  

An important feature of the implemented system is that it can operate without 

requiring any prior knowledge of the appliances it is going to monitor. In order to 

evaluate the performance of the system, its ability to recognize the absorption 

patterns of the appliances under examination was firstly analyzed, starting from the 

aggregate energy consumption. To achieve this goal, various load profiles of the 

appliances were considered, and the responses provided by the system were 

examined.  

The obtained results, plotted in Figs. 6.14 and 6.15, show the four different 

consumption patterns of monitored dishwashers and washing machines against the 

acquisition time. The consumption patterns are dependent on the various work 

cycles set for the appliances, which were taken into account during the analysis, 

providing valuable insights into the system's performance.  

For fridges, the same cycle considerations made for dishwashers and washing 

machines cannot be applied. Instead, daily consumption was analyzed, as presented 

in Fig. 6.16, which illustrates four different examples of daily consumption patterns. 

The Fig. 6.16 provides crucial information on the system's ability to accurately 

recognize the daily consumption patterns of fridges. The left and right graphs in 

Fig. 6.16 refer to the first and second houses, respectively. In particular, the two 

fridges have different consumption patterns, but the DL algorithm manages to adapt 
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without prior knowledge of the appliance, demonstrating the great flexibility and 

adaptability of the algorithm. 

These figures provide a visual representation of the system's ability to accurately 

recognize distinct consumption patterns of different appliances. From their analysis, 

the accuracy and reliability of the system is qualitatively evident. 

 

Figure 6.14: Load profiles of dishwashers for different work cycles and corresponding 

disaggregation result. 

 

 

Figure 6.15: Load profiles of washing machines for different work cycles and corresponding 

disaggregation result. 
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Figure 6.16: Daily consumption patterns of fridges and corresponding disaggregation results.  

 

To also provide a quantitative evaluation of performance, the accuracy of the 

system in estimating the energy consumption of the appliances in each work cycle 

was determined, using the metrics typically adopted for NILM systems. 

The percentage relative error in estimating energy consumption, often referred to 

as signal aggregate error (SAE) in the NILM literature, was computed using the 

(6.7). 

 

𝑒% =
𝐸̂𝑐 − 𝐸𝑐
𝐸𝑐

 ∙ 100 (6.7)  

 

where 𝐸̂𝑐  indicates the estimated energy consumption per work cycle and 𝐸𝑐 

indicates actual energy consumption per work cycle as measured by appliance-level 

power meters. For each appliance, 50 different work cycles were considered, 25 for 

each house. Figs. 6.17, 6.18 and 6.19 show the actual and estimated energy for each 

work cycle (top) and the corresponding relative error (bottom) for dishwashers, 

washing machines and fridges, respectively. For the same reasons explained above, 

in the case of fridges, daily consumption will be considered as work cycles. 

To summarize the results, Table 6.2 presents the absolute and percentage relative 

errors in estimating the total energy consumed in the 50 work cycles (50 days in the 

case of fridges). These metrics offer a comprehensive evaluation of the system's 

accuracy in estimating energy consumption. 
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Figure 6.17: Actual and estimated energy per dishwasher work cycle (top) and the 

corresponding relative error (bottom). 

 

Figure 6.18: Actual and estimated energy per washing machine work cycle (top) and the 

corresponding relative error (bottom). 
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Figure 6.19: Actual and estimated energy per day from fridges (top) and the corresponding 

relative error (bottom). 

 

Table 6.2: Absolute and percentage relative errors in estimating total energy consumption. 

 Absolute error Percentage relative error 

Dishwasher -4558,076 Wh -7% 

Washing machine -1166,067 Wh -5% 

Fridge -687,756 Wh -2% 

 

The analysis of the percentage relative error in (6.7) was extended to a half-yearly 

basis. To provide a comparison with the existing literature, an additional metric was 

also considered. The mean absolute error (MAE) was computed to evaluate the 

accuracy of the model's predictions. The MAE, reported in (6.8), measures the 

average absolute difference between the actual and estimated active power at each 

time step. 

 

𝑀𝐴𝐸 =
1

𝑇
∑|𝑝̂𝑡 − 𝑝𝑡|

𝑇

𝑡=1

 (6.8)  
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where 𝑝̂𝑡 is the estimated power value at time step 𝑡, 𝑝𝑡 is the measured power 

value at time step 𝑡, and 𝑇 is the time interval considered. Table 6.3 shows the 

percentage relative errors and MAEs obtained for the different appliances over the 

entire dataset for each house (half-year basis).  

To better explain the results presented in Table 6.3, Table 6.4 provides additional 

metrics obtained from a related study [122]. The authors of [122] trained a 

sequence-to-point DL model on the REFIT dataset [149], as was done in this thesis, 

but they assessed its generalization capability using the UK-DALE [191] and 

REDD dataset [88] houses as test sets. These datasets, along with REFIT, were 

introduced in Section 6.1, and they are widely used to evaluate the performance of 

energy disaggregation algorithms. 

By evaluating the model's ability to generalize across different datasets and 

households, this study contributes to the understanding of its robustness and 

applicability to real-world scenarios. Analogously, the results presented in this 

thesis also demonstrate the generalization capability of the model, even though it 

was trained on consumption patterns related to UK homes and installed in two 

Italian homes with different habits and appliances. This indicates that the model can 

effectively adapt to different settings and perform well under different conditions. 

It is worth mentioning that the results presented in [122] were obtained by 

processing the data offline, which means that the model was trained and tested on 

pre-recorded data. In contrast, the results presented in this thesis were obtained by 

implementing the measurement system in real installations, where the model was 

applied to real-time acquired data. This further confirms the effectiveness and 

reliability of the model also for on-field applications. Overall, these findings 

provide important insights into the model's generalization ability, applicability, and 

scalability, which are critical factors for its practical implementation and adoption. 

 

Table 6.3: Percentage relative error and mean absolute error on a half-yearly basis. 

 
House 1 House 2 

 
e% MAE e% MAE 

Dishwasher 9% 0.38 11% 0.54 

Washing machine 11% 0.57 12% 0.67 

Fridge 7% 2.43 10% 1.47 
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Table 6.4: Percentage relative error and mean absolute error achieved in [122]. 

 

Trained on REFIT and tested on 

UK-DALE 

Trained on REFIT and tested on 

REDD 

 
e% MAE e% MAE 

Dishwasher 13% 16.49 71% 29.68 

Washing machine 50% 14.84 74% 36.83 

Fridge 9% 17.00 2% 38.63 
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Chapter 7 

7A NILM system based on the SFRA 

technique 

This chapter deals with the problem of identifying the home appliances connected 

to the network, presenting a measurement system based on the injection of a 

sinusoidal signal of reduced amplitude and variable frequency, and on the analysis 

of the responses detected. The system can be classified as non-intrusive monitoring, 

as it does not require modifications to the electrical system and the measurement 

system is centralized and can be located at the home meter outlet. The technique, 

known as SFRA (Sweep Frequency Response Analysis), is a widely used technique, 

but for another type of application, namely for the diagnosis of electric power 

transformers and also of electric motors. 

The proposed solution is very different from the others present in the literature, 

which involve the analysis of power signals (typically the current) through the 

different approaches extensively discussed in the previous chapters. These systems 

have several advantages, but they all have a common weakness point, linked to the 

fact that the survey of an appliance requires a change of its state. In fact, they 

generally pay attention to the transients of the absorbed current, which indicate a 

change in the operating state of the appliance. The measurement of the current in 

static conditions does not allow the identification of active devices, except in very 

particular simple cases. 
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The approach proposed in this section of the thesis allows to identify the 

connected devices through a measurement carried out in static conditions (it does 

not require changes in the state of the devices). The SFRA technique makes it 

possible to detect a sort of univocal signature of the household appliances connected 

to the grid, independently of the trend of the absorbed current. This approach, as 

will be illustrated below, allows the typical problems of NILM systems to be 

overcome in identifying multi-state appliances or appliances with continuous 

variable load (or in general electrical loads). 

As concerning the classical SFRA technique, all the SFRA measurement 

instruments available on the market can work only on single devices, that are 

switched off and disconnected from the grid (off-line). The SFRA system proposed 

in this article can operate on-line [197], thus allowing to extend its operating range 

to systems for continuous diagnostics on devices while supplied by mains; no 

functioning interruptions or disconnection operations are needed, as for the standard 

SFRA apparatuses. 

Whereas as for the proposed SFRA NILM system, it is based on a Machine 

Learning algorithm, the Support Vector Machine (SVM), capable of determining 

the status of individual household appliances starting from the measurement 

obtained by the SFRA system. It was installed on a home test system, and acquired 

and processed the data locally.  

Extensive measurements were made in order to verify the operational 

characteristics. The results obtained from field applications are also included and 

discussed. 
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7.1 Frequency response analysis of household 

appliances 

Classical SFRA technique has been successfully proposed to perform diagnostics 

on the windings of electric machines during the production process [198],[199]. An 

electric machine can be considered as a complex electrical network of capacitances, 

inductances and resistors. As shown in Fig. 7.1, the SFRA instrument injects a 

sinusoidal excitation voltage (typical amplitude is 10 Vpp) with a continuously 

increasing frequency into one end of the transformer winding, and measures the 

signal returning from the other end. This test is conducted with the machine 

disconnected from the power line. More details are reported in the [198]. 

Comparison of input and output signals generates a frequency response, which can 

be compared with previous responses taken as a reference. A degradation of the 

insulating materials or a change in the shape of the windings will result in a change 

in the RLC components of the equivalent network and, consequently, in the 

frequency response curve. Faults can therefore be detected by processing 

correlation indices between different curves. 

In the proposed NILM application, shown in Fig. 7.2, the SFRA technique is 

applied to the electrical system supplied by the mains, in order to obtain a signature 

that allows to discriminate different power supply conditions of a domestic system. 

The applied signal and the output signal, between the terminal of the neutral 

conductor and the ground, are acquired and processed by the system. 

 

 

Figure 7.1: SFRA applied to a star connected electric machine. 
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The proposed measuring system can therefore be easily installed on a normal 

domestic socket, and this flexibility represents a further innovative advantage. 

A low voltage (± 5 Vpp) sinusoidal signal with variable frequency (from 2 kHz 

to 1.5 MHz) is superimposed on the supply voltage (240 Vrms, 50 Hz) and applied 

between the power phase conductor terminal and ground. 

The signal generator is coupled to the network by means of a band-pass filter, 

that allows only the passage of the test signal. The two input channels of the 

measurement circuit are also decoupled from the power supply by two other band-

pass filters. The filters block both the fundamental frequency (50 Hz) and the 

harmonic components (up to 2 kHz) [7]. 

The frequency response is obtained by injecting a signal, generated at 100 MHz. 

In order to optimize the memory, the sampling frequency to acquire both applied 

and output signals is adapted according to the frequency to be analyzed. In detail, 

the sampling frequency is chosen equal to 25 times the analyzed frequency. To 

obtain a better resolution and avoid the phenomenon of spectral leakage, the FFT is 

performed by setting the frequency of one of the bins equal to that of the generated 

sinusoid. The FFT is also performed on the output signal and the sample in the same 

container is considered. 

A Hanning window with a width equal to the acquisition time (corresponding to 

64 cycles of the generated frequency) is used for the processing of the FFT. 

Downstream of the FFT processing, the system calculates the Vout / Vin ratio. For 

example, the 1 kHz response is achieved by injecting a 1 kHz sinusoidal signal 

generated at a frequency of 100 MHz.  

The applied signal and the output signal are sampled at a sampling rate of 25 × 

1000 = 25000 Hz. A time window of (1 / 1000) × 64 = 0.064 s is considered for the 

processing of the FFTs, corresponding to 1600 samples. This process is repeated 

for all the frequencies of interest. 

 

Figure 7.2: SFRA system. 
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In order to evaluate the validity of the signature for different frequency ranges, 4 

sub-bands have been defined: 

1) 2-10 kHz; 

2) 10-100 kHz; 

3) 100 kHz - 1 MHz; 

4) 1-1.5 MHz. 

For each sub-band, 200 points were initially acquired. These subdivisions were 

obtained considering the possible response to this type of excitation signal.  

The Fig. 7.3 schematically shows the installation of the SFRA system in the test 

system. From the knowledge coming from the literature about SFRA [7], the low 

frequency response (2-10 kHz) is characterized by an ohmic-inductive behavior in 

which the characteristics of the grid upstream of the system are predominant, 

therefore the contribution of the loads is usually not significant.  

More in detail, at low frequencies, the inductance of the power system dominates 

the electrical behavior. The inductance of the upstream electrical grid, which 

includes the transformers, cables, and other equipment between the power source 

and the SFRA system, is typically much larger than the inductance of the 

downstream system, which includes the loads connected to a domestic, commercial 

or industrial electrical system. 

Therefore, the characteristics of the upstream electrical grid have a greater 

influence on the SFRA system's low-frequency response than the characteristics of 

the downstream system. The upstream electrical grid's characteristics, such as its 

inductance and impedance, determine the overall electrical behavior of the network, 

and this behavior is reflected in the SFRA system's low-frequency response.  

In contrast, the loads connected to the SFRA system typically have a much 

smaller inductance and impedance, and their impact on the SFRA system's low-

frequency response is usually negligible. 

The medium frequency response (10 kHz – 1 MHz) is characterized by resonance 

phenomena. As this band is generally the most interesting in terms of the effect of 

loads on the response, it has been split into two sub-bands to increase resolution. 

The high frequency response (1 - 1.5 MHz) is characterized by capacitive effects, 

due both to the network and to the user loads and to the connection of the measuring 

instrument itself, which generally determine a poor reproducibility of the 

measurement. 

The sinusoidal test signal introduces no problems into the system. This is 

essentially due to the reduced amplitude of the test signal with respect to the line 

voltage (1.54%), which is fully within the limits imposed by the standard [200]. 
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Figure 7.3: Installation of the SFRA in the test system. 

  

During the tests, it has been verified that the signal does not create problems in 

intelligent automation systems operating with conveyed waves [201]. This is also 

due to the fact that these systems adopt sophisticated signal modulation algorithms 

that encode the data transmitted with different sub-carriers, or that widen the 

transmission band (Spread Spectrum) obtaining a better resistance to interference 

and noise. Other systems adopt OFDM modulation techniques (Orthogonal 

Frequency Division Multiplexing) which are even more effective. 

Several tests were performed on a residential test facility. A wide variety of loads 

were taken into consideration, powering them individually or simultaneously and 

under different working conditions: 

1) hairdryer 

2) microwave oven 

3) lamp 

4) laptop 

5) induction hob 

6) heater 

7) drill 

8) TV. 

Fig. 7.4 shows the frequency response of these appliances when powered 

individually. 
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Measurements were made in 24 different power supply scenarios, which were 

summarized in Table 7.1. Note that scenario 1 represents the case in which none of 

the appliances is powered (condition indicated with "Open Circuit" in Fig. 7.4). 

Scenarios 2 to 9 represent the single power supply conditions of household 

appliances. Scenarios 10 to 24 represent the simultaneous power conditions. 

To allow an objective evaluation, Figs. 7.5-7.12 show the lower and upper 

envelopes of the traces obtained in the presence and absence of each of the 8 

considered appliances, obtained following the measurements performed for the 

different scenarios. Measurements were performed for each of the 24 scenarios 

reported in Table 7.1, thus obtaining 24 SFRA traces. For each envelope (related to 

each appliance), the 24 traces were divided into two groups according to the 

presence or absence of the appliance in the power supply scenario. The envelopes 

are then obtained by considering the maximum and minimum values of each of the 

two groups, for each frequency bin. 

From these envelopes, it is immediately evident that the contribution of the low 

frequency measurement (2-10 kHz) is not influenced by the different load 

configurations, therefore in the rest of the work we will refer only to the other 3 

sub-bands. These traces were used as inputs to a machine learning-based 

classification algorithm, the Support Vector Machine (SVM), in order to determine 

the correct combination of powered appliances.  

A NILM system based on this type of input is easy to install, as it can be 

connected to a standard domestic socket, such as any household appliance. 

Traditional NILM systems, on the other hand, measure the aggregate power 

upstream of the plant and therefore require a more difficult installation.  

The obtained measurement represents the transfer function of the equivalent RLC 

circuit [7]. Therefore, the result is mainly influenced by the physical characteristics 

of the appliances, rather than by their power absorption. This represents a great 

advantage for the discrimination of multi-state or continuously variable load 

appliances (such as drills) whose identification is often critical for systems based 

on the analysis of power consumption.  

The transfer function is minimally influenced by the choice of the socket in which 

to install the measuring system. Tests have been carried out in all the sockets shown 

in Fig. 7.3, all the possible positions of the instrument on the various sockets allow 

the maximum reproducibility of the measurement. Anyway, the instrument is meant 

to be used on a single socket.  

The proposed algorithm is described in Section 7.2. 
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Figure 7.4: Frequency response of individually powered household appliances. 

Table 7.1: Power supply scenarios. 

 Hairdryer 
Microwave 

oven 
Lamp Laptop 

Induction 

hob 
Heater Drill TV 

1         

2 x        

3  x       

4   x      

5    x     

6     x    

7      x   

8       x  

9        x 

10   x x     

11 x     x   

12  x   x    

13   x x    x 

14 x     x  x 

15  x   x   x 

16   x x   x  

17 x     x x  

18  x   x  x  

19 x  x x  x   

20  x x x x    

21    x   x x 

22   x x   x x 

23 x     x x x 

24  x   x  x x 
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Figure 7.5: Envelopes of the traces obtained in the 

presence and absence of the hairdryer. 

 

Figure 7.6: Envelopes of the traces obtained in the presence 

and absence of the microwave oven. 

 

Figure 7.7: Envelopes of the traces obtained in the 

presence and absence of the lamp. 

 

Figure 7.8: Envelopes of the traces obtained in the presence 

and absence of the laptop. 

 

Figure 7.9: Envelopes of the traces obtained in the 

presence and absence of the induction hob. 

 

Figure 7.10: Envelopes of the traces obtained in the 

presence and absence of the heater. 

 

Figure 7.11: Envelopes of the traces obtained in the 

presence and absence of the drill. 

 

Figure 7.12: Envelopes of the traces obtained in the 

presence and absence of the TV. 
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7.2 Machine Learning system 

Machine Learning algorithms can be classified into: supervised learning, 

unsupervised learning, semi-supervised learning, and reinforcement learning. This 

classification is made in relation to the quantity of data available during the training 

phase and the type of supervision during the training. 

Specifically, in supervised learning, the training data provided to the algorithm 

includes the desired solutions, called labels. Supervised learning is used to solve 

two types of problems: classification and regression. 

Classification is the problem of cataloging data into two or more classes, so by 

providing input to the machine learning system, it must return its class of belonging.  

On the other hand, regression interpolates data to associate two or more features 

with each other. By providing the algorithm an input feature, the regressor returns 

the other feature. A system of estimating the price of houses starting from features 

such as size, number of rooms and area is a regression system.  

The most popular supervised learning algorithms are: k-Nearest Neighbors, 

Linear regression, Logistic regression, Support Vector Machine (SVM), Decision 

Trees, Random Forests and Neural Networks. 

The NILM problem can be set up either as a regression problem, for example 

when the algorithm is called to estimate the power absorbed by the single appliance 

starting from the aggregate power measurement [110], or as a classification 

problem [10], as in the case in which a starting from the aggregate power 

measurement it is necessary to determine which appliances are powered and which 

are not. 

The system proposed in this section solves a multi-label classification problem, 

since starting from an SFRA trace it is possible to identify several powered 

appliances at the same time. The algorithm used is the SVM, the system 

configuration and its operation are illustrated in the following paragraphs. 

7.2.1 Support Vector Machine 

A SVM is one of the most popular models in Machine Learning, as it is very 

powerful and versatile [104]. SVMs are best suited for classifying complex but 

small to medium-sized datasets.  

While the classic classification algorithms discriminate on the basis of 

characteristics common to each class, the SVM algorithms build the model on the 

basis of the most difficult samples to discriminate, i.e. the most similar samples but 

belonging to different classes.  
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In this sense, the only samples used in the construction of the model are called 

support vectors. The other samples are therefore useless. 

Based on the support vectors, the algorithm finds the optimal hyperplane that 

separates them, and which can then be used to discriminate new samples. In other 

words, adding more formation samples far from the hyperplane (therefore not 

particularly complex to classify) will not affect the decision boundary at all, which 

will be completely determined by the samples located at the edge of the hyperplane. 

Consider a case in which the samples to be classified are defined by only two 

features. 

This case can be represented on a two-dimensional plane, as shown in Fig. 7.13. 

An SVM algorithm looks for the line capable of maximizing the margin between 

the most similar samples belonging to different classes, i.e. the support vectors. 

 

 

Figure 7.13: Representation of a linear classification problem in which the samples are defined 

by only two features. 

However, not all classification problems are linear, in fact in some cases it is not 

possible to separate the classes with a straight line, therefore we speak of non-linear 

classification. The kernel trick [202] is used to solve non-linear classification 

problems with SVM algorithms. More in detail, a polynomial kernel was used to 

determine the presence or not of an appliance starting from the SFRA traces. 

Using a polynomial kernel means determining similarity not only by processing 

the features of the input samples, but also their combinations, as shown in Fig. 7.14. 
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Figure 7.14: Representation of a non-linear classification problem in which the examples are 

defined by only two features. 

 

7.2.2 The proposed structure 

The previous paragraph refers to a two-dimensional problem. However, in the 

proposed system, the input is the trace obtained from the SFRA system, so each 

point of the trace represents a feature for the SVM. The algorithm must have a 

number of input functions equal to the number of bins of the measured frequency 

response.  

The problem is also attributable to a multi-label classification problem, where a 

single sample can belong to multiple defined classes, unlike what happens in a 

multi-class classification where each sample can uniquely belong to only one class. 

In fact, the purpose of the system is to determine the status (ON or OFF) of the 

appliances. This means that the number of classes is equal to that of the appliances 

and the belonging of an SFRA trace to a certain class will be indicative of the ON 

state of that appliance. A single SFRA trace must therefore be able to be associated 

with multiple classes (or labels) as the system must be able to recognize the loads 

even under simultaneous power supply conditions. 

SVMs are not natively capable of performing multi-class or multi-label 

classifications since, as explained above, an SVM defines a hyperplane that 

separates classes equidistantly in order to guarantee the maximum margin. When 

the number of classes rises to three or more, thus passing from a binary 

classification to a multiclass, it is possible to guarantee equidistance only between 

two of the classes, discarding this property with all the other classes. 

To solve this classification problem, which involves assigning multiple labels to 

an instance, we converted it to multiple binary classification problems. An SVM 

was therefore associated with each household appliance, which performs a binary 
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classification in order to determine its ON or OFF status, starting from the SFRA 

trace. 

 

 

Figure 7.15: The proposed structure. 
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7.3 Experimental results 

As part of the development phase, the proposed algorithm was implemented and 

tested to evaluate its performance with real data. 

7.3.1 Proposed system setup 

As explained in Section 7.1, the SFRA technique was performed by plugging the 

instrument into a standard household socket. As previously discussed, the input 

signal is a variable frequency sinusoidal signal applied between the phase conductor 

terminal and ground, while the output signal is the measured signal between the 

neutral conductor terminal and ground. Both signals are acquired and processed. 

Fig. 7.16 shows the measurement system used. 

The measurement system must be connected to the test system by means of cables 

with suitable bandwidth, and the same characteristic impedance of the generator to 

avoid reflection and signal mismatch, and to improve the sensitivity, repeatability 

and reliability of the measurement.  

The input signal and related acquisition for the SFRA were performed using the 

Digilent Analog Discovery 2 NI Edition card with BNC adapter. 

 

 

Figure 7.16: The implemented SFRA measurement system. 
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The control system was developed using LabVIEW and run on a PC, this 

software automatically programs the Discovery FPGA at startup, with a 

configuration file designed to implement the measurement application. Once 

programmed, the integrated FPGA communicates with the PC via a USB 2.0 

connection. The PC allows to create the user interface to access the data and process 

them in the experimental phase. A final NILM system can bypass the PC by 

integrating post-processing directly on the system. 

The Discovery has a ± 25 V input range, a 14-bit resolution, a 100 MHz sampling 

frequency and a 30 MHz bandwidth. It is equipped with an arbitrary function 

generator with an output range of ± 5 V, bandwidth of 20 MHz and sampling rate 

of 100 MHz. 

In order to avoid unwanted overvoltages due to resonance phenomena at high 

frequencies, the amplitude of the applied signal must not exceed a few volts (5 Vpp 

in the present case). The accuracy of the adopted measurement system, as discussed 

in a previous paper [203], has been evaluated using a reference parallel LCR circuit. 

This circuit consists of a 50 Ω resistive adapter, a fixed inductance and a variable 

capacitance. The referenced values of the circuit impedance were measured with a 

Keysight E4980AL precision LCR meter. The estimated accuracy of Vout/Vin ratio 

was better than ±0.2 dB, in the interval from +5 to −25 dB, in the frequency range 

from 5 kHz to 1.5 MHz. 

The SVM was implemented on a desktop computer (based on the Windows 10 × 

64-bit operating system) using the open-source Python 3.7 from Anaconda [185], 

the machine learning algorithm was developed using the Scikit-learn library.  

7.3.2 The achieved results 

The proposed measurement technique is innovative and does not appear to have 

been tested by other authors. Due to the specificity of the acquired data (frequency 

response), there are no public datasets used by other authors against which to 

compare the performance of the proposed algorithm [12].  

The measurement system was installed on a test facility, which was designed to 

generate electrical loads created by domestic users, as part of the “non-intrusive 

infrastructure for monitoring loads in residential users” research project. The 

facility, which is located in the Electrical Engineering Laboratory of the University 

of  ’ quila (I), allows the generation of electrical loads in a single or simultaneous 

way. 

During the test phase, various parameters were evaluated in order to define: the 

most significant sub-bands, the number of measurement points to be acquired and 

the number of training examples needed to obtain satisfactory performance. 
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To this end, precision, recall and F1-Score during classification were evaluated 

[186]. These parameters have already been defined and used in Chapter 5, but for 

ease of reading they are given below: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7.1)  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7.2)  

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (7.3)  

 

The concept of positive has been attributed to the ON state of household 

appliances and that of negative to the OFF state. Precision indicates, of all the times 

the system has provided an indication of the ON state of an appliance, how many 

times the prediction has been correct. Precision does not take FNs into account. On 

the other hand, Recall indicates how many times the system has provided a correct 

indication about the ON state of the appliance compared to all the samples in which 

the appliance was actually in the ON state. Recall does not take FPs into account. 

To have a metric capable of taking into account both FPs and FNs, the F1-Score is 

used, that is a harmonic mean of Precision and Recall. 

Since, as already explained above, each appliance is associated with an SVM 

algorithm that reveals its presence or not, the performance of each SVM has been 

evaluated individually. 

We started by acquiring 20 samples for each of the 24 scenarios, for a total of 

480 training samples. Each sample consists of an SFRA trace in which 200 points 

were acquired for each of the 3 sub-bands. Performance was evaluated on a test set 

consisting of 50 samples for each scenario, for a total of 1200 test samples. 

The obtained results, shown in Table 7.2, are already excellent, as 480 training 

samples are a relatively low number considering that the acquisition of a single 

sample takes about 40 seconds.  

The system does not make mistakes for 5 of the 8 appliances analyzed, however 

showing high performance also for the other 3 appliances. To define which of the 

3 sub-bands made the most significant contribution to the identification of 

household appliances, the performance of the system was evaluated by providing 

the 3 sub-bands separately as input to the machine learning system. The results are 

reported in Table 7.3. 
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Table 7.2: The results obtained with 480 training samples and 200 points for each sub-band. 

 
Total Errors FP FN Precision Recall F1-Score 

Hairdryer 0 0 0 1.00 1.00 1.00 

Microwave Oven 0 0 0 1.00 1.00 1.00 

Lamp 27 0 27 1.00 0.92 0.96 
Laptop 0 0 0 1.00 1.00 1,00 

Induction Hob 0 0 0 1.00 1.00 1.00 

Heater 5 5 0 0.98 1.00 0.99 
Drill 29 29 0 0.93 1.00 0.97 

TV 0 0 0 1.00 1.00 1.00 

 

 

Table 7.3: Performance evaluation for each sub-band. 

10-100 kHz 

 Total 

Errors 
FP FN Precision Recall F1-Score 

Hairdryer 98 98 0 0.75 1.00 0.86 

Microwave Oven 50 0 50 1.00 0.83 0.91 

Lamp 110 96 14 0.78 0.96 0.86 
Laptop 51 51 0 0.89 1.00 0.94 

Induction Hob 0 0 0 1.00 1.00 1.00 

Heater 61 61 0 0.83 1.00 0.91 
Drill 48 48 0 0.89 1.00 0.94 

TV 0 0 0 1.00 1.00 1.00 

100 kHz - 1 MHz 

 Total 

Errors 
FP FN Precision Recall F1-Score 

Hairdryer 0 0 0 1.00 1.00 1.00 

Microwave Oven 0 0 0 1.00 1.00 1.00 

Lamp 141 30 111 0.89 0.68 0.77 
Laptop 9 0 9 1.00 0.98 0.99 

Induction Hob 59 9 50 0.97 0.83 0.89 

Heater 5 5 0 0.98 1.00 0.99 

Drill 116 106 10 0.79 0.98 0.87 

TV 0 0 0 1.00 1.00 1.00 

1-1.5 MHz 

 Total 

Errors 
FP FN Precision Recall F1-Score 

Hairdryer 2 2 0 0.99 1.00 0.99 

Microwave Oven 93 85 8 0.77 0.97 0.86 

Lamp 115 0 115 1.00 0.67 0.80 
Laptop 71 6 65 0.98 0.84 0.90 

Induction Hob 79 74 5 0.80 0.98 0.88 

Heater 29 29 0 0.91 1.00 0.95 
Drill 90 76 14 0.84 0.97 0.90 

TV 48 39 9 0.91 0.98 0.94 
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In light of these results, it was decided to consider only the sub-bands 10 - 100 

kHz and 100 kHz - 1 MHz, in order to reduce the time required for the measurement. 

This reduces the time it takes to acquire a single trace to 22.56 seconds. Table 7.4 

reports the performance evaluation using only the first two sub-bands as input. 

Comparing the results with those of Table 7.2, it can be seen that the performance 

of the system has remained roughly unchanged. There is a significant improvement 

in the detection of the drill, highlighting that the 1-1.5 MHz sub-band introduced 

useless randomness for identification purposes. In this way 400 points are acquired 

in the 10 kHz - 1 MHz frequency band.  

The possibility of decreasing the number of acquired points has been evaluated. 

Therefore, in Table 7.5 the performances obtained for 200, 134 and 100 points are 

reported. Performance proved to be very good even using only 100 measurement 

points as system input. In these conditions, in fact, the system made errors only for 

3 of the 8 appliances analyzed, while maintaining a minimum F1-Score of 0.94. 

This reduction allowed a decrease in the execution time of the measurement system 

from 22.56 seconds to 6.09 seconds. 

The performances shown so far always foresee 480 training samples (20 for each 

of the 24 scenarios). As a final analysis, the impact of the number of training 

samples on performance was evaluated. Table 7.6 reports the results obtained using 

an SFRA trace consisting of 100 points acquired in the 10 kHz - 1 MHz frequency 

band, reducing the number of samples used in the training phase. 

The system maintains interesting performances even when trained with only 1 

training sample for each scenario (therefore with 24 total training samples). This is 

mainly because the SVM natively suffers more from the quality of the training 

samples rather than the quantity, precisely because it builds a model based only on 

the most difficult samples to discriminate. 

Lower performance was found in the detection of Lamp, Laptop and Drill. In the 

case of the Lamp this is due to the insignificance of its related load, compared to 

the overall network, while in the case of the Laptop and Drill it is due to the extreme 

variability of their working conditions. However, F1-Score values of 0.78, 0.87 and 

0.94 respectively can be considered largely satisfactory for a trained system with 

such a small number of samples. 
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Table 7.4: The results obtained with 480 training samples and 200 points for each sub-band, 

using only the first two sub-bands. 

 
Total Errors FP FN Precision Recall F1-Score 

Hairdryer 0 0 0 1.00 1.00 1.00 

Microwave Oven 0 0 0 1.00 1.00 1.00 

Lamp 29 0 29 1.00 0.92 0.96 
Laptop 4 4 0 0.99 1.00 0.99 

Induction Hob 0 0 0 1.00 1.00 1.00 

Heater 3 3 0 0.99 1.00 0.99 
Drill 7 7 0 0.98 1.00 0.99 

TV 0 0 0 1.00 1.00 1.00 

 

 

Table 7.5: Performance evaluation as the points acquired decrease. 

10 kHz – 1 MHz (200 points) 

 Total 

Errors 
FP FN Precision Recall F1-Score 

Hairdryer 0 0 0 1.00 1.00 1.00 
Microwave Oven 0 0 0 1.00 1.00 1.00 

Lamp 39 0 39 1.00 0.89 0.94 

Laptop 0 0 0 1.00 1.00 1.00 

Induction Hob 0 0 0 1.00 1.00 1.00 

Heater 2 2 0 0.99 1.00 1.00 
Drill 5 5 0 0.99 1.00 0.99 

TV 0 0 0 1.00 1.00 1.00 

10 kHz – 1 MHz (134 points) 

 Total 

Errors 
FP FN Precision Recall F1-Score 

Hairdryer 0 0 0 1.00 1.00 1.00 

Microwave Oven 0 0 0 1.00 1.00 1.00 

Lamp 26 0 26 1.00 0.93 0.96 
Laptop 0 0 0 1.00 1.00 1.00 

Induction Hob 0 0 0 1.00 1.00 1.00 

Heater 5 5 0 0.98 1.00 0.99 
Drill 5 5 0 0.99 1.00 0.99 

TV 0 0 0 1.00 1.00 1.00 

10 kHz – 1 MHz (100 points) 

 Total 

Errors 
FP FN Precision Recall F1-Score 

Hairdryer 0 0 0 1.00 1.00 1.00 

Microwave Oven 0 0 0 1.00 1.00 1.00 

Lamp 42 0 42 1.00 0.88 0.94 
Laptop 0 0 0 1.00 1.00 1.00 

Induction Hob 0 0 0 1.00 1.00 1.00 

Heater 6 6 0 0.98 1.00 0.99 
Drill 2 2 0 0.99 1.00 0.99 

TV 0 0 0 1.00 1.00 1.00 
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Table 7.6: Performance evaluation as training samples decrease. 

10 kHz - 1 MHz (100 points, 15 samples for each scenario) 

  
Total 

Errors 
FP FN Precision Recall F1-Score 

Hairdryer 0 0 0 1.00 1.00 1.00 

Microwave Oven 0 0 0 1.00 1.00 1.00 

Lamp 42 0 42 1.00 0.88 0.94 
Laptop 0 0 0 1.00 1.00 1.00 

Induction Hob 0 0 0 1.00 1.00 1.00 

Heater 6 6 0 0.98 1.00 0.99 
Drill 3 3 0 0.99 1.00 0.99 

TV 0 0 0 1.00 1.00 1.00 

10 kHz - 1 MHz (100 points, 10 samples for each scenario) 

 Total 

Errors 
FP FN Precision Recall F1-Score 

Hairdryer 0 0 0 1.00 1.00 1.00 
Microwave Oven 0 0 0 1.00 1.00 1.00 

Lamp 59 0 59 1.00 0.83 0.91 

Laptop 2 0 2 1.00 0.99 0.99 
Induction Hob 0 0 0 1.00 1.00 1.00 

Heater 5 5 0 0.98 1.00 0.99 

Drill 23 21 2 0.95 1.00 0.97 
TV 0 0 0 1.00 1.00 1.00 

10 kHz - 1 MHz (100 points, 5 samples for each scenario) 

 Total 

Errors 
FP FN Precision Recall F1-Score 

Hairdryer 5 5 0 0.98 1.00 0.99 
Microwave Oven 0 0 0 1.00 1.00 1.00 

Lamp 71 0 71 1.00 0.80 0.89 

Laptop 26 0 26 1.00 0.94 0.97 
Induction Hob 0 0 0 1.00 1.00 1.00 

Heater 16 16 0 0.95 1.00 0.97 

Drill 31 29 2 0.93 0.99 0.96 
TV 0 0 0 1.00 1.00 1.00 

10 kHz - 1 MHz (100 points, 1 samples for each scenario) 

 Total 

Errors 
FP FN Precision Recall F1-Score 

Hairdryer 5 5 0 0.98 1.00 0.99 
Microwave Oven 1 1 0 0.99 1.00 0.99 

Lamp 125 0 125 1.00 0.64 0.78 

Laptop 95 2 93 0.99 0.77 0.87 
Induction Hob 0 0 0 1.00 1.00 1.00 

Heater 17 17 0 0.95 1.00 0.97 

Drill 53 53 0 0.88 1.00 0.94 
TV 8 8 0 0.98 1.00 0.94 
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In order to provide an overall assessment of the system's performance, metrics 

widely used for multi-label classification systems were used: micro-average and 

macro-average. 

As reported in (7.4), (7.5) and (7.6), in the micro-average all TPs, TNs, FPs and 

FNs are summed for all labels and subsequently averaged.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 =
∑ 𝑇𝑃𝑛
𝑁
𝑛=1

∑ 𝑇𝑃𝑛 + 𝐹𝑃𝑛
𝑁
𝑛=1

 (7.4)  

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 =
∑ 𝑇𝑃𝑛
𝑁
𝑛=1

∑ 𝑇𝑃𝑛 + 𝐹𝑁𝑛
𝑁
𝑛=1

 (7.5)  

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒𝑚𝑖𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔

=
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔
 

(7.6)  

 

On the other hand, the macro-average, as reported in (7.7), (7.8) and (7.9), is 

simply the average of Precision and Recall for each label. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 =
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛
𝑁
𝑛=1

𝑁
 (7.7)  

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 =
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑛
𝑁
𝑛=1

𝑁
 (7.8)  

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔

=
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜−𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔
 

(7.9)  

 

The difference between the two lies in the fact that the micro-average reflects any 

imbalances in the dataset. Unbalance means test samples in a greater number of one 

or more classes than the others. In other words, having more samples for a given 

scenario, the macro-average, by making a simple average of Precision, Recall and 

F1-Score, does not consider this imbalance. On the contrary, the micro-average 

takes these situations into account. 

In the case in question, the dataset is balanced; therefore, both averages are 

functional and adequate for verifying the performance of this system. Table 7.7 
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reports the micro-averages and macro-averages calculated on the values reported in 

Table 7.6. 

 

Table 7.7: Impact of the size of the training set on multi-label classification. 

  Micro-average Macro-average 

Training 

samples for 

each scenario 

Precision Recall F1-Score Precision Recall F1-Score 

20 0.99 0.98 0.99 0.99 0.98 0.99 

15 0.99 0.98 0.99 0.99 0.98 0.99 

10 0.99 0.97 0.98 0.99 0.97 0.98 
5 0.98 0.96 0.97 0.98 0.96 0.97 

1 0.96 0.92 0.94 0.97 0.92 0.94 

 

7.3.3 Analysis of the electromagnetic compatibility 

A further consideration must be made regarding the problem of integrating the 

proposed system into an electrical system. As explained above, there is no 

interference with the normal functioning of the devices during system operation. 

Furthermore, the system poses no problems to the EMI filters which are generally 

placed at the input of many of the monitored devices, since the powers involved, 

which can be associated with the test signal, are extremely low. 

To analyze in detail the operating conditions of the measurement system, it was 

also simulated in a SPICE environment. Specifically, the simulation was oriented 

to the analysis of the effects produced by the test signal on commercial EMI filters 

that could be connected (to other devices) in proximity to the system under test. The 

analysis was extended to the entire range of frequencies involved; as a reference, a 

commercial EMI filter family has been considered [204] for standard use in 

commercial and residential apparatuses for AC currents up to 16 Arms, in single-

phase systems.  

The analysis was extended to the entire range of frequencies involved. The Fig. 

7.17 summarizes the scheme considered for the simulation. The resistance RLoad 

equal to 50 Ω has been chosen in order to simulate the load of a generic household 

appliance (230 Vrms / 50 Ω = 4.6  rms). 

The features of the filters developed for the SFRA apparatus [197] are in Figs. 

7.18 and 7.19. 

The response of the system was evaluated by varying the frequency in the range 

in which the proposed system operates in the final configuration (10 kHz - 1 MHz). 

The frequency response of the current entering the EMI filter was evaluated. 

Several simulations were carried out by varying the RLC parameters of the EMI 

filter. The current was found to be harmless across the entire spectrum. As an 

example, Fig. 7.20 shows the frequency response of the input current to the EMI 
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filter,  obtained with the RLC parameters reported in Fig. 7.17. The spectrum shows 

two resonance peaks and a maximum current draw of 4.64 mA. 

The reduced value of this peak current does not lead to overheating of the filter 

components, since the associated dissipated power is reduced. Furthermore, such 

verification is pejorative for the following reasons: 

1) The proposed system adopts a Digilent Analog Discovery 2 board which 

has a limitation on the maximum output current that can be supplied by 

the DAC channels at 4 mA. 

2) In our simulation the measurement system is connected to the device 

under test only. In the real case, the generator is connected to a generic 

socket of the electrical system, therefore the current that can be supplied 

(4 mA) is distributed in the various parallel branches of the other 

connected devices, greatly reducing the intensity of the portion which 

could affect the EMI filters. 

 

 

Figure 7.17: The scheme used for the SPICE simulation. 

 

 

Figure 7.18: Coupling circuit for the signal generation section.  
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Figure 7.19: Coupling circuit for the signal acquisition section.  

 

 

Figure 7.20: The frequency response of the input current to the EMI filter. 
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Chapter 8 

8Achievements and final remarks 

This thesis project focuses on NILM systems, covering the design, 

implementation and metrological characterization of these systems. The study 

began by examining the state of the art of NILM systems. Due to its non-linear 

development process and the various directions it has taken, defining the current 

state of the art in the field of NILM systems research, which has garnered 

considerable interest from the scientific community, has been a challenging task. 

The analysis of NILM systems was conducted by dividing them into event-based 

and non-event-based approaches. The former detect events by analyzing the 

electrical power signal or the current signal, while the latter process time windows 

of power or current signals and carry out energy disaggregations by recognizing 

certain consumption patterns. Chapter 2 provides a complete overview of the 

literature available on these systems, offering theoretical hints on the main models 

used, such as CO, DSC, FHMM and DL. 

 The thesis project identifies various applications in which NILM systems can be 

useful, including energy tariff recommendation systems, energy management 

systems for Smart Homes and Microgrids, Demand Response systems, anomaly 

detection and maintenance systems, energy disaggregation at the electrical 

substation level, and Ambient Assisted Living systems. 
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In order to conduct a comprehensive study, three systems were implemented, 

each with different characteristics and capabilities. All three proposed systems 

underwent an extensive testing phase, where their performance in real-world 

scenarios was evaluated. The systems differed in the type of approach, the different 

sampling frequencies used for signal acquisition, the characteristics of the hardware 

required, and the type of contribution they can make to the context in which they 

are applied.  

Within NILM, performance analysis is typically conducted with reference to 

public datasets. This is an excellent comparative analysis, but unfortunately it does 

not allow for a correct metrological characterization of the system. 

Unfortunately, no comparison with the (very few) advertised NILM systems was 

possible. The reasons are related to the fact that producers of energy disaggregation 

systems [15]-[17] sell an aggregate service and not the individual device. 

For this reason, in addition to various NILM systems, a system that also allowed 

direct measurement of consumption of household appliances, based on a class 0.2 

power meter, was also developed in order to obtain more reliable metrological data. 

Final remarks on the NILM systems proposed in this thesis are given below: 

 

1) The first proposed system, discussed in Chapter 5, is an event-based system 

that samples the absorbed current signal at a high frequency of 10 kHz. A 

typical event-based NILM system involves three main processes: signal 

acquisition (current and/or voltage), event detection, feature extraction, and 

load classification, in addition to signal acquisition (current and/or voltage). 

In contrast to other event-based NILM systems, which perform load 

classification based on the analysis of quantities also related to voltage (e.g., 

analysis in the P–Q or V–I plane [56]), the proposed system has the 

advantage of only measuring the overall current in a house. As a result, the 

complexity of the processing system is reduced. Another advantage is that 

the measuring system can be implemented as a galvanically isolated system 

at low cost using a clamp current transducer. 

In this work, the detection of an event and the classification of the related 

device were conducted by the same and unique process. The online system 

configuration (training) required approximately 7 min. The processing 

times measured were of the order of 105 ms for processing 1 s of acquired 

data (10K samples). 

The proposed NILM algorithm allows the system to recognize a device, 

regardless of whether it operates singularly or in combination with other 

loads. The first results obtained after a large number of measurements 
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appeared to be satisfactory, with error rates of approximately 3% for event 

detection and less than 2% for event classification. 

The results obtained by processing the data available on the public BLUED 

data set appeared very encouraging. The value obtained for the F1-score was 

99.8%, which is higher than that obtained with other systems using the same 

data set such as those proposed in [102] (91.5%) and [205] (93.2%). 

 

2) The second system, discussed in Chapter 6, is a non-event-based system that 

processes an active power signal available at a significantly lower frequency 

of 1/8 Hz. The proposed system offers an embedded solution for energy 

disaggregation by leveraging a pre-trained DL model. Specifically, the 

model utilized is a sequence-to-point ANN, designed to predict the midpoint 

of the window of an appliance-level power reading from the corresponding 

aggregate power window.  

The testing phase was conducted over 12 months, with the system installed 

in two houses in central Italy, one in Marche and one in Abruzzo, for six 

months each. During this time, the system processed the overall 

consumption of the houses to obtain details on individual consumption of 

dishwashers, washing machines, and fridge. The data analysis showed that 

the NILM system was able to adapt satisfactorily to both houses, even 

though the appliances had different absorption profiles. Additionally, the 

system could adapt when the same appliance had different duty cycles (as 

in the case of dishwasher and washing machine). The maximum relative 

percentage errors on a six-month basis found for dishwasher, washing 

machine, and fridge are 11%, 12%, and 10%, respectively. 

Overall, the results of the study were highly satisfactory, especially when 

compared with prior research, where the model was evaluated offline on 

prerecorded data. The outcomes of this study were obtained by 

implementing the measurement system in real installations, where the 

model was applied to real-time acquired data. This confirmed the 

effectiveness and reliability of the model for on-field applications, including 

its generalization ability, applicability, and scalability. Such findings 

provide crucial insights into the practical implementation and adoption of 

the model. 

The system was designed and implemented with the aim of demonstrating 

the feasibility of a solution based on a small-sized and low power 

microcontroller for real-time energy consumption monitoring. The 

microcontroller was chosen for its high performance and numerous 
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integrated peripherals, which allowed the development of a highly energy-

efficient system. Thanks to its ARM Cortex-M7 architecture and a 

maximum clock frequency of 480 MHz, the microcontroller can handle 

complex DL algorithms while maintaining low power consumption. 

The small size of the microcontroller, which measures only 20 mm x 20 

mm, has allowed for the creation of a compact energy consumption 

monitoring system. This feature is particularly important in areas where a 

minimally invasive and low environmental impact solution is required, such 

as in the Internet of Things (IoT) where devices must be compact and non-

intrusive. 

It is important to note that the solution proposed in this thesis was not 

intended to develop a commercial product, but rather to demonstrate the 

feasibility of a solution based on a small-sized and low power 

microcontroller for real-time energy consumption monitoring. However, the 

small size and low power consumption of the proposed system make it 

potentially suitable for commercial energy consumption monitoring 

solutions. 

As already stated in the introduction, access to commercial energy 

consumption monitoring solutions through NILM is still limited, especially 

for end consumers. Although there are companies developing NILM 

solutions [15]-[17], they tend to focus on business-to-business (B2B) 

services rather than direct business-to-consumer (B2C) hardware sales. This 

is mainly due to the fact that NILM technology is primarily used for energy 

management and monitoring in commercial and industrial settings, rather 

than in residential homes. These companies typically offer a wide range of 

services, such as energy audits, monitoring and reporting, and energy 

efficiency consulting, to businesses and organizations. This approach allows 

them to closely collaborate with customers to gain a deep understanding of 

their specific energy usage patterns and provide tailored solutions aimed at 

reducing energy consumption and costs. However, this presents a problem 

as it makes it difficult to compare the NILM systems proposed by research 

with commercially available NILM systems, as the latter are not readily 

accessible to the general public. 

 

3) The third proposed system, discussed in Chapter 7, is particularly innovative 

and departs from the definitions of NILM systems used in the literature. 

This system is based on the injection of a variable-frequency signal into a 

generic electrical socket of the system being monitored. The SFRA 
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technique, already widely used in the diagnostics of transformers and 

asynchronous motors, has been applied in the third proposed system to 

characterize household appliances from the point of view of their influence 

in modifying the frequency response of the electrical system.  

The obtained signature, influenced by physical characteristics of the loads, 

has been used as input for a machine learning algorithm, the SVM. 

A large campaign of measurements was carried out on a test facility, during 

which eight different electrical loads were powered both individually and 

simultaneously. In particular, variable consumption loads such as a drill and 

a laptop were considered, which are generally among the most difficult for 

NILM systems to discriminate.  

The proposed system demonstrated excellent performance even when 

trained with a minimum number of samples. The performances obtained are 

comparable with those obtained by other state-of-art electrical load 

identification systems [162],[206], in the face of a significant reduction in 

training data and a wider variety of loads. Furthermore, the proposed system 

allows to obtain information on which loads are powered in extremely short 

times (6.09 seconds in the final configuration of the system). 

 

The advancement of NILM systems is an area of active research, as these systems 

need to improve their accuracy and reliability. In addition, there is a need to make 

these systems more accessible and user-friendly so that they can be easily adopted 

by homeowners, building managers, and utility companies. 

The thesis project contributed to the advancement of the field of NILM systems, 

providing new insights into the practical implementation and adoption of NILM 

systems. By addressing key challenges related to data collection, preprocessing, and 

algorithm development, the project helped advance the state-of-the-art in NILM 

technology. As such, the work has the potential to contribute to the wider adoption 

of NILM systems.
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