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Abstract
In this paper an active controller for groundvehicles stability is presented. Theobjective of this
controller is to force the vehicle to track a desired reference, ensuring safe driving conditions
in the case of adhesion loss during hazardous maneuvers. To this aim, a nonlinear discrete-
time inverse optimal control based on a neural network identification is designed, using a
recurrent high order neural network (RHONN) trained by an Extended Kalman Filter. The
RHONN ensures stability of the identification error, while the controller ensures the stability
of the tracking errors. Moreover, a discrete-time reduced order state observer is utilized to
reconstruct the lateral vehicle dynamic not usually available. For the control problem, the
references of the lateral velocity and yaw rate are given by a dynamic system mimicking an
ideal vehicle having not-decreasing tire lateral characteristics. The proposed approach avoids
the identification of the Pacejka’s lateral parameters of the tires, so simplifying the input
control determination.Moreover, an optimal control is proposed to optimize the actuator effort
and power, usually bounded. Control gains are determined using optimal “nature-inspired"
algorithms such as particle swarm optimization. Test maneuvers, performed through the full
vehicle simulator CarSim®, have been used to test correctness, quality and performances of
the observer, the neural identifier and the inverse optimal controller. Robustness of the reduced
order discrete-time state observer is also discussed for different sample times. Finally, a fair
comparison between optimal and non-optimal control schemes is presented, highlighting the
numerical results obtained in simulation.
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1 Introduction

During the last years the driving safety has been improved making use of active actuators.
Most of the applications utilize steer-by-wire systems, such as the active front steering (AFS)
in order to assist the driver in complex and hazardous maneuvers. In general, the vehicle
agility, maneuverability and stability are improved making use of AFS as explained, for
instance, in [1–5]. The driving safety can be largely improved also using the rear torque
vectoring (RTV) technique. Recent contributions on Rear Torque Vectoring control can be
found in [6–10]. CombinedAFS andRTVactions can be applied for ensuring driving stability
[11–13]. In the same line of ideas, this paper deals with the use of both AFS and RTV for
the active control of the vehicle.

A big criticism of the plant-based control strategies utilized in [11–13], is that when
calculating the explicit expression of the control law to stabilize the vehicle attitude, the
Pacejka’s parameters that define the lateral tire forces must be known at any time. This
strong assumption is considered as for instance in [14, 15] where authors assume the lateral
tire forces to be known. However, such intrinsic parameters are subjected to decay and
deterioration so their estimation remains an arduous task.

Furthermore, utilizing the proposed control approach where a discrete-time reduced order
observer reconstructs the vehicle lateral dynamic not usually available andbyusing aRHONN
to identify the vehicle observed dynamics [16–18], the synaptic weights provide neural
adaptation avoiding the necessity of the knowledge of the Pacejka’s tire parameters.

The training algorithm for the RHONN weight updating is carried out by an extended
Kalman filter (EKF) obtaining a model of the vehicle, used to design an inverse optimal
controller. The main advantage of this strategy is that using this RHONN-based model, the
AFS input appears linearly in the dynamics, and not implicitly in the tire characteristic [19].
This allows calculating the AFS input without inverting the tire model to determine the AFS
input, which is a not obvious task since the tire model depends on experimental parameters
and vehicle vertical dynamics. Furthermore, the RTV control law does not take into account
the explicit expression of the lateral front and rear tire forces that are, usually, not available.
The originality and novelty of the proposed control method rely in the fact that the AFS,
considered as a control input, is calculated without knowing the tire Pacejka’s parameters.
Moreover, since the RTW has a limited actuation, bounded by the vehicle speed and yaw
inertia of the vehicle, an optimal approach which minimizes the control efforts is considered.
These two aspects represent the main contributions of this paper. The other notable aspect
to be mentioned is that the controller is here determined using the inverse optimal control
technique [17, 18]. In classical optimal control setting, the meaningful cost functional is
given a priori and, then, it is used to calculate the control law by solving a Hamilton–Jacobi–
Bellmann (HJB) equation. This latter is, in general, a difficult task. The inverse optimal
control technique can be used to overcome this problem, by choosing an a priori candidate
Lyapunov function, which is then used to calculate the control law and a meaningful cost
functional [17, 18]. This scheme is here proposed to control the vehicle lateral and yaw
dynamics in the case of drifting and adhesion loss,which are commonly considered dangerous
situations. A further advantage in the use of such a control technique is that it minimizes
the actuator effort. It is worth noting that the use of controls with EKF identification were
used in real-time applications [20–24]. The availability of high-performance digital devices
makes the implementation possible also in the case of vehicles, which nowadays have enough
computational power to guarantee that all the calculations needed are made in a efficient way.
It is worth noting that under a computation point of view, there exists another technique to
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solve the HJB equation for the optimal control as explained in [25, 26] where authors utilize
adaptive dynamic programming (ADP) to calculate such solution. However, in this paper
authors do not provide further detailed comparisons that will be given in future works.

In the literature the combined use of plant-based observers and neural network controllers
are quite common as for instance in [27] where the oxygen excess ratio in polymer electrolyte
membrane fuel cell is controlled. In [28, 29] an hybrid adaptive learning neural network
control and a discrete-time adaptive neural network control are used to improve the steering
by wire systems that are usually affected negatively by the friction torque and self-aligning
torque.

To validate the proposed controller, the CarSim® platform is used to mimic realistically
a vehicle performing a challenging ATI 90/90 steer maneuver. The motivation of choosing
this platform is due to the fact that this software well predicts the real vehicle response, as
validated with extensive experimental tests conducted by automotive companies such as Ford
Motor Company, Chrysler among others.

The paper is organized as follows. Section2 introduces some preliminaries about neural
networks, RHONN identification and inverse optimal control, whereas in Sect. 3 the proposed
method is applied to a ground vehicle. In Sect. 4, quality and performance of the proposed
controller are shown via simulations in CarSim®. Some comments conclude the paper.

2 Recalls on Nonlinear Neural Network RHONN Identification and
Discrete-Time Inverse Optimal Control for Trajectory Tracking

Given a generic multi inputs and multi output (MIMO) discrete-time nonlinear system of the
form

xk+1 = F(xk, uk) (1)

with k ∈ N = {0, 1, 2 . . .}, xk = (x1,k, . . . , xn,k)
T ∈ R

n , uk = (u1,k, . . . , um,k)
T ∈ R

m ,
and F : R

n × R
m → R

n an analytic vector field such that F(0, 0) = 0 [16], it can be
approximated by a discrete RHONN [16–18]

xi,k+1 = wT
i,k zi (xk, uk) i = 1, 2, . . . , n. (2)

This result is particularly useful in some cases, e.g. when the parameters of the original
system are not fully known. In (2), xi,k represents the state of the i th neuron, wi,k =
(wi,1,k, . . . , wi,�i ,k)

T , i = 1, . . . , n, are the adjustable synaptic weights of the neural
network, and �i is the number of high order connections. For �i sufficiently large, (2) approx-
imates the system to be identified to any degree of accuracy. The �i -dimensional vector zi is
of the form

zi (xk, uk) =

⎛
⎜⎜⎜⎝

zi,1
zi,2
...

zi,�i

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏
j∈I1

γ
di j (1)

i j ,k

∏
j∈I2

γ
di j (2)

i j ,k

...
∏
j∈I�i

γ
di j (�i )

i j ,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)
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Fig. 1 RHONN architecture

for i = 1, 2, . . . , n where {I1, I2, . . . , I�i } is a collection of �i non-ordered subsets of
{1, 2, . . . , n + m}, and di j (1), . . . , di j (�i ) are non-negative integers. Finally,

γi,k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γi,1,k
...

γi,n,k

γi,n+1,k
...

γi,n+m,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s(x1,k)
...

s(xn,k)

u1,k
...

um,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, i = 1, . . . , n. (4)

with γi, j,k either external inputs or states of neurons passed through a sigmoid function. The
functions s(xi,k), i = 1, . . . , n, are typically sigmoidal monotone-increasing and differen-
tiable functions, called activation functions, having the form

s(xi,k) = αi

1 + e−βi xi,k
− τi , i = 1, . . . , n (5)

where αi , βi , τi > 0 are constants. Sigmoid activation functions, commonly used in applica-
tions, are the logistic functions, obtained for αi = βi = 1, τi = 0, and the hyperbolic tangent
functions, obtained for αi = βi = 2, τi = 1.

In this paper we consider the particular case in which (2) is described by the discrete-time
RHONN depicted in Fig. 1, and described by the following equation [30]:

xi,k+1 = wT
i,k zi (xk) + w◦T

i uk, i = 1, 2, . . . , n (6)
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where w◦T
i is a constant synaptic weights vector, and the functions γi,k are in the particular

form

γi,k =
⎛
⎜⎝

γi,1,k
...

γi,n,k

⎞
⎟⎠ =

⎛
⎜⎝
s(x1,k)

...

s(xn,k)

⎞
⎟⎠ . (7)

This last choice simplifies the calculation of the control signal needed to guarantee the closed
loop performance.

Let us now denote byw∗
i ,w

◦∗
i , i = 1, . . . , n, the constant (unknown) weights minimizing,

on a fixed compact set, the norm of the identification error between (6) and the system to be
identified [17]. Therefore, considering the approximation errors

εi,k =
(
wi,k − w∗

i

)T
zi (xk) +

(
w◦
i − w◦∗

i

)T
uk, (8)

for i = 1, . . . , n one rewrites (6) as

xi,k+1 = w∗T
i zi (xk) + w◦∗T

i uk + εi,k, i = 1, . . . , n. (9)

For (9) one can consider a RHONN identifier

x̂i,k+1 = ŵT
i,k zi (x̂k) + w◦∗T

i uk, i = 1, 2, . . . , n. (10)

with x̂k the estimate of xk , ŵi,k the estimate of w∗
i . Furthermore, in (10) it is assumed that

the value of w◦∗
i can be estimated off-line. This can be done for a large class of systems in

affine form since w◦
i,k is constant. The RHONN weight estimation error is

w̃i,k = w∗
i − ŵi,k, i = 1, . . . , n, ∀ k ∈ N (11)

and its dynamics are

w̃i,k+1 − w̃i,k = ŵi,k − ŵi,k+1, i = 1, . . . , n, ∀ k ∈ N (12)

since w∗
i is constant.

2.1 The EKF Training Algorithm

For the on-line learning process of the RHONN weights of (10), one can use a modified
version of the well-known EKF algorithm [31, 32], in which the weights become the states
to be estimated. The main objective of the EKF is to find the optimal values for the weight
vector ŵT

i,k such that the identification errors

ei,k = xi,k − x̂i,k, i = 1, . . . , n (13)

are minimized. The EKF solution to the training problem is [31, 32]

ŵi,k+1 = ŵi,k + ηi,k Ki,kei,k i = 1, . . . , n (14)

where

Ki,k = Pi,k Hi,kMi,k ∈ R
�i×m (15)

is the Kalman gain vector, i = 1, . . . , n, and ηi,k ∈ [0, 1] is the rate learning. Here Pi,k ∈
R

�i×�i is the predictive error associated covariance matrix defined as

Pi,k+1 = Pi,k − Ki,k H
T
i,k Pi,k + Qi,k (16)
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for i = 1, . . . , n, with Qi,k ∈ R
�i×�i the state noise associated covariance matrix. Moreover,

the global scaling matrix Mi,k is given by

Mi,k =
(
Ri,k + HT

i,k Pi,k Hi,k

)−1
(17)

for i = 1, . . . , n, where Ri,k ∈ R, and Hi,k ∈ R
�i×m is a matrix for which each entry

hi, j,k =
(

∂ x̂i,k
∂ŵi, j,k

)

ŵi,k=ŵi,k+1

, i = 1, . . . , n,

j = 1, . . . , �, (18)

is the derivative of one of the neural network output x̂i,k with respect to one neural network
weight ŵi, j . Note that Hi,k , Ki,k , and Pi,k are bounded [33]. The dynamic of (11) can be
expressed as

w̃i,k+1 = w̃i,k − ηi,k Ki,kei,k (19)

On the other hand, the dynamics of (13) is

ei,k+1 = w̃T
i,k zi (x̂k) + εi,k . (20)

For the error dynamics (20) we will introduce a stability property, given in the following
definition.

Definition 2.1 The solutions of a system xk+1 = φ(xk) are Semi-Globally Uniformly Ulti-
mately Bounded (SGUUB) if for any compact Ω and all initial condition xk0 ∈ Ω , there
exist an ε > 0 and a number N (ε, xk0) such that ‖xk‖ < ε, ∀ k ≥ k0 + N . 	

It is worth noting that whereas it will be proven that w̃i,k and ei,k are stable, the approxima-
tion error ε cannot be given a priori since it depends on the accuracy of the neural model the
control designer presents. In this sense, an heuristic method, based on try-and-error approach,
is repeated until ε results to be acceptable.

2.2 Discrete-Time Inverse Optimal Control for Trajectory Tracking

The analysis of the inverse optimal control for trajectory tracking will be performed for
input-affine systems

x̂k+1 = f (x̂k) + g(x̂k)uk (21)

with the following associated cost functional

J (ξk) =
∞∑
j=k

(
l(ξ j ) + uTj R(ξ j )u j

)
(22)

where ξk = x̂k − xk,ref is the tracking error between the neural network state vector x̂k
and the desired trajectory xk,ref . Furthermore, l(ξ j ) : Rn → R

+ is a positive semidefinite
function, and R(ξ j ) : Rn → R

m×m is a real, symmetric, positive definite weighting matrix.
For the sake of simplicity, in this work the elements of R(ξ j ) will be taken constant, namely
R(ξ j ) = R [18]. The cost functional (22) can be rewritten as

J (ξk) = l(ξk) + uTk Ruk +
∞∑

j=k+1

(
l(ξ j ) + uTj Ru j

)
= l(ξk) + uTk Ruk + J (ξk+1) (23)
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where, without loss of generality, one requires that J (ξ0) = 0.
The existence of a control uk ensuring J (ξk) finite in (22), can be given in terms of

the existence of a Lyapunov function V (ξk). In fact, following [34–38] and the Bellman’s
optimality principle [39, 40] one looks for a Lyapunov function V (ξk) that, denoting u∗

k the
optimal control which minimizes V (ξk), and with V ∗(ξk) = V (ξk) |u∗

k
, satisfies:

V ∗(ξk) = l(ξk) + u∗T
k Ru∗

k + V ∗(ξk+1). (24)

Here u∗
k can be determined calculating the gradient of the right-hand side of (24) with respect

to uk = u∗
k [41–43]

0 = 2Ru∗
k +

(
∂V ∗(ξk+1)

∂uk

)T

= 2Ru∗
k +

(
∂ξk+1

∂uk

)T(
∂V ∗(ξk+1)

∂ξk+1

)T

= 2Ru∗
k + gT (x̂k)

(
∂V ∗(ξk+1)

∂ξk+1

)T

(25)

so obtaining the controller that globally stabilizes the tracking error ξk and minimizes the
cost function (22)

u∗
k = −1

2
R−1gT (x̂k)

(
∂V ∗(ξk+1)

∂ξk+1

)T

(26)

with the condition V (ξ0) = 0. These considerations justify the following definition.

Definition 2.2 (Inverse Optimal Control for Trajectory Tracking). The control (26) is a global
inverse optimal controller for trajectory tracking if:

(i) It guarantees global asymptotic stability of the tracking error ξk = x̂k − xk,ref ;
(ii) V (ξk) is a radially unbounded positive definite function such that

V = V ∗(ξk+1) − V ∗(ξk) + u∗T
k Ru∗

k ≤ 0. 	
When one selects l(ξk) = −V , then V (ξk) is a solution of the HJB equation:

l(ξk) +V (ξk+1) − V (ξk) + 1
4

∂V T (ξk+1)
∂ξk+1

g(x̂k)R−1gT (x̂k)
∂V (ξk+1)

∂ξk+1
= 0. (27)

To calculate the inverse optimal control, let us consider a candidate Lyapunov function of
the form

V (ξk) = 1

2
ξ Tk Pξk, P = PT > 0. (28)

If (i) and (ii) are satisfied, the control law (26) is

u∗
k = −1

2
R−1gT (x̂k)Pξk+1 = −1

2
(R + P2)

−1P1,k (29)

with P1,k = gT (x̂k)P( f (x̂k) − xk+1,ref ) and P2 = 1
2 g

T (x̂k)Pg(x̂k). It is worth pointing out
that P and R are positive definite and symmetric matrices. Thus, the existence of the inverse
is ensured.

It is worth noting that the inverse optimal control method is a control strategy derived on
the same basis of the optimal control theory with the difference that the HJB equation is not
solved first, since the optimal cost function is substituted by a candidate Lyapunov function,
known a priori, and then the control law is calculated.
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Fig. 2 Control scheme and bicycle model

3 The Discrete-Time Inverse Optimal Control for Trajectory Tracking of
Ground Vehicles

In this section we apply the previous results of neural identification and inverse optimal
control to a ground vehicle represented by CarSim®. The control scheme is described in
Fig. 2, in which the steering wheel angle δd,k , the longitudinal and lateral accelerations ax,k ,
ay,k , the longitudinal velocity vx,k and the yaw rate ωz,k are measured from CarSim®.

A discrete-time reduced-order state observer estimates the lateral vehicle velocities ṽy,k
which is, in general, not known. A neural identifier then provides an input-affine model,
avoiding the hard task of inverting the lateral tyre characteristic when deriving the control
laws. Synaptic weights wi, j,k are adjusted on-line by the Extended Kalman Filter while
minimizing the identification errors êi,k . Finally, the Inverse Optimal Controller, based on the
neuralmodel v̂x,k, v̂y,k, ω̂z,k and referencesvy,k,ref , ωz,k,ref and increments, provides theAFS
δc,k and RTV Mz,k that represent the CarSim®control inputs. In this work authors considered
the combined use of an observer in order to estimate the not known vehicle dynamics and a
neural identifier to obtain an affine to the input model in which the Pacejka’s parameters are
adapted by the neural synaptic weights. This strategy ensures a global exponential stability of
the estimation error, givenby the observer, and apractical stability guaranteedby the identifier.
It is worth noting that the system that makes it possible to avoid the use of the Pacejka’s tire
parameters of the tire lateral forces, is the neural identifier which adapts synaptic weights
under the Kalman learning rules. This latter works under the hypothesis that all the dynamics

123



Neural Network Inverse Optimal Control of Ground Vehicles

to be identified are known. To this aim, a discrete-time observer is presented to reconstruct
the unavailable vehicle lateral dynamics.

CarSim®mimics realistically the vehicle dynamics. The model contains many dynamics,
which describe the complex behavior of the vehicle. However, for vehicles with low center of
gravity, the essential dynamics describing the vehicle attitude are given by the longitudinal
and lateral velocities and the yaw rate. This is well described by the so-called single-track
vehicle model shown in Fig. 2, and very often used to design active controllers for ground
vehicles [44–46].

The interested reader can find in [2] a discrete-time version of such a model, obtained by
means of a variational integrator (known as symplectic Euler), and representing the discrete-
time version of the single-track model. Even if this model ensures better performance for
(relatively) high sampling periods, a more popular model is the Euler approximation of the
single-track model:

xk+1 =
⎛
⎝

vx,k+1

vy,k+1

ωz,k+1

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

vx,k + T

(
vy,kωz,k + μx

m

(
Fx, f (λ f ,k) + Fx,r (λr ,k)

))

vy,k + T

(
− vx,kωz,k + μy

m

(
Fy, f (α f ,k) + Fy,r (αr ,k)

))

ωz,k + T

(
μy

Jz

(
Fy, f (α f ,k)l f − Fy,r (αr ,k)lr

)
+ Mz

Jz

)

⎞
⎟⎟⎟⎟⎟⎟⎠
(30)

where T is the sampling period, vx,k , vy,k , ωz,k are the vehicle longitudinal, lateral, and
yaw velocities, and Fy, f , Fy,r are the lateral forces which depend on the tire slip angles
α f ,k = δd,k + δc,k − (vy,k + l f ωz,k)/vx,k , αr ,k = −(vy,k − lrωz,k)/vx,k , where δd,k is the
driver steering wheel angle, and δc,k is the AFS input.

Furthermore, Mz,k is the RTV input, and Fx, f , Fx,r are the longitudinal forces, depending
on the front/rear tire slips λ f ,k = 1 − ωw, f ,k Rw/vx,k , λr ,k = 1 − ωw,r ,k Rw/vx,k , where
ωw, f ,k , ωw,r ,k are the front/rear wheel angular velocities, and Rw the wheel radius. Finally,
m, Jz are the vehicle mass and inertia momentum, l f , lr are the front and rear vehicle length,
μx , μy are the longitudinal and lateral tire-road friction coefficient.

3.1 The Control Problem

As already commented before, the use of the AFS and the RTV allow us to track given refer-
ences for the lateral velocity vy,k,ref and the yaw rateωz,k,ref . Then, the control problem can be
defined as follows: given bounded references vy,k,ref and ωz,k,ref , with bounded increments,
determine a controller uk = αk(x̂k, xk,ref ) such that the tracking errors evy,k = vy,k −vy,k,ref ,
eωz,k = ωz,k − ωz,k,ref satisfy

lim
k→∞ evy,k = 0, lim

k→∞ eωz,k = 0.

Moreover, when applying control strategies for vehicle stability, not all the state measure-
ments are available from the vehicle, so that, in order to avoid an extensive use of sensors,
we present a discrete-time reduced-order state observer for the reconstruction of the vehicle
lateral velocity ṽy,k .

Making reference to the control scheme in Fig. 2, the tracking errors evy,k , eωz,k can then
be bounded as follows:

‖evy,k‖ ≤ ‖vy,k − ṽy,k‖ + ‖ṽy,k − v̂y,k‖ + ‖v̂y,k − vy,k,ref‖
‖eωz,k‖ ≤ ‖ωz,k − ω̂z,k‖ + ‖ω̂z,k − ωz,k,ref‖.

(31)
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Thus, the trajectory tracking problem of the desired trajectories can be split into three require-
ments:

1. lim
k→∞ ‖vx,k − ṽx,k‖ = 0, lim

k→∞ ‖vy,k − ṽy,k‖ = 0

2. lim
k→∞ ‖ṽx,k − v̂x,k‖ ≤ εe1 , lim

k→∞ ‖ṽy,k − v̂y,k‖ ≤ εe2 ,

lim
k→∞ ‖ωz,k − ω̂z,k‖ ≤ εe3

3. lim
k→∞ ‖v̂y,k − vy,k,ref‖ = 0, lim

k→∞ ‖ω̂z,k − ωz,k,ref‖ = 0 (32)

with εe1 , εe2 , εe3 > 0 fixed bounds for the norm of the identification errors. The asymptotic
stability of the estimation error stated in the first condition is ensured by the use of a reduced-
order state observer presented in Sect. 3.2. The practical stability of the identification error
required by the second condition is guaranteed by use of a RHONN identifier introduced in
Sect. 3.4, whereas the reference tracking stability required by the third condition is satisfied
by the use of a discrete-time controller discussed in Sect. 3.5, developed with the inverse
optimal control technique. Finally, Sect. 3.3 shows how to generate safe references for the
vehicle attitude.

3.2 Discrete-Time reduced-order state observer

From the mathematical model (30), in order to estimate the lateral velocity vy,k , we present
the following reduced order state observer:

ṽx,k+1 = ṽx,k + T (ṽy,kωz,k + ax,k) + ko,1(vx,k − ṽx,k)

ṽy,k+1 = ṽy,k + T (−ṽx,kωz,k + ay,k) + ko,2(vx,k − ṽx,k) (33)

where ax,k, ay,k are the vehicle longitudinal and lateral accelerations supposed to be known.
For the observer (33), let us state the following:

Theorem 3.1 The reduced order state observer (33) with ko,1 and ko,2 such that:

(
ko,1
ko,2

)
=

( −b±√
b2−4ac
2a

ko,1(κSωz,k −2Tωz,k )+κT 2ω2
z,kSωz,k

d

)
(34)

with:

a = (κSωz,k − 2Tωz,k)
2

d2
+ 2κT | ωz,k | −κ2

d
+ 1

b = 2T 2ω2
z,kκ

2 − 4κT 3 | ωz,k |3
d2

+ κ2 − κ2T 2ω2
z,k − 4T 2ω2

z,k

d
−κT | ωz,k | −2

c = κ2T 4ω4
z,k

d2
+ 2κT 3 | ωz,k |3 +κ2T 2ω2

z,k

d
+ T 2ω2

z,k

+κT | ωz,k | +ρ1

d = 2 − κTωz,k (35)

for ρ1, ρ2 > 0 such that the discriminant in (34) is greater or equal to zero and with

κ = Tω2
z,k

|ωz,k | − ρ2 for | κ |< 2, ensures the asymptotic stability to the origin of the estimation
errors:
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ẽvx ,k = vx,k − ṽx,k ẽvy ,k = vy,k − ṽy,k

	
The proof is given in “Appendix A”.

3.3 The Reference Signals

The references vy,k,ref , ωz,k,ref represent what the driver expects from the vehicle perfor-
mance. Concerning vx,k , in this paper one assumes that the slips λ f ,k , λr ,k are set to zero,
and therefore no longitudinal acceleration/deceleration is imposed. Various expressions can
be found in the literature as reference generators. In particular, we consider (without loss of
generality) the references given in [11, 12, 47] as the behavior of an “ideal” or “reference”
vehicle. This ideal vehicle is not controlled by the AFS and/or the RTV, and receives as input
only the driver’s steering signal

(
vy,k+1,ref

ωz,k+1,ref

)
=

⎛
⎜⎜⎜⎝

vy,k,ref − T vx,kωz,k,ref+
T

μy,ref

mref

(
Fy, f ,ref (α f ,ref ) + Fy,r ,ref (αr ,ref )

)

ωz,k,ref + T
μy,ref

Jz,ref

(
Fy, f ,ref (α f ,ref )l f − Fy,r ,ref(αr ,ref )lr

)

⎞
⎟⎟⎟⎠ (36)

The reference lateral forces Fy, f ,ref Fy,r ,ref depend on the reference slip angles

α f ,ref = δd,k − vy,k,ref + l f ωz,k,ref

vx,k
,

αr ,ref = −vy,k,ref − lrωz,k,ref

vx,k
(37)

and appearmultiplied by the reference lateral tire-road friction coefficientμy,ref . These forces
should be chosen in such a way they impose the desired behaviour to the vehicle. Various
expressions can be used for these forces, [48, 49], so that for the sake of simplicity we will
use the Pacejka’s Magic Formula [19]:

Fy, j,ref = Dy, j,ref sin(Cy, j,ref arctan(By, f ,refα j,k,ref )), j = f , r (38)

where Dy, j,ref , Cy, j,ref and By, j,ref are fixed constant values chosen by the designer. In
particular, Fy,r ,ref is proposed to be not decreasing with the slip angle αr ,ref . This ensures
that the ‘reference vehicle’ can not generate tail-spins.

3.4 The CarSim® Neural Identification and the Inverse Optimal Control for
References Tracking

The RHONN identifier (10) takes measurements from the CarSim® only for the yaw rate
ωz,k whereas the identification of the longitudinal and lateral velocity is made using the
reconstructions ṽx,k , ṽy,k given by the observer in (33). The neural model proposed is the
following:

v̂x,k+1 = ŵ11 tanh(v̂x,k) + ŵ12 tanh(ax,k)

v̂y,k+1 = ŵ21 tanh(v̂x,k) tanh(ω̂z,k) + ŵ22 tanh(ay,k) + w◦
23δc,k

ω̂z,k+1 = ŵ31 tanh(δd,k) + ŵ32 tanh(ay,k) + ŵ33 tanh(β̂k) + ŵ34 tanh(ax,k)

−w◦
35δc,k + w◦

36Mz,k (39)

123



R. Cespi et al.

where v̂x,k , v̂y,k , ω̂z,k are the neural identifications for ṽx,k , ṽy,k ,ωz,k , andwhere β̂k represents
the vehicle slip angle calculated as β̂k = arctan(v̂y,k/v̂x,k). Moreover, w◦

23, w
◦
35 and w◦

36 are
constants tuned by the control designer.

In (39), the AFS and RTV inputs δc,k , Mz,k appear. It is interesting to note that δc,k appears
linearly in themodel, and not implicitly in the lateral front force as in the single-track discrete-
time models.

It is important to remind that the neural model able to identify the process is not unique.
Model (39) has shown good characteristics with respect to CarSim® measurements including
noise and perturbations, and it has shown good performance when tracking the reference
signals.

The stability of the identification error system:

êvx,k = v̂x,k − vx,k; êvy,k = v̂y,k − ṽy,k; êωz,k = ω̂z,k − ωz,k; (40)

as well as the stability of the synaptic weights errors:

w̃1,k =
(

w∗
11 − ŵ11,k

w∗
12 − ŵ12,k

)
w̃2,k =

(
w∗
21 − ŵ21,k

w∗
22 − ŵ22,k

)
w̃3,k =

⎛
⎜⎜⎝

w∗
31 − ŵ31,k

w∗
32 − ŵ32,k

w∗
33 − ŵ33,k

w∗
34 − ŵ34,k

⎞
⎟⎟⎠ (41)

are discussed in the following theorem:

Theorem 3.2 The RHONN identifier (39), trained by the EKF algorithm (13), (14), (15), (16),
(17), (18) to identify the lateral vehicle velocity ṽy,k from the reduced order observer (33) and
to identify the vehicle longitudinal velocity vx,k and yaw rate ωz,k from CarSim®, ensures
that the identification errors (40) are SGUUB, and that the weight estimation errors (41)
remain bounded- 	

The proof is given in “Appendix B”.

3.5 The Inverse Optimal Control Law

It is now possible to introduce the inverse optimal control law in order to force the ground
vehicle to follow the desired references.

As commented before, the input control laws used for this task are the active front steering
δc,k (AFS) and the rear torque vectoring Mz,k (RTV) for the tracking of the lateral veloc-
ity vy,k,ref and yaw rate ωz,k,ref references. Here, no control strategy is presented for the
longitudinal velocity vx,k being this latter a bounded signal as explained in [11, 12].

Based on the structure given in (29), the control law is expressed in the matrix form as
follows:

u∗
k =

(
δc,k
Mz,k

)
= −1

2
(R + P2)

−1P1,k (42)

being:

P1,k = gT P( f (x̂k) − xk+1,ref ); P2 = 1

2
gT Pg; (43)
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and:

xk+1,ref =
(

vy,k+1,ref

ωz,k+1,ref

)
; xk,ref =

(
vy,k,ref
ωz,k,ref

)
;

x̂k+1 =
(

v̂y,k+1

ω̂z,k+1

)
; x̂k =

(
v̂y,k
ω̂z,k

)
; (44)

f (x̂k) =
⎛
⎝

ŵ21 tanh(v̂x,k) tanh(ω̂z,k) + ŵ22 tanh(ay,k)
ŵ31 tanh(δd,k) + ŵ32 tanh(ay,k)

+ŵ33 tanh(β̂k) + ŵ34 tanh(ax,k) − w◦
35δc,k

⎞
⎠ ; (45)

R =
(
r11 0
0 r22

)
; P =

(
p11 p12
p21 p22

)
; g =

(
w◦
23 0

w◦
35 w◦

36

)
. (46)

Notice that from (29) it is here considered g(x̂k) = g constant, ensuring controllability of
the system.

Now, along the same lines of theorem (4.7) of [18], we can state the following theorem:

Theorem 3.3 Let xk,ref be a bounded reference with bounded increments xk+1,ref . If there
exists a matrix P = PT > 0 such that:

1

2
P3,k + 1

2
xTk+1,ref Pxk+1,ref − 1

2
x̂ Tk P x̂k − 1

2
xTk,ref Pxk,ref − 1

4
PT
1,k(R + P2)

−1P1,k ≤

−1

2
‖P‖ ‖ f (x̂k)‖2 − 1

2
‖P‖ ‖xk+1,ref‖2 − 1

2
‖P‖ ‖x̂k‖2 − 1

2
‖P‖ ‖xk,ref‖2 (47)

where:

P1,k = gT P
(
f (x̂k) − xk+1,ref

); P2 = 1

2
gT Pg; P3,k = f T (x̂k)P f (x̂k); (48)

then the control law (42), based on the neural identifier (39), ensures global asymptotic
convergence to zero of the tracking error ξk = x̂k − xk,ref . Moreover, this control law is
inverse optimal, i.e. it minimizes the cost functional J (ξk) = V (ξk) given by (28), with
l(ξk) = −V ∗(ξk+1) + V ∗(ξk) − u∗T

k Ru∗
k . 	

It is worth to stress that there are no analytical conditions, in general, that allow knowing a
priori if (47) is feasible. However it is possible to proceed using heuristic methods, such the
nature-inspired optimization process known as Particle Swarm Optimization (PSO) [50, 51]
used in this work, to find the positive definite symmetric matrix P verifying (47). Moreover,
the use of the PSO algorithm also allow reaching better performances in terms of tracking
error optimization since it compares results given for all P matrix satisfying (47) and returns
the best minimization.

4 Simulation Results

To emphasize the control performance and better testing the controller, in this paper, instead
of using a mathematical model of the plant, it is used the CarSim® extended model simulator
which is able to reproduce very closely the behavior of the physic of a ground vehicle.

The behavior of the proposed nonlinear inverse optimal controller is shown for an interest-
ing case, in which the vehicle performs an ATI 90-90 maneuver. The ATI 90-90 maneuver is
described in the standard ISO/TS 16949. The vehicle moves in open-loop throttle valve with
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Fig. 3 CarSim® maneuver: a Steering wheel angle δ
s,w
d,k , (deg vs. s). b Lateral tire-road friction coefficient

μy , (– vs. s). c Longitudinal acceleration ax,k , (g’s vs. s). d Lateral acceleration ay,k , (g’s vs. s)

Fig. 4 CarSim® maneuver: Open loop vehicle (Red), closed loop vehicle (Yellow)

an initial speed set to 27.8m/s (about 100km/h), with a released throttle valve and without
braking.

The driver steering wheel angle δ
s,w
d,k , related by a ratio of 16:1 with the steering angle

δd,k , is shown in Fig. 3a in which a superimposed random noise is also considered.
A further source of difficulty is taken into account, considering an abrupt change of the

tire-road friction coefficient where μd = 0.9, μw = 0.5 correspond to dry and wet surfaces
(see Fig. 3b). Figure3c, d, show longitudinal and lateral accelerations respectively.

Figure 4 shows the importance of being able to rely on an active controller for vehicle
stability improvements. In red, the vehicle is presented when the controller is disabled (open
loop system) and in yellow when the controller is enabled (closed loop system). Note that

123



Neural Network Inverse Optimal Control of Ground Vehicles

0 5 10
1.70475

1.704755

1.70476

1.704765

1.70477

1.704775

1.70478

1.704785

1.70479

1.704795
a)

0 5 10
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
b)

0 5 10
-0.05

-0.0499

-0.0498

-0.0497

-0.0496

-0.0495

-0.0494
c)

Fig. 5 Reduced-order state-observer gains: a ko,1 (– vs. s). b ko,2 (– vs. s). c κ (– vs. s)

Table 1 Mean error indicators
for sample time variations in the
observer (33)

T ISE ITSE IAE
evx,k evy,k evx,k evy,k evx,k evy,k

0.0001 5e−11 2e−4 1e−7 1.04 1e−6 11e−3

0.001 8e−10 2.5e−4 2e−6 1.4 1e−5 13e−3

the controlled vehicle performs on a safer driving condition while the uncontrolled vehicle
presents a strong drifting due to adhesion loss.

In order to test quality and robustness of the observer (33), we used a variation of the initial
conditions selecting vx,k,0 = 28 [m/s] and vy,k,0 = 0.005 [m/s]. Results are listed in Fig. 5,
where the discrete gains ko,1, ko,2 and the stability parameter κ ensuring the convergence of
the observed dynamics to the real vehicle model, are presented.

Performance and stability of the discrete-time state-observer depend on the sample time
size. To this aim, sample time variations are introduced and three different basic indicators
known as integral square error (ISE), integral time square error (ITSE) and the integral of
absolute error (IAE) are discussed, as presented in Table 1, and calculated as follows:

ISE =
N∑

k=1

e(k)2; ITSE =
N∑

k=1

ke(k)2; IAE =
N∑

k=1

| e(k) | . (49)

Notice that for T = 0.0001 and T = 0.001 the observer ensures robustness with respect to
sample time variation while the discriminant in Eq. (34) continue being grater than zero.
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Fig. 6 Identification and observation errors: a êx,k = vx,k − v̂x,k , (– vs. s). b êy,k = vy,k − v̂y,k , (– vs. s). c
êωz,k = ωz,k − ω̂z,k , (– vs. s). d ẽvx ,k = vx,k − ṽx,k , (– vs. s). e ẽvy ,k = vy,k − ṽy,k , (– vs. s)

Fig. 7 a Open loop system: vehicle lateral velocity vy,k (solid), reference vy,k,ref (dash-dot), identifications
v̂y,k (dashed), (m/s vs. s). b Open loop system: vehicle yaw rate ωz,k (solid), reference ωz,k,ref (dash-dot),
identifications ω̂z,k (dashed), (rad/s vs. s). c Closed loop system vehicle lateral velocity vy,k (solid), reference
vy,k,ref (dash-dot), identifications v̂y,k (dashed), (m/s vs. s). d Closed loop system: vehicle yaw rate ωz,k
(solid bold), reference ωz,k,ref (dash-dot), identifications ω̂z,k (dashed), (rad/s vs. s)
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Fig. 8 a Longitudinal velocity vx,k (solid), identification v̂x,k (dashed) and observed ṽx,k (gray), (m/s vs. s).
b AFS δc,k (solid bold), (rad vs. s). c RTV Mz,k (solid bold), (kNm vs. s)

Quality and performance of both the identifier and the observer are discussed in Fig. 6.
In particular, Fig. 6a–c, show the identification error of the longitudinal velocity êvx,k , lateral
velocity êvy,k and yaw rate êωz,k , respectively whereas in Fig. 6d, e the observation errors of
the longitudinal (ẽvx,k ) and lateral (ẽvx,k ) velocities are presented.

Figure 7, compares the vehicle behavior in open-loop and closed-loop systems. Notice
how, in Fig. 7a, b, the case of open-loop system, the lateral velocity vy,k and the yaw rateωz,k

do not track the safer references vy,k,ref ,ωz,k,ref . Instead, in Fig. 7c, d, the case of closed-loop
system, the tracking of the references vy,k,ref and ωz,k,ref performs as expected.

Moreover, the longitudinal velocity vx,k , in closed-loop system, and the control efforts in
terms of Active Front Steering (δc,k) and Rear Torque Vectoring (Mz,k) can be appreciated
in Fig. 8.

Finally, Fig. 9v presents the synaptic neural weights ŵ11,k , …, ŵ34,k during the online
adaptation in the neural identifier (39).

Parameters used in the observer (33), neural identifier (39), and inverse optimal con-
troller (42), are listed in Table 2.

To test quality and performance of the inverse optimal controller, authors propose a fare
comparison between optimal and non-optimal methods in order to verify the advantages of
using such control approach. The comparison is said to be ‘fair’ because the neural identifier
in (39) is utilized in both cases highlighting the contribution of the controllers exclusively.

The non-optimal control law can be designed as follows:
for the tracking errors evy ,k = v̂y,k − vy,k,ref and eωz ,k = ω̂z,k − ωz,k,ref it is possible

to choose a Lyapunov candidate function of the form Vk = e2vy ,k + e2ωz ,k
and impose the
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Fig. 9 Synaptic weights of the Neural Identifier in (39), (– vs. s)

condition of ΔVk = −k1e2vy ,k − k2e2ωz ,k
ensuring the Lyapunov increments to be negative

definite. By solving for the control laws one gets:

uk,1 = −(k1 − 1

2
)(v̂y,k − vy,k,ref ) + vy,k+1,ref − v̂y,k

−ŵ31 tanh(δd,k) − ŵ32 tanh(ay,k) − ŵ33 tanh(β̂k) − ŵ34 tanh(ax,k)

uk,2 = −(k2 − 1

2
)(ω̂z,k − ωz,k,ref ) + ωz,k+1,ref − ω̂z,k

−ŵ21 tanh(v̂x,k) tanh(ω̂z,k) − ŵ22 tanh(ay,k) − c1uk,1 (50)

where uk,1 represents the AFS and uk,2 the RTV.
Results obtained applying the non-optimal control law (50) are shown in Fig. 10.
Validation of the optimal controller is also made numerically in terms of the power con-

sumption of the actuators for both optimal and non-optimal control techniques. Notice that
both methods provide good shape in terms of references tracking as shown in Fig. 10a–d.
However, the Inverse Optimal Control presented in this work provides better tracking per-
formance while demanding less power. Obtained numerical results are presented in Table 3.

Finally, the P matrix in Theorem 3, with P > 0 and P = PT has been calculated making
use of a Nature-inspired optimization process, named particle swarm optimization (PSO),
in order to find the optimal value of the P matrix as explained in [50, 51]. In this respect,
the logic behind this algorithm is shown in Fig. 11, where the first step of the computation
represents the parameter initialization such as: number of variables to be optimized, number
of swarm particles, number of iterations, cognitive and social weighting factors. The second
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Table 2 Parameters used in the control scheme

Reference generator Neural identifier
Parameter Value Unit Parameter Value Unit

Dy, f ,ref 20500 [N] ηi 0.99 [–]

Cy, f ,ref 2.48 [–] Pi,k=0 2 [–]

By, f ,ref 1.00 [–] w◦
23 2 · 10−3 [–]

Dy,r ,ref 9250 [N] w◦
33 9 · 10−8 [–]

Cy,r ,ref 3.69 [–] w◦
34 52 · 10−3 [–]

By,r ,ref 2.35 [–] wi,k=0 1 [–]

μref 0.9 [-] Q1 I2 [–]

mref 1862 [kg] Q2 I2 [–]

Jz,ref 1536 [kg m2] Q3 50 I4 [–]

R1 = R2 = R3 1 [–]

Optimal control Discrete observer
Parameter Value Unit Parameter Value Unit

p11 97.789134 [–] ρ1 0.5 [–]

p12 5.51 [–] ρ2 0.05 [–]

p22 490138.526 [–] Other parameters

r11 = r22 1 [–] T 0.001 [s]

w◦
23 2 · 10−3 [–] l f 1.04 [m]

w◦
33 9 · 10−8 [–] lr 1.56 [m]

w◦
34 52 · 10−3 [–]

step consists in generating random numeric values to be tested in simulation. The random
values are selected verifying constrain conditions that, for this application, is given by the
positive definition of the P matrix in the Lyapunov candidate function (46). Next, random
values are tested in simulation and obtained performances are written in output files. Results
are then analyzed in terms of statistic criteria. In fact, for this application a mean square
error of the concatenation of the tracking error for the lateral velocity and yaw rate (ek)
are considered. If the performance obtained during the actual iteration is smaller compared
to previous iterations, the upload of the optimal combination is made. Else, the algorithm
executes a new iteration by modifying the random values until the number of iterations are
successfully reached.

As a reference, obtained results of the PSO obtained during the last execution are listed in
Table 4. It is worth noting that the minimum stationary point reached by the algorithm may
not necessarily represent a global or absolute point.

5 Conclusions

This paper proposes a nonlinear discrete-time inverse optimal controller based on a RHONN
identifier trained by the extended Kalman filter in which the vehicle lateral velocity is recon-
structed by a discrete-time reduced order state observer, for the active control of a ground
vehicle, to ensure safe driving conditions in the case of adhesion loss and hazardous maneu-

123



R. Cespi et al.

0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
a)

0 5 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
b)

0 5 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
c)

0 5 10
-4

-3

-2

-1

0

1

2

3

4
d)

Fig. 10 Non-optimal control in (50): a Closed loop system vehicle lateral velocity vy,k (solid), reference
vy,k,ref (dash-dot), identifications v̂y,k (dashed), [m/s vs. s]. b Closed loop system: vehicle yaw rate ωz,k
(solid bold), reference ωz,k,ref (dash-dot), identifications ω̂z,k (dashed), [rad/s vs. s]. c AFS δc,k (solid bold),
[rad vs. s]. d RTV Mz,k (solid bold), [kNm vs. s]

Table 3 Comparison between
optimal and non-optimal control
efforts in terms of power
consumption

Power consumption P(uk,1) P(uk,2)

Optimal 0.011 2.71×103

Non-optimal 2.41 1.06×104

vers. According to test maneuvers simulated in CarSim®, the proposed approach shows a
proper identification of the vehicle dynamics in terms of identification errors, and a good
performance of the controller in terms of reference tracking errors, even in presence of
parameter uncertainties, measurement noise and unmodelled dynamics. A nature-inspired
optimization algorithm known as particle swarm optimization (PSO) is utilized for the con-
trol gain settings. The main contributions of this work concern control aspects in fact, with
this approach, one can avoid the hard task of inverting the Pacejka’s tire lateral equation and
it can also be ensured asymptotic stability of the tracking errors even without knowing the
Pacejka’s coefficients that are difficult to be estimated besides being time-varying. Further-
more, a fair numerical comparison between the proposed control scheme and a non-optimal
strategy shows that the former approach provides the same control performances in terms of
tracking errors, while minimizing the control power consumption.

Future works involve electric power-trains, in order to generate torque vectoring based
on electric motor torques and angular velocities as well as active differential systems. In
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Fig. 11 PSO algorithm scheme

Table 4 Obtained results of the
PSO algorithm in the last
execution

Iteration p11 p12 = p21 p22 MSE(ek )

1 90.51 5.10 4.53×105 0.017074

2 91.05 5.13 4.56×105 0.016930

3 102.96 5.80 5.16×105 0.016485

4 94.43 5.32 4.73×105 0.016271

5 97.78 5.51 4.90×105 0.016039
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case of vehicles with high center of gravity, the introduction of the roll dynamics in both
the observer and the neural identifier can improve the control performance as well. Finally,
several comparisonswith adaptive dynamic programming (ADP), to solve theHJB equations,
will be studied.

Author Contributions All authors contributed equally in preparing this paper.

Funding This research received not specific grant from any founding agency in the public commercial or
not-for-profit sector.

Data Availability The authors confirm that the data supporting the findings of this study are available within
the article [and/or] its supplementary materials.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical Approval There are no human subjects in this article and informed consent is not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendices

Appendix A. Proof of Theorem 1

For the estimation errors:

ẽvx ,k = vx,k − ṽx,k ẽvy ,k = vy,k − ṽy,k

and they increments:

ẽvx ,k+1 = ẽvx ,k + Tωz,k ẽvy ,k − ko,1ẽvx ,k

ẽvy ,k+1 = ẽvy ,k − Tωz,k ẽvx ,k − ko,2ẽvx ,k (51)

one can consider the following Lyapunov candidate function:

Vo,k = (ẽ2vx ,k + ẽ2vy ,k) − κSωz,k ẽvx ,k ẽvy ,k (52)

where Sωz,k is the classical sign function

Sωz,k = sign(ωz,k) =

⎧⎪⎨
⎪⎩

1 if ωz,k > 0

0 if ωz,k = 0

−1 if ωz,k < 0.

In order to ensure Vo,k in (52) to be a Lyapunov candidate function one may impose
κ2

4 < 1.
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The variation of the Lyapunov candidate function is defined as:

ΔVo,k = Vo,k+1 − Vo,k = (
ẽvx ,k + Tωz,k ẽvy ,k − ko,1ẽvx ,k

)2 − ẽ2vx ,k

+(
ẽvy ,k − Tωz,k ẽvx ,k − ko,2ẽvx ,k

)2 − ẽ2vy ,k + κSωz ,k ẽvx ,k ẽvy ,k

−κSωz,k

(
ẽvx ,k + Tωz,k ẽvy ,k − ko,1ẽvx ,k

)(
ẽvy ,k − Tωz,k ẽvx ,k − ko,2ẽvx ,k

)
(53)

obtaining:

ΔVo,k =
(
k2o,1 − 2ko,1 + T 2ω2

z,k + k2o,2 + 2Tωz,kko,2 + κSωz,k ko,2

+κT | ωz,k | +κT | ωz,k | ko,2 − κsignωz,kko,1ko,2

)
ẽ2vx,k

+
(
T 2ω2

z,k − κT | ωz,k |
)
ẽ2vy,k

+
(
2αTωz,k − 2αTωz,kko,1 − 2βTωz,k − 2βko,2

+κT 2ω2
z,kSωz,k + κT ko,2 | ωz,k | −κT ko,1 | ωz,k |

)
ẽvx ,k ẽvy ,k (54)

The product between the errors of the longitudinal and lateral velocities is eliminated
utilizing ko,2 whereas the sign of the squared error of the lateral velocity is ensured to be

negative imposing κ = Tω2
z,k

|ωz,k | − ρ2 for ρ2 > 0.
Selecting the observer gains ko,1 and ko,2 such that:

(
ko,1
ko,2

)
=

( −b±√
b2−4ac
2a

ko,1(κSωz,k −2Tωz,k )+κT 2ω2
z,kSωz,k

d

)
(55)

with:

a = (κSωz,k − 2Tωz,k)
2

d2
+ 2κT | ωz,k | −κ2

d
+ 1

b = 2T 2ω2
z,kκ

2 − 4κT 3 | ωz,k |3
d2

+ κ2 − κ2T 2ω2
z,k − 4T 2ω2

z,k

d
− κT | ωz,k | −2

c = κ2T 4ω4
z,k

d2
+ 2κT 3 | ωz,k |3 +κ2T 2ω2

z,k

d
+ T 2ω2

z,k + κT | ωz,k | +ρ1

d = 2 − κTωz,k (56)

one obtains:

ΔVo,k = −ρ1ẽ
2
vx ,k − ρ2ẽ

2
vy ,k (57)

ensuring the asymptotic stability of the origin of the estimation error.
The behavior of the observer gains ko,1, ko,2, the parameter κ in (52) and the sign of the

discriminant in (34) are discussed in Sect. 4.

Appendix B. Proof of Theorem 2

Let us consider the following Lyapunov candidate function:

Vi,k = êTxi,k êxi,k + w̃T
i,k Pi,kw̃i,k (58)
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The first increment is given by the following:

ΔVi,k = Vi,k+1 − Vi,k

= w̃T
i,k+1Pi,k+1w̃i,k+1 + êxi,k+1 − w̃T

i,k Pi,kw̃i,k − êxi,k

=
(
w̃i,k − ηi,k Ki,kexi,k

)T (
Pi,k −Ui,k

)(
w̃i,k − ηi,k Ki,kexi,k

)

+
(
w̃T
i,k zi,k + εi,k

)2 − w̃T
i,k Pi,kw̃i,k − êxi,k (59)

where Ui,k = Ki,k HT
i,k Pi,k + Qi,k ; then (59) can be expressed as:

ΔVi,k = w̃T
i,k Pi,kw̃i,k − ηi êxi,k K

T
i,k Pi,kw̃i,k − w̃T

i,kUi,kw̃i,k

+ηi êxi,k K
T
i,kUi,kw̃i,k − ηi êxi,k w̃

T
i,k Pi,k Ki,k + η2i ê

2
xi,k K

T
i,k Pi,k Ki,k

+ηi êxi,k w̃
T
i,kUi,k Ki,k − η2i ê

2
xi,k K

T
i,kUi,k Ki,k + (w̃T

i,k zi,k)
2

+2εi,kw̃
T
i,k zi,k + ε2i,k − w̃i,k Pi,kw̃i,k − ê2xi,k (60)

Using the inequalities:

XXT + YY T ≥ 2XT Y

X XT + YY T ≥ −2XT Y

−λmin(P)X2 ≥ −XT PX ≥ −λmax(P)X2 (61)

considered valid for all X ∈ R
n, Y ∈ R

n, P ∈ R
n×n , with P = PT > 0, (60) can be written

as follows:

ΔVi,k ≤ −w̃T
i,kUi,kw̃i,k − η2i ê

2
xi,k K

T
i,kUi,k Ki,k + w̃T

i,kw̃i,k + ê2xi,k

+η2i ê
2
xi,k K

T
i,k Pi,k P

T
i,k Ki,k + η2i w̃

T
i,kUi,k Ki,k K

T
i,kU

T
i,kw̃i,k

+η2i ê
2
xi,k K

T
i,kUi,k Ki,k + 2(w̃T

i,k zi,k)
2 + 2ε2i,k − ê2xi,k (62)

Then,

ΔVi,k ≤ −‖w̃i,k‖2λmin(Ui,k) − η2i ê
2
xi,k‖Ki,k‖2λmin(Ui,k) + ‖w̃i,k‖2

+η2i ê
2
xi,k‖Ki,k‖2λ2max(Pi,k) + η2i ‖w̃i,k‖2λ2max(Ui,k)‖Ki,k‖2

+η2i ê
2
xi,k‖Ki,k‖2λmax(Pi,k) + 2‖w̃i,k‖2‖zi,k‖2 + 2ε2i,k (63)

Let us now define:

Ei,k = λmin(Ui,k) − η2i λ
2
max(Ui,k)‖Ki,k‖2 − 2‖zi,k‖2 − 1

Fi,k = η2i ‖Ki,k‖2λmin(Ui,k) − η2i ‖Ki,k‖2λ2max(Pi,k) − η2i ‖Ki,k‖2λmax(Pi,k) (64)

and selecting ηi , Qi,k, Ri,k such that Ei,k, Fi,k > 0,∀k, one gets:
ΔVi,k ≤ −‖w̃i,k‖2Ei,k − ê2xi,k Fi,k + 2ε2i,k . (65)

Hence, ΔVi,k < 0 when:

‖w̃i,k‖ > κ1 =
√
2 | εi,k |√
Ei,k

| exi,k |> κ2 =
√
2 | εi,k |√
Fi,k

(66)
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Therefore, according to Theorem 3.2 the solution of (19) and (20) are SGUUB.
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