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Abstract

In this work, we consider the problem of correctly pricing financial derivatives that might be subject
to multiple credit risks, such as default or liquidity risk, that gained importance after the financial
crisis of 2008− 09.

An important achievement in the mathematical modelling of the problem was the representa-
tion of the value of such derivatives as solutions of appropriate Backward Stochastic Differential
Equations (BSDE), which might be solvable in the samples cases.

When various risks are taken into account simultaneously, and correlation is admitted between
the processes underlying the price formation, the picture becomes much more complex, and al-
though the BSDE representation still applies, explicit solvability becomes impossible.

Monte Carlo simulations, usually requiring long computational times, are often the only way
to get an approximation of the solution, so it might be important to develop alternative approx-
imation techniques that require shorter computational times yet preserving accuracy. Once the
BSDE’s representation is developed, in a Markovian setting, the derivative’s can be rewritten as a
deterministic function of the state variables, which verifies a non-linear PDE.

Thus, we decided to employ a PDE discretization approach to approximate the PDE solution.
By employing an adaptation of the simple method of lines, we were able to construct an approx-
imation method that turned out to be accurate and efficient, thus producing a valid alternative to
Monte Carlo simulations.

Keywords: XVA, Value Adjustments, Backward Stochastic Differential Equation, Non-linear
Valuation, Credit Risk, Defaultable Claims
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Introduction

The PhD thesis is mostly about how to estimate the prices of financial derivatives that are subject
to different credit risks, like default or liquidity risks.

Before the financial crisis of 2008 − 09, the value of a financial contract, such as an option,
was determined by taking the conditional expectation of the discounted expected price under a
risk-neutral measure without taking into account any credit risk.

In periods of financial trouble or crisis, some traditional financial models could no longer ac-
count for all the risks. As a matter of fact, in 2004, the Basel Committee signed the Basel II agree-
ment regarding the capital requirements banks must meet to curb financial risks. In particular,
Basel II set up the accounting standards regarding Counterparty Credit Risk (CCR), which is the
risk that a counterparty might default before honouring its engagements, and it covers loans, repur-
chase agreements (Repo) transactions, and most importantly, over-the-counter (OTC) derivatives.
In the last decade, the interest in CCR increased remarkably, and a theory of Value Adjustments
was developed. The first to be introduced was the Credit Value Adjustment (CVA), which is the
difference between the default-free value of a portfolio and the valuation taking into account the
possibility of counterparty default, while the investor is always considered default-free. After the
financial crisis in 2009, the Basel Committee issued a new version of the act called Basel III, push-
ing financial institutions to incorporate default risks of either party when evaluating products with
cashflows in both directions.

A new measure called Debt Value Adjustment (DVA) was introduced as an accruement of the
claim’s value due to the investor’s default risk.

To mitigate credit risk, parties often employ collateralization to balance their exposure to the
reciprocal default event. A collateral account, underwritten by both parties, is established for this
purpose, in which they deposit or withdraw assets to cover the risk of default. The collateral in
this account can sometimes be rehypothecated for self-financing, which means that those who
withdraw assets may use them to finance other activities.

As investments/collateralizations are often funded also by external sources, further risks are
involved and further adjustments have to be made. The introduction of the Funding Value Ad-
justment (FVA) and Liquidity Value Adjustment (LVA), makes the pricing problem recursive and
non-linear, as those quantities are closely linked to the adjusted price itself.

The first important result was to achieve a representation of this derivative’s adjusted values as
solutions of appropriate Backward Stochastic Differential Equations (BSDE): the literature on this
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matter is nowadays very extensive and it includes the works [15, 16, 21].
In some simpler cases, these BSDE’s can be explicitly solved since they turn out to be linear.

When taking into account multiple risks simultaneously, the problem becomes significantly more
complex. More precisely, we consider the case of a European claim subject to funding, liquidity,
and default risks of either party.

The default event is when the (random) parties’ default times happen before the end of the
contract. In general, these random times are not necessarily stopping times in terms of the filtration
generated by the processes that represent the prices of the traded asset. To price the defaultable
contract, we first need to extend this filtration generated a longer filtration that makes these times
stopping times, by progressive enlargement. By exploiting the so-called reduced form approach
for the default times, we assume that they are the first jump times of two Cox processes with
stochastic positive intensities adapted to the market filtration. To make sure that the intensities are
positive, they are represented by CIR processes, and the representation of the adjusted as a solution
of BSDE works.

This equation depends on the so-called “close-out value", which is a portion of a contractually
agreed price to be paid as partial compensation when the default of one of the parties occurs.
There are fundamentally two possibilities: either the close-out value is taken as a portion of the
default-free price or of the defaultable contract price. The first choice usually determines a solvable
linear BSDE, the second returns a non-linear BSDE, not explicitly solvable. Our main goal is
to treat the second case, while the first is the most commonly treated in the literature’s. As in
[2, 16], intensities are usually considered deterministic, while considering them stochastic allows
for correlations among the fundamentals defining the market, which is a desirable feature to include
in the model. Unfortunately, in presence of correlations, model affinity often fails and transform
techniques cannot be applied.

This leaves only Monte Carlo simulations in high dimensions (see, for instance, [41]) as the
only technique to obtain a numerical approximation of the solution, which, typically have very
long computational times. Hence, finding alternative numerical methods with lower computational
costs becomes a key issue.

When the processes dynamics are Markovian, it is possible to express the derivative’s adjusted
value as a deterministic function of the state variables, which satisfies a semi-linear PDE with final
condition given by the product’s payoff. Exploiting this representation, it is natural to investigate
discretization methods of this associated PDE as an alternative numerical approach to the prob-
lem. In the thesis work, we included correlations in the model, generating a non-linear PDE in
[0, T ] × R3 that we treated by adapting the so-called "method of lines", which approximated the
spatial derivatives with finite differences, and it generates a system of ODEs at each point of the
discretization grid, that can be solved by a suitable time integration method.

The spatial domain R3
+ is unbounded, so we needed to restrict it to an appropriate bounded rect-

angle. This truncation required defining appropriate boundary conditions, that were imposed by
identifying, when possible, the asymptotic behaviour of the solution. We obtained by appropriately
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modifying the Black & Scholes formula with adjusted rates including the default intensities.
We used the Euler explicit scheme for the time integration method. To the best of our knowl-

edge, in the literature, we could not find numerical methods covering this general case, so we
employed Monte Carlo simulations to provide a benchmark to compare our results with.

The approach proved particularly advantageous in terms of efficiency (it significantly decreased
the computation times), reaching an accuracy equivalent to that of the Monte Carlo method.

By taking into account that the explicit Euler method can produce serious numerical instabili-
ties. We also developed a semi-implicit or implicit scheme, even though this choice implied longer
quite computational times.

By comparing the three schemes, it turned out the explicit scheme was quite stable and it
achieved a competitive accuracy in shorter computational times. Indeed, we were able to keep
the so-called Courant-Friedricks-Levy (or CFL) number below the critical value to guarantee the
explicit scheme stability. We were able do to so without compromising efficiency, by keeping the
number of temporal nodes suitable bigger than the number of spatial nodes. Lastly, we ran a short
sensitivity analysis to estimate the impact of stochastic intensities on the prices.

The work is presented in the following manner: Chapter 1 introduces the Adjusted Value The-
ory, showing how to incorporate various risks such as CVA, DVA, FVA, collateralization, and
default into the pricing evaluation. The chapter is concluded by presenting the theoretical equation
that characterizes the price. Chapter 2 discusses the theory of BSDEs and presents some results
regarding the well-posedness, existence and uniqueness of solutions. Finally, under Markovian
assumptions, the Feynman-Kac formula is used to derive an associated PDE from the BSDE.

In chapter 3 we specialize the theory of to our pricing equation (Chapter 1). Under those
choices, the backward equation becomes non-linear, to which a 4 dimensional non-linear PDE is
associated. Using this representation, it makes sense to look into discretization methods for the
PDE as a different way to solve the problem numerically. In Chapter 4, we briefly describe the
method of lines, and apply it to the PDE in the specific case of a European call. Lastly, we discuss
some numerical results, and a sensitivity analysis is performed.
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Chapter 1

Value Adjustment Theory

Since the financial crisis of 2008− 09, when many large financial institutions as Lehman Brothers
went bankrupt, in the United States, United Kingdom, and Europe, the so-called counterparty risk
has become extremely important. Financial contracts usually involve two parties, the investor
(or buyer) and the counterparty (or seller), and they require the solvency of a future payment on
one or both sides. When a counterparty becomes insolvent, i.e., it does not fulfill its contractual
obligations, causing the investor’s loss of money, we speak of "counterparty risk". The financial
crisis showed that it is appropriate to take this aspect into account for all the financial contracts.

In the last 10 years, the global crisis made banks follow stricter rules and procedures to avoid
being exposed to such risks. Indeed, Governors of the 10 most industrialised nations were already
aware of those risks when they signed the so-called Basilea Agreements in 1998, where it was
specified the amount of capital banks might borrow to undertake financial operations.

To keep up with the growing complexity of the financial sector, agreements were updated, and
four official Basel Committee versions were released. The latest, in 2017, influenced heavily the
scientific community, sparring the development of a "Value Adjustment Theory".

This theory incorporates default risks from one or both parties, but it takes also into account the
lack of liquidity, and the financing demands. Historically, the first adjustment to be introduced was
the so-called Credit Value Adjustment (CVA). CVA is very intuitive, and it simply adjusts the price
to account for the seller’s (counterparty) chance of default by discounting the default-free price.
Over the years, the role of the CVA increased considerably, and its correct formulation became
crucial in derivatives trading in the OTC markets, so stimulating much research in the field: we
refer the reader to [20, 27, 35, 36], and [11] for a general discussion on the subject.

When both parties are defaultable, this adjustment is no longer sufficient. In fact, also the
investor that enters a future might default, and this bilateral exposure to risk must be taken into
account when evaluating the contract. This new adjustment is commonly referred to as Debt Value
Adjustment (DVA). An example of a contract with bilateral exposure is the forward rate agreement
(FRAs).

Over the years, the market and regulators implemented ways to reduce the risks. The most
widespread techniques to curb the exposure to default are the collateralization and close-out netting
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1.1. Unilateral CVA

rules.
A collateral account is required of both parties of the contract to guarantee a given level of

solvency in case of default. In this way, when the default occurs, the party that is positively
exposed may obtain at least a partial recovery of the loss.

It is to be kept in mind that the assets recevived as collateral during the contract lifetime are
often reinvested in a rehypothecation market, making the liquidity risks of both parties more com-
plex.

Also, close-out netting rules are often contractually agreed to define a "close-out value", paid
as a partial recovery of the losses at the time of the party’s default. The impact of all these require-
ments, on the derivative’s price was analyzed in [13, 14, 18].

Finally, when a derivatives desk 1 executes an order by a client, it backs the trade by hedging it
with other dealers. These operations modify the available liquidity and the relative adjustment is
called Funding Value Adjustment (FVA) (see [16, 25, 26] for a detailed discussion).

As we mentioned before, in [13, 17, 27] an important achievement was the representation of the
derivative’s adjusted value as solution of an appropriate Backward Stochastic Differential Equation
(BSDE), considering all the aspects described above. In the next section, we are going to describe
the step-by-step construction of the representation BSDE obtained, including progressively the
above-mentioned features.

1.1 Unilateral CVA

As mentioned before, the first value adjustment to be modelled was CVA, which is based solely on
the investor’s exposure at time of the counterparty’s default, since the investor is considered to be
default-free. For this reason, we refer to it as "Unilateral Credit Value Adjustment".

We refer the reader to [19], for a coherent treatment of the approach to valuation of derivatives
with CVA, while some particular applications by the same authors, for a coherent treatment as
approach are given in [15, 20].

Following the discussion in [13], we are going to give a first construction of this adjustment.
We assume to be in a probability space (Ω,G,G,P), where G = (Gt)t≥0 is the filtration repre-
senting the complete information flow from whole market including default. We assume to be in
an arbitrage-free setting so that P is a risk-neutral measure already selected by some criterion. In
particular, the default event is represented by the occurrence of a default time, that we denote by
τ . The probability space is endowed also with a right-continuous and complete sub-filtration Ft

representing all the observable market quantities. This filtration does not necessarily include the
default event, thus we have Ft ⊆ Ft ∨ Ht = Gt, where Ht = σ({1{τ≤s}, s ≤ t}), is the smallest
filtration making the random variable τ a stopping time.

In the market, some assets (including a bond) are traded, and an investor forms an investing

1The term "derivative desk" typically refers to a specific department within a financial institution, such as a bank
or investment firm, that is responsible for trading and managing financial derivatives.

Ivan Gallo 5



1.1. Unilateral CVA

strategy with finite maturity T generating a cashflow during the lifetime of the contract. This
cashflow might consider or not the default possibility and we denote by ΠD(t, T ),Π(t, T ) the
discounted cashflows between t and T respectively generated by the defaultable and the default-
free portfolio.

We set Vt as the Net Present Value, Vt = EG
t

[
Π(t, T )

]
, EG will denote the conditional expec-

tation Gt. Thus Vt is the default-free price. We assume the investor’s prospective, and we want to
assess the contract value subject a counterparty risk, that we indicate by Ṽt. If there is no default
by the counterparty during the lifetime of the contract, the on price is given by the final condition.

If, on the other hand, the counterparty goes into default before the maturity, the defaultable
price is made up of two parts: the discounted cashflow until the default time and a part depending
upon the contract value at default at t.

If Vτ is negative, the investor has to pay the value due to the counterparty, even if the counter-
party goes bankrupt. As a result, the investor is solely responsible for paying it. If Vτ is positive,
the investor has the right to be paid by the counterparty, but due to the counterparty’s default, the
investor receives only a recovery fraction R of Vτ , called the Recovery Rate. It is a constant in
[0, 1], and it is usually agreed contractually at the initial time, possibly because a certain amount
of wealth was secured by a collateralization requirement. Then we have

Ṽt := EG
t

[
ΠD(t, T )

]
= EG

t

[
1{τ>T}Π(t, T ) + 1{t<τ≤T}

(
Π(t, τ) + e−

∫ τ
t rsds(RV +

τ + V −
τ )
]
, (1.1)

where we denoted by {rt}t the interest rate process determining the money market account, and
we set V +

τ = max
(
Vτ , 0

)
, V −

τ = min(Vτ , 0).

Theorem 1.1.1 (General counterparty risk pricing formula [19]). The price of a financial con-

tract at time t ≥ 0 under counterparty risk with default time τ > t is

EG
t

[
ΠD(t, T )

]
= EG

t

[
Π(t, T )− LGD1{t<τ≤T}e

−
∫ τ
t rsdsV +

τ

]
, (1.2)

with LGD = 1 − R (Loss Given Default) and the recovery fraction 0 ≤ R ≤ 1 is assumed to be

deterministic.

Proof. Since
Π(t, T ) = 1{τ>T}Π(t, T ) + 1{t<τ≤T}Π(t, T ),

we can write the random variable inside the expectation in (1.2), as

1{τ>T}Π(t, T ) + 1{t<τ≤T}Π(t, T )− LGD1{t<τ≤T}e
−

∫ τ
t rsdsV +

τ

=1{τ>T}Π(t, T ) + 1{t<τ≤T}Π(t, T ) + (R− 1)1{t<τ≤T}e
−

∫ τ
t rsdsV +

τ

=1{τ>T}Π(t, T ) + 1{t<τ≤T}Π(t, T ) +R1{t<τ≤T}e
−

∫ τ
t rsdsV +

τ − 1{t<τ≤T}e
−

∫ τ
t rsdsV +

τ .
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1.1. Unilateral CVA

We consider the conditional expectation with respect to Gτ ,

EG
τ

[
1{τ>T}Π(t, T ) + 1{t<τ≤T}Π(t, T ) +R1{t<τ≤T}e

−
∫ τ
t rsdsV +

τ − 1{t<τ≤T}e
−

∫ τ
t rsdsV +

τ

]
=EG

τ

[
1{τ>T}Π(t, T )

]
+ EG

τ

[
1{t<τ≤T}Π(t, T ) + 1{t<τ≤T}

(
Re−

∫ τ
t rsdsV +

τ − e−
∫ τ
t rsdsV +

τ

)]
.

We note that
EG

τ

[
1{τ>T}Π(t, T )

]
= 1{τ>T}Π(t, T ),

1{t<τ≤T}Π(t, T ) = 1{t<τ≤T}
(
Π(t, τ) + e−

∫ τ
t rsdsΠ(τ, T )

)
.

So we have

1{τ>T}Π(t, T ) + EG
τ

[
1{t<τ≤T}

(
Π(t, τ) + e−

∫ τ
t rsdsΠ(τ, T ) +Re−

∫ τ
t rsdsV +

τ − e−
∫ τ
t rsdsV +

τ

)]
=1{τ>T}Π(t, T ) + 1{t<τ≤T}Π(t, τ) + 1{t<τ≤T}EG

τ

[
e−

∫ τ
t rsdsΠ(τ, T )− e−

∫ τ
t rsdsV +

τ

+Re−
∫ τ
t rsdsV +

τ

]
.

Notice that V +
τ = EG

τ

[
Π(τ, T )

]+, hence

1{τ>T}Π(t, T ) + 1{t<τ≤T}Π(t, τ) + 1{t<τ≤T}EG
τ

[
e−

∫ τ
t rsdsΠ(τ, T )− e−

∫ τ
t rsdsEG

τ

[
Π(τ, T )

]+]
+ 1{t<τ≤T}EG

τ

[
Re−

∫ τ
t rsdsV +

τ

]
,

where
EG

τ

[
e−

∫ τ
t rsdsΠ(τ, T )− e−

∫ τ
t rsdsEG

τ

[
Π(τ, T )

]+]
=e−

∫ τ
t rsdsEG

τ

[
Π(τ, T )

]
− e−

∫ τ
t rsdsEG

τ

[
Π(τ, T )

]+
=e−

∫ τ
t rsds

[
EG

τ

[
Π(τ, T )

]
− EG

τ

[
Π(τ, T )

]+]

=

0, if EG
τ

[
Π(τ, T )

]
> 0

EG
τ

[
Π(τ, T )

]
, otherwise,

hence

e−
∫ τ
t rsds

[
EG

τ

[
Π(τ, T )

]
− EG

τ

[
Π(τ, T )

]+]
= e−

∫ τ
t rsdsEG

τ

[
Π(τ, T )

]−
.

Finally,

1{τ>T}Π(t, T ) + 1{t<τ≤T}
(
Π(t, τ) + e−

∫ τ
t rsdsV −

τ +Re−
∫ τ
t rsdsV +

τ

)
=1{τ>T}Π(t, T ) + 1{t<τ≤T}

(
Π(t, τ) + e−

∫ τ
t rsds(RV +

τ + V −
τ )
)
= ΠD(t, T ).

Conditioning the obtained result with respect to the information available at t, and using the
fact that EG

t

[
EG

τ [·]
]
= EG

t

[]
due to t < τ , we obtain (1.2).
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1.1. Unilateral CVA

The value of a defaultable claim is clearly the value of the corresponding default-free claim
minus an option part evaluated at τ , which represents the discount with respect to the default-free
price

CV A = EG
t

[
LGD1{t<τ≤T}e

−
∫ τ
t rsdsV +

τ

]
> 0. (1.3)

In particular, we can write
Ṽt = Vt − CV A.

Let’s provide a simple example to better understand this concept and provide an initial approx-
imation.

In the derivatives market, there are products known as options.
An option is a derivative financial contract that bestows upon its holder the right, though not the

obligation, to engage in the purchase or sale of a specified quantity of an underlying asset at a pre-
determined price, known as the strike price, on a future date. The underlying asset encompasses
a wide range of financial instruments, commodities, indices, or currencies. When an individual
purchases an option, she effectively transfers the potential downside risk to the counterparty. Con-
versely, the seller of the option assumes the obligation to fulfill the contractual terms by trading
the underlying asset at the agreed-upon price, regardless of whether it leads to a loss relative to the
prevailing market price.

It is essential to recognize that the buyer and seller positions within an option contract are
inherently asymmetric. To compensate the seller for undertaking the risk, they receive an initial
payment, typically referred to as the premium, which reflects the value of the option. The determi-
nation of this value relies on pertinent market data and must be sufficiently equitable to incentivize
both parties to enter into the contract.

There exist two primary classifications of options: calls and puts. A call option grants the buyer
the right to purchase the underlying asset at the strike price, while a put option grants the buyer
the right to sell it. Both buyers and sellers have the flexibility to choose which side of the option
contract they wish to engage in.

Additionally, options can be further categorized as European or American. European options
can only be exercised upon reaching the maturity date, whereas American options offer the flexi-
bility to be exercised at any time during the contract’s lifespan.

Let’s consider an investor who purchases a one-year T = 1 European call option on an un-
derlying asset with an initial value of S = 100, a strike price K = 90, a deterministic risk-free
interest rate r = 0.05, and an underlying asset volatility σ = 0.4. We assume that the investor is
default-free, while the counterparty may default, and the loss given default (LGD) is 0.5.

The default event, denoted as τ , can occur at any point during the contract’s lifetime [0, T ].
We aim at understanding how the option value changes when considering counterparty credit

risk compared to the case without default risk.
By simulating 104 paths of the underlying asset S, we apply a simple Monte Carlo method to
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1.1. Unilateral CVA

obtain two sets of results.2

In Figure 1.1, the blue curve represents the option value when not considering counterparty
risk, while the red curve represents the value of the call option when the counterparty may default.

We observe that both curves converge to the same value at maturity, as no default event has
occurred in the defaultable case, resulting in identical valuations.

However, during the contract’s lifetime, we can see how the possibility of counterparty default
decreases the value of the contract. Initially, the value of the default-free contract is 20.9094, while
considering the counterparty’s default risk reduces the contract value to 20.5963, resulting in an
approximation of the credit value adjustment of 0.3132.

Figure 1.1: The behavior of a European call option with a maturity of one year, T = 1, strike price K = 90,
underlying asset S = 100, deterministic interest rate r = 0.05, LGD = 0.05, and volatility sigma = 0.4 is as
follows: Call_Price_Default_Free = 20.9094;
Call_Price_Defaultable = 20.5963;
UCV A = 0.3132

Before 2007, banks estimated counterparty credit risk using unilateral CVA. If both parties are
defaultable, this valuation is asymmetric and it contradicts the accounting principle that an asset
for one party is a liability for another.

Bilateral adjustments address this discrepancy by adding a new unit of measure BCVA (Bilat-

eral Credit Value Adjustment).

2We do not specify here the dynamics of the underlying asset and the Monte Carlo method used. It will be
addressed in more detail in the subsequent chapters.
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1.2 Bilateral CVA

After 2009, the Basel Committee released Basel III, which required financial institutions to evalu-
ate any party’s default risk also when evaluating products having cashflows in both directions.

Bilateral default risk appears in [6, 13] for the first time, who price both the CVA and DVA of
a derivative deal.

In [14, 15], a fully rigorous formula is developed, which shows that the bilateral 3 counterparty
risk adjustment computed by one of the two parties is obtained as a difference of two terms: an
adjustment of the valuation of credit (CVA) due to the counterparty’s default and a new measure
called Debt Value Adjustment (DVA), which was introduced as an accrual of the claim’s value due
to the investor’s default risks. The potential for self-default benefits the contract value, hence it has
a negative sign.

Now, we assume that both financial entities might default, and we denote with τ = min(τI , τC)

the event first-to-default between two parties, where τC and τI denote, respectively, the counter-
party’s and investor’s time default.

• If τ > T , both on investor and the counterparty are not in default during the contract’s life.

• If τ ≤ T , it means that one of the two parties is in default. As in the unilateral case, we have
the discounted cashflow until the default time and the discounted expected value at τ . We
have two situations:

i. if τ = τC and Vτ ≤ 0, the investor must pay to the counterparty, if Vτ > 0 the investor
receives only a recovery fraction RC of Vτ paying by the counterparty.

ii. if τ = τI , the situation is symmetric, namely, Vτ > 0, the counterparty will receive
the payment from the investor, otherwise if Vτ ≤ 0 the counterparty will pay only a
fraction RI of Vτ to the investor.

The general payoff under bilateral counterparty default risk is

Ṽt = EG
t

[
ΠD(t, T )

]
=EG

t

[
1{τ>T}Π(t, T )

]
+EG

t

[
1{τ=τC}1{τ≤T}

(
Π(t, τ) + e−

∫ τ
t rsds

(
RCV

+
τ + V −

τ

))]

−EG
t

[
1{τ=τI}1{τ≤T}

(
Π(t, τ) + e−

∫ τ
t rsds

(
V +
τ +RIV

−
τ

))] (1.4)

Theorem 1.2.1 (General bilateral counterparty risk pricing formula[13]). 4 For any fixed t ∈
[0, T ] on the event {τ > t} the price of the financial contract under bilateral counterparty risk is

3Bilateral emphasizes the investor’s default in the framework. Thus, the investor’s counterparty risk position price
is opposite to the counterparty’s.

4The proof following the same idea of Theorem 1.1.1, for completeness we include it
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given by
EG

t

[
ΠD(t, T )

]
=EG

t

[
Π(t, T )

]
−EG

t

[
1{τ=τC}1{τ≤T}LGDCe

−
∫ τ
t rsdsV +

τ

]
+EG

t

[
1{τ=τI}1{τ≤T}LGDIe

−
∫ τ
t rsdsV −

τ

]
,

(1.5)

where LGDi = 1 − Ri is the Loss Given Default, for i = I, C and RI , RC denote the recovery

fractions of the transaction market value.

Proof. We know that

Π(t, T ) = 1{τ>T}Π(t, T ) + 1{t<τC≤T}Π(t, T ) + 1{t<τI≤T}Π(t, T ),

hence the fist term in the expectation in (1.5) is

1{τ>T}Π(t, T ) + 1{t<τC≤T}Π(t, T ) + 1{t<τI≤T}Π(t, T )

−1{τ≤T}

(
1{τ=τC}LGDCe

−
∫ τ
t rsdsV +

τ + 1{τ=τI}LGDIe
−

∫ τ
t rsdsV −

τ

)
=1{τ>T}Π(t, T ) + 1{t<τC≤T}Π(t, T ) + 1{t<τI≤T}Π(t, T )

−1{τ≤T}

[
1{τ=τC}(1−RC)e

−
∫ τ
t rsdsV +

τ + 1{τ=τI}(1−RI)e
−

∫ τ
t rsdsV −

τ

]
=1{τ>T}Π(t, T )

+1{τ≤T}1{τ=τC}
(
Π(t, T )− e−

∫ τ
t rsdsV +

τ +RCe
−

∫ τ
t rsdsV +

τ

)
+1{τ≤T}1{τ=τI}

(
Π(t, T )− e−

∫ τ
t rsdsV −

τ +RIe
−

∫ τ
t rsdsV −

τ

)
.

Remember that

Vτ = EG
τ

[
Π(τ, T )

]
,

1{t<τ≤T}Π(t, T ) = 1{t<τ≤T}
(
Π(t, τ) + e−

∫ τ
t rsdsΠ(τ, T )

)
.

So, we have

1{τ>T}Π(t, T )

+1{τ≤T}1{τ=τC}
(
Π(t, τ) + e−

∫ τ
t rsdsΠ(τ, T )− e−

∫ τ
t rsdsEG

τ

[
Π(τ, T )

]+
+RCe

−
∫ τ
t rsdsV +

τ

)
+1{τ≤T}1{τ=τI}

(
Π(t, τ) + e−

∫ τ
t rsdsΠ(τ, T )− e−

∫ τ
t rsdsEG

τ

[
Π(τ, T )

]−
+RIe

−
∫ τ
t rsdsV −

τ

)
.
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Conditionally on the information available at time τ , and by linearity of the expectation, we get

EG
τ

[
1{τ>T}Π(t, T )

]

+EG
τ

[
1{τ≤T}1{τ=τC}

(
Π(t, τ) + e−

∫ τ
t rsds

(
Π(τ, T )− EG

τ [Π(τ, T )]
+
)
+RCe

−
∫ τ
t rsdsV +

τ

)]

+EG
τ

[
1{τ≤T}1{τ=τI}

(
Π(t, τ) + e−

∫ τ
t rsds

(
Π(τ, T )− EG

τ [Π(τ, T )]
−
)
+RIe

−
∫ τ
t rsdsV −

τ

)]
.

Moreover,

EG
τ

[
Π(τ, T )− EG

τ

[
Π(τ, T )

]+]
= EG

τ

[
Π(τ, T )

]
− EG

τ

[
Π(τ, T )

]+
= EG

τ

[
Π(τ, T )

]−
= V −

τ

EG
τ

[
Π(τ, T ) + EG

τ

[
Π(τ, T )

]−]
= EG

τ

[
Π(τ, T )

]
+ EG

τ

[
Π(τ, T )

]−
= EG

τ

[
Π(τ, T )

]+
= V +

τ .

Finally,
1{τ>T}Π(t, T )

+1{τ≤T}1{τ=τC}

(
Π(t, τ) + e−

∫ τ
t rsds

(
RCV

+
τ + V −

τ

))
+1{τ≤T}1{τ=τI}

(
Π(t, τ) + e−

∫ τ
t rsds

(
V +
τ +RIV

−
τ

))
.

Conditioning the obtained result on the information available at t, and using the fact that EG
t

[
EG
τ [·]
]
=

EG
t

[
·
]

due to t < τ , we obtain (1.4).

The bilateral pricing formula (1.4), unlike the unilateral pricing formula (1.1), is symmetric,
meaning both the investor and the counterparty obtain the same value. The value of a defaultable
claim is the value of the corresponding default-free claim plus two terms. The first gives a nonzero
contribution only if the counterparty defaults first, and the second gives a nonzero contribution
only if the investor defaults first. This is known as Bilateral Credit Value Adjustment

BCV A = −CV A−DV A (1.6)

where
CV A =EG

t

[
1{τ=τC}1{τ≤T}LGDCe

−
∫ τ
t rsdsV +

τ

]
DV A =EG

t

[
1{τ=τI}1{τ≤T}LGDIe

−
∫ τ
t rsdsV −

τ

]
.

(1.7)

In particular, we can write
Ṽt = Vt +BCV A.
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1.3 Trading under Collateralization

In order to minimize counterparty credit risk, financial institutions use collateralization. A collat-
eral account is jointly opened by both parties and it is used to prevent losses. The parties estimate
the contract’s value and compare it daily with the current value. The party that estimates a low
value compared to the current one has to post cash or assets equal to the difference on the account,
otherwise he/she draws them. We call the Collateral Taker the investor or counterparty withdraws
from that the account, the other Collateral Provider. This role is interchangeable according to the
sign of the collateral. We say, if the sign of the collateral is positive, the Collateral Taker is the
investor, otherwise he/she is the counterparty. Moreover, the Collateral Taker can rehypothecate
the collateral’s excess, which means he/she can invest the account’s surplus to self-finance.

1.3.1 Collateralization

Collateralization has been analyzed in [23] and more recently in [13, 34].
We denote the collateral account value {Ct}t which has to be Ft-adapted stochastic process,

since we assume that it is a risk-free cash account. We also assume that Ct = 0 for all t ≤ 0 and
t ≥ T ∧ τ , that means the collateral account is opened for each new contract and closed when the
deal defaults or ends. If the account is closed, any collateral must be returned to the original party.

We describe the mechanism of collateral posting. If the Collateral Taker is the investor, this
means that by time t the overall collateral account is composed of the counterparty’s excess of
collateral posted, in this case the collateral account is positive Ct > 0, and it can be used by
the investor to reduce his exposure. When Ct < 0 the investor is Collateral Provider and the
counterparty is the Collateral Taker.

1.3.2 Close-Out value

The ISDA specifies how parties must respond to defaults to fulfill their contractual obligations.
The surviving party should assess the final transactions, and claim for a reimbursement only after
the application of collateralization.

The ISDA Master Agreement defines this term close-out value, which is the the amount of
losses or costs the surviving party would incur in replacing or providing for an economic equivalent
at time of counterparty default. Notice that the close-out amount is not a symmetric quantity with
respect to the exchange of roles between two parties since it is valued by one party after the default
of the other one. The close-out value is agreed upon at the beginning of the contract, and it depends
only on market information, which means it has to be F-measurable. We denote the close-out value
as ετ := 1{τ=τC}εI,τ + 1{τ=τI}εC,τ , where

• εI,t is the investor’s close-out value based on the counterparty’s default at time τ . If it is
positive, the investor is the counterparty’s creditor;
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• εC,t is the close-out amount when the investor is defaulting. A negative value for εC,t, means
that the counterparty is a creditor to the investor.

1.3.3 Collateral Rehypothecation

The Collateral Provider expects to receive the remaining collateral from the Collateral Taker at
maturity of the contract or in case of default, after it has been used to cover the exposure.

However, if the Collateral Taker has rehypothecated the excess collateral, the Collateral Provider
may only receive a fraction of the original collateral, which leaves the Collateral Taker as an unse-
cured creditor.

We denote as R′
i, for i = C, I the recovery fraction of rehypothecation, when the Collateral

Taker is respectively the counterparty or the investor and with LGD′
i = 1− R′

i the respective loss
fractions.

1.3.4 Bilateral CVA Formula under Collateralization and Close-out rules

In this subsection we aim at constructing a valuation framework that includes both collateralization
and close-out value.

• If the investor measures a positive close-out value on counterparty εI,τ > 0, we have two
cases

i. Cτ > 0, the investor is Collateral Taker and he/she uses the collateral to reduce the
close-out value (ϵI,τ − Cτ ), and if

a. (εI,τ −Cτ ) > 0, means the collateral is not enough, the investor suffers a loss and
he/she recovers only a fraction RC of exposure;

b. (εI,τ − Cτ ) ≤ 0 the remaining collateral (if any) is returned to the counterparty

RC(εI,τ − Cτ )
+ + (εI,τ − Cτ )

−.

ii. Cτ < 0, the counterparty is the Collateral Taker, the investor may suffer a loss from
the exposure, and he/she may only be able to recover a fraction of the collateral RC .
Collateral is returned to the investor if it is not rehypothecated (R′

C = 1), otherwise
only a portion of it is returned

RCεI,τ −R′
CCτ .

• if the close-out value of the contract is negative for the investor εI,τ < 0, even if the coun-
terparty defaults, the investor is still obligated to pay it.

i. If Cτ > 0, the investor must return the entire collateral to the counterparty.

εI,τ − Cτ .
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ii. If Cτ < 0, the collateral is used by the counterparty to reduce the investor’s debt,

a. if (εI,τ − Cτ ) < 0, the investor pays the remaining exposed;

b. otherwise, (εI,τ − Cτ ) > 0, the collateral covers the investor’s debt, and the re-
mainder (if any, and if it is not rehypothecated) gets back to the investor.

(εI,τ − Cτ )
− +R′

C(εI,τ − Cτ )
+.

Similarly, one can compute the situation when the investor defaults before the counterparty.
Now, we may combine both parties’ default, non-default, and collateral account cashflows

obtaining

ΠD(t, T ;C) =1{τ>T}Π(t, T ) + 1{τ<T}(Π(t, τ) + e−
∫ τ
t rsdsCτ )

+1{τ=τC<T}e
−

∫ τ
t rsds1{εI,τ<0}1{Cτ>0}(εI,τ − Cτ )

+1{τ=τC<T}e
−

∫ τ
t rsds1{εI,τ<0}1{Cτ<0}

(
(εI,τ − Cτ )

− +R′
C(εI,τ − Cτ )

+
)

+1{τ=τC<T}e
−

∫ τ
t rsds1{εI,τ>0}1{Cτ>0}

(
(εI,τ − Cτ )

− +RC(εI,τ − Cτ )
+
)

+1{τ=τC<T}e
−

∫ τ
t rsds1{εI,τ>0}1{Cτ<0}(RCεI,τ −R′

CCτ )

+1{τ=τI<T}e
−

∫ τ
t rsds1{εC,τ>0}1{Cτ<0}(εC,τ − Cτ )

+1{τ=τI<T}e
−

∫ τ
t rsds1{εC,τ>0}1{Cτ>0}

(
(εC,τ − Cτ )

+ +R′
I(εC,τ − Cτ )

−)
+1{τ=τI<T}e

−
∫ τ
t rsds1{εC,τ<0}1{Cτ<0}

(
(εC,τ − Cτ )

+ +RI(εC,τ − Cτ )
−)

+1{τ=τI<T}e
−

∫ τ
t rsds1{εC,τ<0}1{Cτ>0}(RIεC,τ −R′

ICτ ),

(1.8)

with ΠD(t, T ;C) denoting the analogous net cashflow inclusive of collateralization.
A more compact form is provided by

ΠD(t, T ;C) =Π(t, T )

−1{τ<T}e
−

∫ τ
t rsds

(
Π(τ, T )− 1{τ=τC}εI,τ − 1{τ=τI}εC,τ

)
−1{τ=τC<T}e

−
∫ τ
t rsds

(
1−RC

)(
ε+I,τ − C+

τ

)+
−1{τ=τC<T}e

−
∫ τ
t rsds

(
1−R′

C

)(
ε−I,τ − C−

τ

)+
−1{τ=τI<T}e

−
∫ τ
t rsds

(
1−RI

)(
ε−C,τ − C−

τ

)−
−1{τ=τI<T}e

−
∫ τ
t rsds

(
1−R′

I

)(
ε+C,τ − C+

τ

)−
(1.9)

Notice that the collateral account entry only as a term reducing the exposure of each party upon
the default of the other, keeping in mind which party posted the collateral.
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1.3.5 Collateralization BCVA General Formula

The bilateral valuation adjustment in presence of collateralization is them given by

BCV A(C) :=EG
t

[
ΠD(t, T ;C)

]
− EG

t

[
Π(t, T )

]
=− EG

t

[
1{τ<T}e

−
∫ τ
t rsds

(
Π(τ, T )− 1{τ=τC}εI,τ − 1{τ=τI}εC,τ

)]
− EG

t

[
1{τ=τC<T}e

−
∫ τ
t rsds

(
LGDC

(
ε+I,τ − C+

τ

)+
+ LGD′

C

(
ε−I,τ − C−

τ

)+)]︸ ︷︷ ︸
:=CV A(C)

− EG
t

[
1{τ=τI<T}e

−
∫ τ
t rsds

(
LGDI

(
ε−C,τ − C−

τ

)−
+ LGD′

I

(
ε+C,τ − C+

τ

)−)]︸ ︷︷ ︸
:=DV A(C)

,

(1.10)

Special cases

We introduce a new term, called mark-to-market exposure 5 εu, with t < u ≤ T , as given by

εu = EG
u

[
Π(u, T )

]
,

which represents the default-free price of all cashflows remaining after time u up to maturity T .
Hence, the (1.10) can rewrite as

BCV A(C) =− EG
t

[
1{τ<T}e

−
∫ τ
t rsds

(
ετ − 1{τ=τC}εI,τ − 1{τ=τI}εC,τ

)]
− EG

t

[
1{τ=τC<T}e

−
∫ τ
t rsds

(
LGDC

(
ε+I,τ − C+

τ

)+
+ LGD′

C

(
ε−I,τ − C−

τ

)+)]
− EG

t

[
1{τ=τI<T}e

−
∫ τ
t rsds

(
LGDI

(
ε−C,τ − C−

τ

)−
+ LGD′

I

(
ε+C,τ − C+

τ

)−)]
,

If we assume ετ = εC,τ = εI,τ the expression for BCV A is

BCV A(C) =− EG
t

[
1{τ=τC<T}e

−
∫ τ
t rsds

(
LGDC

(
ε+I,τ − C+

τ

)+
+ LGD′

C

(
ε−I,τ − C−

τ

)+)]
− EG

t

[
1{τ=τI<T}e

−
∫ τ
t rsds

(
LGDI

(
ε−C,τ − C−

τ

)−
+ LGD′

I

(
ε+C,τ − C+

τ

)−)]
,

If collateral rehypothecation is not permitted (LGD′
C = LGD′

I = 0), the above formula simplifies
to

BCV A(C) =− EG
t

[
1{τ=τC<T}e

−
∫ τ
t rsdsLGDC

(
ε+I,τ − C+

τ

)+]
− EG

t

[
1{τ=τI<T}e

−
∫ τ
t rsdsLGDI

(
ε−C,τ − C−

τ

)−]
.

5Mark-to-market (MTM) is a financial accounting practice that involves valuing an asset or liability at its current
market value. In other words, MTM is the process of adjusting the value of an asset or liability to reflect its current
market price. When an asset is marked-to-market, its value is adjusted daily to reflect changes in market conditions.
For example, if an investor owns a stock that is marked-to-market, the value of that stock will be adjusted each day
based on the current market price. If the price of the stock goes up, the value of the investor’s position will increase,
and if the price goes down, the value will decrease.
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On the other hand, if rehypothecation is permitted, the surviving party is always forced to face the
worst case scenario (LGDi = LGD′

i for i = C, I)

BCV A(C) =− EG
t

[
1{τ=τC<T}e

−
∫ τ
t rsdsLGDC

(
εI,τ − Cτ

)+]
− EG

t

[
1{τ=τI<T}e

−
∫ τ
t rsdsLGDI

(
εC,τ − Cτ

)−]
.

(1.11)

Finally, if we remove collateralization we get (1.6), and and we consider a default-free investor
(τI → ∞) we have (1.3).

1.4 Example of Collateralization Schemes

We examine two distinct collateralization mechanisms. The first one is the more realistic, and it
is called margining procedure, in which both parties post or withdraw collateral to or from the
account on a fixed set of dates based on their current exposure. The second mechanism, known as
perfect collateralization, where the collateral account covers all exposure risk.

1.4.1 Collateral Management under Margining Procedures

The CSA agreement between the parties establishes the terms and conditions for collateralization,
including the specific collateral assets that can be used, the margin threshold, and the frequency of
margin calls. In addition, the agreement ensures that the Collateral Taker is required to compensate
the collateral account at a predetermined accrual rate, which reflects the cost of borrowing funds
in the market. The accrual rate may be set as a fixed percentage or as a variable rate linked to a
benchmark, such as the overnight interest rate.

We introduce two adapted processes that represent (forward) collateral accrual rates, {c>t (T )}t
when the investor takes the collateral assets (he/she is the Collateral Taker), and {c<t (T )}t when
he/she posts them (the counterparty is the Collateral Taker). Furthermore, we define (collateral)
zero-coupon bonds as {P c̃

t (T )}t as

P c̃
t (T ) :=

1

1 + (T − t)c̃t(T )
,

where, c̃ is the effective collateral accrual rate, defined as

c̃t(T ) := 1{Ct<0}c
<
t (T ) + 1{Ct>0}c

>
t (T ).

We can represent the timeline of a deal using a time grid {t1, . . . , tn = T}, that includes the dates
when both parties post or withdraw collateral to or from the collateral account. We can begin by
listing all cashflows from the investor to counterparty when a default event does not occur:

1. the investor opens the account at the first margining date t1 if Ct1 < 0 (the counterparty is
the Collateral Taker);

Ivan Gallo 17



1.4. Example of Collateralization Schemes

2. The investor posts to the account at each tk as long asCtk < 0. As Collateral Taker, the coun-
terparty pays interest on the collateral at the accrual rate c<tk(tk+1) between two subsequent
margin dates tk and tk+1;

3. if no default event has occurred, the investor closes the account at the last margining date tn
if Ctn < 0.

At each margining date, the counterparty considers the same cashflows for opposite values of the
collateral account, that is, when the investor is the Collateral Taker and he/she pays a rate c>tk(tk+1).
As a result, we denote γ as the sum of the discounted margining costs over the period (t, T ∧ τ ]

γ(t, T ∧ τ ;C) :=
n−1∑
k=1

1{t≤tk<T∧τ}e
−

∫ tk
t rsds

(
Ctk − C−

tk

Ptk(tk+1)

P c<
tk

(tk+1)
− C+

tk

Ptk(tk+1)

P c>
tk

(tk+1)

)

=
n−1∑
k=1

1{t≤tk<T∧τ}e
−

∫ tk
t rsdsCtk

(
1− Ptk(tk+1)

P c̃
tk
(tk+1)

)

=
n−1∑
k=1

1{t≤tk<T∧τ}e
−

∫ tk
t rsdsCtk

(
1−

1
1+(tk+1−tk)rtk (tk+1)

1
1+(tk+1−tk)c̃tk (tk+1)

)

=
n−1∑
k=1

1{t≤tk<T∧τ}e
−

∫ tk
t rsdsCtk

(
1− 1 + (tk+1 − tk)c̃tk(tk+1)

1 + (tk+1 − tk)rtk(tk+1)

)

=
n−1∑
k=1

1{t≤tk<T∧τ}e
−

∫ tk
t rsdsCtk

(
(tk+1 − tk)(rtk(tk+1)− c̃tk(tk+1))

1 + (tk+1 − tk)rtk(tk+1)

)

(1.12)

with the risk-free zero coupon bond, related to the risk-free rate r, given by Pt(T ). We may
approximate (1.12) as the first order expansion, for small c̃ and r,

γ(t, T ∧ τ ;C) ≈
n−1∑
j=1

1{t≤tj<T∧τ}e
−

∫ tj
t rsdsCtjαj

(
rtj(tj+1)− c̃tj(tj+1)

)
, (1.13)

with αj is the year fraction between tj and tj+1.
This last expression clearly shows the cost of carrying a structure for collateral costs. If C > 0,

the investor is the Collateral Taker and he/she will have to pay (hence the minus sign) an interest
c>, while receiving the natural growth r for cash. In the opposite case, the investor is the Collateral
Provider (the counterparty is the Collateral Taker) and receives (pays) interest c<.

We define the Bilateral Credit Valuation Adjusted price Ṽt(C), with collateral management
under margining procedures, as

Ṽt(C) :=EG
t

[
ΠD(t, T ;C)

]
=EG

t

[
Π(t, T ∧ τ) + γ(t, T ∧ τ ;C) + 1{τ<T}e

−
∫ τ
t rsdsθτ (C, ε)

] (1.14)
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where θτ (C, ε) is the on-default cashflows given by

θτ (C; ε) :=1{τ=τC<τI}

(
εI,τ − LGDC

(
ε+I,τ − C+

τ

)+ − LGD′
C

(
ε−I,τ − C−

τ

)+)
+1{τ=τI<τC}

(
εC,τ − LGDI

(
ε−C,τ − C−

τ

)− − LGD′
I

(
ε+I,τ − C+

τ

)−)
.

(1.15)

Namely, to price a deal we have to sum up three components:

i. Π(t, s) is the discounted cashflows from the contract’s payoff structure over the period (t, s];

ii. γ(t, s;C) represents the discounted cashflows of collateral margining costs within the inter-
val (t, s];

iii. θτ (C; ε) is the on-default cashflow with close-out amount ε.

1.4.2 Perfect Collateralization

The perfect collateralization scheme is defined by collateralization in continuous time, with con-
tinuous mark-to-market of the portfolio at default events, and with collateral account inclusive of
margining costs at any time u, i.e

CT
u = EG

u

[
Π(u, T ) + γ(u, T ;C)

]
,

with close-out amount chosen to be equal to collateral price, i.e.

Cτ = εI,τ = εC,τ .

Then, the price (1.14) becomes

Ṽt(C) =EG
t

[
Π(t, T ∧ τ) + γ(t, T ∧ τ ;C) + 1{τ<T}e

−
∫ τ
t rsdsCτ

]
=EG

t

[
Π(t, T ) + γ(t, T ;C)− 1{τ<T}e

−
∫ τ
t rsds

(
Π(τ, T ) + γ(τ, T ;C)

)
+ 1{τ<T}e

−
∫ τ
t rsdsCτ

]
=EG

t

[
Π(t, T ) + γ(t, T ;C)

]
=CT

t .

1.5 Funding Value Adjustment

When managing a trading position, liquidity, which is provided by either the Treasury or the mar-
ket, is an important consideration. The lender must be repaid, and borrowers must pay interest,
while those who lend must earn it. It is critical to include these financial expenses in the contract
evaluation. For this reason, a new adjustment known as the Funding Value Adjustment (FVA) has
to be introduced. More precisely, FVA can be viewed as a cost or benefit for hedging a series of
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transactions. In recent years, academics and practitioners have contributed to a discussion on FVA
(see for instance [22, 25–27]).

Various more or less sophisticated approaches have been suggested for calculating this adjust-
ment. In [17], FVA is examined as a pricing component that can only be calculated recursively due
to its dependence on the price itself.

To enhance comprehension, consider the following example of a collateralized swap.
Suppose to have a swap with collateral between two parties. When the market value of the swap

changes, the parties send or withdraw cashflows from the collateral account. If the market value
of the swap becomes negative, the party that is required to transfer cash or assets to the collateral
account may borrow them from the Treasury Department or the market at an unguaranteed rate.
Meanwhile, the collateral will continue to accrue interest at a rate set by the CSA.

Alternately, if the value is positive, the party will get collateral and the CSA rate paid to its
counterparty.

The swap transaction faces additional expenses due to the asymmetrical nature of the collateral
cost, known as FVA. However, it should be noted that the previous example, though understand-
able, is unrealistic as it oversimplifies the complexity of the actual transaction.

Let’s consider a single transaction to explore a general scenario. As we showed, CVA and
DVA are additively decomposable within the deal’s cashflow, but financing costs are not, because
they depend on future financing choices. As a result, valuing the product requires a recursive
equation, which is challenging to run due to the product’s path-dependent nature and the need for
both backward induction and forward simulation.

1.5.1 Trading under funding risk

The strategy for hedging that accurately replicates the arbitrage-free valuation of a derivative is
composed of a cash position, typically referred to as a current account denoted by {Ft}t, and a
portfolio position of hedging instruments denoted by {H t}t (the risky-asset account6). The current
account {Ft}t is determined by considering both the positions taken by the trader at time t, which
could be either borrowing or investing. The account Ft is positive when the trader obtains the re-
quired amount to establish the hedging strategy, meaning that the trader borrows cash. Conversely,
Ft is negative when the trader invests the surplus cash into the hedging strategy. We get

Ṽt(F ) = Ft +H t

where Ṽt(F ) is the derivative risky price inclusive of funding and investing costs. Therefore the
financing account as

Ft = Ṽt(F )−H t.

6In the classical Black-Scholes-Merton framework, a hedge’s risky aspect would entail a δ-position stance in the
underlying equity, with the risk-free component being held in a secure bank account.
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If the contract is collateralized and rehypothecation is available, the Collateral Taker can use col-
lateral assets for funding, reducing or eliminating the requirement for cash,

Ft = Ṽt(C,F )− Ct −H t

where Ṽt(C,F ) is the derivative risky price with collateral management under margining proce-
dures, funding and investing costs. Notice that this will produce a recursive equation because the
price of the product at time t depends on the funding strategy F ((t, T ]) which depends on the price
of the product. This will be made clear in the sections that come after this one.

1.5.2 Liquidity policies

The trader’s position for financing or investing is determined by its liquidity policy.
Let be {t1, . . . , tn}t a discrete time-grid, and assume that the trader enters a funding position,

between two adjacent funding times tj and tj+1 for 1 ≤ j ≤ n− 1 we have that

• at tj the trader requests from the funder a cash sum that is equivalent to the amount of Ftj .

• at tj+1 the trader must repay the funder for cash and finance charges. The latter expenses are
constant at the start of each financing cycle and charged at the conclusion.

We can follow the same logic also for investing cash amounts (Ft < 0) not directly used by the
trader, and to consider investing periods along with funding periods.

The contracts used by the investor to finance the deal can be introduced as suitable pricing
processes. Let {P f>

t (T )}t be the price of the F-adapted borrowed contract, where the trader pays
a unit of cash at maturity T , and let {P f<

t (T )}t be the price of the F-adapted lent contract where
the dealer receives a unit of cash at maturity T .

The corresponding financial/investment rate (forward) is

f
>
<
t (T ) :=

1

T − t

(
1

P f
>
<(T )

− 1

)
.

In other words, if the hedging strategy of the deal requires borrowing cash, this can be done at the
funding rate f>, while surplus cash can be invested at the lending rate f<. We define the effective
funding rate {f̃t}t faced by the dealer as

f̃t(T ) := 1{Ft<0}f
<(T ) + 1{Ft>0}f

>(T ).

The sum of discounted cashflows from funding costs during the life of the deal is equal to

φ(t, T ∧ τ ;F ) :=
n−1∑
j=1

1{t≤tj<T∧τ}e
−

∫ tj
t rsdsFtj

(
1−

Ptj(tj+1)

P f̃
tj(tj+1)

)
, (1.16)
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where the zero-coupon bond corresponding to the effective funding rate is defined as

P f̃
t (T ) :=

1

1 + (T − t)f̃t(T )
.

In the same way, (1.12) may be rewritten as a first order approximation with continuously com-
pounded rates f̃ and r associated to the relevant bonds

φ(t, T ∧ τ ;F ) ≈
n−1∑
j=1

1{t≤tj<T∧τ}e
−

∫ tj
t rsdsFtjαj

(
rtj(tj+1)− f̃tj(tj+1)

)
. (1.17)

Thus Bilateral Credit Valuation Adjusted price Ṽt(C,F ), inclusive of funding and investing costs,
can be written in the following form:

Ṽt(C,F ) =EG
t

[
Π(t, T ∧ τ) + γ(t, T ∧ τ ;C) + φ(t, T ∧ τ ;F ) + 1{t≤τ≤T}e

−
∫ τ
t rsdsθτ (C, ε)

]
.

(1.18)

1.5.3 Implementing Hedging Strategies

At any fixed time t, when the investor borrows a risky asset, H t > 0, while H t ≤ 0, when he/she
lends it. We want to consider both financing costs and benefits of employing the risky asset in our
framework.

Let us introduce the adapted processes {h>t (T )}t, that represents the effective asset lending
rates from t to T , and {h<t (T )}t, the asset borrowing rate. We define the (hedging) zero-coupon

bonds {P h
>
<

t (T )}t as given by

P h±

t (T ) :=
1

1 + (T − t)h±t (T )
.

It is also useful to introduce the effective lending/borrowing rate h̃t defined as

h̃t(T ) := 1{Ht<0}h
<
t (T ) + 1{Ht>0}h

>
t (T ).

If we implement the hedging strategy using the same time grid as the funding procedure, we can
add the costs of funding and hedging in a single term and re-define φ to take the hedging strategy
into account.

φ(t, T ∧ τ ;F,H) :=
n−1∑
j=1

1{t≤tj<T∧τ}e
−

∫ tj
t rsdsFtj

(
1−

Ptj(tj+1)

P f̃
tj(tj+1)

)

−
n−1∑
j=1

1{t≤tj<T∧τ}e
−

∫ tj
t rsdsH tj

(
Ptj(tj+1)

P f̃
tj(tj+1)

−
Ptj(tj+1)

P h̃
tj(tj+1)

)
,

(1.19)
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which might be approximated as

φ(t, T ∧ τ ;F,H) ≈
n−1∑
j=1

1{t≤tj<T∧τ}e
−

∫ tj
t rsdsFtjαj

(
rtj(tj+1)− f̃tj(tj+1)

)

−
n−1∑
j=1

1{t≤tj<T∧τ}e
−

∫ tj
t rsdsH tjαj

(
ftj(tj+1)− h̃tj(tj+1)

)
.

(1.20)

In conclusion, we can rewrite (1.18) as

Ṽt(C,F ) =EG
t

[
Π(t, T ∧ τ) + γ(t, T ∧ τ ;C) + φ(t, T ∧ τ ;F,H) + 1{t≤τ≤T}e

−
∫ τ
t rsdsθτ (C, ε)

]
.

(1.21)

1.6 Continuous-time generalizated Pricing Equation

If we assume a continuous-time approximation for the general valuation equation (1.21), this
means that collateral margining (1.13), funding, and hedging strategies (1.20) are carried out con-
tinuously. As we approach the time limit, we get

γ(T ∧ τ ;C) =
∫ T∧τ

t

e−
∫ u
t rsds(ru − c̃u)Cudu,

φ(T ∧ τ ;F,H) =

∫ T∧τ

t

e−
∫ u
t rsds

(
(ru − f̃u)Fu + (f̃u − h̃u)Hu

)
du,

moreover, we express the discount cashflow Π(t, T ∧ τ) as

Π(t, T ∧ τ) =
∫ T∧τ

t

e−
∫ u
t rsdsΠudu,

with {Πt}t is the payoff coupon process of the derivative contract.
Then, putting all the above terms together the recursive pricing equation yields

Ṽt := EG
t

[∫ T∧τ

t

e−
∫ u
t rsds

(
Πu − (c̃u − ru)Cu − (f̃u − ru)Fu

−(f̃u − h̃u)Hu)

)
du+ 1{t≤τ≤T}e

−
∫ τ
t rsdsθτ

]
.

(1.22)
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By recalling that, under rehypothecation, Ft = Ṽt − Ct −H t, (1.22) became

Ṽt := EG
t

[∫ T∧τ

t

e−
∫ u
t rsds

(
Πu − (c̃u − ru)Cu − (f̃u − ru)(Ṽ − Cu)

−(ru − h̃u)Hu)

)
du+ 1{t≤τ≤T}e

−
∫ τ
t rsdsθτ

] (1.23)

with θτ in (1.23) representing the one-default cashflow , it is defined in (1.15).
According to the traditional no-arbitrage theory and in a market with no credit risk, the hedging

process H would be equivalent to a δ-hedging strategy account. This implies that the portfolio
would be adjusted continuously to maintain a delta-neutral position, in order to eliminate the risk
of price fluctuations in the underlying asset.
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Chapter 2

Backward Stochastic Differential Equation

In this chapter, we briefly present the theory of Backward Stochastic Differential Equation, in
order to apply it to our specific case of Value Adjustments. This theory was born in 1973 with
the seminal paper by Bismut [7] and since then it has enormously developed in several directions
and we refer the interested reader to [30, 31, 42, 44, 49] for a detailed account of both theory and
application. The Chapter mainly follows the Zhang’s book [49].

2.1 Preliminary notions

In this section, we introduce the notations we are going to use in the rest of chapter.
Let (Ω,F ,F,P) be a complete filtered probability space on which is defined a dimensional

standard Brownian motion W = (Wt)0≤t≤T , such that F = (Ft)0≤t≤T is the natural filtration of
W , and T is a fixed finite horizon, augmented by all the P-nulls sets.

Let p, q > 0, we define

• L0(F) the space of F-measurable random variables;

• Lp(F) the space of X ∈ L0(F) such that ∥X∥pp := E
[
|X|p

]
<∞;

• L0(F) the space of F-adapted stochastic processes {X}t∈[0,T ];

• Lp,q(F) the space of {X}t∈[0,T ] ∈ L0(F) such that ∥X∥pp,q := E
[( ∫ T

0
|Xt|pdt

) q
p
)]
<∞. For

p = q we abbreviate it by Lp(F) := Lp,p(F) and ∥X∥p := ∥X∥p,p for {X}t∈[0,T ] ∈ Lp(F);

• Sp(F) the set of {X}t∈[0,T ] ∈ L0(F) continuous a.s. such that ∥X∥p∞,p := E[X∗p] < ∞, and
we denote by X∗ = sup0≤t≤T |Xt|;

• L∞(F) the space of bounded processes in L0(F), with L∞-norm denoted by ∥ · ∥∞;

• Lp
loc(F) the space of processes in L0(F) such that

∫ T

0
|Xt|pdt <∞,P-a.s.

Let us recall some important inequalities:
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2.1. Preliminary notions

Propotion 2.1.1. Let p, q be conjugates.

i) (Young’s Inequality) Assume p, q > 1. For any x, y ∈ R, it holds:

|xy| ≤ |x|p

p
+

|y|q

q
.

In particular, for p = q = 2 and for any α > 0, we have

2xy ≤ αx2 + α−1y2 (x+ y)2 ≤ (1 + α)x2 + (1 + α−1)y2.

ii) (Hölder’s Inequality) Let {X}t∈[0,T ] ∈ Lp(F), {Y }t∈[0,T ] ∈ Lq(F). Then

∥XY ∥1 ≤ ∥X∥p∥Y ∥q.

iii) (Gronwall Inequality) Assume the function a : [0, T ] → [0,∞) satisfies

at ≤ C0 + C1

∫ t

0

asds,

for some C0, C1 ≥ 0. Then at ≤ C0e
C1t, 0 ≤ t ≤ T .

Theorem 2.1.1 (Burkholder-Davis-Gundy). 1 For any p > 0 and σ ∈ L2,p(F) ⊂ L2
loc(F), define

Mt =

∫ t

0

σsdWs and M∗ = sup
0≤s≤t

|Ms|.

There exist universal constants 0 < cp < Cp, depending only on p, such that

cpE

[(∫ T

0

|σt|2dt
) p

2

]
≤ E

[
|M∗

T |p
]
≤ CpE

[ ∫ T

0

(
|σt|2dt

) p
2
]

(2.2)

All vectors are considered to be column vectors, namely we take the convention that Rn =

Rn×1 for some dimensionn. A n-dimensional random vector is a mapping X = (X1, . . . , Xn)
⊤ :

Ω → Rn such that Xi ∈ L0(F), i = 1, · · · , n, where ⊤ stands for transpose. We say X =

(X1, · · · , Xn)⊤ is a n-dimensional process ifX1, · · · , Xn are processes such thatX i ∈ L0(F). We
note that all of the preceding notations can be extended to multidimensional settings; to emphasise
the dimension we write, for example L0(F,Rn).

1We observe that for p = 2 is exactly the Doob’s maximum inequality:

E
[
|MT |2

]
≤ E

[
|M∗

T |2
]
≤ 4E

[
|MT |2

]
. (2.1)
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2.2 Motivation

Classical Stochastic Differential Equations (SDEs) usually describe the stochastic time evolution
of some phenomenon starting from a known initial condition. The evolution may have a finite
horizon, say T , and the final value of the solution process is a random variable that needs to be
determined. In nature and finance, it often happens to have evolutionary phenomena that depend
on a given final condition rather than an initial one. These phenomena are not simply time-reversed
evolutions, since randomness requires the measurability properties of the solution with respect to
the underlying filtration that represents the progressive accumulation of information. This opens
up a series of mathematical issues that have been addressed by the theory of Backward Stochastic
Differential Equations.

To understand better the peculiarities of the topic, let us look at the following example.
We want to construct a process {Yt}t∈[0,T ] that verifies a final condition YT = ξ ∈ L2(FT ).
Certainly the constant process

Yt = ξ, t ∈ [0, T ] (2.3)

verifies our requirement, but it is Ft-adapted only if ξ is a constant. If ξ is a random variable, then
{Yt}t∈[0,T ] is certainly adapted, if it is defined as the martingale

Yt := E[ξ|Ft],

which verifies of course YT = ξ. If Ft is the natural filtration generated by the Brownian motion
W , then the martingale representation theorem gives the existence of a progressively measurable
stochastic process {Zt}t∈[0,T ] ∈ L2(F) such that

dYt = ZtdWt ∀t ∈ [0, T ], Y0 = E[ξ].

By integrating on [0, t] and [0, T ]

Yt − Y0 =

∫ t

0

ZsdWs

YT − Y0 =

∫ T

0

ZsdWs,

by subtracting the two quantities, we have

Yt = YT −
∫ T

t

ZsdWs.

Remember that YT = ξ, hence

Yt = ξ −
∫ T

t

ZsdWs ∀t ∈ [0, T ] P− a.s. (2.4)
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We remark that the representation theorem gives the existence and uniqueness of Z, but not an
explicit expression.

Definition 2.1. Given an Ft-measurable random variable ξ, and f : [0, T ]×Ω×Rn×Rn×d → Rn

2 is F-progressively measurable function in all variables. A solution to the BSDE is a pair (Y, Z)

satisfying

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, YT = ξ, 0 ≤ t ≤ T, P− a.s. (2.5)

2.3 Existence and uniqueness

We want to study the following BSDE

−dYt = f(t, Yt, Zt)dt− ZtdWt, YT = ξ, 0 ≤ t ≤ T, P− a.s (2.6)

where Y ∈ S2(F,Rn), Z ∈ L2(F,Rn×d), for some dimension n, d and the pair (ξ, f).
We prove an existence and uniqueness result for the above BSDE. Wihout loss generality we

shall assume n = d = 1 in most proofs.

2.3.1 Linear BSDE

We see the following first result.

Theorem 2.3.1. Let ξ ∈ L2(FT ,Rn) and f : [0, T ]×Ω×Rn ×Rn×d → Rn such that f(·, 0, 0) ∈
L1,2(F,Rn). Then the following linear BSDE has a unique solution (Y, Z) ∈ L2(F,Rn)×L2(F,Rn×d):

Yt = ξ +

∫ T

t

f(s, 0, 0)ds−
∫ T

t

ZsdWs (2.7)

Proof. Let us set

Yt := E
[
ξ +

∫ T

t

f(s, 0, 0)ds|Ft

]
. (2.8)

By the integrability assumptions we know that

Mt = E
[
ξ +

∫ T

0

f(s, 0, 0)ds|Ft

]
is a square integrable thus, by the martingale representation theorem, there exists unique progres-
sively stochastic process Z ∈ L2(F,Rn×d), such that

Mt =M0 +

∫ t

0

ZsdWs.

2For simplicity we will omit the dependence on ω ∈ Ω
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Hence

Yt =M0 −
∫ t

0

f(s, 0, 0)ds+

∫ t

0

ZsdWs

YT =M0 −
∫ T

0

f(s, 0, 0)ds+

∫ T

0

ZsdWs.

By calculating the difference Yt − YT , and remember that YT = ξ, we get immediately (2.7).

Let α ∈ L∞(F,Rn), β ∈ L∞(F,Rn×d), we consider the linear BSDE with n = d = 1

Yt = ξ +

∫ T

t

[αsYs + Zsβs + f(s, 0, 0)]ds−
∫ T

t

ZsdWs, (2.9)

or
dYt = −[αtYt + Ztβt + f(t, 0, 0)]dt+ ZtdWt, (2.10)

Here we provide a representation formula for its solution (2.5).

Theorem 2.3.2. Let ξ ∈ L2(FT ), α, β ∈ L∞(F) , and f : [0, T ]×Ω×Rn×Rn×d → Rn such that

f(·, 0, 0) ∈ L1,2(F), and f is uniformly Lipschitz continuous in (y, z), i.e. there exists L > 0 such

that

∥f(t, y1, z1)−f(t, y2, z2)∥ ≤ L
(
∥y1−y2∥+∥z1−z2∥

)
, y1, y2 ∈ Rn, z1, z2 ∈ Rn×d,∀t ∈ [0, T ].

If (Y, Z) ∈ S2(F)× L2(F) satisfies the linear BSDE (2.10), then

Yt = Γ−1
t E

[
ΓT ξ +

∫ T

t

Γsf(s, 0, 0)ds|Ft

]
, (2.11)

where
dΓt =Γtαtdt+ ΓtβtdWt or

Γt =exp

{∫ t

0

βsdWs +

∫ t

0

[
αs −

1

2
|βs|2ds

}
.

(2.12)

Proof. By applying Itô’s formula

d(ΓtYt) = ΓtdYt + YtdΓt + d⟨Y,Γ⟩t
= −Γt

(
αtYt + Ztβt + f(t, 0, 0)

)
dt+ ΓtZtdWt + YtΓtαtdt+ YtΓtβtdWt + ΓtβtZtdt

= −ΓtαtYt − ΓtZtβt − Γtf(t, 0, 0)dt+ ΓtZtdWt + YtΓtαtdt+ YtΓtβtdWt + ΓtZtβtdt

=
[
− ΓtαtYt + ΓtαtYt − ΓtZtβt + ΓtZtβt − Γtf(t, 0, 0)

]
dt+

[
YtΓtβt + ΓtZt

]
dWt

= −Γtf(t, 0, 0)dt+ Γt

[
Ytβt + Zt

]
dWt

Denote

Ŷt := ΓtYt, Ẑt := Γt

[
Ytβt + Zt

]
, ξ̂ := ΓT ξ, f̂(t, 0, 0) := Γtf(t, 0, 0). (2.13)
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Then
dŶt = −f̂(t, 0, 0)dt+ ẐtdWt. (2.14)

We integrate over the intervals [0, t] and [0, T ]

Ŷt +

∫ t

0

f̂(s, 0, 0)ds = Ŷ0 +

∫ t

0

ẐsdWs,

ŶT +

∫ T

0

f̂(s, 0, 0)ds = Ŷ0 −
∫ T

0

ẐsdWs,

therefore

Ŷt − ŶT =

∫ T

t

f̂(s, 0, 0)ds+

∫ T

t

ẐsdWs. (2.15)

Since α and β are bounded, we see that E[sup0≤t≤T |Γt|2] < ∞, and by denoting by β̂ the upper-
bound of β, we have

E
[(∫ T

0
|Ẑs|2ds

)1/2]
≤ E

[(∫ T

0
|Γs|2|Ysβs + Zs|2ds

)1/2]
≤ E

[(∫ T

0
sup

0≤t≤T
|Γt|2(Ysβs + Zs)

2ds

) 1
2
]

≤ E
[

sup
0≤t≤T

|Γt|︸ ︷︷ ︸
A

(∫ T

0
(Ysβs + Zs)

2ds

) 1
2

︸ ︷︷ ︸
B

]
(Hölder’s Inequality)

≤
(
E
[
A2
]) 1

2
(
E
[
B2
]) 1

2

=

(
E
[

sup
0≤t≤T

|Γt|2
]) 1

2

︸ ︷︷ ︸
a

(
E
[ ∫ T

0
(Ysβs + Zs)

2ds

]) 1
2

︸ ︷︷ ︸
b

≤ 1

2
(a2 + b2) =

1

2
E
[

sup
0≤t≤T

|Γt|2 +
∫ T

0
(Ysβs + Zs)

2ds

]
≤ 1

2
E
[
sup
t

|Γt|2 +
∫ T

0
|Ytβs|2dt+

∫ T

0
|Zt|2dt+

∫ T

0
2(Ysβs)Zs︸ ︷︷ ︸
2xy≤x2+y2

ds

]

≤ 1

2
E
[
sup
t

|Γt|2 + 2β̂2
∫ T

0
|Yt|2dt+ 2

∫ T

0
|Zt|2dt

]
<∞.

This shows that the local martingale in (2.15) is a uniformly integrable martingale. By taking the
its expectation, we obtain

Ŷt = E
[
ξ̂ +

∫ T

t

f̂(s, 0, 0)ds|Ft

]
. (2.16)

by (2.13), and observing that Γ is invertible, this it implies (2.11) immediately.

2.3.2 A Priori Estimates for BSDEs

Now, we look into the nonlinear BSDE (2.5), and let’s start by introducing two important results
that will be useful in proving the uniqueness of its solution.

Theorem 2.3.3. Let ξ ∈ L2(FT ), and f : [0, T ] × Ω × Rn × Rn×d → Rn such that f(·, 0, 0) ∈
L1,2(F), and f is uniformly Lipschitz continuous in (y, z), if (Y, Z) ∈ L2(F,Rn)× L2(F,Rn×d) is
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a solution of the BSDE (2.5). Then Y ∈ S2(F,Rn) and there exists a constant C, depending only

on T, L, n, d, such that

∥(Y, Z)∥2 := E

[
|Y ∗

T |2 +
∫ T

0

|Zt|2dt

]
≤ CE

[
|ξ|2 +

(∫ T

0

|f(t, 0, 0)|dt
)2
]
. (2.17)

In this proof and in the sequel, we shall denote by C a generic constant, which depends only
on T, L, n, d, and may vary from line to line.

Proof. For simplicity, we assume n = d = 1. The proof is divided into several step.
Step 1. We show that

E
[
|Y ∗

T |2
]
≤ CE

[∫ T

0

[
|Yt|2 + |Zt|2

]
dt

]
+ CE

[
|ξ|2 +

(∫ T

0

|f(t, 0, 0)|dt
)2
]
<∞, (2.18)

Since (Y, Z) is a solution of BSDE (2.5), from the triangular inequality, and the Lipshitz property
of f

|Yt| ≤ |ξ|+
∫ T

t

|f(s, Ys, Zs)|ds+
∣∣∣∣ ∫ T

t

ZsdWs

∣∣∣∣
≤ |ξ|+

∫ T

t

|f(s, 0, 0)|+ L
(
|Ys|+ |Zs|

)
ds+

∣∣∣∣ ∫ T

t

ZsdWs

∣∣∣∣.
Moreover,

Y ∗
T ≤ C

[
|ξ|+

∫ T

0

(
|f(s, 0, 0)|+ |Ys|+ |Zs|

)
ds+ sup

0≤t≤T

∣∣∣∣ ∫ t

0

ZsdWs

∣∣∣∣
]
.

Square both sides, take the expectation, and apply the Burkholder-Davis-Gundy Inequality, we
have

E
[
|Y ∗

T |2
]
≤ CE

[
|ξ|2 +

(∫ T

0

|f(t, 0, 0)|dt
)2

+

∫ T

0

[
|Yt|2 + |Z2

t |
]
dt

]
with (2.18) resulting immediately.

Step 2. For any ε > 0, we show that

sup
0≤t≤T

E
[
|Yt|2

]
+ E

[ ∫ T

0

|Zt|2dt
]
≤ εE[|Y ∗

T |2
]
+ Cε−1E

[
|ξ|2 +

(∫ T

0

|f(t, 0, 0)|dt
)2
]
. (2.19)

By applying Itô formula to |Yt|2 a

d|Yt|2 = 2YtdYt + d⟨Y, Y ⟩t = −2Ytf(t, Yt, Zt)dt+ 2YtZtdWt + |Zt|2dt

By integrating on [0, t] and [0, T ], and then taking |Yt|2 − |YT |2 we have

|Yt|2 − |YT |2 =
∫ T

t

2Ysf(s, Ys, Zs)ds−
∫ T

t

2YsZsdWs −
∫ T

t

|Zs|2ds
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Thus,

|Yt|2 +
∫ T

t

|Zs|2ds = |ξ|2 +
∫ T

t

2Ysf(s, Ys, Zs)ds−
∫ T

t

2YsZsdWs. (2.20)

Note that ∫ T

0

|YsZs|2ds ≤ 2

∫ T

0

(
|Ys|2 + |Zs|2

)
ds <∞, (2.21)

then
∫ T

0
YsZsdWs is F-martingale.

By taking expectation on both sides (2.20)

E

[
|Yt|2 +

∫ T

t
|Zs|2ds

]
= E

[
|ξ|2 + 2

∫ T

t
Ysf(s, Ys, Zs)ds

]

≤ E

[
|ξ|2 + 2

∫ T

t
|Ys||f(s, Ys, Zs)|ds

]

≤ E

[
|ξ|2 + 2

∫ T

t
|Ys|
[
|f(s, 0, 0)|+ C

(
|Ys|+ |Zs|

)]
ds

]

≤ E

[
|ξ|2 + 2Y ∗

T

∫ T

0
|f(s, 0, 0)|ds+ C

∫ T

t
|Ys|2ds+

∫ T

t
|Ys||Zs|︸ ︷︷ ︸

2xy≤x2+y2

ds

]

≤ E

[
|ξ|2 + 2Y ∗

T

∫ T

0
|f(s, 0, 0)|ds+ C

(∫ T

t

3

2
|Ys|2ds+

1

2

∫ T

t
|Zs|2ds

)]
.

This leads to

E

[
|Yt|2 +

1

2

∫ T

t

|Zs|2ds

]
≤ E

[
|ξ|2 + CY ∗

T

∫ T

0

|f(s, 0, 0)|ds+ C

∫ T

t

|Ys|2ds

]
, (2.22)

by splitting the expectation and applying Fubini’s theorem,

E
[
|Yt|2

]
︸ ︷︷ ︸

at

≤ E

[
|ξ|2 + CY ∗

T

∫ T

0

|f(s, 0, 0)|ds

]
︸ ︷︷ ︸

C0

+C

∫ T

t

E
[
|Ys|2

]
ds︸ ︷︷ ︸

C1

∫ T
t asds

applying backward Gronwall inequality
(
at ≤ C0e

C1(T−t)
)
, we get

E
[
|Yt|2

]
≤ CE

[
|ξ|2 + Y ∗

T

∫ T

0

|f(s, 0, 0)|ds
]
, ∀t ∈ [0, T ]. (2.23)

Then, by letting t = 0 and plugging (2.23) into (2.22) we have

E
[ ∫ T

0

|Zs|2ds
]
≤ CE

[
|ξ|2 + Y ∗

T

∫ T

0

|f(s, 0, 0)|ds︸ ︷︷ ︸
ab

]
. (2.24)

By (2.23) and (2.24) and noting that 2ab ≤ εa2 + ε−1b2, we obtain (2.19) immediately.
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Step 3. Plugging (2.19) into (2.18), we get

E
[
|Y ∗

T |2
]
≤ CεE

[
|Y ∗

T |2
]
+ Cε−1E

[
|ξ|2 +

(∫ T

0

|f(t, 0, 0)|dt
)2
]

(2.25)

By choosing ε =
1

2C
for the constant C above, we obtain

E
[
|Y ∗

T |2
]
≤ CE

[
|ξ|2 +

(∫ T

0

|f(t, 0, 0)|dt
)2
]
. (2.26)

This, together with (2.19) proves (2.17).

Theorem 2.3.4. For i = 1, 2, assume (ξi, f i) satisfy the assumptions of Theorem 2.3.3 and

(Y i, Zi) ∈ L2(F,Rn) × L2(F,Rn×d) are solutions to BSDE (2.5) respectively with coefficients

(ξi, f i). Then

∥(∆Y,∆Z)∥2 ≤ CE

[
|∆ξ|2 +

(∫ T

0

|∆f(t, Y 1
t , Z

1
t )|dt

)2]
, (2.27)

where

∆Y := Y 1 − Y 2, ∆Z := Z1 − Z2, ∆ξ := ξ1 − ξ2, ∆f := f 1 − f 2.

Proof. Without loss generality we assume n = d = 1. Note that

∆Yt = Y 1
t − Y 2

t

= ∆ξ +

∫ T

t

[
f 1(s, Y 1

s , Z
1
s )− f 2(s, Y 2

s , Z
2
s )
]
ds−

∫ T

t

∆ZsdWs.

Adding and subtracting f 2(s, Y 1
s , Z

1
s ) and f 2(s, Y 2

s , Z
1
s )

= ∆ξ+

∫ T

t

[
f 1(s, Y 1

s , Z
1
s )− f 2(s, Y 1

s , Z
1
s )︸ ︷︷ ︸

∆f(s,Y 1
s ,Z1

s )

+f 2(s, Y 1
s , Z

1
s )− f 2(s, Y 2

s , Z
1
s )

+ f 2(s, Y 2
s , Z

1
s )− f 2(s, Y 2

s , Z
2
s )
]
ds−

∫ T

t

∆ZsdWs.

Hence

∆Yt = ∆ξ︸︷︷︸
:=ξ

+

∫ T

t

[
∆f(s, Y 1

s , Z
1
s ) + αs∆Ys + βs∆Zs

]︸ ︷︷ ︸
:=f(s,Ys,Zs)

ds−
∫ T

t

∆Zs︸︷︷︸
:=Zs

dWs, (2.28)

where

αt :=
f 2(t, Y 1

t , Z
1
t )− f 2(t, Y 2

t , Z
1
t )

∆Yt
1{∆Yt ̸=0}

βt :=
f 2(t, Y 2

t , Z
1
t )− f 2(t, Y 2

t , Z
2
t )

∆Zt

1{∆Zt ̸=0}
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are bounded by liptschiz property of f i, for i = 1, 2. Then, we may view (∆Y,∆Z) ∈ L2(F) ×
L2(F) as the solution to the BSDE (2.28), given that the coefficients satisfy the assumption required
to apply Theorem 2.3.3, and we obtain the result immediately.

2.3.3 Well-Posedness of BSDEs

We establish the well-posedness of BSDE (2.5).

Theorem 2.3.5. Under the assumptions of Theorem 2.3.3, BSDE (2.5) has a unique solution

(Y, Z) ∈ L2(F,Rn)× L2(F,Rn×d).

Proof. Uniqueness follows directly from theorem 2.3.4. We now prove the existence by using
the Picard iteration. For simplicity we assume n = d = 1, since the proof is analogous in the
multidimensional case.

Step 1.

Let δ > 0 and 0 < T ≤ δ be constants.
Let us set Y 0

t := 0, Z0
t := 0. For k = 1, 2, . . . , let us define (Y k, Zk) as the unique solution

of the following equation

Y k
t = ξ +

∫ T

t

f(s, Y k−1
s , Zk−1

s )ds−
∫ T

t

Zk
s dWs (2.29)

with (Y k−1, Zk−1) ∈ L2(F)× L2(F).
Indeed, by the linear growth condition it follows that f(t, Y k−1

t , Zk−1
t ) ∈ L1,2(F), and Theorem

2.3.1 and 2.3.3 imply that (2.29) has a unique solution (Y k, Zk) ∈ S2(F) × L2(F). By induction
we have (Y k, Zk) ∈ S2(F)× L2(F) for all k ≥ 0.

Denote by ∆Y k
t := Y k

t − Y k−1
t , ∆Zk

t := Zk
t − Zk−1

t . Then,

∆Y k
t =

∫ T

t

[
αk−1
s ∆Y k−1

s + βk−1
s ∆Zk−1

s

]
−
∫ T

t

∆Zk
s dWs

where

αk−1
t =

f(s, Y k−1
s , Zk−1

s )− f(s, Y k−2
s , Zk−1

s )

∆Y k−1
t

1{∆Y k−1
t ̸=0},

βk−1
t =

f(s, Y k−2
s , Zk−1

s )− f(s, Y k−2
s , Zk−2

s )

∆Zk−1
t

1{∆Zk−1
t ̸=0}

are bounded due to the Lipschitz property of f . Applying Itô’s formula, we have

d(|∆Y k
t |2) = −2∆Y k

t

[
αk−1
t ∆Y k−1

t + βk−1
t ∆Zk−1

t

]
dt+ 2∆Y k

t ∆Z
k
t dWt + |∆Zk

t |2dt.

Note that, as shown in (2.21),
∫ t

0
∆Y k−1

s ∆Zk−1
s dWs is a F-martingale. Nothing that ∆Y k

T = 0, and
by integrating over the intervals [0, t] and [0, T ], subtracting the two quantities from each other, we

Ivan Gallo 34



2.3. Existence and uniqueness

get

|∆Y k
t |2 +

∫ T

t

|∆Zk
s |2ds = 2

∫ T

t

∆Y k
s

(
αk−1
s ∆Y k−1

s + βk−1
s ∆Zk−1

s

)
ds− 2

∫ T

t

∆Y k
s ∆Z

k
s dWs

Taking expectations, we have

E

[
|∆Y k

t |2 +
∫ T

t

|∆Zk
s |2ds

]
= E

[
2

∫ T

t

∆Y k
s

(
αk−1
s ∆Y k−1

s + βk−1
s ∆Zk−1

s

)
ds

]

≤ CE

[∫ T

0

|∆Y k
s |
(
|∆Y k−1

s |+ |∆Zk−1
s |

)
ds

]
.

(2.30)

In particular

E

[
|∆Y k

t |2
]
≤ CE

[∫ T

0

|∆Y k
s |
(
|∆Y k−1

s |+ |∆Zk−1
s |

)
ds

]
.

By integrating over [0, T ] and applying the Fubini’s theorem, we have

E

[∫ T

0

|∆Y k
s |2ds

]
≤
∫ T

0

(
CE
[ ∫ T

0

|∆Y k
s |
(
|∆Y k−1

s |+ |∆Zk−1
s |

)
ds
])
dt,

remembering that T ≤ δ

E

[∫ T

0

|∆Y k
t |2ds

]
≤ CδE

[∫ T

0

|∆Y k
s |
(
|∆Y k−1

s |+ |∆Zk−1
s |

)︸ ︷︷ ︸
2xy≤x2+y2

ds

]

≤ CδE

[∫ T

0

|∆Y k
s |2 + (|∆Y k−1

s |+ |∆Zk−1
s |)2ds

]

= CδE

[∫ T

0

(
|∆Y k

s |2 + |∆Y k−1
s |2 + |∆Zk−1

s |2 + 2|∆Y k−1
s ||∆Zk−1

s |︸ ︷︷ ︸
2xy≤x2+y2

)
ds

]

≤ CδE

[∫ T

0

(
|∆Y k

s |2 + |∆Y k−1
s |2 + |∆Zk−1

s |2
)
ds

]
.

Assume δ <
1

2C
, thus 1− Cδ ≤ 1/2. Then,

E

[∫ T

0

|∆Y k
t |2ds

]
≤ CδE

[∫ T

0

(
|∆Y k−1

s |2 + |∆Zk−1
s |2

)
ds

]
.
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Moreover, setting t = 0 in (2.30) we have

E
[ ∫ T

0

|∆Zk
t |2dt

]
≤ CE

[ ∫ T

0

|∆Y k
t |2dt

]
+

1

8
E
[ ∫ T

0

[
|∆Y k−1

t |2 + |∆Zk−1
t |2

]
dt

]
≤
[
Cδ +

1

8

]
E
[ ∫ T

0

[
|∆Y k−1

t |2 + |∆Zk−1
t |2

]
dt

]
.

Set δ :=
1

8C
for the above C. Then

E
[ ∫ T

0

|∆Y k
t |2 + |∆Zk

t |2dt
]
≤ 1

4
E
[ ∫ T

0

|∆Y k−1
t |2 + |∆Zk−1

t |2dt
]
.

By induction we have

E
[ ∫ T

0

|∆Y k
t |2 + |∆Zk

t |2dt
]
≤ C

4k
, ∀r ≥ 1.

This implies that the pair (Y k, Zk) is a Cauchy sequence, so it converges in S2(F)×L2(F). There-
fore, we can conclude that there exists (Y, Z) ∈ S2(F)× L2(F) such that

lim
k→∞

∥(Y k
t − Yt, Z

k
t − Zt)∥ = 0.

By letting k → ∞ in BSDE (2.29) we know that (Y, Z) satisfies BSDE (2.5).
Step 2.

We now prove the existence for arbitrary T . Let δ > 0 be the constant in Step 1. Consider a
partition 0 = t0 < · · · < tm = T such that ti+1 − ti ≤ δ, i = 0, 1, . . . ,m − 1. Define Ytm := ξ,
and for i = m − 1, . . . , 0 and t ∈ [ti, ti+1), let (Yt, Zt) be the solution to the following BSDE on
[ti, ti+1]:

Yt = Yti+1
+

∫ ti+1

t

f(s, Ys, Zs)ds−
∫ ti+1

t

ZsdWs, t ∈ [ti, ti+1].

Since ti+1 − ti ≤ δ, by Step 1 the above BSDE is well posed. Moreover, we see that (Y, Z) ∈
L2(F)× L2(F), and thus they are a global solution on the whole interval [0, T ].

Theorem 2.3.6 (Comparison theorem). Assume, for i = 1, 2, (ξi, f i) satisfies assumption of The-

orem 2.3.3 and (Y i, Zi) ∈ S2(F)× L2(F) are the unique solution to the following BSDE:

Y i
t = ξi +

∫ T

t

f i(s, Y i
s , Z

i
s)ds−

∫ T

t

Zi
sdWs i = 1, 2. (2.31)

Assume further that ξ1 ≤ ξ2, P−a.s., and f 1(t, y, z) ≤ f 2(t, y, z), dt× dP-a.s. Then,

Y 1
t ≤ Y 2

t , 0 ≤ t ≤ T, P− a.s. (2.32)
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Proof. Let us denote by

∆Yt := Y 1
t − Y 2

t ; ∆Zt := Z1
t − Z2

t ; ∆ξ := ξ1 − ξ2; ∆f := f 1 − f 2.

Then,

∆Yt =∆ξ +

∫ T

t

[
f 1(s, Y 1

s , Z
1
s )− f 2(s, Y 2

s , Z
2
s )
]
ds−

∫ T

t

∆ZsdWs

=∆ξ +

∫ T

t

[
αs∆Ys +∆Zsβs +∆f(s, Y 2

s , Z
2
s )
]
ds−

∫ T

t

∆ZsdWs,

where α and β are defined in a similar way as (2.28), and they are bounded due to the Lipschitz
property of f . Let us set Γs as (2.12), and by (2.11) we have

∆Yt = Γ−1
t E

[
ΓT∆ξ +

∫ T

t

Γs∆f(s, Y
2
s , Z

2
s )ds

∣∣Ft

]
, (2.33)

moreover
f 1(t, y, z) ≤ f 2(t, y, z), ∀(y, z), dt× dP− a.s.,

which implies that ∆f(, Y 2, Z2) ≤ 0, dt × dP-a.s. Since Γ ≥ 0 and ∆ξ ≤ 0, then (2.32) follows
from (2.33) immediately.

2.4 Markov BSDEs and PDEs

We introduce the flow notation by indexing the family of the solutions of a given SDE on the basis
of the initial time and of the starting point {X t,x

s , t ≤ s ≤ T,X t
t = x}.

Definition 2.2. Let b : [0, T ] × Rm → Rm be a continuous and monotone in x, uniformly with

respect to t, and σ : [0, T ] × Rm → Rm×d be continuous and globally Lipschitz in x uniformly

with respect to t. Let {X t,x
s , t ≤ s ≤ T} be the solution of the Forward SDE

X t,x
s = x+

∫ s

t

b(r,X t,x
r )dr +

∫ s

t

σ(r,X t,x
r )dWr

and, let (Y t,x, Zt,x) be the unique solution

Y t,x
s = g(X t,x

T )−
∫ T

s

f(r,X t,x
r , Y t,x

r , Zt,x
r )dr +

∫ T

s

Zt,x
r dWr (2.34)

where g : Rm → Rn and f : [0, T ]× Rm × Rn × Rn×d → Rn are uniformly Lipschitz continuous

in (x, y, z) with constant L. We define the following decoupled Forward-Backward SDE (FBSDE)

with deterministic coefficients on [t, T ]:dX
t,x
t = b(t,X t,x

t )dt+ σ(t,X t,x
t )dWt

dY t,x
t = −f(t,X t,x

t , Y t,x
t , Zt,x

t )dt+ Zt,x
t dWt.

(2.35)
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2.4. Markov BSDEs and PDEs

Assume, also that b(·, 0), σ(·, 0), f(·, 0, 0, 0) and g(0) are bounded, and b, σ, f, g are uniformly

Hölder-
1

2
3 continuous in t with constant H .

Let us set
u(t, x) := Y t,x

t .

Then u(t, x) is bth Ft-measurable and independent of Ft, and thus is deterministic. Moreover, we
have

Y
t,Xt,x

t
t = u(t,X t,x

t ), 0 ≤ t ≤ T.

We shall denote by

L :=
m∑
i=1

bi(t, x)∂xi
+

1

2

m∑
i,j=1

σi(t, x)σj(t, x)∂
2
xixj

,

the infinitesimal generator of the Markov process {X t,x
s : t ≤ s ≤ T}.

2.4.1 Nonlinear Feynman-Kac Formula

We now derive the PDE which the above function u should satisfy.
We consider the following system of backward semilinear parabolic PDEs∂tu(t.x) + Lu(t, x) + f(t, x, u(t, x),∇u(t, x)σ(t, x)) = 0, (t, x) ∈ [0, T ]× Rm,

u(T, x) = g(x), x ∈ Rm,
(2.36)

where the ∇ is gradient operator.

Theorem 2.4.1. (Nonlinear Feyman-Kac Formula) Let u ∈ C1,2([0, T ]×Rm,Rn) be a classical

solution of (2.36). Then, for each (t, x) ∈ [0, T ] × Rm, {(u(s,X t,x
s ),∇u(s,X t,x

s )σ(s,X t,x
s ) : t ≤

s ≤ T} is the solution of the FBSDE (2.35). In particular,

u(t, x) = Y t,x
t , and ∇u(s, x)σ(s, x) = Zt,x

t (2.37)

Proof. For the sake of exposition, we consider d = m = n = 1.
Applying Itô’s formula to u(t,X t,x

t ), we have

du(t,X t,x
t ) = ∂tu(t,X

t,x
t )dt+ ∂xu(t,X

t,x
t )dX t,x

t +
1

2
∂2xxu(t,X

t,x
t )d⟨X t,x

t , X t,x
t ⟩

= ∂tu(t,X
t,x
t )dt+ ∂xu(t,X

t,x
t )
[
b(t,X t,x

t )dt+ σ(t,X t,x
t )dWt

]
+

1

2
∂xu(t,X

t,x
t )2σ(t,X t,x

t )2dt

=
[
∂tu(t,X

t,x
t ) + ∂xu(t,X

t,x
t )b(t,X t,x

t ) +
1

2
∂xu(t,X

t,x
t )2σ(t,X t,x

t )2
]
dt

+ ∂xu(t,X
t,x
t )σ(t,X t,x

t )dWt.

(2.38)

3The Holder continuity is mainly for the regularity, not for the well-posedness.
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2.4. Markov BSDEs and PDEs

Compare thus with
dY t,x

t = −f(t,X t,x
t , Y t,x

t , Zt,x
t )dt+ Zt,x

t dWt

we obtain[
∂tu(t,X

t,x
t ) + ∂xu(t,X

t,x
t )b(t,Xt,x

t ) +
1

2
∂xu(t,X

t,x
t )2σ(t,Xt,x

t )2
]
dt+ ∂xu(t,X

t,x
t )σ(t,Xt,x

t )dWt

=− f(t,Xt,x
t , Y t,x

t , Zt,x
t )dt+ Zt,x

t dWt

(2.39)

⇒∂tu(t,X
t,x
t ) + ∂xu(t,X

t,x
t )b(t,Xt,x

t ) +
1

2
∂xu(t,X

t,x
t )2σ(t,Xt,x

t )2
]
= −f(t,Xt,x

t , Y t,x
t , Zt,x

t )

∂xu(t,X
t,x
t )σ(t,Xt,x

t ) = Zt,x
t

(2.40)

This concludes the proof.
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Chapter 3

Non-linear approximated value adjustments
for derivatives under multiple risk factor

The following chapters are summarized in our two papers [1, 32].

3.1 Evaluation of European claims under the intensity approach

We will be discussing the intensity approach for evaluating a contingent claim based on multiple
risk factors, which it was previously introduced in Chapter 1. Firstly, we present our market model.

Let (Ω,G,G,P) be the same complete probability space and [0, T ] the finite time interval of
Chapter 1, and let us denote by F = (Ft)0≤t≤T the market filtration generated by the adapted
process St, representing the asset price, called underlying, with the following dynamics under the
risk-neutral measure P:

dSt = rtStdt+ σtStdWt, (3.1)

where Wt is a Brownian motion, and σt represents the underlying volatility and rt the risk-free
interest rate process. We assume that both are deterministic, bounded functions of time.

We assume the so called H-hypothesis (see for details [5, 33, 39, 43])

(H) every Ft-martingale remains a Gt-martingale.

We consider a European claim with maturity T and payoff1 Φ(ST ), where Φ is a function as
regular as needed, not necessarily non-negative.

Remember that τ = min(τC , τI) is a stopping time with respect to the enlarged filtration G, but
in general, not necessarily with respect to the market filtration F . We assume that τI , τC are the
first jump times of two Cox processes with stochastic F-predictable positive intensities λI , λC (see
[5, 16, 39]). More precisely, let us take two F−adapted, right-continuous, increasing processes Γi

1Payoff refers to the total amount of money received or paid out as a result of an investment or financial transaction.
The term can refer to the profits or losses that an investor incurs from holding or selling a particular asset, such as a
stock or option.
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3.1. Evaluation of European claims under the intensity approach

defined on our space, for i = C, I , called F−hazard processes, such that Γi
0 = 0, and

Γi
t =

∫ t

0

λiudu, i = C, I ∀t > 0.

We assume that the probability space is sufficiently rich to support two random variables ξi, which
are uniformly distributed on the interval [0, 1] and independent of the filtration F under P. Then

τi = inf{t ≥ 0 : e−Γi
t ≤ ξi} = inf{t ≥ 0 : Γi

t ≥ −ln(ξi)}.

Consequently, we have that the F-adapted increasing processes F i
t = P(τi ≤ t|Ft) have the

representation
F i
t = 1− e−Γi

t = 1− e−
∫ t
0 λi

udu.

The default times, as defined, are conditionally independent2 with respect to F , that is

P[τC > t1, τI > t2|Ft] = P[τC > t1|Ft]P[τI > t2|Ft], ∀t1, t2 ∈ [0, t],

so that the probability of simultaneous default is 0.
As a consequence, the conditional distribution of the first-to-default time τ has the representa-

tion
P[τ > t|Ft] = e−

∫ t
0 λudu, λ = λC + λI ,

and we denote τ = min(τ, T ).
By following Chapter 1, the Gt-adapted value process of a defaultable derivative Ṽt is given

by the sum of the discounted default-free price and the adjustments due to default, funding, and
collateralization risks, and it is characterized as the solution of the following BSDE

Ṽt = EG
t

[
1{τ>T}e

−
∫ T
t rsdsΦ(ST ) +

∫ τ

t

e−
∫ u
t rsdsπu︸ ︷︷ ︸

Contractual cashflows

du

]
− EG

t

[∫ τ

t

e−
∫ u
t rsds

(
cu − ru

)
Cudu︸ ︷︷ ︸

Cost of carry of collateral account

]

− EG
t

[∫ τ

t

e−
∫ u
t rsds(fu − ru)(Ṽu − Cu)du︸ ︷︷ ︸
Costs due to funding account

]
− EG

t

[∫ τ

t

e−
∫ u
t rsds(ru − hu)Hudu︸ ︷︷ ︸
Costs due to hedging

]

+ EG
t

[
e−

∫ τ
t rsds1{t≤τ≤T}

(
ετ − 1{τC<τI}LGDC(ετ − Cτ )

+ + 1{τI<τC}LGDI(ετ − Cτ )
−
)

︸ ︷︷ ︸
On-default cashflows due to contract

]
.

(3.2)

2It is worth noting that the independence assumption certainly simplifies computations, but it does not consider
default contagion effects. Within the intensity framework, more realistic models allowing default dependence were
recently proposed (see [8, 9] and the references there in), and we remark that we could extend the method to the
correlated case, provided we introduce an additional parameter.
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3.1. Evaluation of European claims under the intensity approach

We note the (3.2) corresponds to the theoretical equation (1.22) which we recall below

Ṽt := EG
t

[∫ T∧τ

t

e−
∫ u
t rsds

(
Πu − (c̃u − ru)Cu − (f̃u − ru)(Ṽ − Cu)

−(ru − h̃u)Hu)

)
du+ 1{t≤τ≤T}e

−
∫ τ
t rsdsθτ

]

where we assumed that Πt in (3.2) was due to a payoff and, possibly, to a dividend3 process, c := c̃,
f := f̃ , h := h̃ and ε := εC,τ = εI,τ . In Table 3.1, we highlight the measurability properties of
the factors involved, which include those predefined by the contract agreement as well as those
that depend on the price evolution. We recall that the close-out value εu is usually taken as the
default-free price or as the adjusted price of the defaultable claim: the first choice gives a solvable
linear BSDE, while the second (εu = Ṽu) determines a non-linear BSDE, not explicitly solvable.
We examine this last case.

It is to be noted that the default times are not market observable, thus the theoretical price
represented by (3.2) must be projected on to the market filtration Ft.

To do so, we employ the Key Lemma and its extensions, (see Section 3.1 of [5]).

Lemma 3.1.1 (Key). For any G-measurable random variable X and t > 0, we have

EG
t

[
1{τ>t}X

]
= 1{τ>t}EG

t

[
X
]
= 1{τ>t}

EF
t

[
1{τ>t}X

]
P(τ > t}|Ft)

. (3.3)

In particular, for any t ≤ s

P(t < τ ≤ s|Gt) = 1{τ>t}
P(t < τ ≤ s|Ft)

P(τ > t|Ft)
,

Symbol Role Assumption
Φ() Payoff at maturity Lipschitz function of ST

π Contract dividends F-predictable
C Collateral process F-predictable
H Hedging process G-predictable
ε Close-out value F-predictable
c Collateral rate F-predictable
f Funding rate G-predictable
h Hedging rate G-predictable
LGDi, i = C, I Loss Given Default Constant

Table 3.1: Summary of cashflows and their measurability properties

3A dividend is a distribution of a portion of a company’s earnings to its shareholders. Typically, dividends are
paid out in cash, but they can also be distributed in the form of additional shares of stock or other assets. Dividends
are usually paid out on a regular basis, such as quarterly or annually, and are often seen as a way for companies to
share their profits with their investors.
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3.1. Evaluation of European claims under the intensity approach

and we have that for any Gt-measurable random variable Y there exists an Ft-measurable random

variable Z such that 1{τ>t}Y = 1{τ>t}Z.

Proof. Multiplying both sides of (3.3) by P(τ > t|Ft), we need to verify that for any A ∈ Gt we
have ∫

A

1{τ>t}XP(τ > t|Ft)dP =

∫
A

1{τ>t}EF
t

[
1{τ>t}X

]
dP.

By Lemma 3.1.14 of [5], for any A ∈ Gt we have A ∩ {τ > t} = B ∩ {τ > t} for some B ∈ Ft,
and so∫

A

1{τ>t}XP(τ > t|Ft)dP =

∫
A∩{τ>t}

XP(τ > t|Ft)dP =

∫
B∩{τ>t}

XP(τ > t|Ft)dP

=

∫
B

1{τ>t}XP(τ > t|Ft)dP =

∫
B

EF
t

[
1{τ>t}X

]
P(τ > t|Ft)dP

=

∫
B

EF
t

[
1{τ>t}EF

t

[
1{τ>t}X

]]
dP =

∫
B∩{τ>t}

EF
t

[
1{τ>t}X

]
dP

=

∫
A∩{τ>t}

EF
t

[
1{τ>t}X

]
dP =

∫
A

1{τ>t}EF
t

[
1{τ>t}X

]
dP

This ends the proof.

Now, we illustrate how we can apply the previous Lemma 3.1.1 with a stochastic process.
Following the proofs in Appendix B of [16] and Lemma 3.8.1 in [39], we have two particular
case. In Lemma 3.1.2, we deal with the case of a change of filtration for a stopped integral, and in
Lemma 3.1.3, we deal with the case of a process valued at a default time.

Lemma 3.1.2. If φu is an integrable G-adapted process, then

1{τ>t}EG
t

[∫ τ

t

φudu

]
= 1{τ>t}EF

t

[∫ T

t

e−
∫ u
t λsdsφudu

]
, .

where φu is an Fu-measurable variable such that 1{τ>u}φ = 1{τ>u}φ.

Proof. We note that

1{τ>t}EG
t

[∫ τ

t

φudu

]
=1{τ>t}EG

t

[∫ τ∧T

t

φudu

]
= 1{τ>t}EG

t

[∫ T

t

1{τ>u}φudu

]

=EG
t

[∫ T

t

1{τ>t}1{τ>u}φudu

]
=

∫ T

t

EG
t

[
1{τ>t}1{τ>u}φu

]
du.

By applying the Lemma 3.1.1 we have∫ T

t

1{τ>t}
EF

t

[
1{τ>t}1{τ>u}φu

]
EF

t

[
1{τ>t}

] du.

4Assume that the filtration G = (Gt)t satisfies Gt = Ht ∧ Ft, with Ht = σ(1{τ≤u} : u ≤ t) . Then G∗ ⊆ G,
where G∗ = (G∗

t )t≥0, with G∗
t := {A ∈ G : ∃B ∈ Ft, A ∩ {τ > t} = B ∩ {τ > t}}.
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3.1. Evaluation of European claims under the intensity approach

Remember that EF
t

[
1{τ>t}

]
= P(τ > t|Ft) = e−

∫ t
0 λudu, we get

1{τ>t}

∫ T

t

EF
t

[
1{τ>u}φu

]
e
∫ t
0 λsdsdu.

We choose an Fu-measurable variable such that 1{τ>u}φu = 1{τ>u}φu and obtain

1{τ>t}

∫ T

t

EF
t

[
EF

u [1{τ>u}]φu

]
e
∫ t
0 λsdsdu

=1{τ>t}

∫ T

t

EF
t

[
e−

∫ u
0 λsdsφu]e

∫ t
0 λsdsdu

=1{τ>t}EF
t

[ ∫ T

t

e−
∫ u
t λsdsφudu

]
.

Lemma 3.1.3. If φu is an F-predictable process, we have:

EG
t

[
1{t<τ<T}1{τC<τI}φτ

]
= 1{τ>t}EF

t

[∫ T

t

e−
∫ u
t (λC

s +λI
s)dsλCuφudu

]
.

Proof. Consider φu = 1A1{s<u≤v} for t ≤ s < v ≤ T and some A ∈ Fs. We note that

1{s<τ=τC≤v} = 1{v∧τ≥τC} − 1{s∧τ≥τC}.

By adding and subtracting
∫ v∧τ
0

λCu du and
∫ s∧τ
0

λCu du, we have(
1{v∧τ≥τC} −

∫ v∧τ

0

λCu du

)
+

∫ v∧τ

0

λCu du

−
(

1{s∧τ≥τC} −
∫ s∧τ

0

λCu du

)
−
∫ s∧τ

0

λCu du,

denote as MC
a = 1{a∧τ≥τC} −

∫ a∧τ
0

λCu du, it’s a G-martingale ( refer to Section 3.7.1 of [5] for
further details.). Hence

EG
t

[
1{t<τ=τC≤T}1{τC≤τI}φτ

]
= EG

t

[
1A1{s<τ=τC≤v}

]

=EG
t

[
1A

(
MC

v −MC
s +

∫ v∧τ

s∧τ
λCu du

)]
= EG

t

[
1AEG

s

[
MC

v −MC
s +

∫ v∧τ

s∧τ
λCu du

]]

=EG
t

[∫ T∧τ

t∧τ
λCuφudu

]
= 1{τ>t}

1

P(τ > t|Ft)
EF

t

[∫ T

t

λCuφuP(τ > u|Fu)du

]

=1{τ>t}EF
t

[∫ T

t

e−
∫ u
t (λC

s +λI
s)dsλCuφudu

]
,
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where the last equality follows from the formula

EG
t

[∫ T∧τ

t∧τ
ϕudu

]
= 1{τ>t}

1

P(τ > t|Ft)
EF

t

[∫ T

t

ϕuP(τ > u|Fu)du

]

which holds for any F-predictable process ϕ such that the right-hand side is well defined.

Projecting (3.2) on Ft, and employing the previous lemma we may conclude that the Ft-
adapted adjusted price Vt, such that 1{τ>t}Vt = 1{τ>t}Ṽt verifies the following F-BSDE

Vt = EF
t

[
e−

∫ T
t (rs+λs)dsΦ(ST ) +

∫ T

t

e−
∫ u
t (rs+λs)ds

(
πu − (cu − ru)Cu − (fu − ru)(Vu − Cu)

− (ru − hu)Hu + Vuλu − LGDCλ
C
u (Vu − Cu)

+ + LGDIλ
I
u(Vu − Cu)

−
)
du

]
,

(3.4)
where fu, hu and Hu are F-adapted processes such that 1{τ>t}ξu = 1{τ>t}ξu for ξ = f, h,H ad
define in (3.2).

If Ft is generated by a (possibly multidimensional) Brownian motion driving the market assets
prices, by the martingale representation theorem, taking for granted the necessary integrability
conditions, we have the following theorem

Propotion 3.1.1. The value process (3.4) satisfies the following BSDE:

Vt =Φ(ST ) +

∫ T

t

(
πu + (fu − cu)Cu − fuVu − (ru − hu)Hu − LGDCλ

C
u (Vu − Cu)

+

+LGDIλ
I
u(Vu − Cu)

−
)
du−

∫ T

t

Zu · dWu +Mt,

(3.5)

where Wt is a (vector) Brownian motion, Zt an F-adapted, possibly square integrable, (vector)

process, and Mt is a martingale orthogonal to
∫ T

t
Zu·dWu, possibly depending on further stochas-

tic factors. For the sake of simplicity, we assume M = 0.

Proof. Denote as

Q(t, Vt, λ
C
t , λ

I
t ) : = πt − (ct − rt)Ct − (ft − rt)(Vt − Ct)− (rt − ht)Ht + Vtλt

− LGDCλ
C
t (Vt − Ct)

+ + LGDIλ
I
t (Vt − Ct)

−.

We rewrite the value process as

Vt = EF
t

[
e−

∫ T
t (rs+λs)dsΦ(ST ) +

∫ T

t

e−
∫ u
t (rs+λs)dsQ(u, Vu, λ

C
u , λ

I
u)du

]
. (3.6)
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3.1. Evaluation of European claims under the intensity approach

We multiply (3.6) by e−
∫ t
0 (rs+λs)ds, and we split the integral

e−
∫ t
0 (rs+λs)dsVt =EF

t

[
e−

∫ T
0 (rs+λs)dsΦ(ST )−

∫ t

0

e−
∫ u
0 (rs+λs)dsQ(u, Vu, λ

C
u , λ

I
u)du

+

∫ T

0

e−
∫ u
0 (rs+λs)dsQ(u, Vu, λ

C
u , λ

I
u)du

]
.

The right hand side is made up of a Ft−predictable term and a local F-martingale. Then, since
it is adapted to the Brownian generating the filtration F , by the martingale representation theorem
we have

EF
t

[
e−

∫ T
0 (rs+λs)dsΦ(ST ) +

∫ T

0

e−
∫ u
0 (rs+λs)dsQ(u, Vu, λ

C
u , λ

I
u)du

]
=

∫ t

0

Zu · dWu

for some F-predictable (vector) process Zu

e−
∫ t
0 (rs+λs)dsVt +

∫ t

0

e−
∫ u
0 (rs+λs)dsQ(u, Vu, λ

C
u , λ

I
u)du =

∫ t

0

ZudWu.

By applying integration parts formula, we have

−(rt + λt)e
−

∫ t
0 (rs+λs)dsVtdt+ e−

∫ t
0 (rs+λs)dsdVt + e−

∫ t
0 (rs+λs)dsQ(t, Vt, λ

C
t , λ

I
t )dt = ZtdWt.

whence, we way rewrite the above as

dVt =
[
(rt + λt)Vt −Q(t, Vt, λ

C
t , λ

I
t )
]
dt+ Zt · dWt,

with Zt = e
∫ t
0 (rs+λs)dsZt.

By integrating on interval [t, T ], we have

Vt = VT −
∫ T

t

[
(ru + λu)Vu −Q(u, Vu, λ

C
u , λ

I
u)
]
dt−

∫ T

t

Zu · dWu.

Recalling Q and that VT = Φ(ST ) we get immediately (3.5).

Missing a closed form solution for (3.5), one may try to construct an appropriate approximation
procedure. In the literature, the most widespread method is Monte Carlo simulations.

Monte Carlo simulations are widely used in the literature. Here, we briefly present the Longstaff-
Schwartz method, which provides a tool to discretize conditional expectations. That the method
we employed was introduced in a paper written in 2001, we would like to emphasize that our de-
cision to use this method stems from its widespread use in the articles referenced throughout in
this thesis. The chosen method serves as a benchmark value, allowing us to conduct our analyses
effectively. By doing so, we ensure consistency and comparability with existing research in the
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field.
It is worth noting that more advanced Monte Carlo methods, such as variance reduction or

multilevel techniques, could indeed offer increased competitiveness. However, it is important to
clarify that the primary objective of our research is not to find the best Monte Carlo method.
Instead, our focus lies in establishing a benchmark value that enables us to carry out our analyses
accurately and draw meaningful conclusions.

3.1.1 Monte Carlo techniques

In [41], Longstaff and Schwartz developed a Monte Carlo simulation method for pricing American
options5. Obviously, the method can be employed to value also European options.

The key feature of this method is the discretization of the conditional expectation at all times
and we are going to adapt and employ it to (3.4).

Let us consider our evaluation on a finite partition {t0, t1, · · · , tm = T} of [0, T ] and with step
size ∆t = tj+1 − tj .

According to the theory of no-arbitrage valuation, the value of an option is determined by
taking the expectation of the remaining discounted cashflows with respect to the risk-neutral pric-
ing measure. At time tm = T , the investor knows the option’s value, which is given by the payoff
Φ(ST ). However, the value of the option is unknown at earlier times tk for k = m−1,m−2, . . . , 0,
and we want to estimate it.

Discretizing the time integral we may approximate the value of the derivative defined by (3.5),
at time tk by

Vtk = EF
tk

[
e
−

∫ T
tk
(rs+λs)dsΦ(ST ) +

m∑
j=k+1

e−
∫ tj
tk

(rs+λs)dsQ(tj, Vtj , λ
C
tj
, λItj)

]
. (3.7)

Once this done, it remains to approximation the conditional expectation. The most popular ap-
proach to do so (3.7) is based on regression methods.

The method consists in approximating the solution of (3.7) by a linear combination of known
functions, called basis functions, of the current state of asset price S. This is possible, because the
conditional expectation is a square integrable functions in a Hilbert space, hence, it has a countable
orthonormal basis and the conditional expectation can be represented as a linear function of the
elements of the basis. We can express (3.7) as

Vtk =
∞∑
i=0

βi
tk
ψi(Stk) (3.8)

Here, ψi(Stk) represents the basis function, and βi
tk

represents the unknown coefficients that de-

5An American option is a financial contract that gives the holder the right, but not the obligation, to buy or sell
an underlying asset at a predetermined price (strike price) at any time before or on the option’s expiration date, unlike
European options which can only be exercised on the expiration date.
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pend on time tk.
In our simulation, we use the Laguerre polynomials as our orthonormal basis

ψi(x) = exp(x/2)
ex

i!

di

dxi
(xne−x), i = 0, 1, 2, . . .

but Chebyshev, Legendre, Jacobi or Hermite polynomials can also be used [41].
A regression method is then used to estimate the optimal coefficients for the approximation.

For this, we use the first M <∞ basis functions and denote this further approximation as

V M
tk

=
M−1∑
i=0

βi
tk
ψi(Stk) = β⊤

tk
ψ(Stk),

with βtk = (β0
tk
, β1

tk
, · · · , βM−1

tk
)⊤, and ψ(x) = (ψ0(x), ψ1(x), · · · , ψM−1(x)). The regression

coefficients can be determined using the following theorem.

Theorem 3.1.1 ([48]).
βtk =

(
ψ(Stk)ψ(Stk)

⊤)−1(
ψ(Stk)Vtk+1

)
. (3.9)

where ψ(Stk)ψ(Stk)
⊤ is a M ×M matrix and ψ(Stk)Vtj+1

is a vector of length M .

Proof. By least-square regression we want to find

min
βtk

(
ψ(Stk)

⊤βtk − Vtk+1

)2

.

By taking the derivative of the above with respect to βtk and setting it equal 0, we get

ψ(Stk)

(
ψ(Stk)

⊤βtk − Vtk+1

)
= 0.

By solving for βtk , we get

ψ(Stk)ψ(Stk)
⊤βtk = ψ(Stk)Vtk+1

⇒βtk =
(
ψ(Stk)ψ(Stk)

⊤)−1
ψ(Stk)Vtk+1

.

We remark that (3.4) describes a backward regression.
So starting from tm = T we may estimate βtk , step by step by employing Monte Carlo simula-

tions at each time tk.
More in detail, we simulateN independent sample paths for asset price Stk = (S

(n)
t1 , S

(n)
t2 , . . . , S

(n)
tm )

for n = 1, . . . , N . The least-squares estimation of the regression coefficients βtk is then calculated
as follows:

β̂tk =

(
1

N

N∑
n=1

ψ(S
(n)
tk

)ψ(S
(n)
tk

)⊤
)(

1

N

N∑
n=1

ψ(S
(n)
tk

)V
(n)
tk+1

)
,
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where V (n)
tk+1

is known, because we are working backwards in time. Then, the approximation of the
option’s value is given by:

V̂ M
tk

= β̂⊤
tk
ψ(Stk) k = m− 1,m− 2, . . . , 0,

where V̂ M
tk

=
(
V̂

M(1)
tk

, V̂
M(2)
tk

, . . . , V̂
M(N)
tk

)⊤.
In [24] it is showed that

lim
M→∞

V̂ M
tk

= Vtk .

In particular, we are interested in the approximation value at the initial time t0, which can be
obtained by:

V t0 =
1

N

N∑
n=1

V̂
M(n)
t0 .

When considering a triple of stochastic processes, the Monte Carlo simulations needed to approxi-
mate Vt in (3.4) are bound to become extremely costly in terms of machine time. As a result, using
alternative numerical methods that have lower computational costs becomes a crucial matter.

3.2 Contract’s value expression by PDE

In this section, we derive the PDE associated with (3.5). To do so, we require the processes
(S, λC , λI) to be in a Markovian context. Using the flow notation, for the underlying we write

St,x
s = x+

∫ s

t

ruS
t,x
u du+

∫ s

t

σSt,x
u dWu, σ > 0, t ≤ s ≤ T,

and we assume σ constant from now on.
As for the default intensities, we propose modeling them using Cox Ingersoll Ross processes

λC,t,y
s =y +

∫ s

t

γC(ψC − λC,t,y
u )du+

∫ s

t

ηC

√
λC,t,y
u dBC

u

λI,t,zs =z +

∫ s

t

γI(ψI − λI,t,zu )du+

∫ s

t

ηI

√
λI,t,zu dBI

u,

(3.10)

with γi, ψi, ηi ≥ 0, i = C, I , verify the Feller condition, 2γiψi ≥ η2i , to ensure the processes’
positivity, and

Wt = ρCB
C
t + ρIB

I
t +

√
1− ρ2C − ρ2IBt, ρ2C + ρ2I ≤ 1, −1 ≤ ρi ≤ 1

where (BC
t , B

I
t , Bt) is 3-dimensional standard Brownian motion.

To simplify our discussion we also assume that

• the claim pays no dividends, hence π = 0;

• the rates f, c, h are deterministic, bounded functions of time;
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3.2. Contract’s value expression by PDE

• the collateral process is a fraction of the process Vu, namely Cu = αuVu, where 0 ≤ αu ≤ 1

is a function of time.

• the processHt = H(t, St, Vt, Zt), whereH(u, x, v, z) is a deterministic, Lipschitz-continuous
function in v, z, uniformly in u. Besides we take H(u, x, 0, 0) continuous in x. This means
that we have an explicit representation for the hedging process Ht (see [2, 12, 16, 20]);

Here, we choose the two default intensities independent of each other to simplify calculations,
but this assumption may be easily removed by adding a further correlation parameter in the dis-
cussion that follows.

We remark that by taking γi = ψi = ηi = 0, i = C, I , we can restrict to the case of determin-
istic intensities (as in [16]).

Using this representation, (3.5) becomes

dV t,x,y,z
s =

[
(1− αt)

[
fsV

t,x,y,z
s + LGDCλ

C,t,y
s V t,x,y,z,+

s − LGDIλ
I,t,y
s V t,x,y,z,−

s

]
+ αscsV

t,x,y,z
s + (rs − hs)H(t, St,x

s , V t,x,y,z
s , Zt,x,y,z

s )

]
ds+ Zt,x,y,z

s dWs + dMs

V t,x
T =Φ(St,x

T ),
(3.11)

and the previous equation satisfies the assumptions of Theorem 2.3.5, here reported: Φ(x) ∈
L2(FT ), and V : [0, T ]×Ω×Rn ×Rn×d → Rn such that V(·, 0, 0) ∈ L1,2(F), and f is uniformly
Lipschitz continuous in (y, z), with

dV(s, y, z) =
[
(1− αt)

[
fsys + LGDCλ

C
s y

+
s − LGDIλ

I
sy

−
s

]
+ αscsys

+(rs − hs)H(t, xs, ys, zs)
]
ds

As shown in [2], assuming a δ-hedging for this product, an appropriate change of probability may
be applied to include the hedging function H in the dynamics 6, so that (3.11) may be rewritten as

dV t,x,y,z
s =

[
(1− αs)

[
fsV

t,x,y,z
s + LGDCλ

C,t,y
s V t,x,y,z,+

s − LGDIλ
I,t,y
s V t,x,y,z,−

s

]
+ αscsV

t,x,y,z
s + (rs − hs)

∂V t,x,y,z
s

∂S
St,x
s

]
ds+ Zt,x,y,z

s dWs + dMs

V t,x
T =Φ(St,x

T ).

(3.12)

Since the triple (St,x, λC,t,y, λI,t,z) is Markovian, V t,x,y,z
s is a deterministic function of the state

variables, u(s, St,x
s , λC,t,y

s , λI,t,zs ). Assuming u(t, x, y, z) ∈ C1,2([0, T ] × R3
+), by applying Ito’s

6We do not address the hedging problem any further.
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formula

du(t, x, y, z) =∂tu(t, x, y, z)dt+ ∂xu(t, x, y, z)dS + ∂yu(t, x, y, z)dλ
C + ∂zu(t, x, y, z)dλ

I

+
1

2

(
∂2xxu(t, x, y, z)d⟨S, S⟩+ ∂2yyu(t, x, y, z)d⟨λC , λC⟩+ ∂2zzu(t, x, y, z)d⟨λI , λI⟩

)
+2∂2xyu(t, x, y, z)d⟨S, λC⟩+ 2∂2xzu(t, x, y, z)d⟨S, λI⟩

=∂tu(t, x, y, z) + ∂xu(t, x, y, z)(rxdt+ σxdWt) + ∂y(t, x, y, z)
(
γC(ψC − y)dt+ ηC

√
ydBC

t

)
+∂zu(t, x, y, z)

(
γI(ψI − z)dt+ ηI

√
zdBI

t

)
+

1

2

(
∂2xxu(t, x, y, z)σ

2x2dt+ ∂2yyu(t, x, y, z)η
2
Cydt

+∂2zzu(t, x, y, z)η
2
Izdt+ 2∂2xyu(t, x, y, z)ρCσxηC

√
ydt+ 2∂2xzu(t, x, y, z)σxηI

√
zdt

)
=
[
∂tu(t, x, y, z) + rx∂xu(t, x, y, z) +

(
γC(ψC − y)

)
∂yu(t, x, y, z) +

(
γI(ψI − z)

)
∂zu(t, x, y, z)

+
1

2
σ2x2∂2xxu(t, x, y, z) +

1

2
η2Cy∂

2
yyu(t, x, y, z) +

1

2
η2Iz∂

2
zzu(t, x, y, z)

+ρCσxηC
√
y∂2xyu(t, x, y, z) + ρIσxηI

√
z∂2xzu(t, x, y, z)

]
dt

+σx∂xu(t, x, y, z)dWt + ηC
√
y∂yu(t, x, y, z)dB

C
t + ηI

√
z∂zu(t, x, y, z)dB

I
t ,

(3.13)

and comparing the two expressions (3.12) and (3.13), it can be shown that u(t, x, y, z) verifies the
non-linear PDE independent of the interest rate r. Indeed,(

(1− α)
(
fu(t, x, y, z) + LGDCyu(t, x, y, z)

+ − LGDIzu(t, x, y, z)
−)

+ αcu(t, x, y, z) + (r − h)x∂xu(t, x, y, z)
]
dt

=
[
∂tu(t, x, y, z) + rx∂xu(t, x, y, z) +

(
γC(ψC − y)

)
∂yu(t, x, y, z) +

(
γI(ψI − z)

)
∂zu(t, x, y, z)

+
1

2
σ2x2∂2xxu(t, x, y, z) +

1

2
η2Cy∂

2
yyu(t, x, y, z) +

1

2
η2Iz∂

2
zzu(t, x, y, z)

+ρCσxηC
√
y∂2xyu(t, x, y, z) + ρIσxηI

√
z∂2xzu(t, x, y, z)

]
dt

⇒
[
∂tu(t, x, y, z) + hx∂xu(t, x, y, z) +

(
γC(ψC − y)

)
∂yu(t, x, y, z) +

(
γI(ψI − z)

)
∂zu(t, x, y, z)

+
1

2
σ2x2∂2xxu(t, x, y, z) +

1

2
η2Cy∂

2
yyu(t, x, y, z) +

1

2
η2Iz∂

2
zzu(t, x, y, z)

+ρCσxηC
√
y∂2xyu(t, x, y, z) + ρIσxηI

√
z∂2xzu(t, x, y, z)− αcu(t, x, y, z)

−
(
(1− α)

(
fu(t, x, y, z) + LGDCyu(t, x, y, z)

+ − LGDIzu(t, x, y, z)
−)]dt = 0.

Now, we denote

L(u)(t, x, y, z) = ∂tu(t, x, y, z) + γC(ψC − y)∂yu(t, x, y, z) + γI(ψI − z)∂zu(t, x, y, z)

+ hx∂xu(t, x, y, z) +
1

2
η2Cy∂

2
yyu(t, x, y, z) +

1

2
η2Iz∂

2
zzu(t, x, y, z)

+
1

2
σ2x2∂2xxu(t, x, y, z) + ρCσxηC

√
y∂2xyu(t, x, y, z)

+ ρIσxηI
√
z∂2xzu(t, x, y, z)− αcu(t, x, y, z)− (1− α)fu(t, x, y, z),

and we rewrite the non-linear PDE L(u)(t, x, y, z)− (1− α)
[
LGDCyu(t, x, y, z)

+ − LGDIzu(t, x, y, z)
−
]
= 0

u(T, x, y, z) = Φ(x).
(3.14)
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In the next chapter we are going to suggest a discretization of (3.14) that seems to work efficiently
in terms of computational times and accuracy.

We remark that the solution to (3.14) might be intended in viscosity sense, and we postpone
the analysis of the regularity of the solution to further future work.
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Chapter 4

Problem discretization

The method of lines (see, for instance, [28, 29, 38, 40, 45–47]) is a numerical technique commonly
used to solve partial differential equations (PDEs) by discretizing them in one or more spatial di-
mensions and solving the resulting system of ordinary differential equations (ODEs). Typically,
the method of lines involves dividing the spatial domain into a set of grid points and approximating
the spatial derivatives in the PDE with finite difference approximations. This discretization trans-
forms the PDE into a system of ODEs, which can be solved by a suitable time integration method,
such as the Euler one.

4.1 Finite difference approximations

In this section we brefly review the finite difference method often employed to approximate the
solution of a PDE, that we will later use for (3.14). However, for a more detailed discussion we
refer to the reader [40, 46, 47].

The finite difference method is a numerical technique used to solve differential equations. It
involves approximating the derivatives in the equation with difference quotients and discretizing
the spatial domain by dividing it into a grid of points. The method then iteratively computes
approximate solutions of the equation at each point on the grid. The accuracy of the solution is
determined by the size of the grid and the order of the used difference approximation. The finite
difference method is widely used in various fields, including physics, engineering, and finance. For
simplicity, we consider the one-dimensional case. Let’s suppose that a function ν is sufficiently
smooth to be expanded in a Taylor series in the neighborhood of x with an increment h > 0.
Truncating the expansion it at the first order, we have:

ν(x+ h) = ν(x) + hν ′(x) +O(h2) ⇒ ν ′(x) ≈ ν(x+ h)− ν(x)

h
(4.1)

where the term O(h2) indicates that the error is proportional to h2. From (4.1), we deduce that
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4.1. Finite difference approximations

there exists a constant K > 0, such that for h > 0 sufficiently small we have:∣∣∣∣ν(x+ h)− ν(x)

h
− ν ′(x)

∣∣∣∣ ≤ Kh, K = sup
y∈[x,x+h0]

|ν ′′(y)|
2

,

for h0 > 0 and h ≤ h0. The error committed by replacing the derivative ν ′(x) by the differential
quotient is then of order h and the approximation of ν ′ at point x is said to be consistent at the first
order. This approximation is known as the forward difference approximation of ν ′. Likewise, we
can define the first-order backward difference approximation of ν ′ at point x as:

ν(x− h) = ν(x)− hν ′(x) +O(h2) ⇒ ν ′(x) ≈ ν(x− h)− ν(x)

h
. (4.2)

In order to improve the accuracy of the approximation, we define a consistent approximation,
called the central difference approximation, by taking the points x − h and x + h into account.
Expanding the function ν at the points x+ h and x− h, truncating it at the third order, we have

ν(x+ h) = ν(x) + hν ′(x) +
h2

2
ν ′′(x) +O(h3)

ν(x− h) = u(x)− hν ′(x) +
h2

2
ν ′′(x)−O(h3).

By subtracting these two expressions we obtain

ν(x+ h)− ν(x− h)

2h
= ν ′(x) + 2O(h3) ⇒ ν ′(x) ≈ ν(x+ h)− ν(x− h)

2h
(4.3)

Hence, for every h ∈ (0, h0), we have the following bound on the approximation error∣∣∣∣ν(x+ h)− ν(x− h)

2h
− ν ′(x)

∣∣∣∣ ≤ Ch2, K = sup
y∈(x−h0,x+h0)

|ν ′′′(y)|
6

.

This defines a second-order consistent approximation to ν ′.
In a similar way, an approximation can be found for the second derivative, using the Taylor

expansions up to the fourth order to achieve the result:

ν(x+ h) = ν(x) + hν ′(x) +
h2

2
u′′(x) +

h3

6
ν ′′′(x) +O(h4)

ν(x− h) = ν(x)− hν ′(x) +
h2

2
ν ′′(x)− h3

6
ν ′′′(x) +O(h4).

Like before, we can write

ν(x+ h)− 2ν(x) + ν(x− h)

h2
= ν ′′(x) + 2O(h4) ⇒ ν ′′(x) ≈ ν(x+ h)− 2ν(x) + ν(x− h)

h2
(4.4)

As far as numerical solutions are concerned, we will only deal with discrete solutions, i.e.,
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solutions denoted only by a discrete set of x-values. Let us assume a grid of points {x0 < x1 <

· · · < xm} with step ∆x = xi+1 − xi. In general, a method provides an approximation νi ≈ ν(xi)

on each grid point. So, now we can approximate (4.1) (4.2) (4.3) (4.4) as follows

ν ′i =
νi+1 − νi

∆x
forward finite difference for first derivative

ν ′i =
νi−1 − νi

∆x
backward finite difference for first derivative

ν ′i =
νi+1 − νi−1

2∆x
central finite difference for first derivative

ν ′′i =
νi+1 − 2νi + νi−1

(∆x)2
central finite difference for second derivative

4.2 Example: discretizing a parabolic problem

We consider the diffusion equation with boundary and initial condition
∂tu(t, x)− ∂2xxu(t, x) = f(t, x), t > 0, x ∈ (0, L)

u(t, 0) = u(t, L) = 0, t > 0

u(0, x) = u0(x), x ∈ (0, L).

(4.5)

To solve the heat equation numerically we have to discretize the spatial domain following the finite
difference. We sub-divide the space interval intom uniform sub-interval with step ∆x = xi+1−xi,
and denote by ui(t) an approximation of u(t, xi), i = 1, · · · ,m− 1, and approximate the problem
(4.5) by the scheme

u′i(t) =
1

∆x2
(
ui−1(t)− 2ui(t) + ui+1(t)) = fi(t), i = 1, · · · ,m− 1,∀t > 0

u0(t) = um(t) = 0, ∀t > 0,

ui(0) = u0(xi), i = 1, · · · ,m− 1,

where fi(t) = f(t, xi), and it is a system of ordinary differential equations of the following formu′(t) = −Au(t) + f(t), ∀t > 0

u(0) = u0

(4.6)
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where u(t) = (u1(t), · · · , um−1(t))
⊤ is the vector of unknowns, f(t) = (f1(t), · · · , fm−1(t))

⊤,
u0 = (u1(x1), · · · , u0(xm−1))

⊤ and A is the (m− 1)× (m− 1) tridiagonal matrix of the form

A =
1

∆x2



−2 1 0 · · · 0

1 −2 1 · · · ...
0 · · · · · · · · · 0
... · · · · · · · · · 0

0 · · · 0 1 −2


.

A scheme for the integration of (4.6) with respect to time is the explicit Euler scheme. To con-
struct the scheme, we consider a temporal grid {t0, t1, · · · , tn}, with step ∆t = tj+1 − tj for
j = 0, · · · , n− 1 then, the explicit Euler scheme for the time-integration of (4.6) is

u(tj+1)− u(tj)
∆t

= −Au(tj) + f(tj)

u(t0) = u0,
(4.7)

and we can get u(tj+1) explicitly. Regarding stability [38, 40, 45, 47], the explicit Euler method is
conditionally stable1, and the time-step ∆t should decay as the square of the grid spacing ∆x. In
other words, the method is stable if ∆t < ∆x2

2
. This condition is called Courant–Friedrichs–Lewy

condition (CFL). An unconditionally stable method is the implicit Euler scheme that, applied to
Equation (4.6) leads to 

u(tj+1)− u(tj)
∆t

= −Au(tj+1) + f(tj+1)

u(t0) = u0.
(4.8)

4.3 Discretization of the contract’s value

Returning to our PDE (3.14), we note that the spatial domain R3
+ is unbounded, so we need to

restrict it to an appropriate bounded rectangle [ax, bx] × [ay, by] × [az, bz] ⊂ R3
+. This truncation

requires defining appropriate boundary conditions, which can be done by identifying, when pos-
sible, the asymptotic behaviour of the solution. Here, we decided to exploit the knowledge of the
Black & Scholes formula, with adjusted rates to include the default intensities

u(t, ax, y, z) = 0, u(t, bx, y, z) = ϕ(t, bx; r + λ, σ),

u(t, x, ay, z) = ϕ(t, x; r + λ, σ), u(t, x, by, z) = ϕ(t, x; r + λ, σ),

u(t, x, y, az) = ϕ(t, x; r + λ, σ), u(t, x, y, bz) = ϕ(t, x; r + λ, σ),

(4.9)

1A method is conditionally stable if its stability depends on certain conditions being satisfied. In other words, the
method may be stable for some ranges of input parameters or initial conditions, but unstable for others.In numerical
analysis, a method is considered stable if small perturbations in the input or the algorithm do not cause large errors
in the output. Conditionally stable methods may have regions in their parameter space where they become unstable,
which can lead to numerical errors or incorrect results.
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4.3. Discretization of the contract’s value

where ϕ(t, x;w, σ) is the Black and Scholes’s pricing function. The choice of the Black and
Scholes’s pricing function to set the Dirichlet boundary conditions is somewhat arbitrary. The
rationale behind such choice is that it is exactly what we would have, when considering only
the CVA without any other feature. We sub-divide the three space intervals into m uniform 2 sub-
intervals by taking, xi = ax+i∆x, yi = ay+i∆y, zi = az+i∆z with ∆x = (bx−ax)

m
, ∆y = (by−ay)

m
,

∆z = (bz−az)
m

for i = 0, . . . ,m, and we apply the finite difference method to approximate the space
partial derivatives,

∂xu(t, xk, yi, zj) ≈
u(t, xk+1, yi, zj)− u(t, xk,yi, zj)

∆x
k = 0, . . . ,m− 1, i, j = 0, . . . ,m

∂2xxu(t, xk, yi, zj) ≈
u(t, xk+1, yi, zj)− 2u(t, xk, yi, zj) + u(t, xk−1, yi, zj)

∆x2

k = 1, . . . ,m− 1, i, j = 0, . . . ,m

∂2xyu(t, xk, yi, zj) ≈
u(t, xk+1, yi+1, zj)− u(t, xk, yi+1, zj)− u(t, xk+1, yi, zj) + u(t, xk, yi, zj)

∆x∆y

i, k = 0, . . . ,m− 1, j = 0, . . . ,m.

We write the equation at each point xk, yi, zj , and we denote the piecewise approximation of
u(t, x, y, z) by uk,i,j(t) = u(t, xk, yi, zj) for x ∈ [xk, xk+1),y ∈ [yi, yi+1), z ∈ [zj, zj+1) with
i, j, k = 0, . . . ,m− 1. For fixed xk, yi, zj we get the following non-linear ODE

uk,i,j(t)
′ =DL(uk,i,j)(t)− (1− α)

[
LGDCyiuk,i,j(t)

+ − LGDIzjuk,i,j(t)
−)], k, i, j = 0, . . . ,m,

(4.10)

DL(uk,i,j) is the discretized operator of L(u).
We can write the non-linear ODE system in matrix form

u(t)′ = A(x, y, z)u(t)− (1− α)
[
LGDCyu(t)

+ − LGDIzu(t)
−], (4.11)

where u(t)′, u(t), and A(x, y, z) is a 3-dimensional tensor respectively, and x, y, z are the vectors
in Rm+1 given by

x = (ax, x1, . . . , xm−1, bx)
⊤, y = (ay, y1, . . . , ym−1, by)

⊤, z = (az, z1, . . . , zm−1, bz)
⊤

with final condition u(T, x, y, z) = Φ(x) holds, where Φ(x) =
(
Φ0(x),Φ1(x), . . . ,Φm(x)

)⊤.
Accordingly with the choice described before, we pose the boundary conditions

u(t, x0, yi, zj) =0 i, j = 0, . . . ,m,

u(t, xm, yi, zj) =ϕ(t, xm; r + λ, σ) i, j = 0, . . . ,m,

u(t, xk, y0, zj) =u(t, xk, ym, zj) = ϕ(t, xk; r + λ, σ) k, j = 1, . . . ,m− 1,

u(t, xk, yi, z0) =u(t, xk, yi, zm) = ϕ(t, xk; r + λ, σ) k, i = 1, . . . ,m− 1.

2There may be sub-regions of the spatial sub-intervals that may be more probable than others, so it would be
worthwhile to perform non-uniform discretization, for details see [37, 47].
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To solve system (4.11), we use the explicit Euler scheme with N (0 = t0 < t1 < · · · < tN−1 <

tN = T ) time sub-intervals of uniform length ∆t = ti+1 − ti for i = 0, . . . , N − 1, so we get

u(ti) = u(ti+1)−∆t
[
A(x, y, z)u(ti+1)−(1−α)

(
LGDCyu(ti+1)

+−LGDIzu(ti+1)
−)
]

. (4.12)

We are aware that the explicit Euler method could produce serious numerical instabilities, and
therefore favouring an implicit scheme would be a better choice, since it has no limitations on the
time integration step, even through implying quite lengthy computations. In the next section, we
compare some numerical results from the explicit, implicit, and semi-explicit Euler schemes. In
our setting, we are indeed able to achieve a good and competitive accuracy by the explicit scheme
in highly shorter computational times.

For t = 0, we are interested in computing the value u(0, x, y, z) for given x, y, z. To do
so, we simply choose the closest points of the grid such that xk ≈ x,yi ≈ y, zj ≈ z for some
k, i, j = 0, . . . ,m and we approximate the solution value by u(0, xk, yi, zj), or, as suggested in
[47], the specific option value is determined by spline interpolation.

We remark that for the solution of (4.12) to remain stable, themin
(

∆t
∆x2 ,

∆t
∆y2

, ∆t
∆z2

)
must remain

below a critical value. Hence, if one wishes to increase the accuracy of (4.12) by using smaller ∆x
or ∆y,∆z, also a smaller value of ∆t is required to keep the CFL number below its critical value.
Thus, there is a conflicting requirement between improving accuracy and maintaining stability (for
more detail on the stability theory, see Chapter 9 of [40], or Chapter 9 of [38]), which may imply an
increase in computational time. For completeness, we also give the expression using the implicit
Euler method

u(ti) = u(ti+1)−∆t
[
A(x, y, z)u(ti)− (1− α)

(
LGDCyu(ti)

+ − LGDIzu(ti)
−)
]

. (4.13)

and the semi-implicit Euler method [4, 10]

u(ti) = u(ti+1)−∆t
[
A(x, y, z)u(ti+1)− (1− α)

(
LGDCyu(ti)

+ − LGDIzu(ti)
−)] . (4.14)

4.4 Numerical Results

In this section, we present some numerical results of our method for the European call price. First,
we looked at the case with constant intensities to test the method’s accuracy, comparing with the
results obtained in [16] by Monte Carlo simulations, with the same set of parameters. In this case,
only one state variable, represented by the underlying price, is present.

All the algorithms were implemented in MatLab(R2021a) on a Intel(R) Core(TM) i5-10210U
CPU @ 1.60GHz 2.11 GHz computer.

We consider a European call option with six months maturity, strike price K = 90, and we
set (as in [16]) r = 0.005, σ = 0.4, LGDC = 0.6, LGDI = 0.6, c = 0.002, f = r, α = 0.5

λC = 0.04 and λI = 0.02.
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4.4. Numerical Results

As the computational time was not reported in [16], we replicated their simulations, moreover
a 95% confidence interval has been built, with M = 106 sample independent paths and with
Nt = 1000 temporal nodes, obtaining the value 16.4494, in about 7 minutes of machine time
(fairly close to 16.4534 in [16]). In Table 4.1, we report the results of our method with the relative
computational times and we compare them with the results in [16]. We remark that with only

Monte Carlo simulations
Nt Seconds confidence interval Price by Brigo
1000 416 (16.4405;16.4583) 16.4494 16.4534

Method of lines
Nt Nx Seconds Price
100 30 0.31 16.4545771
500 50 0.28 16.4272255
1000 90 0.57 16.4643242
5000 150 1.93 16.4555334
5000 200 1.52 16.4568071
10000 300 3.7 16.4574087
50000 500 18.48 16.4574889

Table 4.1: Prices of a European call with maturity 6 months and deterministic intensities with explicit scheme.

30 spatial nodes, we get about the same value as by Monte Carlo simulations, with almost nihil
computational time. From Table 4.1, we achieve better performance and comparable accuracy also
with respect to [3] 3, where the computational time is about 25 seconds.

Moreover, increasing the number of spatial nodes and of temporal nodes, the second and third
digits stabilize, showing the convergence of the method. The first two decimal digits coincides
with those obtained by [16], and thanks to the convergence, we probably achieve a better accuracy.
Indeed, the digits seem to stabilize progressively.

In Table 4.2, we compare the explicit, semi-implicit and implicit 4 methods as the strike price
varies (K = 90; 100; 110), with the benchmark values from [16] and from our Monte Carlo simu-
lations. Finally in the Table 4.3, we run the same analysis for varying volatility (σ = 0.3; 0.4; 0.6).
Given a mesh dense enough, all Euler schemes produce faster results than Monte Carlo simula-
tions, as shown in Table 4.2, and they approximate the benchmark very well. Furthermore, we
observe that the explicit method achieves the same results as the implicit one, but in remarkably
shorter times. This indicates that, in our particular setting, the explicit method might be preferable
even through unstable. Again, the explicit method results considerably quicker than the semi-
implicit one, marginally faster, yet less accurate, than the implicit one. Since the explicit method,
unlike the implicit one, imposes stability constraints on the time step, as the underlying’s volatility
increases, we expect the CFL constraint to become stricter. Actually, we observe instability also
with the implicit scheme (see lines 1 − 5 Table 4.3), due to a space step problem, while in the
explicit scheme the problem is due to the time step. These considerations are worth investigation

3All tests have been performed by using Matlab on an Intel(R) Xeon(R) CPU E3-1241 3.50 GHz computer.
4We use the Matlab function "fsolve" to implement the implicit and semi-implicit approaches.
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4.4. Numerical Results

K=90
P.Brigo 16.4534
Nt Confidence Interval Price MC Seconds
1000 (16.4405;16.4583) 16.4494 416
Nt Nx Seconds Explicit Seconds Semi-Implicit Seconds Implicit
100 30 0.579 16.454577 0.723 16.454279 1.209 16.454577
1000 90 0.544 16.464324 11.56 16.464295 12.64 16.464324
3000 150 1.16 16.455686 81.5 16.455677 81.88 16.455686

K=100
P.Brigo 11.2858
Nt Confidence Interval Price MC Seconds
1000 (11.3064;11.3160) 11.3112 437.36
Nt Nx Seconds Explicit Seconds Semi-Implicit Seconds Implicit
100 30 0.137 11.207271 0.71 11.206931 0.90 11.207271
1000 90 0.67 11.290589 12.3 11.290555 15.5 11.290589
3000 150 1.954 11.296083 87.6 11.296071 89.1 11.296083

K=110
P.Brigo 7.4999
Nt Confidence Interval Price MC Seconds
1000 (7.5416;7.5463) 7.5439 448.22
Nt Nx Seconds Explicit Seconds Semi-Implicit Seconds Implicit
100 30 0.250 7.498880 1.12 7.498544 1.23 7.498880
1000 90 0.460 7.519851 25.18 7.519817 23.02 7.519851
3000 150 1.648 7.513870 84.5 7.513859 83.45 7.513870

Table 4.2: We compare explicit, semi-implicit and implicit methods with Monte Carlo simulations and with [16]
results in the case of deterministic intensities.

and they might bring up new lines of research for future work. Nevertheless, in Table 4.3, we show
this has no impact on our issue as long as an appropriately dense mesh is selected.

In the case of stochastic intensities, we additionally set the following values for the parameters
of the CIR processes

γi = 0.02, ψi = 0.161, ηi = 0.08, i = C, I .
In Table 4.4, we report the results of our method with the corresponding computational times.

To the best of our knowledge, in the literature, we could not find numerical methods covering this
general case, so we had to resort again to Monte Carlo simulations to provide a benchmark.

As shown in Table 4.4, Monte Carlo simulations give 16.4416 in about 9 minutes, while with
30 nodes for each space interval, we get a result close to the benchmark in less than a second.
To stabilize the first two decimal digits, we increased the spatial nodes to 100, still with a very
reasonable computational time. To achieve better accuracy, we increased the number of spatial and
time nodes even further, inevitably paying a cost in terms of time machine. Certainly Monte Carlo
simulations may be optimized, nevertheless a our approach provides consistent improvement in
machine.

The Table 4.5 compare the results of Table 4.1 with a symmetric finite difference for the ap-

Ivan Gallo 60



4.4. Numerical Results

σ = 60%
Nt Confidence Interval Price MC Seconds
1000 (21.22770;21.26145) 21.2445788 459.6
Nt Nx Seconds Explicit Seconds Semi-Implicit Seconds Implicit
100 30 0.166 8.46E+24 0.89 0.000000 0.9 0.000000
1000 90 0.5 20.854963 20.74 10.104217 26.16 20.854963
2000 90 0.8 21.328809 19.93 21.328788 21.16 21.328809
3000 150 1.15 20.854866 117.09 10.003868 105.93 10.003868
6000 150 2.10 21.323061 155.5 21.323054 140.8 21.323061

σ = 40%
Nt Confidence Interval Price MC Seconds
1000 (16.4387;16.4567) 16.44777 433.06
Nt Nx Seconds Explicit Seconds Semi-Implicit Seconds Implicit
100 30 0.150 16.454577 0.59 16.454279 0.79 16.454577
1000 90 0.420 16.464324 10.69 16.464295 11.49 16.464324
3000 150 1.160 16.455686 78.5 16.455677 76.57 16.455686

σ = 30%
Nt Confidence Interval Price MC Seconds
1000 (14.0337; 14.0457) 14.03972 476.8
Nt Nx Seconds Explicit Seconds Semi-Implicit Seconds Implicit
100 30 0.158 14.054061 0.57 14.053846 0.83 14.054061
1000 90 0.420 14.071745 11.69 14.071724 12.15 14.071745
3000 150 1.18 14.060971 75.87 14.060971 75.21 14.060978

Table 4.3: Comparison between explicit, semi-implicit and implicit methods for various volatilities in the case of
deterministic intensities.

Monte Carlo simulation
Nt Seconds Price confidence interval
1000 527 16.4416729 (16.433;16.4506)

Method of lines
Nt Nxyz Seconds Price
100 30;30;30 0.66 16.42897944
500 50;50;50 4.16 16.42209551
1000 90;90;90 17.68 16.46349986
1500 100;100;100 46.32 16.45064167
2000 120;120;120 173.43 16.45825752
5000 150;150;150 487.6 16.45475883

Table 4.4: Prices of a European call with maturity 6 months and stochastic intensities, ρ1 = ρ2 = 0 with explicit
scheme.

proximation of the first spatial derivative. This new discretization may certainly give benefits in
terms faster, but there is no significant gain in accuracy.
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Forward finite difference Symmetric finite difference
Nt Nxyz Seconds Price Seconds Price
50 10 0.226 16.16472574 0.150 16.41309
100 30 0.66 16.42897944 0.320 16.48178
500 50 4.16 16.42209551 1.630 16.46791
1000 90 17.68 16.46349986 12.800 16.51000
1500 100 46.32 16.45064167 32.090 16.49799

Table 4.5: Prices of a European call with maturity 6 months and stochastic intensities, ρC = ρI = 0 with classic
and symmetric finite difference for the approximation of the first spatial derivatives.

4.5 Sensitivity analysis

In this section, we run a short sensitivity analysis for our method in the case of stochastic in-
tensities. This is done employing the explicit Euler scheme. Indeed, again a similar accuracy is
achieved by both the explicit and the implicit scheme, but with much larger computational times
for the second. Indeed a better accuracy can be obtained by increasing the number of spatial and
temporal nodes, but it becomes prohibitive timewise when applying the implicit scheme. We fur-
ther remark that when using the explicit scheme, the increase of computational times is due solely
to the thickening of the spatial nodes, while they remain stable (about 1 second) as the number of
temporal nodes increases.

In Table 4.6, we compare the explicit, semi-implicit and implicit Euler schemes. Especially,
when using an semi-implicit and implicit schemes, computational times grow considerably when
increasing the number of spatial nodes. Hence we were forced to keep the number of spatial nodes
equal to 15 with consequently far less accuracy.

The Table 4.6 emphasizes that, despite the explicit technique’s potential instability, it is precise
and extraordinarily fast in solving this particular problem.

From Table 4.4 one might conclude that the introduction of randomness for the intensities did
really affect the price. To understand whether this was due to the particular choice of parameters
or it was a general feature, fixing 100 spatial nodes, we performed a short sensitivity analysis, with
respect to the intensity parameters, maturity, and strike price. In Table 4.7 we consider a European
call option with different maturity (six months, nine months, and one year) and different strike
prices and we compared the results with the constant intensities case (taking the initial value of the
CIR processes), to underline the effect of introducing randomness for the intensities. We used the
explitic scheme for this comparison.

As expected, the price appears to be decreasing with respect to the strike price, and increasing
with respect to maturity. Table 4.7 shows also that the randomness of the intensities affects the
price up to the first decimal digit when maturity increases, confirming it might be significant to
consider stochastic intensities models for longer maturities.

Fixing S = 100, K = 90, T = 0.5, α = 0.5, ρC = ρI = 0, we also explored the sensitivity
of the model varying the intensities parameters of λC and λI . Being the derivative a call, the most
relevant effect comes, as it is to be expected, by the parameters (regression speed and long term
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K=90
σ = 60%

Nt Confidence Interval Price MC Seconds
1000 (21.1139; 21.1475) 21.130690 598.69
Nt Nxyz Seconds Explicit Seconds Semi-Implicit Seconds Implicit
50 10 0.15 20.8416 19.80 20.9650 37.76 20.7396
100 15 0.24 21.4150 320.23 21.5437 759.70 21.3704
500 15 0.74 21.3971 1154.24 21.3977 2757.91 21.3882

σ = 40%
Nt Confidence Interval Price MC Seconds
1000 (16.433;16.4506) 16.4416729 527
Nt Nxyz Seconds Explicit Seconds Semi-Implicit Seconds Implicit
50 10 0.20 16.1647 21.20 16.2614 42.23 16.1024
100 15 0.21 16.5132 330.05 16.6135 599.97 16.4902
500 15 0.67 16.5039 1165.80 16.6044 1872.27 16.4993

σ = 30%
Nt Confidence Interval Price MC Seconds
1000 (14.0511;14.0631) 14.05715 587.5
Nt Nxyz Seconds Explicit Seconds Semi-Implicit Seconds Implicit
50 10 0.14 13.9204 20.08 14.0037 44.38 13.8786
100 15 0.21 14.2040 322.50 14.2903 354.83 14.1904
500 15 0.93 14.1985 1174.17 14.2849 5186.40 14.1957

Table 4.6: Prices of a European call with different volatility, with explicit, semi-implicit and implicit schemes in the
stochastic case.

6 months 9 months 1 year
K=90

16.4518463 16.450641 18.6724165 18.6835031 20.4575975 20.554191
K=100

11.292111115 11.291427 13.7820539 13.7948775 15.76652711 15.868368
K=110

7.51052959 7.5102467 10.0105913 10.0248779 12.0356766 12.142071

Table 4.7: Prices of a European call with explicit scheme with different maturities ( 6 months, 9 months, and 1 year)
and strike prices (90, 100, 110), in the deterministic and stochastic case.

average) of the counterparty’s default intensity, while the investor’s intensity parameters influence
the price almost irrelevantly (Table 4.8). Finally, in Table 4.9, we show how the volatility affects
the explicit method’s convergence.

4.6 Conclusion

In this work, we developed a simple approximation procedure for the adjusted value of a derivative
contract subject to counterparty risk, collateralization and founding costs, assuming a diffusion
model for the default intensities and close-out values as a portion of the adjusted price itself. This
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ηC = 0.08
ψC = 0.161 ψC = 0.25 ψC = 0.4

γC Price γC Price γC Price
0.02 16.4510 0.02 16.4499 0.02 16.4480
0.03 16.4502 0.03 16.4486 0.03 16.4458
0.05 16.4488 0.05 16.4459 0.05 16.4415
0.1 16.4451 0.1 16.4397 0.1 16.4307
0.2 16.4380 0.2 16.4274 0.2 16.4096

ηI = 0.08
ψI = 0.161 ψI = 0.25 ψ2 = 0.4

γI Price γI Price γI Price
0.02 16.45102548 0.02 16.451025498 0.02 16.4510255148
0.03 16.45102549 0.03 16.451025512 0.03 16.4510255277
0.05 16.45102551 0.05 16.451025528 0.05 16.4510255387
0.1 16.45102553 0.1 16.451025541 0.1 16.4510255434
0.2 16.45102554 0.2 16.451025544 0.2 16.4510255436

Table 4.8: Sensitivity analysis for different regression speeds and fixed long term averages with explicit
scheme.

γC = γI = 0.1
ψC = ψI = 0.05
K=90
σ = 40% Nt = 1500 Nt = 2500 Nt = 3000
ηC/ηI 0.08 0.1 0.2
0.08 16.42465705 16.42431168 16.34466761
0.1 16.42466191 16.42431655 16.34467243
0.2 NaN 16.42160683 16.34200124
σ = 60% Nt = 2500 Nt = 3000 Nt = 4500
ηC/ηI 0.08 0.1 0.2
0.08 21.39176544 21.39161946 21.28965302
0.1 21.39177163 21.39162566 21.28964689
0.2 NaN 21.38742986 21.28551264

Table 4.9: Sensitivity analysis for different volatilities with explicit scheme.

generate a non-linear BSDE, with an associated non-linear PDE characterizing the price.
By the simple method of lines applied to this PDE, we showed that accurate approximations

could be achieved in very manageable computational times, differently from what happens when
employing Monte Carlo simulations. We ran a short sensitivity analysis to estimate the effects of
the introduction of stochastic intensities.

Ivan Gallo 64



Bibliography

[1] F. Antonelli, R. D’Ambrosio, and I. Gallo. Analysis of non linear approximated value equa-
tion under multiple risk factors and stochastic intensities. Computers and Mathematics with

Applications, https://doi.org/10.1016/j.camwa.2023.03.014, 2023.

[2] F. Antonelli, A. Ramponi, and S. Scarlatti. Approximate value adjustments for european
claims. European Journal of Operational Research, 300(3):1149–1161, 2022.

[3] I. Arregui, B. Salvador, and C. Vázquez. Pde models and numerical methods for total value
adjustment in european and american options with counterparty risk. Applied Mathematics

and Computation, 308:31–53, 2017.

[4] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri. Implicit-explicit runge-kutta methods for time-
dependent partial differential equations. Applied Numerical Mathematics, 25(2-3):151–167,
1997.

[5] T. R. Bielecki, M. Jeanblanc, and M. Rutkowski. Credit risk modeling. osaka university csfi
lecture notes series 2, 2009.

[6] T. R. Bielecki and M. Rutkowski. Credit risk: modeling, valuation and hedging. Springer
Science & Business Media, 2013.

[7] J.-M. Bismut. Théorie probabiliste du contrôle des diffusions. American Mathematical Soc.,
167, 1976.

[8] L. Bo, A. Capponi, and P.-C. Chen. Credit portfolio selection with decaying contagion inten-
sities. Mathematical Finance, Forthcoming, 2017.

[9] L. Bo and C. Ceci. Locally risk-minimizing hedging of counterparty risk for portfolio of
credit derivatives. Applied Mathematics & Optimization, 82(2):799–850, 2020.

[10] M. Briani, R. Natalini, and G. Russo. Implicit–explicit numerical schemes for jump–diffusion
processes. Calcolo, 44(1):33–57, 2007.

[11] D. Brigo. Counterparty risk faq: credit var, pfe, cva, dva, closeout, net-
ting, collateral, re-hypothecation, wwr, basel, funding, ccds and margin lending.
http://dx.doi.org/10.2139/ssrn.1955204, 2011.

65



BIBLIOGRAPHY

[12] D. Brigo, C. Buescu, M. Francischello, A. Pallavicini, and M. Rutkowski. Nonlinear valua-
tion with xvas: two converging approaches. Mathematics, 10(5):791, 2022.

[13] D. Brigo, A. Capponi, and A. Pallavicini. Arbitrage-free bilateral counterparty risk valuation
under collateralization and application to credit default swaps. Mathematical Finance: An

International Journal of Mathematics, Statistics and Financial Economics, 24(1):125–146,
2014.

[14] D. Brigo, A. Capponi, A. Pallavicini, and V. Papatheodorou. Pricing counterparty risk in-
cluding collateralization, netting rules, re-hypothecation and wrong-way risk. International

Journal of Theoretical and Applied Finance (IJTAF), 16(02):1–16, 2013.

[15] D. Brigo and K. Chourdakis. Counterparty risk for credit default swaps: Impact of spread
volatility and default correlation. International Journal of Theoretical and Applied Finance,
12(07):1007–1026, 2009.

[16] D. Brigo, M. Francischello, and A. Pallavicini. Nonlinear valuation under credit, funding,
and margins: Existence, uniqueness, invariance, and disentanglement. European Journal of

Operational Research, 274(2):788–805, 2019.

[17] D. Brigo, Q. Liu, A. Pallavicini, and D. Sloth. Nonlinear valuation under collateral, credit
risk and funding costs: a numerical case study extending black-scholes. Handbook in Fixed-

Income Securities, Wiley, 2014.

[18] D. Brigo, Q. D. Liu, A. Pallavicini, and D. Sloth. Nonlinearity valuation adjustment: Non-
linear valuation under collateralization, credit risk, and funding costs. Innovations in Deriva-

tives Markets: Fixed Income Modeling, Valuation Adjustments, Risk Management, and Reg-

ulation, 3–35, 2016.

[19] D. Brigo and M. Masetti. Risk neutral pricing of counterparty risk. Counterparty Credit Risk

Modeling: Risk Management, Pricing and Regulation. Risk Books, 2005.

[20] D. Brigo, M. Morini, and A. Pallavicini. Counterparty credit risk, collateral and funding:

with pricing cases for all asset classes, volume 478. John Wiley & Sons, 2013.

[21] D. Brigo and A. Pallavicini. Counterparty risk pricing under correlation between default and
interest rates. Numerical methods for finance, 63:79–98, 2007.

[22] C. Burgard and M. Kjaer. Partial differential equation representations of derivatives with
bilateral counterparty risk and funding costs. The Journal of Credit Risk, 7(3):1–19, 2011.

[23] U. Cherubini. Counterparty risk in derivatives and collateral policies: the replicating portfolio
approach. ALM of Financial Institutions. Institutional Investor Books, 2005.

Ivan Gallo 66



BIBLIOGRAPHY

[24] E. Clément, D. Lamberton, and P. Protter. An analysis of a least squares regression method
for american option pricing. Finance and Stochastics, 6:449–471, 2002.

[25] S. Crépey. Bilateral counterparty risk under funding constraints—part i: Pricing. Mathemat-

ical Finance, 25(1):1–22, 2015.

[26] S. Crépey. Bilateral counterparty risk under funding constraints—part ii: Cva. Mathematical

Finance, 25(1):23–50, 2015.

[27] S. Crépey, T. R. Bielecki, and D. Brigo. Counterparty risk and funding: A tale of two puzzles.
Chapman and Hall/CRC, 2014.

[28] R. D’Ambrosio, S. D. Giovacchino, and D. Pera. Parallel numerical solution of a 2d
chemotaxis-stokes system on gpus technology. International Conference on Computational

Science, 59–72, 2020.

[29] R. D’Ambrosio, M. Moccaldi, and B. Paternoster. Adapted numerical methods for advection–
reaction–diffusion problems generating periodic wavefronts. Computers & Mathematics with

Applications, 74(5):1029–1042, 2017.

[30] N. El Karoui, E. Pardoux, and M. Quenez. American options. Numerical methods in finance,
13:215, 1997.

[31] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential equations in
finance. Mathematical finance, 7(1):1–71, 1997.

[32] I. Gallo. Non-linear approximated value adjustments for derivatives under multiple risk fac-
tors. International Conference on Computational Science and Its Applications, 13376:217–
227, 2022.

[33] P. V. Gapeev, M. Jeanblanc, L. Li, and M. Rutkowski. Constructing random times with
given survival processes and applications to valuation of credit derivatives. Contemporary

quantitative finance, 255–280, 2010.

[34] K. Glau, Z. Grbac, M. Scherer, and R. Zagst. Innovations in derivatives markets: fixed

income modeling, valuation adjustments, risk management, and regulation. Springer Nature,
2016.

[35] A. Green. XVA: credit, funding and capital valuation adjustments. John Wiley & Sons, 2015.

[36] J. Gregory. Counterparty credit risk and credit value adjustment: A continuing challenge for

global financial markets. John Wiley & Sons, 2012.

[37] T. Haentjens and K. J. In’t Hout. Alternating direction implicit finite difference schemes for
the heston-hull-white partial differential equation. The Journal of Computational Finance,
16(1):83, 2012.

Ivan Gallo 67



BIBLIOGRAPHY

[38] E. Isaacson and H. B. Keller. Analysis of numerical methods. Courier Corporation, 2012.

[39] M. Jeanblanc, M. Yor, and M. Chesney. Mathematical methods for financial markets.
Springer Science & Business Media, 2009.

[40] R. J. LeVeque. Finite difference methods for ordinary and partial differential equations:

steady-state and time-dependent problems. SIAM, 2007.

[41] F. A. Longstaff and E. S. Schwartz. Valuing american options by simulation: a simple least-
squares approach. The review of financial studies, 14(1):113–147, 2001.

[42] J. Ma and J. Yong. Forward-backward stochastic differential equations and their applica-

tions. Number 1702. Springer Science & Business Media, 1999.

[43] A. Nikeghbali. An essay on the general theory of stochastic processes. Probability Surveys,
3:345–412, 2006.

[44] H. Pham. Continuous-time stochastic control and optimization with financial applications,
volume 61. Springer Science & Business Media, 2009.

[45] W. E. Schiesser. The numerical method of lines: integration of partial differential equations.
Elsevier, 2012.

[46] W. E. Schiesser and G. W. Griffiths. A compendium of partial differential equation models:

method of lines analysis with Matlab. Cambridge University Press, 2009.

[47] G. D. Smith, G. D. Smith, and G. D. S. Smith. Numerical solution of partial differential

equations: finite difference methods. Oxford university press, 1985.

[48] Z. Wu. Pricing American options using Monte Carlo method [Master’s thesis]. University
of Oxford, 2012.

[49] J. Zhang. Backward Stochastic Differential Equations: From Linear to Fully Nonlinear The-

ory, volume 86. Springer, 2017.

Ivan Gallo 68


	List of Tables
	Value Adjustment Theory
	Unilateral CVA
	Bilateral CVA
	Trading under Collateralization
	Collateralization
	Close-Out value
	Collateral Rehypothecation
	Bilateral CVA Formula under Collateralization and Close-out rules
	Collateralization BCVA General Formula

	Example of Collateralization Schemes
	Collateral Management under Margining Procedures
	Perfect Collateralization

	Funding Value Adjustment
	Trading under funding risk
	Liquidity policies
	Implementing Hedging Strategies

	Continuous-time generalizated Pricing Equation

	Backward Stochastic Differential Equation
	Preliminary notions
	Motivation
	Existence and uniqueness
	Linear BSDE
	A Priori Estimates for BSDEs
	Well-Posedness of BSDEs

	Markov BSDEs and PDEs
	Nonlinear Feynman-Kac Formula


	Non-linear approximated value adjustments
	Evaluation of European claims under the intensity approach
	Monte Carlo techniques

	Contract's value expression by PDE 

	Problem discretization
	Finite difference approximations
	Example: discretizing a parabolic problem
	Discretization of the contract's value
	Numerical Results
	Sensitivity analysis
	Conclusion

	Bibliography

