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Abstract
In this article, a new method is proposed to approximate the rightmost eigenpair of
certain matrix-valued linear operators, in a low-rank setting. First, we introduce a
suitable ordinary differential equation, whose solution allows us to approximate the
rightmost eigenpair of the linear operator. After analyzing the behaviour of its solu-
tion on the whole space, we project the ODE on a low-rank manifold of prescribed
rank and correspondingly analyze the behaviour of its solutions. For a general linear
operator we prove that—under generic assumptions—the solution of the ODE con-
verges globally to its leading eigenmatrix. The analysis of the projected operator is
more subtle due to its nonlinearity; when A is self-adjoint, we are able to prove that
the associated low-rank ODE converges (at least locally) to its rightmost eigenmatrix
in the low-rank manifold, a property which appears to hold also in the more general
case. Two explicit numerical methods are proposed, the second being an adaptation
of the projector splitting integrator proposed recently by Lubich and Oseledets. The
numerical experiments show that the method is effective and competitive.
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dell’Aquila, via Vetoio, I-67100 L’Aquila, Italy

Published online: 1 September 2021

Adv Comput Math (2021) 47: 66

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-021-09895-2&domain=pdf
mailto: nicola.guglielmi@gssi.it
mailto: daniel.kressner@epfl.ch
mailto: carmela.scalone@graduate.univaq.it


1 Introduction

In several applications, one is interested in computing eigen-solutions of a matrix
valued linear operator A : X ∈ R

n×n −→ A(X) ∈ R
n×n. Examples of such

operators are the following:

(i) A(X) = AX + XB (Sylvester equation [5, 14]);
(ii) A(X) = ∑

i BiXCi ;
(iii) A(X) = A • X (componentwise multiplication);
(iv) A combination of previous cases.

There has been quite some work on computing low-rank approximations of
eigensolutions for symmetric problems. But most of these methods are based on
optimization and cannot be extended to nonsymmetric matrices.

In the case where A is a vector-valued symmetric operator, a continuous-time
approach similar to the one we consider here is discussed, e.g. by Absil in [1]. Recent
papers addressing efficient methods to approximate eigenvectors (reshaped into low-
rank eigenmatrices) of a symmetric matrix or eigenmatrices of a symmetric operator
are discussed, e.g. in [9, 12, 13] and [15]; we also refer the reader to the extensive
bibliography in these articles.

Our goal, in this article, is to approximate the leading eigenmatrix (that is asso-
ciated to the rightmost eigenvalue of the linear operator) in a suitable low-rank
manifold (which is justified in several applications).

The paper is organized as follows. First, we state the framework, then in Section 2
we introduce a differential equation having the capability of approximating the lead-
ing eigenpair(s) of a linear matrix-valued operator. In Section 3, we analyze its
equilibria and, in Section 4, we study the asymptotic behaviour of its solution and
in particular convergence to equilibria. In Section 5, we project the ODE on a low-
rank manifold (with fixed rank) and analyze its properties. In Section 6, we propose
two explicit schemes for its numerical integration. Finally, in Section 7, we show the
effectiveness of the proposed method for a few examples. In particular, for the case
of self-adjoint operators, we compare our algorithm to the well-known ALS method.

1.1 Framework

Let A be a real matrix-valued linear operator,

A : Rn×n → R
n×n

that is X ∈ R
n×n =⇒ A(X) ∈ R

n×n. We are interested in computing its eigenpairs,
that is

A(X) = λX, X �= O (1)

where X and λ are allowed to be complex-valued. We call a solution X of (1) eigen-
matrix of the operator A. Note that, as usual, the eigenvalues of A coincide with the
eigenvalues of its matrix representation, A ∈ R

n2×n2 .
We focus on computing either the rightmost eigenvalue λ1 when this is real (and

simple) or the righmost complex-conjugate pair (which is generically unique), and
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make, a priori, the following hypothesis (as this is a common property of several
applications) [7]:

(H) X has quickly decaying singular values.

This motivates to constrain the search of approximate eigensolutions to a low-rank
manifold. In this article, we approach this problem by integrating a suitable system
of ODEs in a low-rank manifold. This can be efficiently pursued by, e.g. a variant of
the splitting integrator by Lubich and Oseledets [10].

We remark that we are not assuming that A is self-adjoint and are indeed mostly
interested in the case when A is not self-adjoint.

2 A suitable ODE

For a pair of matrices A, B ∈ R
n×n, we let

〈A, B〉 = trace(ATB) =
n∑

i,j=1

AijBij

denote the Frobenius inner product and ‖A‖ = 〈A, A〉1/2 the associated Frobenius
norm.

We consider the following system of ODEs
{

Ẋ(t) = A (X(t)) − 〈
A (X(t)) , X(t)

〉
X(t)

X(0) = X0, ‖X0‖ = 1
(2)

for general real initial data. In the sequel we omit—when not necessary—the
dependence on t .

Theorem 1 (Norm conservation) The solution of (2) has the property

‖X(t)‖ = 1 ∀t ≥ 0.

Proof Let ‖X(t)‖ = 1 at some instant t . A direct computation shows that

1

2

d

dt
‖X(t)‖2 = 〈Ẋ(t), X(t)〉

= 〈A (X(t)) , X(t)〉 − 〈A (X(t)) , X(t)〉〈X(t), X(t)〉 = 0.

Then, by the initial condition, the property holds for all t .

Theorem 1 implies that the solution of (2) satisfies the property

X(t) ∈ B, B = {Z ∈ R
n×n : ‖Z‖ = 1}.

Hence, ‖X‖ is a Lyapunov function for the system and the solution of (2) remains
bounded. In the following result, we study its equilibria. We let

α(X) = 〈A(X), X〉
denote the Rayleigh quotient.
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2.1 Related literature

For a vector-valued linear operator, that is, for a matrix A ∈ R
n×n, the following

ODE

ẋ = Ax − xTAx

xTx
x, x ∈ R

n

has been previously studied in the literature along with several variants (see, e.g.
the works [2] and [3]). The symmetric case has received particular attention (see,
e.g. [1]). In particular [11] has shown that its solution is given by

x(t) = eAtx(0)

‖eAtx(0)‖
which allows for a direct investigation and also suggests a direct relation to the power
method.

2.2 Numerical observation

Under the generic assumption that the rightmost eigenvalues of A are simple, we
observe in our numerical experiments that when the rightmost eigenvalue λ1 of A is
real then lim

t→∞ X(t) = X̂ where

A(X̂) = λ1X̂.

On the other hand, when the rightmost eigenvalues are complex conjugate, the
solution of (2) does not converge. Nevertheless, asymptotically,

X(t) ∈ span{V, V }
where V, V are the eigenmatrices associated to the rightmost eigenvalues λ1, λ1. This
property can be exploited to compute λ1 in a simple and inexpensive way.

The aim of the next two sections is to explain the observed behaviour.

3 Equilibria

We characterize the real stationary points of (2); this is a variation of existing results
for the vector-valued case.

Theorem 2 (Equilibria) A matrix X ∈ B is an equilibrium of (2) if and only if it is
an eigenmatrix of A.

Proof If X is a eigenmatrix of A, then the Rayleigh quotient α(X) ∈ R is the
associated eigenvalue and the right-hand side of (2) vanishes.

Vice versa, if we set the right-hand side of (2) equal to zero we get

A(X) − α(X)X = O,

which implies that X is an eigenmatrix of A and α(x) is the associated real
eigenvalue. SinceA is real and the eigenvalue is real,X has necessarily to be real.
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3.1 Stability of equilibria

Let V ∈ B be an eigenmatrix of A. In order to analyze its stability, we set

X(t) = V + �(t), with small �(0)

Imposing the constraint X(t) ∈ B we obtain

1 ≡ 〈X, X〉 = 〈V, V 〉 + 2 〈�, V 〉 + O
(‖�‖2)

for ‖�‖ → 0. Neglecting the second-order term and exploiting the property
〈V, V 〉 = 1 we obtain

〈�, V 〉 = 0 (3)

which means that the variation � should belong to the tangent space of B at V .

3.2 Real rightmost eigenvalue

To study the stability of equlibria, we first consider the case where the rightmost
eigenvalue λ1 is real and simple.

Theorem 3 Assume that A has a unique rightmost eigenvalue λ1, which is assumed
to be real. Let V ∈ B be an eigenmatrix associated with a simple eigenvalue λ ∈ R

of A. Then, V is a stable equilibrium of (2) if and only if λ = λ1.

Proof Consider the linearized system
{

�̇(t) = J (V )�(t)

�(0) = �0, with 〈�0, V 〉 = 0,

where J is the Jacobian of the right-hand side of (2).
It is convenient to pass to the matrix representation A ∈ R

n2×n2 of A. In this
equivalent setting, we let v = col(V ) ∈ R

n2 and δ = col(�) ∈ R
n2 denote the

vectorizations of V and �, respectively. The orthogonality relationship (3) transfers
directly to v and δ,

〈δ, v〉 = 0

so that we get the equivalent system
{

δ̇(t) = J (v)δ(t)

δ(0) = δ0, with 〈δ0, v〉 = 0,

where J is the matrix representation of the Jacobian J . Calculating the Jacobian
yields:

J (v) = A − α(v)I − v∇α(v)T

with I the n2 × n2 identity matrix, ∇ the gradient of α and (when referred to vectors
x ∈ R

n2 ),
α(x) = 〈Ax, x〉.

Exploiting
∇α(v) = (A + AT)v
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and α(v) = λ, we obtain

J (v) = A − λI − vvT(A + AT). (4)

Letting Q be an orthonormal basis of S = span(v)⊥, the subspace orthogonal to
v. In order to describe the dynamics of δ, we have to restrict J (v) to S, that is,

J |S = QTJ (v)Q = QT (A − λI)Q

where we have used QTv = 0 which cancels the last term in (4). As a consequence,
the spectrum of J |S is given by

�(J |S) = {λi − λ}n2i=1 \ {0},
where λ1, . . . , λn2 denote the eigenvalues of A.

If λ = λ1, then J |S is Hurwitz-stable, that is, all its eigenvalues are in the open
left-complex plane, which implies

lim
t→∞ δ(t) = 0 ⇐⇒ lim

t→∞ �(t) = O.

On the contrary, if λ �= λ1 then J |S has at least one eigenvalue lying in the right-
complex plane and δ diverges for generic initial data.

3.3 The self-adjoint case

In the case when A is self-adjoint, a continuous-time approach has been considered
in the literature (see, e.g. [1]) and the convergence to the largest eigenvalue can be
obtained more simply by the fact that, in this case, the system of ODEs is a gradi-
ent system for the functional given by the Rayleigh quotient. We have, in fact, the
following result.

Theorem 4 If A is self-adjoint the Rayleigh functional α(X) increases monotoni-
cally along the solution of (2).

Proof A direct computation yields

d

dt
α(X(t)) = 〈Ẋ,A(X)〉 + 〈X,A(Ẋ)〉 = 2〈Ẋ,A(X)〉.

Replacing Ẋ by the vector field of the ODE gives

〈Ẋ,A(X)〉 = 〈A(X) − α(X)X,A(X)〉 = ‖A(X)‖2 − 〈X,A(X)〉2 ≥ 0

by the Cauchy-Schwarz inequality and the property that ‖X(t)‖ ≡ 1 along the flow
of (2).

As a consequence, we have the following result.

Theorem 5 LetA be self-adjoint, assume that its largest eigenvalue λ1 is simple and
let V1, ‖V1‖ = 1, denote an eigenmatrix associated with λ1. If 〈X0, V1〉 �= 0, then
the solution of (2) is such that

lim
t→∞ X(t) = ±V1
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and
α (X(t)) ↗ λ1 as t → ∞.

Proof The result is a direct consequence of the fact that—by Theorem 4—(2) is a
gradient system for the functional α(X); see also the discussion in the next section.

4 Solution behaviour

4.1 Diagonalization

Assume generically that the operator is diagonalizable (note that this assumption is
not strictly necessary, it only simplifies the analysis). Then, we can write

X(t) =
n2∑

i=1

ui(t)Vi

where {Vi}n2i=1 is the set of eigenmatrices ofA, normalized such that ‖Vi‖ = 1 for all
i. Setting U = (

u1 u2 . . . un2
)
, the system (2) transforms into

⎧
⎪⎪⎨

⎪⎪⎩

u̇i (t) = (λi − α(U(t))) ui(t), i = 1, . . . , n2

U(0) = U0 ∈ C
n2 ,

∥
∥
∥
∥

n2∑

i=1
ui(t)Vi

∥
∥
∥
∥ = 1 ∀t,

(5)

with

α (U(t)) =
〈 n2∑

i=1

ui(t)Vi,

n2∑

j=1

λjuj (t)Vj

〉

.

Lemma 1 Assume that X0 ∈ span (V1, V2, . . . , Vk) for some 1 ≤ k ≤ n2. Then, the
solution of (2) is such that X(t) ∈ span (V1, V2, . . . , Vk) for all t .

Proof The proof is immediate when passing to the equivalent form (5).

4.2 Periodic orbits

In this subsection, we analyze the possibility of having periodic solutions to (2).

Lemma 2 The solution of (5) has the property
( |uj (t)|

|uj (0)|
)2

= fj (t)

with

fj (t) = exp

(

2
∫ t

0

(
Reλj − g(s)

)
ds

)
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where g(·) is independent of j .

Proof It is sufficient to observe that
d|uj |2

dt
= 2Reuj u̇j and replace u̇j by the right-

hand side of the ODE (5).

Theorem 6 Assume that all eigenvalues ofA are real and simple. Then, the solution
of (2) (or, equivalently, of (5)) cannot be periodic.

Proof A periodic solution implies that
( |uj (t)|

|uj (0)|
)2

is periodic of period T for every j .

Then, by Lemma 2, it holds that

T∫

0

(
Reλj − g(s)

)
ds = 0 ∀j .

Because all eigenvalues of A are simple this can only hold for one value j = j̄ . If
j �= j̄ one would have that uj (t) either tends to 0 or tends to ∞ as t → ∞ which
implies that, in order to have a periodic orbit, one should require that uj = 0 for all
j �= j̄ . This reduces the analysis to an initial value associated to a single eigenvector,
for which no periodic orbit can occur.

Theorem 7 Assume that X0 ∈ span
(
V, V

) ∩ R
n×n, where V is a complex

eigenvector of A. Then, X(t) tends to a periodic solution.

Proof We can consider the equivalent system (5), which is 2-dimensional in this
case. We know that there cannot exist equilibria, since this would mean that there is
a real eigenvector in span

(
V, V

)
, which is not possible. Then—by Poincaré theory,

since the solution is bounded—there has to be a limit cycle to which the solution
approaches as t → ∞, which gives the result.

4.3 Global convergence

We now prove the asymptotic behaviour of the solution to (2), in the two interesting
cases of real and complex conjugate rightmost eigenvalues.

Theorem 8 (Real case) Assume A has a unique simple real rightmost eigenvalue λ1
with associated eigenmatrix V1. If 〈X0, V1〉 �= 0 then the solution of (2) is such that

lim
t→∞ X(t) = ±V1.

Proof We first consider the case when A is diagonalizable and focus our attention
on the equivalent system (5). By the assumption u1(0) �= 0. Moreover, by Lemma 2,
we have that - for j > 1 -

( |uj (t)|
|u1(t)|

)2

=
( |uj (0)|

|u1(0)|
)2 fj (t)

f1(t)
= e

2
∫ t

0

(
Reλj − λ1

)
ds
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Since Reλj < Reλ1,

lim
t→∞

uj (t)

u1(t)
= lim

t→∞ e

∫ t

0

(
Reλj − λ1

)
ds

= 0.

By the constraint ‖
n2∑

i=1
ui(t)Vi‖ = 1, we obtain that

lim
t→∞ u1(t) = ±1, lim

t→∞ uj (t) = 0, j = 2, . . . , n2.

An adaptation to the case where A is not diagonalizable is straightforward (we
would simply make use of the Jordan canonical form and generalized eigenvectors in
this non-generic case).

Theorem 9 (Complex conjugate case) Assume A has a unique simple complex con-
jugate pair of rightmost eigenvalues with associated eigenmatrices V1 and V2 = V1.
If 〈X0, V1〉 �= 0 then the solution of (2) is such that

X(t) = Z(t) + R(t) with lim
t→∞ R(t) = O

and
Z(t) ∈ span

(
V1, V1

) ∩ R
n×n.

Proof Similar to the proof of Theorem 8, we consider the equivalent system (5) to
establish that

lim
t→∞ uj (t) = 0, j = 3, . . . , n2.

By reality of the solution, we have that u2(t) = u1(t), which implies the claim. In
particular,

lim
t→∞ ‖u1(t)V1 + u1(t)V1‖ = 1.

Using Theorem 7, we get the following result.

Corollary 1 Assume A has a unique simple complex conjugate pair of rightmost
eigenvalues with associated eigenmatrices V1 and V2 = V1. If 〈X0, V1〉 �= 0, then the
solution X(t) of (2) approaches a periodic solution Z(t) ∈ span

(
V1, V1

) ∩ R
n×n.

4.4 Summary

We have fully analyzed the generic cases of a unique simple rightmost real eigenvalue
or a unique pair of rightmost complex conjugate eigenvalues, respectively.

4.5 Rightmost real eigenvalue

We have proved that the solution of (2) converges to the equilibrium given by the
eigenvector associated to the rightmost eigenvalue, scaled to unit norm.
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4.6 An illustrative example

Consider the following matrix-valued operator, for given matrices A, B, X ∈ R
n×n,

A(X) = AX + XAT + BXBT (6)

with

A =

⎛

⎜
⎜
⎜
⎜
⎝

−3 −1 −1 −1 0
0 −2 −1 −1 −1
0 0 −1 −1 −1
0 0 0 −1.5 −1
0 0 0 0 −2.5

⎞

⎟
⎟
⎟
⎟
⎠

, B = 1

10

⎛

⎜
⎜
⎜
⎜
⎝

−1 −7 −4 3 5
2 6 −14 −3 3

−7 −2 3 4 7
7 2 −1 1 −4
3 2 −2 −4 −4

⎞

⎟
⎟
⎟
⎟
⎠

(7)

The rightmost eigenvalue is λ1 = −1.378076094437169 . . ..
In Fig. 1, it is shown the behaviour of α(X(t)) with X(t) the solution of (2), which

shows that

lim
t→∞ α(X(t)) = λ1.

0 1 2 3 4 5 6 7 8 9 10
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

Fig. 1 Behaviour of α(X(t)) for the example (6)

66   Page 10 of 28 Adv Comput Math (2021) 47: 66



4.7 Complex conjugate rightmost eigenvalues

In this case, we have that X(t) ∈ B lies asymptotically in the 2-dimensional subspace

S2 = span
(
V1, V1

) ∩ R
n×n.

Choosing two vectors X(t), X(t − τ) for large t , with τ suitably chosen would pro-
vide generically a pair of linearly independent vectors of S2. Orthonormalizing this
real basis of S2 we would get the pair

Y1 = X(t), Y2 = β (X(t − τ) − 〈Y1, X(t − τ)〉Y1)
with β such that ‖Y2‖ = 1. Computing the 2 × 2 matrix

M =
( 〈A(Y1), Y1〉 〈A(Y1), Y2〉

〈A(Y2), Y1〉 〈A(Y2), Y2〉

)

we would easily approximate the pair λ1, λ1, by computing the eigenvalues of M .

4.8 An illustrative example

Consider the following matrix-valued operator, for given matrices A, B, X ∈ R
n×n,

A(X) = BXAT (8)

with

A = 1

10

⎛

⎜
⎜
⎜
⎜
⎝

6 5 −2 2 12
−7 −9 −2 6 12

−11 6 11 −1 −2
4 2 −5 16 −27
8 1 −7 10 13

⎞

⎟
⎟
⎟
⎟
⎠

, B = 1

10

⎛

⎜
⎜
⎜
⎜
⎝

−5 −5 10 9 −4
20 −1 −3 −5 5
3 6 −20 −7 −1

−11 −9 0 7 1
−13 15 3 9 1

⎞

⎟
⎟
⎟
⎟
⎠

The rightmost eigenvalues are λ1,2 = 1.902781997845534 . . . ± 1.052820195655
316 . . . i.

After a numerical integration of (2), we observe a periodic solution (see Fig. 2).
Doing the computations described in previous section with t = 100 and τ =

0.3745, we get

M =
(

2.143780501228302 0.992407434046311
−1.175435212407415 1.661783494453201

)

whose eigenvalues

μ1,2 = 1.902781997840752 . . . ± 1.052820195663954 . . . i

well approximate the rightmost pair λ1,2 of A.

5 Low-rank integration

We would like to find an approximate solution to the differential equation, working
only with its low-rank approximation.
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0 2 4 6 8 10 12 14 16 18
1.6

1.8

2

2.2

2.4

2.6

2.8

Fig. 2 Behaviour of α(X(t)) for the example (8)

A natural criterion is the following:

‖Ẋ(t) − F (X(t)) ‖ −→ min

with

F (X(t)) = A (X(t)) − 〈
A (X(t)) , X(t)

〉
X(t)

where the minimization is over all matrices that are tangent to X(t) on the manifold
Mr of matrices of rank r , and the norm is the Frobenius norm.

In this section, we describe an efficient method to integrate (2), when X(t) is
constrained to belong the the manifold of rank-r matrices,

Mr = {Z ∈ R
n,n : rank(Z) = r}.

5.1 Rank-r matrices and their tangent matrices

Following [8], we first collect some basic properties. Matrices of rank r form a man-
ifold, denoted by Mr . Note that instead, the set of matrices of rank at most r is an
algebraic variety. In this subsection, we follow [8]. Every real rank-r matrix X of
dimension n × n can be written in the form

X = USV T (9)

66   Page 12 of 28 Adv Comput Math (2021) 47: 66



where U ∈ R
n×r and V ∈ R

n×r have orthonormal columns, i.e.

UTU = Ir , V TV = Ir ,

(with the identity matrix Ir of dimension r), and S ∈ R
r×r is nonsingular. The sin-

gular value decomposition yields S diagonal, but here we will not assume a special
form of S. The representation (9) is not unique: replacing U by Ũ = UP and V

by Ṽ = V Q with orthogonal matrices P, Q ∈ R
r×r and correspondingly S by

S̃ = P TSQ, yields the same matrix E = USV T = Ũ S̃Ṽ T.
As a substitute for the non-uniqueness in the decomposition (9), we will use a

unique decomposition in the tangent space. Let Vn,r denote the Stiefel manifold of
real n × r matrices with orthonormal columns. The tangent space at U ∈ Vn,r is

TUVn,r = {U̇ ∈ R
n×r : U̇TU + UTU̇ = 0}

= {U̇ ∈ R
n×r : UTU̇ is skew-symmetric}.

As is shown in [8], every tangent matrix Ė ∈ TXMr is of the form

Ẋ = U̇SV T + UṠV T + USV̇ T,

where Ṡ ∈ R
r×r , U̇ ∈ TUVn,r , V̇ ∈ TV Vn,r , and Ṡ, U̇ , V̇ are uniquely determined by

Ė and U, S, V , if we impose the orthogonality conditions

UTU̇ = 0, V TV̇ = 0.

We note the following lemma from [8].

Lemma 3 The orthogonal projection onto the tangent space TXMr at X =
USV T ∈ Mr is given by

PX(Z) = Z − (I − UUT)Z(I − V V T) = ZV V T − UUTZV V T + UUTZ (10)

for Z ∈ R
n×n.

5.2 A differential equation for rank-r matrices

In the differential equation (2), we replace the right-hand side by its orthogonal pro-
jection to TXMr , so that solutions starting with rank r will retain rank r for all
times:

Ẋ = PX

(
A(X) − 〈X,A(X)〉X

)
. (11)

Since X ∈ TXMr , we have PX(X) = X and 〈X, Z〉 = 〈X, PX(Z)〉, and hence
the differential equation can be rewritten as

Ẋ = PX(A(X)) − 〈X, PX(A(X))〉X, (12)

which differs from (2), only in that A(X) is replaced by its orthogonal projection to
TXMr .

Theorem 10 (Norm conservation) Assume that ‖X(0)‖ = 1. Then, the solution of
(11) has the property

‖X(t)‖ = 1 ∀t ≥ 0.
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Proof It is direct to see that

〈X, Ẋ〉 = 0,

so that, the unit norm of X is conserved along solutions of (11).

To obtain the differential equation in a form that uses the factors in X = USV T

rather than the full n × n matrix X, we use the following result.

Lemma 4 [8, Prop. 2.1] ForX = USV T ∈ Mr with nonsingular S ∈ R
r×r and with

U ∈ R
n×r and V ∈ R

r×r having orthonormal columns, the equation Ẋ = PE(Z) is
equivalent to Ẋ = U̇SV T + UṠV T + USV̇ T, where

Ṡ = UTZV

U̇ = (I − UUT)ZV S−1 (13)

V̇ = (I − V V T)ZTUS−T.

Let

F(X) = A(X) − 〈X,A(X)〉X.

Replacing Z by F(X) in (13), we obtain the projected system of ODEs (12), written
in terms of the factors U, S, and V of X.

5.3 Equilibria

The following result characterizes possible equilibria of (12).

Theorem 11 Let X = USV T (with U ∈ R
n×r and V ∈ R

n×r have orthonormal
columns and S ∈ R

r×r is nonsingular). X is an equilibrium of (12) if and only if
{

F
(
USV T

)
V = O

UTF
(
USV T

) = O
(14)

under the constraints UTU = Ir , V TV = Ir , ‖S‖ = 1.

Proof Replacing Z by F = F
(
USV T

)
in (13) one sees that Ṡ = 0 is equivalent to

UTFV = 0. Exploiting this in the second and third ODEs one sees that U̇ = 0 if and
only if FV = 0 and V̇ = 0 if and only if UTF = 0.

System (14) for n, r > 1 consists of 2 n r + r (r + 1) + 1 equations in 2 n r + r2

variables. Indeed multiplying U by a diagonal matrix with elements ±1 and the same
for V would not change the solution.

Remark 1 The existence and the number of equilibria for (12) (equivalently of (13))
is non trivial, given the nonlinearity of the problem. The asymptotic behaviour of the
solution of (12) is also more complicated to determine.
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5.4 Self-adjoint case

In such case, the monotonicity result stated by Theorem 4 remains valid.

Theorem 12 If A is self-adjoint the Rayleigh functional α(X) increases monotoni-
cally along the solution of (11).

Proof We have

d

dt
α(X(t)) = 2〈Ẋ,A(X)〉 = 〈PX (A(X)) − 〈PX (A(X)) , X〉X,A(X)〉

= ‖PX (A(X)) ‖2 − 〈X, PX (A(X))〉2 ≥ 0

by the Cauchy-Schwarz inequality.

The following is an important consequence of the previous result (an illustrative
example is given later in Section 5.7).

Remark 2 Theorem 12 shows that the projected system (12) is still a gradient sys-
tems, so that, the limit of α(X(t)) exists and for generic initial data maximizes (at
least locally) the Rayleigh function overMr .

Corollary 2 Assume A is self-adjoint and X ∈ R
n×n is the eigenmatrix associated

to the largest eigenvalue λ. Let X̃ ∈ Mr be its best approximation of rank-r . Then,
the solution of X(t) of (12) (in Mr ) with initial datum X(0) = X̃ is such that
lim

t→∞ X(t) = X̂ ∈ Mr with

PX̂

(
A(X̂)

) = λ̂X̂

with λ̂ ≥ α(Xr).

5.5 Special cases

Consider the case where
A(X) = AX + XB

with X ∈ R
n×n and given A, B ∈ R

n×n, which includes for example continuous
Lyapunov equations.

It is immediately seen that, for X0 ∈ Mr , we have that X(t) ∈ Mr , for all t . In
such case, we can obtain an approximation of the factors U, S and V of the solution,
by integrating numerically the system of ODEs

Ṡ = UTAUS + SV TBV − α(USV T)S

U̇ = (I − UUT)AU

V̇ = (I − V V T)BTV .

In this case, it is convenient to choose r = 1 since M1 is invariant for A, which
implies that the real eigenmatrices are rank-1.

Next, consider the the case where

A(X) = AXBT
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with X ∈ R
n×n and given A, B ∈ R

n×n.
It is easy to observe that, when one restricts X ∈ M1, then A(X) ∈ M1, which

directly shows that eigenvectors of A(X) are rank-1. Integrating the projected ODE
is convenient in this case to compute the leading eigenpair of A(X).

5.6 The general case: an illustrative example

Consider, again, the operator given by 6, with A and B as in (7).
The rightmost eigenvalue is λ1 = −1.378076094437169 . . . and the associated

eigenmatrix X1 has singular values

σ1 ≈ 0.9818, σ2 ≈ 0.1889, σ3 ≈ 0.0193, σ4 ≈ 0.0078, σ51 ≈ 0.0012.

Hence, X1 may be well-approximated by a rank-2 matrix.
Integrating numerically for rank r = 2, we obtain the behaviour of α(X(t)) illus-

trated in Fig. 3, where it is also drawn (in red) the behaviour of α when integrating
the full ODE (2) in the whole space.

In Fig. 4, it is shown the behavior of the solution of (12) with r = 1.
In particular,

lim
t→∞ α (X(t)) = −1.404307 . . .

which provides a good approximation of the rightmost eigenvalue. Moreover, the
associated eigenmatrix X̂1 has singular values

σ̂1 = 0.9828 . . . , σ̂2 = 0.1846 . . .

and
‖X1 − X̂1‖ ≈ 0.0236

This seems to indicate that the projected operator has a real rightmost eigenvalue.

0 1 2 3 4 5 6 7 8 9 10
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

Fig. 3 Behaviour of α(X(t)) with r = 2, compared to the exact solution (left picture)
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Fig. 4 Behaviour of α(X(t)) with r = 1

Repeating the same integration over the rank-1 manifold (i.e. with r = 1) we
obtain the behaviour of α(X(t)) illustrated in Fig. 4. This indicates that the solution
is periodic and we may conjecture that the projected operator has a pair of complex-
conjugate rightmost eigenvalues.

5.7 A case study: rank-1 projection

We consider here the case where r = 1, i.e. projection onto M1.
We let X = uvT with u, v ∈ R

n of unit norm and get

F(uvT) = A
(
uvT

)
− αuvT, α = uTA

(
uvT

)
v.

In general, we can rewrite (with suitable Aij ∈ R
n×n)

(A(X))ij = 〈X, Aij 〉 =⇒
(
A(uvT)

)

ij
= uTAijv.

The projected ODEs (13) would read

u̇ = (I − uuT)A(uvT)v

(15)

v̇ = (I − vvT)A(uvT)Tu.
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The equations for equilibria, F(uvT)v = 0, F (uvT)Tu = 0, read
⎛

⎝
−α I A

(
uvT

)

A
(
uvT

)T −α I

⎞

⎠

(
u

v

)

= 0 (16)

with uTu = vTv = 1.
Setting

A =

⎛

⎜
⎜
⎜
⎝

A11 A12 . . . A1n
A21 A22 . . . A2n
...

... . . .
...

An1 An2 . . . Ann

⎞

⎟
⎟
⎟
⎠

Equation (16) takes the form

{ (
In ⊗ uT

)
A (In ⊗ v) v = αu

(
In ⊗ vT

)
A
T (In ⊗ u) u = αv,

that is a system of cubic equations, with no quadratic terms.

5.8 The case X ∈ R
2×2

Consider the illustrative case where

A : R
2×2 −→ R

2×2

In general, we are able to prove that the projected eigenvalue problem (16) has 8
(possibly complex-conjugate) eigenvalues, that is the double of the eigenvalues of the
corresponding problem in R

n×n.
In all our experiments, we have observed that, in presence of a rightmost eigen-

value of the projected eigenvalue problem, all the eigenvalues of the Jacobian of the
r.h.s. of (15) have negative real part, implying stability of the corresponding equilib-
rium. On the contrary, the remaining eigenvalues correspond to unstable equilibria.
In the self-adjoint case, this property is rigorous as it is a consequence of Theorem
12.

By a direct computation, it is possible to show that in order that A is self-adjoint
A has the following structure:

A =

⎛

⎜
⎜
⎝

a b b c

d e f g

d f e g

h i i l

⎞

⎟
⎟
⎠

In the generic case, we are able to prove that the projected eigenvalue problem (16)
has 8 eigenvalues, that is the double of the eigenvalues of the corresponding problem
in R

n×n.
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As an example, we let a = c = h = l = 0, b = f = −1 and all the other
coefficients equal to 1, that yields

A(X) =
(−X1,2 + X2,1 + X2,2 −X1,1 − X2,1 + X2,2

X1,1 − X1,2 + X2,2 X1,1 + X1,2 + X2,1

)

(17)

We compute 4 double eigenvalues, λ̂1,2 = √
2, λ̂3,4 = 1, λ̂5,6 = −1, λ̂7,8 =

−√
2, which means more eigenvalues than those of the eigenvalue problem A(X) =

λX in R2×2 (which are ±1 and ±√
5).

The rightmost eigenpairs follow:

– λ̂1 = √
2, û1 =

(√
2−√

2
2

√
2+√

2
2

)T

, v̂1 =
(√

2/2
√
2/2

)T
;

– λ̂2 = √
2, û2 =

(√
2+√

2
2

√
2−√

2
2

)T

, v̂2 =
(√

2/2 − √
2/2

)T
.

As we expect, both equilibria are stable, i.e. they correspond to maxima for α, as the
eigenvalues of the Jacobian of the r.h.s. of (15) are given by

{
−2

√
2, −2

√
2, −2

√
2, −√

2
}
.

All other (6) equilibria are unstable.
This is consistent with the fact (see Theorem 12) that, the projected ODE in the

self-adjoint case is still a gradient system for α, which means that an integration of
(12) allows to compute local maxima of α, over the low-rank manifold.

As we expect, if we slightly perturb the problem, replacing e = 1 by e = 0.99
we obtain two local maxima corresponding to the eigenvalues λ̂1 ≈ 1.41775 and
λ̂2 ≈ 1.41068, so that, the solution of the projected ODE may not converge to the
global maximum, contrarily, to the behaviour of the solution of (2) in Rn×n. Figure 5
shows the behavior of α for this problem for e = 1.

6 Numerical integration

We focus our attention on non-stiff operators and consider two explicit schemes.

6.1 Euler-based integration

The algorithm starts from the factorized rank-r matrix of unit norm

X0 = U0S0V
T
0 , ‖S0‖ = 1

at time t0 = 0 and computes the factors of the approximation X1 = U1S1V
T
1 , again

of unit Frobenius norm, at the next time t1 = t0 + h:
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Fig. 5 The behaviour of α of the rank-1 projected ODE for Problem (17)

1. With F0 = F(X0), set

Ṡ0 = UT
0 F0V0

U̇0 = (I − U0 UT
0 )F0V0S

−1
0

V̇0 = (I − V0 V T
0 )F T

0 U0S
−T
0

2. Let

Ŝ1 = S0 + h Ṡ0

Û1 = U0 + h U̇0

V̂1 = V0 + h V̇0

3. Project to the respective manifolds,

S1 = Ŝ1

‖Ŝ1‖
U1 = orth(Û1)

V1 = orth(V̂1)

where orth(·) is obtained via a QR-decomposition.

Remark 3 The presence of S−1 in the right-hand-side of the differential (13) might
be challenging when S is close to singularity, meaning that, the solution X is almost
rank-r−1. The following numerical integrator performs very well in this case.
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6.2 A projector splitting integrator

We shortly describe a variant of the integration method of Lubich and Oseledets
[10] to integrate (2) on the intersection of the r-rank manifold Mr and the set B of
matrices of unit norm.

Our goal is to integrate the n × n matrix differential equation
{

Ẋ(t) = F (X(t)) = PX (A (X(t))) − 〈
A (X(t)) , X(t)

〉
X(t), X(t) ∈ Mr

X(0) = X0 ∈ Mr , ‖X0‖ = 1.

which - as we have seen in (13) - is written equivalently as a system of differential
equations for the factors U, S, V of X ∈ Mr (as shown in [8]).

The right-hand sides of the differential equations for U and V contain, however,
the inverse of S, which leads to difficulties with standard numerical integrators when
S is nearly singular, that is, when X is close to the manifold of matrices of rank
smaller than r .

We, therefore, follow the alternative approach of [10], which uses an integration
method that is based on splitting the tangent space projection PX, which by (10) is
an alternating sum of three subprojections. A time step of the numerical integrator,
based on the Lie-Trotter splitting corresponding to these three terms, can then be
implemented in the following way.

Here, we consider a slight variant of the projector-splitting integrator of [10], such
that, the unit Frobenius norm is preserved (see also [4]).

The algorithm starts from the factorized rank-r matrix of unit norm

X0 = U0S0V
T
0 , ‖S0‖ = 1

at time t0 = 0 and computes the factors of the approximation X1 = U1S1V
T
1 , again

of unit Frobenius norm, at the next time t1 = t0 + h:

1. With F0 = F(X0), set
K1 = U0S0 + hF0 V0

and, via a QR decomposition, compute the factorization

U1Ŝ1σ̂1 = K1

with U1 having orthonormal columns, with an r × r matrix Ŝ1 of unit Frobenius
norm, and a positive scalar σ̂1.

2. Set
σ̃0S̃0 = Ŝ1 − h UT

1 F0 V0,

where S̃0 is of unit Frobenius norm and σ̃0 > 0.
3. Set

L1 = V0S̃
T
0 + hF T

0 U1

and, via a QR decomposition, compute the factorization

V1S
T
1 σ1 = L1,

with V1 having orthonormal columns, with an r × r matrix S1 of unit Frobenius
norm, and a positive scalar σ1.
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The algorithm computes a factorization of the rank-r matrix of unit Frobenius norm

X1 = U1S1V
T
1 ,

which is taken as an approximation to X(t1). As is shown in [6], this is a first-order
method with an error bound that is independent of possibly small singular values of
X0 or X1.

6.3 Implementation issues

We discuss here a few implementative aspects.

6.4 Guess of the rank r

In order to guess the correct rank-r of the rightmost eigenmatrix ofA, one may apply
a few Euler steps to integrate (2) and choose r after a singular value decomposition
of the computed numerical approximation.

6.5 Stepsize control

In order to control the stepsize, we have a few instruments. The main point is that we
are interested in steady state solution of (2) so that standard error control techniques
do not appear suitable to our task.

To distinguish the case when X(t) converges to the eigenvector associated to the
rightmost eigenvalue, when t → ∞ and the case where X(t) does not converge,
but simply approaches the two-dimensional subspace span(V , V ) spanned by the
complex conjugate eigenvectors associated to λ1 and λ1.

In the first case, one possible functional which may drive the stepsize selection is
the residual

A(X) − α(X)X

which can suggest an increase of the stepsize when it decreases monotonically (in
Frobenius norm).

In the second case, we may ask that the third singular value σ3 of the three arrays

Xn ≈ X(tn), Xn−m ≈ X(tn−m) and Xn−2m ≈ X(tn−2m)

(with m suitably chosen) decreases.

6.6 Self-adjoint case

WhenA is self-adjoint, we have seen in Lemma 4 that the Rayleigh function α(X) is
monotonic. This can be naturally exploited to drive the stepsize selection, so that, in
order to accept the approximation Xk+1 ≈ X(tk+1), we require that

α (Xk+1) > α (Xk) .

66   Page 22 of 28 Adv Comput Math (2021) 47: 66



7 Numerical ilustrations

7.1 Example 1

We start with a simple example by considering the operator

A(X) = AX + XAT + BXCT

for given matrices A, B, C, X ∈ R
n×n.

We consider A diagonal and B, C of moderate norm so that intuition suggests that
the eigenvectors ofA are reasonably close to those of AX+XAT which have rank-1.

We choose n = 50,

A =

⎛

⎜
⎜
⎜
⎝

− 1 0 . . . 0
0 − 2 . . . 0
...

... . . .
...

0 0 . . . − n

⎞

⎟
⎟
⎟
⎠

,

B and C full random matrices of Frobenius norm σn with σ ∈ [0.1, 1]. Table 1
illustrates the results (λ1 indicates the rightmost eigenvalue of A(X), λ̂1 denotes its
approximation obtained by integrating the projected ODE (12) on the rank-r man-
ifold and ‖X1 − USV T‖ indicates the norm of the difference between the leading
eigenmatrix and its rank-r approximation computed integrating (12)).

7.2 Example 2: a PDE with separable coefficients

Consider the problem (with separable coefficients)

ut = ε�u + φ1(x)ψ1(y)ux + φ2(x)ψ2(y)uy

Table 1 Computed values for Example 1

σ r
|λ̂1−λ1||λ1| ‖X1 − USV T‖

0.1 1 1.6681 e−4 0.0160

0.1 2 3.7769 e−5 0.0061

0.2 1 0.0025 0.0609

0.2 2 1.2001 e−4 0.0154

0.2 3 3.2617 e−5 0.0068

0.5 2 0.0625 0.2459

0.5 3 0.0102 0.1809

0.5 4 0.0052 0.1087

0.5 8 0.0019 0.0350

1.0 2 0.0792 0.3265

1.0 4 0.0335 0.3158

1.0 8 0.0298 0.1419

1.0 15 9.5427 e−4 0.0463
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with zero Dirichlet boundary conditions on the domain [0, 1] × [0, 1].
Using standard finite differences and defining Uij = u(xi, yj ) for i, j = 1, . . . n,

yields
U̇ = A(U) = T U + UT + Φ1BUΨ T

1 + Ψ2U (Φ2B)T (18)

with U ∈ R
n×n. Denoting the stepsize k, the matrices are given by

T = ε

k2
trid(1, −2, 1), B = 1

2k
trid(−1, 0, 1)

and - for � = 1, 2 -

Φ� = diag (φ�(x1), . . . , φ�(xn)) , Ψ� = diag (ψ�(y1), . . . , ψ�(yn)) .

Solving the eigenvalue problem

A(U) = λU

and computing the eigenmatrix U1, associated to the rightmost eigenvalue λ1 would
determine the main mode in the dynamics of the evolution PDE, as well as, the decay
rate of its approximate solution.

Setting—as an illustrative example—ε = 1/10, φ1(x) = φ2(x) = sin(πx)

and ψ1(y) = ψ2(y) = cos(πy) and n = 50, we obtain a largest eigenvalue
λ1 = −2.79071 . . . to which corresponds the eigenmatrix U1 (plotted in Fig. 6),
whose five leading singular values are given by:

σ1 ≈ 0.8808, σ2 ≈ 0.4561, σ3 ≈ 0.1243, σ4 ≈ 0.0255, σ5 ≈ 0.0041.

This suggests that the eigenvalue problem may be well approximated restricting the
search of eigenmatrices to M3 or M4, the manifolds of rank-3 and rank-4 n × n-
matrices.

Applying the method we have presented in this article,

(i) looking for a rank-3 approximation of U1, we obtain an approximated eigen-
value λ̃1 ≈ −2.7814 . . . and an approximated eigenmatrix Ũ1 ∈ M3 with
(Fig. 7)

‖U1 − Ũ1‖F

‖U1‖F

≈ 0.0950.

(2) looking for a rank-4 approximation of U1, we obtain an approximated eigen-
value λ̂1 ≈ −2.7945 . . . and an approximated eigenmatrix Û1 ∈ M4 with

‖U1 − Û1‖F

‖U1‖F

≈ 0.0910.

7.3 Self-adjoint case: comparison to the ALSmethod

Given a self-adjoint linear operator A, according to the Courant-Fischer-Weyl min-
max principle, we have that

λmax(A) = max
X �=0

〈A(X), X〉
〈X, X〉 .
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Fig. 6 The leading eigenmatrix for problem (18)

A typical approach for the low rank optimization is the alternating least square (ALS)
procedure. Prescribed a rank r , we impose the factorization

X = UV T

with U ∈ R
n×r and V ∈ R

n×r , so that

λmax(A) ≈ max
X=UV T �=0

〈A(X), X〉
〈X, X〉

The key idea is to optimize the Rayleigh quotient successively over U and V . Fixing
V with orthonormal columns and indicating by u the vectorization of U , since

〈A(X), X〉 = uT(V ⊗ I)TA(V ⊗ I)u

the optimization over U consists in the eigenvalue problem with the matrix AV =
(V ⊗ I)TA(I ⊗ V ). On the other hand, it also holds true that

〈A(X), X〉 = vT(I ⊗ U)TA(I ⊗ U)v

where v is the vectorization of V T, so that the optimization for V coincides with the
eigenvalue problem for the matrix AU = (I ⊗ U)TA(I ⊗ U).

We compare our approach based on the modified projector splitting integrator
(MPS) with the ALS method on a symmetric operator of the type

A(X) = AX + XA + BXB
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Fig. 7 The absolute error U1 − Û1 with Û1 ∈ M4

with A diagonal and B symmetric, of dimensions 50 × 50. The exact value for the
maximum eigenvalue is λ = −1.7391. The initial data are randomly chosen for both
codes, which are performed for r = 1, 3, 5, 7. The computational results are shown
in Table 2. dX is distances between the rank r eigenmatrix computed by a method and
the exact eigenvector X, while dXr is the distance between the computed eigenmatrix
and Xr , the best rank r approximation of X.

The results on this example show that our method is quite competitive with ALS.

Table 2 Comparison between ALS (left) and MPS (right)

ALS MPS

r λmax dX dXr Time λmax dX dXr Time

1 −1.7988 0.0443 0.5768 0.0155 −1.8010 0.0619 0.0460 0.0942

3 −1.7583 0.0482 0.0471 1.4616 −1.7404 0.0296 0.0047 0.0915

5 −1.7395 0.0151 0.0151 2.7483 −1.7392 0.0046 0.0045 0.0966

7 −1.7392 0.0044 2.55e−4 7.5043 −1.7391 3.50e−4 2.45e−4 0.3932
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8 Conclusions

In this article, we have described an efficient method to compute low-rank eigen-
solutions of matrix-valued linear operators associated to their rightmost eigenvalue.
In practise, the integration of the projected ODE (12) on a low-rank manifold of
prescribed rank works very well and provides accurate approximations of exact
eigensolutions when they are close to the manifold Mr . A complete analysis of the
asymptotic behaviour of the solutions of (12) and of the closedness between the
equilibria of (12) and those of (2) remains an open challenging problem.
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from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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