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Abstract

Residential segregation in metropolitan areas is
a phenomenon that can be observed all over the
world. Recently, this was investigated via game-
theoretic models. There, selfish agents of two types
are equipped with a monotone utility function that
ensures higher utility if an agent has more same-
type neighbors. The agents strategically choose
their location on a given graph that serves as resi-
dential area to maximize their utility. However, so-
ciological polls suggest that real-world agents are
actually favoring mixed-type neighborhoods, and
hence should be modeled via non-monotone util-
ity functions. To address this, we study Swap
Schelling Games with single-peaked utility func-
tions. Our main finding is that tolerance, i.e.,
agents favoring fifty-fifty neighborhoods or being
in the minority, is necessary for equilibrium exis-
tence on almost regular or bipartite graphs. Re-
garding the quality of equilibria, we derive (almost)
tight bounds on the Price of Anarchy and the Price
of Stability. In particular, we show that the latter is
constant on bipartite and almost regular graphs.

1 Introduction

Residential segregation is defined as the physical separation
of two or more groups into different neighborhoods [Massey
and Denton, 1988]. It is pervasive in metropolitan areas,
where large homogeneous regions inhabited by residents be-
longing to the same ethnic group emerged over time'.

For more than five decades, residential segregation has
been intensively studied by sociologists, as a high degree
of segregation has severe consequences for the inhabitants
of homogeneous neighborhoods. It negatively impacts their
health [Acevedo-Garcia and Lochner, 2003], their mortal-
ity [Jackson et al., 2000], and in general their socioeconomic
conditions [Massey and Denton, 1993]. While in the early
days of research on segregation the emergence of homoge-
neous neighborhoods was attributed to the individual intoler-
ance of the citizens, it was shown by [Schelling, 1971] that

'See the racial dot map [Cai, 2013] at https://demographics.
coopercenter.org/racial-dot-map/ for examples from the US.
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Figure 1: The x-axis shows the fraction of same-type neighbors, the
y-axis the utility. Left: example of the monotone utility functions
employed in recent related work. Middle and right: example of a
single-peaked utility function considered in this paper.

residential segregation also emerges in a tolerant population.
In his landmark model, he considers two types of agents that
live on a line or a grid as residential area. Every agent has a
tolerance level 7 and is content with her position, if at least
a 7-fraction of her direct neighbors are of her type. Discon-
tent agents randomly jump to other empty positions or swap
positions with another discontent agent. Schelling found that
even for 7 < % i.e., even if everyone is content with being in
the minority within her neighborhood, random initial place-
ments are over time transformed to placements having large
homogeneous regions, i.e., many agents are surrounded by
same-type neighbors, by the individual random movements
of the agents. It is important to note that the agent behavior
is driven by a slight bias towards preferring a certain number
of same-type neighbors and that this bias on the microlevel
is enough to tip the macrolevel state towards segregation.
Schelling coined the term “micromotives versus macrobehav-
ior” for such phenomena [Schelling, 2006].

Since its inception, Schelling’s influential model was thor-
oughly studied by sociologists, mathematicians and physi-
cists via computer simulations. But only in the last decade
progress has been made to understand the involved random
process from a theoretical point of view. Even more recently,
the Algorithmic Game Theory and the AI communities be-
came interested in residential segregation and game-theoretic
variants of Schelling’s model were studied [Chauhan e al.,
2018; Echzell et al., 2019; Bilo et al., 2020; Elkind et al.,
2021; Kanellopoulos et al., 2021; Bullinger et al., 2021].
In these strategic games the agents do not perform random
moves but rather jump or swap to positions that maximize
their utility. These models incorporate utility functions that
are monotone in the fraction of same-type neighbors, i.e., the
utility of an agent is proportional to the fraction of same-type
neighbors in her neighborhood. See Figure 1 (left). However,
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representative sociological polls, in particular data from the
General Social Survey? (GSS) [Smith et al., 20191, indicate
that this assumption of monotone utility functions should be
challenged. For example, in 1982 all black respondents where
asked “If you could find the housing that you would want and
like, would you rather live in a neighborhood that is all black;
mostly black; half black, half white; or mostly white?” and
54% responded with “half black, half white” while only 14%
chose “all black”. Later, starting from 1988 until 2018 all
respondents (of whom on average 78% were white) where
asked what they think of “Living in a neighborhood where
half of your neighbors were blacks?” a clear majority® re-
sponded “strongly favor”, “favor” or “neither favor nor op-
pose”. This shows that the maximum utility should not be
attained in a homogeneous neighborhood.

Based on these real-world empirical observations, this pa-
per sets out to explore a game-theoretic variant of Schelling’s
model with non-monotone utility functions. In particular, we
will focus on single-peaked utility functions with maximum
utility at a A-fraction of same-type neighbors (see Figure 1
(middle and right)), with A € (0, 1), satisfying mild assump-
tions. More precisely, we only require a function p(x) to be
zero-valued at x = 0, 1, to be strictly increasing in the in-

terval [0, A] and to be such that p(x) = p(%) for each

x € [A, 1], that is, both sides of p approach the peak, one from
the left and the other from the right, in the same way, up to a
rescaling due to the width of their domains ([0, A], vs. [A, 1]).
Our main findings shed light on the existence of equilibrium
states and their quality in terms of the recently defined degree
of integration [Elkind ef al., 2021] that measures the number
of agents that live in a heterogeneous neighborhood.

1.1 Model

We consider a strategic game played on a given underlying
connected graph G = (V, E), with |V| = n and |E| = m.
For any node v € V, let the closed neighborhood of v in G
be N[v] = {v}U{u € V : {v,u} € E} where §(v) =
| N[v]|—1 denotes the degree of v, and §(G) and A(G) denote
the minimum and the maximum degree over all nodes in G,
respectively. We call a graph G §-regular, if 6(G) = A(G)
3, and almost regular, if A(G) — 6(G) < 1. We denote with
a(QG) the independence number of G, i.e., the cardinality of
the maximum independent set in G.

A Single-Peaked Swap Schelling Game (G, b, A), called
the game, is defined by a graph G = (V, E)), a positive in-
teger b < n/2 and a peak position A. There are n strategic
agents who choose nodes in V' such that every node is occu-
pied by exactly one agent. Every agent belongs to one of two
types that are associated with the colors blue and red. There
are b blue agents and r = n — b red agents, with blue being
the color of the minority type. Let ¢(4) be the color of agent ¢.

A strategy profile o is an n-dimensional vector where all
strategies are pairwise disjoint, i.e., o is a permutation of V.
The i-th entry of o corresponds to the strategy of the ¢-th

2Since 50 years the GSS is regularly conducted in the US and it
is a valuable and widely used data set for social scientists.

3In numbers: 1988: 57%, 1998: 70%, 2008: 79%, 2018: 82%.
In 2018 33% answered with “favor” or “strongly favor”.
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agent. We treat o as a bijective function mapping agents to
nodes, with o~ being its inverse function. Thus, any strat-
egy profile o corresponds to a bi-coloring of GG in which ex-
actly b nodes of G are colored blue and n — b are colored
red. We say that agent ¢ occupies node v in o if the i-th entry
of o, denoted as & (i), is v and, equivalently, if o~ (v) = i.
We use the notation 1;;(o), with 1,; (o) = 1 if agents 7 and j
occupy adjacent nodes in o and 1,; (o) = 0 otherwise. When
1;;(o) = 1, we say that agents are adjacent.

For an agent ¢ and a feasible strategy profile o, we de-
note the set of nodes of G which are occupied by agents
having the same color as agent i by C;(o) = {v € V :
c(e71(v)) = c(i)}. Observe that C; (o) includes node o (7).

Let fi(o) = Wiﬂ(&’lw be the fraction of agents of

her own color in 7’s neighborhood including herself. Thus,
agents are aware of their own contribution to the diversity of
their neighborhood The utility of an agent ¢ in o is defined as
U;(e) = p(fi(o)), where p is a single-peaked function with
domain [0, 1] and peak at A € (0, 1) that satisfies the follow-
ing two properties: (i) p is a strictly monotonically increasing
function in the interval [0, A] with p(0) = 0; (ii) for each
z € [A1], p(z) = p(%) and p(A) = 1. Each agent
aims at maximizing her utility. We say an agent ¢ is below the
peak when f;(o) < A, above the peak when f;(o) > A, at
the peak when f;(o) = A, and segregated when f;(o) = 1.
A game (G, b, A) depends also on the choice of p. However,
as all our results are independent of p, we remove it from the
notation for the sake of simplicity.

An agent can change her strategy only via a swap, i.e., ex-
changing node occupation with another agent. Consider two
agents ¢ and j, on nodes o (i) and o (j), respectively, per-
forming a swap. This yields the new strategy profile o;;.
As agents are strategic, we only consider profitable swaps,
i.e., swaps which strictly increase the utility of both agents.
Hence, profitable swaps can only occur between agents of dif-
ferent colors. A strategy profile o is a swap equilibrium (SE),
if o does not admit profitable swaps, i.e., if for each pair of
agents i, j, we have U; (o) > U;(o;) or U (o) > Uj(o;).

We measure the quality of a strategy profile o via the
degree of integration (Dol), defined by the number of non-
segregated agents. The Dol is a simple segregation mea-
sure that captures how many agents have contact with other-
type agents. We prefer it to the standard utilitarian wel-
fare since it measures segregation independently of the value
of A. For any fixed game (G,b,A) let o* denote a feasi-
ble strategy profile maximizing the Dol and let SE(G, b, A)
denote the set of swap equilibria for (G,b,A). We study
the impact of the agents’ selfishness by analyzing the Price
of Anarchy (PoA), which is defined as PoA(G,b,A)

Dol(o”) and the Price of Stability (PoS), which

ming csg(a,b,4) Dol(o)
Dol(c*)

is defined as PoS(G, b, A) = Taxg cec o) Dol

We investigate the finite improvement property (FIP)
[Monderer and Shapley, 19961, i.e., if every sequence
of profitable swaps is finite, which is equivalent to
the existence of an ordinal potential function. For
this, let ®(o) = [{{u,v} € E: c(o7 (1)) = c(a~(v))}],
counting the number of monochromatic edges of G under o,
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i.e., the edges whose endpoints are occupied by agents of the
same color, the potential function of o.

1.2 Related Work

In the last decade progress has been made to thoroughly un-
derstand the involved random process in Schelling’s influen-
tial model, e.g., [Brandt et al., 2012; Barmpalias et al., 2014;
Immorlica et al., 20171.

[Zhang, 2004a; 2004b] investigated the random Schelling
process via evolutionary game theory. In particular, [Zhang,
2004b] proposes a model that is similar to our model. There,
agents on a toroidal grid graph with degree 4 also have a
non-monotone single-peaked utility function. However, in
contrast to our model, random noise is added to the utilities
and transferable utilities are assumed. Zhang analyzes the
Markov process of random swaps and shows that this process
converges with high probability to segregated states.

The investigation of game-theoretic models for residential
segregation was initiated by [Chauhan et al., 2018]. There,
agents are equipped with a utility function as shown in Fig-
ure 1 (left) and the finite improvement property and the PoA
in terms of the number of content agents is studied. Later,
[Echzell et al., 2019] significantly extended these results and
generalized them to games with more than two agent types.

[Elkind er al., 2021] introduce a simplified model with
7 = 1. They prove results on the existence of equilib-
ria, in particular that equilbria are not guaranteed to exist on
trees, and on the complexity of deciding equilibrium exis-
tence. Moreover, they study the PoA in terms of the utilitarian
social welfare and in terms of the newly introduced degree of
integration, that counts the number of non-segregated agents.
For the latter, they give a tight bound of 3 on the PoA and the
PoS that is achieved on a tree. In contrast, they derive a con-
stant PoS on paths. [Bild et al., 2020] strengthened the PoA
results for the simplified swap version w.r.t. the utilitarian
social welfare function and investigated the model on almost
regular graphs, grids and paths. Additionally, they introduce
a variant with locality.

Recently, a model was introduced where the agent itself
is included in the computation of the fraction of same-type
neighbors [Kanellopoulos et al., 2021]. We adopt this mod-
ified version also in our model. [Bullinger ef al., 2021] con-
sider the number of agents with non-zero utility as social wel-
fare function. They prove hardness results for computing the
social optimal state and they discuss other stability notations
such as Pareto optimality.

Also related are hedonic games [Dréze and Greenberg,
1980; Bogomolnaia and Jackson, 2002] where selfish agents
form coalitions and the utility of an agent only depends
on her coalition. Especially close are hedonic diversity
games [Bredereck er al., 2019; Boehmer and Elkind, 20201,
where agents of different types form coalitions and the utility
depends also on the type distribution in a coalition.

Our main focus is on single-peaked utility functions. This
can be understood as single-peaked preferences, which date
back to [Black, 1948] and are a common theme in the Eco-
nomics and Game Theory literature. In particular, such pref-
erences yield favorable behavior in the above mentioned he-
donic diversity games and in the realm of voting and social
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choice [Walsh, 2007; Yu et al., 2013; Betzler et al., 2013;
Elkind et al., 2014; Brandt et al., 2015].

1.3 Our Contribution

In this work we initiate the study of game-theoretic models
for residential segregation with non-monotone utility func-
tions. This departs from the recent line of work focusing on
monotone utility functions and it opens up a promising re-
search direction. Non-monotone utility functions are well-
justified by real-world data and hence might be more suitable
for modeling real-world segregation.

We focus on a broad class of non-monotone utility func-
tions well-known in Economics and Algorithmic Game The-
ory: single-peaked utilities. We emphasize that our results
hold for all such functions that satisfy our mild assumptions.
See Table 1 for a detailed result overview.

For games with integration-oriented agents, i.e., A < 1/2,
we show that swap equilibria exist on almost regular graphs
and that improving response dynamics are guaranteed to con-
verge to such stable states. Moreover, for A = % swap equi-
libria exist on the broad class of graphs that admit an inde-
pendent set that is large enough to accommodate the minor-
ity type agents. In particular, this implies equilibrium exis-
tence and efficient computability on bipartite graphs, includ-
ing trees, which is in contrast to the non-existence results
by [Elkind et al., 2021].

Another contrast are our bounds on the PoA. On general
graphs we prove a tight bound on the PoA that depends on b,
the number of agents of the minority color, and we give a
bound of A(G) on all graphs G, that is asymptotically tight
on J-regular graphs. Also for the PoS we get stronger positive
results compared to [Elkind ef al., 2021]. For A = 1 we give
a tight PoS bound of 2 on bipartite graphs and show that the
PoS is 1 on almost regular graphs with maximum degree 3,
or if the size of the maximum independent set of the graph is
at most b. The latter implies a PoS of 1 on regular graphs for
balanced games, i.e., if there are equally many agents of both
colors. Even more general, for constant A < % we prove
a constant PoS on almost regular graphs via a sophisticated
proof technique that relies on the greedy algorithm for the
K-MAX-CUT problem.

Additional complexity results and all omitted details can
be found in [Bild et al., 2022].

2 Preliminaries

In this section, we provide some facts and lemmas that will
be widely exploited throughout the paper. We start by observ-
ing the following fundamental relationship occurring between
fi(o) and f;(0o;;) for two swapping agents ¢ and j:
_y+1l—z—1(0)
; .

Using property (1), we claim the following observation.

(D

% * then filois)
Y

“For the sake of conciseness, from now on, whenever we write
fi(o) = x/y for some agent i, we implicitly mean that x
|N[o(i)] N Ci(o)| and y := |[N[o(¢)]|. Observe that, under this
assumption, f;(o) = 3/6 is different than f;(o) = 1/2.
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graph classes Equilibrium Existence

Finite Improvement Property

arbitrary x (Thm.2) A>1/2 x (Thm.2,3) A>1/2
v/ (Thm. 4) J(C}T <A<1/2,
a(G)+1>0
bipartite V(Cor. 1) A=1/2
1-regular V(Thm. 1) A <1/2 V(Thm. 1) A<1/2
2-regular x (Thm.2) A>1/2 x (Thm.2) A>1/2
Price of Anarchy Price of Stability
arbitrary < min{A(G), ot (Abﬂ)b} >Q (vm\) (Thm. 9)
(Thm. 5)
bipartite > 221 (Thm.5) b=1 2 (Thm. 10,11) A =1/2
> 5 (Thm.5) b>1
regular < min{(6 +1)/2,n/2b} (Thm. 6) A <1/5
> S - ML (Thm. 7). A< 1/2,6>2
1-regular 1 (Thm. 12),13) A <1/2, A(G) <3or
A€ [ 1/2]. b2 a(G)
min{A(G) + 1,0(1/A)} (Thm. 14) A <1/2,b < a(G)
O(1) (Cor.3) A<1/2
ring > 2 — e (Thm. 8)
>3/2—¢(Thm.8) A <1/2

Table 1: Result overview. We investigate the existence of equilibria, the finite improvement property, the PoA and the PoS. The “v"”” symbol
denotes that the respective property holds, the “x” means the opposite. The respective conditions are stated next to the result. € is a constant
larger than zero. “l-regular” stands for almost regular graphs. Note, PoS results for almost regular graphs hold for regular graphs as well.
For the PoA the stated lower bounds of other graph classes hold for arbitrary graphs as well.

Observation 1. If f;(o) = z/y < 1/2, then f;(o;) > 1/2.
Iffilo) =x/y > 1/2, then f;(0;;) < 1/2unlessy = 2x—1
and 1;j(o) = 0, for which fj(o;;) = fi(o) = x/y > 1/2.
The following series of lemmas characterizes the conditions
under which a profitable swap can take place.

Lemma 1. For any A < 1/2, no profitable swaps can occur
between agents below the peak.

Lemma 2. For any A < 1/2, no profitable swaps can occur
between adjacent agents at different sides of the peak.

Proof. Assume towards a contradiction, that ¢ and j can per-
form a profitable swap in o, and, w.l.o.g., that f;(o) =
xz/y < Aand fj(o) = z'/y’ > A. By Observation 1,
j ends up above the peak in o;;. As j improves after the
swap, we have U;(0;) = p(1 — z/y) > U;(o) = p(a'/y’)
which, given that 1 — x/y > A and 2//y’ > A, yields
1 —=z/y < «'/y’. This implies that f;(c;;) =1 —2'/y <
1-1+42z/y = z/y = fi(o) which, given that f;(o) < A,
contradicts the fact that ¢ improves after the swap. O

Lemma 3. For any A < 1/2, no profitable swaps can oc-
cur between agents at different sides of the peak in games on
almost regular graphs.

3 Existence of Equilibria

In this section, we provide existential results for games played
on some specific graph topologies. We start by showing that
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games on almost regular graphs enjoy the FIP property and
converge to a SE in at most m swaps in any game in which
the peak does not exceed 1/2. This result does not hold when
the peak exceeds 1/2, as we prove the existence of a game
played on a 2-regular graph (i.e., a ring) admitting no SE.

Theorem 1. For any A < 1/2, fix a game (G,b,\) on an
almost regular graph G and a strategy profile o. Any se-
quence of profitable swaps starting from o ends in a SE after
at most m swaps.

Proof. We show that, after a profitable swap, ® decreases by
at least 1. Consider a profitable swap performed by agents ¢
and j such that f;(0) = z/y and f;(o) = 2'/(y + t), with
t € {0, 1} since G is almost regular. By Lemmas 1 and 3, we
have that both 4 and j are above the peak, i.e., z/y > A and
x’'/(y +t) > A. Thus, a necessary condition for the swap to
be profitable is that f;(a;) < fi(o) and f;(04;) < fi(o).
By Observation 1, the latter yields ' /(y +t) > 1 —z/y +
(1-1,;(0))/y, which gives &’ > y—z+1—1;;(c) +t(1—
zfy+(1—-1;(0))/y) >y—x+1—1;(0o). Since z, 2', y
and 1,; (o) are integers, we derive 2’ > y — x + 2 — 1,;(0o).
As it holds that &(o) — ®(o;) equals z — 1 + 2’ — 1 —
(y—z—1(0)+y+t—a' —1;;(0) =2(x+2" -1+
1;i(0)) — 2y — t, we get B(o) — D(0;) > 1. O

Theorem 2. For any A > 1/2, there exists a game played on
a 2-regular graph admitting no SE.
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Proof. Consider an instance of a game played on a ring with 6
nodes, where b = r = 3. Only the following two com-
plementary cases may occur: Either, the blue agents occupy
nodes that induce a path of length 2. In this case, there are
two segregated agents of different colors, both with utility 0.
As p(0) = 0 and p(x) > 0 for x € (0,1), the two agents
swap their positions. Or, there are two neighboring agents ¢
and j of different colors being below the peak. In this case,
as p(1/3) < p(2/3), both i and j prefer to swap their posi-
tions. O

A fundamental question is whether a SE always exists in
games with tolerant agents, i.e., for A < 1/2. Next result
shows that Theorem 1 cannot be generalized to all graphs.

Theorem 3. There cannot exist an ordinal potential function
in games on arbitrary graphs for A = 1/2.

For the special case of A = 1/2, however, existence of a SE
is guaranteed in any graph whose independence number is at
least the number of blue agents.

Theorem 4. Fix a game (G, b, A) with (S(CJIT <A<L1/2
Any strategy profile in which all agents of a same color are

located on an independent set of G is a SE.

Proof. Let o be a strategy profile in which all agents of a
same color are located on an independent set of G. Assume,
w.l.o.g., that all blue agents are assigned to the nodes of an
independent set of G' and consider a profitable swap per-
formed by a blue agent ¢ and a red agent j. If 1,;(o) = 0,
since ¢ is only adjacent to red agents other than 7, it holds that
fj(oij) = 1, which gives U;(a;) = 0, thus contradicting the
fact that j performs a profitable swap. If 1,; (o) = 1, instead,
we obtain f;(o) = 6(0(2)”1 < 5(Gl)+1 < A. The numera-
tor comes from the fact that ¢ is only adjacent to red agents.
Knowing that 7 cannot be at the peak, we conclude that she is
below the peak. If j is also below the peak, Lemma 1 contra-
dicts the fact that the swap is profitable, while, if j is above
the peak, the contradiction comes from Lemma 2. U

Corollary 1. For A = 1/2, games played on bipartite graphs
always admit a SE which can be efficiently computed.

4 Price of Anarchy

In this section, we give bounds on the PoA for games played
on different topologies, even in those cases for which exis-
tence of a SE in not guaranteed.

4.1 General Graphs

Next lemmas provide a necessary condition that needs to be
satisfied by any SE and an upper bound of the value on the
social optimum, respectively.

Lemma 4. In a SE for any game (G, b, A), no agents of dif-
ferent colors can be segregated.

Proof. Fix a strategy profile o. If there exist two agents ¢
and j such that f;(o) = f;(o) = 1, they can perform a prof-
itable swap, as f;(o) = f;(o) = 1 and f;(0;) = f;(04j) ¢
{0,1}. So, o cannot be a SE for (G, b, A). O
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(a) An instance with b = 1 blue agents. Left: o™ with
Dol(o*) = n — 1. Right: a SE o with Dol(o) = 3.

}Kl,b }Kl,b
Kip-1 Kip-1
Ky_1n—2 Ky 1n-2

(b) An instance with b > 2 blue agents. Left: o™ with
Dol(o™) = n. Right: a SE o with Dol(o) = b+ 1.

Figure 2: Lower bounds for PoA(G, b, A) when (a) b = 1, and (b)
b > 1. Left: the socially optimal placement o*. Right: the SE o
with minimum social welfare.

Lemma 5. For any game (G,b,A), we have Dol(c*) <
min{(A(G) + 1)b,n}.

Proof. As a blue node can be adjacent to at most A(G) red
ones, it follows that, in any strategy profile, there cannot
be more than (A(G) + 1)b non-segregated agents, so that

Dol(o*) < min{(A(G) + 1)b,n}. O
We now give (almost) tight bounds on the PoA.

Theorem 5. For any game (G,b,A), PoA(G,b,A) <
min{A(G), T (Abii)b }. Moreover, there exists a game on

a bipartite graph such that PoA(G, b, A) > ;5 when b > 1
and PoA(G,b,A) > "1 when b = 1.

Proof. For the upper bound, fix a game (G,b,A) andaSE o.
By Lemma 4, only agents of one color, say ¢, can be segre-
gated in o. Thus, we get Dol(o) > b+ 1. Let V be the
set of nodes of color ¢’ # c. Every node in V has to be ad-
jacent to a node of color c¢. So, there are at least |[V| > b
non-monochromatic edges in the coloring induced by o. As
every node of color ¢ can be adjacent to at most A(G) nodes
of color ¢/, there must be at least [6/A(G)] nodes of color ¢
incident to a non-monochromatic edge, that is, being non-

segregated in o. Thus, we get Dol(o) > %. We

conclude that Dol(o) > max{%, b+ 1}. The upper
bounds follow from Lemma 5. For the lower bounds, con-

sider the games defined in Figure 2. O

4.2 Regular Graphs

For §-regular graphs, we derive an upper bound of § on the
PoA from Theorem 5. A better result is possible when A is
sufficiently small.

Theorem 6. For any game (G, b, A) on a §-regular graph G
with A < 1/8, PoA(G,b, A) < min{(é + 1)/2,n/2b}.

As a lower bound, we have the following.
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Theorem 7. For every § > 2 and A < 1/2, there
exists a game (G,b,A) on a d-regular graph such that

PoA(G, b, A) > 0(6+1) _ S+1 5+1

25+1 — 2 4d+2°
The lower bound given in Theorem 7 holds for all values
of 4. It may be the case then that, for fixed values of ¢, bet-
ter bounds are possible. For § = 2 indeed, lower bounds
matching the upper bounds given in Theorems 5 and 6 can be
derived.

Theorem 8. For any € > 0, there exists a game (G,b, A) on
a ring such that PoA(G,b,1/2) > 2 — e and PoA(G,b, A) >
3/2 —efor A < 1/2.

5 Price of Stability

In this section, we give bounds on the PoS for games played
on different topologies.

5.1 General Graphs

We give a lower bound on the PoS on general graphs which
asymptotically matches the upper bound on the PoA when
b= O(y/n) and A is a constant w.r.t n.

Theorem 9. For every A, there is a game (G, b, A) such that

PoS(G,b) = Q(vnA).

5.2 Bipartite Graphs

For bipartite graphs, we provide a tight bound of 2 for the
PoS of games for which the peak is at 1/2. We start with the
upper bound.

Theorem 10. For any game (G,b,1/2) on a bipartite
graph G, we have PoS(G,b,1/2) < 2.
We now give the matching lower bound.

Theorem 11. There exists a game (G,b,1/2) on a bipartite
graph such that PoS(G, b,1/2) > 2.

5.3 Almost Regular Graphs

We provide upper bounds to the PoS for games played on
almost regular graphs. We start by considering the case of
graphs with small degree.

Theorem 12. For any game (G,b, A) on an almost regular
graph with A(G) < 3and A <1/2, PoS(G,b,A) = 1.

An analogous result holds for the case in which b > a(G).

Theorem 13. For any game (G,b, A) on an almost regular
graph with b > «(Q) and ﬁ < A < 1/2, we have
PoS(G,b,A) = 1.

A game (G,b, A) is balanced if b = |n/2|. Using Theo-
rem 13, we show that the PoS is 1 in balanced games on reg-
ular graphs.

Corollary 2. For any balanced game (G, b, A) on a d-regular
graph G and ﬁ < A <1/2, we have PoS(G,b,A) = 1.
Proof. We have that b = |n/2|. We show that a(G) <
|n/2] using a simple counting argument. This allows us to
use Theorem 13 to prove the claim.

To show the upper bound on a(G), we count all the edges
that are incident to the nodes of a fixed maximum independent
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set of G and bound this value from above by the number of
edges of the graph, thus obtaining the following inequality
6a(G) < in,ie., a(G) < n/2. Using the fact that o(G) is
an integer value, we derive o(G) < |n/2]. O

We now give the upper bound to the PoS for games played on
almost regular graphs when b < a(G).

Theorem 14. For any game (G,b,A) on an almost reg-
ular graph G with b < o(G) and A < 1/2, we have
PoS(G,b,A) = min{A(G) + 1,0(1/A)}.

We can derive the following upper bound to the PoS.

Corollary 3. For any game (G,b,A) on an almost regu-
lar graph with a constant value of A < 1/2, we have
PoS(G,b,A) = O(1).

Proof. By Theorem 5, the PoS is constant if A(G) is con-
stant. The result when A(G) is not constant is divided into
two cases. For the case b > «(G) the claim immediately
follows from Theorem 13. For the case b < a(G) the claim
follows from Theorem 14 and the fact that A is constant by
assumption. O

6 Conclusion and Future Work

We study game-theoretic residential segregation with
integration-oriented agents and thereby open up the novel re-
search direction of considering non-monotone utility func-
tions. Our results clearly show that moving from monotone to
non-monotone utilities yields novel structural properties and
different results in terms of equilibrium existence and quality.
We have equilibrium existence for a larger class of graphs,
compared to [Elkind et al., 2021], and it is an important open
problem to prove or disprove if swap equilibria for our model
with A < % are guaranteed to exist on any graph.

So far we considered single-peaked utilities that are sup-
ported by data from real-world sociological polls. However,
also other natural types of non-monotone utilities could be
studied. Also ties in the utility function could be resolved by
breaking them consistently towards favoring being in the mi-
nority or being in the majority. The non-existence example of
swap equilibria used in the proof of Theorem 2 also applies
to the case with A = % and breaking ties towards being in the
majority. Interestingly, by breaking ties the other way we get
the same existence results as without tie-breaking and also
our other results hold in this case. This is another indication
that tolerance helps with stability.

Moreover, all our existence results also hold for utility
functions having a symmetric plateau shape around A. In-
vestigating the PoA for these utility functions is open.

Regarding the quality of the equilibria, we analyze the de-
gree of integration as social welfare function, as this is in-
line with considering integration-oriented agents. Of course,
studying the quality of the equilibria in terms of the stan-
dard utilitarian social welfare, i.e., SUM(o) = " | U;(o),
would also be interesting. We note in passing that on ring
topologies the PoA and the PoS with respect to both social
welfare functions coincide.
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