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Abstract. We construct a non reversible exclusion process with Bernoulli product invariant measure and having, in the diffusive
hydrodynamic scaling, a non symmetric diffusion matrix, that can be explicitly computed. The antisymmetric part does not affect the
evolution of the density but it is relevant for the evolution of the current. Switching on a weak external field we obtain a symmetric
mobility matrix that is related just to the symmetric part of the diffusion matrix by an Einstein relation. We argue that this fact is typical
within a class of generalized gradient models. We consider for simplicity the model in dimension d= 2, but a similar behavior can be
also obtained in higher dimensions.

Résumé. Nous construisons un processus d’exclusion non réversible avec une mesure invariante du produit de Bernoulli et ayant,
dans l’échelle hydrodynamique diffusive, une matrice de diffusion non symétrique, qui peut être calculée explicitement. La partie
antisymétrique n’affecte pas l’évolution de la densité mais elle est pertinente pour l’évolution du courant. En commutant sur un champ
externe faible, nous obtenons une matrice de mobilité symétrique qui est liée uniquement à la partie symétrique de la matrice de
diffusion par une relation d’Einstein. Nous soutenons que ce fait est typique dans une classe de modèles de gradient généralisés. Nous
considérons pour simplifier le modèle en dimension d= 2, mais un comportement similaire peut également être obtenu en dimension
supérieure.

MSC2020 subject classifications: Primary 82C22, 82C70
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1. Introduction

A major advance of the last decades in probability is the derivation of the collective behavior of models of stochastic
lattice gases [12, 16]. In the case of diffusive models, the continuum hydrodynamic limit is given by a nonlinear diffusion
equation of the form

(1.1) ∂tρ=∇ · (D(ρ)∇ρ) ,

where the positive definite matrix D is the diffusion matrix. When the stochastic models satisfy a suitable constraint, called
gradient condition (see for example [9, 10, 12, 14–16, 18]), it is possible to derive an explicit form for the diffusion matrix.
In the general reversible case D is obtained by the Green-Kubo formulas or variational representations [11, 12, 16, 17].

If we denote byD the symmetric part of the diffusion matrix D we have that equation (1.1) is equivalent to the equation

(1.2) ∂tρ=∇ · (D(ρ)∇ρ)

and D is of course symmetric and positive definite. The symmetry of D is therefore not relevant as far as the hydrody-
namic equation for the evolution of the density is considered. All the models of particle systems for which a diffusive
hydrodynamic limit has been proved are such that D is symmetric and therefore D =D.

Equation (1.1) can be rewritten as a conservation law

∂tρ+∇ · J(ρ) = 0,
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where J(ρ) is the typical current associated to the density profile ρ. For reversible and gradient models [1, 2, 4] we have
that the diffusion matrix D is symmetric and the typical current is given by

(1.3) J(ρ) =−D(ρ)∇ρ ,

which is indeed the classical form of the Fick’s law. We construct a class of generalized gradient models for wich the Fick’s
law (1.3) holds with a non symmetric diffusion matrix D that can be explicitly computed. We consider, for simplicity,
the two dimensional setting, but a similar result can be obtained in any dimension. This is the first example for which a
non symmetric diffusion matrix is rigorously derived starting form particle systems; the antisymmetric part is due to the
precence of a vorticity in the microscopic dynamics.

For our models (1.3) can be written as

(1.4) J(ρ) =−D(ρ)∇ρ−A(ρ)∇ρ,

where D and A are respectively the symmetric and antisymmetric part of the diffusion matrix D. Note that the second
term of the right-hand side in (1.4) does not contribute to the hydrodynamic equation for the density, since it is always a
divergence free term.

Introducing the orthogonal gradient defined by ∇⊥F = (−∂yF,∂xF ), the divergence free term in (1.4) can be written
as −∇⊥a(ρ) for a suitable function of the local density a(ρ). In this article, we discuss examples where the matrices D
and A can be explicitly computed.

We point out that we have non reversible stochastic lattice gases with an explicit product invariant measure and having
a diffusive behavior. Our class of models satisfy in addition a generalized gradient condition. In general, and specially in
dimension higher than one, it is difficult to construct models satisfying gradient conditions and for which the invariant
measure is known (see Section 2.4 in part II of [16]). The construction of the models is therefore an important part of the
paper. Some generalizations are possible, but even small modifications of the rates would lead to the loss of one of the
two properties.

We point out in addition that, since our models are not reversible, it is not possible to compute the diffusion matrix
using the Green-Kubo formulas whose derivation uses reversibility as a basic ingredient. Applying directly the Green-
Kubo formulas (see for example [16] section 2.2 of part II) you would get a diagonal diffusion matrix that is the wrong
result.

For our special class of models in dimension 2 we have

J(ρ) =−∇ρ−∇⊥a(ρ),

where a(ρ) = 2α [ρ(1− ρ)]
2 with α a real parameter such that |α|< 1.

Switching on a smooth weak external field E we obtain that the typical current becomes

(1.5) JE(ρ) = J(ρ) + σ(ρ)E ,

where σ is a positive definite matrix that is called mobility or conductivity (see [16] section 2.5 of part II). For gradient
and reversible models we have that the mobility matrix σ and the diffusion matrix D are related by a proportionality
relation that is the Einstein relation (see again [16] formula 2.72 of part II). For our models we have instead that σ is
symmetric and is proportional to D (i.e. just to the symmetric part of the diffusion matrix) by the Einstein relation

(1.6) D(ρ) = σ(ρ)f ′′(ρ) ,

where f is the density of the free energy. For our solvable models we have

f(ρ) = ρ log(ρ) + (1− ρ) log(1− ρ)

and D(ρ) = I, σ(ρ) = ρ(1− ρ)I, where I is the identity matrix.

The paper is organized as follows.
In Section 2 we introduce the stochastic lattice gases for which we prove the scaling limit. We underline the basic

special features: it is a non reversible model with invariant Bernoulli product measure; satisfies a generalized gradient
condition with an exact orthogonal splitting in terms of explicit local functions.

In Section 3 we introduce the empirical measure and the integrated empirical current, discuss the topological setting of
the latter and state the main theorems of the paper concerning the scaling limit of both the empirical density and current.
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In Section 4 we prove the convergence of the integrated empirical current.
In Section 5 we discuss, informally, the hydrodynamic behavior of a class of generalized gradient models, the hydro-

dynamics in presence of a weak external field and the Einstein relation that relates just the symmetric part of the diffusion
matrix and the mobility. All this is discussed without the mathematical details in order to give a general overview on the
behavior of the class of models that we are considering.

We collect here, for a convenient consultation, the basic notation.

1.1. Notation

Consider the rescaled two dimensional discrete torus ΛN :=
(
Z2/NZ2

)
1
N , having mesh 1/N . We denote by EN the

directed edges corresponding to ordered pairs (x, y) of nearest neighbor vertices of ΛN . We call EN the corresponding
undirected ones. A generic element of EN is written as {x, y} when (x, y) ∈ EN . Note that if (x, y) ∈ EN then also
(y,x) ∈ EN . If e = (x, y) ∈ EN we denote e− := x and e+ := y. Moreover, we call e := {x, y} the corresponding
unoriented edge. We denote by e(1) := (1/N,0) ∈ R2 and e(2) := (0,1/N) ∈ R2 the vectors of size 1/N and parallel to
the coordinate axis.

A cycle is a sequence
(
x1, x2, . . . xn, xn+1

)
of distinct elements of ΛN such that {xi, xi+1} ∈ EN and xn+1 = x1. We

identify cycles that can be obtained one from the other by cyclic permutations (i.e. different starting points).
The lattice is embedded into Λ := R2/Z2, the continuous two-dimensional torus of side length 1. This embedding

determines a cellular subdivision of Λ into squares of side length 1/N called faces. An oriented face is an elementary cycle
in the graph for example of the type (x,x+e(1), x+e(1)+e(2), x+e(2), x). In this case we have an anticlockwise oriented
face. This corresponds geometrically to an elementary squared face having vertices x,x+ e(1), x+ e(1) + e(2), x+ e(2)

plus an orientation in the anticlockwise sense. The same elementary face can be oriented clockwise and this corresponds
to the elementary cycle (x,x+e(2), x+e(1)+e(2), x+e(1), x). If f is a given oriented face we denote by −f the oriented
face corresponding to the same geometric square but having opposite orientation. We call FN the collection of oriented
faces, F⟲

N the collection of the anticlockwise oriented ones and F⟳
N the collection of the clockwise oriented ones. We call

FN the collection of unoriented faces. An unoriented face is simply determined by a collection {x,x+ e(1), x+ e(1) +
e(2), x+ e(2)} of vertices of an elementary face. Note that both f and −f correspond to the same unoriented face that we
call f. Given f ∈ FN and e ∈ EN we write e ∈ f if going around the face f according to its orientation we go through
e according to its orientation. Given e ∈ EN there are only two elements of FN to which it belongs, one is clockwise
oriented while the other one is anticlockwise oriented. We call f+(e) the anticlockwise face such that e ∈ f+(e) and
f−(e) the anticlockwise face such that e ∈ −f−(e). We denote by f±(e) the corresponding un-oriented faces. Given an
un-oriented face f we denote by f⟲ and f⟳, respectively, the corresponding anticlockwise and clockwise oriented faces.

The group of translations acts naturally on the discrete torus. We denote by τx the translation by the element x ∈ ΛN .
The translations act on configurations η ∈ {0,1}ΛN by [τxη] (z) := η(z− x) and on functions g by [τxg] (η) := g(τ−xη).
For notational convenience it is useful to define τf for an un-oriented face f. If the vertices belonging to f are {x,x +
e(1), x+ e(2), x+ e(1) + e(2)} then we define τf := τx.

Given Γ⊆ ΛN and a configuration η, we call ηΓ the restriction of the configuration η to Γ. Given two configuration
of particles η, η′ we call ηΓη′Γc the configuration of particles coinciding with η on Γ and with η′ on Γc.

2. The models

We consider particles satisfying an exclusion rule so that the configuration space is ΣN := {0,1}ΛN . A generic config-
uration is denoted by η and η(x) is the occupation number of the site x ∈ ΛN , that is the number of particles present at
site x. The number of particles at site x at time t is denoted by ηt(x), which again by the exclusion rule can be either 0
or 1. Given a configuration η and {x, y} ∈ EN we denote by ηx,y the configuration obtained exchanging the occupation
numbers at x and y while keeping fixed the configuration at the other sites, i.e.

ηx,y(z) :=

η(y) if z = x ,
η(x) if z = y ,
η(z) otherwise .

The generator of the dynamics is given on f : {0,1}ΛN →R by

(2.1) LNf(η) =
∑

(x,y)∈EN

cx,y(η) [f(η
x,y)− f(η)] .
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We fix cx,y(η) in such a way that it is zero unless η(x) = 1 and η(y) = 0. In this way cx,y(η) represents the rate at
which one particle jumps from x to y in the configuration η. We will mainly concentrate on a specific choice for the rates
cx,y(η). In the general discussion we will however always consider generically translational covariant lattice gases, i.e.
models for which the rates satisfy

(2.2) cx,y(η) = cx+z,y+z(τzη) .

This corresponds to say that particles jump according to the same stochastic mechanism on any point of the lattice.

2.1. The jump rates

The main model that we will consider is determined by the following choice for the rates

(2.3) cx,y(η) := η(x)
(
1− η(y)

)
+ η(x)

[
τf+(x,y)g(η)− τf−(x,y)g(η)

]
,

where the function g is a local function depending just on the occupation numbers at the vertices of the face {0, e(1), e(1)+
e(2), e(2)}. More precisely, we have

(2.4) g(η) =

α if η(0) = η(e(1) + e(2)) = 1 and η(e(1)) = η(e(2)) = 0 ,
α if η(e(1)) = η(e(2)) = 1 and η(0) = η(e(1) + e(2)) = 0 ,
0 otherwise ,

where α is a real parameter such that |α|< 1. This is a special case of the class of models introduced in [8] and briefly
discussed in a qualitative way in [7]. The informal and intuitive description of the dynamics associated to the rates (2.3)
is the following. Particles perform a simple exclusion process, but the faces containing exactly 2 particles located at sites
which are not nearest neighbors let the particles rotate anticlockwise when α > 0 and clockwise when α < 0 with a rate
equal to |α|.

x

y

A

x

y

B

x

y

C

x

y

D

FIG 1. The possible configurations of particles on the two faces sharing the vertical edge {x, y} when the lower vertex x is occupied and the upper
vertex y is empty. Particles are denoted by •, empty sites by ◦. Pairs of colored vertical square denote a configuration different from the one of the
corresponding vertical edge in the case A. The two different colors are used to stress the fact that configurations associated to different colors may be
different (case D).

In Figure 1 we illustrate the possible configurations on the two faces f±(x, y) when y = x+e(2) and η(x) = 1−η(y) =
1. Particles are drawn as • and empty sites are drawn as ◦. The rate at which the particle at x jumps to y is given by 1 in
the configurations of type A and D, while it is given by 1 + α in the configurations of type B, and finally it is 1− α in
the configurations of type C. In the case A we draw exactly the structure of the configuration. In the case B, with the two
red squares we indicate any configuration of particles on that vertical bond different from the one of the corresponding
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= 1 =

FIG 2. The graphical rules to determine the rates associated to a configuration of particles. Weights are associated to local configuration of particles
as in the figure. Black arrows represent an unitary weight while blue arrows represent a weight α. Weights concordantly oriented sum while weights
oppositely oriented are subtracted.

bond in the case A. This means that there are 3 different possible configurations of particles corresponding to the case B.
The same happens for the case C and the two green squares. In the case D, the red squares and the green squares have
to satisfy the same constraints of the previous cases and then in the case D we can have 9 different configurations of
particles. Since the model is invariant by rotation, the rates for jumps on different directions (horizontal or downward)
are obtained just rotating Figure 1.

We give an alternative description of the rates in Figures 2 and 3. This is because the form of the rates is important to
understand the origin of the divergence free part of the current. We fix a configuration η and show how to determine the
rates of jump across each edge (x, y) ∈ EN . This will be zero unless η(x) = 1 and η(y) = 0. We show this associating
some weights to the oriented edges.

In Figure 2 we show how to assign the weights. We have to search on the lattice for local configurations like the ones
drawn. Black arrows correspond to weight 1 while blue arrows correspond to weight α (recall that α can be also negative).
Note that blue arrows are associated to edges along a face only in the case that the vertices of the face contain exactly
2 particles that are at opposite corners. We call such a face activated. We represent activated faces in Figure 3 with a A
drawn in the middle.

We consider now the lattice with a fixed configuration of particles like in Figure 3. We search for all local configurations
like in Figure 2 and assign the corresponding weights. The final weight associated to an edge is obtained summing all
the weights that have been given in the procedure. Weights having the same orientation sum, while those having opposite
orientations subtract.

By construction, an edge that has a non zero weight must contain a black arrow. For such an edge, we sum to the value
1, corresponding to the black arrow, the value α if there is a blue arrow concordantly oriented, and −α if there is a blue
arrow oppositely oriented. On each edge, it is possible to have just one blue arrow or two oppositely oriented. This means
that on each edge with nonnegative weight there is a preferred orientation, let us say (x, y), that is the one determined by
the black arrow. The final weights of the graph (that correspond to the transition rates) are obtained by giving to (x, y)
the weight obtained by the algebraic rules stated above (and that give always a positive result) and giving instead weight
0 to (y,x).

2.2. Invariant measures

We denote by νρ the Bernoulli product measures on ΣN of parameter ρ ∈ [0,1]. We have the following.

Lemma 2.1. The Bernoulli product measures νρ are invariant but not reversible (unless α= 0) for the class of models
described in Section 2.1.
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A A A

A A

AA

A A A

AAA

FIG 3. An example of a configuration with the weights associated according to the local rules of Figure 2. The A inside a face means that the face is
activated and weights α are associated to its edges counterclockwise.

Proof. Since the dynamics is conservative it is enough to verify that the canonical uniform measures are invariant. This
corresponds to show that

(2.5)
∑

(x,y)∈EN

cx,y(η) =
∑

(x,y)∈EN

cy,x(η
x,y) ,

for any configuration η. The first term on the right-hand side of (2.3) corresponds to the rates of the simple exclusion
process so that it satisfies this relationship. We can just restrict to the second term on the right-hand side of (2.3). We need
to check therefore that∑

(x,y)∈EN

η(x)
[
τf+(x,y)g(η)− τf−(x,y)g(η)

]
=

∑
(x,y)∈EN

ηx,y(y)
[
τf+(y,x)g(η

x,y)− τf−(y,x)g(η
x,y)
]
.(2.6)

Using the fact that ηx,y(y) = η(x) and f±(y,x) = f∓(x, y), the right-hand side of the previous display becomes∑
(x,y)∈EN

η(x)
[
τf−(x,y)g(η

x,y)− τf+(x,y)g(η
x,y)
]
.

Inserting this expression in (2.6), the stationary condition becomes∑
(x,y)∈EN

η(x)
[
τf+(x,y)g(η) + τf+(x,y)g(η

x,y)
]
=

∑
(x,y)∈EN

η(x)
[
τf−(x,y)g(η) + τf−(x,y)g(η

x,y)
]
.(2.7)

Let us fix an un-oriented face f and let us call f⟲ ∈ F⟲
N the corresponding anticlockwise oriented face. The contribution

from the left-hand side of (2.7) that contains functions shifted by τf is given by

(2.8)
∑

(x,y)∈f⟲

η(x) [τfg(η) + τfg(η
x,y)] ,

while instead from the right-hand side of (2.7) we have

(2.9)
∑

(x,y)∈f⟳

η(x) [τfg(η) + τfg(η
x,y)] .

We claim that (2.8) and (2.9) coincide for any configuration η and for any face f. Note that in both expressions (2.8)
and (2.9), we have local functions depending just on the occupation numbers on the face f. We need then just to cheek
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FIG 4. On the top we represent the value of (2.8) for two different configurations of particles (left and right respectively). Since
(2.8) corresponds to the sum of 4 terms associated to directed edges around the face, we write near to each edge the corresponding
contribution. If near an edge there is anything written, it means that the corresponding contribution is zero. At the bottom we have the
same but for (2.9). Note that on the top, the edges form anticlockwise oriented cycles while, at the bottom, we have clockwise oriented
cycles. The values of (2.8) and (2.9) for a configuration of particles is obtained summing all the values associated to the edges on the
corresponding figure.

the validity of this relationship for any possible configuration of particles on the face f, disregarding the configuration’s
values outside the face.

When the total number of the particles on the face f is equal to 0,1,3,4 then the equality between (2.8) and (2.9) is
immediate, since all the terms are identically zero. The only non trivial case is when the total number of particles equals 2.
In Figure 4 we check the validity of this statement for two special configurations η. All the remaining cases are obtained
from these by a suitable rotation. Therefore, (2.7) can then be rewritten as∑

f∈FN

∑
(x,y)∈f⟲

η(x) [τfg(η) + τfg(η
x,y)] =

∑
f∈FN

∑
(x,y)∈f⟳

η(x) [τfg(η) + τfg(η
x,y)] ,(2.10)

which is satisfied since there is equality for each f. We recall that in (2.10) we are again using the convention that given
f ∈ FN we denote by f⟲ ∈ F⟲

N and by f⟳ ∈ F⟳
N , respectively, the corresponding anticlockwise oriented and clockwise

oriented faces.
The fact that, unless α = 0, the dynamics is not reversible, can be easily shown verifying that the detailed balance

condition is not satisfied.

2.3. Generalized gradient condition

In this section we show that the model we introduced satisfies a generalized gradient condition. We start recalling a classic
discrete Hodge decomposition.

2.3.1. Discrete vector fields and Hodge decomposition
A discrete vector field is a map ϕ :EN →R that satisfies the antisymmetry property ϕ(x, y) =−ϕ(y,x). The divergence
of a discrete vector field is defined by

(2.11) ∇ · ϕ(x) :=
∑

y:(x,y)∈EN

ϕ(x, y) .
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A discrete vector field is called of gradient type if there exists a function f : ΛN → R such that ϕ(x, y) = f(y)− f(x)
and in this case we write shortly ϕ=∇f .

We recall briefly the Hodge decomposition for discrete vector fields considering the two dimensional discrete torus
ΛN . We denote by Γ0 the collection of real valued functions defined on the set of vertices, that is: Γ0 := {g : ΛN →R}.
We denote by Γ1 the vector space of discrete vector fields endowed with the scalar product

(2.12) ⟨ϕ,φ⟩ :=
∑

(x,y)∈EN

ϕ(x, y)φ(x, y) , ϕ,φ ∈ Γ1 .

Finally, we denote by Γ2 the vector space of 2-forms. A 2-form is a map ψ from the set of oriented faces FN to R which
is antisymmetric with respect to the change of orientation i.e. such that ψ(−f) =−ψ(f). The boundary δψ of a 2-form
ψ is a discrete vector field defined by

(2.13) δψ(e) :=
∑

f :e∈f

ψ(f) .

By construction ∇ · δψ = 0 for any ψ. The two-dimensional discrete Hodge decomposition [6, 13] is written as the direct
sum

(2.14) Γ1 =∇Γ0 ⊕ δΓ2 ⊕ Γ1
H ,

where the orthogonality is with respect to the scalar product given in (2.12). The discrete vector fields on ∇Γ0 are the
gradient ones. The dimension of ∇Γ0 is N2 − 1. The vector subspace δΓ2 contains all the discrete vector fields that can
be obtained by (2.13) from a given 2-form ψ. The dimension of δΓ2 is N2 − 1. Elements of δΓ2 are called circulations.
The dimension of Γ1

H is simply 2. Discrete vector fields in Γ1
H are called harmonic. A basis in Γ1

H is given by the vector
fields φ(1) and φ(2) defined by

(2.15) φ(i)
(
x,x+ e(j)

)
:= δi,j , i, j = 1,2 .

The decomposition (2.14) holds in any dimension. For the d−dimensional torus the dimension of the harmonic subspace
is d. Given a discrete vector field ϕ ∈ Γ1 we write

(2.16) ϕ= ϕ∇ + ϕδ + ϕH

to denote the unique splitting in the three orthogonal components.

2.3.2. Generalized gradient condition
To determine the scaling limits of a model, a key role is played by the instantaneous current jη(x, y). For a generic
dynamics having generator in the form (2.1), this is defined by

(2.17) jη(x, y) := cx,y(η)− cy,x(η) .

The translational covariance property of the rates given in (2.2) is inherited by the instantaneous current. For any fixed
configuration η, jη is a discrete vector field. The classic form of the gradient condition for stochastic lattice gases requires
that the instantaneous current can be written as a gradient

(2.18) jη(x, y) = τyh(η)− τxh(η)

for a suitable local function h. In order to compute the hydrodynamic scaling limit of a model, it is useful to be able to
perform a double discrete summation by parts (see some details in Section 3). This double summation by parts is possible
under some generalized gradient condition. We consider two of them and then we show that they are indeed equivalent.

The first generalized gradient condition is, for example, the one in Definition 2.5 page 61 of [12]. For simplicity we
restrict ourselves to the case of nearest neighbours jumps.
Definition 2.1.1. A stochastic lattice gas satisfies a generalized gradient condition if its instantaneous current can be
written as

(2.19) jη(x,x+ e(i)) =

n0∑
n=1

∑
y∈ΛN

pi,n(y− x)τyhi,n(η) ,
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where i is an index that labels the dimension so that i= 1, . . . , d (d= 2 in our case), n0 is a given natural number, hi,n
are local functions and pi,n are finite support functions such that

∑
z∈ΛN

pi,n(z) = 0 for any i, n.
The finite support condition is relevant when the model is defined on an infinite lattice. Since in our setting the lattice

is finite, any function is local. In this framework the finite support condition means that the support is finite and does not
depend on the size N of the lattice. More precisely the functions considered do not depend on N too.

The second possible generalized gradient condition can be stated as follows (see [15]). We introduce the gradient
space G defined by the collection of functions g : {0,1}ΛN →R that can be written as

(2.20) G :=

{
g : g =

d∑
i=1

(τe(i)hi − hi)

}
,

where {hi}di=1 is a collection of local functions.
Definition 2.1.2. A stochastic lattice gas satisfies a generalized gradient condition if

(2.21) jη(0, e
(i)) ∈ G , i= 1, . . . , d .

Note that by the translational covariance property of the instantaneous current, the Definition 2.1.2 implies that there
exist some local functions {hi,j}dj=1 such that

(2.22) jη(x,x+ e(i)) =

d∑
j=1

(
τx+e(j)hi,j − τxhi,j

)
, ∀i= 1, . . . , d .

We will now show that Definitions 2.1.1 and 2.1.2 are indeed equivalent.

Lemma 2.2. Definitions 2.1.1 and 2.1.2 are equivalent.

Proof. First observe that (2.22) coincides with (2.19) with n0 = d for a special choice of the functions p’s, so that
Definition 2.1.2 is a special case of Definition 2.1.1. Conversely, we will now show that any current given as in (2.19) can
be rewritten as in (2.22).

For simplicity we discuss the case d= 2. Any signed measure p on ΛN with finite support and having equal positive
and negative mass, i.e. such that

∑
x p(x) = 0 can be decomposed as p =

∑
ℓ p̂

ℓ where each p̂ℓ is a signed measure of
the form pℓ =mℓ (δxℓ,+ − δxℓ,−), where xℓ,± are elements of the lattice and mℓ are positive numbers. The proof of this
fact is rather elementary and corresponds to write a signed measure as a convex combination of the extremal ones. This
decomposition is not unique. Using this fact, (2.19) is equivalent to

(2.23) jη(x,x+ e(i)) =
∑
k

(
τx+xi,k,+ ĥi,k(η)− τx+xi,k,− ĥi,k(η)

)
where xi,k,± are points of the lattice and the functions ĥ are obtained multiplying the local functions h by the coefficients
mi,n

ℓ of the extremal decomposition of pi,n. Take now a local function h and consider τyh− τxh where x= (x1, x2) and
y = (y1, y2) = (x1 + n1e

(1), x2 + n2e
(2)), ni > 0. Other cases can be discussed in the same way. If we define the local

functions

(2.24)

{
g1 =

∑n1−1
j=0 τje(1)h ,

g2 =
∑n2−1

j=0 τn1e(1)+je(2)h ,

by construction we have {
τx+e(1)g1 − τxg1 = τx+ne(1)h− τxh ,
τx+e(2)g2 − τxg2 = τyh− τx+ne(1)h .

We obtain therefore

(2.25) τyh− τxh=
(
τx+e(1)g1 − τxg1

)
+
(
τx+e(2)g2 − τxg2

)
.
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Using (2.25), we can construct some proper local functions {gi,kj }j=1,2 such that we can rewrite (2.23) as

jη(x,x+ e(i)) =
∑
k

2∑
j=1

(
τx+xi,k,−+e(j)g

i,k
j (η)− τx+xi,k,−gi,kj (η)

)

=

2∑
j=1

(
τx+e(j)

(∑
k

τxi,k,−gi,kj (η)

)
− τx

(∑
k

τxi,k,−gi,kj (η)

))
.

Defining hi,j(η) :=
∑
k

τxi,k,−gi,kj (η), we have showed that (2.19) can be rewritten as (2.22), for a suitable choice of local

functions.

Since the two definitions are equivalent we will use the simpler one given in (2.22).

2.3.3. Functional Hodge decomposition
We briefly discuss some geometric features of the above generalized gradient conditions. Consider the class of discrete
vector fields jη that depend, in a translational covariant way on the configurations of particles, i.e. such that

jη(x, y) = jτzη(x+ z, y+ z).

As we already discussed, the instantaneous current for a translational covariant model of interacting particles, is always
of this type. According to the results in [8] (in particular Theorems 1 and 2 there), there exists a functional version of the
discrete Hodge decomposition (2.14). Discrete vector fields of the form (2.18) play the role of gradient discrete vector
fields. The functional version of the circulations, in dimension 2, is given by the vector fields that can be written as

(2.26) jη(x, y) = τf+(x,y)g(η)− τf−(x,y)g(η),

for a suitable function g. Note that both (2.18) and (2.26) are translational covariant and, moreover, for any fixed η we
have that (2.18) is an element of ∇Γ0 while (2.26) is an element of δΓ2. The role of harmonic vector fields is played by
vectors of the form

(2.27) Ci(η)φ
(i) , i= 1,2,

where Ci are functions on configurations, which are invariant by translations and φ(i) are defined by (2.15). Theorem 2
in [8] says that any translational covariant discrete vector field jη can be written in a unique way (up to a suitable addition
of translation invariant functions) as the sum of a term of the form (2.18), a term of the form (2.26) and two terms of the
form (2.27), one for each i. The important fact of this decomposition is that the functions h and g are not necessarily local
and the decomposition may depend on the size N of the lattice.

Consider an instantaneous current satisfying (2.22). Then by a direct computation it is possible to check that∑
x∈ΛN

jη(x,x+ e(j)) = ⟨jη,φ(j)⟩= 0 , ∀η ,∀j = 1, . . . d .

This means that for each fixed η the discrete vector field jη is orthogonal to the harmonic subspace. This implies that the
functions C(i) in formula (69) of Theorem 2 in [8], that correspond to the ones in equation (2.27), are identically zero.
The instantaneous current for any model satisfying (2.22) can therefore be written as

(2.28) jη(x, y) =
[
τyh(η)− τxh(η)

]
+
[
τf+(x,y)g(η)− τf−(x,y)g(η)

]
,

for suitable functions h and g, not necessarily local.
The model with rates (2.3) has the peculiar feature that the instantaneous current can be decomposed like (2.28) with

h and g being local functions. Indeed by a direct computation using the special form of the local function defined in (2.4)
we have that for the rates in (2.3) the instantaneous current has the form (2.28) with h(η) = −η(0) and the function g
corresponding to the one defined by (2.4).

For an instantaneous current like (2.28) we call respectively

(2.29) j∇η (x, y) :=
[
τyh(η)− τxh(η)

]
and jδη(x, y) :=

[
τf+(x,y)g(η)− τf−(x,y)g(η)

]
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the gradient part of the current j∇η (x, y) and the circulation part of the current jδη(x, y). At the end of next section we will
observe that the hydrodynamics of the particle system will be related only to the gradient part, when we observe just the
density. The circulation part is relevant when we observe instead the current too.

3. Scaling limits

There are two natural empirical objects suitable to describe the scaling limit of the model: the empirical measure and the
empirical integrated current. We consider the model just in dimension 2 but in some formulas we keep the notation d for
the dimension. We do this to make some definitions clearer. For the specific computations of this paper d can always be
substituted by 2.

3.1. Empirical measure and current

Let M+(Λ) be the space of finite positive measures on Λ with total mass ≤ 1 and endowed with the weak topology. Let
πN : ΣN →M+(Λ) be the map that associates to the configuration η its empirical measure πN (η, du) defined by

(3.1) πN (η, du) :=
1

Nd

∑
x∈ΛN

η(x)δx(du) ,

where δv(du) denotes a Dirac measure at v ∈ Λ. Let ρ : Λ→ [0,1] be a measurable function. We say that a sequence of
probability measures µN on ΣN is associated to the density profile ρ if for any f ∈C(Λ)

(3.2) lim
N→+∞

µN

(
η ∈ΣN :

∣∣∣∣∫
Λ

f(u)πN (η, du)−
∫
Λ

f(u)ρ(u)du

∣∣∣∣> ε

)
= 0 , ∀ε > 0 .

This is the same as saying that the sequence of measures πN (η, du) ∈M+(Λ) converges weakly, as N →+∞, and in
probability with respect to µN , to the measure ρ(u)du ∈M+(Λ). With a small abuse of notation we denote again by πN

the map πN :D([0, T ],ΣN )→D([0, T ],M+(Λ)) that associates to the trajectory (ηt)t∈[0,T ] the path πN
[
(ηt)t∈[0,T ]

]
:=

(πN (ηt))t∈[0,T ] and we set πN
t (du) := πN (ηt, du). We denote by PµN

the probability measure on D([0, T ],ΣN ) when the
particles are distributed at time zero according to the sequence of probability measures µN and the Markovian dynamics is
determined by the rates (2.3) multiplied by a factor of N2, while we indicate with QN the probability measure induced by
the empirical measure on the space of càdlàg trajectories D([0, T ],M+(Λ)) that is QN := PµN

◦(πN )−1. The expectation
with respect to PµN

will be denoted by EµN
.

We define now the integrated empirical current field JN
t (·) as a bounded linear functional on a proper Hilbert space

as it will be explained in Section 3.2. This is due to technical issues related to the tightness of the related distribution
measures. Scaling limits and large deviations for the integrated empirical current were proven in [3] for the simple
exclusion process but the proof of the tightness is incomplete there. The topological setting that we use in this paper
follows the approach of [5].

For any t ∈ [0, T ] we denote, respectively, by NN
x,y(t) and NN

y,x(t) the number of particles that crossed the bond
(x, y) and the ones that crossed the bond (y,x) in the time window [0, t] for the process with rates multiplied by N2. The
integrated current field (in the following simply the current field) is then introduced as the functional acting on continuous
vector fields G : Λ→Rd in the following way

(3.3) JN
t (G) :=

1

Nd

∑
(x,y)∈EN

GN (x, y)NN
x,y(t),

where

(3.4) GN (x, y) :=

∫
(x,y)

G · dl

is the line integral on the oriented segment (x, y) of the vector field G. Note that |GN (x, y)| ≤ |G|∞/N where |G|∞ :=
supi=1,...,d supx∈Λ |Gi(x)|. Formula (3.3) can be written also as

(3.5)
1

Nd

∑
{x,y}∈EN

GN (x, y)JN
x,y(t),
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where JN
x,y(t) :=NN

x,y(t)−NN
y,x(t). Note that the two expressions (3.3) and (3.5) are equivalent since on the right-hand

side of (3.5) there is a product of two antisymmetric functions (on the pair x, y) and the expression is not ambiguous.
The microscopic continuity equation related to the conservation of mass is

(3.6) ηt(x)− η0(x) +∇ · JN
t (x) = 0 , ∀x ∈ΛN , t > 0 ,

where ∇ · JN
t (x) is defined in (2.11). This equation allows deriving, in a weak sense, a discrete continuity equation

relating the empirical measure and the current field, namely we have that

(3.7)
∫
Λ

fπN (ηt, du)−
∫
Λ

fπN (η0, du)−JN
t (∇f) = 0 , ∀f ∈C1(Λ) ,∀t ∈ [0, T ] .

From the general theory of interacting particle systems (see [16] part II Section 2.3) we have that

(3.8) MN
x,y(t) := JN

x,y(t)−N2

∫ t

0

ds jηs(x, y) , (x, y) ∈EN

is a martingale with respect to the natural filtration and therefore EµN
(MN

x,y(t)) = 0, for any initial condition µN . Con-
sidering a test vector field G we obtain the martingales

(3.9) MN
G (t) := JN

t (G)− N2−d

2

∫ t

0

∑
(x,y)∈EN

jηs
(x, y)GN (x, y)ds.

The factor 1/2 in the above formula appears since for a symmetric function s(x, y) we have
∑

{x,y}∈EN
s(x, y) =

1/2
∑

(x,y)∈EN
s(x, y). The martingale in (3.9) can be transformed, in the case of the rates (2.3), using some discrete

integration by parts and the special form of the instantaneous current into

(3.10) MN
G (t) = JN

t (G)−N2−d

∫ t

0

ds

 ∑
x∈ΛN

ηs(x)∇ ·GN (x) +
∑
f∈FN

τfg(ηs)
∑

(x,y)∈f⟲

GN (x, y)

 .

On the right-hand side of the above equation the first term inside the integral corresponds to a discrete divergence, while
the second one is a discrete version of a two-dimensional curl. By Taylor expansion, for a C3 vector field G, we have
indeed

(3.11)
{
N2∇ ·GN (x) =∇ ·G(x) +O(1/N2) ,
N2
∑

(x,y)∈f⟲ GN (x, y) =∇⊥ ·G(z) +O(1/N2),

where the infinitesimal terms are uniform, z is the center of the face f and we used the notation ∇⊥ ·G(z) :=−∂z2G1(z)+
∂z1G2(z).

The error terms can be estimated by (C/N2) sup
{k,i+j≤3}

|∂ix1
∂jx2

Gk|∞, where C is a universal constant. By (3.11) the

sums in (3.10) are directly related to discretized versions of differential operations on the vector field G and they can be
approximated by Riemann sums up to negligible terms.
Remark 3.0.1. For the currents j∇η (x, y) and jδη(x, y) of (2.29), we have that

(3.12) ∇ · jδη(x) = 0, ∀x ∈ΛN ⇒∇ · (j∇η + jδη)(x) =∇ · j∇η (x), ∀x ∈ΛN ,

this means that the hydrodynamics of the empirical measure will be related only to the gradient part of the instantaneous
current, because the continuity equation (3.7) was obtained from the microscopic conservation law (3.6) and the current
JN
t is related to the instantaneous current by the martingales (3.8).

Remark 3.0.2. From the general theory (see for example [16] Section II.2.3 or [12] Appendix 1 Section 5) we define the
martingale NN

G (t)

(3.13) NN
G (t) =

[
MN

G (t)
]2 −N2−2d

∫ t

0

ds
∑

{x,y}∈EN

(cx,y(ηs) + cy,x(ηs))G
2
N (x, y).
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The second term on the right-hand side of last display is called the quadratic variation of MN
G . Since NN

G is a martingale
we have

(3.14) EµN

[(
MN

G (t)
)2]

=
N2

N2d
EµN

∫ t

0

ds
∑

{x,y}∈EN

(cx,y(ηs) + cy,x(ηs))G
2
N (x, y)

≤
2dt
(
1 + |α|

)
|G|2∞

Nd
.

3.2. Current topology

We introduce now, following the approach in [5], the topological setting where we can prove a scaling limit for the current
field given in (3.3). See [12] chapter 11 or [5] for more details. Consider the lattice Zd endowed with the lexicographical
order, consider z ∈ Zd and let h0 = 1, hz(u) =

√
2cos(2πz ·u) if z > 0 and hz(u) =

√
2 sin(2πz ·u) if z < 0. In the space

of real L2(Λ) functions equipped with the scalar product ⟨f, g⟩=
∫
Λ
duf(u)g(u), the set {hz, z ∈ Zd} is an orthonormal

basis. Therefore given an L2-integrable vector field G : Λ→Rd each component j ∈ {1, . . . , d} can be written as

Gj =
∑
z∈Zd

⟨Gj , hz⟩hz =
∑
z∈Zd

Gj(z)hz, with Gj(z) := ⟨Gj , hz⟩.

Given two L2-vector fields F,G : Λ→Rd, we consider the scalar product

(3.15) ⟨F,G⟩0 :=
d∑

j=1

⟨Fj ,Gj⟩=
d∑

j=1

∑
z∈Zd

Fj(z)Gj(z),

where Fj(z) and Gj(z) are the projections of Fj and Gj on hz . This scalar product defines the L2(Λ,Rd) Hilbert space
that we denote by Hd

0 . Consider on C∞(Λ,Rd) the positive, symmetric linear operator L= (1−∆). The functions hz
are its eigenvectors

Lhz = γzhz, where γz = 1+ 4π2|z|2.

This operator allows us to define for each k ≥ 0 the Hilbert spaces Hd
k obtained as the completion of C∞(Λ,Rd) endowed

with the scalar product ⟨·, ·⟩k defined by

(3.16) ⟨F,G⟩k := ⟨F,LkG⟩0 ,

with F,G ∈C∞(Λ,Rd). From definition (3.15) and properties of L we have that

⟨F,G⟩k =
d∑

j=1

∑
z∈Zd

γkzFj(z)Gj(z),

therefore for k ≥ k′ ≥ 0 we have Hd
k ⊂Hd

k′ ⊂Hd
0 because Hd

k is the subspace of Hd
0 consisting of all vector fields F

such that

(3.17) ∥F∥2k =
d∑

j=1

∑
z∈Zd

γkzF2
j (z)<∞.

Denote by ϕ a bounded linear functional from Hd
k to R belonging to the dual space Hd

−k := (Hd
k)

∗, its action on
F ∈ Hd

k is indicated with ϕ(F ). By Riesz representation theorem for each ϕ ∈ Hd
−k there is a unique Gϕ ∈ Hd

k such
that ϕ(F ) = ⟨Gϕ, F ⟩k for each F in Hd

k . From this it follows the existence of an isometric isomorphism between Hd
k

and Hd
−k . Moreover, this isomorphism induces on Hd

−k a scalar product ⟨·, ·⟩−k , such that given ϕ,ϕ′ ∈ Hd
−k we have

⟨ϕ,ϕ′⟩−k = ⟨Gϕ,Gϕ′⟩k . This scalar product turns out to be

(3.18) ⟨ϕ,ϕ′⟩−k =

d∑
j=1

∑
z∈Zd

γ−k
z ϕ(Ij,z)ϕ′(Ij,z) =

d∑
j=1

∑
z∈Zd

γkzG
ϕ
j (z)G

ϕ′

j (z)
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where Ij,z is the vector field such that its i-th component is defined as Ij,zi := δi,jhz and Gϕ
j = ⟨Gϕ

j , hz⟩. Therefore, the
space Hd

−k consists of all functionals such that

(3.19) ∥ϕ∥2−k =

d∑
j=1

∑
z∈Zd

γ−k
z ϕ2(Ij,z)<∞.

Note that the space Hd
−k can be obtained as the completion of Hd

0 with respect to the scalar product ⟨·, ·⟩−k .
We will consider the current field JN

t as an element of the Sobolev space Hd
−k∗ , where k∗ will be determined later

on, i.e. JN
t ∈Hd

−k∗ . Therefore a trajectory
(
JN
t

)
t∈[0,T ]

will be considered to belong to the space of càdlàg trajectories

D
(
[0, T ],Hd

−k∗

)
. Let JN be the map from D([0, T ],ΣN ) to D

(
[0, T ],Hd

−k∗

)
that associates to (ηt)t∈[0,T ] the path

(JN
t )t∈[0,T ] . We denote by PN the probability measure on D([0, T ],H−k∗) induced by JN and the measure µN , that is

PN := PµN
◦ (JN )−1 and by EN the expectation with respect to PN . With some abuse of notation we will denote also

by JN =
(
JN
t

)
t∈[0,T ]

a trajectory of the current field and by J = (J )t∈[0,T ] a generic element of D
(
[0, T ],Hd

−k∗

)
.

3.3. Hydrodynamics

We start proving the diffusive hydrodynamic scaling behaviour of the density of our model. We have that the associated
hydrodynamic equation is simply the heat equation and this is a consequence of Remark 3.0.1, since the equation (3.7) is
closed in terms of the empirical density. For the law PµN

on D([0, T ],ΣN ) we have the following result.

Theorem 3.1. Let ηt be the Markov process with generator given by (2.1) with rates given in (2.3) multiplied by a factor
ofN2. Suppose to start the process from a sequence µN of probability measures which are associated (according to (3.2))
to a measurable density profile ρ∗ : Λ→ [0,1]. Then, for any f ∈C(Λ) and any ε > 0, it holds

(3.20) lim
N→+∞

PµN

(
η· ∈D([0, T ],ΣN ) :

∣∣∣∣∫
Λ

f(u)πN (ηt, du)−
∫
Λ

f(u)ρt(u)du

∣∣∣∣> ε

)
= 0 ,

where ρt(u) is the unique weak solution of the Cauchy problem

(3.21)
{
∂tρt(u) =∆ρt(u) ,∀u ∈Λ,∀t > 0,
ρ0(u) = ρ∗(u) ,∀u ∈Λ.

Proof. Even if the model is more complex, the scaling behavior for the density can be proved similarly to the simple
exclusion process (SEP). This is because a part of the instantaneous current is exactly divergence free (recall Remark
3.0.1) and does not contribute. We show how to reduce to the same structure of the SEP and then the proof is the same as
in Chapter 4 of [12]. From Dynkin’s formula, namely Lemma A.1.5.1 of [12], for f ∈C(Λ), we have that

(3.22) MN
∇f (t) =

∫
Λ

πN (ηt, du)f −
∫
Λ

πN (η0, du)f −N2

∫ t

0

LN

(∫
Λ

πN (ηs, du)f

)
ds

is a martingale with respect to the natural filtration (we used the notation MN
∇f (t) since for f ∈ C1(Λ) the martingale

(3.22) coincides with (3.9) with G=∇f ). Using Remark 3.0.1 we have that MN
∇f (t) coincides with

(3.23)
∫
Λ

πN (ηt, du)f −
∫
Λ

πN (η0, du)f − N2

Nd

∫ t

0

∑
x∈ΛN

ηs(x)∇ · (∇f)N (x)ds ,

where (∇f)N is the gradient discrete vector field (∇f)N (x, y) = f(y)− f(x). Again by Lemma A.1.5.1 of [12] we have

(3.24) EµN

[
(MN

∇f (t))
2
]
= EµN

N2−2d

∫ t

0

ds
∑

(x,y)∈EN

cx,y(ηs) (f(y)− f(x))
2

≤ C(f,α)t

N2

where C(f,α) is a constant depending on f ∈C(Λ) and the parameter α (the above formula coincides with (3.14) when
G=∇f since in that case we have GN (x, y) = f(y)− f(x)). Once obtained equations (3.23) and (3.24) the proof is the
same as the one for SEP in Chapter 4 of [12].

Remark 3.1.1. We recall that the unique weak solution of the Cauchy problem (3.21) is also a strong solution, see [12].
Therefore the measure πt(du) = ρt(u)du is absolutely continuous with respect to the Lebesgue measure and its density
is a C1,2([0, T ]×Λ) function.
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3.4. Typical current

We have seen above that the hydrodynamic equation can be written as a conservation law ∂tρ +∇ · J(ρ) = 0 but the
typical current J(ρ) does not coincide with −∇ρ as in the classic gradient model case. The expression of the typical
current is obtained by studying the limiting behaviour of the current field. To that end, let us introduce, for g defined in
(2.4),

(3.25) a(ρ) :=Eνρ [g(η)] = 2α [ρ(1− ρ)]
2
,

and the antisymmetric matrix

(3.26) A(ρ) =

(
0 −a′(ρ)

a′(ρ) 0

)
.

We have the following theorem for the current field JN .

Theorem 3.2. Let ηt be the Markov process with generator given by (2.1) with rates given in (2.3) multiplied by N2.
Suppose to start the process from a sequence of probability measures µN which are associated (according to (3.2)) to a
measurable density profile ρ∗ : Λ→ [0,1]. Then, for any C∞ vector field G on Λ and for any ε > 0, it holds

(3.27) lim
N→+∞

PµN

(
η· ∈D([0, T ],ΣN ) :

∣∣∣∣JN
t (G)−

∫
Λ

du

∫ t

0

dsJ(ρs(u)) ·G(u)
∣∣∣∣> ε

)
= 0 ,∀t ∈ [0, T ],

where

(3.28) J(ρ) =−∇ρ−A(ρ)∇ρ ,

and ρt(u) is the unique weak solution of the Cauchy problem (3.21) and A(ρ) is given in (3.26).

The proof of last theorem articulates in two main steps, that is, the proof of tightness for the sequence {PN ,N ≥ 1}
and the characterization of its limits point. Therefore we are going to perform these two steps separately and at the end
we deduce Theorem 3.2.

4. Proof of Theorem 3.2

As we mentioned above, the proof of the theorem relies on two main steps: tightness and the characterization of limit
points. We start with the former.

4.1. Tightness

Let us introduce the uniform modulus of continuity wδ(J ) on D
(
[0, T ],Hd

−k

)
defined by

(4.1) wδ(J ) = sup
|t−s|≤δ
0≤s,t≤T

∥Jt −Js∥−k,

with ∥ · ∥−k as defined in (3.19).
By Prokhorov’s theorem, we have the following criterion for relative compactness of a sequence of probability mea-

sures {PN ,N ≥ 1} on D
(
[0, T ],Hd

−k

)
(see [12] Chapter 4 Theorem 1.3 and Remark 1.4).

Proposition 4.1. A sequence of probability measures {PN ,N ≥ 1} defined on D
(
[0, T ],Hd

−k

)
is tight if, for every

0≤ t≤ T and for every ε > 0, we have

1. lim
l→∞

limsup
N→∞

PN

(
sup

0≤t≤T
∥Jt∥−k > l

)
= 0;

2. lim
δ→0

limsup
N→∞

PN (wδ(J )> ε) = 0 ∀ε > 0.

To prove Proposition 4.1 for the sequence {PN ,N ≥ 1} induced by the integrated current field, we first derive the next
lemma.
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Lemma 4.1. For every z in Z2 and j = 1,2,

(4.2) limsup
N→∞

EN

[
sup

0≤t≤T
[Jt(I

j,z)]2
]
≤ 16π2T 2

(
|z1|+ |z2|

)2
,

where Ij,z was introduced below (3.18).

Proof. Call MN
j,z the martingale in (3.9) acting on the test vector field G= Ij,z . Since (a+ b)2 ≤ 2(a2 + b2), to prove

inequality (4.2), we have to properly bound the expectation of the sup
0≤t≤T

of the two terms in the decomposition of

JN
t (Ij,z) given in (3.9). Since |∂xi

Ij,z|∞ = 2
√
2π|z|, from Remark 3.0.2 and Doob’s inequality, we have

(4.3) EµN

[
sup

0≤t≤T
(MN

j,z)
2(t)

]
≤

16dπ2T |z|2
(
1 + |α|

)
Nd

.

It remains to estimate the following expectation

EµN

 sup
0≤t≤T

N2−d

∫ t

0

ds

 ∑
x∈ΛN

ηs(x)∇ · Ij,zN (x) +
∑
f∈FN

τfg(ηs)
∑

(x,y)∈f⟲

Ij,zN (x, y)

2
≤(4.4)

TEµN

∫ T

0

ds

N2−d
∑

x∈ΛN

ηs(x)∇ · Ij,zN (x) +N2−d
∑
f∈FN

τfg(ηs)
∑

(x,y)∈f⟲

Ij,zN (x, y)

2
 ,

the second line comes from Cauchy-Schwarz inequality. Since η and g(η) are bounded, using the approximations (3.11),
the second line is bounded up to an infinitesimal term by

(4.5) T 2

N−d
∑

x∈ΛN

|∇ · Ij,z(x)|+N−d
∑
f∈FN

|∇⊥ · Ij,z(y(f))|

2

where y(f) is the center of the face f. In the above formula we have Riemann sums and by the definition of Ij,z formula
(4.5) is converging when N →+∞ to

T 2

∑
i=1,2

∫
Λ

dx|∂xih
z(x)|

2

≤ 8π2T 2
(
|z1|+ |z2|

)2
.

Remark 4.1.1. By the formulas (3.11), that are obtained by suitable Taylor expansions, we have that N2∇ · Ij,zN (x) =

∇ · Ij,z(u) for a suitable u on the face of the dual lattice centered at x and N2
∑

(x,y)∈f⟲ I
j,z
N (x, y) =∇⊥ · Ij,z(u) for a

suitable u ∈ f. We have therefore that the right-hand side of (4.4) is bounded uniformly in N,j by CT 2(|z1|+ |z2|)2 for
a suitable constant C .

Lemma 4.2. For k > k∗ = d
2 + 1= 2, we have that

(4.6) limsup
N→∞

EµN

[
sup

0≤t≤T
∥JN

t ∥2−k

]
<∞.

Proof. The expectation in (4.6) is bounded from above by

d∑
j=1

∑
z∈Zd

γ−k
z EµN

[
sup

0≤t≤T

[
JN
t (Ij,z)

]2]
.
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Consider k > k∗ and use the bound (4.2). By Remark 4.1.1 we can apply the dominated convergence theorem and we
have

limsup
N→∞

d∑
j=1

∑
z∈Zd

γ−k
z EµN

[
sup

0≤t≤T

[
JN
t (Ij,z)

]2]≤ 16π2T 2
∑
z∈Zd

(|z1|+ |z2|)2

γkz
<+∞ .

Using 4.6 and Markov’s inequality we obtain for k > 2 the first condition of Proposition 4.1.

Proposition 4.2. For each k > k∗ = d/2 + 1 = 2 and each ε > 0

(4.7) lim
δ→0

limsup
N→∞

PµN

 sup
|t−s|≤δ
0≤s,t≤T

∥JN
t −JN

s ∥−k > ε

= 0.

Proof. From Markov’s inequality the probability in (4.7) is bounded by

1

ε2

d∑
j=1

∑
z∈Zd

γ−k
z EµN

 sup
|t−s|≤δ
0≤s,t≤T

[
JN
t (Ij,z)−JN

s (Ij,z)
]2 .

We give an estimate of

(4.8) lim
δ→0

limsup
N→∞

EµN

 sup
|t−s|≤δ
0≤s,t≤T

[
JN
t (Ij,z)−JN

s (Ij,z)
]2 .

To that end we start recalling the action of JN
t (G)−JN

s (G) on a test function G ∈Hd
k:

(4.9) JN
t (G)−JN

s (G) =
[
MN

G (t)−MN
G (s)

]
+
[
N2−d

∫ t

s

dr
∑

{x,y}∈EN

jηr
(x, y)GN (x, y)

]
,

where MN
G (t) is the martingale given in (3.9). We bound separately the two terms inside squared parenthesis in (4.9)

where G= Ij,z . We denote by MN
j,z(t) the martingale MN

Ij,z (t). We have

sup
|t−s|≤δ

0≤s<t≤T

(MN
j,z(t)−MN

j,z(s))
2 ≤ sup

0≤t≤T
4
[
MN

j,z(t)
]2
,

and by L2 Doob maximal inequality we get

EµN

 sup
|t−s|≤δ

0≤s<t≤T

(MN
j,z(t)−MN

j,z(s))
2

≤ 16EµN

[
MN

j,z(T )
]2

and we use the same bound as in (4.3) to show the convergence to zero of the right-hand side when N diverges.
To treat the second term, after Chebychev’s and Cauchy-Schwarz’s inequalities, proceeding as we did to bound (4.4)

and using similar arguments as those in the proof of Proposition 4.2 we obtain

(4.10) lim
δ→0

limsup
N→∞

EµN

 sup
|t−s|≤δ
0≤s,t≤T

∣∣∣∣∫ t

s

drN2−d
∑

{x,y}∈EN

jηr (x, y)I
j,z
N (x, y)

∣∣∣∣2
= 0.

From these estimates one can conclude (4.7).

Proof. (of Proposition 4.1) Item (1) is obtained from Lemma 4.2 and Markov’s inequality. Item (2) coincides with the
statement of Proposition 4.2.

This proof shows that the sequence {PN N ≥ 1} is tight on the space of trajectories D
(
[0, T ],Hd

−k

)
.
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4.2. Characterization of limit points

Now we characterize the unique limit points of the sequence {PN , N ≥ 1}.
We begin by fixing some notations. Fix x = (x1, x2) ∈ ΛN , ℓ ∈ N, ε > 0, δ > 0. To have a simple notation, in some

formulas we will write εN even if we should instead consider its integer part [εN ]. Let us define the intervals

Ii,ℓp (x) :=

{
[xi + e(i), xi + ℓe(i)] if p=+1 ,
[xi − ℓe(i), xi − e(i)] if p=−1 ,

and the corresponding boxes

Bℓ
p,q(x) = I1,ℓp (x)× I2,ℓq (x)⊆ΛN , p, q ∈ {1,−1} .

This means that along the 4 possible values of the indexes p, q we are considering the four boxes of size ℓ/N having x
as a corner. The point x does not belong to the boxes to make them disjoint, and this will be important in the proof below.
We define also

(4.11) η
(p,q)
ℓ (x) :=

1

ℓ2

∑
y∈Bℓ

p,q(x)

η(y)

the particles density in the box Bℓ
p,q(x). We consider four approximations of the identity; consider on the continuous

torus u= (u1, u2), v = (v1, v2) ∈Λ and define

(4.12) i(p,q,u)ε (v) :=


ε−21[u1,u1+ε)×[u2,u2+ε)(v) if (p, q) = (1,1),
ε−21[u1,u1+ε)×(u2−ε,u2](v) if (p, q) = (1,−1),
ε−21(u1−ε,u1]×[u2,u2+ε)(v) if (p, q) = (−1,+1),
ε−21(u1−ε,u1)×(u2−ε,u2](v) if (p, q) = (−1,−1).

We use also the shortcuts

πt (f) :=

∫
Λ

f(u)ρt(u)du, π
N
t (f) :=

∫
Λ

f(u)πN (ηt, du),

where ρt(u) solves the Cauchy problem (3.21) and f ∈C2(Λ). We associate to each vertex x ∈ΛN the non-oriented face
fx = {x,x+ e(1), x+ e(1) + e(2), x+ e(2)}; accordingly f⟲x and f⟳x are the corresponding anticlockwise and clockwise
orientations of fx.

Proposition 4.3. Let P be a limit point of the sequence {PN , N ≥ 1}. Then, for k > k∗,

(4.13) P
(
J· ∈ C([0, T ],H−k) and F(G, t, ρ) = 0 ∀t ∈ [0, T ]

)
= 1 , ∀G ∈C∞(Λ;R2) ,

where

(4.14) F(G, t, ρ) = Jt(G)−
∫ t

0

ds

∫
Λ

du
(
ρs(u)∇ ·G(u) + a (ρs(u))∇⊥ ·G(u)

)
,

with ρt(u) solving the Cauchy problem (3.21) and a(·) is defined in (3.25).

Proof. Condition (2) in Proposition 4.1 tells us that the limit points are concentrated on continuous paths, i.e. paths in
C
(
[0, T ],Hd

−k

)
.

It remains to show that for any δ > 0 and any vector field G ∈C∞(Λ;R2)

(4.15) P
(
J· ∈ C([0, T ],H−k) : sup

0≤t≤T
|F(G, t, ρ)|> δ

)
= 0.

By Lebesgue’s differentiation theorem lim
ε→0

πs

(
i
(p,q,u)
ε

)
= ρs(u) for all u ∈ Λ, for any p, q and for almost every s ∈

[0, T ]. Since G ∈C∞(Λ;R2) by dominated convergence Theorem we have therefore that

lim
ε→0

sup
0≤t≤T

∣∣∣∣∫ t

0

ds

∫
Λ

du a (ρs(u))∇⊥ ·G(u)(4.16)
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−
∫ t

0

ds

∫
Λ

du
(
απs

(
i(−1,−1,u)
ε

)(
1− πs

(
i(1,−1,u)
ε

))
πs

(
i(1,1,u)ε

)(
1− πs

(
i(−1,1,u)
ε

)))
∇⊥ ·G(u)

−
∫ t

0

ds

∫
Λ

du
(
α
(
1− πs

(
i(−1,−1,u)
ε

))
πs

(
i(1,−1,u)
ε

)
(
1− πs

(
i(1,1,u)ε

))
πs

(
i(−1,1,u)
ε

))
∇⊥ ·G(u)

∣∣∣= 0 .

By summing and subtracting proper terms and using the above formula, we have that (4.15) is deduced by proving for
any δ > 0 that

lim inf
ε→0

P
(

sup
0≤t≤T

∣∣∣∣Jt(G)−
∫ t

0

dsπs (∇ ·G)(4.17)

−
∫ t

0

ds

∫
Λ

du
(
απs

(
i(−1,−1,u)
ε

)(
1− πs

(
i(1,−1,u)
ε

))
πs

(
i(1,1,u)ε

)(
1− πs

(
i(−1,1,u)
ε

)))
∇⊥ ·G(u)

−
∫ t

0

ds

∫
Λ

du
(
α
(
1− πs

(
i(−1,−1,u)
ε

))
πs

(
i(1,−1,u)
ε

)
(
1− πs

(
i(1,1,u)ε

))
πs

(
i(−1,1,u)
ε

))
∇⊥ ·G(u)

∣∣∣> δ
)
= 0 .

By Portmanteau’s Theorem we can bound from above the limit (4.17) by

lim inf
ε→0

lim inf
N→+∞

PµN

(
sup

0≤t≤T

∣∣∣∣JN
t (G)−

∫ t

0

dsπs (∇ ·G)(4.18)

−
∫ t

0

ds

∫
Λ

du
(
απs

(
i(−1,−1,u)
ε

)(
1− πs

(
i(1,−1,u)
ε

))
πs

(
i(1,1,u)ε

)(
1− πs

(
i(−1,1,u)
ε

)))
∇⊥ ·G(u)

−
∫ t

0

ds

∫
Λ

du
(
α
(
1− πs

(
i(−1,−1,u)
ε

))
πs

(
i(1,−1,u)
ε

)
(
1− πs

(
i(1,1,u)ε

))
πs

(
i(−1,1,u)
ε

))
∇⊥ ·G(u)

∣∣∣> δ
)
.

We sum and subtract (1/2)
∫ t

0
ds

∑
(x,y)∈EN

jηs
(x, y)GN (x, y) to the term inside the supremum in (4.18). Recalling (3.9)

and (3.10), we bound the probability in (4.18) by the sum of the next three terms

(4.19) PµN

(
sup

0≤t≤T

∣∣MN
G (t)

∣∣> δ

3

)
,

(4.20) PµN

(
sup

0≤t≤T

∣∣∣∣N2

∫ t

0

dsπN
s (∇ ·GN )−

∫ t

0

dsπs (∇ ·G)
∣∣∣∣> δ

3

)
,

and

PµN

 sup
0≤t≤T

∣∣∣∣∣∣
∫ t

0

ds
∑
f∈FN

τfg(ηs)
∑

(x,y)∈f⟲

GN (x, y)(4.21)

−
∫ t

0

ds

∫
Λ

du
(
απs

(
i(−1,−1,u)
ε

)(
1− πs

(
i(1,−1,u)
ε

))
πs

(
i(1,1,u)ε

)(
1− πs

(
i(−1,1,u)
ε

)))
∇⊥ ·G(u)

−
∫ t

0

ds

∫
Λ

du
(
α
(
1− πs

(
i(−1,−1,u)
ε

))
πs

(
i(1,−1,u)
ε

)
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1− πs

(
i(1,1,u)ε

))
πs

(
i(−1,1,u)
ε

))
∇⊥ ·G(u)

∣∣∣> δ

3

)
.

From Doob’s inequality and (3.14) the probability in (4.19) vanishes as N →∞. The same holds for the probability
in (4.20) by the approximation (3.11) for the discrete divergence and the law of large numbers for the empirical density
(see Theorem 3.1). Again by the law of large numbers for the density, to show that (4.21) is converging to zero for any δ,
we can simply show that

PµN

 sup
0≤t≤T

∣∣∣∣∣∣
∫ t

0

ds
∑
f∈FN

τfg(ηs)
∑

(x,y)∈f⟲

GN (x, y)(4.22)

−
∫ t

0

ds

∫
Λ

du
(
απN

s

(
i(−1,−1,u)
ε

)(
1− πN

s

(
i(1,−1,u)
ε

))
πN
s

(
i(1,1,u)ε

)(
1− πN

s

(
i(−1,1,u)
ε

)))
∇⊥ ·G(u)

−
∫ t

0

ds

∫
Λ

du
(
α
(
1− πN

s

(
i(−1,−1,u)
ε

))
πN
s

(
i(1,−1,u)
ε

)
(
1− πN

s

(
i(1,1,u)ε

))
πN
s

(
i(−1,1,u)
ε

))
∇⊥ ·G(u)

∣∣∣> δ̃
)
,

is converging to zero when N →+∞, for any δ̃. Recalling (2.4), the probability in (4.22) can be bounded by the sum of
the following two terms

PµN

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

ds
∑

x∈ΛN

{
ηs(x)

(
1− ηs

(
x+ e(1)

))
(4.23)

ηs

(
x+ e(1) + e(2)

)(
1− ηs

(
x+ e(2)

))} ∑
(w,z)∈f⟲

x

GN (w,z)

−
∫ t

0

ds

∫
Λ

du
(
πN
s

(
i(−1,−1,u)
ε

)(
1− πN

s

(
i(1,−1,u)
ε

))
πN
s

(
i(1,1,u)ε

)(
1− πN

s

(
i(−1,1,u)
ε

)))
∇⊥ ·G(u)

∣∣∣> δ̃

2|α|

)
,

and

PµN

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

ds
∑

x∈ΛN

{
(1− ηs(x))ηs

(
x+ e(1)

)
(4.24)

(
1− ηs

(
x+ e(1) + e(2)

))
ηs

(
x+ e(2)

)} ∑
(w,z)∈f⟲

x

GN (w,z)

−
∫ t

0

ds

∫
Λ

du
((

1− πN
s

(
i(−1,−1,u)
ε

))
πN
s

(
i(1,−1,u)
ε

)
(
1− πN

s

(
i(1,1,u)ε

))
πN
s

(
i(−1,1,u)
ε

))
∇⊥ ·G(u)

∣∣∣> δ̃

2|α|

)
.

By the approximation (3.11), we can replace
∑

(w,z)∈f⟲
x
GN (w,z) by ∇⊥ · G(x)/N2 for N large. Moreover by the

definitions we have ∣∣∣πN
s

(
i(p,q,x)ε

)
− η

(p,q)
s, εN (x)

∣∣∣≤ 2

εN
, x ∈ΛN ,(4.25)
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we can bound (4.23) and (4.24), for N large enough, respectively by

PµN

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

ds
1

N2

∑
x∈ΛN

{
∇⊥ ·G (x)(4.26)

[
ηs(x)

(
1− ηs

(
x+ e(1)

))
ηs

(
x+ e(1) + e(2)

)(
1− ηs

(
x+ e(2)

))
− η

(−1,−1)
s, εN (x)

(
1− η

(1,−1)
s, εN (x)

)
η
(1,1)
s, εN (x)

(
1− η

(−1,1)
s, εN (x)

)]}∣∣∣> δ̂
)
,

and

PµN

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

ds
1

N2

∑
x∈ΛN

{
∇⊥ ·G (x)(4.27)

[
(1− ηs(x))ηs

(
x+ e(1)

)(
1− ηs

(
x+ e(1) + e(2)

))
ηs

(
x+ e(2)

)
−
(
1− η

(−1,−1)
s, εN (x)

)
η
(1,−1)
s, εN (x)

(
1− η

(1,1)
s, εN (x)

)
η
(−1,1)
s, εN (x)

]}∣∣∣> δ̂
)
.

for a suitable δ̂ < δ̃/2|α|. The key result that allows to conclude the proof is Proposition 4.4, together with Markov’s
inequality, implying that the probabilities in (4.26) and (4.27) vanish as N →∞ and ε→ 0. This ends the proof.

We remark that (4.14) is a weak form of Jt(G) −
∫ T

0
dt
∫
Λ
duJ(ρt(u)) · G(u) with J(ρ) = −∇ρ − A(ρ)∇ρ, but

from the regularity property of ρt(u) discussed in Remark 3.1.1 we have that the two forms are equivalent. Hence the
uniqueness and characterization of the limit point follows from this and the fact that at time 0 we have JN

0 (G) = 0.
Therefore the proof of Theorem 3.2 is completed once we show the auxiliary replacement lemma used in the proof of
Proposition 4.3.

4.3. Replacement lemma

In this section we discuss how to prove the replacement lemma used to deduce that (4.26) and (4.27) converge to zero
when N →+∞ and ε→ 0. We start to define the Dirichlet form and the Carré du Champ operator and we will discuss a
relation between them.

4.3.1. Dirichlet forms
Recall that the Bernoulli product measure

νρ(η) =
∏

x∈ΛN

ρη(x)(1− ρ)1−η(x),

is invariant for the dynamics. Let f : ΣN →R be a density with respect to νρ. The Dirichlet form of the process is defined
as

(4.28) −
〈
LN

√
f,
√
f
〉
νρ

, with ⟨g,h⟩ν :=
∫
ν(dη)g(η)h(η) =Eν(gh),

for all functions g,h : ΣN →R and ν a probability measure in ΣN . Moreover, we define the quadratic form, with respect
to νρ, as the operator DN acting on positive functions f : ΣN →R as follows,

(4.29) DN

(√
f, νρ

)
:=

1

2

∑
(x,y)∈EN

∫
νρ(dη)cx,y(η)

(√
f(ηx,y)−

√
f(η)

)2
.

A direct computation, using the invariance of νρ and the fact that νρ(ηx,y)/νρ(η) = 1, tells us that the Dirichlet form and
the quadratic form coincide, i.e.

(4.30) −
〈
LN

√
f,
√
f
〉
νρ

=DN (
√
f, νρ).
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4.3.2. Replacement lemma on the discrete torus
First we prove a replacement lemma and then show how to apply the basic lemma to our specific case. Consider ψN :
ΣN →R a bounded function whose domain does not overlap the vertex 0 nor the box Bℓ

p,q(0) for any ℓ ∈N. Let us define

V N,p,q
ℓ,G (η) :=

1

N2

∑
x∈ΛN

(
η(x)− η

(p,q)
ℓ (x)

)
τxψN (η)∇⊥ ·G(x) ,

where G ∈C∞(Λ;R2). We have the following

Lemma 4.3. Let {ψN : ΣN →R,N ≥ 1} be a uniformly bounded sequence of functions whose domains do not overlap
the vertex 0 nor the box Bℓ

p,q(0) for any ℓ ∈N. For ℓ= εN we have that

(4.31) lim
ε→0

lim
N→∞

EµN

[∣∣∣∣∫ t

0

dsV N,p,q
εN,G (ηs)

∣∣∣∣]= 0 .

The indexes (p, q) are fixed and recall that p, q ∈ {−1,1}.

Proof. By the entropy inequality, see for example Section A1.8 in [12], the expectation in (4.31) can be bounded by

H(µN |νρ)
N2B

+
1

N2B
logEνρ

(
exp

∣∣∣∣BN2

∫ t

0

dsV N,p,q
ℓ,G (ηs)

∣∣∣∣) ,
where νρ is the Bernoulli measure of parameter ρ and B is an arbitrary positive constant. From Feynman-Kac’s formula
and the variational formula for the largest eigenvalue of a symmetric operator (see respectively Proposition A1.7.1 and
Lemma A1.7.2 in [12]) we can bound last expression from above by

(4.32)
H(µN |νρ)
N2B

+ t sup
f

{〈
V N,p,q
ℓ,G , f

〉
νρ

+
1

B

〈
LN

√
f,
√
f
〉
νρ

}
where the supremum is carried over all densities f with respect to νρ. Note that even if the generator LN is not reversible
we have the bound (4.32), see the comments on Section A.1.7 in [12]. The relative entropy is bounded from above by
cN2, where c is a positive constant, see Theorem A.1.8.6 in [12]. We have then that (4.32) is bounded from above by

(4.33)
c

B
+ t sup

f

{〈
V N,p,q
ℓ,G , f

〉
νρ

− 1

B
DN (

√
f, νρ)

}
.

We consider the following telescopic expansion

η(x)− η
(p,q)
ℓ (x) =

1

ℓ2

∑
{y∈Bℓ

p,q(x)}

∑
{z(i)∈γx,y}

(
η
(
z(i)
)
− η

(
z(i+1)

))
,

where γx,y is the minimal length path from x to y, with the final vertex y removed, obtained going from x to y walking
first in the direction pe(1) until we cross the perpendicular line containing y and then walking in the direction qe(2) until
we reach y. The final vertex y ̸∈ γx,y in such a way that

∑
{z(i)∈γx,y}

(
η
(
z(i)
)
− η

(
z(i+1)

))
= η(x) − η(y). Using the

above telescopic formula, the change of variables η′ = ηz
(i),z(i+1)

and the hypothesis on the domain of ψN , we get that〈
V N,p,q
ℓ,G , f

〉
νρ

is equal to

1

2ℓ2

∫
νρ(dη)

1

N2

∑
x,y,i

(
η
(
z(i)
)
− η

(
z(i+1)

))
τxψN (η)∇⊥ ·G(x)·

(√
f(η)−

√
f
(
ηz

(i),z(i+1)
))(√

f(η) +
√
f
(
ηz

(i),z(i+1)
))

,

where we write shortly
∑
x,y,i

to denote
∑

x∈ΛN

∑
{y∈Bℓ

p,q(x)}

∑
{z(i)∈γx,y}

. We give an estimate from above of each term assuming

that ∇⊥ ·G(x) ̸= 0, and cz(i),z(i+1)(η)> 0. This is because if ∇⊥ ·G(x) = 0 then the corresponding term in the above
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formula is identically zero and we do not need to give an estimate and likewise if cz(i),z(i+1)(η) = 0 then necessarily(
η
(
z(i)
)
− η

(
z(i+1)

))
= 0 and again the term is zero and we have not to give an estimate. Applying Young’s inequality,

last expression can be bounded from above by

(4.34)
1

4ℓ2

∑
x,y,i

[
1

N2
∇⊥ ·G(x)

]
·
{∫

νρ(dη)A
η
x,y,i

(√
f(η)−

√
f
(
ηz

(i),z(i+1)
))2

+

∫
νρ(dη)

1

Aη
x,y,i

(
η(z(i))− η(z(i+1))

)2
(τxψN (η))

2
(√

f(η) +
√
f
(
ηz

(i),z(i+1)
))2}

,

where we choose Aη
x,y,i :=

4
(
c
z(i),z(i+1) (η)

)
Bc′ℓ[ 1

N2 ∇⊥·G(x)]
. The factor c′ in the definition of Aη

x,y,i is a suitable positive constant.

The first term in (4.34) is equal to

(4.35)
1

Bc′ℓ3

∑
x,y,i

∫
νρ(dη)cz(i),z(i+1)(η)

(√
f(η)−

√
f
(
ηz

(i),z(i+1)
))2

,

that can be bounded (here it is relevant the constant c′ that is used in a simple counting argument that we omit) by
1
B

∑
(x,y)∈EN

∫
νρ(dη)cx,y(η)

(√
f(η)−

√
f(ηx,y)

)2
, which cancels in (4.33) with − 1

BDN (
√
f, νρ).

Since 1
N2∇⊥ · G(x) = O

(
1

N2

)
, the second term in (4.34) is bounded from above by CBℓ2

N2 , where C is a positive
constant. Considering ℓ= εN we have that (4.33) is smaller or equal than

(4.36)
c

B
+CBε2,

therefore taking the limits in (4.36) first in N →∞, then in ε→ 0 and finally in B→+∞, we obtain the result.

Using this basic lemma we can finally prove the following result

Proposition 4.4. [Replacement lemma]
Let G : Λ→R2 be a C∞(Λ) vector field. For any t ∈ [0, T ], we have that

lim
ε→0

lim
N→∞

EµN

(∣∣∣∣∣
∫ t

0

ds
1

N2

∑
x∈ΛN

{
∇⊥ ·G (x) [τxg1(ηs)(4.37)

−η(−1,−1)
s, εN (x)

(
1− η

(1,−1)
s, εN (x)

)
η
(1,1)
s, εN (x)

(
1− η

(−1,1)
s, εN (x)

)]}∣∣∣)= 0,

and

lim
ε→0

lim
N→∞

EµN

(∣∣∣∣∣
∫ t

0

ds
1

N2

∑
x∈ΛN

{
∇⊥ ·G (x) [τxg2(ηs)(4.38)

−
(
1− η

(−1,−1)
s, εN (x)

)
η
(1,−1)
s, εN (x)

(
1− η

(1,1)
s, εN (x)

)
η
(−1,1)
s, εN (x)

]}∣∣∣)= 0,

where

g1(η) = η(x)
(
1− η

(
x+ e(1)

))
η
(
x+ e(1) + e(2)

)(
1− η

(
x+ e(2)

))
and

g2(η) = (1− η(x))η
(
x+ e(1)

)(
1− η

(
x+ e(1) + e(2)

))
η
(
x+ e(2)

)
.

In the present context, the replacement formulas (4.37) and (4.38) are done by using as auxiliary measure the Bernoulli
product measure νρ of constant profile, therefore we can replace the occupation variables with the average density on
boxes of side ℓ = εN (see for example [12]). To prove Proposition 4.4 we have to apply Lemma 4.3 several times. For
example in g1(η), the full proof would ask the following steps:
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1) Replace η(x)τxψN (η) with η(−1,−1)
εN (x)τxψN (η);

2) Replace
(
1− η

(
x+ e(1)

))
τxψN (η) with

(
1− η

(1,−1)
εN (x)

)
τxψN (η);

3) Replace η
(
x+ e(1) + e(2)

)
τxψN (η) with η(1,1)εN (x)τxψN (η);

4) Replace
(
1− η

(
x+ e(2)

))
τxψN (η) with

(
1− η

(−1,1)
εN (x)

)
τxψN (η);

where in 1), 2), 3) and 4) the function ψN (η) is given respectively by

1)
(
1− η

(
x+ e(1)

))
η
(
x+ e(1) + e(2)

) (
1− η

(
x+ e(2)

))
;

2) η(−1,−1)
εN (x)η

(
x+ e(1) + e(2)

) (
1− η

(
x+ e(2)

))
;

3) η(−1,−1)
εN (x)

(
1− η

(1,−1)
εN (x)

)(
1− η

(
x+ e(2)

))
;

4) η(−1,−1)
εN (x)

(
1− η

(1,−1)
εN (x)

)
η
(1,1)
εN (x).

Analogous steps should be done also for g2(η). We omit details.

5. Generalized gradient models, weakly asymmetric models and Einstein relation

We give a short outline of the form of the scaling limits in several conditions. We give no proofs and our aim here is just
to give a general overview.

5.1. Scaling limits of generalized gradient models

The first case we consider is a diffusive generalized gradient model, i.e. the instantaneous current is like in (2.22), and
having stationary grandcanonical measures νρ parameterized by the density ρ. According to the general scheme of Section
3, we have that JN

t (G) is equal to

(5.1)
N2

2Nd

∫ t

0

ds
∑

(x,y)∈EN

GN (x, y)jηs
(x, y) ,

up to martingales terms negligible in the scaling limit. Here G is a C∞(Λ)-vector field and GN its discretization given in
(3.4). The factor N2 is due as usual to the diffusive rescaling of time. After some discrete integration by parts, we have
that (5.1) becomes

(5.2)
N2

Nd

∫ t

0

ds
∑

x∈ΛN

d∑
i=1

d∑
j=1

τxhi,j(η)
(
GN (x− e(j), x− e(j) + e(i))−GN (x,x+ e(i))

)
.

We have that up to uniformly infinitesimal terms

N2
(
GN (x− e(j), x− e(j) + e(i))−GN (x,x+ e(i))

)
coincides with −∂xj

Gi. We defineHi,j(ρ) =−Eνρ
(hi,j) where we recall that νρ is the grandcanonical invariant measure

parameterized by the density ρ. By a replacement lemma we deduce that (5.2) converges to

(5.3)
∫ t

0

ds

∫
Λ

dx
∑
i,j

Hi,j(ρ(t, x))∂xj
Gi(x) ,

where ρ(x, t) is the solution of the hydrodynamic equation. This means that the typical current is

Ji(ρ) =−
d∑

j=1

∂xj

(
Hi,j(ρ)

)
=−

d∑
j=1

(Hi,j)
′
(ρ)∂xj

ρ .

Recalling (1.3), we have the non necessarily symmetric diffusion matrix

(5.4) Di,j(ρ) = (Hi,j)
′
(ρ) .

The hydrodynamic equation is again the conservation law ∂tρ+∇ · J(ρ) = 0.
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5.2. Weakly asymmetric models and Einstein relation

We consider here the basic model (2.3) in presence of a weak external field. More precisely let H = (H1(x),H2(x)) be a
C1 vector field on Λ and letHN be its discretized version given from (3.4). For simplicity we consider a time independent
vector field but all could be repeated in the case of a time dependent one. We consider transition rates perturbed by the
presence of the external field and defined by

(5.5) cHx,y(η) := cx,y(η)e
HN (x,y) .

Let us introduce the density of free energy

(5.6) f(x) = x log(x) + (1− x) log(1− x) , x ∈ (0,1) ,

that coincides, up to a linear term, with the large deviations rate functional for the stationary measure νρ, that in this case
is a product Bernoulli measure.

For the model with rates perturbed like in (5.5) we have that the hydrodynamic equation is

(5.7) ∂tρt =∇ · (∇ρt − 2σ(ρ)H) ,

and the corresponding typical current is

(5.8) JH(ρ) =−∇ρ−A(ρ)∇ρ+ 2σ(ρ)H ,

where the mobility matrix is given by

(5.9) σ(ρ) = Iρ(1− ρ) .

We have therefore the validity of the Einstein relation

(5.10) D(ρ) = σ(ρ)f ′′(ρ) ,

that involves only the symmetric part D of the diffusion matrix.
An outline of the argument that gives (5.8), (5.9) and (5.10) is the following. We consider just the scaling of the current.

By definition (3.4) we have that HN =O(1/N) and by a Taylor expansion we have that the instantaneous current jHη for
the perturbed model can be written up to uniformly infinitesimal terms as

(5.11) jHη (x, y) = jη(x, y) + [cx,y(η) + cy,x(η)]HN (x, y) .

The second term on the right-hand side of (5.11) is

(5.12)
[
(η(x)− η(y))2 + (η(x)− η(y))

(
τf+(x,y)g(η)− τf−(x,y)g(η)

)]
HN (x, y) .

We obtain therefore (5.8) by a suitable replacement lemma and based on the following elementary computations. Recall-
ing that νρ in this case is a product Bernoulli measure, we have

(5.13) Eνρ

[
(η(x)− η(y))2

]
= 2ρ(1− ρ) ,

while instead

(5.14) Eνρ

[
(η(x)− η(y))

(
τf+(x,y)g(η)− τf−(x,y)g(η)

)]
= 0 .
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