
Citation: Intrigila, B.; Della Penna, G.;

D’Ambrogio, A.; Campagna, D.;

Grigore, M. Process-Oriented

Requirements Definition and

Analysis of Software Components in

Critical Systems. Computers 2023, 12,

184. https://doi.org/10.3390/

computers12090184

Academic Editor: Jalil Boudjadar

Received: 29 June 2023

Revised: 6 September 2023

Accepted: 11 September 2023

Published: 14 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Process-Oriented Requirements Definition and Analysis of
Software Components in Critical Systems
Benedetto Intrigila 1, Giuseppe Della Penna 2,* , Andrea D’Ambrogio 1 , Dario Campagna 3

and Malina Grigore 1

1 Department of Enterprise Engineering, Tor Vergata University of Rome, 00133 Rome, Italy;
benedetto.intrigila@uniroma2.it (B.I.); dambro@uniroma2.it (A.D.)

2 Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila,
67100 L’Aquila, Italy

3 Research and Development Department, ESTECO SPA, 34149 Trieste, Italy; campagna@esteco.com
* Correspondence: giuseppe.dellapenna@univaq.it

Abstract: Requirements management is a key aspect in the development of software components,
since complex systems are often subject to frequent updates due to continuously changing require-
ments. This is especially true in critical systems, i.e., systems whose failure or malfunctioning may
lead to severe consequences. This paper proposes a three-step approach that incrementally refines a
critical system specification, from a lightweight high-level model targeted to stakeholders, down to a
formal standard model that links requirements, processes and data. The resulting model provides
the requirements specification used to feed the subsequent development, verification and mainte-
nance activities, and can also be seen as a first step towards the development of a digital twin of the
physical system.

Keywords: requirements management; requirements traceability; business-critical systems;
BPMN; SysML

1. Introduction

The vast majority of systems currently used in our daily life are software-intensive
systems, meaning that a significant percentage of their components is of software type. The
software element makes such systems complex and subject to frequent maintenance due
to continuously changing requirements. Complexity and requirements management are
aspects to be properly addressed in the development of software components, because
they are both related to the dependability of a system. Applying changes to an overly
complex software product can easily lead to the introduction of regression faults. As stated
in the literature (see, e.g., [1,2]), requirements definition and analysis are the most critical
activities in the development of software components, due to the required effort and the
impact of requirements change on dependability and software cost.

Dependability is a crucial characteristic for so-called critical systems, i.e., systems
whose failure or malfunctioning may lead to severe consequences. In [3], the authors cate-
gorize critical systems as (a similar, simplified classification is also found in [4]) safety-critical
(may lead to loss of life, serious personal injury or damage to the natural environment),
mission-critical (may lead to an inability to complete the overall system or project objec-
tives), business-critical (may lead to significant tangible or intangible economic costs) and
security-critical (may lead to loss of sensitive data through theft or accidental loss).

This paper proposes an approach for the process-oriented requirements definition and
analysis of software components in critical systems, with a focus on business-critical ones.
In particular, the approach supports the definition of a formal, standard model that links
requirements, processes and data through the use of several standards, namely the Business
Process Model and Notation (BPMN) [5], the Systems Modeling Language (SysML) [6],

Computers 2023, 12, 184. https://doi.org/10.3390/computers12090184 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12090184
https://doi.org/10.3390/computers12090184
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-2327-9393
https://orcid.org/0000-0001-5711-1527
https://orcid.org/0000-0002-6389-7201
https://orcid.org/0009-0007-4602-2714
https://doi.org/10.3390/computers12090184
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12090184?type=check_update&version=1


Computers 2023, 12, 184 2 of 17

the Decision Model and Notation (DMN) [7] and the Shared Data Model and Notation
(SDMN) [8].

The integration of these four formalisms makes it possible to specify the relation-
ships between requirements and process elements that satisfy them, and the data con-
sumed/produced by such process elements. In addition, the resulting model achieves
a complete system specification, which includes both the behavioral view, which deals
with the specification of functional aspects, and the structural view, which deals with
specification of static data-related aspects.

The proper integration of these two views is a well-known problem in both systems
engineering and software engineering [4].

When the addressed system is critical, each view must be carefully modeled in a
separate way by using different types of UML/SysML diagrams, and the problem of
a unified view is addressed at a later stage by analyzing the interactions between the
two models, e.g., by using sequence diagrams that model the allocation of activities onto
structural elements in a given execution scenario.

In this paper, we focus on the specification of the behavioral view, which is annotated
with so-called ad hoc attributes (according to [9]), so to drive a more detailed system
specification in the SysML. The proposed contribution introduces a stepped approach that
progressively refines the system specification, from models at higher levels of abstraction,
which are effectively used to help stakeholders defining their own requirements, down
to more detailed models, which provide the requirements specification used to feed the
subsequent system development and maintenance activities. Specifically, the approach
takes as an input BPMN models annotated with ad hoc attributes and integrates DMN and
SDMN models to finally yield the system model specified in the SysML as an output.

As such, the initial focus on the behavioral view, which is annotated with only those
data necessary to properly execute a given scenario, does not preclude a subsequent
refinement of the data model with the full details of the data consumed/produced at
execution time.

The integrated model is a key ingredient for effective requirements management,
specifically in terms of traceability and V&V (verification and validation). The proposed
model indeed enables the adoption of simulation-based approaches that are essential
components of the so-called digital twin, a concept introduced by M. Grieves to denote a
virtual copy of the actual system which is tightly coupled with its physical counterpart and
used for efficient and effective system management [10]. A digital twin indeed includes
continuous data exchange between the system model and the actual system, thus making
the model and the system constantly aligned [11]. Real-time data collected from the
system can be used both to monitor system execution and to feed the model with accurate
and up-to-date parameters that allow one to “execute” the model by use of simulation-
based approaches. In turn, system simulation provides those predictive capabilities that
are essential for informed decision making and prompt reaction to system failures or
performance downgrades. As such, the proposed model can be considered as a first step
towards the development of a digital twin that leads to significant advantages in terms of
proper monitoring and steering of the actual system.

The rest of the paper is organized as follows. Section 2 provides some background
material about the main standards used in the paper, while Section 3 summarizes the related
work. Section 4 describes the proposed approach, which is then detailed in Section 5 by use
of a running example application. Finally, Section 6 discusses the presented approach and
gives concluding remarks.

2. Background

This section outlines the main standard notations that have been used to build the
proposed approach in order to facilitate the understanding of the paper contribution.



Computers 2023, 12, 184 3 of 17

2.1. Business Process Modeling Notations

In the business process management context, the Business Process Model and Notation
(BPMN) is a standard for the high-level specification of business processes [5]. The main
objective of the BPMN is the definition of a notation that has to be easily readable by
the various people involved in the business process automation domain, from business
analysts and designers who specify the business process to IT developers who implement
the specified process.

The Decision Model and Notation (DMN) is a modeling language and notation for
the precise specification of business decisions and business rules [7]. The DMN is used
alongside and extends the BPMN to provide a means to model complex decision-making
rules associated with processes specified in the BPMN. The business rules are specified in
the DMN using simple yet unambiguous decision tables.

Finally, the Shared Data Model and Notation (SDMN) introduces a standard notation for
the specification of so-called shared data models, which are data repositories that provide
libraries for the definition of all data elements (named DataItems in SDMN terms) that are
used across correlated models, such as the BPMN or DMN models. Such libraries would
serve as a central source for the development of data elements that would be referenced
by the BPMN and DMN models, thus allowing an easy and centralized update of data
elements that are likely to change during the development of these models.

This paper contribution makes use of the three aforementioned standards to provide a
mechanism for the simple yet complete definition of process-oriented requirements.

2.2. Systems Modeling Language (SysML)

The Systems Modeling Language (SysML) is the general purpose modeling language
widely used in the systems engineering field to specify, analyze, design and verify systems
that may include hardware, software, information, personnel, processes and facilities [6].
The language results from the customization of the UML to fit the system engineering
domain and reuses some types of the UML diagrams by adding new diagram types, such
as requirements and parametric diagrams.

Specifically, the approach proposed in this paper makes use of block definition diagrams,
which represent the system structure by describing the system hierarchy and component
classifications, and requirements diagrams, which specify text-based requirements and relate
them to the block definition diagram elements that satisfy or verify the requirements. In
addition, Section 5 also mentions the possible use of parametric diagrams, which represent
constraints on values of system properties such as performance, reliability, and serve as a
means to integrate the specification and design models with system analysis models.

3. Related Work

A vast amount of literature covers approaches dealing with requirements definition
and analysis in both the systems engineering and software engineering domains [12]. This
section is not intended to provide an exhaustive review of these approaches but rather to
compare and motivate the proposed contribution with respect to similar works.

Requirements definition is known to be a critical activity at both software development
and maintenance stages, due to the significant impact that a faulty requirement has in
terms of repair cost throughout the software lifecycle. A relevant source of error that may
lead to the introduction of defects in requirements can be traced to the different roles that
contribute to the definition of requirements, from stakeholders and business analysts with
expertise in the application domain but no specific software engineering skills to engineers
and IT developers in charge of translating high-level requirements into an operational
system [13].

The different points of view on the system to be developed and its requirements,
as well as a very different technical background, may easily lead to misunderstandings
and ambiguities which imply effort- and time-consuming rework activities. Model-based
approaches have shown significant potential as an effective means to face these issues by



Computers 2023, 12, 184 4 of 17

introducing semi-formal requirements definition approaches that stand in between easy-to-
use informal approaches, based on the use of natural language and thus being prone to
ambiguity, and costly formal approaches, based on the use of mathematical specifications
requiring skills which in many cases business analysts and developers are not familiar
with [14].

In this respect, in [9], the authors propose the introduction of ad hoc data models in
the requirements elicitation phase, in order to make such requirements easy to understand
and verify by stakeholders and, at the same time, unambiguous for the IT developers. This
paper contribution exploits this idea to introduce ad hoc annotations to the BPMN model
that defines the starting point of the proposed approach.

In order to properly manage requirements, once they have been defined, it is important
to have the ability to describe and follow their use at development and maintenance time,
in both a forward and backward direction. This ability is named requirement traceability
and has an important role in Model-Based Systems Engineering (MBSE). Several works
in the field of systems engineering achieve requirements traceability by using the MBSE
and SysML (see, e.g., [15,16]). In [17], the authors present a traceability approach that
supports decision-making requirements by combining the SysML with the BPMN and
DMN. The SysML is used to model some aspects of system, and processes and decision-
making activities are defined in terms of the BPMN and DMN standards, respectively. Such
a result provides a useful input to properly integrate the behavioral view of the BPMN
model with the structural view of the SysML model through the DMN and SDMN models.

The next section outlines the approach proposed in this paper, which is then detailed
by use of a running example in Section 5.

4. The Three-Step Aepproach

As stated in Section 3, this paper’s approach to process-oriented requirement analysis
is inspired by the lightweight BPMN extension presented in [9], where ad hoc attributes
(AHAs) are defined as a set of key properties which get a specific graphical representation in
the BPMN model for the system to be developed, with visual hints that make it easier to
read and understand how such properties guide the execution flow and the requirements
satisfaction. Ad hoc attributes may be in turn real properties of the entities involved in
the requirement or synthetic/derived properties, easier to understand for the non-developer
but formally linked to the underlying real system data model through potentially complex
algorithms. In this way, stakeholders have a simplified higher-level and requirement-
oriented view of the system, which is easier to validate, whereas developers can easily map
such a view to the real system in order to develop the requirement implementation.

Our approach maps the BPMN models extended with ad hoc attributes to a formal,
standard model that links requirements, processes and data through the use of several
standards: BPMN 2.0 [5], the System Modeling Language (SysML) [6], the Decision Model
and Notation (DMN) 1.3 [7] and the Shared Data Model and Notation (SDMN) [8].

The choice to start from the AHA-annotated models comes from their focus on the
behavioral view of the system, thanks to the compatibility with the BPMN standard,
and their lightweight integration with data, given by the ad hoc attributes. This makes
the whole process easily accessible, at the requirement specification level, to a variety
of stakeholders and, on the other hand, it also simplifies the integration with the other
standards described above.

The approach consists of the following three steps:

Step 1: from BPMN-AHA models to BPMN and DMN models. In the first step, require-
ments modeled as in [9] are represented through a combination of standard BPMN and
DMN models. In particular, Data Objects, i.e., sets of variables, are used to represent the
information consumed and produced by tasks as well as to indicate the data used in the
DMN Decision Tables. Moreover, in order to deal with the ad hoc data model of [9], further
Data Objects may be used to model the dynamic entities associated to the execution of
specific fragments of a BPMN process. In other words, temporary entities that are not made



Computers 2023, 12, 184 5 of 17

persistent by being created and consumed at the process execution time only. In addition,
the visual hint introduced in [9], which is conventionally represented as a color applied to
areas of the BPMN model, is determined by a special Business Rule Task, which updates a
specific Data Object holding such information. Each BPMN Business Rule Task is attached
to a corresponding DMN Decision Table that, given the input Data Objects, applies its
business knowledge model to generate or update data in the output Data Objects.
Step 2: data representation with SDMN. All the Data Objects involved in the BPMN
model and all the data elements in the DMN models should have a common formalization,
e.g., through UML class diagrams. Such formal data representations are then mapped to
the SDMN DataItems and linked to the BPMN and DMN Item Definitions, thus defining a
single shared and formal data representation.
Step 3: SysML model specification. Finally, in the last step, all the elements defined in
the previous steps are suitably linked together using the SysML Requirement Diagrams
and Block Definition Diagrams. In particular, Requirement Diagrams are used to for-
malize the relations and the hierarchy between requirements, whereas Block Definition
Diagrams are used to represent the process elements, data, the relationships among them
and the requirements.

The details of the three steps are given in the next section, which introduces a sim-
ple yet comprehensive case study that is used as a running example application of the
proposed approach.

Finally, it is worth noting that the process we present here is strictly one-way: any
change proposed by any stakeholder in any intermediate step determines a reset of the
process itself, i.e., the change must be reflected on the initial model and the following
integration steps must be performed again. Indeed, this kind of constraint comes from the
intrinsic nature of the systems we address, i.e., critical systems, where the introduction of
a change in any point of the system design and development should trigger a complete
re-analysis of the system itself (or at least of the containing subsystem if the system is
well-architectured), since it may determine dangerous side effects elsewhere.

5. Example Application

Let us consider the case of a request for a bank loan by a customer, i.e., a simplified
version of the Originations example presented in [7]. In particular, let us address the
following requirements:

R1 If the applicant is less than 18 year old or is an existing customer with a risk score
less than 80 (lower risk scores correspond to higher risk levels, as described in the
original example specification [7]), the application is rejected. If the applicant is an
existing customer and his risk score is between 80 and 110, the application is subject to
a preliminary analysis. Finally, all the applications go through a review process which
determines their acceptance or rejection.

R2 The application procedure must be processed within 3 days, otherwise a delay notifi-
cation has to be sent.

5.1. Lightweight Model with the AHA Approach

By applying the AHA methodology, these requirements are clearly modeled through
the BPMN process shown in Figure 1 using the ad hoc data model described in Table 1.
In the latter, the application entity contains the dominant status attribute which expresses,
through the associated colors, all the possible application review and decision statuses
derived from requirement (1) above. The Applicant entity is populated with the only,
possibly derived applicant information that is required to simply derive the status above,
i.e., his age, his risk score and a flag indicating if he is an existing customer.



Computers 2023, 12, 184 6 of 17

Decline 
application

After 3 days

Loan 
application 
received

Collect 
application data

Notify delay

Accept 
application

Preliminary 
bureau analysis

Review 
application

Proceed to 
application 
review?

Loan accepted?

BUREAU

THROUGH

ACCEPT

DECLINE

DECLINE

www.cardanit.com

Figure 1. BPMN process resulting from the requirement analysis with the AHA approach.

Table 1. Data model for the loan application example.

Entity Attribute Description Value Color

Application Status

DECLINE if the applicant risk score is
<80 or if age is <18. THROUGH if
applicant is an existing customer and
has a risk score >110. BUREAU in all
the other cases. ACCEPT or DECLINED
after manual review.

DECLINE red

THROUGH blue

BUREAU yellow

ACCEPT green

Applicant

Age Age of the applicant. ≥0

Risk_score Risk score of the applicant. High
value corresponds to low risk. 70–150

Existing_customer Indicates if already a customer of
the bank. true, f alse

At the flow start, we collect the application data and applicant data in the Application
and Applicant entities, respectively. Then, the Proceed with application review? gateway
uses the Application status attribute derived from Table 1 to redirect the flow to the Decline
application task if the status is red (decline), to the Preliminary bureau analysis task if the status
is yellow (bureau) or directly to the review application task if the status is blue (through). After
the review, the updated status is finally used in the Load accepted? gateway to decide for the
decline (red) or accept (green) application task.

5.2. Medium-Weight Model with BPMN, DMN and SDMN

Starting from this lightweight ad hoc model, we can generate a medium-weight formal
model by enriching the given BPMN process with Data Objects to represent the data
involved in each task, Data Associations to represent the data flow and Business Rule tasks
invoking DMN decision models to encapsulate the BPMN extensions semantics of the AHA
model. The resulting BPMN is shown in Figure 2 and can be described as follows.



Computers 2023, 12, 184 7 of 17

Application 
color

After 3 
days

Loan 
application 
received

Preliminary 
bureau analysis

Review 
application

Proceed to 
application 
review?

Loan 
accepted?

Application 
[received]

Requested 
product

Applicant

Application 
[assessed]

Bureau 
analysis

Applicant

Requested 
product

Applicant Bureau 
analysis

Application 
[reviewed]

Application 
color

Application

Application 
[reviewed]

Application 
[reviewed]

Products Customers

Collect 
application 

data

Decline 
application

Accept 
application

Notify delay

Assess 
application

Decide 
application 

color

Decide 
application 

color

BUREAU

THROUGH

ACCEPT

DECLINE

DECLINE

www.cardanit.com

Figure 2. BPMN process with data items and Business Rule Tasks.

Here, at the flow start, the application is modeled through a corresponding Application
Data Object containing the requested product, the applicant name and the application status.
The flow then splits in two possible flows: in the first, after 3 days, a delay is notified to the
applicant (using the Application Data Object) and the process ends. Otherwise, the Collect
application data task uses the Application Data Object and the Customers and Products Data
Stores to generate the Applicant (name, age, existing costumer, risk score) and Requested
product (type, amount) Data Objects. Next, the Business Rule Task Assess Application takes
as input the last two Data Objects and applies requirement (1) above. To this aim, the
decision table associated to this task uses the product type, applicant age, applicant risk score
and applicant existing customer properties from the input Data Objects and generates an
output application status, which is written in the Application Data Object. In particular, the
corresponding business knowledge model follows the decision table shown in Figure 3:

• Regardless of the the risk score and existing customer values, if the value of age is less
than 18 the status is decline;

• Regardless of the customer age, if the risk score is less than 80 the status is decline;
• If the age value is greater than or equal to 18, the risk score is greater than or equal to

110, and the customer is known (existing), the status is through (i.e., the application
can skip the preliminary analysis);

• In all the other cases, regardless of the age, risk score and existing customer the status
is bureau, i.e., the application requires a preliminary analysis.



Computers 2023, 12, 184 8 of 17

Figure 3. Decision table for “Assessment rules” business knowledge model.

Next, the Business Rule Task Decide Application Color takes the updated Application
Data Object as the input and associates it with a color, which is written in the Application
color attribute. In particular, the corresponding business knowledge model uses the status
to color decision table shown in Figure 4. It takes the application status and generates the
output Application color Data Object, where the color is red if the status is decline, green for
accept, blue for through and yellow for bureau.

It is worth recalling here that the application color is an handy visual aid introduced in
the AHA model to quickly identify the data that actually guide the process evolution and
its discriminant values. We feel it could be also useful to maintain and trace such synthetic
attribute in the following integration steps, for the sake of readability. However, it is not
strictly needed for the procedure described here, so it could be left only in the AHA model
and omitted from the following ones.

Figure 4. Decision table for “Status to color” business knowledge model.

At this point, the gateway Proceed to application review? working on the color attribute
devised above activates one of the possible three scenarios:

• Red (decline) activates the Decline application Send Task;
• Yellow (bureau) activates Preliminary bureau analysis User Task where, starting from

the Applicant Data Object, the report is produces and encoded in the Bureau analysis
Data Object, and in particular in its risk category and bankrupt attributes. The flow then
continues to the Review application User Task described in the next point;

• Blue (through) takes directly to the Review application User Task, where the three Data
Objects Requested product, Applicant and Bureau analysis are used to perform a final
check on the application, whose status is updated.



Computers 2023, 12, 184 9 of 17

If the flow has not been terminated (red), the next step is always another Decide
application color Business Rule Task, which uses the same status to color business knowledge
model to update the Application color attribute based on the updated Application status.

Finally, the Load accepted? gateway uses such color to determine the final
application outcome:

• Red (decline) activates the Decline application Send Task;
• Green (accept) activates the Accept application Send Task.

In the BPMN above, we reference several Data Objects. We may assume that some of
them, i.e., Applicant, Application and Product, correspond to real persistent entities con-
tained in the actual system implementation. Therefore, we assume to have (or reconstruct
from the sources) a formalization of these objects such as the UML class diagram shown in
Figure 5a. In particular:

• Applicant inherits the base attributes from Person and adds existing_customer
and risk_score.

• Customer also inherits the base attributes from Person and adds the start_date attribute
indicating the date from which the person started to be a bank customer. This attribute
is used to derive the existing_customer attribute of the Applicant, if the latter is a
(existing) Customer.

• Application is the loan application requests, with the product, applicant_name, amount
and status attributes.

• Product represents a product class through its name and type attributes. Each Applica-
tion references exactly one of these products.

(a) persistent

Product

+name : string
+type: string

Requested product

+type: string
+amount: double

0..*

1

(b) dynamic

Figure 5. UML class diagrams for persistent and dynamic entities.

Other Data Objects involved in the BPMN model, i.e., Requested product (generated by
the Collect applicant data task) and Application color, are clearly internal to the process and
exists only during its execution. We call them dynamic entities. For the sake of simplicity,
we include a formalization of such entities in the class diagram, as in Figure 5b, although



Computers 2023, 12, 184 10 of 17

they are not present in the system implementation. Anyway, in general we make no hard
assumptions on the availability of such class diagrams for dynamic entities.

Finally, a SDMN diagram is used to link such structural models to the BPMN and
DMN Item Definitions, as shown in Figure 6, where dynamic entities are depicted in
white background and static (persistent) entities in gray background. According to the
SDMN specification, the background color used for the graphical elements is white, but
the notation may be extended to use other background colors for specific purposes (e.g., to
highlight different types of entities, as it is in this paper case).

Application

Customer

Application
Requested 
product

Bank Bureau 
analysis

Applicant

Product

Figure 6. SDMN model for BPMN and DMN Item Definitions.

5.3. Heavyweight Formalization with SysML

In the last phase of the proposed process, we move the formalization a step forward
with the help of the SysML, and get to a heavyweight formalization that paves the road for
requirements management, traceability and verification. In particular, we use the SysML
Requirements Diagrams and Block Definition Diagrams to link requirements to process
elements and data items.

The two requirements considered for the loan application example can be modeled
with the Requirement Diagram shown in Figure 7. The diagram defines a compound
requirement named Original Statement that contains all the requirements the process must
satisfy. These requirements contain the atomic requirement Time and the compound
requirement Application evaluation, which in turn contains Preliminary analysis and Review.
As we will show, this requirement hierarchy helps to visualize the traceability from the
requirements to the system model elements depending on them.

The UML class diagram introduced in Section 5.2 (Figure 5) to formalize the process
data corresponding to persistent and dynamic entities can be turned into a Block Definition
Diagram without any loss of information, as is shown in Figure 8a,b, where we use Value
Types to model the possible values that data items in the process can take.



Computers 2023, 12, 184 11 of 17

Figure 7. SysML Requirement Diagram for the loan application requirements.

(a) persistent

Figure 8. Cont.



Computers 2023, 12, 184 12 of 17

(b) dynamic

Figure 8. SysML Block Definition Diagram for the loan application persistent and dynamic entities.

To link elements of the SysML model with elements in the BPMN model we adopt an
approach similar to the one used in [17]. We introduce a profile and define stereotypes for the
BPMN elements that satisfy our requirements. Figure 9 shows the stereotypes we need:

• Activity represents BPMN activities. In particular, Business Rule Tasks and User
Tasks. We use an attribute named id to store in the SysML models the ID of the
corresponding element in the BPMN model.

• Gateway represents BPMN gateways.
• Flow elements represents a set of BPMN elements that together satisfy a requirement.

Figure 9. SysML stereotypes for representing BPMN elements.

With the defined stereotypes we can use blocks to model BPMN elements in the SysML
model. We connect such blocks to requirements via satisfy relations to show which elements
of the process satisfy which requirement. Moreover, we use item flows between blocks
representing BPMN elements to indirectly relate data items to requirements. Figure 10
shows the blocks representing the BPMN elements that satisfy the loan application atomic
requirements and the item flows between them.



Computers 2023, 12, 184 13 of 17

Figure 10. Satisfy relations and item flows.

This heavyweight formalization provides a series of advantages in terms of require-
ments analysis and management. The satisfy relations and stereotypes help in tracing
BPMN elements to requirements and vice versa, thus documenting process design choices
with respect to requirements. The SysML model, together with the BPMN, DMN and
SDMN models, can be the unique source of truth in a software system that supports change
management, for example, by automatically determining which requirements could be
affected by a change in process or data.

5.4. Constraint Formalization and Requirement Verification

The heavyweight formalization may also set the basis for the automatic requirement
verification. Indeed, using Constraint Blocks it is possible to define formal and/or informal
equations that verify whether a given requirement is satisfied or not. In our context, the
properties that can verify our requirements and act as parameters in the equations are
process parameters such as, e.g., the duration of a task, the duration of the process or the
number of times an event occurs.

As an example, an informal equation for the Time constraint in Figure 7 could be the
one shown in the constraint block Delay shown in Figure 11. Here, duration is the execution
time in hours for the whole process, catchTriggerCount is the number of times the After 3
days Intermediate Timer Catch Event is triggered and noti f yTriggerCount is the number of
times the Send Task Notify delay is run. The right side of the equation states that the event is



Computers 2023, 12, 184 14 of 17

triggered and the task is run if and only if the process lasts for more than 72 h (i.e., 3 days).
The timeOk variable computed by the equation tells us whether the Time requirement is
satisfied or not. Figure 12 shows a revised version of the blocks for the process elements,
with the addition of new blocks and properties that model process parameters related to
the constraint equation variables.

Figure 11. Constraint block Delay.

Figure 12. Revised blocks for process elements.

Finally, with a Parametric Diagram it is possible to connect such constraint variables to
properties of the BPMN elements block, and visualize the verify relationship between the
Time requirement and the timeOk property of the Process block, as shown in Figure 13.



Computers 2023, 12, 184 15 of 17

Figure 13. Parametric Diagram for the Delay constraint.

With a similar setup in place for each requirement, and having a system that eval-
uates the constraints given the values of the process properties, it would be possible to
automatically verify the requirements. Moreover, by using a tool for process simulation
based on the Business Process Simulation (BPSim) [18] standard, one could map the block
properties involved in the constraints to the equivalent BPSim parameters, and then use
simulations to generate the values to use for the requirement verification. Process simula-
tion could then be used to perform different types of analysis, from the evaluation of the
effects of process changes on the requirements, to the identification of edge cases leading to
requirement violations.

It is worth noting that the formalization of the integrated system model allows one to
largely automate the verification step using model-driven approaches that take as an input
the system model and yield as an output the corresponding simulation model ready to be
executed, as described in [19,20].

6. Conclusions

In this paper, we presented an approach that supports the definition of a formal,
standard model linking requirements, processes and data.

In particular, we propose a three-step approach that starts from requirement definitions
formalized using AHA-BPMN, a lightweight BPMN extension, and transforms it in a
combination of standard BPMN, DMN decision models and Data Objects. Data Objects are
then further formalized using UML class diagrams and linked to BPMN and DMN artifacts
through SDMN diagrams. Finally, we use SysML Block Definition Diagrams to link these
elements to the requirements modelled through Requirement Diagrams.

This final formalization helps in tracing BPMN elements to requirements, and can be
used as the basis for simulation-based automatic requirement verification, which will be the
main part of our future research. In this respect, the proposed approach can be considered
as a first step towards the development of a digital twin that leads to significant advantages
in terms of proper monitoring and steering of the physical system.

The approach has been presented by use of a simple but effective case study which,
however, does not exclude its application to more complex processes that may include
critical paths, errors and anomalies. In fact, the BPMN standard introduces several elements
to model how errors and anomalies are managed in a process, such as boundary events



Computers 2023, 12, 184 16 of 17

and event sub-processes. The complexity of the model, measured in terms of number
of elements, can be controlled with approaches such as the hierarchical modeling style
described in [21]. At the same time, the SysML diagram used in the final step can be
considered as agnostic with respect to the system requirements and the BPMN elements
that satisfy them.

Moreover, the presented approach makes it possible to work on models in an incre-
mental and iterative fashion, for example, by starting with the success paths and gradually
adding more elements to represent the additional paths in the process. Indeed, work is in
progress to implement a software tool that supports our methodology. Such a tool would
include a facility to navigate the different levels of the model, as well as the management of
the large number of paths that may show up in the BPMN model once a relevant number
of exceptions is taken into account.

With the help of such a tool, we will be able to apply our approach to a wider variety
of different, realistic case studies, in order to validate its generality and also to collect
data useful to present some effectiveness measures. Indeed, as already pointed out, our
“heavyweight model” can be considered the basis for the realization of a digital twin of
a critical business process; therefore, our idea is to exploit a digital-twin-specific quality
metric, e.g., [22] to evaluate it.

Author Contributions: Conceptualization, B.I., G.D.P., A.D. and D.C.; methodology, B.I., A.D. and
D.C.; software, D.C. and M.G.; writing—original draft preparation, G.D.P., A.D., D.C. and M.G.; su-
pervision, B.I. and A.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pressman, R. Software Engineering: A Practitioner’s Approach, 7th ed.; McGraw-Hill, Inc.: New York, NY, USA, 2009.
2. Maciaszek, L.A. Requirements Analysis and System Design, 3rd ed.; Addison-Wesley Longman Ltd.: Boston, MA, USA, 2009.
3. Hinchey, M.; Coyle, L. Evolving Critical Systems: A Research Agenda for Computer-Based Systems. In Proceedings of the 2010

17th IEEE International Conference and Workshops on Engineering of Computer Based Systems, Oxford, UK, 22–26 March 2010;
pp. 430–435.

4. Sommerville, I. Software Engineering, 9th ed.; Addison-Wesley: Harlow, UK, 2010.
5. OMG. Business Process Model and Notation (BPMN) Version 2.0.2. 2013. Available online: http://www.omg.org/spec/BPMN/

2.0 (accessed on 31 August 2023).
6. OMG. OMG Systems Modeling Language (OMG SysML™) Version 1.6. 2019. Available online: https://www.omg.org/spec/

SysML/2.0/Beta1/About-SysML (accessed on 31 August 2023).
7. OMG. Decision Model and Notation Version 1.3. 2019. Available online: https://www.omg.org/spec/DMN/1.3/About-DMN/

(accessed on 31 August 2023).
8. OMG. Shared Data Model and Notation (SDMN) V1.0–beta 1. 2022. Available online: https://www.omg.org/spec/SDMN

(accessed on 31 August 2023).
9. Intrigila, B.; Della Penna, G.; D’Ambrogio, A. A Lightweight BPMN Extension for Business Process-Oriented Requirements

Engineering. Computers 2021, 10, 171. [CrossRef]
10. Grieves, M.W. Virtually Intelligent Product Systems: Digital and Physical Twins. In Complex Systems Engineering: Theory and

Practice; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2019; pp. 175–200. [CrossRef]
11. Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems 2019,

7, 7. [CrossRef]
12. Wagner, S.; Fernández, D.M.; Felderer, M.; Vetrò, A.; Kalinowski, M.; Wieringa, R.; Pfahl, D.; Conte, T.; Christiansson, M.T.; Greer,

D.; et al. Status Quo in Requirements Engineering: A Theory and a Global Family of Surveys. ACM Trans. Softw. Eng. Methodol.
2019, 28, 1–48. [CrossRef]

13. McManus, J. A stakeholder perspective within software engineering projects. In Proceedings of the 2004 IEEE International
Engineering Management Conference (IEEE Cat. No.04CH37574), Singapore, 18–21 October 2004; Volume 2, pp. 880–884.

14. Inkermann, D.; Huth, T.; Vietor, T.; Grewe, A.; Knieke, C.; Rausch, A. Model-Based Requirement Engineering to Support
Development of Complex Systems. Procedia CIRP 2019, 84, 239–244. [CrossRef]

15. Zhu, S.; Tang, J.; Gauthier, J.M.; Faudou, R. A formal approach using SysML for capturing functional requirements in avionics
domain. Chin. J. Aeronaut. 2019, 32, 2717–2726. [CrossRef]

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/SysML/2.0/Beta1/About-SysML
https://www.omg.org/spec/SysML/2.0/Beta1/About-SysML
https://www.omg.org/spec/DMN/1.3/About-DMN/
https://www.omg.org/spec/SDMN
http://doi.org/10.3390/computers10120171
http://dx.doi.org/10.2514/5.9781624105654.0175.0200
http://dx.doi.org/10.3390/systems7010007
http://dx.doi.org/10.1145/3306607
http://dx.doi.org/10.1016/j.procir.2019.04.345
http://dx.doi.org/10.1016/j.cja.2019.03.037


Computers 2023, 12, 184 17 of 17

16. Sena Marques, M.R.; Siegert, E.; Brisolara, L. Integrating UML, MARTE and sysml to improve requirements specification and
traceability in the embedded domain. In Proceedings of the 2014 12th IEEE International Conference on Industrial Informatics
(INDIN), Porto Alegre, Brazil, 27–30 July 2014; pp. 176–181.

17. Abdelahad, C.; Riesco, D.; Kavka, C. Requirements Traceability using SysML Diagrams and BPMN. Int. J. Adv. Softw. 2020, 13,
129–138.

18. WfMC. Business Process Simulation Specification Version 2.0. 2016. Available online: https://www.bpsim.org/specifications/2.
0/WFMC-BPSWG-2016-01.pdf (accessed on 31 August 2023).

19. Bocciarelli, P.; D’Ambrogio, A.; Fabiani, G. A model-driven approach to build HLA-based distributed simulations from SysML
models. In Proceedings of the SIMULTECH 2012—2nd International Conference on Simulation and Modeling Methodologies,
Technologies and Applications, Rome, Italy, 28–31 July 2012; pp. 49–60.

20. Bocciarelli, P.; Pieroni, A.; Gianni, D.; D’Ambrogio, A. A model-driven method for building distributed simulation systems from
business process models. In Proceedings of the Winter Simulation Conference, Berlin, Germany, 9–12 December 2012.

21. Silver, B. BPMN Method & Style, 2nd ed.; Cody-Cassidy Press: San Francisco, CA, USA, 2011.
22. Rio, R. Measuring Digital Twin Performance and Maturity with the Confusion Matrix. 2023. Available online: https:

//www.arcweb.com/industry-best-practices/measuring-digital-twin-performance-maturity-confusion-matrix (accessed on
31 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.bpsim.org/specifications/2.0/WFMC-BPSWG-2016-01.pdf
https://www.bpsim.org/specifications/2.0/WFMC-BPSWG-2016-01.pdf
https://www.arcweb.com/industry-best-practices/measuring-digital-twin-performance-maturity-confusion-matrix
https://www.arcweb.com/industry-best-practices/measuring-digital-twin-performance-maturity-confusion-matrix

	Introduction
	Background
	Business Process Modeling Notations
	Systems Modeling Language (SysML)

	Related Work
	The Three-Step Aepproach
	Example Application
	Lightweight Model with the AHA Approach
	Medium-Weight Model with BPMN, DMN and SDMN
	Heavyweight Formalization with SysML
	Constraint Formalization and Requirement Verification

	Conclusions
	References

