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Abstract

The main objective of this thesis is to investigate the impact of Data-Driven
techniques in ICT Engineering, with a specific focus on telecommunication systems.
Firstly, a brief background on Data-Driven methods is provided, containing a recap
on Machine Learning and Data reduction methods. Then, a literature review
illustrates the impact of Data-driven methodologies on applications in the field
of communication systems. The contributions of this PhD work are related to 4
different engineering applications to telecommunication systems, and are described
as follows: (1) the use of data-driven methodologies to improve Multiple-Input
Multiple-Output (MIMO) performance for crosstalk cancelation in optical systems
supporting multiple spatial modes is addressed. In this respect, we proposed
a reduction algorithm based on the Principal Component Analysis (PCA) and
cross-correlation analysis to improve traditional equalizers’ performance. (2) A
novel regression trees-based methodology able to learn a Markov model of a fading
channel via historical data of the signal-to-interference-plus-noise-ratio (SINR) is
proposed. Such methodology is used to derive a Markov jump model of a wireless
control network and thus to design a stochastic optimal controller that considers
the inter-dependence between the plant and the wireless channel dynamics. Our
methodology is validated using a WirelessHART [1] point-to-point communication
based on the IEEE-802.15.4 standard. (3) A novel complexity reduction methodology
is proposed for a data-driven control algorithm based on regression trees. In
particular, the refinement procedure aims to reduce the dimension of the dynamical
model without compromising the model accuracy and mitigating the overfitting
problem. (4) the application of edge computing for real-time analysis to support
autonomous operations of unmanned aerial vehicles (UAV) is addressed. Indeed,
AUV autonomous operations necessitate the real-time analysis of information-
rich signals, such as camera and LiDAR feeds, where the analysis algorithms
often take the form of extremely complex deep neural networks (DNN). The
continuous execution of such models onboard the UAV imposes a considerable
resource consumption (e.g., energy), while offloading the execution of the models to
edge servers requires the transmission of the input signals over capacity-constrained,
time-varying, wireless channels. We propose an innovative approach to control
the computing pipeline of signal processing.
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Almost all past and present generations of communication networks are based

on mathematical models derived from theoretical considerations. Indeed, all phases

of network design employ physical models describing in quantitative terms the effect

each system component has on the overall performance. Models are used for initial

network planning and deployment, network resource management, and network

maintenance and control. Based on theoretical considerations, infrastructure nodes

are statically deployed to cover and manage fixed geographical areas. In addition,

traditional optimization theory is used to optimize network performance through the

1



1. Introduction 2

centralized allocation of the available system resources. However, this traditional

approach to network design has at least two drawbacks [2]:

• every model is inherently an approximation and a trade-off exists between

the accuracy of the model and its complexity. Accurate models can be too

complex to handle, whereas simple models cannot be accurate enough.

• Static infrastructure deployment might need to be more flexible to adapt to

heterogeneous service requirements and randomly evolving environments with

unpredictable on-demand connectivity requests.

The issues above can be ignored if the scenario allows the derivation of a physical

model that is accurate and tractable enough to meet the desired performance

requirements. For instance, physical modeling was efficiently used from 1G to

4G wireless systems; nevertheless, the past and present generations of wireless

networks need a new design paradigm. As shown in [3], present and future networks

are anticipated to witness an exponential increase due to the dramatic growth of

connected devices and the rise of innovative vertical services with heterogeneous

and stringent performance requirements. Indeed, according to the International

Data Corporation, there will be 80 billion devices connected to the Internet by 2025,

the global data will reach 163 zettabytes (which is 10 times the data generated in

2016) and it is forecasted that by 2020 over one billion people and more than 26

billion devices will be connected to the Internet, raising the number of connected

devices by more than 10 billion compared to 2015 [4].

Deploying more performing communication technologies could not ensure the

flexibility to accommodate diverse users with extremely heterogeneous service

requirements. Instead, new architectural and management solutions are required.

Our vision to overcome this situation is to resort to a data-driven paradigm for

network design. The best policy comes from analyzing a mathematical model and

studying and processing previous communication data. In other words, based on

the performance obtained by given policies during previous communication sessions,
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one should be able to decide the best policy to use. A framework that goes in

this direction is Machine Learning (ML).

Although the main reason for using ML tools is to reduce the reliance on

network design and operation on mathematical models, our vision is not for data-

driven approaches to completely replace mathematical modeling and analysis. On

the contrary, to overcome the complexity crunch, a cross-fertilization between

model-based and data-driven approaches is necessary. Our vision, which will

be supported throughout this work, is for ML and mathematical modeling to

complement each other.

The rest of this chapter contains an introduction to the main motivation for

the introduction of data-driven methodologies in communication systems, then, a

background on the data-driven methodologies used in this work is provided. Some

concrete examples of data-driven methodologies applied to communication systems

are provided. Finally, we summarize the novelty and contributions of this thesis.

1.1 Motivation for using data-driven techniques
in communication systems

In the last few years, the application of mathematical approaches derived from the

ML discipline has attracted the attention of many researchers and practitioners in

optical and wireless communications and networking fields [5]. In a general sense,

the underlying motivations for this trend can be identified as follows:

• increased system complexity: the adoption of advanced transmission tech-

niques, such as those enabled by coherent technology, and the introduction

of highly flexible networking principles, such as, e.g., the Enhanced Optical

Networking paradigm, have made the design and operation of optical networks

extremely complex, due to the large number of tunable parameters to be

considered (e.g., modulation formats, symbol rates, adaptive coding rates,

adaptive channel bandwidth, etc.); in such a scenario, accurately modeling

the system through closed-form formulas is often very hard and often causes
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resource underutilization and, consequently, increasing of the system cost; on

the contrary, ML methods can capture complex nonlinear system behavior with

relatively simple training of supervised or unsupervised algorithms, which

exploit knowledge of historical network data and therefore solve complex

cross-layer problems, typical of the optical networking field;

• increased data availability: modern networks are equipped with a large number

of monitors, able to provide several types of information on the entire system,

e.g., traffic traces, signal quality indicators (such as Bit Error Rate (BER)),

equipment failure alarms, users’ behavior, etc.; here, the enhancement brought

by ML consists of leveraging the plethora of collected data and discovering

hidden relations between various types of information.

We analyze in the following subsection several use cases wherein data-driven

methodologies have been applied to enhance the performance of optical and

wireless systems.

Optical communications

The application of ML to physical layer use cases is mainly motivated by

nonlinear effects in optical fibers, which makes analytical models inaccurate or

even too complex. As main applications, we consider the impact on the optical

communication performance in terms of BER.

Regarding the networking layer, the same motivation holds for applying ML

techniques. In particular, the design and management of optical networks are

continuously evolving, driven by the enormous increase in transported traffic and

drastic changes in traffic requirements, e.g., capacity, latency, user experience, and

Quality of Service (QoS). Therefore, current optical networks are expected to be

run at much higher utilization than in the past while providing strict guarantees on

service quality. While aggressive optimization and traffic-engineering methodologies

are required to achieve these objectives, such complex methodologies may suffer

scalability issues and involve unacceptable computational complexity.

Wireless communications
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Problems that arise in wireless communication systems are frequently formulated

as classification, detection, estimation, and optimization problems; for which

ML techniques can provide elegant and practical solutions. In this context, the

application of Machine Learning (ML) to wireless communications seems almost

natural and presents a clear motivation [6].

More in detail, we discuss the application of machine learning techniques to

identify fading channels with the goal of introducing the methodologies presented

in chapter 3 regarding wireless communication standards specifically designed for

automation. We refer the readers to [7] and [2] for a complete discussion.

Since the mid-1990s, Markov models have been widely used for modeling

wireless flat-fading channels in various applications, ranging from modeling channel

error bursts to decoding at the receiver. Markov models are versatile, and with

suitable choices of model parameters, can capture the essence of time-varying

fading channels [8].

Considering a case study of industrial communications, several challenges such

as interference, power, and bandwidth constraints come into play. Significant

performance gain can be achieved by learning and estimating the varying channel

dynamics and nullifying the channel’s effect from the received signal samples to

estimate the transmitted bits, commonly known as adaptive channel equalization.

ML methodologies provided efficient solutions for Markov model identification.

1.2 Background on data-driven methodologies

This section summarizes the Machine Learning and Data Analysis fundamental

concepts needed for the argumentation of the topics in this thesis.

1.2.1 Machine Learning

This section overviews some of the most popular algorithms commonly classified

as machine learning. The literature on ML is so extensive that even a superficial

overview of all the main ML approaches goes far beyond the possibilities of this

section. The readers can refer to several books on the subjects [9], [10], and [11].
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ML is a branch of Artificial Intelligence that pushes forward the idea that, by

giving access to previous experience, machines can learn by themselves how to solve

a specific problem. By leveraging complex mathematical and statistical tools, ML

renders machines capable of performing independent tasks previously solved by

human beings. This idea of automating complex tasks has generated high interest

in the networking field, with the expectation that several activities involved in

designing and operating communication networks can be offloaded to machines.

We divide the algorithms into three main categories, described in the following

sections: supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning

Supervised learning is used in various applications, such as speech recognition,

spam detection, and object recognition. The goal is to predict the value of a vector

variable ρ given the value of a vector of input variables λ. The output variable

is a continuous variable in regression problems, i.e ρ ∈ Rnρ or a discrete variable

in classification problems, i.e. ρ ∈ Nnρ . A training data set comprises D samples

of the input variables and the corresponding output values. Different learning

methods construct a function ρ̂(λ) that allows predicting the value of the output

variables in correspondence to a new value of the inputs.

Supervised learning can be broken down into two main classes, described below:

Parametric models, where the number of parameters to use in the model is fixed,

and non-parametric models, where their number is dependent on the training set.

Parametric models: the function ρ̂ is a combination of a fixed number of

parametric basis functions. These models use training data to estimate a fixed set of

parameters w. After the learning stage, the training data can be discarded since the

prediction in correspondence with new inputs is computed using only the learned

parameters w. Linear models for regression and classification, which consist of a

linear combination of fixed nonlinear basis functions, are the simplest parametric

models in terms of analytical and computational properties. Many choices are

available for the basis functions: from polynomial to Gaussian, to sigmoidal, to
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Fourier basis, etc. In the case of multidimensional output variables, it is possible to

use separate basis functions for each output component or, more commonly, apply

the same set of basis functions for all the components. Note that these models

are linear in the parameters w, which results in several advantageous properties,

e.g., closed-form solutions to the least-squares problem.

ANNs apply a series of functional transformations to the inputs. An ANN is a

network of units or neurons. Each unit’s basis or activation function is a nonlinear

function of a linear combination of the unit’s inputs. Each neuron has a bias

parameter that allows for any fixed offset in the data. The bias is incorporated into

the set of parameters by adding a dummy input of unitary value to each unit. The

linear combination coefficients are the parameters w estimated during the training

phase. The logistic sigmoid and hyperbolic tangent are the most commonly used

nonlinear functions. The activation function of the output units of the ANN is

the identity function, the logistic sigmoid function, and the softmax function for

regression, binary classification, and multiclass classification problems, respectively.

Decision trees consider a predictor dataset and a response dataset of D samples

each. In the case of the CART algorithm [12], the dataset is partitioned into a

set of hyper-rectangles R1, . . . , Rℓ, corresponding to the ℓ leaves of the tree. Then,

ρ̂(λ) is estimated in each leaf τi using a constant cτi
predictors. Without any

loss of generality, we restrict our attention to recursive binary partition. The

CART algorithm creates the partition using a greedy algorithm to optimize the

split variables and split points: starting with the whole dataset, consider a split

variable j over the n available and a split point s, and define the pair of optimal

half-planes. For each splitting variable, the determination of the split point s can be

determined very quickly; hence, by scanning through all of the inputs, the best pair

(j, s) is feasible. Once the best split is found, the dataset is partitioned into the two

resulting regions, then the splitting procedure is repeated on each of the two regions.

The process is repeated on all the resulting regions until a stopping criterion is

applied, e.g. tree size is a tuning parameter chosen to avoid overfitting and variance

phenomena. The methodology will be further discussed in chapter 3 and chapter 4.
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Random Forest (RF) are a combination of tree predictors such that each tree

depends on the values of a random vector sampled independently and with the

same distribution for all trees in the forest [13]. The generalization error for forests

converges to a limit as the number of trees in the forest becomes large. The

generalization error of a forest depends on the strength of the individual trees in

the forest and the correlation between them.

Non-parametric models: In non-parametric methods, the number of parameters

depends on the training set. These methods keep a subset or the entirety of the

training data and use them during prediction. The most used approaches are

k-nearest neighbor models and Support Vector Machine (SVM)s. Both can be

used for regression and classification problems.

In the case of k-nearest neighbor methods, all training data samples are stored

(training phase). During prediction, the k-nearest samples to the new input value

are retrieved. For classification problems, a voting mechanism is used; for regression

problems, the mean or median of the k-nearest samples provides the prediction.

In SVMs [14], basis functions are centered on training samples; the training

procedure selects a subset of the basis functions. The number of selected basis

functions, and the number of training samples that have to be stored, is typically

much smaller than the cardinality of the training dataset. SVMs build a linear

decision boundary with the largest possible distance from the training samples.

Only the closest points to the separators, the support vectors, are stored. A

nonlinear optimization problem with a convex objective function has to be solved

to determine the parameters of SVMs, for which efficient algorithms exist. An

essential feature of SVMs is that by applying a kernel function, they can embed

data into a higher dimensional space, in which data points can be linearly separated.

The kernel function measures the similarity between two points in the input space;

it is expressed as the inner product of the input points mapped into a higher

dimensional feature space in which data become linearly separable. The simplest

example is the linear kernel, in which the mapping function is the identity function.

However, provided that we can express everything in terms of kernel evaluations, it
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is not necessary to explicitly compute the mapping in the feature space. Indeed, in

the case of one of the most commonly used kernel functions, the Gaussian kernel,

the feature space has infinite dimensions.

Unsupervised learning

Social network analysis, gene clustering, and market research are among the most

successful applications of unsupervised learning methods. In the case of unsupervised

learning, the training dataset consists only of a set of input vectors λ. While

unsupervised learning can address different tasks, clustering or cluster analysis is

the most common. Clustering is the process of grouping data so that the intra-

cluster similarity is high while the inter-cluster similarity is low. The similarity

is typically expressed as a distance function, which depends on the data type.

There exists a variety of clustering approaches. Here, we focus on k-means and

Gaussian Mixture Model (GMM)s as examples of partitioning approaches, we refer

to [9] and [10] for further details.

K-means is an iterative algorithm starting with an initial partition of the data

into K clusters. The cluster’s centers are optimally computed in the first step.

Then, data points are assigned to the cluster with the closest center. The procedure

- center computation and data assignment - is repeated until the assignment does

not change or a predefined maximum number of iterations is exceeded. As a result,

the algorithm may terminate at a local optimum partition.

While k-means assigns each point uniquely to one cluster, probabilistic ap-

proaches perform a soft assignment and provide a measure of the uncertainty

associated with the assignment. GMMs linearly combine Gaussian distributions

and are one of the most widely used probabilistic approaches to clustering. The

model’s parameters are the mixing coefficient of each Gaussian component, the mean,

and the covariance of each Gaussian distribution. The expectation-maximization

algorithm is used to maximize the log-likelihood function for the parameters given

a dataset since no closed-form solution exists in this case. After initializing the

parameters and evaluating the initial value of the log-likelihood, the algorithm
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alternates between two steps. In the expectation step, the current values of the

parameters are used to determine the "responsibility" of each component for the

observed data, i.e., the conditional probability of latent variables given the dataset.

The maximization step uses these responsibilities to compute a maximum likelihood

estimate of the model’s parameters.

So far, we have assumed that the data is unstructured, i.e., the observations

are assumed to be independent and identically distributed. This assumption is

unreasonable for many data sets where the observations arrive in a sequence and

subsequent observations are correlated. Sequential data can occur in time series

modeling, as in financial data or the weather, and also in situations where the

sequential nature of the data is not necessarily tied to time, as in protein data

which consists of sequences of amino acids. As the most basic level, time series

modeling consists of building a probabilistic model of the present observation

given all past observations p(λtk |λtk−1 , λtk−2 ...). Because the history of observations

grows arbitrarily large, it is necessary to limit the complexity of such a model.

The first approach is to limit the window of past observations by considering a

first-order Markov model. Thus one can simply model p(λtk |λtk−1 , λtk−2 ...) and

assume that this relation holds for all tk.

The critical aspect of Hidden Markov Model (HMM), see [15], is the switching law

associated with the discrete hidden state indicating the active mode. Let stk denote

the hidden state of an HMM at time tk. We assume that stk can take discrete values in

{1, ..., K}. The state-transition probabilities P (stk |stk−1 , w) are captured by a K×K

transition matrix A, with elements Ai,j = p(stk = i|stk−1 = j, w). The observations

in an HMM can be either continuous or discrete. For continuous observations λtk

one can, for example, choose a Gaussian density; thus p(λtk |stk = i, w) would be a

different Gaussian for each choice of i ∈ {1, ..., K}. This model is the dynamical

generalization of Gaussian mixtures.
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Reinforcement Learning

Reinforcement Learning (RL) is used, in general, to address applications such as

robotics, financial investment decisions, and inventory management, where the goal

is to learn a policy, i.e., a mapping between states of the environment into actions

to be performed while directly interacting with the environment.

The RL paradigm is characterized by agents aiming to learn by exploring the

available actions and refining their behavior using only evaluative feedback, often

called reward. The agent’s goal is to maximize its long-term performance. Hence, the

agent does not just consider the immediate reward but evaluates the consequences

of its actions in the future. Delayed reward and trial-and-error constitute the

two most significant features of RL.

In this subsection, we summarize the most basic RL algorithm, for further

discussion we refer the readers to [16] and [17].

The most basic RL algorithm works in the Markov Decision Process (MDP)

framework. The agent’s perception at time tk is represented as a state s(tk) ∈ S,

where S is the finite set of environment states. The agent interacts with the

environment by performing actions. At the time tk, the agent selects an action

a(tk) ∈ A, where A is the finite set of actions of the agent, which could trigger a

transition to a new state. According to a reward function, the agent will receive

a reward as a result of the transition. The agent’s goal is to find the sequence of

state-action pairs that maximizes the expected discounted reward, i.e., the optimal

policy. In the context of MDP, it has been proved that an optimal deterministic

and stationary policy exists. Several algorithms exist that learn the optimal policy

in case the state transition and reward functions are known (model-based learning)

and in case they are not (model-free learning). The most used RL algorithm is

Q-learning, a model-free algorithm that estimates the optimal action-value function.

1.2.2 Data reduction

Complex data analysis and mining vast amounts of data can take a long time, making

such analysis impractical or infeasible. Data reduction techniques can be applied to
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obtain a reduced representation of the data set that is much smaller in volume yet

closely maintains the integrity of the original data. Data reduction strategies include

dimensionality reduction, numerosity reduction, and data compression. Feature

reduction reduces the number of random variables or attributes under consideration.

Feature selection is a method of dimensionality reduction in which irrelevant,

weakly relevant, or redundant attributes or dimensions are detected and removed.

Numerosity reduction techniques replace the original data volume with alternative,

more minor forms of data representation. In data compression, transformations

are applied to obtain a reduced or "compressed" representation of the original data.

If the original data can be reconstructed from the compressed data without any

information loss, the data reduction is called lossless. If we can reconstruct only an

approximation of the original data, then the data reduction is called lossy.

In the rest of this section, we provide a brief background on two techniques

of feature reduction: feature extraction and feature reduction that will useful in

chapter 2. We refer readers to [18] for further discussion.

Feature Selection

Feature selection reduces the data set size by removing irrelevant or redundant

attributes (or dimensions). The goal of attribute subset selection is to find a

minimum set of attributes such that the resulting probability distribution of the

data classes are as close as possible to the original distribution obtained using

all attributes. Basic heuristic methods of attribute subset selection include the

techniques that follow:

• Stepwise forward selection: starting from an empty set of attributes as the

reduced set, the best of the original attributes is determined and added to

the reduced set at each subsequent iteration.

• Stepwise backward elimination: The procedure starts with the complete set of

attributes. At each step, it removes the worst attribute remaining in the set.
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• Combination of forward selection and backward elimination: The stepwise

forward selection and backward elimination methods can be combined so that,

at each step, the procedure selects the best attribute and removes the worst

from among the remaining attributes.

• Decision tree induction: Decision tree induction constructs a flowchart-like

structure where each internal (non-leaf) node denotes a test on an attribute,

each branch corresponds to an outcome of the test, and each external (leaf)

node denotes a class prediction, as mentioned in section 1.2.1. The algorithm

chooses the best attribute to partition the data into individual classes at each

node. When decision tree induction is used for attribute subset selection, a

tree is constructed from the given data. All attributes that do not appear in

the tree are assumed to be irrelevant. The set of attributes appearing in the

tree forms the reduced subset of attributes.

The stopping criteria for the methods may vary depending on the application.

In addition, the measure employed during the reduction procedure also depends

on the case study.

Feature extraction

We provide an intuitive introduction to principal components analysis as a dimen-

sionality reduction method. Suppose that the data to be reduced consists of tuples

or data vectors described by n attributes or dimensions. Principal components

analysis searches for k n-dimensional orthogonal vectors that best represent the

data, where k ≤ n. The original data are thus projected onto a much smaller

space, reducing dimensionality. Unlike attribute subset selection, which reduces the

attribute set size by retaining a subset of the initial set of attributes, PCA "combines"

the essence of attributes by creating an alternative, smaller set of variables. The

initial data can then be projected onto this smaller set.
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1.3 Application of data-driven methodologies to
communication systems

After presenting the main concepts and tools of the data-driven framework, this

section describes practical applications to the design of optical and wireless com-

munication systems.

1.3.1 Optical communications

We focus this section on the use cases in the physical layer for conciseness. We refer

the readers to [5] and [19] for a complete discussion including the other layers.

In the following, a description of the applications of ML at the physical

layer is presented.

Quality of Service estimation

Quality of Transmission generally refers to different physical layer parameters,

such as received Optical Signal-to-Noise Ratio (OSNR), BER, Q-factor, etc., which

impact the "readability" of the optical signal at the receiver. Such parameters give a

quantitative measure to check if a predetermined level of QoT would be guaranteed

and are affected by several tunable design parameters, such as e.g. modulation

format, baud rate, coding rate, physical path in the network, etc.

Therefore, optimizing this choice is not trivial, and often this wide variety of

possible parameters cannot be solved manually.

A data-driven solution consists of designing a binary classification capable of

predicting whether a candidate lightpath will meet the required quality based

on the system characteristics.

In [20], the authors reduce uncertainties on network parameters and design

margins by exploiting the data collected by a software-defined network controller. A

regression model estimates the SNR based on guesses of unknown network parame-

ters. Then, a gradient descent algorithm iteratively updates such guesses until the

difference between the estimated and the SNR falls below a predefined threshold.

Similarly, in [21] and [22], ANN-based methods are proposed for accurately

deciding the QoT of the newly arriving multicast requests in metro optical networks.
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The data-driven QoT technique analyzes data of previous connection requests and,

through a training procedure performed on a neural network, returns a data-driven

QoT model that near-accurately decides the QoT of the newly arriving requests.

A random forest binary classifier is adopted in [23] to predict whether the BER of

unestablished lightpaths meet the required system threshold based on traffic volume,

desired route, and modulation format. The classifier inputs features, including the

candidate lightpath’s length, the number of traversed links, the amount of traffic to

be transmitted, and the modulation format adopted for transmission. As output,

the algorithm finds the lightpath that will most likely satisfy the BER requirements.

Nonlinearity mitigation

Due to optical fiber nonlinearities, such as the Kerr effect, self-phase modulation

(SPM), and cross-phase modulation (XPM), the behavior of several performance

parameters, including BER, Q-factor, Chromatic Dispersion (CD), Polarization

Mode Dispersion (PMD), is highly unpredictable, which may cause signal distortion

at the receiver (e.g., I/Q imbalance and phase noise). Therefore, complex analytical

models are often adopted to react to signal degradation and/or compensate for

undesired nonlinear effects. One of the performance metrics commonly used for

optical communication systems is the data-rate×distance product. Due to the fiber

loss, optical amplification needs to be employed, and for increasing transmission

distance, an increasing number of optical amplifiers must be employed accordingly.

Machine learning has been efficiently used to overcome the nonlinearities effects

[24], as a case study, we present the optimal symbol detection.

In general, the receiver’s task is to perform optimum symbol detection. When

the noise has a circularly symmetric Gaussian distribution, the optimum symbol

detection is performed by minimizing the Euclidean distance between the received

symbol and all the possible symbols of the constellation alphabet. The nonlinearities

distort the constellation diagram, and as an effect, cluster shapes become elliptical

instead of circular and symmetric. In those cases, optimum symbol detection is

no longer based on the Euclidean distance matrix, and the knowledge and full

parametrization of the likelihood function is necessary.
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In [25], the authors show the impact of Gaussian Mixture Models (GMMs) and

the expectation maximization (EM) algorithm for combating nonlinear phase noise.

Indeed, they show the EM’s ability to track nonlinear distortion in the constellation.

Similarly, in [26], SVM classifiers are used to identify decision boundaries separating

the points of an M-PSK constellation.

In the context of signal equalization, chapter 2 provides a reduced complexity

algorithm to efficiently implement a Digital Signal Process while preserving the

quality of the information. In particular, we apply data-driven methodologies

to improve MIMO DSP performance for crosstalk cancelation in optical systems

supporting multiple spatial modes. Our idea is to focus on techniques that can

reduce the amount of information needed to perform the equalization process.

1.3.2 Wireless communications and Wireless networked
control systems

As the first topic, we focused on the use of data-driven learning methodologies able

to identify time-varying channels. We refer the readers to [2] and [4] for a complete

discussion including the other applications. As the second topic, we focused on

enhancing Wireless networked control system closed-loop performance.

In [27], an adaptive rate control strategy based on Reinforcement Learning is

proposed to learn the dynamically varying channel conditions. The time-varying

fading channel is modeled as a finite state Markov chain, whose channel state

transition probabilities are unknown but the instantaneous channel gains can be

estimated. In this work, the authors propose to use Q-learning to track the varying

environmental changes in pursuit of the optimal control policy online.

In [28], the authors combine Hidden Markov Models and the EM algorithm to

estimate the channel parameters and inference the status of the channel. They

also propose a procedure for choosing the correct number of states to obtain a

model as faithful and as simple as possible.

Instead, in chapter 3, we estimate the channel of a Wireless Network Control

System, as defined in [29], based on the historical data of the transmissions. In
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particular, the approach focuses on the interdependence between the system and

the channel with the goal of analyzing the impact of accurate channel models

in closed-loop performance.

The last topic of our research is the exploitation of Edge Networking to enhance

Wireless networked control system performances. Edge computing is a central

component of modern infrastructures and a key enabler of many applications. Recent

contributions proposed a wide array of solutions to improve the performance of edge

offloading and optimize resource usage. In [30], the authors propose a framework to

solve a mixed-integer linear program that jointly optimizes service cashing, cloud

usage, and energy consumption. [31] presents a controller to minimize the overall

energy consumption under hard per-task delay constraints in systems with energy

harvesting. In [32], the authors propose a multi-scale control logic to dynamically

reconfigure distributed cloudlets. The framework in [33] jointly considers devices’

topology, available resources, and wireless channel state to assign computing tasks

to edge servers. In [34], the authors propose a solution to dynamically control

DNN-based video analytics on edge servers.

In contrast with these contributions, in chapter 5, we proposed a methodology

that controls task offloading based on the control needs of an autonomous unmanned

aerial vehicle to reduce resource usage while preserving mission performance.

1.4 Thesis contribution and organization

The remainder of this dissertation will contain the novelty contribution of this

work, and will be organized as follows:

• chapter 2 discusses the use of data-driven methodologies to improve MIMO

DSP performance for crosstalk cancelation in optical systems supporting

multiple spatial modes. In this respect, the chapter proposed a reduction

algorithm based on the PCA and cross-correlation analysis to improve tra-

ditional equalizers’ performance. We test our reduction method on the data

of the world-first Space-Division Multiplexed (SDM) field trial conducted
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in the INCIPICT testbed [35] (http://incipict.univaq.it/), where successful

transmission in a coupled-core four-cores fiber deployed in the underground

tunnel network in the historical downtown of the city of L’Aquila, Italy, was

demonstrated [36]. The methodology has been presented in [37].

• chapter 3 proposes a Regression trees-based methodology able to learn

a Markov model of a fading channel via historical data of the signal-to-

interference-plus-noise-ratio (SINR). Such methodology can be used to derive

a Markov jump model of a wireless control network, and thus to design a

stochastic optimal controller that considers the interdependence between the

plant and the wireless channel dynamics. The methodology is validated using a

WirelessHART [1] point-to-point communication based on the IEEE-802.15.4

standard. The studies have been presented in [38].

• in chapter 4 a complexity reduction methodology is proposed for a data-

driven control algorithm proposed in chapter 3. In particular, the refinement

procedure aims to reduce the dimension of the dynamical model without

compromising (and indeed improving) the model accuracy and mitigating

the overfitting problem. The innovation related to the refinement procedure

proposed in this work was presented in [39] and is currently patent pending.

• chapter 5 discusses the application of edge computing for real-time analysis to

support autonomous operations of unmanned aerial vehicles (UAV). Indeed,

AUV autonomous operations necessitate the real-time analysis of information-

rich signals, such as camera and LiDAR feeds, where the analysis algorithms

often take the form of extremely complex deep neural networks (DNN). The

continuous execution of such models onboard the UAV imposes a considerable

resource consumption (e.g., energy) while offloading the execution of the

models to edge servers requires the transmission of the input signals over

capacity-constrained, time-varying, wireless channels. In this chapter, we

propose an innovative approach to control the computing pipeline of signal

processing. The methodology has been presented in [40].
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• chapter 6 draws some concluding remarks and outlining future research

directions.
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This chapter discusses the use of data-driven methodologies to improve Multiple-

Input Multiple-Output (MIMO) Digital Singal Processing (DSP) performance for

crosstalk cancelation in optical systems supporting multiple spatial modes.

A crucial problem in time-domain equalization is the large quantity of data

needed to compensate for the effect of the crosstalk when the signals cover a

large number of kilometers. In this respect, the study of techniques that can

20
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reduce the amount of information needed to perform equalization is addressed,

and a reduction algorithm based on the Principal Components Analysis (PCA)

and cross-correlation analysis to improve traditional equalizers’ performance is

proposed. Experimental validation is performed over the world-first Space-Division

Multiplexed (SDM) field trial.

The discussion in this chapter has already been presented in [37].

Chapter organization. The chapter is organized as follows. Section 2.1

provides a brief background about space-division multiplexed fiber-optic trans-

mission. We introduce the structure of a MIMO DSP based on time-domain

equalization in Section 2.2. We describe the proposed reduction methodology in

Section 2.3. We describe the coupled-core four-core optical fiber experimental

setup in Section 2.4. Finally, we experimentally validate the performance of the

proposed reduction methodology in Section 2.5.

Chapter notation. Coherently with the literature, we denote in this chapter

with yl(t) the received signal at channel l, with zi(kT ) the k-th sample of the

signal at the i-th MIMO equalizer output, and with ai,k the symbol associated

to the i-th channel at the k-th time-step.

2.1 Introduction

The demand for data traffic has been growing exponentially over the past decades,

fueled by an increasing number of data-hungry applications relying on the global

fiber-optic network [41]. Growth rates peaking at above 100% per year were

recorded in the late nineties, and following the telecom bubble they stabilized to

long-term growth of about 60% per year, implying a doubling of the demand every

year and a half. The most obvious approach to accommodating the increasing

demand would be the deployment of new fibers, however, this approach is in

contrast with the operators’ pressure to reduce the cost per bit of transmitted

information. In fact, since the beginning, the solution of choice has been the

search for efficient transmission techniques with the goal of achieving the full

exploitation of the fiber-optic channel capacity [42]. In the nineties, the transition
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from single-channel transmission to wavelength-division multiplexing enabled the

efficient use of the fiber bandwidth, while the advent of coherent technology in

early 2000 allowed the transition from simple on-off-keying signaling to the use of

advanced modulation formats in conjunction with polarization multiplexing, thereby

yielding an increase of the achieved transmission rates by a factor of four (the two

quadratures and orthogonal polarizations of the electric field). Correspondingly,

the spectral efficiencies of commercial systems increased from a fraction of a bit

to several bits. Nonetheless, despite these impressive advances, the growth rate of

spectral efficiency has recently reduced, owing to the fact that modern coherent

systems have almost reached the fundamental transmission capacity limits of single-

mode fiber systems dictated by Shannon theory [43]. In this situation, it became

clear that spatial parallelism is the only sustainable approach to further scaling

the capacity of fiber-optic systems, with space being the only unexploited physical

dimension of the optical fiber.

Spatial multiplexing can be implemented in diverse forms and requires some

degree of integration to scale the capacity while allowing at the same time some cost-

per-bit reduction. A particularly interesting implementation of SDM transmission,

intensely researched in the past decade, is the one based on the use of multi-mode

and multi-core fibers [44], where the transmitted information is encoded in multiple

modes of the same fiber. Extracting the transmitted information at the receiver

requires MIMO DSP, with a complexity that depends on the propagation regime.

Indeed, owing to manufacturing imperfections and deployment-related issues, ideally

uncoupled modes undergo some coupling during propagation from transmitter to

receiver. If coupling occurs to a negligible extent, as is the case in uncoupled-core

multi-core fibers, then only the two polarization components of each mode need

to be disentangled, just like in coherent single-mode systems, and 2 × 2 MIMO

DSP is required for each spatial channel. If, conversely, the degree of coupling is

considerable, then 2M × 2M MIMO DSP is necessary, where M is the number of

spatial modes and the factor of two accounts for the two-fold polarization degeneracy

of each spatial mode. In this case, the MIMO DSP complexity is aggravated by
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the fact that spatial modes are characterized by different propagation velocities,

which disperses the inter-modal cross-talk in time - a phenomenon known as Mode

Dispersion (MD) [45]. In this chapter, we focus on the case of coupled-core multi-

core fibers, where strong mixing between all of the transmitted signals occurs on a

very short length-scale, of the order of a fraction of a meter. In this propagation

regime MD accumulates proportionally to the square root of propagation distance,

rather than to the propagation distance itself (as is the case in the regime of

weak coupling between modes), but it remains the major factor determining the

MIMO DSP receiver complexity.

In this respect, the goal of the chapter is to provide a reduced complexity algo-

rithm to efficiently implement DSP while preserving the quality of the information.

In particular, we consider using data-driven methodologies to improve MIMO

DSP performance for crosstalk cancelation in optical systems supporting multiple

spatial modes.

Our idea is to focus our attention on techniques that can reduce the amount of

information needed to perform the equalization process. To this aim, different

options can be exploited.

One consists of reducing the number of taps by analyzing the input-output

cross-correlation of the MIMO system. In this case, the basic idea is to exploit

the most correlated samples of the measurements collected from the transmission

assuming that less correlated ones provide less information with respect to the

DSP accuracy: this could provide a complexity reduction of the DSP algorithm

for each specific channel. Another well-known technique for data set reduction is

PCA, a well-known method that analyzes high-dimensional data sets and identifies

auto-correlations among the data entries. PCA projects the data onto a lower-

dimensional space where the most important relations between features and other

relevant information of the data set are preserved, while the rest is discarded. In a

similar fashion, Canonical Correlation Analysis finds a linear combination of two

random variables that maximize their cross-correlation [46].
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In this chapter, we provide a taps reduction methodology that merges in a

novel fashion the cross-correlation and the PCA and discusses its impact in terms

of the performance of the DSP algorithm. We test our reduction method on the

data of the world-first SDM field trial conducted in the INCIPICT testbed [35]

(http://incipict.univaq.it/), where successful transmission in a coupled-core four-

cores fiber deployed in the underground tunnel network in the historical downtown

of the city of L’Aquila, Italy, was demonstrated [36].

Results show that with the proposed approach it is possible to reduce the

number of taps, without compromising the decoding accuracy, of 60% and 50%

when considering a transmission over 692 and 3450 km respectively.

We believe this preliminary result is very interesting if thought in perspective

of its combined use with methodologies such as digital subcarriers. As it is well

known, the complexity of the equalization process in the time domain varies linearly

with the number of taps, while the one in the frequency domain goes with the

log2 [47]. In particular, for transmissions of approximately 100km, the complexity

of the 2 processes is comparable when the number of taps is around 13. In this

sense, the proposed methodology could be integrated with the digital subcarriers to

further reduce the number of taps while guaranteeing decoding accuracy. In this

way, the gap between the time and the frequency equalization processes could be

significantly reduced, but this is the venue for future work.

2.2 Digital Signal processing

In this section, we summarize the structure of the DSP used in the M ×M MIMO

receiver to produce one of the M output sequences, with M denoting the number of

channels. The structure is obtained leveraging the method proposed in [48], which

consists of an equalization stage and a carrier synchronization stage.

We denote with yl(t) the received signal at channel l, for l = 1, . . . ,M . Each

signal yl(t) is sampled with a sampling frequency equal to 2
T

, where T is the symbol

interval of the transmission. The sampled signals, yl(kT/2), are applied to the input
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of a linear fractionally spaced MIMO equalizer consisting of a M × M matrix of

Finite Impulse Response (FIR) filters, each of the same length N̄ = 2N + 1.

The k-th sample of the signal at the i-th MIMO equalizer output, taken at

time kT , is given by the multidimensional convolution

zi(kT ) =
M∑
l=1

N∑
n=−N

c
(k)
il,nyl(kT − nT/2), (2.1)

where c(k)
il,n denotes the n-th tap of the equalizer between input l and output i at

the same time. Let c
(k)
il =

[
c

(k)
il,−N , . . . , c

(k)
il,N

]⊤
and

yl (kT ) = [yl (kT −NT/2) , . . . yl (kT +NT/2)]⊤ denote respectively the vector of

the N̄ equalizer taps between the l−th input and i−th output and the vector of

samples at the l-th input. The equalizer taps are recursively updated according

to the classical stochastic gradient algorithm as

c
(k+1)
il = c

(k)
il + γy∗

l (kT ) ei(kT ), (2.2)

where γ is the step size, ei(kT ) is the error at the i−th equalizer’s output,

and ∗ denotes complex conjugation. Equalizer pre-convergence is achieved by

implementing Data-Aided (DA) Least-Mean Square (LMS) adaptation of the

equalizer taps.

After pre-convergence, the equalizer adaptation is based on the Constant

Modulus Algorithm (CMA): at the k−th time instant, the error signal used to

update the equalizer taps is given by

ei(kT ) =
{
ai,k − zi(kT ), for DA-LMS,
zi(kT )(R2 − zi(kT )z∗

i (kT )), for CMA,
(2.3)

where ai,k is the Quaternary Phase Shift Keying (QPSK) symbol associated to the

i−th transmitted sequence and R2 is the Godard constant of order 2. The cost

function used in the CMA is phase-blind. This means that the CMA output is a

constellation affected by a phase error. For this reason, after the equalization stage,

the signal experiences a carrier synchronization process. The carrier synchronizer

used in this work is a closed-loop compensator consisting of a Phase-Locked Loop
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Figure 2.1: Carrier Synchronizer.

(PLL)-based algorithm described in [49]. The block scheme that represents the

carrier synchronizer is shown in Fig. 2.1.

The output of the synchronizer, âk, is a frequency-shifted version of the signal

z(kT ) for the k-th sample. The synchronizer output is

âk = z(kT )ejλk , (2.4)

where λk is the output of the Direct Digital Synthesizer (DDS). The DSS is the

discrete-time version of a voltage-controlled oscillator. To correct for the frequency

offset, the algorithm first determines the phase error ek with the following scheme:

ek = sgn (Re {z(kT )}) Im {z(kT )}

− sgn (Im {z(kT )}) Re {z(kT )} . (2.5)

Then, the phase error passes through the following biquadratic loop filter to

ensure system stability:

ψk = g1ek + ψk−1, (2.6)

where ψk is the output of the loop filter at sample k, and g1 is the integrator gain.

The DSS is another biquadratic loop filter with the following expression:

λk = (gpek−1 + ψk−1) + λk−1. (2.7)
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2.3 Reduction approaches

Complex multivariate data structures are often better understood by studying

low-dimensional projections because some of the inputs can be correlated with

others, thus providing less useful information to the equalizer. For this reason, we

propose in this section reduction methodologies that aim at selecting a reduced

number of inputs that provide the needed information. In particular, we propose

the following two approaches consisting on the use of the cross-correlation, and

its combination with the PCA.

2.3.1 Cross-Correlation Analysis

The basic idea behind the cross-correlation is to select the inputs of the equalizer

based on their correlation with the equalized signal. For each channel, the Time-

Domain Equalizer (TDE) can be seen as a linear regression where the predictor

variable lies in CK , where K = N̄M , and the response variable is ai. To perform

the reduction we analyze the cross-correlation between the input of the equalizer,

i.e. y, and the transmitted QPSK symbol, i.e. ai. Then, we define the vector

R ∈ RK as follows

R = corr(y, ai) ⊗ corr(y, ai)∗, (2.8)

with ⊗ we denote the element-by-element multiplication. Finally, we select the

K̄ < K samples with the largest correlation index.

2.3.2 Principal Components Analysis

Principal Components Analysis (PCA) [50] is a method that analyzes high-dimensional

data and identifies correlations among the data entries (features). PCA then projects

the data down to a lower-dimensional representation in which important relations

between features and other relevant information of the data set are preserved, while

the rest is discarded. Our goal is to provide a reduction methodology that combines

the PCA with the cross-correlation analysis.
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Given a data set described by an n × p data matrix X, whose jth column

vector is the xj observation of the jth variable. PCA seeks a linear combination of

matrix columns X with maximum variance. Such a linear combination is given by∑p
j=1 tjxj = Xt with t = [t1, . . . tp]. The variance of the linear combination is given

by var(Xt) = t⊤Xt, where S is the sample covariance matrix associated with the

data set X. An additional restriction must be imposed to obtain a well-defined

problem: the most common is the solution normalization, i.e. t⊤t = 1.

The problem can be rewritten by exploiting the method of Lagrange multiplier

and differentiating with respect to t in the following

St− λt = 0 ⇔ St = λt, (2.9)

where λ is the Lagrange multiplier. Thus, λ must be the largest eigenvalue of the

covariance matrix S, and t the corresponding eigenvector.

A Lagrange multipliers approach, with the added restrictions of orthogonality of

different coefficient vectors, can also be used to show that the full set of eigenvectors

of S is the solution to the problem of obtaining up to p new linear combinations Xtk
= ∑p

j=1 tj,kxj, which successively maximize variance subject to uncorrelatedness

with previous linear combinations. Such linear combinations Xtk are called the

Principal Component (PC)s of the data set.

The quality of any q-dimensional approximation can be measured by the

variability associated with the set of retained PCs. The sum of variances of

the p original variables is the trace of the covariance matrix S. Hence, the

standard measure of the quality of a given PC is the proportion of the total

variance that it accounts for:

πj = λj∑p
i=1 λp

. (2.10)

The index is often used to estimate the number of components needed to rep-

resent the data set.

The basis of this new representation, called principal components, is orthogonal

by construction, as it is the span of eigenvectors of the auto-covariance matrix of
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the feature variables. PCA’s main advantage in this particular application is that

it removes correlated features that do not provide any contribution.

For the time-domain -DSP, we exploit PCA to project the K-dimensional

samples in input to the equalizer, i.e. y = [y1, . . . ,yM ], onto the K̄-dimensional

version, with K > K̄.

2.3.3 Combined cross-correlation/PCA reduction method-
ology

The basic idea behind the proposed approach is to iteratively apply the cross-

correlation and PCA.

The first step is exploiting the cross-correlation analysis to select the signals

carrying useful information for the DSP. This step focuses on a reduction technique

that prioritizes the transmitted-received signal relationship. Indeed, we select

the inputs of the equalizer based on their cross-correlation with the transmitted

signal. Then, we obtain a reduced version of y containing only K1 < K signals

of the sequence, that we denote by ȳ(1).

This step is lacking because signals are chosen based only on the input-output

correlation, without considering their auto-correlation. For instance, a replica of the

most input-output cross-correlated signal would be included in the reduced variable

even if that signal does not carry any further useful information for the DSP.

For this reason, we design a second stage based on the PCA to project ȳ(1)

onto a lower dimensional space of uncorrelated features. We denoted the signal

after the second reduction stage by ȳ. In contrast to the cross-correlation stage,

PCA focuses on the auto-covariance of the input ignoring the transmitted-received

relationship. In this way, we mitigate the disadvantage of each methodology

by applying both iteratively.

Finally, we design a new TDE based on the reduced version ȳ of the signal

leveraging the reasoning in Section 2.2. Fig. 2.2 shows the reduced DSP.

The strategy we propose is summarized in Algorithms 1 and 2.
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Algorithm 1 Cross-correlation PCA learning (off-line)
1: Input:
2: Y = {y(kT )}D+N/2

k=N/2 , A = {a1,k, . . . , aM,k}
D+N/2
k=N/2 , K1, K̄

3: Output: {Il, Wl}Ml=1
4: function Learning
5: for each channel l ∈ [1, . . . , M ] do
6: Compute R = corr(y, ai) ⊗ corr(y, ai)∗,
7: Il = maxk(R, K1)
8: Set Ȳ

(1) = {Y i ∈ [Y 1 . . . , Y K ] : i ∈ Il}, i.e. Select the K1 most cross-
correlated inputs

9: Compute Wl = PCA(Ȳ (1)
, K̄), i.e. Learn a K̄-dimensional projection of Ȳ

using PCA
10: end for
11: end function

In particular, based on historical transmission data, Algorithm 1 exploits the

cross-correlation analysis to learn a first input projection for each channel, denoted

Il. After this process, Ȳ
(1) consists of the most K1 cross-correlated signals of the

dataset. Then, we design a new projection for each channel based on PCA, called Wl

Algorithm 2 Cross-correlation PCA reduction (run-time)
1: Input: {Il, Wl}Ml=1 , y(kT )
2: Output: {ȳl(kT )}Ml=1
3: function Reduction
4: Initialize reduced variable: ȳ(kT ) = {∅}
5: for each channel l ∈ [1, . . . , M ] do
6: Set

ȳl
(1)(kT ) = {yi(kT ) ∈ [y1(kT ), . . . , yK(kT )] : i ∈ Il},

i.e. Select the K1 most cross-correlated inputs
7: Compute ȳl(kT ) = Wlȳl

(1)(kT )
8: Set ȳ(kT ) = [ȳ(kT ), ȳl(kT )]
9: end for

10: end function

Algorithm 2 projects the current signal y(kT ) to the lower-dimensional space

during the run-time.



2. Data-driven efficient dsp over a field trial SDM fiber-optic transmission 32

2.4 Experimental setup description

Fig. 2.3 shows the experimental setup where 2 transmitters were utilized to produce

5 Wavelength Division Multiplexed (WDM) channels spaced at 33.33 GHz and

modulated at 30 Gbaud. Four independent Digital-Analog Converter (DAC)s

operating at 60 GS/s produced the signals to drive in-phase and quadrature arms of

Mach-Zehnder modulators (DN-MZMs). We utilized an External Cavity Laser (ECL)

to generate the channel of interest and 4 Distributed Feedback Lasers (DFLs) spaced

at 33.33 GHz to generate the surrounding dummy channels. The channel under

test and the dummy channels were modulated with two independent signals using 2

different DN-MZMs. A second ECL was used as a local oscillator at the receiver.

A polarization multiplexing emulation stage was set up by introducing a 50 ns

delay between the polarizations. To decorrelate the 4 signals to be transmitted into

the 4 cores, we split the signal into 4 paths by introducing a 0-300ns delay on each

path. 4 solid-state switches were utilized to inject the signals into the recirculating

loop and a load switch was introduced to enforce the extinction of the injected signal.

Each loop was composed of 11 concatenated RC4CFs, resulting in a total length

of 69.2 km, connected to four two-stage single-mode amplifiers and four Wavelength

Selective Switches configured as dynamic gain equalizing filters. Fan-In and Fan-

Out for the interface to the 4-core fiber were realized using laser-inscribed 3D

waveguides. To precisely control the launch power, 4 Variable Optical Attenuators

were introduced before the Fan-In. All 4 single-mode path lengths were matched to

<1 cm (corresponding to a delay <50 ps) to optimize the recirculating loop and the

relative launch power was optimized to generate a minimal mode-dependent loss at

a distance of 1000 km. Transmitted signals were subsequently extracted from the

loops by using the 10% arm of 10:90 couplers to be fed to 4 Polarization-Diverse

Coherent Receivers. Finally, a Digital Storage Oscilloscope operating at an 80 GS/s

sampling rate, was used to capture the resulting 16 electrical signals.

At the offline processing stage signals were first down-sampled to 2 samples per

symbol, then chromatic dispersion and frequency-offset compensation followed by

timing identification and an 8 × 8 MIMO processing, based on a Time-Domain
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Equalizer (TDE). Finally, carrier-phase recovery and Bit Error Rate (BER) counting

were performed across all 8 spatial tributaries.

2.5 Results

In this section, we provide a comparison between the results obtained with the

classical DSP procedure described in Section 2.2 and the ones obtained with the

reduction procedure derived in Section 2.3. Such comparison is performed over

the world-first SDM field trial conducted in the INCIPICT testbed [35], where

successful transmission in a coupled-core four-cores optical fiber deployed in the

underground tunnel network in the historical downtown of the city of L’Aquila,

Italy, was demonstrated [36].

In particular, in the following, we first analyze in Section 2.5.1 the Time-Domain

DSP performance to justify the need for a reduction approach, and then in Section

2.5.2 we show the improvements produced by the proposed reduction procedure.

2.5.1 Time-Domain Digital Signal Processing

We analyze 8 data sets of a Dual-Polarization QPSK transmission through the

four-cores INCIPICT fiber. In a transmission time, 8 symbols are sent, one for

each channel. Each data set contains data related to a transmission distance of

0, 69, 138, 692, 1384, 2076, 2760, and 3450 km, and consists of 2961988 symbols

sent for each channel. The receiver sampling frequency is twice the transmitter:

so, we have two received samples for each symbol sent.

Up to 400 × 103, symbols are used for the initial pre-converge with the DA-

LMS algorithm. After pre-convergence, the equalizer adaptation is based on the

CMA. The equalized signals experienced a Carrier phase recovery stage based

on a phase-locked loop (PLL). Finally, the symbols are decoded. The last 106

bits are used for BER estimation.

In this work, we only analyzed the DSP performance on the first channel. Table

2.1 shows the TDE performance of the first channel when the signal covered a

distance included in the interval [0, 3450]km.



2. Data-driven efficient dsp over a field trial SDM fiber-optic transmission 35

-2 -1 0 1 2

In-Phase

-2

-1

0

1

2

Q
u
a
d
ra

tu
re

-2 -1 0 1 2

In-Phase

-2

-1

0

1

2

Q
u
a
d
ra

tu
re

Figure 2.4: Signal after the time-domain digital signal processing. The upper figure shows the
signal after covering 692km, the lower shows the signal after 3450km.

Fig. 2.4 shows the synchronized signal after covering 692km and 3450km.

As shown in Table 2.1, the problem complexity (taps number) increases with

the number of kilometers covered by the signal. The equalizer mitigates the

distortion increasing the window length of the input signals. The idea behind

the proposed reduction procedure is to reduce the number of inputs needed by

the Time-Domain equalizer.
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km 0 69 138 692 1384 2076 2760 3450
Loops 0 1 2 10 20 30 40 50
N 8 16 24 170 300 300 600 1000
K 144 323 400 2576 4816 4816 9616 16016
BER 0 0 0 0 1e-5 1.1e-3 2.8e-4 2.2e-3

Table 2.1: Bit Error Rate of the first channel performed by Time-Domain DSP. In the
first column, km indicates the distance in kilometers covered by the signals, Loops counts
the complete turns of the INCIPICT ring covered by the signals, N is the window length
considered by the equalizer, and K is the tap equalizer number. We achieve a BER of
order equal to, or lower, than 10−3 in each case. This demonstrates that the MIMO
processing is capable of mitigating the crosstalk distortion.

2.5.2 Reduction approaches

For conciseness, we only report the cases of signals that have covered 692km and

3450km into the optical ring.

To obtain a less complex DSP able to achieve a BER of 2 × 10−3, we reduced

for the 629 km case the equalizer window length to N = 120. Starting from this

point, we applied the reduction technique aiming at further reducing the equalizer

complexity without compromising the accuracy.

Differently, for the 3450 km case, we increased the equalizer window length to

N = 1800. In this way, through the correlation technique, we are already able to

obtain a better BER, with respect to the TDE, with the same number of taps (see

Table 2.3). Then, we apply the reduction technique to decrease equalizer complexity.

We start our experiments considering the cross-correlation between the trans-

mitted signal and the input of the equalizer. We perform both the principal

component and the cross-correlation analysis based on the first 500 × 103 samples

sequence of each data set.

Fig. 2.5 shows the modulus of the cross-correlation between the transmitted

signal and the samples analyzed by the equalizer for the 692km and 3450km cases.

It is possible to appreciate not-flat cross-correlation distribution. More precisely,

the upper figure shows that signals from 0 to approximately 700 have fewer cross-

correlations than the signals in the range [700, 1936]. In a similar way, signals
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Figure 2.5: Cross-correlation between the transmitted signal and the samples analyzed by the
equalizer. The upper figure shows the signal after covering 692km, the lower shows the signal after
3450km.

around 1200 and 2000 are more correlated with the output. Based on this reasoning,

we aim to design a DSP based only on the most correlated signals.
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Figure 2.6: PCA portion of the total variance of the input equalizer for the case 692km.
The upper figure shows the portion of total variance for each component, the lower shows the
components in the range [750, 1250].

Fig. 2.6 shows the PCA portion of the total variance of the equalizer’s input for

the case 692km. As exposed in Section 2.3.2, the metric is often used to identify

the number of components needed to explain the data set. The lower plot in Fig.

2.6 emphasizes that components after the 1000th contribute significantly less to the

total variance. The very high proportion of variability explained by the first 1000th

principal components provided a solid ground for our thesis about the importance
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of the signals in the DSP. Indeed, rapid declines in the portion of total variance are

associated with high-correlated inputs carrying useless information for the DSP.

Based on the result exposed in Fig. 2.5 and 2.6, we analyze the importance

of each input in the equalization process to prove the existence of samples that

carry more information than others. From such results, we design a methodology

to pick the samples useful to decrease the equalizer complexity.

N K̄ % of K TD-DSP Corr PCA Corr + PCA
120 1936 100% 0.002
108 1744 90% 0.015 0.002 0.002
120 1552 80% - 0.002 0.002
120 1360 70% - 0.0022 0.002
120 1168 60% - 0.0027 0.002
120 976 50% - 0.0045 0.0027
120 784 40% - - - 0.0027

Table 2.2: The bit error rate of the first channel performed by the TD-DSP with the
reduced input case 692km. From the 3th row, each row shows a reduced DSP with a
different number of inputs. The table provides the considered window length in the first
column, the input number to the equalizer in the second column, the percent reduction with
respect to the classic approach (in the 2th row) in the third column, the BER performed
for a classic equalizer with the input number in column 1 in the fourth column, and
respectively the reduced-DSP BER exploiting the cross-correlation, principal component
and both the analysis performed iteratively in the last three columns.

For the 692km case, our goal was to choose the lowest number of taps K̄ of

the reduced TDE to guarantee a BER of order 10−3. To this aim, we first reduced

N of the original TDE until the BER increased to 10−3, and then we applied the

2 reduction methodologies, i.e. correlation and correlation with the PCA. This

step is to better appreciate the impact of our methodology; indeed, in this critical

point, it is not possible to decrease the classical equalizer window length without

compromising the DSP performance. As shown in Table 2.2, both methodologies

aim at reducing the number of inputs of the equalizer. The best performance in

terms of BER is obtained when the TD-DSP process applies both methodologies

iteratively: 7th column, "Corr+PCA". We designed the "Corr+PCA" DSP selecting

976 signals based on the cross-correlation analysis first, and then exploiting the

PCA, thus performing an additional reduction. Note that in the second row of
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N K̄ % of K TD-DSP Corr Corr+PCA
1000 16016 100% 0.002
1800 16016 100% 0.001
1800 14414 90% 0.001
1800 11211 70% 0.001
1800 9609 60% 0.001
1800 8008 50% 0.0017 0.0016

Table 2.3: The bit error rate of the first channel performed by the TD-DSP with the
reduced input case 3450km. From the 3th row, each row shows a reduced DSP with a
different number of inputs. The table provides information equivalent to Table 2.2.

Table 2.2 we decreased the classical equalizer window-length by 10% obtaining an

unacceptable BER of 1 × 10−2. This confirms the necessity of advanced techniques

to perform the reduction. In this case, we obtained a result in terms of BER equal

to 2.7 × 10−3, and a reduction in the number of inputs by the 60%.

For the 3450km case, we aim at reducing the taps number of the equalizer

guaranteeing a BER of the order of 10−3. In such experiments, we increased the

window length of the equalizer N to 1800, and as a consequence the number of

input signals. Then, we applied the correlation analysis to select the most correlated

signals to be used in the DSP. Finally, we performed both the correlation and PCA

iteratively, as illustrated above. As shown in Table 2.3, the best performance is

obtained when the TD-DSP process applies our combined methodology: 6th column,

"Corr+PCA". We designed the "Corr+PCA" by selecting 11211 signals based on

the cross-correlation and then exploiting the PCA.

Finally, for the sake of completeness, we show in Fig. 2.7 the synchronized signal

after covering 692km and 3450km exploiting the "Corr+PCA" TD-DSP.

2.6 Conclusions

In this chapter, we presented a taps reduction methodology that merges the cross-

correlation and PCA, and discussed its impact in terms of BER of the DSP algorithm.

We validated the proposed approach on the data of the world-first SDM multi-core

fiber field trial conducted within the INCIPICT project in the city of L’Aquila,

Italy. Results showed a reduction in the number of taps of the 60% and 50%
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Figure 2.7: Signal after the reduced time-domain digital signal processing. The upper figure
shows the signal after covering 692km, the lower shows the signal after 3450km.

concerning the classical approach proposed in [48] considering a transmission over

650 and 3450 km respectively.

In future work, we plan to further reduce the complexity of the DSP algorithm

extending the proposed approach through the combination with other methodologies,

such as digital subcarriers and Frequency-domain DSP. Furthermore, we plan to

investigate the impact of adaptive reduction methodologies aiming to guarantee

a minimum BER over time.
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Finite-state Markov models are widely used for modeling wireless channels

affected by various non-idealities, ranging from shadowing to interference. In

an industrial environment, the derivation of a Markov model based on wireless

communication physics can be prohibitive as it requires complete knowledge of

both the communication dynamics parameters and the disturbances/interferers.

This work proposes a novel methodology to learn a Markov model of a fading

channel via historical data of the Signal-to-Interference-plus-Noise Ratio (SINR).

Such methodology can be used to derive a Markov jump model of a wireless

control network, and thus to design a stochastic optimal controller that considers

41
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the interdependence between the plant and the wireless channel dynamics. The

proposed method is validated by comparing its prediction accuracy and control

performance with those of a stationary finite-state Markov chain derived assuming

perfect knowledge of the physical channel model and parameters of a WirelessHART

point-to-point communication based on the IEEE-802.15.4 standard.

The discussion in this chapter has already been presented in [38].

3.1 Introduction

Wireless networked control system (WNCS)s are composed of spatially distributed

sensors, actuators, and controllers communicating through wireless networks [29].

Despite their success in industrial monitoring applications, existing wireless sensor-

actuator network technologies face significant challenges in supporting control

systems due to their lack of real-time performance and dynamic wireless conditions

in industrial plants [51]. A key challenge in WNCS design is channel modeling in

an industrial environment because of its inherent complexity [51] [52]. These com-

munication channels are frequently subject to time-varying fading and interference,

which may lead to packet losses.

From the automatic control perspective, an example of WNCS consists of a

nonlinear process with intermittent control packets due to the lossy communication

channel described by the following equations:


y (k + 1) = f (y(k), ua(k)) , k ∈ N
ua(k) = ν(k)u(k)
y(0) = y0 ∈ Rny

(3.1)

where y(k) ∈ Rny is the output of the system and u(k) ∈ Rnu is the input signal.

{ν(k)}k∈N is a discrete-time Boolean process modeling the packet delivery of the

control signals: if the packet is correctly delivered then ν(k) = 1, otherwise if it is lost

then the actuator does nothing ν(k) = 0. The controlPacket Error Probability (PEP)

P(ν(k) = 0), depends on the SINR of the communication Γ(k), i.e.,

P(ν(k) = 0) = g (Γ(k)) , (3.2)
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where g : R → [0, 1] is a deterministic function defined by the communication

standard. We assume full-state observation with no measurement noise and no

observation packet loss. In this work, we consider a channel model based on

WirelessHART [1], an on-the-market wireless communication standard specifically

designed for process automation. We assume that the value of the SINR Γ(k) is

measurable and is sent to the controller via an Acknowledgment (ACK). However,

this ACK is available only after the current decision on the control input to apply has

been made and sent through the link since the actual success of the transmission is

not known in advance. Hence, at each time k the controller receives measurements

of y(k) and Γ(k − 1), as depicted in Fig. 3.1.

Figure 3.1: Wireless networked control system

Since Γ(k) is represented by a generic stochastic process, the obtained model

may not be computationally tractable when it is derived for wireless communications

in an industrial environment (see Sec. 3.2), especially if the objective is to apply

optimal control algorithms (e.g. model predictive control – MPC). For this reason, a

preliminary investigation of channel model abstraction is fundamental for controller

design. In the WNCS literature, the packet dropouts have been modeled as

stochastic or deterministic phenomena. For what concerns stochastic models, a

vast amount of research assumes memoryless packet drops so that dropouts are

realizations of a Bernoulli process. In [53], the packet delivery process is modeled

as a Bernoulli random process, then an optimal controller is derived. In [54] a
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Markov chain model is used to derive an accurate abstraction of the WirelessHART

channel, and it is proven that such a model allows for characterizing the stability of

a WNCS for the scenarios where the simple Bernoulli-like channel models (which

cannot model packet bursts) fail.

Markov models are a powerful tool for modeling stochastic random processes.

They are general enough to model with high accuracy a large variety of processes

and are relatively simple, allowing us to compute analytically many important

parameters of the process which are very difficult to calculate for other models [55].

Hidden Markov models ([56] [57]) have been exploited to learn channels models in

[52] and [58]. In [59], the authors expose the benefit of exploiting finite-state Markov

chains to model the behavior of wireless fading channels. In [60], the authors derive

a Markov chain that estimates the PEP of an industrial wireless protocol, and then

propose an optimal stochastic controller for linear systems.

Inspired by the challenges in [60] related to the derivation of a physics-based

Markov chain abstraction of the wireless channel, the main contribution of this

chapter is a novel data-driven methodology, based on Regression Tree (RT)s [12],

to identify such Markov chain abstraction. More precisely, we propose a novel

methodology to model the PEP ν(k) based on a Markov chain θ(k): each state of

θ(k) is associated with a partition of Rny+1 consisting of rectangular sets {Ri}ℓi=1,

each representing the range of possible values of Γ(k) ∈ R and y(k) ∈ Rny at time

k. We construct the Transition Probability Matrix (TPM) of θ(k) as follows:

p(j | i) .= P(θ(k + 1) = j | θ(k) = i)

= P(θ(k + 1) = j | (Γ(k), y(k)) ∈ Ri)

= h(Γ(k), y(k)), (3.3)

where identifying from historical data the function h : Rny+1 → [0, 1], which depends

on the current measurements Γ(k) and y(k), is the objective of this chapter. Note

that, given any two states i, j of the Markov chain, p(j | i) also depends on the

plant output: indeed, y(k) may for example determine the distances between the

transmitter, the receiver, and the interferer, and, as illustrated in Sec. 3.2, this
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strongly affects the dynamics of Γ(k). Finally, the PEP can be easily computed

using (3.2), which in this chapter is based on a point-to-point WirelessHART

communication based on the IEEE 802.15.4 standard.

Nevertheless, we remark that our data-driven methodology is independent on

the transmission technology and can be replicated for any communication protocol

if the corresponding wireless channel can be effectively modeled by a Markov chain.

In summary, in an industrial environment, the derivation of a Markov model

based on wireless communication physics can be prohibitive as it requires complete

knowledge of both the communication dynamics parameters and the disturbances/in-

terferers. Our methodology has 3 main advantages: (1) it only exploits historical

data and hence does not require prior knowledge of the system and channel

parameters. Moreover, most physics-based approaches cannot handle time-varying

parameters, as the computational complexity of the obtained abstraction would

be intractable, while with our methodology we consider a dependency between

the parameters of the communication system and the dynamics of the plant which

is still tractable in terms of computational complexity; (2) as a byproduct of

leveraging our techniques in [61], and beyond the main contribution of identifying

the Markov chain abstraction of Γ(k), we also construct a Switching Auto-Regressive

eXogenous (SARX) model for the nonlinear plant f in (3.1), i.e. our methodology

does not require any linearity assumption on the plant’s dynamics; (3) the obtained

identified models, both for Γ(k) and f , can be combined obtaining a Markov jump

system, which can be directly used to setup a classical MPC problem that can be

solved very efficiently, i.e. using Quadratic Programming (QP).

3.2 Channel modeling

In this section we first describe the channel model under consideration, then we

present the Markovian model for the wireless link developed in [60], and finally we

introduce an analytical model that will be useful to experiment the data-driven

approach we propose in this chapter.
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WirelessHART physical model

We analyze the industrial environment described in Fig. 3.1, wherein wireless

communications are affected by interference. We study a point-to-point transmission

based on the WirelessHART protocol, i.e. the IEEE 802.15.4-2006 defined in [62],

interfered by another WirelessHART transmission. The proposed model considers

the effect of path loss, shadow fading, and the residual power fluctuations left by

the power control. The effect of multipath fading is supposed to be compensated by

the aforementioned power control. We denote with i=0 the reference Transmitter-

Receiver (Tx-Rx) link, and with i = 1 the link between the interferer Tx and

the reference Rx.

The effect of the path loss model is defined in [62]. For a system with bandwidth

W = 2.4GHz the path loss coefficient of the link between transmitter i and the

reference receiver (i.e., a mobile plant in our case) is αi(k)=10− ς(di(k))
10 , where

ς(di(k)) =
40.2 + 20 log10(di(k)), if di(k) ≤ 8,

58.5 + 33 log10(di(k)
8 ), otherwise;

(3.4)

and di(k) is the length of the link i at time instant k, i.e. a distance in meters

that may e.g. depend on the position of the plant (see the inverted pendulum

on a cart in Sec. 3.6).

The shadow fading is modeled following [63] by assuming a log-normal model

for each link i, which introduces a multiplicative factor eβi(k), where βi(k) is a

zero-mean Gaussian process with variance σ2
βi

and auto-covariance function cβi
(τ),

with τ being a time lapse between two consecutive (time-driven) control packets.

We remark that cβi
(τ) may also depend on the state of the plant (e.g. the speed

of a cart) thus exhibiting a time-varying behavior.

For each link i the residual Power Control Error (PCE) is also modeled as

a log-normal process, eξi(k), where ξi(k) is a zero-mean Gaussian process with

variance σ2
ei

and auto-covariance cξi
(τ).

By considering the characteristics of the Offset Quadrature Phase-Shift Keying

(OQPSK) with Direct-Sequence Spread Spectrum (DSSS) modulation, as specified
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in [62], we can derive the power value of the SINR, γ(k), at time k as in [60]:

γ(k) =
√√√√ P0(k)α2

0(k)eβ0(k)+ξ0(k)

N0
4 + 8

3GP1(k)α2
1(k)eβ1(k)+ξ1(k) , (3.5)

where P0 and P1 are respectively the reference user transmission power and the

interferer transmission power, N0 is the noise spectral density, and G = WTs is

the processing gain, with Ts being the symbol time. In the rest of this chapter,

we denote as Γ(k) = 10 log10(γ(k)) the SINR in decibels.

In WirelessHART the forward error correction is not implemented, thus even

one erroneous bit leads to a corrupted WirelessHART data packet. For this reason,

the packet error probability Rp is related to the SINR as follows

Rb(γ(k)) = 1
30

16∑
ι=2

(−1)ι
(

16
ι

)
exp

(
20 · γ(k)1 − ι

ι

)
Rp(γ(k)) = 1 − (1 −Rb (γ (k)))lf , (3.6)

where lf is the number of bits in a frame, and Rb is the bit error rate computed

according to [62]. It is worth remarking that the distance Tx-Rx di(k) influences

the SINR γ(k) that, in turn, influences the packet error rate. This will be useful

for the discussion of the simulation results in Sec. 3.6.

The main issue with the above channel model is that, despite the ability to

describe the SINR, in the majority of the control applications equation (3.5) is

intractable, both in the continuous-time and discrete-time form. For this reason, in

[60], a Markov chain model to derive a discrete-time abstraction of (3.5) has been

proposed. We recall such a technique in the following subsection as a comparison

for the proposed method in this chapter.

Finite-state Markov chain

It is straightforward to see that (3.5) can be expressed as a weighted linear

combination of correlated log-normal processes: hence there is no exact explicit

closed-form expression of its distribution. We can use the moment matching

technique [64] to approximate the probability distribution of (3.5) by a log-normal

process, thus presenting Γ(k) as a Gaussian process with mean µΓ(k), variance σ2
Γ(k)
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and auto-covariance cΓ(τ), as detailed in [60]. Clearly, due to the dependence of the

SINR on the state of a mobile plant through, e.g. the parameters di(k) (which define

the path loss coefficients αi(k) via (3.4)), the moment-matching approximation

should be made for each relevant value of the aforementioned parameters. In the

rest of this subsection we will focus on a Gaussian process Γ̂(k), which is a moment-

matching approximation of the SINR with arbitrary values of the parameters in

(3.5) corresponding to any given state of the plant, i.e. for αi(k)= α̂i, βi(k) = β̂i(k),

and Pi(k) = P̂i in (3.5), with i= 0, 1, we have that Γ̂(k) ≈ 10 log10(γ(k)).

At this point, to obtain a finite-state Markov channel abstraction, the first step

is to divide the range of Γ̂(k) into several consecutive regions, each associated with

a certain representative PEP. Specifically, a region r of the values of the SINR is

mapped into a state sr of the related Markov chain, and it is delimited by two

thresholds ζr and ζr+1 belonging to the set of extended reals. These SINR thresholds

are determined by the chosen partitioning method [59]. In this chapter, we rely on

a well-known equiprobable partitioning, where the thresholds are selected in such

a way that the steady-state probabilities of being in any state are equal.

Then, the steady-state probability pr of a state sr is defined as the probability

that the value of Γ̂(k) is between the two thresholds of the region, and it is given by

pr =
∫ ζr+1

ζr

ϕN (ζ;µΓ̂, σ
2
Γ̂)dζ, (3.7)

where µΓ̂ and σ2
Γ̂ are respectively the mean and variance of Γ̂(k), and ϕN (ζ;µ, σ2)

is the Probability Density Function (PDF) of a Gaussian Random Variable (GRV)

N (µ, σ2).

The Power Delay Profile (PDP) associated with the same state within the

respective region is given by

1 − ν
(r)
M = 1

pr

∫ ζr+1

ζr

Rp(10
ζ

10 )ϕN (ζ;µΓ̂, σ
2
Γ̂)dζ. (3.8)

Finally, the channel state transition probabilities are derived from integrating

the joint PDF of the SINR Γ̂(k) over two consecutive packet transmissions and
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over the desired regions, r, and q, as

p(q | r)= 1
pr

∫ ζr+1

ζr

∫ ζq+1

ζq

φN
(
ςk−1, ςk;µΓ̂, σ

2
Γ̂, cΓ̂(τ)

)
dςk−1dςk,

where φN (ςk−1, ςk;µΓ̂, σ
2
Γ̂, cΓ̂(τ)) is the two-dimensional PDF of the Gaussian process

Γ̂(k), as detailed in [60].

However, one issue related to the above technique is that in real (industrial)

cases some of the channel parameters required for the above modeling are time-

varying (due to their dependence on the state of the plant) and often only partially

known. For these reasons, we propose a new approach to model the SINR, and

thus the PEP. In this respect, a promising direction is the exploitation of historical

data of the communication channel to identify a model via system identification

and machine learning techniques.

Auto-regressive model for channel simulation

The application of data-driven methodologies requires the existence of a dataset

containing trajectories of the SINR: in this chapter, we run Monte Carlo simulations

of the wireless transmission model (3.5) and then apply our techniques to such

trajectories. To this aim, in this section we illustrate the approach presented in

[65], where the study of auto-regressive stochastic models for computer simulation

of fading channels is addressed, to derive discrete-time trajectories of the process

described in equation (3.5).

In particular, let us consider a discrete-time Gaussian process {z(k)}k∈N with

Auto-Correlation Function (ACF) Rzz(n). We can derive an Auto-Regressive (AR)

model of the following form that is able to generate trajectories of the process:

z(k) = −
∑p

n=1 anz(k − n) + w(k), (3.9)

where w(k) is a zero-mean white Gaussian noise process. The AR model parameters

consist of coefficients {a1, . . . , ap} and variance σ2
p of the driving noise w(k). To

estimate the coefficients aj, j = 1, . . . , p, once the ACF Rzz is fixed from βi and ξi,

i = 0, 1, the relationship between Rzz and aj is given as follows [66]:
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Rzz(n) =
−∑p

m=1 amRzz(n−m), n ≥ 1
−∑p

m=1 amRzz(−m) + σ2
p, k = 0

(3.10)

Finally, coefficients aj can be determined by solving the set of Yule-Walker

equations that can be easily derived from (3.10) (we refer the reader to [66]

for further details).

The generated AR process has the following auto-correlation function:

R̂zz(n) =
Rzz(n), 0 ≤ n ≤ p

−∑p
m=1 amR̂zz[n−m], n > p

(3.11)

The simulated process has the attractive property that its sampled ACF perfectly

matches the desired sequence of ACF up to lag p. Therefore, since we know the

ACF of both the residual power control error ξi(k) and the shadowing correlation

βi(k) we can exploit the AR model to generate sequences of ξi(k) and βi(k) and

then apply (3.5) to obtain the discrete-time trajectories of Γ(k).

3.3 The CART algorithm

The aim of this section is to provide a short description of the Classification And Re-

gression Trees (CART) algorithm [12], in order to provide the basic notions to present

our method in Sec. 3.5 that identifies a Markov chain wireless channel abstraction.

In a supervised framework, we consider a predictor dataset P = {λ(k)}Dk=1 and

a response dataset R = {ρ(k)}Dk=1 of D samples each, where ρ(k) ∈ R is called

response variable and λ(k) ∈ Rn is called predictor variable. The final goal of

CART is to identify a function T to estimate ρ̂(k) = T (λ(k)).

In the specific case of the CART algorithm [12], the dataset is partitioned into a

set of hyper-rectangles R1, . . . , Rℓ, corresponding to the ℓ leaves of the tree. Then,

ρ̂(k) is estimated in each leaf τi using a constant cτi
given by the average of the

samples in the partition. Without any loss of generality, we restrict our attention

to recursive binary partition. Due to space limitations, we only briefly recall the

partitioning algorithm of CART and refer the reader to [12] for more details.
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The CART algorithm creates the partition using a greedy algorithm to optimize

the split variables and split points: starting with the whole dataset, consider a split

variable j over the n available and a split point s, and define the pair of half-planes

as RL(j, s) = {λ(k) | λj(k) < s} and RR(j, s) = {λ(k) | λj(k) ≥ s}. Then, CART

solves the following optimization problem to find the optimal j and s

min
j,s

min
cL

∑
λ(k)∈RL(j,s)

(ρ(k) − cL)2 + min
cR

∑
λ(k)∈RR(j,s)

(ρ(k) − cR)2

 , (3.12)

and for any choice of j and s the inner minimization is solved by cL = ave(ρ(k) |
λ(k) ∈ RL(j, s)) and cR = ave(ρ(k) | λ(k) ∈ RR(j, s)), where ave(·) is the arithmetic
mean of the output samples. In other words, the optimal j∗ and s∗ minimize the
sum of the quadratic prediction errors of the left and right partitions induced
by the split variable and split point.

For each splitting variable, the determination of the split point s can be done
very quickly and hence, by scanning through all of the inputs, the determination of
the best pair (j, s) is feasible. Once the best split is found the dataset is partitioned
into the two resulting regions, then the splitting procedure is repeated on each
of the two regions. The process is repeated on all of the resulting regions until a
stopping criterion is applied, e.g. tree size is a tuning parameter chosen to avoid
overfitting and variance phenomena.

In the rest of this work we denote with T the regression tree, with τi the ith
leaf of T , with |T | the number of leaves of T , with |τi| the number of samples in
τi, with cτi

= ave(ρ(k)|λ(k) ∈ τi) the prediction of leaf τi and, with a slight abuse
of notation, with T (λ) the prediction of the regression tree, i.e.

T (λ) =
∑
τi∈T

∑
λ(k)∈τi

ρ(k)
|τi|

I {λ ∈ τi} =
∑
τi∈T

cτiI {λ ∈ τi} , (3.13)

where I {λ ∈ τi} is the indicator function, which is equal to 1 if λ ∈ τi and 0 other-
wise.

3.4 Switching ARX Identification
As discussed above, in this chapter we leverage the techniques in [61] to construct a
SARX model for the nonlinear plant f in (3.1) that can be directly used to set up
an MPC problem, as will be done in Sec. 3.6. In particular, starting from a dataset
D = {(y(k), u(k))}Dk=1 of D samples collected from the measurements of a physical
system, respectively consisting of outputs y(k) ∈ Rny and inputs u(k) ∈ Rnu , we
will derive for each j = 0, . . . , N − 1 a model as follows:

x(k + j + 1) = Aσj(x(k))x(k + j) +Bσj(x(k))u(k + j) + Fσj(x(k)),



3. Learning Markov models of fading channels in wireless control networks: a
regression trees based approach 52

with σj : Rnx → M ⊂ N the switching signal,

x(k) .=
[
y⊤(k) · · · y⊤(k − δy) u⊤(k − 1) · · · u⊤(k − δu)

]⊤
∈ Rnx

the state consisting of the regressive terms of the inputs and the outputs, δy, δu ≥ 0,
and nx = (δy + 1)ny + nuδu.

3.5 Markov model based on regression trees
In industrial environments, the derivation of Markov models based on the physics
of wireless communication can be prohibitive as it requires complete knowledge
of both the communication dynamics parameters and the disturbances/interferers.
Furthermore, the presence of time-varying parameters can increase the complexity
of the obtained model. We propose a novel methodology to derive a Markov
model of the PDP based on the WNCS measurements. The approach exploits
the transmissions’ historical data to deal with the above-mentioned circumstances.
In particular, we handle the case wherein there is a dependency between the
communication system and the plant’s measurable outputs.

The main idea is to derive a Markovian model {θ(k) ∈ Θ}k∈N abstracting the
SINR stochastic process Γ(k), with TPM P as in (3.3), and associate to each state
i ∈ Θ a PDP. The learning procedure consists of three steps: (1) we grow a regression
tree T with predictor variables the current SINR and the plant measurements, i.e.
(Γ(k), x(k)), and with response variable the SINR at the next time step, i.e. Γ(k+1).
Since the leaves of T form a partition of the predictor space, we define the state-
space of θ(k) associating to each element of the partition {Rτi

}ℓTi=1 a state of the
Markov chain, i.e. Θ .= {i ∈ N : τi ∈ T }; (2) we grow a regression tree Π with
predictor variables the current SINR, i.e. Γ(k), and with response variable the
prediction of the SINR at the next time step obtained using the regression tree T ,
i.e. T (Γ(k), x(k)). We will combine Π and T to identify the TPM of {θ(k)}k∈N;
(3) we associate to each state of {θ(k)}k∈N a PDP.

Step 1

We grow a regression tree T using as predictor dataset {Γ(k), x(k)}Dk=1 = PT ⊂
Rnx+1, consisting of the current SINR and the plant measurable outputs, and as
response dataset {Γ(k + 1)}Dk=1 = RT ⊂ R, consisting of the SINR at the next
time step. Let T ((Γ(k), x(k))), with T : PT → RT , be the prediction of T given
the current measurements. As mentioned above, we associate to each element
of the partition {Rτi

}ℓTi=1 a state of the Markov chain {θ(k) ∈ Θ}k∈N, i.e. Θ .=
{i ∈ N : τi ∈ T }. Note that ∀ (Γ(k), x(k)) ∈ Rnx+1, ∃! τi ∈ T : (Γ(k), x(k)) ∈ Rτi

,
i.e. the current measurement (Γ(k), x(k)) is deterministically associated to one,
and only one, discrete state of θ(k).

As each leaf τi contains a random subset of the SINR sequence, we assume
independent and identically distributed samples belonging to the same partition
element. We fit a GRV Gτi

∼ N (µi, σ2
i ) to model the current level of SINR in
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each leaf τi ∈ T of the tree:

µi = 1
|τi|

∑
(Γ(k),x(k))∈Rτi

Γ(k),

σ2
i = 1

|τi| − 1
∑

(Γ(k),x(k))∈Rτi

(Γ(k) − µi)2.
(3.14)

In Sec. 3.5 we will exploit {Gτi
}τi∈T to estimate the PEP in each state of {θ(k)}k∈N.

Following the same reasoning, we fit a GRV G+
τi

∼ N (µi+ , σ2
i+) to model the

next-step level of SINR for each leaf τi ∈ T of the tree:

µi+ = 1
|τi|

∑
(Γ(k),x(k))∈Rτi

Γ(k + 1),

σ2
i+ = 1

|τi| − 1
∑

(Γ(k),x(k))∈Rτi

(Γ(k + 1) − µi+)2.
(3.15)

In Sec. 3.5 we will exploit
{
G+
τi

}
τi∈T

to identify the TPM of {θ(k)}k∈N.
We remark that the TPM of {θ(k)}k∈N could be identified using only T , based

on the number of samples that at time k stay in a leaf τi ∈ T , and at time k + 1
jump to a leaf τj ∈ T , i.e. p(j | i) = ñ(τi, τj) · |τi|−1 where

ñ(i, j) .=| {(Γ(kϵ), x(kϵ)) ∈ PT : (3.16)

(Γ(kϵ), x(kϵ)) ∈ Rτi , (Γ(kϵ + 1), x(kϵ + 1)) ∈ Rτj

}
|.

The lack of this approach is that the tree T partitions the dataset to minimize
the prediction error of a deterministic estimate of Γ(k + 1), instead of minimizing
the prediction error with respect to the estimate E [T (Γ(k), x(k)) | Γ(k)]. We
overcome this issue in the next section by growing an additional regression tree
Π, and combining T and Π to identify the TPM to minimize the error with
respect to E [T (Γ(k), x(k)) | Γ(k)].

Step 2

The idea is to define a partition {Rπr}|Π|
r of R minimizing the prediction error with

respect to the estimate E [T (Γ(k), x(k)) | Γ(k)] , and exploit the Markov property
to split the identification process of the TPM of {θ(k)}k∈N in two steps:

P(θ(k + 1) = j | θ(k) = i)
.= P((Γ(k + 1), x(k + 1)) ∈ Rτj

| (Γ(k), x(k)) ∈ Rτi
)

=
∑
πr∈Π

{P((Γ(k + 1), x(k + 1)) ∈ Rτj
| Γ(k + 1) ∈ Rπr)

P(Γ(k + 1) ∈ Rπr | (Γ(k), x(k)) ∈ Rτi
)}.

(3.17)

To estimate P((Γ(k+1), x(k+1)) ∈ Rτj
| Γ(k+1) ∈ Rπr) we define a new predic-

tor dataset {Γ(k)}Dk=1 = PΠ ⊂ R and a new response dataset {T (Γ(k), x(k))}Dk=1 =
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Figure 3.2: TPM identification via regression trees

RΠ ⊂ R. Then, we derive a new regression tree Π applying the CART algorithm
to identify the function Π : PΠ → RΠ. Let Π(Γ(k)) be the optimal estimation
given by the tree Π. Define

P((Γ(k + 1), x(k + 1)) ∈ Rτj
| Γ(k + 1) ∈ Rπr) .= p(τj | πr) = n(πr, τj)

|πr|
(3.18)

where n(πr, τj) is the number of samples that belong both the leaf πr ∈ Π and
the leaf τj ∈ T , i.e

n(πr, τj) .= |{(Γ(kϵ), x(kϵ)) ∈ PT : Γ(kϵ) ∈ Rπr , (Γ(kϵ), x(kϵ)) ∈ Rτj
}|. (3.19)

Notice that in contrast to the definition in equation (3.16), equation (3.19) does
not involve time evolution. For this reason, eq. (3.19) is useful to estimate the
probabilities P((Γ(k + 1), x(k + 1)) ∈ Rτj

| Γ(k + 1) ∈ Rπr).

Proposition 1. Let us define the transition probabilities p(τj | πr) as in Equation
(3.18), then the CART algorithm creates the partition induced by {Rπr}πr∈Π optimally
estimating the conditional expectation of the prediction in each leaf πr ∈ Π, i.e.
cπr = E [T (Γ(k), x(k)) | Γ(k) ∈ Rπr ] ,∀πr ∈ Π.



3. Learning Markov models of fading channels in wireless control networks: a
regression trees based approach 55

Proof.

cπr =
∑

Γ(kϵ)∈Rπr

T (Γ(kϵ), x(kϵ))
|πr|

(3.20)

=
∑

Γ(kϵ)∈Rπr

1
|πr|

∑
(Γ(k′

ϵ),x(k′
ϵ))∈Rτj

(Γ(kϵ),x(kϵ))∈Rτj

Γ(k′
ϵ + 1)
|τj|

(3.21)

=
∑

Γ(kϵ)∈Rπr
(Γ(kϵ),x(kϵ))∈Rτj

1
|πr|

∑
(Γ(k′

ϵ),x(k′
ϵ))∈Rτj

Γ(k′
ϵ + 1)
|τj|

(3.22)

=
∑

Γ(kϵ)∈Rπr
(Γ(kϵ),x(kϵ))∈Rτj

cτj

|πr|
=
∑
τj∈T

cτj
· n(πr, τj)

|πr|
=
∑
τj∈T

p(τj | πr)cτj
(3.23)

≃
∑
τj∈T

p(τj | πr)E
[
T (Γ(k), x(k)) | (Γ(k), x(k)) ∈ Rτj

]
(3.24)

= E [T (Γ(k), x(k)) | Γ(k) ∈ Rπr ] (3.25)

In (3.24) we assume that the dataset consists of independently drawn observa-
tions and that the number of samples in each region of the tree is large enough
to neglect the Standard Error of the Sample Mean (SEM): as a consequence, the
expectation can be assumed approximately equal to the sample mean. In conclusion,
running the CART algorithm on our extended dataset derives transition probabilities
that minimize the square of the error between the samples of the dataset {PT ,RT }
and the corresponding conditional expectation of the predictive model of T .

To estimate P(Γ(k + 1) ∈ Rπr | (Γ(k), x(k)) ∈ Rτi
) = p(πr | τi) we exploit the

set of GRVs defined in Equation (3.15) and the partition induced by the tree Π:

p(πr | τi) = P
(
G+
τi

∈ Rπr

)
=
∫
Rπr

ϕN (ζ;µi+ , σ2
i+)dζ (3.26)

where ϕN (ζ;µ, σ2) is the PDF of the GRV N (µ, σ2). The TPM P = [p(j | i)]i,j ∈
R|T |×|T | is defined by p(j | i) = P(θ(k + 1) = j | θ(k) = i) ∀τi, τj ∈ T , as
in Equation (3.17).

Step 3

The variable of interest in control applications is the PDP. The IEEE-802.15.4
provides the estimation of the PER given the SINR, see Equation (3.6). Let
ν = (ν1, . . . , ν|T |) associate a PDP for each channel operating mode as follows:

1 − νi = E[Rp(10Gτi/10) | θ(k) = i] =
∫
R
Rp(10ζ/10)ϕN (ζ;µci

, σ2
ci

)dζ. (3.27)

Algorithms 3 and 4 summarize respectively the learning methodology and the
procedure to estimate the PDP over a time horizon of length N .
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Algorithm 3 Learning algorithm (off-line)
1: Input: {Γ(k), x(k)}Dk=1, Output: T , P , ν
2: function Learn PEP
3: Define PT = {Γ(k), x(k)}Dk=1 , RT = {Γ(k + 1)}Dk=1;
4: Build T using PT to predict RT ;
5: Define PΠ = {Γ(k)}Dk=1 , RΠ = {Π((Γ(k), x(k)))}Dk=1;
6: Build Π using PΠ to predict RΠ;
7: Build P based on (3.17);
8: Compute ν using (3.27);
9: return T , P , ν

10: end function

Algorithm 4 PDP estimation (run-time)
1: Input: T , P , ν, (Γ(k), x(k)), N , Output: ν̂
2: function Predict PDP
3: Let i ∈ N be the integer such that (Γ(k), x(k)) ∈ τi;
4: for all j = 1, . . . , N do
5: ν̂(j) = νP j(i, :), where P j(i, :) is the i-th row of P j .
6: end for
7: return ν̂
8: end function

3.6 Case study

We consider a WNCS consisting of an inverted pendulum on a cart remotely
controlled over a WirelessHART link as illustrated in Sec. 3.2. In the numerical
simulations, we model the plant using the nonlinear discrete-time model of the
inverted pendulum and we model the packet delivery process as in equation (3.6)
through the SINR trajectories obtained from the AR model in Sec. 3.2. We compare
two implementations of Stochastic-Model Predictive Control (S-MPC) [67]: one
based on the physics-based channel model of Sec. 3.2 as in [60], and one based
on the data-driven channel model of Sec. 3.5.

Plant model

We consider the following nonlinear discrete-time model y(k+1) = y(k)+f(x(k), ua(k))Tu,
where y ∈ R4, u ∈ R and
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Figure 3.3: Inverted pendulum on cart.
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(
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(3.28)

where y1 is the cart position, y2 is the velocity, y3 is the pendulum angle, y4 is the
angular velocity, m is the pendulum mass, M is the cart mass, L is the length of
the pendulum arm, g is the gravitational acceleration, δ is a friction damping on
the cart, u is a control force applied to the cart and Tu is the sampling time.

We analyze a case wherein the model’s dynamics influence channel behavior.
More in detail, we consider that a time-varying distance between the plant and
the controller, d0 in equation (3.4), depends on the cart’s position, y1, i.e. d0(k) =
y1(k) + d̄0, d̄0 ∈ R+. The other channel parameters are assumed constants. As a
consequence, the intermittent control packets can be modeled as follows:

ua(k) = ν(k)u(k), ν(k) ∼ B(1, 1 −Rb(γ(k))) (3.29)

where u(k) is the input computed by the controller, B(n, p) is the Bernoullian
distribution with a time-varying parameter. Notice that y1(k) influences γ(k)
via equation (3.4).

Numerical results

The data-driven model derived in Sec. 3.4 can be used to formalize the following:
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Parameter Value Unit

Cart mass M 0.5 kg
Pendulum mass m 0.2 kg
Distance from the pivot to the mass center L 0.3 m
Friction coefficient of the cart d 0.1 N·s/m
Sampling time Tu 0.001 s

Table 3.1: Parameter values inverted pendulum

Problem 1. Stochastic Model Predictive Control

min
uk

E

e⊤
k+NQek+N +

N−1∑
j=0

e⊤
k+j+1Qek+j+1 + u⊤

k+jRuk+j


s.t. xk+j+1 = A′

ij xk +
j∑

α=0
B′
ij ,αν̂k+αuk+α + F ′

ij ,

uk+j ∈ U ,E [xk+j+1] ∈ O,

E [xk+N ] ∈ ON , xk = x(k), j = 0 . . . , N − 1,

where ek = xk − x∗
k is the difference between the current state of the plant and

the target, and O,U are polyhedra that specify the variables constraints. At each
time step the optimal inputs u∗

k, . . . , u
∗
k+N−1 are computed using QP, and only the

first one is applied to the system, i.e. u(k) = u∗
k.

The plant dynamics used in the MPC solution are identified using the method-
ology summarized in Sec. 3.4 and using a dataset consisting of 100 simulations,
each one with time duration of 6 seconds, of the input and output of the plant
with no packet losses. At any time k we can use such model and the measurement
of xk = x(k) to determine the switching sequence i0, . . . , iN−1 and hence the
matrices Aij−1,ij , Bij−1,ij , Fij−1,ij . The solution of Problem 4 also requires knowledge
of the initial state of ν̂k and of its TPM P [67]: we derive two models of ν̂k,
respectively using the methodology in [60] and in of Sec. 3.5: for both the data-
driven and physics-based channel Markov models, we set the number of channel
operating modes equal to 9.

The cost function in Problem 4 models a tradeoff between penalizing deviations
from the desired trajectory x∗

k and minimizing the control effort. We define as
control performance metric the cumulative cost of Problem 4 to compare the
performance using the physics-based channel model of Sec. 3.2 as in [60] and the
data-driven channel model of Sec. 3.5.

Tables 3.1 and 3.2 show the plant and channel parameters, respectively. The
minimum update period Tu = 0.1s of the WirelessHART standard is too slow for
several control applications, and makes the wireless link uncorrelated at the packet
level. Thus, in view of showing the impact of our algorithms as a methodological
enabler for the development of mobile network technologies that support much
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Parameter Value Unit

symbol rate 1/Ts 62.5 ksymb/s
channel bandwidth W 2 MHz
users speed v0, v1 5.37 m/s
shadowing decay distance dc0, dc1 9 m
shadowing standard dev. σβ0 , σβ1 2 dB
power control error standard dev. σe0 , σe1 1.5 dB
power control error decorr. time τξ0 and τξ1 1.5 dBm
reference user tx. power P0 0 dBm
interferer tx. power P1 10 dBm
distance reference tx-rx pair d1 10 m

Table 3.2: Parameter values channel

higher update rates, we consider Tu = 0.001s. Moreover, to emphasize the impact
and improvements of stochastic vs deterministic MPC, we set d̄0 = 14 to consider a
scenario based on significant packet loss rates, where it is evident that deterministic
MPC cannot guarantee acceptable performance while stochastic MPC does.

To statistically validate the control performance we ran Monte Carlo simulations
generating 500 admissible trajectories, each with 6000 samples (corresponding to
6s). For all the simulations, the initial state is x(0) = [2, 0, π, 0]⊤ and the target
state is x∗ = [5, 0, π, 0]⊤. Figures 3.4, 3.5 and 3.6 illustrate simulation results.
For each figure, the averaged performance is displayed in a solid line, and the
95.4% confidence interval is represented with a shaded area. The performance
of the controllers based on physics-based and data-driven models is very close,
with the advantage of the data-driven approach that no a-priori knowledge of
channel model and parameters is required.

3.7 Conclusions
This chapter provides a novel technique to learn Markov models representing fading
wireless channels. We consider a validation scenario consisting of a WNCS that
exploits a WirelessHART radio link to send the optimal control inputs generated by a
Stochastic MPC, and show that the control performances of our data-driven approach
and a physics-based approach based on a stationary finite-state Markov chain are
extremely close: this implies that in practical applications when assuming perfect
knowledge of the channel model and parameters is not possible, the methodology
presented in this chapter is a valid and very effective alternative. In future work,
we plan to validate our techniques in an experimental setup and consider more
general communication scenarios.
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Figure 3.4: Controlled states in the closed-loop simulation.
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Figure 3.5: Cumulative cost of the closed-loop simulation.
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Figure 3.6: PER of the closed-loop simulation.
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In this chapter, a complexity reduction methodology is proposed for a data-driven
Switching Auto-Regressive eXogenous (SARX) model identification algorithm based
on Regression Trees. In particular, we aim at reducing the number of submodels
of a SARX dynamical model without compromising (and indeed improving) the
model accuracy and mitigating the overfitting problem. A validation procedure
is addressed to compare the performance of the reduced model with respect to
the original one. Results show an important reduction in the number of modes of
the identified model that ranges between 96% and 99.74%. The accuracy of the
reduced model is also tested in terms of closed-loop control performance in a Model
Predictive Control (MPC) setup, on a benchmark consisting of a non-linear inverted
pendulum on a cart: the comparison is provided with respect to an oracle, i.e. an
MPC setup with perfect knowledge of the plant dynamics.

The discussion in this chapter has already been presented in [39] and is currently
patent pending.
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4.1 Introduction
SARX systems are defined as collections of Auto-regressive exogenous systems
indexed by a discrete-valued additional variable, called discrete state. Piece-Wise
Auto-Regressive eXogenous (PWARX) systems are a particular class of SARX
systems obtained by partitioning the state-input domain into a finite number of
polyhedral regions and by considering linear/affine dynamics in each region [68],
[69]. SARX and PWARX systems have been successfully used in the past years to
model different kinds of phenomena, for example, a vast amount of literature
focuses on the approximation of nonlinear systems with SARX and PWARX
models, see e.g. [70], [71].

In this context, this work focuses on the data-driven approximation via SARX
modeling of unknown nonlinear system dynamics given a collection of input-output
pairs generated by such a system.

Literature review. The SARX and PWARX identification processes, in
general, require the estimation of the submodels number, the ARX parameters,
the model orders, and the discrete state estimation.

The difficulty of the problem depends on which quantities are assumed to be
known or fixed a priori: in the simplest case, the identification boils down to
a standard least-squares estimation when the discrete states for SARX, or the
partition for PWARX, are either known or fixed a priori. On the other hand,
the SARX and PWARX identification problems are NP-hard when the submodel
number is known a priori, and thus the exponential complexity in the dimension
is a natural expectation for any exact algorithm, see e.g. [72] and [73]. In this
respect, the identification problem can be rewritten as a mixed-integer optimization,
which is computationally tractable only for small instances.

In [74] the authors proposed a two-stage approach for Piece-Wise Affine (PWA)
regression based on the combined use of recursive multimodel least-squares tech-
niques and linear multicategory discrimination, while in [75] they introduced a
methodology to fit jump models, a general class of models that encompasses PWA.
The key idea is to alternate between minimizing a loss function to fit multiple
model parameters and minimizing a discrete loss function to determine which set
of model parameters is active at each data point.

The identification problem is ill-posed when the submodel number is unknown as
the solution is only defined up to a trade-off between the submodel number and the
model accuracy. A trivial solution is to assign a submodel to each data point, fitting
the data perfectly. Obviously, this overfits the data and compromises the model
generalization ability. A non-trivial solution is to fix the submodel number and then
adjust it to improve the fitting. In [76], a recursive procedure is proposed to identify
switched linear and PWA models from input-output data. Starting from an initial
guess of the parameter vectors, representing the different submodels, the proposed
algorithm alternates between data assignment to submodels and parameter update.
At each iteration, the discrete state is determined as the index of the submodel
that appears to have most likely generated the regressor vector observed at that
instant. The approach requires the knowledge of an upper bound for the number
of submodels and then discards the unassigned ones.
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In [77], the authors proposed a three-stage procedure for the parametric identifi-
cation of PWARX models. The first stage simultaneously classifies the data points,
estimates the number of submodels and the corresponding parameters by solving
a relaxed version of the identification problem. In the second stage, a refinement
procedure reduces misclassifications and improves parameter estimates and the
number of submodels. Finally, the third stage determines a polyhedral partition of
the regressor set via two-class or multiclass linear separation techniques.

Motivation. In [61], the authors proposed a methodology to exploit a
supervised learning technique called Regression Trees (RTs, [78]) to build a SARX
dynamical model of a large-scale system using historical data so that MPC can be
directly applied using a such dynamical model. More precisely, the RTs algorithm
partitions the dataset into hyper-rectangular regions, minimizing the error performed
by a constant predictor in each region. The authors in [61] exploited the obtained
partitioning, and assigned an ARX model to each region (instead of the constant
predictor), thus obtaining a SARX dynamical model. The learning algorithm has
shown impressive experimental performance, especially when applied to real-life
systems whose model is unknown and quite complex to be derived using physics-
based approaches (see e.g. [79, 80, 81, 82, 83]).

However, since the partitioning is optimized for identifying constant predictors,
and not ARX models, the approach tends to overestimate the number of submodels
and, consequently, requires more computational and memory resources to implement
control laws. Furthermore, it cannot even recognize data that are generated by
linear plants or by systems wherein a single or few ARX models are enough to
represent the system dynamics. As a consequence overfitting issues often arise,
as we show in Section 4.4.

This chapter is based on the intuition that the number of regions needed by
the SARX identification in [61] is significantly lower than the one obtained by
constant predictors. For this reason, it is necessary to investigate methodologies
able to reduce the complexity of the identified models. In this respect, some work
has been done in the literature.

In [84] the authors focus on the problem of finding a minimal representation of
polyhedral piecewise systems. More specifically, for a given polyhedral piecewise
system, the authors solve the problem of deriving a model equivalent to the former
and minimal in the number of polyhedra. This is done by merging the polyhedra
that exhibit exactly the same model. However, this approach is not suitable for the
case of the SARX model derived in [61] exploiting the RTs algorithm, where the
models in the partitions are in general all different, although some can be similar
in some sense. Moreover, the partitions obtained via RTs are hyper-rectangles
and are already in minimal form.

In [85] the authors present an algorithm to a posteriori reduce the storage
demand and the complexity of the closed-form controller for PWARX systems.
Thus, the effort is focused on the control-law complexity reduction neglecting
the PWARX model refinement.

In [77], the authors consider first an identification procedure to generate a
SARX modeling framework starting from a dataset of collected measurements, and
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then a reduction procedure on the identified model. The reduction procedure first
uses a metric based on Euclidean norm to find discrete states that are similar,
i.e. where the model parameters are close in the sense of a Euclidean metric and
then clusterizes one by one the samples associated to each mode. Finally, the
authors link the samples in each cluster to the new (reduced) discrete modes solving
a classification problem. This procedure, as the authors in [74] remark, works
well with small datasets, as the samples are handled separately. The approach we
propose, instead, is based on the binary tree structure (generated by the Regression
Trees) in [61] to formalize the polyhedra characterizing the piecewise system: this
binary tree structure both removes the need to handle samples separately and
of solving a further classification problem.

Contribution. We propose in this work a methodology to refine the model
obtained via [61] with the goal of reducing the number of submodels and recog-
nizing linear or almost-linear patterns, without modifying the RT, and hence the
partitioning, structure. To this aim, we define a procedure that maintains the
SARX model structure based on RTs, but drastically reduces the number of discrete
modes of the SARX model, while improving modeling accuracy and computational
cost in run-time, and mitigating overfitting problems.

More precisely, we use a standard metric based on the Euclidean norm to select
the submodels that are similar to each other and merge them together. A discard
procedure is also applied to eliminate submodels associated to an insufficient
portion of the dataset.

We validate the procedure on a benchmark consisting of an inverted pendulum
model on a cart. We compare it in terms of model accuracy and discrete modes
reduction with respect to the original model provided by [61]. Results show an
important reduction in terms of mode number and an improvement in terms of
model accuracy and mitigation of peaks due to overfitting problems.

Finally, we also employ the reduced model to build an MPC problem to control
the nonlinear benchmark. We compare the closed-loop performance of the MPC
with the reduced model against the oracle, i.e. the nonlinear MPC with perfect
knowledge of the system dynamics. Results show that our model reaches satisfactory
performance also in terms of control, with the advantage of drastically decreasing
the computational cost without requiring any preliminary knowledge of the system
other than the collected data.

Chapter organization. In Section 4.2 we address the problem we want to
solve in this chapter. The main contribution of the chapter, i.e. the reduction
algorithm, is presented in Section 4.3. Finally, the proposed algorithm is tested
in terms of model validation and control performance in Section 4.4.

4.2 Problem formulation
The goal of the chapter is to provide a methodology to reduce the number of
submodels of a SARX model identified via the recently published technique in [61]
without compromising the model accuracy and mitigating the overfitting problem.
To this aim, we first recall the technique introduced in [61] to identify a SARX
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model starting from historical data and using Regression Trees, and then we state
our goal, which consists of a complexity reduction methodology.

SARX modeling via RTs. Let a dataset D = {(y(k), u(k))}Dk=1 of D samples
collected from the measurements of a physical system be given, where y(k) ∈ Rny

and u(k) ∈ Rnu correspond to the output and input measurements respectively.
The goal is to learn a SARX model as

y(k) = θ⊤
σ(x(k))x(k), (4.1)

where

x(k) .= [y(k − 1)⊤, . . . , y(k − δy)⊤,

u(k − 1)⊤, . . . , u(k − δu)⊤, 1]⊤, (4.2)

σ : Rnx → {1, . . . , s} ⊂ N is a function that, on the basis of a partition {Ri}si=1
of Rnx , with nx = nyδy + nuδu + 1, associates to each region Ri a discrete mode
i and the corresponding parameters θi ∈ Rny×nx .

According to [68], the general SARX model identification problem reads as fol-
lows.

Problem 2. Given a collection of D input-output pairs (y(k), u(k)), k = 1, . . . , D,
estimate the model orders δy, δu, the number of modes s, and the parameters θi,
i = 1, . . . , s, and the regions {Ri}si=1.

In [61] the authors address Problem 2 and, assuming that the model orders
δy, δu are design parameters, proposed a methodology to exploit machine learning
techniques, more precisely Regression Trees, to identify a SARX dynamical model
as in (4.1) of a large-scale system using historical data, and used it to apply a
finite-horizon optimal control strategy.

Without any loss of generality, and only for the simplicity of discussion, we
consider from now on the case with ny = 1 and a one-step finite horizon. The
extension to the case with ny > 1 and a finite horizon of arbitrary length is trivial
and is discussed in [61] and Section 4.4.

More precisely, the authors in [61] used the CART algorithm (see the Appendix
for details) to partition the dataset D to generate a partition of Rnx consisting of
hyper-rectangles {Ri}si=1 to be associated with the discrete modes of (4.1).

The output of the CART algorithm is a binary tree structure T where a mode i
and a subset Di of the dataset D is associated with each leaf so that {Di}si=1 (where
s is the number of leaves) is a partition of D. In each leaf i, and on the basis of the
subset Di of samples, they identified the parameter matrices θi, i = 1, . . . , s, via
the Least Squares algorithm. For more details about the identification procedure,
we refer the reader to [61].

Main contribution: complexity reduction in SARX modeling via
RTs. As mentioned in the introduction, a lack of the methodology above is that the
CART algorithm partitions the feature space by {Ri}si=1 with the aim of minimizing
the response variable variance in each region. This corresponds to minimizing the
prediction error performed by a constant estimator in each leaf, and thus it is in
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general not optimal anymore when an ARX modeling is used instead of constant
estimators. To address this issue, starting from the nominal SARX model in (4.1),
the aim of this chapter is to derive a procedure to learn a SARX model

y(k) = θ̄⊤
σ(x(k))x(k), (4.3)

where σ : Rnx → {1, . . . , s̄} ⊂ N, with s̄ << s and without compromising the
model accuracy.

4.3 SARX refinement procedure
In this section, we address the refinement procedure to reduce the number of
submodels of the SARX modeling framework identified via Regression Trees as
discussed in Section 4.2.

Indeed, the main issue of the approach in [61] is that the identification procedure
tends to overestimate the number s of submodels needed to fit the data, thus
increasing the complexity and generating overfitting problems. In this respect, the
idea is to apply a merge and discard procedure to all the ARX submodels. The
similarity of the parameters of all submodels (not necessarily corresponding to
adjacent regions Ri) is quantified according to a metric, as defined later on: the
samples associated to similar submodels are merged together, while if a submodel
does not represent a relevant portion of the dataset it is discarded. Finally, the
parameter vectors of the reduced model are computed based on the new partitioning.

Let a model as in (4.1) with ny = 1 be given, generated from a dataset
D = {(y(k), u(k))}Dk=1 via the RTs procedure in [61]. Let {Ri}si=1 be the hyper-
rectangular regions associated to the leaf of the binary tree T generated by the
CART algorithm, each associated with a discrete mode of (4.1), and θi, i = 1, . . . , s,
the parameter matrices identified in each leaf i via the Least Squares algorithm
to the corresponding dataset Di.

We define in the following a refinement procedure consisting of three steps: (1)
submodel merging, (2) submodel discarding, (3) parameter estimation.

Submodels merging. The first step of the refinement procedure consists of
a submodel similarity analysis, where the goal is to merge submodels that are
described by similar parameters. To this aim, we consider the following standard
submodels similarity index based on the Euclidean norm

µ (θi, θj) = ||θi − θj||2
min {||θi||2, ||θj||2}

, (4.4)

where θi and θj are respectively the parameter vectors describing two submodels of
the form of (4.1). We use Equation 4.4 to provide the definition of similarity
cluster of submodels.

Definition 1 (similar cluster). Let a model as in (4.1) be given, and let α ∈ R,
α > 0. A similar cluster w.r.t. α for the region Ri is defined as

Ci
.=
{
∪s
j=1Dj|µ(θi, θj) ≤ α

}
. (4.5)
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Clearly, Definition 1 allows similar clusters to be overlapping. The goal of
the submodels merging procedure is to create a cluster set C of non-overlapping
similar clusters C = {Ci}ŝi=1, with ŝ ≤ s, such that ⊎ŝ

i=1Ci = D, where ⊎ represents
the disjoint union. There are several ways to achieve this goal. The strategy we
propose is summarized in Algorithm 5.

Algorithm 5 Submodel clustering
1: Input: {θi}si=1, α
2: Output: {Cν}ŝν=1
3: function Submodel clustering
4: Initialize cluster index: ν = 1
5: Initialize mode index set: M = {1, . . . , s}
6: for i ∈ M do
7: Initialize cluster: Cν = Di

8: for j ∈ M, j ̸= i do
9: Compute µ (θi, θj)

10: if µ (θi, θj) ≤ α then
11: Update cluster: Cν = Cν ∪ Dj

12: M = M \ {j}
13: end if
14: end for
15: ν = ν + 1
16: end for
17: end function

Submodels discarding. Numerical simulations show that, in some cases, the
merging stage creates a gap in the amount of data samples associated with each
cluster. For this reason, we introduce a discarded stage where the basic idea is to
eliminate the clusters associated with an insufficient portion of the dataset.

Let |Ci| be the number of samples in the cluster Ci.

Definition 2 (discarded cluster). Let a cluster set C = {Ci}ŝi=1 be given, and let
β ∈ R, β > 0. A discarded cluster w.r.t. β is defined as the set

Cd = {∪ŝ
i=1Ci ∈ C||Ci|

|D|
≤ β}.

The submodels discard procedure consists in creating a discarded cluster Cd,
and a non-discarded cluster set Cnd = C \ Cd = {Cnd,i}s̄−1

i=1 , with s̄ ≤ ŝ. Note
that s̄ = ŝ if Cd = {∅}.

Then, the final cluster set obtained after the merge and discard procedure is de-
fined as

Cfin =
{Cnd, Cd} if Cd ̸= {∅}

C if Cd = {∅}
.

Parameters estimation.
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Once the final cluster is obtained, thanks to the merge and discard procedures,
we associate to each cluster Cfin,i, ∀i = 1, . . . , s̄, with s̄ < s, a parameter vector θ̄i
that is estimated via the Least Squares method using the samples in the cluster,
and update the model of all leaves whose samples are contained in the cluster Cfin,i.

Note that while the number of discrete modes is reduced, the tree structure
is not modified, hence the number of leaves of the tree remains the same. This
implies that the same submodel described by θ̄i can be associated with more than
one leaf of the tree. This is an advantage with respect to classical tree pruning,
as we can merge predictions associated with regions that are not adjacent. The
whole refinement procedure is summarized in Algorithm 6.

Algorithm 6 Refinement Procedure
1: Input: {θi}si=1, α, β
2: Output: {θ̄i}s̄i=1
3: function Refinement
4: Compute C = {Cν}ŝν=1 via Algorithm 5
5: Initialize the discarded cluster: Cd = {∅}
6: Initialize the non-discarded cluster set: Cnd = C
7: Initialize new cluster set dimension: s̄ = ŝ
8: for ν = 1 : ŝ do
9: if |Cν |

|D| ≤ β then
10: Cd = Cd ∪ Cν
11: Cnd = Cnd \ Cν
12: s̄ = s̄− 1
13: end if
14: end for
15: s̄ = s̄+ 1, i.e. the number of remaining clusters + the discarded cluster
16: Cfin = {Cnd, Cd} = {Cfin,i}s̄i=1
17: for i = 1 : s̄ do
18: Compute θ̄i using the samples in Cfin,i
19: end for
20: end function

4.4 Case study
In this section, we provide simulation results concerning the proposed methodology
on a simulated inverted pendulum on a cart. In particular, in what follows we
first introduce the plant model, then we describe the procedure we use to generate
the data to test our algorithm on, and finally, we provide the results on the
validation of the reduction procedure w.r.t. the original one and on the control
performance of the reduced model.

We model the plant using the nonlinear discrete-time model of the inverted
pendulum proposed in [86]:

y(k + 1) = y(k) + f(y(k), u(k))Tu, y ∈ R4, (4.6)
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where y1 is the cart position, y2 is the velocity, y3 is the pendulum angle, y4 is the
angular velocity, m = 0.2kg is the pendulum mass, M = 0.5kg is the cart mass,
L = 0.3m is the length of the pendulum arm, δ = 0.1Ns/m is a friction damping on
the cart, u is a control force applied to the cart and Tu = 0.05s is the sampling time.

4.4.1 Dataset generation
To generate the data used in the modeling process we ran several closed-loop
control experiments of 8 seconds each.

We ran 1000 simulations implementing, for the first 6 seconds of each run, the
nonlinear MPC in Problem 3 exploiting the model in eq. 4.6.

Problem 3. Nonlinear Model Predictive Control

min
uk,...,uk+N−1

N−1∑
j=0

e⊤
k+j+1Qek+j+1 + u⊤

k+jRuk+j

s.t. yk+j+1 = yk+j + f(yk+j, uk+j)Tu
yk = y(k),

where ek = yk − y∗ is the difference between the current state of the plant and the
target. We did not use any constraint on the input and the state since the goal was
to simply run closed-loop simulations to collect a wide variety of data. As done in
the MPC, only the first input of the optimal control sequence is applied at each
time step, i.e. u(k) = uk. For the first simulation, we set the initial state to have
the cart position in zero and the inverted pendulum in the down configuration, i.e.
y0 = [0, 0,−π, 0]⊤. The subsequent runs had as the initial state the final state of
the previous simulation. For each experiment, we draw the target cart position
from a uniform distribution p∗ ∼ U [1, 7], and the up configuration for the inverted
pendulum as the target angle, i.e. y∗ = [p∗, 0, 0, 0]⊤.

In the last 2 seconds of each run, we draw the input from a normal distribution,
i.e. u(k) ∼ N (0, 0.7). In this way the inverted pendulum loses the stability of
the up configuration, thus we can solve the swing-up problem in the subsequent
simulation at each run, other than generating input-output data with random
inputs. Notice that this step is fundamental to appreciating the nonlinear behavior
of the plant; otherwise, if we restricted our research only to cases wherein the
inverted pendulum starts in up-configuration, a linear model could have been
enough to describe the plant dynamics.

4.4.2 Identification and validation
In this stage, we consider the data generated from the first 900 simulations as the
training dataset for the learning algorithm, and the data from the remaining 100
simulations as the testing dataset for the model validation.

As a first step, we learn a model based on the approach proposed in [61], i.e.
the model recalled in (4.1), using the training dataset with a predictive horizon
of 1 second, i.e. N = 20, and call it SARX from now on. Then, we exploit the
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methodology exposed in Sec. 4.3 to learn, using the training dataset, a second
model of the plant with the same predictive horizon, i.e. N = 20, and call it
R-SARX (Reduced SARX).

Remark 1. The procedure in Section 4.3 has been defined considering ny = 1 and
N = 1. To extend the procedure to the case of ny > 1 and N > 1, as in this case, it
is sufficient to create an RT per each output and an RT per horizon step, for a total
of nyN RTs. Then, for each step of the horizon, we can put the parameter vectors,
obtained from the ny RTs, as the rows of the θi parameter matrices in (4.1) (see
[61]). The reduction procedure of Section 4.3 can then be applied to every single
tree.

As a second step, we proceed with the validation and compare the performance
of the 2 models in terms of prediction accuracy using the testing dataset and the
number of switching modes obtained for the 2 models over the horizon. The accuracy
is compared using the Normalized Root-Mean-Square Error (NRMSE) with the
normalization operated with respect to the difference between the maximum and
the minimum value of the sequence, i.e.

NRMSE[%] =

√
1
D

∑D
k=1 (y(k) − ŷ(k))2

max (y(k)) − min (y(k)) · 100, (4.7)

where D is the number of samples in the testing dataset and ŷ is the model estimate.
We consider the NRMSE and the number of submodels for each output of the plant,
i.e. i = 1, . . . , ny, and for each step of the predictive horizon, i.e. j = 0, . . . , N − 1.

Figure 4.1 shows the NRSME for each state of the pendulum and over the
predictive horizon j = 0, . . . , N − 1.

We emphasize that in some isolate cases, the model predictions provided by the
SARX modeling can provide spikes due to numerical errors and to the overfitting
problem, thus resulting in peak errors in the NRMSE computation as we can see in
Figure 4.1. They appear in general farther in the predictive horizon. However, this
fact does not affect much the closed-loop performance since it happens in isolated
cases, as we can see for example in Figure 4.2, where we show the trajectory of the
prediction of the state y3 at the horizon step k+ 18. In particular, in Figure 4.2 top
we can see how large these spikes can be. A zoom of the trajectories can be seen in
Figure 4.2 bottom, where we can see how smaller spikes can be more frequent.

The number of discrete modes obtained from the learning of the SARX and
R-SARX models for each state yi, i = 1, . . . , 4, over the predictive horizon, is
reported in Table 4.1. We can appreciate how the proposed reduction methodology
is able to drastically reduce the number of modes needed to describe the system
dynamics without affecting the prediction capability of the SARX model proposed
in [61]. Actually, the R-SARX learning improves the prediction accuracy and
reduces the peaks generation problem of the SARX approach in [61], as we can
see in Figure 4.1, since by increasing the number of samples in each cluster it
reduces the effects of the overfitting problem.

The quantitative performance obtained with the proposed methodology performs
a reduction within 96% and 99.74% for each case.
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Figure 4.1: Comparison of the NRMSE [%] from the validation procedure over the predictive
horizon for the nominal SARX model and the reduced one.
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Figure 4.2: Trajectory of y3(k + 18) compared with the ground truth. The top figure shows
the overall trajectories, showing how large the spikes can be. The bottom figure shows a zoom of
the trajectories, showing that small spikes are more frequent.

In particular, we emphasize that the performance reached for the linear dynamics,
i.e. the prediction for y1 and y3 at k+ 1, provided a reduction of respectively 99.5%
and 99.6%, obtaining for both cases only 2 modes, thus approaching the optimality
consisting on a single mode needed to represent a linear behavior.
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SARX R-SARX SARX R-SARX SARX R-SARX SARX R-SARX
k+ y1 y1 y2 y2 y3 y3 y4 y4
1 410 2 996 9 500 2 1036 25
2 651 2 1092 22 707 3 1129 29
3 858 3 1154 26 775 4 1169 35
4 1029 3 1154 27 849 5 1191 32
5 1098 3 1165 27 874 9 1228 23
6 1119 3 1179 34 896 13 1237 20
7 1161 3 1195 35 910 16 1239 25
8 1164 3 1204 37 917 20 1250 18
9 1160 4 1226 23 950 23 1281 26
10 1165 5 1220 30 999 20 1275 33
11 1177 6 1204 35 1001 24 1318 26
12 1186 8 1230 20 1025 22 1351 28
13 1188 7 1245 26 1035 25 1353 35
14 1159 8 1236 21 1063 26 1378 30
15 1174 8 1265 26 1094 28 1385 28
16 1176 7 1264 28 1126 23 1376 23
17 1172 12 1277 29 1147 30 1382 26
18 1170 13 1312 28 1181 23 1379 27
19 1155 15 1313 28 1177 29 1389 32
20 1168 19 1327 34 1189 27 1363 28

Table 4.1: Number of modes obtained from the SARX and R-SARX learning.

4.4.3 Control performance
In this subsection, we analyze the performance of the reduced modeling procedure
in the context of the closed-loop control and compare it to an oracle, i.e. closed-loop
control with perfect knowledge of the system dynamics addressed in Problem 3. The
closed-loop MPC problem that we implement for the R-SARX model is the following

Problem 4. (R-SARX Model Predictive Control)

minimize
uk,...,uk+N−1

N−1∑
j=0

(
e⊤
k+j+1Qek+j+1 + u⊤

k+jRuk+j
)

subject to y(k + j + 1) = θ⊤
σ(x(k))x(k + j + 1)

yk = y(k), j = 0, . . . , N − 1,

(4.8)

where ek = yk − y∗ is the difference between the current state of the plant
and the target, and the θi are the parameter matrices obtained through the
reduction procedure.

The goal is to compare the control performance using the reduced model with
respect to the oracle. To this aim, we compute the closed-loop control by running
numerical simulations of both Problem 4 with the R-SARX model and Problem
3 to control the nonlinear plant.

We run the closed-loop control for 10 seconds. We set the initial state y(0) =
[2, 0,−π, 0]⊤. The targets consist in to perform a swing-up with the inverted
pendulum and reach a target position with the cart, i.e. y∗ = [4, 0, 0, 0]⊤. Matrices
Q and R have been set as Q = diag ([200, 1, 980, 1]) and R = 2.
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At each time step, the optimal control sequence u∗
k, . . . , u

∗
k+N−1 is computed,

and only the first input is applied to the system, i.e. u(k) = u∗
k.

Figure 4.3 and Figure 4.4 show the simulative results of the states and input
trajectories respectively. We can appreciate how the dynamics obtained with the
R-SARX are close to the oracle ones, keeping in mind that the oracle is an ideal non-
realistic case. We can also see how the input trajectory gets close to the ideal one
very quickly. It is also worthy of notice that Problem 4 is a QP, and can be efficiently
solved, while Problem 3 is a Nonlinear Program that requires more time to be solved.
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4.5 Conclusions
In this chapter, we provided a technique to reduce the number of discrete modes
in a SARX model identified via Regression Trees without compromising (indeed
improving substantially, in our case of study) the prediction accuracy and mitigating
the overfitting problems due to the identification procedure.

We validated the proposed methodology on a benchmark consisting on a nonlinear
inverted pendulum over a cart, by comparing its prediction accuracy and the
number of discrete modes with respect to the model identified using the approach
in [61]. Results show an important reduction in the number of modes of the
identified model that ranges between 96% and 99.74%. As our complexity reduction
algorithm also alleviates overfitting issues, the overall prediction accuracy improves
as well. The reduced model has been also tested in terms of closed-loop control
performance: we compared two MPC algorithms, one using the reduced model and
the other using an oracle, i.e. perfect knowledge of the plant dynamics. Results
show that the control performance of the reduced model and the oracle are very
close. Thus in practical applications, when assuming a perfect knowledge of the
model is not possible, the methodology presented in this chapter is a valid and
computationally efficient alternative.

In future work, we plan to further improve the reduction methodology and
provide theoretical results about its convergence. We also aim at validating our
technique on a real-life experimental setup.



5
Control-Aware Dynamic Edge Computing

for Real-Time Target Tracking in UAV
Systems

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 System Overview and Sensing Model . . . . . . . . . . 80
5.4 CADET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 CADET Evaluation . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 86

The autonomous operations of Unmanned Aerial Vehicles (UAV) necessitate
the real-time analysis of information-rich signals, such as camera and LiDAR feeds,
where the analysis algorithms often take the form of extremely complex Artificial
Neural Network (ANN)s. The continuous execution of such models onboard the
UAV imposes a considerable resource consumption (e.g., energy), while offloading
the execution of the models to edge servers requires the transmission of the input
signals over capacity-constrained, time-varying, wireless channels. In this chapter,
we propose an innovative approach – CADET – to control where sensor signals are
processed in the system. In addition to traditional features and measures, such as
channel state, energy consumption and channel usage, CADET makes dynamic task
routing decisions – local computing vs edge computing – based on the state of the
flight controller. The proposed methodology is based on Markov jump-switched
linear systems, where an embedded filter predicts and controls the state of the joint
motion/computing dynamics. To overcome technical challenges in terms of state
observability, our control logic is based on an innovation measure that detects target
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motion characteristics. computing decision problem as a Markov decision process
involving the control system metrics and computational requirements. Then, we
design a novel filter for Markov jump systems able to estimate the target state based
on the current measurement; Finally, we control the computing pipeline by defining
a quality indicator of the filtered state able to detect changes in the target motion.

The methodology has been accepted in [40].

5.1 Introduction
UAV are rapidly emerging as a key technology in a broad range of applications,
including delivery, reconnaissance, surveillance, and emergency response. In order to
operate autonomously, the UAVs need to analyze real-time streams of information-
rich signals, such as images and LiDAR. The analysis algorithms typically take the
form of large Artificial Neural Network (ANN) for object detection, classification,
and decision-making. The need to continuously execute these complex models
clashes with the severe constraints of these airborne platforms regarding computing
power and energy availability. To make an example, EfficientDet 7 [87], a recent
2D object detector that achieves a Mean Average Precision (mAP) of 55.1% on the
COCO dataset [88], has 52M of parameters: a complexity that makes its execution
unfeasible even on relatively powerful embedded platforms such as the NVIDIA
Jetson Nano due to memory constraints. Smaller models, such as EfficientDet 1
(3.9M parameters) and SSD MobileNet v2 (2.1M parameters) achieve an mAP of
33% and 20%, respectively - a considerable performance drop compared to the
best-performing models. However, even the execution of such a more compact
models model is challenging: in our experiments, we measured a maximum frame
rate of 6frames per second using SSD MobileNet v2 on the NVIDIA Jetson Nano,
while power consumption increased from 2.8W to 5W - a non-negligible amount
considering that a medium size quadcopter consumes 24W when in motion. Recent
techniques such as pruning, quantization, and knowledge distillation can lead to
a further reduction in the computational load but also result in a non-negligible
performance loss [89]. For instance, Yolo-Lite [90] achieves a frame rate of 22 frames
per second on embedded devices but has a mAP of 12.36% on the COCO dataset.

An alternative solution is to connect the UAV to the infrastructure, where
compute-capable devices at the network edge - the edge servers - take over the
execution of heavyweight tasks [91]. Clearly, this strategy requires transferring
the data to the edge server over the wireless channel connecting the UAV to the
infrastructure. Intuitively, the time needed to transport the data depends on the
capacity of the wireless channel, which is subject to well-known impairments and
uncertainty [92]. On the other hand, the edge server can use more complex algorithms
due to its stronger capabilities, while possibly reducing the bare execution time
compared to the execution of smaller models onboard the UAV. Edge computing
considerably reduces power consumption, as the UAV does not need to execute
models on its onboard resources.

Based on the above discussion, both options have advantages and disadvantages:
Local Computing (LC): Pros: (i) the task completion delay is (almost) deter-
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Figure 5.1: High-level overview of the system considered in the chapter. A UAV follows a
target using a position estimated by analyzing real-time data acquired by onboard sensors. The
UAV can use its on onboard resources or infrastructure-level resources to extract the position.
The resulting estimation error and delay are a function of the computing strategy.

ministic; (ii) it does not require any use of infrastructure-level resources such as
channel and server time; cons: (i) only small low-performance ANN models can
be executed; (ii) onboard energy consumption increases significantly.
Edge Computing (EC): Pros: (i) the edge server can execute large ANN models
with good performance; (ii) reduced energy consumption onboard the UAV; cons:
(i) the wireless channel may induce large delays and delay variations depending on
the propagation environment and network state; (ii) intense use of infrastructure-
level resources to transport and process the data - which may constrain the number
of supported vehicles in practical deployments.

Most current solutions choose one or the other approach depending on expected
performance. More recent frameworks [92, 93, 30, 31, 32, 33, 34] dynamically select
whether to process information onboard or send it to the edge server to optimize
of the tradeoff between resource usage and key performance metrics such as delay
and accuracy based on a perceived state of the system - such as channel gain. This
chapter makes an important conceptual innovation: we connect the edge computing
(EC) vs local computing (LC) dynamic selection process to the control of the flight
dynamics of the UAV given a specific task. Although our considerations can be
general, we focus on a target tracking application [94], where the task of the UAV is
to follow a target, whose position is acquired by onboard sensors, such as cameras
and LiDAR. The acquired data are processed using algorithms that extract the
position of the target - e.g., an ANN for object detection. Due to this process,
the target state observation - the position in the considered case - is delayed and
inaccurate, where both these factors are affected by the computing pipeline (LC or
EC), the used ANN model, and the state of the overall system in general.

One of the observations at the core of the proposed framework is that the impact
of the two non-idealities of state acquisition on mission performance depends on
the characteristics of the target’s motion. As LC and EC correspond to different
distributions of estimation delay and accuracy, the decision process that dynamically
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determines the computing pipeline (computing control task) based on the state
of the UAV motion controller (flight control task).
CADET: We propose CADET, a framework for the dynamic control of the computing
pipeline used by the UAV in response to: (i) the current target dynamics - and more
specifically the state of the flight controller; (ii) onboard energy usage constraints;
and (iii) channel and server usage constraints. CADET stems from discrete-time
Markov jump linear systems (MJLS) [95], a mathematical framework that allows
us to jointly consider the dynamics of the motion controller and of the computing
pipeline. MJLSs are switched linear systems, where the switching signal is governed
by a Markov Chain (MC). We associate states in the MC with the state of the
system – in the considered setting the wireless channel state – and identify a model
for the system dynamics. The system’s state is then linked to the estimation
characteristics and connected to the flight controller. In CADET, we embed a MDP
in the MJLS instead of the MC to make the process controlled – a Markov Jump
Switched Linear System (MJSLS) [96]. This approach enables the control of the
system behavior - in our case to determine the computing pipeline based on the
output of a Kalman filter we designed for this purpose.

5.2 Related Work
Edge computing is a central component of modern infrastructures and a key enabler
of many applications. Recent contributions proposed a wide array of solutions to
improve the performance of edge offloading and optimize resource usage. In [30], the
authors propose a framework to solve a mixed-integer linear program that jointly
optimizes service cashing, cloud usage, and energy consumption. [31] presents a
controller to minimize the overall energy consumption under hard per-task delay
constraints in systems with energy harvesting. In [32], the authors propose a multi-
scale control logic to dynamically reconfigure distributed cloudlets. The framework
in [33] jointly considers devices’ topology, available resources, and wireless channel
state to assign computing tasks to edge servers. In [34], the authors propose a
solution to dynamically control ANN-based video analytics on edge servers.

In contrast with these contributions, CADET controls task offloading based on
the control needs of an autonomous UAV to reduce resource usage while preserving
mission performance. Our framework paves the way to a different perspective on
infrastructure support for lightweight autonomous vehicles.

Edge computing in the context of UAV systems has been attracting considerable
attention from the research community in recent years. One of the most popular
research directions is that of using UAVs as “mobile” edge servers, whose position
and configuration can be optimized to reflect the characteristics of the users (e.g.,
spatial distribution). An overview of this area of investigation can be found
in [97]. Our study, instead, focuses on the opposite scenario: where resource-
constrained UAVs use infrastructure-level resources to support their real-time
computing processes. In this latter area of investigation, recent work has proposed
predictive edge server selection methodologies [93] to counteract the extreme
mobility of these platforms. In [92], the authors devise an adaptive task replication



5. Control-Aware Dynamic Edge Computing for Real-Time Target Tracking in
UAV Systems 80

strategy to mitigate connectivity uncertainty. Both contributions are based on
Deep Reinforcement Learning (DRL).

Closely related to the application scenario considered in this chapter, [94]
develops an energy-efficient UAV-aided target tracking system, where the UAV
offloads video processing tasks to the edge servers in its flight trajectory. We
claim that our approach, which considers the inner state of the flight controller
and target motion to determine where to execute computing tasks, introduces
significant conceptual and technical innovations in the context of dynamic offloading
for UAV systems.

5.3 System Overview and Sensing Model
System and Mission Objective: We consider the system depicted in Fig. 5.1,
where an interconnected UAV follows a target with a possibly complex motion. For
instance, the UAV may follow a specific car in a city or another drone. Formally,
we describe the dynamics of the UAV using the nonlinear differential equation
ẋ(t) = f(x(t), u(t)),

where x ∈ Rnx is the state vector composed of the position in the 3D space,
angular positions, 3D velocity, and angular velocities, and u ∈ Rnu is the control
vector. The target state is x0 : R≥0 → Rn composed of 3D position and velocity
and has piece-wise linear dynamics.

Sensing model: The UAV needs to acquire the target’s position to con-
trol its motion.

We assume a non-cooperative setting, where the UAV acquires data from
onboard sensors at fixed intervals that are processed using an algorithm to extract
a position estimate y0

a(tk), where tk is a temporal index. For instance, the UAV
may use onboard sensors such as a camera, a stereo camera, or a LiDAR, whose
output is processed using a Deep Neural Network for 3D object detection. As
a consequence of the scenario described above, the position acquisition is: (i)
non-instantaneous, and (ii) imperfect. To reflect these two properties, we express
the estimate as y0

a(tk) = x0(tk − τak ) + ϵak,
where {τak }k∈N and {ϵak}k∈N are discrete-time random processes modeling respec-

tively the estimation delay and error, and a is a discrete, controlled, variable denoting
specific sensing-computing pipelines. In our scenario, we consider two main options
– LC and EC – which correspond to different delay and noise distributions. For
instance, the UAV can use its onboard resources to execute a lightweight estimation
model, which leads to a low-delay-low-accuracy estimate or to offload analysis to
an edge server. The latter option allows the execution of high-accuracy models;
however, it may suffer a larger delay due to the need to transfer information-rich
signals over a capacity-constrained wireless channel. We set a = l and a = s to
indicate the use of onboard “local” resources and remote “server” resources to
process the acquired sensor data, respectively.

We assume a PDP approximable by a one-sided exponential function for both
the EC and LC pipelines. We characterize the estimation error identifying a
hidden Markov model based on the UAV 123 benchmark [98], which consists of
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123 annotated HD video sequences captured from a low-altitude aerial perspective.
Specifically, we leverage the methodology in [38] to define the space of the hidden
states as S = Sl ∪ Ss, where with Sl and Ss are the state space of the LC and
EC computing pipelines. We model the estimation error {ϵk}k∈N as a time-varying
Additive White Gaussian Noise (AWGN) whose distribution depends on the state
s of the Markov Model, that is, ϵk ∼ N (0,Σi), i=s(k).

5.4 CADET

The core objective of our framework is to seamlessly connect flight control and
computing control planes. More in detail, an integral part of our framework is a
Markov jump-switching linear process that we use to design a filter to estimate
the target position from noisy and delayed observations. Then, we design a
methodology to dynamically determine the computing pipeline using the closed-loop
measurements of the control system depicted in Fig. 5.2.

Control Objectives: The core observation behind CADET is that different
motion parameters and the current target state lead to different computing pipelines
- characterized by different delay and error distribution - to be locally optimal from
a tracking perspective. This observation is empirically validated in Section 5.5.
Moreover, the UAV may have constraints on the use of computing resources. Herein,
we consider a scenario where channel usage limitations determine a constraint
in the usage of the EC pipeline, even if the approach is extendable to limited
onboard energy reservoir scenarios.

Our framework connects two traditionally separate control planes: the process
controlling the UAV’s 3D flight parameters, given the target position’s estimate,
is coupled with a process dynamically controlling how the sensor data feed is
transformed into the position estimate. Formally, we seek to design the motion
control rule u(tk) ∈ Rm to minimize the difference between x(tk+1) and x0(tk),
and the computing control rule a(k) – that determines the estimation delay and
noise distributions.

To measure the mission performance, we adopt a metric based on the root-
mean-square closed-loop error: J̄e = ∑D

k=0 Je (x(k), x0(k), a(k)). We remark that
the closed-loop tracking error depends on many factors such as the target dynamics
x0(tk), the closed-loop UAV flight control and dynamics, i.e., the dynamics x(tk),
control inputs u(tk), and the computing policy a(k). Importantly, CADET uses
information from the closed-loop controller that can be independently solved based
on the inputs. In this section, we slightly abuse notation by using Je(a(k)) instead
of Je (x(k), x0(k), a(k)), to emphasize the dependence between the tracking error
and the computing policy.

At each time step, the computing control policy attempts to solve the following
multi-objective problem based on the current measurement y0

a(tk)
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min
ak+1,...,aD

D−k∑
i=1

[Je(ak+i) + Jc(ak+i)] (5.1)

s.t.
D−k∑
i=1

Je(ak+i) < J̄ le,
D−k∑
i=1

Je(ak+i) < J̄se , (5.2)

ak+i ∈ {s, l} ∀i ≤ D − k, (5.3)

where D is the temporal horizon of the mission. The cost-function in Eq. (5.1)
considers both the tracking error Je(ak+i), and the computing cost Jc(ak+i) in the
whole mission. The computing cost Jc(ak+i) can be expressed in channel usage.
The constraints in Eq. (5.2) emphasize the accuracy improvement requirement
concerning the "pure” LC and EC strategies. The parameters J̄ le, J̄se ∈ R are the
total tracking error of the LC and EC strategies, respectively.

The resolution of the optimization problem in Eq. (5.1)-(5.3) is technically
challenging: (i) the tracking error depends on the state of the target x0(tk) that is
not directly observable, (ii) the cost function depends on the future target behavior
that is not known a priori, and (iii) the interdependence between the dynamic and
computing controllers makes predicting the cost function difficult.

We address the challenges above by proposing a novel methodology that: (i) we
model the computing decision problem as a Markov decision process that jointly
considers the control system metrics and computational requirements; (ii) we design
a new Kalman filter based on the underlying MDP that can estimate the target
state x0(k) based on the current measurement y0

a(tk); (iii) we define a quality
indicator of the filtered state and design a finite-state machine that controls the
MDP based on the quality indicator.

Figure 5.2: Block diagram of CADET.

Jump Switched Linear Filter: The first component of CADET is a filter
for Markov Jump Switched Linear systems.

The equations for the filter fall into two groups: time update equations and
measurement update equations. The time update equations are responsible for
projecting forward the current estimation and error covariance estimates. The
measurement update equations incorporate the new measurement into the a priori
estimate to obtain an a posteriori estimate. One of the technical challenges is that
in our problem the estimation process is controlled.

We take the Kalman-like filter design proposed in [95] for MJLS processes as
a starting point. Leveraging the definition proposed in [96], we embed an MDP
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in the MJLS instead of the MC to control the computational pipeline based on
the output of a Kalman filter. We extend existing methodologies for MJSLSs
that assume that both the measurement y0(tk) and the jump variable s(k) are
available. Let the tuple (S,A,P, s0) be a Markov decision process defined on the
probability space S = Sl ∪ Ss, where S is a finite set of discrete states, Sl and Ss
contain the onboard and server states, respectively, and A = {l, s} is the finite
set of actions. As defined earlier, the actions l and s indicate the use of onboard
“local” resources and remote “server” resources to process the acquired sensor data,
respectively. P : S × A × S → [0, 1] is the transition probability function such
that for every decision epoch k ∈ N, i, j ∈ S, a ∈ A,

s0 ∈ S is the initial state.
Notice that, Unlike [96], we do not define the cost function since it is useless

for the following discussion.
Let us consider the following continuous-time MJSLS Σc,

Σc :


ẋ0(t) = Acx

0(t),
y0(tk) = x0(tk − τs(k)(tk)) +Hs(k)w(tk),
x(0) = x0, s(0) = s0,

(5.4)

where w(tk) is a n-dimensional white noise, and E
[
ϵ
s(k)
k ϵ

s(k)
k

⊤
]

= Hs(k); {y0(tk), k ∈ N}
is the n-dimensional sequence of measurable variables affected by delay τs(k) and
noise ϵs(k)

k = Hs(k)w(tk). The state dynamics in Eq. (5.4) are described in ordinary
differential equations as the UAV trajectory evolves in continuous time. However,
the output vector is expressed in terms of discrete-time measurements. The
hybrid modeling approach allows us to consider real-valued stochastic processes
generating delay and accuracy. Since the Markov Jump Switched Linear framework is
compatible with discrete-time dynamics, the first step is to discretize the continuous-
time dynamic and output in Eq. (5.4), as follows,

ȳ0(tk) = Ls(k)x
0(tk)+Hs(k)w(tk), where Ls(k) = exp

(
−AcE[τs(k)]

)
, A = exp (AcT ),

T = tk+1 − tk, ∀k ∈ N is the sampling time.
Then, we estimate the target state using the following dynamic Markov Jump fil-

ter,

G :
x̂0(tk+1) = Âs(k)(k)x̂0(tk) + B̂s(k)(k)ȳ(tk),
x(0) = x̂0,

(5.5)

where the matrices Âi(k) and B̂i(k) are found via the coupled Riccati differen-
tial equations:

Yj(k + 1) =
∑
i∈J(k)

p
a(k)
i,j (k)

[
AYi(k)A⊤ − AYi(k)L⊤

i ×

(
HiH

⊤
i πi(k) + LiYi(k)L⊤

i

)−1
LiYi(k)A⊤ ×

πi(k)GG⊤
]

Yj(0) = πj(0)E
[
(x0 − E[x0])(x0 − E[x0])⊤

]
(5.6)
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and

Mi(k) =


−AiYi(k)L⊤

i

(
HiH

⊤
i πi(k) +

LiYi(k)L⊤
i

)−1
, i ∈ J(k)

0, i ̸∈ J(k)
(5.7)

where πj(k) = P [s(k) = j] and J(k) = {i ∈ S : πi(k) > 0}. Finally,

Âi(k) = Ai +Mi(k)Li(k), B̂i(k) = −Mi(k). (5.8)

Remark 2. It is known that for the case where (y0(k), θ(k)) are available, the best
linear estimator of x0(k) is derived from the Kalman filter for time-varying systems
since all the values of the mode of operation are known at time k. Nonetheless,
offline computation of the Kalman filter for time-varying systems is practically
unfeasible since the gain matrix is sample path dependent, and the number of sample
paths grows exponentially with time. On the other hand, the optimal filter in the
form of Eq. (5.5) requires a smaller number of pre-computed gains, which means
highly reduced memory usage. Specifically, our design has linear memory usage
instead of exponential [95].

Policy "Control-Aware Dynamic Edge Computing":
To measure the filter performance, we use the Kalman innovation νo(k), which

is defined as the difference between the observation measurement y0(tk) and its
prediction derived using the information available at time tk−1, that is,

νo(k) = y0(tk) − Ls(k)x̂
0(tk). (5.9)

The Kalman innovation measures the new information obtained by adding
another measurement in the estimation process. Indeed, rapid increases in the
Kalman innovation indicate that the quality of the filtered state is compromised,
for instance, due to discontinuities in the target dynamics. Based on this reasoning,
we define the indicator q(k) to drive the control policy based on a Simple Moving
Average (SMA) of the previous M innovation data points.

Then, we use the two parameters α, β∈R>0 to design a switching rule to commute
between local and edge pipelines. In particular, CADET’s policy commutes from
local to edge computing when the event rl,s = {q(k) ≥ α} is verified, and switch
from edge to local depending on rs,l = {q(k) ≤ β}.

At each time step k, we choose the action a(k) based on the current level of
innovation. The remark that events we aim to detect are discontinuities in the target
motion that determine changes in the optimal delay/accuracy point. Furthermore, α
and β determine the channel usage trade-off. Indeed, by varying the parameters, we
obtain computing control policies that are more conservative in channel or onboard
energy usage. For example, a policy that privileges EC rather than LC (e.g., due
to limited energy reservoir available to the UAV) is obtained by decreasing α and
increasing β. Conversely, in scenarios where the infrastructure needs to support
many UAVs, the policy can privilege LC over EC by increasing α and decreasing
β. In both scenarios, CADET optimizes the activation of EC and LC based on the
Kalman innovation metric to maximize tracking performance.
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5.5 CADET Evaluation
This section describes the setting and parameters we use in our evaluation.

(i) System parameters: We consider a lightweight quadcopter with four rotors
directed upwards. From the center of mass of the quadcopter, rotors are placed
in a square formation at equal distances. We use the non-linear continuous-time
motion model derived following the approach proposed in [99]. The control strategy
implements the Nonlinear Model Predictive Control proposed in [100]. The target
state is x0(t) : R≥0 → Rn composed of 3D position and velocity, and piece-wise
linear dynamics.

(ii) Sensing parameters: Based on the dasatet in [98], we leverage the method-
ology in [38] to the state space of the hidden-Markov model S = Sl ∪ Ss and, the
transition probabilities defined in Sec. 5.4. When EC is used, we assume that
the position and velocity estimate are affected by AWGN with standard deviation
identified based on the current hidden state of the Markov model. Instead, when
LC is active, the standard deviations of the AWGN are amplified by a factor of 6.5.

We assume a one-sided exponential density function to generate the delays of
the LC and EC pipelines, with expected values equal to 0.15s and 0.3, respectively.

(iii) Numerical results: We consider a target with the initial position on the
origin of the 3-dimensional reference system and the initial velocities are vx =
3 m/s, vy = 4 m/s, vy = 2 m/s. The target instantaneously changes its velocity
after 10 seconds. To statistically validate the control performance, we ran Monte
Carlo simulations generating 50 admissible trajectories, each with 200 samples
(corresponding to 20s). We aim to demonstrate the ability of CADET to decrease
channel usage by smartly changing computing policy while assuring system accuracy.
Fig. 5.3 shows the MRMSE along the trajectory for LC (blue), EC (red ), and
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Figure 5.3: MRMSE. The black dashed corresponds to the target velocity change point.

CADET (cyan) computing strategy. We set the parameters to make CADET prioritize
LC over EC, (α = 7, β = 1.5), that is, we consider a case where the objective
of control is to reduce infrastructure-resource usage by activating EC only when
needed to avoid degradation of tracking error. It can be seen how EC achieves
faster convergence and a lower overshoot around the discontinuity compared to



5. Control-Aware Dynamic Edge Computing for Real-Time Target Tracking in
UAV Systems 86

0 2 4 6 8 10 12 14 16 18 200
20
40
60
80

100

Time [s]

E
C

U
sa

ge
[%

]

LC EC CADET

Figure 5.4: EC usage.

LC but has a higher permanent error. CADET dynamically changes the policy by
preferring EC after the discontinuity to mitigate the overshoot and rapidly decrease
the error, then the EC usage can be reduced. We show in Fig. 5.4 the average
EC usage of each strategy. The average is taken at each time step over the Monte
Carlo simulations. The trend demonstrates the strong dependency between EC
usage and the characteristics of the target motion.

To characterize the dependency between the MRMSE and the target motion,
we show in figure 5.5 the cumulative average of the MRMSE performed by the
three strategies, where for each time-step, we compute the average MRMSE from
the initial time-step. Significantly, by efficiently shaping the computing strategy,
CADET mitigates the non-idealities of both LC and EC state acquisition and
outperforms both LC and EC: the accuracy gain reaches 15.2% concerning LC and
6.2% to EC. The results are achieved by using 54% of channel resources.
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Figure 5.5: Cumulative MRMSE.

5.6 Conclusions
This chapter proposed an innovative approach – CADET – to dynamically select
the computing pipeline – LC or EC – used by a UAV to estimate the position
of a target from sensor feeds such as 2D and 3D imaging. The core conceptual
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innovation of CADET is to make the selection process aware of the position estimation
process and, thus, of the target motion, in addition to traditional energy and
channel/server usage metrics.

The core of the proposed approach is a filter whose output controls a Markov
linear jump process tracking the system state. Computing decisions are based on
metric measuring innovation in the filter’s output signal, whose pattern reflects
the effectiveness of different options to track the target.

Our results demonstrate the ability of CADET to adapt the computing strategy
at a fine temporal granularity to motion discontinuities to maximize estimation
convergence speed. With respect to LC and EC, the accuracy of our methodology
increases by up to 15% depending on the target motion characteristics, while
onboard and server resources are parsimoniously used based on preset parameters.



6
Conclusions

The main objective of this thesis is to investigate the importance of Data-Driven tech-
niques in ICT Engineering. The introduction shows that the scientific community has
introduced Data-driven methodologies in several wired and wireless communication
systems. All past and present generations of communication networks are based on
mathematical models derived from theoretical considerations. Indeed, all phases
of network design employ physical models describing in quantitative terms the
effect each system component has on the overall performance. However, as shown
in this thesis, innovative mixed data-driven-model based approaches outperform
traditional pure model-based methodologies:

(1) In chapter 2, we presented a taps reduction methodology that merges the
cross-correlation and PCA and discussed its impact in terms of BER of the DSP
algorithm. We validated the proposed approach on the data of the world-first
SDM multi-core fiber field trial conducted within the INCIPICT project in the
city of L’Aquila, Italy. Results showed a reduction in the number of taps of the
60% and 50% with respect to the classical approach proposed in [48] considering
a transmission over 650 and 3450 km respectively.

(2) chapter 3 provides a novel technique to learn Markov models representing
fading wireless channels. We consider a validation scenario consisting of a WNCS
that exploits a WirelessHART radio link to send the optimal control inputs
generated by a Stochastic MPC, and show that the control performances of our data-
driven approach and of a physics-based approach based on a stationary finite-state
Markov chain are extremely close: this implies that in practical applications when
assuming perfect knowledge of the channel model and parameters is not possible,
the methodology presented in chapter 3 is a valid and very effective alternative.

(3) In chapter 4, we provided a technique to reduce the number of discrete modes
in a SARX model identified via Regression Trees without compromising (indeed
improving substantially, in our case of study) the prediction accuracy and mitigating
the overfitting problems due to the identification procedure. We validated the
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proposed methodology on a benchmark consisting on a nonlinear inverted pendulum
over a cart, by comparing its prediction accuracy and the number of discrete modes
with respect to the model identified using the approach in [61]. Results show an
important reduction in the number of modes of the identified model that ranges
between 96% and 99.74%. As our complexity reduction algorithm also alleviates
overfitting issues, the overall prediction accuracy improves as well. The reduced
model has also been tested in terms of closed-loop control performance: we compared
two MPC algorithms, one using the reduced model and the other using an oracle, i.e.
perfect knowledge of the plant dynamics. Results show that the control performance
of the reduced model and the oracle are very close. Thus in practical applications,
when assuming a perfect knowledge of the model is not possible, the methodology
presented in this paper is a valid and computationally efficient alternative.

(4) chapter 5 proposed an innovative approach – CADET – to dynamically select
the computing pipeline – LC or EC – used by a UAV to estimate the position of a
target from sensor feeds such as 2D and 3D imaging. The core conceptual innovation
of CADET is to make the selection process aware of the position estimation process
and, thus, of the target motion, in addition to traditional energy and channel/server
usage metrics. The core of the proposed approach is a filter whose output controls
a Markov linear jump process tracking the system state. Computing decisions
are based on metric measuring innovation in the filter’s output signal, whose
pattern reflects the effectiveness of different options to track the target. Our results
demonstrate the ability of CADET to adapt the computing strategy at a fine temporal
granularity to motion discontinuities to maximize estimation convergence speed.
With respect to LC and EC, the accuracy of our methodology increases by up
to 15% depending on the target motion characteristics, while onboard and server
resources are parsimoniously used based on preset parameters.
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