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In the dense supernova environment, neutrinos can undergo fast flavor conversions which depend on the
large neutrino-neutrino interaction strength. It has been recently shown that both their presence and
outcome can be affected when passing from the commonly used three neutrino species approach to the
more general one with six species. Here, we build up on a previous work performed on this topic and
perform a numerical simulation of flavor evolution in both space and time, assuming six neutrino species.
We find that the results presented in our previous work remain qualitatively the same even for flavor
evolution in space and time. This emphasizes the need for going beyond the simplistic approximation with
three species when studying fast flavor conversions.
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I. INTRODUCTION

Neutrino flavor conversions in the context of extremely
dense astrophysical environments remain perhaps one of
the biggest unsolved theoretical problems in neutrino
physics. The main reason is that in such circumstances
the neutrino-neutrino interaction potential is not negligible,
as it usually is everywhere else, thus making the evolution
deeply nonlinear. This gives rise to the phenomena known
as collective oscillations, where the neutrinos having
different energies undergo flavor conversion in a coherent
manner [1–7]. Depending on the timescale required for the
development of these self-induced flavor conversions, they
are classified as slow or fast. The growth rate of the slow
modes is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0ωvac

p ð∼102–103 km−1Þ, where μ0 ¼ffiffiffi
2

p
GFnν is neutrino-neutrino interaction strength, whereas

ωvac ¼ Δm2

2E is the much smaller vacuum oscillation frequen-
cies. In comparison to this, the growth of fast modes is
dependent only on μ0, which can be as large as ∼105 km−1

in the dense core.
A large number of studies [8–40] have been carried out

in the last two decades in order to investigate both the

presence and outcome of collective oscillations. However,
the corresponding system of partial differential equations
has never been solved in its entire form, but only using
some simplifying assumptions. For instance, it is usually
assumed that there are only three neutrino species: νe, ν̄e,
and νx, where one is considering νx ¼ νμ ¼ ντ ¼ ν̄μ ¼ ν̄τ;
i.e., all the heavy lepton species have identical fluxes. This
has important consequences for fast conversions, since in
this case the necessary and sufficient condition for their
occurrence [13–15,17,41–58] is the presence of a crossing
only in the electron lepton number angular distribution.
This means that in some directions the flux of νe is greater
than that of ν̄e and vice versa in the other directions. In the
context of fast flavor conversions, the first investigations
going beyond three neutrino species have been performed
in Refs. [59–61]. It has been shown with both numerical
simulations and linear stability analyses that even small
differences in the angular distributions of νμ;τ and ν̄μ;τ can
either create new instabilities or erase the ones present in
the three species case. Furthermore, in Ref. [61], it has been
pointed out that, even considering the same flavor content
in the three and six neutrino species cases, the flavor
conversion probabilities obtained as output of numerical
simulations can have appreciable differences. However, the
previous conclusions have been obtained assuming only
the evolution in time, whereas spatial homogeneity has
been imposed.
In this work, focusing again on fast conversions, we

extend the studies performed in Refs. [59–61] by consid-
ering the dependence of flavor evolution on the spatial
dimension as well. In particular, we consider the same
neutrino angular distributions that we considered in
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Ref. [60]. By extending the fast flavor conversion three-
flavor analysis to 1þ 1 dimensions, i.e., involving time and
spatial evolution, we demonstrate the robustness of the
results provided in Ref. [60]. We further discuss a con-
sistent way of comparing the analysis in the three-species
case with the analysis in the six-species case in a manner in
which the net neutrino content is similar in two cases.
The structure of the paper is as follows. In Sec. II, we

introduce the framework of the system and explain the
equations of motion. Then, we elaborate the four toy
examples taken into account for the analysis of the system
with six species in Sec. III. This is followed by Sec. IV,
where we talk about the evolution of the system in the
linearized regime and solve the dispersion relations for the
four toy cases. Then, we discuss the full nonlinear evolution
considering one space and time dimension in Sec. V.
Finally, in Sec. VI, we present a comparison of the
1þ 1-dimensional analysis between the three and six
species cases, taking into consideration the same flavor
content for both scenarios.

II. FRAMEWORK: EQUATIONS OF MOTION

The equations of motion describing the spatial and
temporal evolution of the neutrino density matrices ρp;x;t
for momentum p at position x and time t can be written in
the form [62]

ið∂t þ vp ·∇xÞρp;x;t ¼ ½Hp;x;t; ρp;x;t�; ð1Þ

where Hp;x;t is the Hamiltonian of the system which
consists of three parts, i.e., vacuum term, Mikheyev-
Smirnov-Wolfenstein potential, and the neutrino-neutrino
interaction terms given by

Hvac ¼ Δm2=2E ð2Þ

Hmat ¼
ffiffiffi
2

p
GFnα ð3Þ

Hνν ¼ μ0

Z
d3q=ð2πÞ3ð1 − vp · vqÞðρq;x;t − ρ̄q;x;tÞ: ð4Þ

Here, nα denotes the charged lepton density (α denotes the
flavor), and the neutrino-neutrino interaction strength is
given by μ0 ¼

ffiffiffi
2

p
GFnν, where nν is the total background

neutrino density and GF is the Fermi constant. The
diagonal elements of ρp;x;t represent the occupation num-
bers for each neutrino flavor, whereas the off-diagonal
elements encode phase information related to flavor con-
versions. For the evolution of the antineutrinos, an equation
similar to (1) holds with Hvac replaced by −Hvac.
In our previous work [60], we studied only the time

evolution of a system with six neutrino species, but here our
aim is to take into account one space and time dimension,
i.e., 1þ 1 dimensions. Furthermore, while studying space

and time evolution, we neglect both Hvac (since its role is
just to provide a numerical seed for the development of fast
conversions) and Hmat [46,63].
In the three neutrino species approach, fast conversions

are triggered when there is a crossing in the electron lepton
number (ELN), which is defined as [17]

Ge
v ¼

ffiffiffi
2

p
GF

Z
∞

0

dEE2

2π2
½ρeeðE; vÞ − ρ̄eeðE; vÞ�: ð5Þ

Considering six neutrino species, as we do in this work, we
can define also a muon lepton number (MuLN) and tau
lepton number (TauLN),

Gμ
v ¼

ffiffiffi
2

p
GF

Z
∞

0

dEE2

2π2
½ρμμðE; vÞ − ρ̄μμðE; vÞ�; ð6Þ

Gτ
v ¼

ffiffiffi
2

p
GF

Z
∞

0

dEE2

2π2
½ρττðE; vÞ − ρ̄ττðE; vÞ�: ð7Þ

In this case, fast conversions occur when a crossing is
present in one of the following three quantities:

Geμ
v ¼ Ge

v −Gμ
v ;

Geτ
v ¼ Ge

v −Gτ
v;

Gμτ
v ¼ Gμ

v −Gτ
v: ð8Þ

The recent two-dimensional (2D) simulations [64] provide
support to this possibility. It suggests that the temperatures
in the accretion phase are high enough for the creation of
muons through the pair production from electrons which in
turn can create νμ and ν̄μ by the means of β processes. This
leads to an asymmetry between the μ neutrinos and
antineutrinos. However, the high mass value of the τ lepton
restricts the production of ντ and ν̄τ through similar
processes, but still there can be a small asymmetry between
them because of their different scattering cross sections
with nucleons.
A crossing in Gαβ

v will first lead to an exponential growth
of the off diagonal elements of ραβ, which will then
propagate to the other density matrices ρα1β1 (α1β1 ≠ αβ).
In other words, the growth in any one of the three sectors
can trigger the growth in the others. This is in contrast with
the three neutrino species scenario where a crossing in the
ELN is considered to be the only requirement for whether
the fast oscillations will occur or not.

III. TOY ANGULAR DISTRIBUTIONS:
THREE-FLAVOR ANALYSIS

To study fast flavor oscillations in the six species
scenario, we consider four toy examples (the same as in
Ref. [60]). The angular distributions as a function of
v ¼ cos θ are given by the expression
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ραα ¼
1

2π

�
1þΔα

1−vαmin
Hðcosθ−vminÞþhHð−cosθþvminÞ

�
;

ð9Þ

where α ¼ e; ē; μ; μ̄; τ; τ̄ and the parameters Δα, vαmin, and
H for four different cases are mentioned in Tables I and II.
Here, H is the Heaviside Theta function. Our parametriza-
tion takes into account backward velocity modes, implying
that there are neutrinos going in the backward direction,
i.e., −1 < v < 1.
Figure 1 shows the differences between the angular

distributions of different flavors given by Eq. (8) for the
four different cases mentioned above.
The upper left panel of Fig. 1 represents the case 1,

whose angular distributions are given by the parameter
values in the left panel of Table I. It shows the difference of
the lepton numbers in the case of three-flavors. In this

scenario, Geμ
v , Gμτ

v , and Geτ
v are shown by the blue, red, and

the green solid lines, respectively. Here, all three-flavor
lepton number distributions (ELN, MuLN, and TauLN)
(not shown in the figure) have crossings, whereas the
differences, i.e., Geμ

v , Gμτ
v , and Geτ

v , do not have crossings.
The upper right panel of Fig. 1 shows case 2, whose

angular distributions are given by the parameter values in
the right panel of Table I. In this case, ELN has a crossing,
but MuLN and TauLN do not have one. However, there is a
crossing in Geμ

v (blue solid line) and Geτ
v (green solid line),

but there is none in Gμτ
v (red solid line).

Case 3 is represented by the lower left panel of Fig. 1,
and its angular distributions are given by the left panel of
Table II. In this scenario, there is no crossing in ELN, but
it is present in MuLN and TauLN. Focusing on the
differences, Geμ

v (blue solid line) and Geτ
v (green solid

line) do not have a crossing, whereas it is there in Gμτ
v (red

solid line).
Case 4 is given by the angular distributions with

parameter values in the right panel of Table II. Here, there
is a shallow crossing in the ELN in the forward direction,
and also there are crossings in the MuLN and TauLN.
Unlike the other three cases, here the differences Geμ

v (blue
solid line) and Geτ

v (green solid line) have shallow backward
crossings as shown in the lower right panel of Fig. 1.
However, Gμτ

v (red solid line) does not have any crossing.
Taking these angular distributions into account, we study

the temporal and spatial evolution of the system. First, we
focus on the linearized regime by solving the dispersion
relation and calculating the growth rates. Then, we move on
to the nonlinear analysis where we numerically solve the
evolution equation (1) in 1þ 1 dimensions.

IV. LINEARIZED REGIME

The onset of the fast flavor conversions is studied through
the method of linear stability analysis [16,17,43,59,65,66].
We linearize Eq. (1) at first order in the off-diagonal
elements of the density matrices Sαβv , (α ≠ β), assuming
the diagonal elements to be Oð1Þ [59]. This leads to the
equations

ivγ∂γS
αβ
v ¼ ðvγðΛαβ

γ þΦαβ
γ ÞÞSαβv −vγ

Z
dv0

4π
v0γG

αβ
v0 S

αβ
v0 ; ð10Þ

where αβ corresponds to the three sectors, i.e., e − μ, e − τ,
and μ − τ. Here, γ ¼ 0, 1, 2, 3, and Λαβ

γ is the charged
lepton matter term and the corresponding current.
Similarly, Φαβ

γ is the neutral lepton matter term and the
corresponding current. Since we are neglecting the matter
term, we take Λαβ

γ ¼ 0 and Φαβ
γ ¼ R

dv
4π vγG

αβ
v .

We then take the ansatz Sαβv ¼ Qαβ
v e−iðΩt−K·xÞ.

Substituting this back in Eq. (10), we obtain the dispersion
relation for a given choice of αβ,

TABLE I. Parameter values for case 1 (left) and case 2 (right).

α vαmin Δα h

e −1.00 0.80 0
ē −0.60 0.70 0
μ −0.80 0.10 0
μ̄ −0.70 0.45 0
τ −0.80 0.10 0
τ̄ −0.70 0.45 0

α vαmin Δα h

e −1.00 0.80 0
ē −0.60 0.70 0
μ −0.80 0.30 0
μ̄ −0.70 0.15 0
τ −0.80 0.30 0
τ̄ −0.70 0.15 0

TABLE II. Parameter values for case 3 (left) and case 4 (right).

α vαmin Δα h

e −1.00 0.90 0
ē −0.60 0.30 0
μ −0.80 0.10 0
μ̄ −0.70 0.50 0
τ −0.80 −0.20 0
τ̄ −0.70 −0.10 0

α vαmin Δα h

e −0.30 0.60 0.00
ē 0.00 0.29 0.00
μ −0.20 0.00 0.08
μ̄ −0.10 0.20 0.02
τ −0.20 0.10 0.08
τ̄ −0.10 0.17 0.00
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det½Πγδ
αβðΩ; KÞ� ¼ 0; ð11Þ

where the rank-2 polarization tensor Πγδ
αβ is given by

Πγδ
αβ ¼ ηγδ þ

Z
dv
4π

Gαβ
v

vγvδ

Ω − ðK −ΦαβÞ:v ; ð12Þ

where ηγδ is the metric tensor and it is equal to
diagðþ1;−1;−1;−1Þ. Note that the subscripts αβ of Π
denote the flavor of neutrinos and γδ are the spacetime
indices. Here, there are three dispersion relations corre-
sponding to the three sectors, i.e., e − μ, e − τ, and μ − τ.
To investigate the presence of instabilities in the system, for
each sector, we solve Eq. (11) as a function of real values of
K. If, we find Im½ΩðKÞ� ≠ 0, then we have an instability.

V. FULL SPACE-TIME EVOLUTION

In this section, we numerically solve the complete
equations of motion Eq. (1) in one spatial dimension, z,
and time t for the four cases discussed above. The results of
the simulations allow us to compare the numerical growth
rates with those expected from the stability analysis.
For the numerical analysis, we employ the D03PFF routine

from the numerical algorithmgroup library, which is built for
solving a system of nonlinear convection-diffusion partial
differential equations in one space dimension. Themethod of
lines is employed to reduce the system of partial differential
equations to a system of ordinary differential equations, and
the resulting system is solved using a backward differ-
entiation formula method. We use this routine with 103

points in space, and we discretize the angular variable vwith
30 points. We fix μ0 ¼ 4 × 105 km−1, and we consider a
spatial range z ∈ ½0; 0.1� km.We set Hvac ¼ 0, but we set the
off-diagonal entries of ρp;z;t¼0 equal to a Gaussian in space

FIG. 1. The above panels show the effective lepton numbers for different flavors for the angular distributions of the four toy examples
mentioned in the text. The upper left panel corresponds to case 1, and upper right panel is for case 2. The lower left and right panels
represent case 3 and case 4, respectively.
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centered at z ¼ 0.05 km, with an amplitude of 10−9 and a
width of 5 × 10−4 km. For boundary conditions, we assume
that at t ¼ 0 the density matrix is empty at the edge of our
spatial box. This means that neutrinos are only going outside
of the box, whereas none is coming in. We use an absolute
relative accuracy of 10−10 up to 30 ns for case 2 and up to
60 ns for cases 3 and 4; then, we switch to 10−6 in order to
speed up calculations. For case 1, we always use 10−10. We
have not imposed a maximum time step.

The results for the four cases, shown in Fig. 2, demon-
strate the growth rates of flavor instabilities in terms of the
evolution of log10jhραβij in the z–t plane, where hραβi is
angle averaged. The leftmost panels depict the evolution in
the e − μ sector, while the middle panels show the same
for the e − τ sector and the μ − τ sector, respectively. For
the cases where we find a flavor instability, we show the
corresponding linear growth rate in the inset plot. The
growth rates have been obtained by solving the dispersion

FIG. 2. Growth rate of flavor instability ðlog10jhραβijÞ in the three-flavor study for the four different cases. The rows (from top to
bottom) correspond to cases 1, 2, 3, and 4, respectively. The left panel depicts the e − μ sector, while the middle and right panels depict
the e − τ and the μ − τ sectors, respectively. The inset shows the linear growth rates plotted in units where

ffiffiffi
2

p
GFnν ¼ 1.
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relation given by Eq. (11), taking into consideration the
initial angular distributions of all the flavors.
We find that, as expected, there is no flavor instabilities for

case 1 (top panel). This is consistent with the fact that the
angular distributions in case 1 show no crossing in three-
flavors. In tandem with these results, we find null results for
the growth rates using a stability analysis. For case 2 (second
panel from top), there exists a crossing in the e − μ and the
e − τ sectors. Consequently, the values of log10jhρeμij and
log10jhρeτij start growing in space and time, indicating a
flavor instability. The corresponding inset plots show the
instabilities in the ImΩ − K plane in the linear regime. It can
be seen that the instabilities are present for both positive and
negative values of K. We also get a quantitative agreement
among the amplitudes of the growth rates in the linear as
well as nonlinear regimes. The growth rate in the μ − τ
sector is driven by a combination of the couplings in the
different sectors and is purely driven by the nonlinearity of
the problem. Hence, this growth rate is not captured by a
stability analysis.
The toy spectra in case 3 (third panel from top) show a

crossing only in the μ − τ sector. As a result, we find a
flavor instability in the μ − τ sector only. The linear
stability analysis also obtains imaginary values of Ω only
in the μ − τ sector and not in the other two. Furthermore,
we note that the instabilities are present only for negative
values of K.
For case 4 (bottom panel), we find that all three-flavor

sectors show a nonzero growth of the off-diagonal compo-
nents of the density matrix. The e − μ and the e − τ sectors
show a spectral crossing, and hence have a faster growth
rate. The growth in the μ − τ sector is completely a three-
flavor artifact and does not depend on any spectral crossing
in that sector. The same is captured in a linear stability
analysis, where there is an instability only in the e − μ and
the e − τ sector, as shown in the inset. Note that here the
instabilities are present only for the positive K.
One interesting thing to note from the linear stability

curves (insets of Fig. 2) is that in the cases 3 and 4 there are
no instabilities for the k ¼ 0 mode. Here, k is the shifted
wave vector in the corotating frame and is defined as
k ¼ K −Φαβ, where Φαβ ¼ R

dv
4π vG

αβ
v is the neutral lepton

current term as defined in Sec. IV. For the given spectraGαβ
v

(shown in Fig. 1), in case 3,Φμτ ¼ −0.00528, and similarly
in case 4, Φeμ ¼ 0.00371 and Φeτ ¼ 0.0298 in units of μ0.
From the insets of the lower two panels of Fig. 2, one can
see that ImðΩÞ ¼ 0 corresponding to these values. In other
words, no instabilities are present in cases 3 and 4 for
K ¼ Φαβ, i.e., k ¼ 0 mode. This also agrees with the fact
that when we calculate the ImðΩÞ following the formalism
of Ref. [46] by finding the moments we do not obtain any
instability for these cases. This is because the moments
formalism is based on the calculation of ImðΩÞ for the
case of k ¼ 0. On the other hand, for case 2,
Φeμ ¼ Φeτ ¼ −0.024, corresponding to which a nonzero

ImðΩÞ exists (shown in the insets of second panel from top
of Fig. 2), although it is not the maximum value. Therefore,
for this case, we obtain instability from the moments
calculation.

VI. TWO- AND THREE-FLAVOR CALCULATIONS
WITH THE SAME FLAVOR CONTENT

In this section, we compare the survival probability
Pee ¼ ðhρeeðt; zÞi− hρμμð0; zÞiÞ=ðhρeeð0; zÞi− hρμμð0; zÞiÞ
between the six and the three neutrino species approach,
focusing only on case 2. Note that here hρααi is the angle
sum. To make a fair comparison, we require that the total
number of neutrinos at t ¼ 0 remains the same in both
approaches. Indeed, since flavor evolution of fast conver-
sions is dominated by the self-interaction term, which is
proportional to the net neutrino number density, we believe
that setting the initial neutrino number density to be the
same is the only way to compare three species and six
species analyses. As a result, we consider

ρxxðt ¼ 0; zÞ ¼ ρμμðt ¼ 0; zÞ þ ρττðt ¼ 0; zÞ
2

ð13Þ

ρ̄xxðt ¼ 0; zÞ ¼ ρ̄μμðt ¼ 0; zÞ þ ρ̄ττðt ¼ 0; zÞ
2

: ð14Þ

Since in a supernova-like environment the initial flavor
content for the nonelectron flavor neutrinos are approx-
imately equal, the above prescription allows one to
compare flavor evolution in the two cases with almost
similar initial conditions.
A remark is in order. The choice of initial conditions

reported above is different from both what we assumed in
our previous work [60] and from what is considered in
Ref. [61]. Let us first consider the former case. Here, the two
approaches had the same initial flavor content for νe and ν̄e.
However, the three species approach was used assuming no
νx at t ¼ 0, and the six species one had the same initial
conditions presented in Fig. 1. Such assumptions introduced
a difference in the total number of neutrinos between the
two approaches. In Ref. [61], the e and μ flavor content was
taken to be the same among the two approaches, but it was
imposed ρττðt ¼ 0; zÞ ¼ ρ̄ττðt ¼ 0; zÞ ¼ 0. Here, despite
having the same number of particles, setting one diagonal
entry of the density matrix completely empty can intrinsi-
cally enhance the amount of flavor conversions.
Figure 3 shows the survival probability Pee as a function

of time and space for the three species case (left panel) and
the six species one (right panel). The qualitative natures of
the solutions are similar, but we find some differences in
the flavor outcome in the two scenarios. Considering
t > 25 ns, in the former case, Pee ∼ 0.5, while in the latter
case, Pee ∼ 0.4. We emphasize again that a proper quanti-
tative comparison between two- and three-flavor evolution
should be performed in a way such that the total numbers of
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neutrinos are similar in the two cases. Otherwise, if one
starts with a scenario where one of the nonelectron flavors,
say ντ and ν̄τ, for example, has a negligible population to
start with, a large flavor conversion can be obtained simply
because of the lack of entries in the density matrix. This
might lead to an enhancement of the differences.

VII. CONCLUSIONS

The evolution of neutrino fast flavor conversions
depends on the occurrence of crossings in the angular
distributions of flavor lepton number. In the context of
supernova neutrinos, it is usually assumed that the flavor
content of νμ, ντ, ν̄μ, and ν̄τ is equal. Consequently, only
three neutrino species are used (νe, ν̄e, and νx) in numerical
simulations as well as linear stability analyses. Recently,
the first hydrodynamical simulations with six neutrino
species [64] were performed. Driven by these, it has been
pointed out that the differences expected between νμ and ν̄μ,
which are induced by a non-negligible population of
negatively charged muons in the core, can introduce some
observable modifications of the angular distributions of
lepton number [60]. As a result, those angular crossings
that are expected to occur with three neutrino species can be
either erased or actually created. Furthermore, even assum-
ing the same flavor content in both the three and six
neutrino species approaches, a significant difference in the
survival probabilities is observed [61]. However, these
conclusions have been obtained considering a spatially
homogeneous neutrino system. In this work, we have
relaxed this assumption, and we have performed a numeri-
cal calculation in both space and time with six neutrino
species.
We have considered the same four cases that we adopted

in our previous work [60] and have solved the complete
nonlinear equations of motion in one space and time
dimension for each of them. It is evident from Fig. 2 that
out of the four cases considered case 1 does not show any
instability, as there is no crossing in any of the sectors
(e − μ, e − τ, and μ − τ), while the other three show

absolute instabilities. Cases 2 and 4 have instabilities in
all the three sectors, whereas it is present only in the μ − τ
sector of case 3. The presence of absolute instability is
evident from the fact that in all the cases the instability
spreads around the point of origin without drifting.
Moreover, the instability propagates in both directions
around the origin point (upward and downward). This is
because of the backward velocity modes (v < 0; see
Fig. 1), which are present in all our numerical examples.
The results obtained from the nonlinear analysis are
confirmed by the linear one. However, we point out that
the triggering of instabilities in the otherwise stable sector
ραβ, because of the absence of a crossing at t ¼ 0, can only
be observed at the nonlinear level. Overall, we find that the
qualitative nature of the results obtained in Ref. [60]
remains robust even when considering flavor evolution
in both space and time.
Overall, we find that considering all the six neutrino

species can significantly affect the results obtained with
only three of them. First, systems that are stable in the
standard three species approach can be unstable in the more
realistic six species one. Moreover, to make a fair com-
parison between the two approaches, we have done a
numerical analysis starting with same flavor content for
both cases, finding a relatively large difference in the flavor
outcomes. Thus, this analysis emphasizes the need to
include muons in the study of fast flavor conversions
and in turn may reveal their influence on the supernova
dynamics.
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FIG. 3. Survival probability Pee obtained with three neutrino species (left panel) and six (right panel). In both panels, the flavor
evolution is obtained assuming ρττðz; t ¼ 0Þ ¼ 0 and the same values of ρeeðz; t ¼ 0Þ, ρ̄eeðz; t ¼ 0Þ, ρμμðz; t ¼ 0Þ, and ρ̄μμðz; t ¼ 0Þ
taken from case 2.
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