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Introduction

A partition into distinct parts is refinable if one of its parts a can be replaced by
two different positive integers which do not belong to the partition and whose
sum is a, otherwise the partition is unrefinable. For example the partition
(1, 2, 3, 5, 9, 10, 12) is a refinable partition because we can substitute 10 = 4 + 6
or 12 = 4 + 8, while if we consider one of these two refinements we obtain an
unrefinable partition, i.e., in (1, 2, 3, 4, 5, 8, 9, 12) we cannot replace any parts.

Unrefinable partitions into distinct parts were introduced in the work of
Aragona et al. [ACGS22], where they were related to the generators of a chain
of normalisers. The authors introduced in [ACGS21a] a chain of normalisers,
which begins with the normaliser N0

n of the translation group T on Fn
2 in a

suitable Sylow 2-subgroup Σn of the symmetric group on 2n letters Sym (2n)
and whose i-th term N i

n is defined as the normaliser in Σn of the previous one.
They also proved [ACGS21b] that the number log2

∣∣N i
n : N

i−1
n

∣∣ is independent
of n for 1 ≤ i ≤ n − 2 and in particular it is equal to the (i+ 2)-th term of
the sequences of the partial sums of the sequence {bj}, where bj is the number
of partitions of j into at least two distinct parts. Finally in [ACGS22] the au-
thors observed that the number log2

∣∣Nn−1
n : Nn−2

n

∣∣ is linked to the number of
unrefinable partitions of n with a condition on their minimal excludant (mex),
i.e., the minimum positive integer number that does not appear in the partition.

The purpose of this thesis is to study unrefinable partitions into distinct
parts, which have not yet been investigated. Clearly, the condition of being
unrefinable imposes on the partition a non-trivial limitation on the possible dis-
tributions of the parts. First of all, we studied some arithmetic properties of
unrefinable partitions that allowed us to construct two algorithms, one capable
of recognising whether or not a sequence is an unrefinable partition (see Algo-
rithm 2), and the other capable of enumerating all unrefinable partitions of a
given weight (Algorithm 4), [ACCL23]. Analysing the data of the enumeration
algorithm, we realised that there exists a non-trivial limitation on the size of the
largest part of the unrefinable partitions. We proved a O

(
n1/2

)
-upper bound

for the largest part in an unrefinable partition of n (see Proposition 4.1), and we
call maximal (Definition 4.2) those partitions that reach the bound [ACCL22].
We showed a complete classification of maximal unrefinable partitions for tri-
angular numbers [ACCL22] and then we completed the general classification of
the maximal unrefinable partitions [ACC22]. These classifications allowed us
to show explicit bijections between unrefinable partitions and suitable subsets
of partitions into distinct parts, in particular if we consider the maximal un-
refinable partitions of n-th triangular number Tn we obtain (see Theorem 4.3,
Theorem 4.17)

#ŨTn
=

{
#Dk if n = 2k − 1,

1 if n is even.

where Dk is the set of partitions into distinct parts of weight k, while if we
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consider the non-triangular numbers the result is similar but more complicated
and depends by the distance from the next triangular number. As proved in
Theorem 5.28 and Theorem 5.39, if Tn,d = Tn − d and n is an odd number
greater than 11, then

#ŨTn,d
=


1 + #D(n−d+1)/2 if d > 3 is even,

#DO
n−d+2 if d > 3 is odd,

1 if d ∈ {1, 2, 3}.

if n is even

#ŨTn,d
=


1 + #D(n−d+1)/2 if d > 2 is odd,

#DO
n−d+2 if d > 2 is even,

1 if d ∈ {1, 2}.

where DO
k is the set of partitions into distinct parts of weight k and whose parts

are odd numbers.

Moreover, it can be established an important connection between unrefinable
partitions and numerical semigroups, additive submonoids of the non-negative
integers which include 0 and such that the complementary sets have finitely
many elements. This relationship allowed us to find other methods to recognise
when a partition is unrefinable or not only looking the hooksets of the Young
tableau associated to the numerical semigroup (see Lemma 6.4). Moreover, we
can describe other kinds of subsets of unrefinable partitions fixing the largest
part and maximising the number of missing parts. In this case we find a relation
with the set of symmetric numerical semigroups (SNS) when the largest part
λt is a prime number, i.e.,

#Ū(λt) = # {S ∈ SNS | F (S) = λt} ,

where λt is the largest part and F (S) is the maximal element of the comple-
mentary of S (Theorem 6.15).

A future research could be devoted to understand such connection more
deeply. Another interesting aspect of future research is to find some combi-
natorial properties of unrefinable partitions in order to define their generating
functions or in order to understand their density.

The thesis is organised as follows.
In the first chapter we analyse integer partitions by dwelling on generating
functions and their representation by Ferrer and Young’s tableaux, then show-
ing some combinatorial relations between subsets of integer functions
([And84],[HWHBS08]). In the second part we analyse some arithmetic prop-
erties of partitions ([Ram19],[AHAW00]) by showing the Rogers-Ramanujan
identity. In the last part we introduce Dyck paths by explaining a way to count
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them through partitions ([ALW16], [Biz54], [BM23]). The topics discussed in
this chapter will not be taken up in the rest of the thesis, but have been included
to give a sense of completeness to the partitions, analysing them from the point
of view of combinatorics and historical evolution.

In Chapter 2 we introduce the numerical semigroups. In the first section we
describe a covariety of numerical semigroups and represent it as a finite tree.
After a characterisation of the children of an arbitrary vertex in this tree, we
present an algorithm to describe the covariety [MFR23]. In the second part
we show some relations between numerical semigroups and integer partitions
[BNST23], looking in particular at the hookset. Then we introduce the sym-
metryic and pseudo-symmetyric numerical semigroups showing four operations
[SY21] that give us some relations to obtain other numerical semigroups.

In the third chapter we finally introduce unrefinable partitions and we show
some basic properties. In section 2 we present an algorithm that checks if a
strictly increasing sequence of integer numbers is an unrefinable partition or
not, showing its correctness. In the last part we use the verification algorithm
to create a new algorithm capable of enumerating all the unrefinable partitions
of a given weight.

In Chapter 4 we analyse the unrefinable partitions of a triangular number
finding a bound for their maximal part. Then we present a constructive method
that allow us to classify and count the maximal unrefinable partitions showing
a bijective correspondence with the set of partitions into distinct parts.

In the fifth chapter we generalise the classification of maximal unrefinable
partitions to the non-triangular case, exploiting the method used in the pre-
vious chapter. In this case we show that we can express maximal unrefinable
partitions in terms of suitable partitions into distinct parts depending by the
distance of the weight from the next triangular number.

In the last chapter we present some relations between unrefinable partitions
and numerical semigroups that can be useful to find new properties about un-
refinable partitions. We conclude the chapter by formulating two conjectures
about the density of unrefinable partitions trying to count the unrefinable parti-
tions fixing the largest part (see Conjecture 1) and the number of missing parts
(Conjecture 2).
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Chapter 1

Integer Partitions

In this chapter we introduce the integer partitions. We analyse Euler’s theorem
and generating functions of subsets of integer partitions in the first section,
introducing Ferrer’s diagrams and Young’s tableaux. In the second section we
show arithmetic properties of partitions. We conclude the chapter by showing
relations between partitions and Dyck paths.

1.1 Generating functions and Euler Theorem

Definition 1.1. A partition λ = (λ1, λ2, · · · , λt−1, λt) of an integer n is a
finite non-increasing sequence of positive integers such that

∑t
i=1 λi = n. If λ

is a partition of n we write λ ⊢ n
Each λi is called part of partition and the element λ1 is called maximal part.
We call length of a partition the number of parts of partition and we write
len (λ) = t.
For all 1 ≤ i ≤ t, mi (λ) is the number of parts of λ equal to i.
We can also see a partition of an integer as an increasing sequences of positive
integer with their multiplicity, so we can write
λ =

(
1m1(λ), 2m2(λ), 3m3(λ), · · · , jmj(λ)

)
⊢ n, where

∑
1≤h≤j mh (λ)h = n.

We define a useful number for partitions

zλ =

j∏
i=1

imi(λ)mi (λ)!

One of the first problems that arise about integer partitions is counting them.
Euler found the solution using the generating function

F (x) =
∑
n≥0

p(n)xn

where p(n) is the number of partitions of n.
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If we take the infinite product∏
n≥1

(
1 + xn + x2n + x3n + · · ·

)
(1.1)

we obtain a polynomial 1 + a1x + a2x
2 + a3x

3 + · · · where every coefficient
ai coincides with p(i), because every partition of i contributes just 1 to the

coefficient of xi. For example, x5 =
(
x1
)5

=
(
x1
)3 (

x2
)1

=
(
x1
)2 (

x3
)1

=(
x1
)1 (

x2
)2

=
(
x1
)1 (

x4
)1

=
(
x2
)1 (

x3
)1

=
(
x5
)1
, indeed the partitions of 5 are

7:
(
15
)
,
(
13, 2

)
,
(
12, 3

)
,
(
1, 22

)
, (1, 4) , (2, 3) , (5).

Theorem 1.2 (Euler). When |x| < 1

F (x) =
∏
n≥1

1

1− xn
(1.2)

Starting from Euler formula, it is possible to count particular types of integer
partitions. First we have to give the following definition.

Definition 1.3. Let O, E, D, DO, DE be respectively the sets of integer par-
titions into parts which are odd, even, distinct, both distinct and odd and both
distinct and even.
We denote by P≤m the set of partitions whose each part is lower or equal to m.

For obtaining the generating function of partitions whose each part is lower
than m, it is enough to consider (1.1) up to m

F (x,P≤m) =

m∏
n=1

1

1− xn
.

In the same way, for describing the partitions whose parts belonging to a subset
H ⊂ N we have to replace the infinite product in (1.1) with

∏
i∈H and so we

have

F (x,O) =
∞∏
i=1

1

1− x2i−1

F (x, E) =
∞∏
i=1

1

1− x2i

while for the set D we obtain

F (x,D) = (1 + x)
(
1 + x2

) (
1 + x3

)
· · · (1.3)

The following results give the relationship between F (x,D) and F (x,O).

Proposition 1.4. The number of partitions of n into distinct parts is equal to
the number of partitions in odd parts
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Proof. It is enough to notice the following equalities

F (x,D) = (1 + x)
(
1 + x2

) (
1 + x3

)
· · · = 1− x2

1− x
1− x4

1− x2
1− x6

1− x3
· · ·

=
1

(1− x) (1− x3) · · ·
= F (x,O)

Notice that it is possible to prove the previous proposition without consid-
ering the generating functions. Let us consider for every positive integer the
corresponding binary form

∑
i∈I 2

i for some I finite subset of N.
Let λ = (1m1 , 3m2 , · · · ) ∈ O, where every mi = 2ai + 2bi + · · · . Then we can
take the sequence

(
2a1 , 2b1 , · · · , 2a23, 2b23, · · ·

)
and, after reordering in decreas-

ing order we obtain a partition into distinct parts.
Let

K (a) = K (a, x) = (1 + ax)
(
1 + ax3

) (
1 + ax5

)
· · · (1.4)

so we can write K (a) = 1 +
∑

i≥1 cia
i, where ci = ci (x). Clearly K (a) =

(1 + ax)K
(
ax2
)
, and so

1 + c1a+ c2a
2 + · · · = (1 + ax)

(
1 + c1ax

2 + c2a
2x4 + · · ·

)
and collecting the coefficients we obtain c1 = x + c1x

2, c2 = c1x
3 + c2x

4, . . . ,
cm = cm−1x

2m−1 + cmx
2m, so:

cm =
x2m−1

1− x2m
cm−1

=
x2m−1

1− x2m
x2m−3

1− x2m−2
cm−2

...

=
xm

2

(1− x2) · · · (1− x2m−2) (1− x2m)

Finally we can rewrite (1.4)

K (a) = 1 +
x

1− x2
a+

x4

(1− x2) (1− x4)
a2 + · · ·

Proposition 1.5.

F
(
x,DO) = 1 +

x

(1− x2)
+

x4

(1− x2) (1− x4)
+ · · ·

F
(
x,DE) = 1 +

x2

(1− x2)
+

x6

(1− x2) (1− x4)
+ · · ·
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Proof. In Equation (1.4) it is enough to substitute a = 1 in the case of odd and
distinct parts, and a = x in the case of even and distinct parts.

It is useful represent the partitions with the Ferrers graphs or the Young
diagrams. Let λ = (λ1, λ2, · · · , λt) be a partition, for representing λ with a
Ferrers graph we draw λ1 point in a first line, λ2 in the second one and so on;
for representing λ with a Young diagram, we draw in the same way squares
instead of points.

Example 1.6. For λ = (6, 4, 3, 1) the representations of λ by Ferrers graph and
Young diagram are respectively

Definition 1.7. Let λ = (λ1, · · · , λt) be a partition, we can define a new par-
tition λ′ = (λ′1, λ

′
2, · · · , λ′k) choosing λ′i as the number of parts of λ that are

greater or equal to i. We call λ′ the conjugate of λ.
If we obtain λ = λ′ we call λ a self-conjugate partition. We denote by S the
set of self-conjugate partitions.

Example 1.8. The definition of conjugate partition is more clear in the graphi-
cal representation. The partition λ′ is obtain by counting the dots in the columns;
in other words, the conjugate is obtained by reflecting the main diagonal.

From the partition λ = (6, 4, 3, 1) we obtain λ′ = (4, 3, 3, 2, 1, 1)

Proposition 1.9. The number of partitions of n with at most m parts equals
the number of partitions of n in which no part exceeds m.
In particular the number of partitions of n into m parts is equal to the number
of partitions of n into parts the largest of which is m.

Proof. The conjugate map is a one-to-one correspondence.

Definition 1.10. For every point in the Ferrers representation of a partition
or cell in Young diagram we define the arm of a point as the number of points
(or cells) in the same row on the right and the leg as the number of points (or
cells) down in the same column.
We call hook of a point the sum of the arm and the leg of a point plus one,
hence the hookset the set of all hooks.
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Example 1.11. If we consider the same partition of the previous examples
λ = (6, 4, 3, 1), we can fill the cells of its Young diagram with the value of their
hook, and we obtain

1

4

6

9

2

4

7

1

3

6

1

4 2 1

The hookset of λ is {1, 2, 3, 4, 6, 7, 9}

Proposition 1.12. The number of partitions λ of n such that λ ∈ DO is equal
to the number of partitions of n that are self-conjugate.

Proof. Let λ be a self-conjugate partition. If we take a point on the main
diagonal it is possible to see that its arm and its leg are equal by the symmetry,
so the hook for a point in the main diagonal is a odd number.
We can also see that all the hooks in the main diagonal are different and strictly
decreasing starting from the top left.
We can construct a new partition λ′ whose parts are the hooks of the points in
the main diagonal of λ, and this is a partition into both odd and distinct parts.

Example 1.13. If we take the partition λ = (4, 4, 3, 2):

we obtain λ′ = (7, 5, 1).

It is possible to prove the previous proposition using the respective generat-
ing functions.
A self-conjugate partition of n has a central square ofm2 points identified by the
main diagonal and two conjugate tails that represent a partition of 1

2

(
n−m2

)
in at most m parts.
Conversely if m2 ≤ n, then there is a set of self-conjugate partitions of n based
on a square of m2 points.
We know that the number of partitions of 1

2

(
n−m2

)
whose parts do not exceed

m corresponds to

xm
2

(1− x2) · · · (1− x2m)
,

which corresponds, by Proposition 1.9, to the number of partitions of 1
2

(
n−m2

)
in at most m parts, so we have

F (x,S) = 1 +
∑
m≥1

xm
2

(1− x2) · · · (1− x2m)
= F

(
x,DO) .
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We observe that not only the self-conjugate partitions contain a square in their
Ferrers representation. Let λ ⊢ n, the graphical representation contains a square
which its diagonal coincides with the main diagonal of Ferrers graph (it is called
Durfee square), and two tails.

Similarly it is possible to reformulate the Euler’s theorem (Theorem 1.2).

Proposition 1.14. Let |x| < 1

∏
i≥1

1

1− xi
= 1 +

∑
j≥1

xj
2

(1− x)2 · · · (1− xj)2

Proof. The left part of the equation is the generating function of any partition,
so we have to show that the right side is a method to count the partitions too.
Let λ ⊢ n, we can assume that the Dufree square contains j2 points and the
two tails represent a partition of a positive integer m into no more j parts and
a partition of a positive integer l into parts don’t exceed j; obviously n, m, j
and l satisfy j2 +m+ l = n.
We know that the number of partitions of l into parts lower than j corresponds
to the coefficient of xl of

1

(1− x) · · · (1− xj)
and the number of partitions of m into no more j parts is the coefficient of xm

in the same expression. So the number of possible pairs of tails in a partition
of n whose the Dufree square is j2 is the coefficient of xn−j2 of(

1

(1− x) · · · (1− xj)

)2

or the coefficient of xn in

xj
2

(1− x)2 · · · (1− xj)2

We conclude this section proving the Euler’s theorem on pentagonal num-
bers.

Definition 1.15. Let λ = (λ1, · · · , λt) be a partition. The term λt is the
smallest part of partition, we denote it s (λ) = λt and call it base of the
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Ferrers graph.
We define the slope of λ the number of consecutive parts of λ, starting from
λ1, whose difference is equal to 1, or in other words the maximal j such that
λj = λ1 − j + 1. We denote by σ (λ) the slope

s (λ)

σ (λ)

Theorem 1.16 (Euler’s Pentagonal Number Theorem). Let pe (D, n) and po (D, n)
the number of partitions of n into an even or odd number of parts. Then:

pe (D, n)− po (D, n) =

{
(−1)m if n = 1

2m (3m± 1)

0 otherwise

Proof. We introduce two new graphical transformations of a partition. A op-
eration ω that removes the base of the partition and glues it in parallel and
outside position of the slope, so the base become the new slope, and the inverse
operation Ω that removes the slope and glues it as the new base of the partition.
We have three cases.
Case 1. s (λ) < σ (λ)
We can only apply operation ω, because if we do Ω there is a violation in the
decreasing order of partition of partition.

ω

Notice that the new partition still be a partition into distinct parts, but it
changes the parity of the number of parts.
Case 2 s (λ) = σ (λ)
We cannot apply Ω because otherwise we obtain a new partition where the two
smallest parts are not distinct.
It is possible to apply only ω, but we have a limitation when s (λ) and σ (λ) have
intersection, in particular when λ is a partition in m parts and s (λ) = m. In
this case it is easy to calculate the weight of partition because also the slope is
equal to m and then we obtain n = m+(m+ 1)+ ·+(2m− 1) = 1

2m (3m− 1).
Case 3 s (λ) > σ (λ)

9



In the last case we cannot apply ω but it is possible to apply Ω.

Ω

Also Ω sends a partition into distinct parts in another partition into distinct
parts and changes the parity of parts. Also in this case we have a limit case. It
is not possible apply Ω when the slope intersects the base and s (λ) = σ (λ)+1,
because after the transformation we obtain the two smallest parts equal. This
is the case when λ has m parts and s (λ) = m + 1, so we have again n =
(m+ 1) + (m+ 2) + · · ·+ (2m) = 1

2m (3m+ 1).
When n ̸= 1

2m (3m± 1), all the foregoing procedures change the parity of the
number of parts of the partitions and exactly one case is applicable to any
partition of n. So the operations establish a one-to-one correspondence and
then we obtain pe (D, n) = po (D, n). When n = 1

2m (3m± 1) we have an excess
of one partition into an even or an odd number of parts respectively when m is
even or odd, so pe (D, n)− po (D, n) = (−1)m.

Theorem 1.17 (Euler pentagonal numbers). Let |x| < 1

∏
n≥1

(1− xn) =
∞∑

n=−∞
(−1)n x 1

2n(3n+1) (1.5)

Proof. If we look at the infinite product

(1− x)
(
1− x2

) (
1− x3

)
· · ·

it is possible see that every coefficient of xi has contribution 1 if we multiply a
even number of xjh , in other words if we consider a partition of i into an even
number of different parts; and it has contribution −1 if we have a partition of
i into an odd number of different parts. So:∏

n≥1

(1− xn) = 1 +
∑
n≥1

(pe (D, n)− po (D, n))xn

By Theorem 1.16 we can rewrite the right part of the equation:

∞∑
n=−∞

(−1)n x 1
2n(3n+1) = 1 +

∞∑
n=1

(−1)n x 1
2n(3n+1) +

−∞∑
n=−1

(−1)n x 1
2n(3n+1)

= 1 +

∞∑
n=1

(−1)n x 1
2n(3n+1) +

∞∑
n=1

(−1)n x 1
2n(3n−1)

and we obtain the equivalence of the two equation.
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Corollary 1.18. Let n > 0:

p (n)− p (n− 1)− p (n− 2) + · · ·

· · ·+ (−1)m p

(
n− 1

2
m (3m− 1)

)
+ (−1)m p

(
n− 1

2
m (3m+ 1)

)
+ · · · = 0

where p (M) = 0 if M < 0

Proof. Let an the left side of the equation. So

∑
n≥0

anx
n =

∑
n≥0

p (n)xn

1 +
∑
m≥0

(−1)m
(
x

1
2m(3m−1) + x

1
2m(3m+1)

)
=

∏
n≥1

(1− xn)−1

∏
n≥1

(1− xn)


= 1

then an = 0 when n > 0.

1.2 Arithmetic properties of p (n)

It is possible to demonstrate Theorem 1.17 as a special case of Jacobi’s theorem.

Theorem 1.19 (Jacobi). If |x| < 1, then

∞∏
n=1

(
1− x2n

) (
1 + x2n−1z

) (
1 + x2n−1z−1

)
= 1 +

∞∑
n=1

xn
2 (
zn + z−n

)
=

∞∑
n=−∞

xn
2

zn

Proof. See [HWHBS08] section 19.8

If we write xk instead of x, −xl instead of z and n instead of n + 1 on the
left hand we obtain

∞∏
n=0

(
1− x2kn+2k

) (
1− x2kn+k+l

) (
1− x2kn+2k−l

)
=

∞∑
n=−∞

(−1)n xkn
2+ln,

(1.6)
and if we set k = 3

2 and l = 1
2 we obtain

∞∏
n=0

(
1− x3n+3

) (
1− x3n+2

) (
1− x3n+1

)
=

∞∑
n=−∞

(−1)n x 1
2n(3n+1),

that is the Euler’s Pentagonal Number Theorem.
Now we see two other special cases of Jacobi’s theorem that are useful to show
some arithmetic properties of p (n).
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Corollary 1.20. If k = 5
2 and l = 3

2 in equation (1.6) we obtain

∞∏
n=0

(
1− x5n+1

) (
1− x5n+4

) (
1− x5n+5

)
=

∞∑
n=−∞

(−1)n x 1
2n(5n+3); (1.7)

and if k = 5
2 and l = 1

2 give

∞∏
n=0

(
1− x5n+2

) (
1− x5n+3

) (
1− x5n+5

)
=

∞∑
n=−∞

(−1)n x 1
2n(5n+1); (1.8)

Another application of Jacobi’s theorem gives us the following equation.

Theorem 1.21.

∞∏
n=1

(1− xn)3 =

∞∑
m=0

(−1)m (2m+ 1)x
1
2m(m+1) (1.9)

Examining Macmahon’s table of p (n) [Mac16], Ramanujan conjectured and
proved three arithmetic properties associated with the moduli of some prime
numbers.

Theorem 1.22 (Ramanujan). Let m ≥ 0, then

p (5m+ 4) ≡ 0 (mod 5)

Proof. We consider

x

( ∞∏
n=1

1− xn
)4

using (1.5) and (1.9) we can write

x

( ∞∏
n=1

1− xn
)4

= x

( ∞∑
r=−∞

(−1)r x 1
2 r(3r+1)

)( ∞∑
s=0

(2s+ 1)x
1
2 s(s+1)

)

=

∞∑
r=−∞

∞∑
s=0

(−1)r+s
xk,

where k = 1 + 1
2r (3r + 1) + 1

2s (s+ 1).
If we suppose k ≡ 0 (mod 5) then

8k = 8 + 12r2 + 4r + 4s2 + 4s

= 2 (r + 1)
2
+ (2s+ 1)

2
+ 10r + 5 ≡ 0 (mod 5)

so we obtain 2 (r + 1)
2
+ (2s+ 1)

2 ≡ 0 (mod 5). It is possible to see that

2 (r + 1)
2 ≡ 0, 2, 3 (mod 5) and (2s+ 1)

2 ≡ 0, 1, 4 (mod 5).

So we have 2 (r + 1)
2 ≡ 0 (mod 5) and (2s+ 1)

2 ≡ 0 (mod 5), in particular

12



(2s+ 1) ≡ 0 (mod 5), and thus the coefficient of x5m+5 in x
(
(1− x)

(
1− x2

)
· · ·
)4

is divisible by 5.
Now we consider (1− x)−5

and its binomial expansion

1

(1− x)5
=

∞∑
i=0

(
i+ 4

i

)
xi

It is easy to see that all the coefficients are divisible by 5, except those of x5m

which are equal 1 modulo 5. We can express this by writing

1

(1− x)5
≡ 1

1− x5
(mod 5)

where this notation implies that the coefficients of every power of x are congruent
modulo 5.
It follows that (

1− x5
) (

1− x10
)
· · ·

(1− x)5 (1− x2)5 · · ·
≡ 1 (mod 5)

Hence the coefficient of x5m+5 in

x
(
(1− x)

(
1− x2

)
· · ·
)4 (1− x5) (1− x10) · · ·

((1− x) (1− x2) · · · )5
= x

(
1− x5

) (
1− x10

)
· · ·

(1− x) (1− x2) · · ·

is a multiple of 5.
Then

x

(
1− x5

) (
1− x10

)
· · ·

(1− x) (1− x2) · · ·
(
1 + x5 + x10 · · ·

) (
1 + x10 + x20 · · ·

)
=

x

(1− x) (1− x2) · · ·

= x+

∞∑
n=2

p (n− 1)xn

so the coefficient of x5m is a multiple of 5.

Other two properties have been proved using the same method.

Theorem 1.23 (Ramanujan). Let m ≥ 0, then

p (7m+ 5) ≡ 0 (mod 7)

p (11m+ 6) ≡ 0 (mod 11)

He also made a general conjecture [Ram19] that

p (n) ≡ 0 (mod δ)

if δ = 5a, 7b, 11c and 24n ≡ 1 (mod δ). Ramanujan proved it for 52, 72, 112

[AHAW00]. Watson generalised the proof for 5a [Wat38], and Atkin for 11c

[Atk67]. Then, after Gupta found a counterexample for p (243), [Gup80], Wat-
son modified the conjecture, stating and proving it for only special exponents
of 7 [Wat38].

Now we state two identities which resemble Proposition 1.5
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Theorem 1.24 (Rogers-Ramanujan identities). Let |x| < 1

1 +

∞∑
m=1

xm
2

(1− x) · · · (1− xm)
=

∞∏
m=0

1

(1− x5m+1) (1− x5m+4)
(1.10)

1 +

∞∑
m=1

xm(m+1)

(1− x) · · · (1− xm)
=

∞∏
m=0

1

(1− x5m+2) (1− x5m+3)
(1.11)

Proof. We start to prove equation (1.10).
Let us denote

P0 = 1 Pr =

r∏
s=1

1

1− xs

λ (r) =
1

2
r (5r + 1) Qr = Qr (a) =

∞∏
s=r

1

1− axs

and define the operator η by

ηf (a) = f (ax)

Let Hm (a) be the auxiliary function

Hm (a) =

∞∑
r=0

(−1)r a2rxλ(r)−mr
(
1− amx2mr

)
PrQr (1.12)

where m = 0, 1 or 2.
Let us consider

Hm −Hm−1 =

∞∑
r=0

(−1)r a2rxλ(r)PrQr

(
x−mr − amxmr − xr(1−m) + am−1xmr−r

)
=

∞∑
r=0

(−1)r a2rxλ(r)PrQr

(
x−mr (1− xr) + am−1xr(m−1) (1− axr)

)
Notice that (1− xr)Pr = Pr−1 and (1− axr)Qr = Qr+1 and so

Hm −Hm−1 =

∞∑
r=0

(−1)r a2r+m−1xλ(r)+r(m−1)PrQr+1

+

∞∑
r=1

(−1)r a2rxλ(r)+mrPr−1Qr

We change r into r + 1 in the second sum and we note that λ (r + 1)− λ (r) =
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5r + 3, so we have

Hm −Hm−1 =

∞∑
r=0

(−1)r PrQr+1

(
a2r+m−1xλ(r)+r(m−1) − a2(r+1)xλ(r+1)−m(r+1)

)
=

∞∑
r=0

(−1)r PrQr+1

(
a2r+m−1xλ(r)+r(m−1)

(
1− a3−mx(2r+1)(3−m)

))
=

∞∑
r=0

(−1)r PrQr+1a
m−1 (ax)

2r
xλ(r)+r(m−3)

(
1− (ax)

3−m
x2r(3−m)

)
=

∞∑
r=0

(−1)r PrQr+1a
m−1η

(
a2rxλ(r)−r(3−m)

(
1− a3−mx2r(3−m)

))
Since η (Qr) = Qr+1, we have

Hm −Hm−1 = am−1η

( ∞∑
r=0

(−1)r a2rxλ(r)−r(3−m)
(
1− a3−mx2r(3−m)

))
= am−1η (H3−m)

If we set m = 1 and m = 2, recalling that H0 = 0, we have

H1 = ηH2

H2 −H1 = aηH1

and summing the two equations we obtain

H2 = ηH2 + aη2H2 (1.13)

Now we can expand H2 in powers of a

H2 =

∞∑
s=0

csa
s

where cs are independent of a. Using (1.13) we obtain∑
csa

s =
∑

csx
sas +

∑
csx

2sas

and we can explicit the value of cs equaling the coefficients of as, recalling that
c0 = 1. So we have

cs =
x2s−2

1− xs
cs−1 =

x2+4+···+2(s−1)

(1− x) · · · (1− xs)
= xs(s−1)Ps

and finally

H2 (a) =

∞∑
s=0

asxs(s−1)Ps
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If we set a = x we obtain the left side of (1.10).
Note that

PrQr (x) =

r∏
s=1

1

1− xs
∞∏
s=r

1

1− xs+1
=

∞∏
s=1

1

1− xs
= P∞

and by Equation (1.8), we obtain

H2 (x) = P∞

∞∑
r=0

(−1)r xλ(r)
(
1− x2(2r+1)

)
= P∞

( ∞∑
r=0

(−1)r xλ(r) −
∞∑
r=0

(−1)r xλ(r)+2(2r+1)

)

= P∞

( ∞∑
r=0

(−1)r xλ(r) +
∞∑
r=1

(−1)r xλ(r−1)+2(2r−1)

)

= P∞

(
1 +

∞∑
r=1

(−1)r
(
x

1
2 r(5r+1) + x

1
2 r(5r−1)

))

= P∞

∞∑
r=−∞

(−1)r x 1
2 r(5r+1)

= P∞

∞∏
n=0

((
1− x5n+2

) (
1− x5n+3

) (
1− x5n+5

))
=

∞∏
n=0

1

(1− x5n+1) (1− x5n+4)
,

that is the right side of (1.10).
To prove Equation (1.11) we can proceed in the same way using h1 = ηH2 (a) =∑
asxs

2

Ps and Equation (1.7).

We conclude this section describing a combinatorial interpretation of Theo-
rem 1.24.
The sum in the left side of equation (1.10) is the generating function for parti-
tions of n−m2 whose parts are lower or equal to m or, by Proposition 1.9, for
partitions of n−m2 into at most m parts.
Note that m2 = 1 + 3 + · · · + (2m− 1), so if we represent it as Ferrers graph,
we obtain a graph with m rows. Adding a partition of n −m2 into at most m
parts to the graph, we obtain a partition of n in distinct parts whose minimal
difference is 2.
For example, if n = 9 and m = 2 we can take λ = (3, 2) as partition of 5

and we obtain λ′ = (6, 3) ⊢ 9.
The right side of equation (1.10) enumerates partitions into parts of the form
5m+ 1 and 5m+ 4.
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Proposition 1.25. The number of partitions of n with minimal difference 2 is
equal to the number of partitions into parts of the form 5m+ 1 and 5m+ 4.

Example 1.26. Let n = 11, so m = 1, 4 or 9. When m = 1 we obtain (11),
m = 4 gives (10, 1), (9, 2), (8, 3), (7, 4) and for m = 9 we have (7, 3, 1) and
(6, 4, 1). So in total we have 7 partitions.
If we consider the partitions into parts of the forms 5m+1 and 5m+4 we have
(11),

(
9, 12

)
, (6, 4, 1),

(
6, 15

)
,
(
42, 13

)
,
(
4, 17

)
,
(
111
)
, again 7 partitions.

The combinatorial interpretation of (1.11) is obtained in the same way noting
that m (m+ 1) = 2 + 4 + · · ·+ 2m.

Proposition 1.27. The number of partitions of n into parts not less than 2 and
with minimal difference 2 is equal to the number of partitions of n into parts of
the form 5m+ 2 and 5m+ 3.

1.3 Relation with Dyck paths and Parking func-
tions

In this section we will see a combinatorical aspect of partitions and their relation
with the Dyck paths and symmetric functions and parking functions, analysing
the standard case [Whi70].
We start introducing an important kind of numbers, a sequence of natural num-
bers that occur in more than 100 counting problems [Sta99].

Definition 1.28. We call Catalan numbers a sequence of natural numbers
that satisfies the recurrence relations

C0 = 1 Cn =

n∑
i=1

Ci−1Cn−i

The n-th Catalan number can be expressed directly in terms of the binomial
coefficient

Cn =
1

n+ 1

(
2n

n

)
Definition 1.29. A classical Dyck path of order n is a minimal lattice path
in Z2 from the point (0, 0) to the point (n, n) consisting of east and north steps
which stay above the diagonal y = x. We write DPn to indicate the set of all
classical Dyck path of order n.
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Given positive integer a, b ∈ N, we can define an (a, b)-Dyck path as a minimal
lattice path from the point (0, 0) to the point (b, a) consisting of east and north
steps which stay above the diagonal y = a

bx. If a and b are coprime we call these
rational Dyck paths. We denote this set by DPa,b.
We can define a Dyck word from a Dyck path labelling every step with letter
N or E.

For counting the number of Dyck paths of order n, we need the following
equality.

Lemma 1.30. Let n ≥ 1, then

n∑
i=0

1

i+ 1

(
2i

i

)(
2 (n− i)
n− i

)
=

(
2n+ 1

n

)
Proof. By the binomial Theorem

(1− 4x)
− 1

2 = 1 +

(
2

1

)
x+

(
4

2

)
x2 + · · ·+

(
2i

i

)
xi + · · ·

(1− 4x)
1
2 = 1− 2x− 2

(
2

1

)
x2

2
+ · · · − 2

(
2i

i

)
xi+1

i+ 1
+ · · ·

Since the product of (1− 4x)
− 1

2 and (1− 4x)
1
2 is 1, then all the coefficients of

xn are equal to 0 for each n ≥ 1. If we consider the coefficient of xn + 1, we
have(
2 (n+ 1)

n+ 1

)
−2
((

2n

n

)
+ · · ·+

(
2i

i

)
1

n− i+ 1

(
2 (n− i)
n− i

)
+ · · ·+ 1

n+ 1

(
2n

n

))
= 0,

so
n−1∑
i=0

(
2i

i

)
1

n+ 1− i

(
2 (n− i)
n− i

)
=

1

2

(
2 (n+ 1)

n+ 1

)
=

(
2n+ 1

n

)

Proposition 1.31. The number of classical Dyck paths of order n is equal to
Cn

Proof. We consider a lattice in Z2 from (0, 0) to the point (n, n). The number
of minimal paths is

(
2n
n

)
.

Notice that every path that is not a Dick path passes the right of the diagonal
at least one time, so we can classify them according to the point at which they
cross the diagonal for the first time.
We consider a path that passes the diagonal for the first time in the point (k, k)
and we cut it in two parts. The first one is a Dyck path from (0, 0) to (k, k),
and the second one is a path from (k + 1, k) to (n, n). So the total number of
this kind of paths is

#DPk

(
2 (n− k)− 1

n− k

)
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We can observe that this kind of paths is equal to paths that are Dyck paths
until the point (k, k) and then go north, so

#DPk

(
2 (n− k)− 1

n− k

)
=

1

2
#DPk

(
2 (n− k)
n− k

)
.

If we sum k from 0 to n− 1 we obtain all the complementary of Dyck paths set

n−1∑
k=0

1

2
#DPk

(
2 (n− k)
n− k

)
=

(
2n

n

)
−#DPn

Notice that #DP0 = 1 =
(
0
0

)
and #DP1 = 1 = 1

2

(
2
1

)
, so we suppose that

#DPi =
1

i+1

(
2i
i

)
for i < n and we obtain

2

(
2n

n

)
− 2#DPn =

n−1∑
k=0

1

1 + k

(
2k

k

)(
2 (n− k)
n− k

)
and using Lemma 1.30 we have

2

(
2n

n

)
− 2#DPn =

(
2n+ 1

n

)
− 1

n+ 1

(
2n

n

)
so

#DPn =
1

2

(
2 +

1

n+ 1
− 2n+ 1

n+ 1

)(
2n

n

)
=

1

n+ 1

(
2n

n

)
= Cn

Remark 1.32. We can observe that every Dyck path defines in a unique way
a Ferrers graph in the cells above it.
We denote by δn the Ferrers graph associated to the Dyck path of length 2n that
touches the diagonal in every point, hence δn = (n− 1, n− 2, . . . , 1).
This is the Ferrers graph with the larger area and all the other partitions are
contained in it. We indicate this fact by λ ⊂ δn.

Notice that by Proposition 1.31

# {λ|λ ⊆ δn} = Cn
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Definition 1.33. A semistandard Young tableau is obtained filling the boxes
of a Young diagram with elements of a totally ordered set such that the entries
weakly increase along each row and strictly increase down each column.
A semistandard Young tableau of n cells is called standard if its entries are in
bijection with [n], in other words the entries strictly increase along each row.

Example 1.34. Let us consider the Young tableau associated to the partition
λ = (6, 4, 3, 1). If we fill the boxes as follows

5

4

3

1

6

3

2

7

5

2

6

3 6 9

5

4

3

1

11

7

2

13

10

6

12

8 9 14

we obtain a semistandard Young tableau on the left and a standard Young tableau
on the right.

We define now two operations with the Young diagrams. Let λ be a partition
represented by a Young diagram and let 1n the partition of n into n parts we
define the sum λ+ 1n graphically by

+

and we obtain the partition λ∗ = (λ1 + 1, λ2 + 1, · · · , λt + 1).
Let λ be a partition and µ ⊂ λ a subpartition, we define the skew diagram the
set-theoretic difference of the Young diagrams λ and µ. We denote this by λ/µ.
For example if λ = (4, 3, 2, 2, 1) and µ = (3, 2, 1, 1) we obtain the skew shape

A skew diagram represents a skew standard tableau if all the entries increase
down each column.

We introduce now a new set of functions.

Definition 1.35. A parking function of size n is a sequence (a1, a2, . . . , an) of
positive integers such that its increasing rearrangement (b1, b2, . . . , bn) satisfies
bi ≤ i. We denote the set of parking functions of size n by PFn.
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The parking functions were introduced by Konheim and Weiss [KW66] to
study the widely used storage device of hashing. They show that there are (n+
1)n−1 parking functions of size n. There are other combinatorial demonstrations
as in the enumerative theory of trees and forests by Riordan [Rio69].

Example 1.36. The parking functions of length 3 are:

(1, 1, 1) (1, 1, 2) (1, 2, 1) (2, 1, 1)
(1, 1, 3) (1, 3, 1) (3, 1, 1) (1, 2, 2)
(2, 1, 2) (2, 2, 1) (1, 2, 3) (1, 3, 2)
(2, 1, 3) (2, 3, 1) (3, 2, 1) (3, 1, 2)

We can observe that there are 42 = 16 parking functions of size 3, as expected.

Notice that there exists a bijection between increasing rearrangement of
parking functions and Dych paths. Let B = (b1, b2, · · · , bn) an increasing park-
ing function, we call mi the number of times that i occurs in B, so we can define
the Path word Nm1ENm2E · · ·ENmnE. For example if B = (1, 1, 2, 2, 4) and
so N2EN2EENEE, that correspond to

Definition 1.37. Given a parking function P = (a1, · · · , an) we draw the Dyck
path corresponding to the increasing rearrangement. The i-th vertical run of the
path has length mi. If mi = k we have i = aj1 = · · · = ajk and then we label
the i-th vertical run by the set of indices {j1, · · · , jk}. We do this by filling the
boxes to the right of i-th vertical run with the labels j1 < · · · < jk increasing
down the column. This is a labeled Dyck path.

For example if P = (2, 4, 1, 2, 1), we obtain

5

3

4

1

2

Notice that it is possible to represent every labelled Dyck path associated to
a partition λ as a skew standard Young tableau of shape (λ+ 1n) /λ.
We can observe that Sn acts on parking functions by permuting subscripts. So
for any σ ∈ Sn and P ∈ PFn, we obtain that P and σ · P have the same Dyck
path, hence the orbits of this action are in bijection with the Dyck paths.

21



Translating the action of Sn on labelled Dyck paths, we can observe that Sn

acts on the labelled path by permuting the labels and then reordering the labels
in each column, so if P ∈ PFn, σ · P is a skew standard tableau of the same
shape of P . Notice that if a permutation τ ∈ Sn permutes only the labels in a
single column, then τ · P is the same skew standard Young tableau of P .
Suppose λ be a partition of n and a given Dyck path has mi = mi (λ) vertical
runs of length i, for 1 ≤ i ≤ n. For example if λ = (2, 2, 1) we can obtain the
previous Dyck path. The orbit corresponding to this Dyck path has stabiliser
isomorphic to the Young subgroup

Sλ ∼= Sm1
1 × Sm2

2 × · · · × Smn
n . (1.14)

For example if λ = (2, 2, 1) and we choose P = (2, 4, 1, 2, 1) the stabiliser is
generated by the permutation (1, 4) and (3, 5).
Now we count the number of possible Dyck paths with a vertical structure
defined by λ. To do this we count the rational Dyck paths with a fixed vertical
structure.

Proposition 1.38. Let a and b be coprime positive integer. Let m0,m1, . . . ,ma

be non-negative integers such that
∑

i≥0 imi = a and
∑

i≥0mi = b.
Then the number of (a, b)-Dyck paths with mi vertical runs of length i is

(b− 1)!

m0!m1! · · ·ma!

Proof. Let Y be the set of minimal lattice paths π from the point (0, 0) to the
point (b, a) such that π has mi vertical runs of length i, for all 1 ≤ i ≤ a.
Let X be the set of words on the alphabet {v0, . . . , va} containing mi copies of
vi for each i.
We can define a function f : X → {N,E}∗ by replacing each letter vi by a word
N iE, so f (v0) is equal to E. Notice that, if w ∈ X, f (w) has a letter equal
to N and b letter equal to E and the last letter of f (w) is a E, so f (w) ∈ Y .
Notice that f is a bijection, hence

#Y = #X =

(
b

m0,m1, · · · ,ma

)
=

b!

m0! · · ·ma!

Let π ∈ Y , we define the level li to the i-th lattice point of π by recurrence. Let
us set l0 = 0 and for each i ≥ 1

li =

{
li−1 + b, if the i-th step of π is north

li−1 − a, if the i-th step of π is east

Notice that the level of points (x, y) is equal to by−ax. Indeed l0 = 0 and if we
suppose the point (x, y) has level equal to by − ax, the next point in the path
might be (x+ 1, y) and its level is by − a (x+ 1) or it might be (x, y + 1) and
its level is equal to b (y + 1)− ax.
Let (xi, yi) and (xj , yj) be the i-th and j-th points of π, with i < j, so we have
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0 ≤ xi ≤ xj ≤ b and 0 ≤ yi ≤ yj ≤ a
Suppose li = lj , hence byi − axi = byj − axj that is equal to b (yj − yi) =
a (xj − xi). Since a and b are coprime and yj − yi and xj −xi are both positive,
we obtain that a divides yj−yi and b divides xj−xi. The only possible solution
is xi = yi = 0, xj = b and yj = a, and we obtain the starting and the finishing
points of the path. So the levels l1, l2, · · · , la+b are all different.
Notice that a path in Y is a (a, b)-Dyck path if and only if every level are non-
negative.
Now we define a equivalence relation ∼ in Y : π1 ∼ π2 if and only if there exist
w1, w2 ∈ X such that f (w1) = π1 and f (w2) = π2 and w2 is a cyclic shift of
the letters of w1.
If we fix w ∈ X, then f (w) = π ∈ Y . By cyclically shifting w we obtain b paths
π = π0, π1, . . . , πb−1 which are equivalent to π.
Suppose π has east steps at position i1 < i2 < · · · < ib = a + b and let i0 = 0.
Cyclically shifting w by k steps has the effect of cyclically shifting π by ik steps,
where 0 ≤ k ≤ b − 1. So the sequence of the levels (l0, l1, · · · , la+b−1) for π
became in πk

(lik − lik , lik+1 − lik , . . . , la+b − lik , l1 − lik , . . . , lik−1 − lik)

Let m0 be the minimum level in π, hence m0− lik is the minimum level in πk for
all k. Since all the levels in π are distinct then the b paths π0, . . . , πb−1 all have
distinct minimum level and hence these paths are distinct. So every equivalence
class in Y has b distinct elements.
Notice that the minimum level m0 in π occurs at the end of an east step, so
m0 = lij , for some j. For every k the minimum level is lij − lik , which is non-
negative if and only if lij ≥ lik . Since lij is the minimum level in π and all levels
are distinct, the minimum level in πk is non-negative if and only if k = j. So
we have exactly one (a, b)-Dyck path in the equivalence class.
So we showed that Y is decomposed into a disjoint union of subsets with b
elements and exactly one (a, b)-Dyck path, so

#DPa,b =
b!

m0! · · ·ma!

1

b
=

(b− 1)!

m0! · · ·ma!

Proposition 1.39. Let λ be a partition of n. The number of Dyck paths with
mi = mi (λ) vertical runs of length i is

n!

m0! · · ·mn!

where m0 = n+ 1− len (λ).

Proof. Observe that the all (n, n+ 1)-Dyck paths finish with an east step, so

#DPn = #DPn,n+1
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By Proposition 1.38, fixing a = n and b = n+ 1 we have

#DPn =
(n+ 1)!

m0! · · ·mn!

where
∑
imi = n is the weight of λ and

∑
mi = n+ 1. Since m1 + · · ·+mn =

len (λ), we obtain m0 = n+ 1− len (λ).

Definition 1.40. Let x = {x1, x2, . . .} be a infinite set of variables and let λ =
(λ1, . . . , λt) be a partition of n. We denote by xλ the monomial = xλ1

i1
xλ2
i2
. . . xλt

it
of degree n. The function f(x) ∈ C [[x]] in the formal power series ring is
homogeneous of degree n if every monomial in f(x) has degree n.
For every n ∈ N, there is a natural action of σ = (σ1, . . . , σn) ∈ Sn on f(x) that
permutes the variables

σ · f(x1, x2, · · · ) = f(xσ1 , xσ2 , · · · ).

We say that f is a symmetric function if

σ · f(x) = f(x)

The simplest functions that are fixed by this action are the monomial sym-
metric function mλ corresponding to λ, that is

mλ =
∑

α∈τ(λ)

xλ

where τ(λ) is the set of rearrangements of vector (λ1, . . . , λt, 0, 0, . . .).

For example if λ = (2, 1), mλ results

x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + x22x3 + · · ·

Definition 1.41. The ring of symmetric functions is

Λ = Λ(x) = C[mλ | λ ∈ P]

i.e., the vector space spanned by all the mλ.

Notice that Λ is a graded vector space Λ =
⊕

n≥0 Λ
n, where Λn is the set of

homogeneous symmetric functions of degree n, thus a vector space of dimension
p (n) whose basis is

{mλ | λ ⊢ n}

It is possible to define other kinds of symmetric functions.
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Definition 1.42. The power sum symmetric function of degree n is

pn = m(n) =
∑
i≥1

xni

The elementary symmetric function of degree n is

en = m(1n) =
∑

i1<···<in

xi1 · · ·xin

The complete homogeneous symmetric functions of degree n is

hn =
∑
λ⊢n

mλ

If µ = (µ1, µ2, . . . , µt) is a partition it is possible define the complete homoge-
neous (power sum, elementary) symmetric function hµ = hµ1

hµ2
· · ·hµt

, (pµ,
eµ, respectively).

Example 1.43. Let λ = (2, 1), we have

p2,1 = p2p1 =
(
x21 + x22 + · · ·

)
(x1 + x2 + · · · )

=
(
x31 + x32 + · · ·

)
+
(
x1x

2
2 + x21x2 + · · ·

)
= m3 +m2,1

e2,1 = e2e1 = (x1x2 + x1x3 + x2x3 + · · · ) (x1 + x2 + · · · )
=
(
x21x2 + x1x

2
2 + · · ·

)
+ 3 (x1x2x3 + x1x2x4 + · · · ) = m2,1 + 3m1,1,1

h2,1 = h2h1 =
(
x21 + x22 + · · ·+ x1x2 + x1x3 + · · ·

)
(x1 + x2 + · · · )

=
(
x31 + x32 + · · ·

)
+ 2

(
x21x2 + x1x

2
2 + · · ·

)
+ 3 (x1x2x3 + x1x2x4 + · · · )

= m3 + 2m2,1 + 3m1,1,1

Notice that the elementary and the complete homogeneous symmetric func-
tions can be expressed by generating functions very similar to the generating
functions of partitions. In the elementary en we have all the exponents of vari-
ables equal to one, so coincides with the partition in distinct parts and using
Equation (1.3)

E (t) : =
∑
n≥0

en (x) t
n =

∏
i≥1

(1 + xit) ,

while in the complete homogeneous hn the sum of the exponents of the variables
of the monomials has all the degree n, so using Equation (1.2)

H (t) : =
∑
n≥0

hn (x) t
n =

∏
i≥1

1

1− xit

We can define a map from the the space of class functions on Sn to the ring
of symmetric functions
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Definition 1.44. Let Rn = R (Sn) be the space of class functions on Sn, the
Frobenius characteristic map is chn : Rn → Λn defined by

chn (χ) =
∑
λ⊢n

χλ
pλ
zλ

where χλ is the value of χ on the class λ

Theorem 1.45. The number of parking functions of size n is equal to

#PFn = (n+ 1)
n−1

Proof. Let us denote by FrobPFn the image of character of PFn under the
Frobenius characteristic map. By [Mac95, p. 113,114] each orbit of PFn with
stabiliser isomorphic to Sλ (Equation (1.14)) contributes a term hλ (x), so

FrobPFn
=
∑
λ⊢n

1

n+ 1

(
n+ 1

n+ 1− len (λ) ,m1 (λ) , . . . ,mn (λ)

)
hλ (x)

=
1

n+ 1

∑
λ⊢n

(
n+ 1

n+ 1− len (λ) ,m1 (λ) , . . . ,mn (λ)

)
h1 (x)

m1(λ) · · ·hn (x)mn(λ)

Notice that h0 (x) = 1, so using the multinomial theorem

(y1 + · · ·+ ym)
n
=

∑
k1+···+km=n;k1,...,km≥0

(
n

k1, . . . , km

) m∏
t=1

ykt
t

we obtain

FrobPFn
=

1

n+ 1
(h0 (x) + · · ·+ hn (x))

n+1

=
1

n+ 1
[H (t)]

n+1|tn

=
1

n+ 1

∏
i≥1

1

1− xit

n+1 ∣∣∣∣
tn

=
1

n+ 1

∏
i≥1

∏
j≥1

1

1− xiyj

∣∣∣∣
tn

where we set n+ 1 of the y variables equal to t and the rest equal to 0.

The Cauchy product
∏∏

1
1−xiyj

is equal to
∑ pλ(x)pλ(y)

zλ
[Mac95, I.4.6], so,
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setting the y variables as in precedent case, we have

FrobPFn =
1

n+ 1

∑
λ∈P

(
tλ1 + · · ·+ tλ1

)
· · ·
(
tλn + · · ·+ tλn

) pλ (x)
zλ

∣∣∣∣
tn

=
1

n+ 1

∑
λ∈P

(n+ 1)
len(λ)

t|λ|
pλ (x)

zλ

∣∣∣∣
tn

=
∑
λ∈P

(n+ 1)
len(λ)−1

t|λ|
pλ (x)

zλ

∣∣∣∣
tn

=
∑
λ∈P

(n+ 1)
len(λ)−1 pλ (x)

zλ

Applying the inverse of the Frobenius map, this formula tell us the character
of the Sn-module PFn. Let w ∈ Sn, so χ (w) is the number of parking functions
in PFn fixed by the action of w. If we consider w the identity permutation in
Sn that fixes all parking functions in PFn and has a cycle type λ = (1n) we

obtain #PFn = (n+ 1)
n−1

.

We have showed that fixing n we have Cn = 1
n+1

(
2n
n

)
(Definition 1.28) par-

titions λ contained in the maximal Dyck path δn (Remark 1.32) and (n+ 1)
n−1

skew standard Young tableaux of shape (λ+ 1n) /λ. Furthermore given a λ ⊢ n
we can construct n!

(n+1−len(λ))!m1(λ)!...mn(λ)!
Dyck paths with mi vertical runs of

length i and we can associate to them (n+ 1)
n−1

skew standard Young tableaux.
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Chapter 2

Numerical Semigroups

In this chapter we introduce the numerical semigroups. In the first part we
describe a covariety of numerical semigroups and represent it as a finite tree.
After a characterisation of the children of an arbitrary vertex in this tree, we
present an algorithm to describe the covariety [MFR23].
Then we show some relation between numerical semigroups and integer parti-
tions [BNST23], looking in particular at the hookset. Then we introduce four
operations [SY21] that give us some relation with symmetric numerical semi-
groups.

2.1 Covariety of numerical semigroups

Definition 2.1. A numerical set S is a subset of the non-negative integers N0

such that S includes 0 and the complementary set N0 \S = Sc has finitely many
elements. A numerical set S is a numerical semigroup if it is an additive
submonoid of N0, in other words if the sum of two elements of S is an element
of S. We denote by NS the set of numerical semigroups.
The set Sc is called set of gaps and its cardinality G(S) is called genus of S.
The maximal element F (S) of Sc is called Frobenius number. Finally, let us
define the multiplicity M(S) of S as the lowest non-zero element of S. These
three positive integers G(S), F (S) and M(S) are invariant of S.

Definition 2.2. If A is a nonempty subset of N0, we denote by ⟨A⟩ the sub-
monoid generated by A, i.e.,

⟨A⟩ = {i1a1 + · · ·+ inan | n ∈ N0 \ {0} , {a1, . . . , an} ⊆ A, {i1, . . . , in} ∈ N0}

If S is a numerical semigroup such that S = ⟨A⟩, then we say that A is a system
of generator of S. If S ̸= ⟨B⟩ for all B ⊂ A then we say that A is a minimal
system of generators of S, we denote the minimal system of generators of S
by msg(S) and its cardinality by e(S), called embedding dimension of S.
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Example 2.3. Let S = {0, 3, 6, 8, 9, 11, 12, 14,→}, where → means that each
integer number greater than 14 is in S. Then S is a numerical semigroup whose
set of gaps is Sc = {1, 2, 4, 5, 7, 10, 13}, its genus is G(S) = 7, its Frobenius
number is F (S) = 13 and its multiplicity is M(S) = 3. Moreover msg(S) =
{3, 8, 16} and then e (S) = 3.

Lemma 2.4. Let A be a nonempty subset of N0. Then ⟨A⟩ is a numerical
semigroup if and only if gcd(A) = 1

Proof. See [RGS09, Lemma 2.1].

Definition 2.5. Let S be a numerical semigroup and n ∈ S \ {0}. For 1 ≤ i ≤
n − 1, let w (i) be the smallest integer in S congruent to i modulo n. The set
Ap (S, n) = {0, w (1) , . . . , w (n− 1)} is called the Apéry set of S respect n.

Let S = {0, 3, 6, 8, 9, 11, 12, 14,→} as before, if n = 3 we obtain Ap (S, 3) =
{0, 16, 8}, while if n = 5 we have Ap (S, 5) = {0, 6, 12, 8, 9}.

Definition 2.6. A covariety C is a nonempty family of numerical semigroups
such that

• C has a minimum element with respect to set inclusion, denoted by ∆(C)

• If S, T ∈ C, then S ∩ T ∈ C

• If S ∈ C and S ̸= ∆(C), then S \ {M(S)} ∈ C.

Let F ∈ N0, we consider the set A(F ) = {S | S ∈ NS,F (S) = F}, now
we will see some properties about the covarieties that lead us to construct an
algorithm to compute A(F )

Proposition 2.7. Every covariety has finite cardinality.

Proof. Let C be a covariety, then C ⊆ {S | S ∈ NS,∆(S) ⊆ S}.
If T is a numerical semigroup, the set

{S | S ∈ NS, T ⊆ S}

is a finite set because T c is finite and then we can obtain at most 2#T c

numerical
semigroups. So {S | S ∈ NS,∆(S) ⊆ S} is a finite set and then C has finite
cardinality.

Proposition 2.8. If F ∈ N0, then A(F ) is a covariety.

Proof. The set {0, F + 1,→} is a numerical semigroup such that its Frobenius
number is F and it is the numerical semigroup with Frobenius number F with
fewer elements, so

∆(A(F )) = {0, F + 1,→}
Let S, T ∈ A(F ), then S ∩ T is a numerical semigroup such that F (S ∩ T ) =
max {F (S), F (T )}, so S ∩ T ∈ A(F ).
Let now S ∈ A(F ) be different from ∆(A(F )), then M(S) < F and more
precisely M(S) = min (msg(S)), so we obtain that S \M(S) ∈ A(F ).
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Lemma 2.9. Let C be a covariety and S ∈ C.
Let {Sn}n∈N be the sequence defined by

S0 = S

Sn+1 =

{
Sn \ {M (Sn)} if Sn ̸= ∆(C)
∆ (C) otherwise

then there exists k ∈ N0 such that ∆(C) = Sk ⊂ Sk−1 ⊂ . . . ⊂ S0 = S. Moreover
the cardinality of Si \ Si+1 is equal to 1, for 0 ≤ i ≤ k − 1.

If C is a covariety, we can construct a directed graph G(C), whose set of
vertices coincides with the elements of the covariety C and (S, T ) ∈ C × C is an
edge if and only if T = S \ {M(S)}, see Example 2.15. So we can deduce easily
the lemma.

Lemma 2.10. If C is a covariety then G(C) is a tree with root ∆(C).

Proof. Direct consequence of Lemma 2.9.

Fixing F ∈ N, it is possible to construct recursively a tree containing all
the numerical semigroups with F as Frobenius number. Moreover the root is
{0, F + 1,→}. Now we will introduce two new objects that permit to construct
the tree.

Definition 2.11. An integer x is a pseudo-Frobenius number of a numerical
semigroup S if x /∈ S and x+ s ∈ S for every s ∈ S. We denote by PF (S) the
set of pseudo-Frobenius number of S.
We call set of special gaps the set SG(S) = {x ∈ PF (S) | 2x /∈ PF (S)}.

Lemma 2.12. Let S be a numerical semigroup and x ∈ N\S. Then x ∈ SG(S)
if and only if S ∪ {x} is a numerical semigroup.

Proof. See [RGS09, Proposition 4.33].

Proposition 2.13. If C is a covariety and s ∈ C, then the set formed by the
children of S in the associated tree of the covariety, is

{S ∪ {x} | x ∈ SG(S), x < M(S), S ∪ {x} ∈ C}

Proof. Let T be a child of S, so T ∈ C and T \{M(T )} = S, hence S∪{M(T )} =
T ∈ C, and, by Lemma 2.12, M(T ) ∈ SG(S) and M(T ) < M(S).
If x < M(S), then M (S ∪ {x}) = x and so S ∪ {x} ∈ C. Therefore result
(S ∪ {x}) \M(S ∪ {x}) = S, so S ∪ {x} is a child of S.

Similarly we can specialize the previous proposition in terms of the Frobenius
number.

Proposition 2.14. Let F ∈ N and S ∈ A(F ). Then the set formed by the
children of S in the associated tree is {S ∪ {x} | x ∈ SG(S), x < M(S), x ̸= F}.
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We can observe that if S is a numerical semigroup, x ∈ SG(S) and n ∈
S \ {0}, then the element x + n is clearly an element of Ap(S, n), because
x ∈ PF (S) and hence x + n ∈ S. If we consider the new numerical semigroup
S ∪{x}, then the Apéry set changes with respect to Ap(S, n). Indeed we added
the element x ≡ x+ n (mod n) to the numerical semigroup, obtaining

Ap(S ∪ {x}) = (Ap(S, x) \ {x+ n}) ∪ {x} .

Now we can construct recursively the tree associated to A(F ) following the
pseudocode presented in [MFR23].

1. Let F be a positive integer.

2. Set A(F ) = {∆(A(F ))} and B = {∆(A(F ))}.

3. For every S ∈ B compute

θ(S) = {x ∈ SG(S) | x < M(S), x ̸= F} .

4. If
⋃

S∈B θ(S) = ∅ returns A(F ).

5. Set C =
⋃

S∈B {S ∪ {x} | x ∈ θ(S)}.

6. Update the sets A(F ) = A(F ) ∪ C and B = C.

Example 2.15. Let F = 6. We set A(F ) = {0, 7,→} = B. Hence Ap(B, 7) =
{0, 8, 9, 10, 11, 12, 13} and it is easy deduce the sets PF (B) = {1, 2, 3, 4, 5, 6}
and SG(B) = {4, 5, 6}, so θ(B) = {4, 5}. Then we obtain two new numerical
semigroups S = {0, 4, 7→} and T = {0, 5, 7,→}.
In the first case we have Ap(S, 7) = {0, 4, 8, 9, 10, 12, 13}, PF (S) = {3, 5, 6},
SG(S) = {5, 6} and θ(S) = ∅.
In the second case we have Ap(T, 7) = {0, 5, 8, 9, 10, 11, 13}, PF (T ) = {2, 4, 6},
SG(T ) = {4, 6} and θ(S) = {4} and we obtain T ′ = {0, 4, 5, 7,→}.
If we continue in this way we can observe that θ (T ′) = ∅ and so we obtain

{0, 7,→}

{0, 4, 7,→} {0, 5, 7,→}

{0, 4, 5, 7,→}

2.2 Numerical semigroups and integer partitions

Let S be a numerical set, Keith and Nath showed in [KN11] that every nu-
merical set uniquely defines a integer partition. Given a numerical set S =
{s0, s1, . . . , sn,→} it is possible to construct a Young diagram by drawing a con-
tiguous polygonal path that starts from the origin in Z2. Starting with s = 0 we
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draw a east step if s ∈ S or a north step otherwise, then we continue with s+1
and we stop when we reach F (S). For example if S = {0, 3, 6, 8, 9, 11, 12, 14,→}
we obtain

0

3

6

8 9

11 12

the partition λS = (7, 5, 3, 2, 2, 1, 1). The relation is clearly a bijection and we
can apply this method in either direction, so the number of numerical sets is
equal to the number of integer partitions.
Notice that the Young diagram YS has number of rows equal to G(S) and a
number of columns equal to n, where S = {s0, s1, . . . , sn}.
If we consider the hook of every cell we can observe some properties [TKG19].

Proposition 2.16. Let S = {0, s1, . . . , sn,→} be a numerical set with corre-
sponding Young diagram YS. Then:

1. The hook length of the box in the first column and ith row is the ith gap
of S;

2. For each 0 ≤ i ≤ n− 1 the hook length of the top box of the ith column of
YS is equal to F (S)− si;

3. The set S is a numerical semigroup if and only if every length of the hook
of the boxes of YS is contained in the first column.

Proof. Let 1 ≤ j ≤ n − 1 be the lowest integer such that sj ̸= j, so we have
sc1 = j, where Sc = {sc1, sc2, . . . , F (S)}. This means that we have j east steps in
the first row of YS and the length of the first hook coincides with j = sc1.
Proceeding by induction, we suppose that every length of hook in the first
column from the first row to the ith row coincides with the gaps of S, hence
the hook length of the cell in the first column and ith row is sci . Let k such
that sk−1 < sci < sk. If sk ̸= sci + 1, then sci+1 = sci + 1 and the (i+ 1)th row
of YS has the same number of columns of the ith row, so the hook length is
sci +1. Otherwise, if sk = sci +1, we consider the lowest integer j > k such that
sj ̸= sci +j+1−k, so there are j−k integer between sci and s

c
i+1 = sci +j+1−k,

or in other words the (i+ 1)th row of YS has j − k columns more than the ith
row. So we have proved Part (1).
Now, the upper left corner hook coincides with F (S) = F (S)− s0. We suppose
that the hook in the ith column is F (S)− si. Let k = si+1− si, so after the ith
column we have k − 1 north steps in YS , then the hook of the (i+ 1)th column
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is equal to F (S) − si − (k − 1) − 1 = F (S) − k = F (S) − si+1 and we obtain
Part (2).
Part (3) remains to check. Let S = {s0, . . . , sn,→} be a numerical semigroup.

Notice that every Ŝ such that Ŝc = {sc1, . . . , sci}, where sci < F (S), is a numerical
semigroup. Furthermore, by Point (2), the hook of the ith row and jth column
in YS is equal to sci − sj . We suppose that exists a cell with hook length sci − sj
that doesn’t appear in the first column, so this number is not in Sc and we have
sh = sci − sj ∈ S, but sh + sj = sci ∈ S and this is a contradiction.
Viceversa if all the boxes in the i-th row are signed by numbers appearing in
the first column,then by Point (1) they are element of Sc. So do not exist two
elements of S such that the sum is equal to sci and then we can conclude that
S is a numerical semigroup.

Example 2.17. If we consider S = {0, 3, 6, 8, 9, 11, 12, 14,→} and write the
hook length of every cell, we obtain

1

2

4

5

7

10

13

1

2

4

7

10

1

4

7

2

5

1

4 2 1

We can establish some relation between numerical semigroups and integer
partitions in order to count them.

Lemma 2.18. Let S be a numerical set. If F (S) < 2 · M(S), then S is a
numerical semigroup.

Proof. Let s1, s2 ∈ S \ {0}, by definition of multiplicity we have s1 + s2 >
2 ·M(S) > F (S), so this implies that S is closed under addition.

Proposition 2.19 ([BNST23]). The number of partitions of n into g parts
corresponding to a numerical semigroup with genus g is equal to the number of
partitions of n− g, for any positive integer n and g ≥ 2

3n.

Proof. Notice that every S numerical semigroup such that Sc ̸= ∅ contains 1.
Let λ =

(
λ1, . . . , λk, 1

g−k
)
be a partition of n into g parts corresponding to a

numerical semigroup Sλ such that λk ≥ 2. We define

ϕ (λ) : = (λ1 − 1, . . . , λk − 1)

that associates to λ a partition of weight n−g. Clearly this function is injective.
Let µ = (µ1, . . . , µk) be a partition of n− g and let

λ = ϕ−1 (µ) =
(
µ1 + 1, . . . , µk + 1, 1g−k

)
.
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Notice that λ is a partition of n into g parts and M(Sλ) = g − k + 1. Among
all the possible Frobenius numbers of λ, we get the maximum when λ =(
λ1, 2

k−1, 1g−k
)
, so we have

F (Sλ) = n− k + 2− g ≤ n− k + 1

Since n ≤ 3
2g and k ≤ n− g ≤ 1

2g, we obtain

F (Sλ) ≤
3

2
g − k + 1 ≤ 3

2
g − k + 1 +

(
1

2
− k
)
< 2 (g − k + 1) = 2M (Sλ)

By Lemma 2.18 we have that Sλ is a numerical semigroup, so ϕ is surjective
too.

Now we define four operation on Young diagrams introduced in [SY21] .

Definition 2.20. Let Y be a Young diagram with n columns and k rows, Z be
the Young diagram with m columns and l rows. Gluing Z above Y as putting a
row of boxes of length n above Y and then uniting the top right corner of this
row and the bottom left corner of the first column of Z is called the discrete
sum of Y and Z, denoted by Y ⊞D Z, which is a Young diagram with n +m
columns and k + l + 1 rows.
We can see the discrete sum in terms of partitions. Let λY = (n, λY1

, . . . , λYk
)

and λZ = (m,λZ2 , . . . , λZl
) be the partitions associated with Y and Z respec-

tively, then λY ⊞D λz = (n+m,n+ λZ2 , . . . , n+ λZl
, n, n, λY2 , . . . , λYk

).

For example, if we take λ = (3, 2, 1, 1) and µ = (3, 2), the discrete sum of Yλ
and Zµ results

⊞D

and we obtain the partition λ⊞D µ = (6, 5, 3, 3, 2, 1, 1).
Notice that, due to bijection between the set of Young diagrams and the set
of numerical semigroup, we can define the sum for numerical semigroup. Let
SY = {0, s1, . . . , sn,→} be the numerical set associated to the Young diagram
Y and TZ = {0, t1, . . . , tm,→} be the numerical set associated to the Young
diagram Z. The discrete sum preserves the shape of Y until the F (SY )-th step,
makes a north step at sn-th step and then continues with the shape of Z, so we
obtain

SY ⊞D TZ = {0, s1, . . . , sn−1, sn + 1, sn + t1, . . . , sn + tm,→} .
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If we observe the set of gaps we obtain

(SY ⊞D TZ)
c
= {sc1, . . . , sck, sck + 1, sck + tc1 + 2, . . . , sck + tcl + 2} ,

where Sc
Y = {sc1, . . . , sck} and TZ = {tc1, . . . , tcl }. Moreover F (SY ⊞D Tz) =

sck + tcl + 2.

Definition 2.21. Let Y be a Young diagram with n columns and k rows, Z be
the Young diagram with m columns and l rows. Gluing Z above Y as uniting
the top right corner of the first row of Y and the bottom left corner of the first
column of Z is called the end-to-end sum of Y and Z, denoted by Y ⊞E Z,
which is a Young diagram with n+m columns and k + l rows.
Let λY = (n, λY1 , . . . , λYk

) and λZ = (m,λZ2 , . . . , λZl
) be the partitions associ-

ated with Y and Z respectively, then
λY ⊞E λz = (n+m,n+ λZ2

, . . . , n+ λZl
, n, λY2

, . . . , λYk
).

Taking λ and µ as before

⊞E

and so λ ⊞E µ = (6, 5, 3, 2, 1, 1). In this case the end-to-end sum overlaps the
sn-th step of SY and the t0 = 0 step of TZ , then we have

SY ⊞E TZ = {0, s1, . . . , sn, sn + t1, . . . , sn + tm,→} .

Furthermore F (SY ⊞E TZ) = sck + tcl + 1 and

(SY ⊞E TZ) = {sc1, . . . , sck, sck + tc1 + 1, . . . , sck + tcl + 1} .

Definition 2.22. Let Y be a Young diagram with n columns and k rows, Z be
the Young diagram with m columns and l rows. Gluing Z above Y as putting
the first column of Z on top of the last column of Y is called the conjoint sum
of Y and Z, denoted by Y ⊞C Z, which is a Young diagram with n + m − 1
columns and k + l rows.
Let λY = (n, λY1 , . . . , λYk

) and λZ = (m,λZ2 , . . . , λZl
) be the partitions associ-

ated with Y and Z respectively, then
λY ⊞C λz = (n+m− 1, n+ λZ2

− 1, . . . , n+ λZl
− 1, n, λY2

, . . . , λYk
).
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In this case we obtain

⊞C

λ ⊞C µ = (5, 4, 3, 2, 1, 1). Again we can define the sum for the numerical sets
and we obtain

SY ⊞C TZ = {0, s1, . . . , sn−1, sn + t1 − 1, . . . , sn + tm − 1,→}

and the set of gaps too

(SY ⊞C TZ) = {sc1, . . . , sck, sck + tc1, . . . , s
c
k + tcl } .

hence F (SY ⊞C TZ) = sck + tcl

Definition 2.23. Let Y be a Young diagram with n columns and k rows, Z
be the Young diagram with m columns and l rows. Gluing Z above Y as over-
lapping the last box of first column of Z and the last box of the first row of Y
is called the overlap sum of Y and Z, denoted by Y ⊞O Z, which is a Young
diagram with n+m− 1 columns and k + l − 1 rows.
Let λY = (n, λY1 , . . . , λYk

) and λZ = (m,λZ2 , . . . , λZl
) be the partitions associ-

ated with Y and Z respectively, then
λY ⊞O λz = (n+m− 1, n+ λZ2

− 1, . . . , n+ λZl
− 1, λY2

, . . . , λYk
).

The last one operation give us

⊞O

λ⊞O µ = (5, 4, 2, 1, 1). In this case if we look at numerical sets we obtain

SY ⊞O TZ = {0, s1, . . . , sn−1, sn + t1 − 2, . . . , sn + tm − 2,→}

The set of gaps results

(SY ⊞C TZ) =
{
sc1, . . . , s

c
k−1, s

c
k + tc1 − 1, . . . , sck + tcl − 1

}
.

and the Frobenius number is Sc
k + tcl − 1.
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Definition 2.24. A numerical semigroup S is called symmetric if F (S) is
odd and if x ∈ N0 \ S implies that F (S)− x ∈ S. We denote by SNS the set of
symmetric numerical semigroups.
Also a numerical semigroup is called pseudo-symmetric if F (S) is even and

x ∈ N0 \ S implies F (S)− x ∈ S or x = F (S)
2 .

Lemma 2.25. Let S be a numerical semigroup. Then S is symmetric if and

only if G(S) = F (S)+1
2 . Furthermore S is pseudo-symmetric if and only if

G(S) = F (S)+2
2 .

Proof. See [RGS09] Corollary 4.5.

Definition 2.26. Let S be a numerical semigroup with Sc = {sc1, . . . , sck} and
Frobenius number F (S) = sck. We define the dual of S as

S∗ =
{
0, F (S)− sck−1, . . . , F (S)− sc1, sn,→

}
Notice that if S is symmetric we obtain the following equivalence S = S∗.

Theorem 2.27. For every symmetric numerical semigroup S, there exist a
unique numerical semigroup T such that S = T ⊞E T

∗ or S = T ⊞O T ∗.

Proof. Let S = {0, s1, . . . , sn,→} be a symmetric numerical semigroup. We
recall that sn = F (S) + 1, Sc = {sc1, . . . , scn} and

S = S∗ =
{
0, F (S)− scn−1, . . . , F (S)− sc1, sn,→

}
,

where F (S) = Sc
n.

Let k be such that sk ≤ F (S)+1
2 < sk+1. If sk = F (S)+1

2 then we define T =
(0, s1, . . . , sk,→). Clearly T is a numerical semigroup such that F (T ) = sk − 1
and T c =

{
sc1, . . . , s

c
n−k

}
.

Then it results T ∗ =
{
0, F (T )− scn−k−1, . . . , F (T )− sc1, sk,→

}
. By definition

of end-to-end sum on numerical semigroups we obtain

T ⊞E T
∗ =

{
0, s1, . . . , sk, sk + F (T )− scn−k−1, . . . , sk + F (T )− sc1, sk + sk,→

}
=
{
0, s1, . . . , sk, 2sk − 1− scn−k−1, . . . , 2sk − 1− sc1, 2sk,→

}
=
{
0, s1, . . . , sk, F (S)− scn−k−1, . . . , F (S)− sc1, F (S) + 1,→

}
= {0, s1, . . . , sk, sk+1, . . . , sn−1,sn,→}
= S

Otherwise if sk ̸= F (S)+1
2 , we have F (S)− F (S)+1

2 = F (S)+1
2 − 1 ∈ S, and hence

sk = F (S)+1
2 − 1. Let T =

{
0, s1, . . . , sk,

F (S)+1
2 + 1,→

}
. Obviously T is a

numerical semigroup, furthermore we have T c =
{
sc1, . . . , s

c
n−k−1,

F (S)+1
2

}
and

T ∗ =
{
0, F (T )− scn−k−1, . . . , F (T )− sc1,

F (S)+1
2 + 1

}
, where F (T ) = F (S)+1

2 .
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Applying the overlap sum to numerical sets we obtain

T ⊞O T ∗ =

{
0, . . . , sk, 2

(
F (S) + 1

2

)
− scn−k−1 − 1,

. . . , 2

(
F (S) + 1

2

)
− sc1 − 1, 2

(
F (S) + 1

2
+ 1

)
− 2,→

}
=
{
0, . . . , sk, F (S)− scn−k−1, . . . , F (S)− sc1, F (S) + 1,→

}
= {0, s1, . . . , sk, sk+1, . . . , sn−1, sn,→}
= S

Example 2.28. Let S = (0, 4, 7, 8, 10, 11, 12, 14,→). S is a symmetrical semi-

group such that G(S) = (1, 2, 3, 5, 6, 9, 13), F (S) = 13 and F (S)+1
2 = 7 ∈ S.

By Theorem 2.27, we have T = (0, 4, 7,→) and G (T ) = (1, 2, 3, 5, 6), so we can
obtain

T ∗ = (0, 1, 3, 4, 5, 7→)

where T ⊞E T
∗ = S. We obtain

⊞E

Example 2.29. Let S = {0, 4, 5, 8, 9, 10, 12,→}. S is a symmetrical semigroup

such that G(S) = (1, 2, 3, 6, 7, 11), F (S) = 11 and F (S)+1
2 = 6 /∈ S.

By Theorem 2.27, we have T = {0, 4, 5, 7,→} and G (T ) = (1, 2, 3, 6), so we can
obtain

T ∗ = {0, 3, 4, 5, 7→}

where T ⊞O T ∗ = S. Graphically

⊞O
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Chapter 3

Verification and generation
of unrefinable partitions

In this chapter we introduce the main object of this thesis, the unrefinable
partitions, showing some basic properties. Then we present two algorithms: a
Verification Algorithm which verifies if a sequence of distinct positive integers
is unrefinable or not and a Enumerating Algorithm that lists all the unrefinable
partitions of a given weight.

3.1 Unrefinable partitions into distinct parts

From now on, we will consider only partitions into distinct parts and so, in
particular, we will be taking strictly increasing sequences of positive integers.

Definition 3.1. Let λ = (λ1, . . . , λt) be a partition into distinct parts, i.e.,
λ1 < λ2 < · · · < λt, such that t ≥ 2. We call the set of missing parts of
λ the set Mλ = {µ1, . . . , µm} composed by the integers that do not belong to λ
lower than λt

Mλ : = {1, 2, . . . , λt} \ {λ1, . . . , λt} .

The least integer which is not part of λ, i.e., µ1, is the minimal excludant
of λ. We denote this by writing µ1 = mex (λ), assuming mex (λ) = 0 when
Mλ = ∅.

Definition 3.2. Let N ∈ N. Let λ = (λ1, . . . , λt) be a partition of N into
distinct parts and let µ1 < µ2 < · · · < µm be its missing parts. The partition
λ is refinable if there exist 1 ≤ ℓ ≤ t and 1 ≤ i1 < . . . < ik ≤ m, where
2 ≤ k, such that µi1 + · · · + µik = λℓ, and unrefinable otherwise. The set of
unrefinable partitions is denoted by U , and by UN we denote those whose sum
of the parts is N .

For example, the partition λ = (1, 2, 3, 5, 6, 8, 9, 11, 13) is refinable because
we can write 11 as 4 + 7, while λ = (1, 2, 3, 5, 6, 8, 9, 13) is unrefinable. Clearly,

39



the condition of being unrefinable imposes on partitions a non-trivial limitation
on the size of the largest part and on the possible distributions of the parts.
Now we show some basic properties of such partitions.

Lemma 3.3. Let λ = (λ1, . . . , λt) be a integer partition into distinct parts. If
#Mλ = {0, 1}, then λ ∈ U .

Proof. This is a direct consequence of the definition of unrefinable partition,
because we can not substitute any parts of partition with two or more missing
parts.

Observe that Lemma 3.3 is not an if and only if statement, hence if we
take the partition λ = (1, 2, 3, 5, 6, 8, 9, 13), as in the previous example, we have
λ ∈ U and #Mλ = 5.

Definition 3.4. Let n ∈ N. We denote by Tn the n-th triangular number,
i.e.

Tn =

n∑
i=1

i =
n(n+ 1)

2
.

The complete partition πn = (1, 2, . . . , n) is the partition of Tn with no miss-
ing parts.
Let n ≥ 3 and 1 ≤ d ≤ n− 1. We denote by Tn,d the integer number Tn− d and
define the partition πn,d = (1, . . . , d− 1, d+ 1, . . . , n) ⊢ Tn,d.

Notice that for every n ≥ 3 and 1 ≤ d ≤ n− 1 we have Tn−1 < Tn,d < Tn

Corollary 3.5. Let N ∈ N be such that N > 2, then #UN ≥ 1.

Proof. If N = Tn by Lemma 3.3 and Definition 3.4 we have πn ∈ UN , otherwise
if N ̸= Tn there exists 1 ≤ d ≤ n − 1 such that N = Tn,d and then we obtain
πn,d ∈ UN by Lemma 3.3.

Lemma 3.6. Let λ = (λ1, . . . , λt) be an unrefinable partition and let µ1 < · · · <
µm be the missing parts. Then the number of missing parts m is bounded by

m ≤
⌊
λt
2

⌋
. (3.1)

Proof. Let us start by observing that λt−µi ∈ λ for 1 ≤ i ≤ m, otherwise from
λt−µi, µi ∈Mλ, we obtain (λt−µi)+µi = λt ∈ λ and thus λ is refinable. We
prove the claim considering the complete partition πλt and removing from this
the maximum number of parts different from λt. From the previous observation,
each candidate part µi to be removed has a counterpart λt−µi in the partition.
The bound of Equation (3.1) depends on the fact that this process can be
repeated no more than ⌊λt/2⌋ times.
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3.2 Algorithm to check refinability

Proposition 3.7. If a partition λ = (λ1, . . . , λt) has some refinement, then
its smallest refinable part λr has a refinement of the form λr = a + b, where
a, b ∈Mλ.

Proof. Let λr be the smallest refinable part for which there exists some refine-
ment λr = µi1 + · · ·+ µit . If t = 2 there is nothing to prove. Otherwise, let us
fix a = µi1 and b = µi2 + · · ·+ µit . If b ∈ λ, then b = µi2 + · · ·+ µit would be a
refinement itself, but b < λr and this would violate the minimality of λr, hence
b is not a part of λ.
This shows that λr = a+ b is indeed a refinement of λ.

Let λ be an unrefinable partition, notice that once we know mex (λ) = µ1

and we find another missing part µi, then, by definition, the element µi + µ1

can not be part of λ, so it is the same for the element µi+2µ1 = (µi + µ1)+µ1

and, recursively, every element of the form µi + kµ1, such that k ∈ N0, is not
a part of λ. So we can observe that every element x ≡ µi (mod µ1) such that
x ≥ µi is not in λ.
It is possible to see λ = (v1, . . . , vl) as a sequence of parts, where vi = {0, i}.
The sequence corresponds to a partition when vl = l, in other words a sequence
of integer parts is a partition when the last term is not 0.

Definition 3.8. Let λ be a sequence of strictly increasing integers. We can
define a vector p⃗λ, whose length is mex (λ) = µ1, and, for every 1 ≤ i ≤ µ1, the
element pi in position i is the lowest missing part greater than µ1 congruent to
i − 1 modulo µ1. If there does not exist a missing part µ1 < a < λt such that
a ≡ i (mod µ1) we set the element pi+1 =∞.

Notice that if we consider the partition πn,d, the vector p⃗πn,d
is a vector of

length d made up of ∞ in every positions.
Let λ be an unrefinable partition, µ1 = mex (λ) and let us suppose that exists
µ2 ∈Mλ, we can observe that

• if µ1 and µ2 are coprime, so we have µ1 +µ2 ∈Mλ and µ1 +µ2 ≡ µ2 ≡ j
(mod µ1), where 1 ≤ j ≤ µ1 − 1. Then also µ1 +2µ2 ∈Mλ and therefore
µ1 + 2µ2 ≡ 2j ̸= 0 (mod µ1). So if µ1 + 2µ2 is lower than λt we obtain a
new element of p⃗λ. By the coprimality of µ1 and µ2 we have that µ1+kµ2,
where 2 ≤ k ≤ µ1, is an element of p⃗λ;

• if (µ1, µ2) = d ̸= {1, µ1}, as before, we obtain µ1

d − 1 elements of p⃗λ which
are µ1 + kµ2, where 2 ≤ k ≤ µ1

d ;

• if µ2 = kµ1, we obtain only the element p0 because µ1+2µ2 ≡ 0 (mod µ1).

Example 3.9. Let λ be a partition such that mex (λ) = 6. If µ2 = 7, we obtain

48 7 20 27 34 41p⃗λ =
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otherwise if µ2 = 10 we have

36 ∞ 26 ∞ 10 ∞p⃗λ =

and in the last case if µ2 = 18

18 ∞ ∞ ∞ ∞ ∞p⃗λ =

Definition 3.10. Let λ = (v1, . . . , vl) be an unrefinable sequence of parts with
mex(λ) = µ1 and let p⃗λ be its vector of lowest missing parts modulo µ1. We
say that λ is saturated when

|{pj ≤ ℓ | 1 ≤ j ≤ µ1}| = µ1.

Lemma 3.11. Let λ be an unrefinable sequence of parts such that Mλ ≥ 2. If
there exists µi such that (µ1, µi) = 1, then λ has a finite length, otherwise λ has
infinite length.

Example 3.12. Let λ be the sequence of all odd numbers, i.e., λ = (1, 3, 5, . . .).
Then λ is an infinite unrefinable sequence, because all the missing parts are even
and the sum of even numbers is even.

Let λ be a sequence of parts, we want to see how the vector p⃗λ changes every
time we find a new missing part. Let µi ∈ Mλ such that µi ≡ j (mod µ1), if
exists µk ≡ j (mod µ1) such that µk < µi, then the element pj+1 remains µk

and we only have to check if the sum µk + µi ≡ 2j ≡ r (mod µ1) is lower than
element pr+1, in this case we update p⃗λ. Otherwise, if µi < pj+1 we have to
check all the sums µi+pk, where 1 ≤ k ≤ µ1 and k ̸= j, and to update p⃗λ when
the sum is lower than the elements in the respective modulo class. So we can
define the following algorithm.

Given a strictly increasing sequence of positive integers λ, we can determi-
nate if λ is an unrefinable partition or not only seeing the integers µ1+1 ≤ r ≤ λt

• if r /∈ λ we have to update the vector p⃗λ to define which numbers would
contradict unrefinability;

• if r ∈ λ we need to check if it has a refinement, i.e., if r ≡ j (mod µ1) and
pj+1 < r.

Then we construct an algorithm that checks refinability.

In the next sections of this Chapter we use the same notation for the integer
partitions and for the sequences of positive numbers. Furthermore if a number
does not appear in a partition we put a ⋆ in the corresponding position.

Example 3.13. Let λ = (1, 2, 3, 4, 5, ⋆, 7, 8, ⋆, ⋆, 11, 12, 13, ⋆, . . .) and consider
all calls to Update when Algorithm 2 reaches 14 in λ. We have µ1 = 6. The
first call sets p4 = 9. The second call sets p5 = 10, and since 19 = 9 + 10, we
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Algorithm 1: Update (improves pjs after a new missing part r is
discovered)

Input : p⃗ = (p1, . . . , pµ1
), r a newly discovered missing part

Returns: p⃗ = (p1, . . . , pµ1
), updated

1 j ← r (mod µ1)
2 if r > pj+1 then
3 t← r + pj+1 (mod µ1)
4 pt+1 ← min(pt+1, r + pj+1)

5 else
6 pj+1 ← r
7 for j′ in {1, . . . , µ1 − 1} \ {j} do
8 t← j + j′ (mod µ1)
9 pt+1 ← min(pt+1, pj+1 + pj′+1)

10 end

11 end
12 return (p1, . . . , pµ1

)

Algorithm 2: Verify (an algorithm to check refinability)

Input : λ = (λ1, . . . , λt)
Returns: Refinable or Unrefinable

1 µ1 ← mex(λ)
2 if µ1 = 0 then return Unrefinable
3 p⃗λ = (p1, . . . , pµ)← (∞,∞, . . . ,∞)
4 for r in (µ+ 1), . . . , λt do
5 j ← r (mod µ1)
6 if r ∈ λ and r ≥ pj+1 then return Refinable
7 if r /∈ λ then p⃗λ ←Update(p⃗λ, r)

8 end
9 return Unrefinable
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need 19 to be forbidden as well. This happens in the for loop that sets p2 = 19.
At this stage we have (p1, p2, p3, p4, p5, p6) = (∞, 19,∞, 9, 10,∞). The third
call happens when the scan reaches 14. Here the algorithm sets p3 = 14, and
afterwards the for loop in line 6 computes the forbidden values

19 + 14 = 33, 9 + 14 = 23, 10 + 14 = 24.

The information that 33 is forbidden is included in p4 (previously set to 9), while
the information p6 = 23 and p1 = 24 is newly determined. When 14 is reached
and processed, the information on forbidden numbers is represented by

(p1, p2, p3, p4, p5, p6) = (24, 19, 14, 9, 10, 23).

The partition λ may continue either with 15 or with ⋆. Notice that 15 = 3
(mod 6) and 15 > p4 = 9, therefore 15 ∈ λ would prove refinability (indeed
15 = 6 + 9). Therefore λ can only continue with ⋆.

Example 3.14. Let λ = (1, 2, 3, ⋆, 5, 6, ⋆, 8, 9, ⋆, ⋆, 12, 13, ⋆, . . .) and consider the
call to Update when Algorithm 2 reaches 14 in λ. We have µ = 4. By the time
the algorithm scans position 14 we know that the sequence misses parts 10 and
14, therefore 24 must be forbidden as well. Indeed in this call we have r = 14
and p3 = 10, and line 4 runs and sets p1 to 24 as desired.

Now we discuss the correctness Algorithm 2. First we prove the correctness
of the algorithm on unrefinable and refinable sequences of parts separately.

Lemma 3.15. Algorithm 2 outputs Unrefinable on every unrefinable λ.

Proof. Consider an unrefinable sequences of parts λ. We start by proving that
when the algorithm assigns a value w to some pj , it means that w ̸∈ λ. We
prove this by induction on the iterations of the main loop at line 4. The base
of the induction trivially holds because before the loop all pj are set to ∞.
For the inductive step we discuss all the ways these assignments occur in the
Update function described in Algorithm 1. If we set pj to w at line 6, then
w ̸∈ λ because Update would have been called when vw = ⋆. If we update pt
to value w either at line 4 or at line 9, we already know that vr = ⋆ and, by
induction, that pj and pj′ are not in λ. Since λ is unrefinable, the new value of
pt (namely w) cannot be in λ either.
We just proved that, at any moment in the algorithm, every finite valued pj is
not in λ. We improve this by showing that the same holds for pj + tµ1 for t ≥ 0,
by induction on t. The case t = 0 is what we have proved so far. Assuming
pj + tµ1 ̸∈ λ, then by unrefinability the same holds for pj + (t+ 1)µ1.
To conclude, observe that the only possible way for Algorithm 2 to be incorrect
is to return at line 6. This happens when there is some vr = r which is greater
than both µ1 and pj+1, and that it is equal to j modulo µ1. Hence r = pj+1+tµ1

for some t > 0. But we just showed that these values are not in λ, therefore the
algorithm cannot return at line 6.

To prove the correctness of Algorithm 2 on refinable partition we use the
following two propositions.

44



Proposition 3.16. Consider the iteration r of the main loop of Algorithm 2,
where r ̸∈ λ and r = j (mod µ1). After that iteration, pj+1 ≤ r.

Proof. Update is called, and when it reaches line 2 either the test r > pj+1

passes, or pj+1 is set to r. Hence at the end of iteration r we have that pj+1 ≤ r.
Successive iterations can only decrease the value of pj+1.

Proposition 3.17. Assume that Algorithm 2 reaches iteration r, and let j
be the residue class of r modulo µ1. The assignment at line 6 of Update is
executed if and only if r is the smallest number strictly greater than µ1 in residue
class j with r ̸∈ λ.

Proof. If there is a smaller r′ ̸∈ λ in the same residue class j, then by Proposi-
tion 3.16 we have pj+1 ≤ r′ < r. In that case, line 6 is not reached.
In the other direction, let r be the smallest number in the residue class j for
which r ̸∈ λ. If r ≤ pj+1 at the time the main loop reaches iteration r, then
line 6 is executed. Otherwise, pj+1 must have been assigned to the current value
at lines 4 or 9 in some iteration r′ earlier than r. In both cases the assigned value
is strictly larger than r′. Hence we have r′ < pj+1 < r and therefore pj+1 ∈ λ
by hypothesis. Algorithm 2 returns Refinable at iteration pj or earlier, and
therefore never reaches iteration r as assumed.

Now we can prove the correctness in the refinable case.

Lemma 3.18. Algorithm 2 outputs Refinable on every refinable λ.

Proof. By Proposition 3.7 we know that the smallest refinable part r is refinable
as a + b with a, b ̸∈ λ. Let us denote ja = a (mod µ1), jb = b (mod µ1), and
jr = r (mod µ1). Clearly jr = ja + jb (mod µ).
If the algorithm does not reach iteration r, it must be because it returned Re-
finable earlier and so there is nothing to prove. Otherwise let us show that it
must return Refinable at iteration r.
The case of ja = 0 is simple: we have that jr = jb and pjr+1 ≤ b by Proposi-
tion 3.16. Therefore we get r > b ≥ pjr+1 and the algorithm returns at line 6.
The case of jb = 0 is symmetric.
For the remaining case of ja ̸= 0 and jb ̸= 0 we split into two further subcases:
when ja = jb and when ja ̸= jb.
When ja ̸= 0, jb ̸= 0 and ja = jb, we may assume without loss of generality that
a < b. By the time the algorithm reaches iteration b, we have that pja+1 ≤ a
because of Proposition 3.16. The test at line 2 at call Update(p⃗, b) can be
rewritten as b > pja+1, hence the value pjr is assigned to a number smaller or
equal than r = a+ b in the residue class of jr, in line 4. At the time the main
loop reaches the iteration r, the algorithm reaches line 6 and returns Refin-
able.
When ja ̸= 0 and jb ̸= 0 and ja ̸= jb, we need to consider the smallest missing
elements a′ and b′ that are equal to ja and jb, respectively, modulo µ1. We
assume without loss of generality that a′ < b′. When the algorithm reaches
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iteration b′ we have that pja+1 ≤ a′ because of Proposition 3.16, and that as-
signment pjb+1 ← b′ in line 6 is executed because of Proposition 3.17. In the
for loop right after line 6, we know that ja ∈ {1, . . . , µ1 − 1} \ jb, therefore we
get that pjr+1 is set to some value smaller or equal to a′ + b′ and in particular
to a value smaller or equal than r. In the successive iteration the value never
increases, and at iteration r we know that line 6 gets executed.

Putting together Lemmas 3.15 and Lemma 3.18 we obtain the main theorem
of this section.

Theorem 3.19. Algorithm 2, executed on the sequence of parts λ = (v1, . . . , vℓ),
returns Unrefinable if and only if the partition λ is unrefinable.

Lemma 3.20 (Running time). Algorithm 2, executed on the sequence of parts
λ = (v1, . . . , vℓ) with µ = mex(λ), runs in time O(ℓ+ µ2).

Proof. The initialization of the pjs and the computation of µ = mex(λ) takes
O(ℓ) steps. The main loop in Algorithm 2 is executed at most ℓ times. The
inner loop in Algorithm 1 is executed in at most µ of them. The total running
time is therefore O(ℓ+ µ2).

3.3 Algorithm to enumerate unrefinable parti-
tions

The verification via Algorithm 2 of a sequence of parts λ = (v1, . . . , vl) with
µ1 = mex(λ) starts by scanning the interval µ1+1, . . . , l. Up to the point when
some index r is under scrutiny, the algorithm uses no information about the
elements of λ of successive indexes. More concretely, the values p⃗λ computed
at iteration r are completely determined by the same old values computed at
iteration r−1 and by the fact that r is either in λ or not. Therefore we can design
the enumeration process as the visit of the tree (see Figure 3.1) of all possible
sequences of parts, so that the Verification Algorithm is run on the sequence
corresponding to any branch of the tree. A branch is pruned as soon as the
the corresponding sequence has no possible extensions that are unrefinable and
of sum at most N . When the sum of a sequence corresponding to a surviving
branch equals the goal value N , the sequence is returned as output.
It is convenient to enumerate separately all unrefinable partitions of N that
have the same minimal excludant. Given N , we set n as the largest positive
integer such that

n∑
i=1

i ≤ N
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(1, 2, ?, 4, ?, ?)

(1, 2, ?, 4, ?, ?, 7)

(1, 2, ?, 4, ?, ?, 7, 8) (1, 2, ?, 4, ?, ?, ?, ?)(1, 2, ?, 4, ?, ?, 7, ?)

(1, 2, ?, 4, ?, ?, ?)

(1, 2, ?, 4, ?, ?, ?, 8)

Refinable 8=3+5Refinable 8=3+5

...
...

...
...

Figure 3.1: The branching from the sequence (1, 2, ⋆, 4, ⋆, ⋆). For any two se-
quences in the tree, the running of Algorithm 2 proceeds identically up to the
point that the corresponding branches diverge.

and then we partition the search space of sequence of parts according to prefixes:

λ† = (1, 2, 3, 4, . . . , n− 2, n− 1, n),
λn = (1, 2, 3, 4, . . . , n− 2, n− 1, ⋆),
λn−1 = (1, 2, 3, 4, . . . , n− 2, ⋆),
...
λ4 = (1, 2, 3, ⋆),
λ3 = (1, 2, ⋆),
λ2 = (1, ⋆),
λ1 = (⋆),

(3.2)

where we use ⋆ to indicate that vi = 0.
IfN is triangular then the sequence λ† itself is the unique unrefinable partition of
N with no minimal excludant, and it must be in the output of the enumeration.
If N is not triangular, i.e., if n(n+ 1)/2 < N , there is no unrefinable partition
with prefix λ†: any additional part would make the sum exceed N .

Any other unrefinable partition of N must have minimal excludant 1 ≤ µ1 ≤
n, and for a given value of µ1 there is a one-to-one correspondence between these
partitions and the sequence of parts λ that

• are unrefinable,

• have λ ⊢ N ,

• have prefix λµ1 = (1, 2, 3, 4, . . . , µ1 − 1, ⋆),

• have vl = l (i.e., not ending with ⋆).

In order to enumerate them, we describe the recursive algorithm Enumer-
ate.

Enumerate starts with a sequence of parts λ withmex(λ) = µ1 and extends
it in all possible ways in a binary tree-like fashion (cf. Figure 3.1). When
visiting the node of the tree corresponding to sequence λ, the algorithm decides
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Algorithm 3: Enumerate

Input : N
λ = (1, 2, 3, . . . , µ1 − 1, ⋆), unrefinable
p⃗λ = (p1, . . . , pµ1

)
Output : All unrefinable partitions of N with prefix λ, not ending with

⋆.

1 r ← |λ|+ 1
2 j ← r (mod µ1)

// Cases when we extend with r, if possible

3 if r < pj+1 and sum(λ) + r = N then output λ ∪ {r}
4 if r < pj+1 and sum(λ) + r < N then Enumerate(N , λ ∪ {r}, p⃗λ )

// Case when we extend with ⋆
5 p⃗λ ←Update(p⃗λ, r)
6 if λ ∪ {⋆} is not saturated then Enumerate(N , λ ∪ {⋆}, p⃗λ )

whether to branch on λ ∪ {r}, and successively whether to branch on λ ∪ {⋆}.
Therefore, the tree is visited in lexicographic order. A branch is pruned either
when a partition of N is reached, when an extension goes over the goal value N ,
when it introduces a refinable part, or when the sequence of parts is saturated
according to Definition 3.10, and therefore no non-trivial extension would ever
be unrefinable.

Walking along the tree, we update the values p⃗λ using the same Update
function that we used in Algorithm 2. The idea is that the computation done by
the recursive process on the sequence corresponding to some path is the same
as the one done by Algorithm 2 on the same sequence. Formally we consider

P1 the set of pairs (λ, p⃗λ) such that λ is unrefinable and not saturated,
mex(λ) = µ1, sum(λ) < N , and such that running Algorithm 2 on λ
computes the values p⃗λ;

P2 the set of pairs (λ, p⃗λ) such that the execution of Enumerate
(N,λµ1 , (∞, . . . ,∞)) produces a recursive call Enumerate(N,λ, p⃗ ).

Lemma 3.21. The two sets P1 and P2 are equal.

Proof. We prove this statement by induction on the length of the sequence. For
the base case, the sequence of parts λµ1 , paired with all pjs set to ∞, is both
in P1 and P2 because sum(λµ1) < N .

For the induction step, consider the pair (λ, p⃗λ) for which we know that λ is
unrefinable, is not saturated, that mex(λ) = µ1 and sum(λ) < N , and that a
recursive call Enumerate(N,λ, p⃗λ) occurs.

For the extension λ∪{r} the values of p⃗λ do not change in both algorithms,
therefore if λ is not saturated, neither is λ∪ {r}. The pair (λ∪ {r}, p⃗λ) is in P1

if and only if r < pj for r = j (mod µ1) and sum(λ) + r < N . But these are
exactly the same condition for the recursive call Enumerate(N,λ ∪ {r}, p⃗λ ).
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Considering the extension λ ∪ {⋆}, this is of course as unrefinable as λ and
the sum does not change either. Let q⃗ ←Update( p⃗λ, r). The pair (λ∪ {⋆}, q⃗ )
is in P1 if and only if λ ∪ {⋆} it is not saturated , and that is the exact same
condition for the recursive call Enumerate(N,λ ∪ {⋆}, q⃗ ) to happen.

We are ready to show that, provided the appropriate input, Enumerate
correctly produces all the unrefinable partitions of N with a given minimal
excludant µ1.

Lemma 3.22. The recursive algorithm Enumerate(N,λµ1 , p⃗λ), where p⃗λ =
(p0, . . . , pµ1−1) are all set to ∞, outputs the unrefinable sequence of parts whose
sum is N with minimum excludant µ1, and without ⋆ in the last position.

Proof. By definition, the output of the enumeration only includes sequence of
parts of N , not ending with ⋆. We need to prove that the output includes all
unrefinable ones and no refinable ones.

Any unrefinable sequence of parts of N with minimal excludant µ1, not
ending with ⋆, can be written as λ ∪ {r} where mex(λ) = µ1 and sum(λ) =
N − r < N . By Lemma 3.21, there is a recursive call Enumerate(N,λ, p⃗λ)
where p⃗λ are the values computed by Algorithm 2 on λ. By the correctness of
Algorithm 2 it must be r < pj+1 for j = r (mod µ1) since λ∪{r} is unrefinable.
Hence the call Enumerate(N,λ, p⃗λ) outputs λ ∪ {r}.

Now we want to show that no refinable sequence of parts of N is in the
output. Consider the shortest prefix λ ∪ {r} of any such sequence where λ is
unrefinable and λ ∪ {r} is refinable. It still holds that mex(λ) = µ1 and that
sum(λ) < N , therefore, by Lemma 3.21, there is a recursive call Enumer-
ate(N,λ, p⃗λ) where p⃗λ are the values computed by Algorithm 2 on λ. By the
correctness of Algorithm 2, it must be r ≥ pj+1 for j = r (mod µ1) since λ∪{r}
is refinable. Hence Enumerate skips λ ∪ {r} and all its extensions.

We are ready to describe the algorithm that enumerates all unrefinable par-
titions of N .

Algorithm 4: UnrefinablePartitions (enumerate all unrefinable
partitions of N)

Input : N
Output : All unrefinable partitions of N .

1 n← largest n such that
∑n

i=1 ≤ N
2 if

∑n
i=1 = N then output (1, 2, 3, . . . , n)

3 for µ1 in {n, n− 1, . . . , 2, 1} do
4 p⃗λ = (p1, . . . , pµ1

)← (∞,∞, . . . ,∞)
5 λµ1 ← (1, 2, 3, . . . , µ1 − 1, ⋆)
6 Enumerate(N ,λµ1 , p⃗λ )

7 end
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Chapter 4

Classification of maximal
unrefinable partition of
triangular numbers

In this chapter we first prove a matching upper bound for the maximal part
of unrefinable partitions and then we define maximal unrefinable partitions as
those which reach the bound. As a main contribution, we provide a complete
classification of maximal unrefinable partitions for triangular numbers. We con-
structively prove, denoting by Tn the n-th triangular number, that for even n
there exists exactly one maximal unrefinable partition of Tn. For odd n, we
obtain a lower bound for the minimal excludant for the maximal unrefinable
partitions of Tn. The knowledge of a bound on the minimal excludant, among
other considerations, allows us to show an explicit bijection between the set
of the maximal unrefinable partitions of Tn and the set of partitions of ⌈n/2⌉
into distinct parts in the classical sense. From now on the set D is the set of
partitions into distinct parts that have at least two parts.
In Section 4.1 we prove two upper bounds for the maximal part in an unre-
finable partition of n, distinguishing the case when n is a triangular number
and when it is not. The classification theorem, i.e., Theorem 4.3, is proved in
Section 4.2, which also contains the result on triangular numbers of an even
number. The odd case is developed in Section 4.3, which concludes the chapter.
In particular, we show in Theorem 4.17 a bijective proof that the number of
maximal unrefinable partitions of Tn equals the number of partitions of ⌈n/2⌉
into distinct parts.

4.1 Upper bound

Let n ≤ 5, it is easy to check that the complete partitions πn is the only
unrefinable partitions for the triangular number Tn. In the general case of Tn
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for n ≥ 6, this is not true. For example, the partition (1, 2, 3, 7, 8) ⊢ 21 = T6
is unrefinable. As a more complex example, in the case of T9 we can calculate
that

(1, 2, 3, 4, 5, 6, 7, 8, 9) (1, 2, 3, 5, 6, 7, 10, 11)

(1, 2, 3, 4, 6, 8, 10, 11) (1, 2, 3, 4, 5, 9, 10, 11)

(1, 2, 3, 4, 6, 7, 10, 12) (1, 2, 3, 4, 5, 8, 10, 12)

(1, 2, 3, 4, 5, 7, 11, 12) (1, 2, 3, 4, 5, 7, 10, 13)

(1, 2, 3, 4, 5, 6, 11, 13) (1, 2, 3, 4, 5, 6, 10, 14)

(1, 2, 4, 5, 8, 11, 14)

are all the unrefinable partitions of 45 = T9.
It is clear that the property of being unrefinable imposes on the one hand

an upper limitation on the size of the largest part which is admissible in the
partition, and on the other a lower limitation on the minimal excludant.

Proposition 4.1. Let n ∈ N and N = Tn. For every λ ∈ U such that λ =
(λ1, . . . , λt) ⊢ N we have

n ≤ λt ≤ 2n− 4. (4.1)

Equivalently, √
1 + 8N − 1

2
≤ λt ≤

√
1 + 8N − 5.

Proof. Let us start by considering the complete partition πn ⊢ N . Other un-
refinable partitions of N are obtained from πn by removing some parts smaller
than or equal to n and replacing them with parts larger than n. Hence, the lower
bound for the maximal part in any partition of N is n, obtained when no part
is removed. Since N = n(n+1)/2, n is the positive solution of n2+n− 2N = 0
and so we have

λt ≥
√
1 + 8N − 1

2
.

Let h, j ∈ N and let us denote by 1 ≤ a1 < a2 < · · · < ah ≤ n the candidate
parts to be removed from πn to obtain a new unrefinable partition of N , and by
n+1 ≤ α1 < α2 < · · · < αj the corresponding replacements. Since

∑
ai =

∑
αi

we have h > j. Moreover j > 1, otherwise from
∑
ai = α1 the obtained partition

is refinable. Hence we obtain

h ≥ 3, j ≥ 2, and h > j .

There are h missing parts in the interval {1, 2, . . . , n} and exactly j parts appear
in the interval {n+ 1, n+ 2, . . . , αj}. Therefore the number of missing parts of
λ is

m = h+ αj − n− j.
To prove αj ≤ 2n− 4 we consider the cases where αj is either equal to 2n− 3,
equal to 2n−2, or strictly larger than 2n−2. We derive a contradiction in each
case. Let us observe that

h∑
i=1

ai ≤ n+ (n− 1) + · · ·+ (n− (h− 1)) = hn− (h− 1)h

2
.
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In the case αj = 2n − 3 we obtain m = h + n − 3 − j. By Lemma 3.6, we
have m ≤ ⌊αj/2⌋ = n− 2, hence h ≤ j + 1, and so h = j + 1. Notice that

α1 + · · ·+ αj > (j − 1)n+ 2n− 3 = (j + 1)n− 3 = hn− 3.

Therefore, since
∑
ai =

∑
αi, we have

3 >
(h− 1)h

2
,

which is satisfied if h < 3, a contradiction.
In the case αj = 2n − 2 we obtain m = h + n − 2 − j. By Lemma 3.6, we

have m ≤ ⌊αj/2⌋ = n− 1, hence h ≤ j +1, and so again h = j +1. Notice that

α1 + · · ·+ αj > (j − 1)n+ 2n− 2 = (j + 1)n− 2 = hn− 2.

Therefore, since
∑
αi =

∑
ai, we have

2 >
(h− 1)h

2
,

which is satisfied if h < (1 +
√
17)/2 < 3, a contradiction.

To conclude we consider the last case αj > 2n − 2. We have n − 1 < αj/2
and so

αj − (n− 1) >
αj

2
≥
⌊αj

2

⌋
.

Hence, since h ≥ j + 1, we have

m = h+ αj − n− j >
⌊αj

2

⌋
+ h− j − 1 ≥

⌊αj

2

⌋
,

which contradicts Lemma 3.6.

Notice that the upper bound of Equation 4.1 is tight. Indeed, let us define
the following partition:

π̃n = (1, 2, . . . , n− 3, n+ 1, 2n− 4). (4.2)

It is easy to notice that π̃n ⊢ N and that π̃n is unrefinable, since its least missing
parts are n− 2 and n− 1, and 2n− 4 < (n− 2)+ (n− 1). In the notation of the
proof of Proposition 4.1, π̃n is obtained in the case h = 3 and j = h− 1 = 2.
We now introduce maximal unrefinable partitions as those partitions
λ = (λ1, . . . , λt) ∈ ŨN whose λt is maximal.

Definition 4.2. Let N ∈ N. An unrefinable partition λ = (λ1, . . . , λt) of N is
called maximal if

λt = max
(η1,η2,...,ηt)∈UN

ηt.

We denote by ŨN the set of the maximal unrefinable partitions of N .
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In the case of triangular numbers N = Tn for some n ≥ 6, by virtue of
Proposition 4.1, we have that λ = (λ1, . . . , λt) ∈ ŨN is maximal if and only if
λt = 2n− 4.
As already observed in the proof of Proposition 4.1, for each λ ∈ UN there exist
1 < j < h, 1 ≤ a1 < a2 < · · · < ah ≤ n and α1, α2, . . . , αj ≥ n + 1 such
that λ is obtained from πn by removing the parts ais which are replaced by the
parts αis. Consequently, #ŨN coincides with the number of choices which lead
to partitions meeting the mentioned conditions and, in addition, the condition
λt = 2n − 4. In the remainder of the work, when λ ∈ UN we will refer to ais,
αis, j and h as intended here.

4.2 Classification of maximal unrefinable parti-
tions

We are now ready to prove our first main contribution. Using arguments similar
to those of the proofs in the previous section, we classify maximal unrefinable
partitions for triangular numbers.

Theorem 4.3. Let n ∈ N, n ≥ 6, and N = Tn. Then

1. if n is even, then ŨN = {π̃n};

2. if n is odd, then π̃n ∈ ŨN and the other partitions λ ∈ ŨN , λ ̸= π̃n, are
such that j = h− 2 and the following conditions hold:

(i) the removed parts a1, . . . , ah−3 are replaced by 2n− 4− a1, 2n− 4−
a2, . . . , 2n− 4− ah−3, and

(ii) the triple (ah−2, ah−1, ah) is one of the following

(n−4, n−3, n−2), (n−4, n−2, n−1), (n−3, n−2, n), (n−2, n−1, n).

Proof. Let λ ∈ ŨN and let a1, a2, . . . , ah and α1, α2, . . . , αj = 2n− 4 as before.
We already know that h ≥ 3. From the hypotheses on λ we have that

m = h+ αj − n− j = h+ n− 4− j.

By Lemma 3.6 we have h− j ≤ 2, and, since h > j, we obtain j ∈ {h−1, h−2}.
Notice that if a ∈ {a1, . . . , ah} is such that a < n − 4, then α = 2n − 4 − a
must belong to {α1, . . . , αj−1}, otherwise α + a = 2n − 4 = αj ∈ λ, and so λ
is refinable. Then each removed part ai such that ai < n − 4 is in one-to-one
correspondence with its replacement which, for the sake of simplicity, we will
denote from now on by αi. On the other side, for the same symmetry argument,
no part in the interval {n − 4, . . . , n} has a replacement. In such an interval
we may choose at most 5 parts. However, we are not allowed to remove, at
the same time, parts from one of the pairs (n− 4, n) and (n− 3, n− 1) without
contradicting the unrefinability of λ. Analogously, we are not allowed to remove
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more than three parts. Moreover, we cannot choose to pick only one part to be
removed in that interval, otherwise we would obtain h− 1 replacements but at
most j − 1 are allowed, and h > j.

We are left to consider the cases of two or three parts to be removed in the
interval {n − 4, . . . , n}, both with the assumptions j = h − 1 or j = h − 2.
In particular, we will show that in both settings of j, there exists no maximal
partition with two removed parts in the selected interval. Moreover, in the case
j = h− 1 and three removed parts, we show that the only admissible partition
is π̃n. Finally, partitions in the case j = h − 2 and three removed parts are
only possible for odd n as claimed in (2). Let us address each of the four cases
separately.

Let us suppose j = h − 1 and 1 ≤ a1 < a2 < · · · < ah−2 ≤ n − 5 and
n− 4 ≤ ah−1 < ah ≤ n. For each 1 ≤ i ≤ j − 1 = h− 2 we have αi = αj − ai.
We will now show that this configuration leads to a contradiction. To do this, we
estimate

∑
ai and

∑
αi from above and from below, respectively. This is clearly

accomplished by noticing that αh−2 ≥ n+ 1, αh−3 ≥ n+ 2, . . . , α1 ≥ n+ h− 2
and ah ≤ n, ah−1 ≤ n − 1, obtaining ah−2 ≤ αj − αh−2 ≤ n − 5, ah−3 ≤
n− 6, . . . , a1 ≤ n− h− 2. Hence

h∑
i=1

ai ≤ hn−
h+2∑
i=1

i+ 2 + 3 + 4 = hn− h2 + 5h+ 6

2
+ 9, and

j∑
i=1

αi ≥ hn+

h−2∑
i=1

i− 4 = hn+
h2 − 3h+ 2

2
− 4.

For
∑
ai =

∑
αi we obtain an inequality which is satisfied for h < 3 , which is

a contradiction.
In the second case, i.e., j = h−1, and 1 ≤ a1 < a2 < · · · < ah−3 ≤ n−5, n−

4 ≤ ah−2 < ah−1 < ah ≤ n, we have αi = αj−ai for every 1 ≤ i ≤ h−3 = j−2.
Notice that, in this case, the part αj−1 = αh−2 is not determined by one of the
ais. Proceeding as before, since αh−3 ≥ n+1, αh−4 ≥ n+2, . . . , α1 ≥ n+h−3,
αh−2 ≥ n + h − 2 and ah ≤ n, ah−1 ≤ n − 1, ah−2 ≤ n − 2, we determine
ah−3 ≤ αj − αh−3 ≤ n− 5, ah−4 ≤ n− 6, . . . , a1 ≤ n− h− 1 and we obtain the
bounds

∑
ai ≤ hn−

h+1∑
i=1

i+ 3 + 4 = hn− h2 + 3h+ 2

2
+ 7, and

∑
αi ≥ hn+

h−2∑
i=1

i− 4 = hn+
h2 − 3h+ 2

2
− 4.

From
∑
ai =

∑
αi we obtain an inequality which is satisfied only for h = 3,

which corresponds to the partition (cf. also Equation (4.2))

(1, 2, . . . , n− 3, n+ 1, 2n− 4) = π̃n ∈ ŨN .
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The third case j = h−2 with two removed parts is immediately contradictory,
since the parts a1, a2, . . . , ah−2 determine h − 2 = j replacements but at most
j − 1 are possible.

The last case to be considered is the one where j = h − 2 and the three
largest parts ais are chosen in the interval {n− 4, . . . , n}. As already observed,
since λ is unrefinable, the only possible choices are

(ah−2, ah−1, ah) ∈{(n− 4, n− 3, n− 2), (n− 4, n− 2, n− 1),

(n− 3, n− 2, n), (n− 2, n− 1, n)} ,

which means ah−2+ah−1+ah ∈ {3n−9, 3n−7, 3n−5, 3n−3}. From
∑
ai =

∑
αi

we obtain

a1 + a2 + · · ·+ ah = (αh−2 − a1) + (αh−2 − a2) + · · ·+ (αh−2 − αh−3) + αh−2

and so, since αh−2 = αj = 2n− 4,

2(a1 + a2 + · · ·+ ah−3) + (ah−2 + ah−1 + ah) = (h− 2)(2n− 4). (4.3)

Since the right side of Equation (4.3) is even and ah−2 + ah−1 + ah is even only
if n is odd, Equation (4.3) can be satisfied only in the case when n is odd. This
proves (2) when n is odd and that the partition π̃n of Equation (4.2) is the only
maximal unrefinable partition of Tn when n is even, i.e., (1).

From Theorem 4.3 we obtain that the description of maximal unrefinable
partitions for the triangular number of an even integer is completed. The odd
case is addressed in the following section.

Corollary 4.4. Let k ∈ N and N = T2k. Then #ŨN = 1.

4.3 Odd triangular numbers

Let N will denote the triangular number of an odd integer. More precisely, let
n = 2k − 1 ∈ N be such that N = Tn.

From Theorem 4.3 we have that the set of maximal unrefinable partitions of
triangular numbers of odd integers can be partitioned in the following way

{π̃n | n odd } ∪̇ Ã ∪̇ B̃ ∪̇ C̃ ∪̇ D̃,

where
Ã =

⋃
h≥4

Ãh, B̃ =
⋃
h≥4

B̃h, C̃ =
⋃
h≥4

C̃h, D̃ =
⋃
h≥4

D̃h
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and

Ãh =
⋃

n odd

{λ | λ ∈ ŨTn
, (ah−2, ah−1, ah) = (n− 4, n− 3, n− 2)},

B̃h =
⋃

n odd

{λ | λ ∈ ŨTn
, (ah−2, ah−1, ah) = (n− 4, n− 2, n− 1)},

C̃h =
⋃

n odd

{λ | λ ∈ ŨTn
, (ah−2, ah−1, ah) = (n− 3, n− 2, n)},

D̃h =
⋃

n odd

{λ | λ ∈ ŨTn
, (ah−2, ah−1, ah) = (n− 2, n− 1, n)}.

Each set Ãh, B̃h, C̃h, D̃h is called a class of maximal unrefinable partitions. If
λ ∈ Ãh (resp. B̃h, C̃h or D̃h) for some h we say that λ is a partition of class Ãh

(resp. B̃h, C̃h or D̃h).
The following consideration is a trivial but important consequence of Theo-

rem 4.3.

Corollary 4.5. Let n ∈ N and N = Tn. If λ = (λ1, λ2, . . . , λt) ∈ ŨN , then
λi ̸= n− 2 for every 1 ≤ i ≤ t.

Remark 4.6 (Anti-symmetric property). From Theorem 4.3(2) and Corol-

lary 4.5 we derive that every partition λ ∈ ŨTn
, λ ̸= π̃n, is anti-symmetric

with respect to n− 2, i.e., for 1 ≤ a < 2n− 4 we have

a /∈ λ ⇐⇒ 2n− 4− a ∈ λ,

provided that a ̸= n− 2.

Example 4.7. Let us fix n = 13. In Table 4.1 we have displayed the three
different partitions of ŨT13

\ {π̃13}, where a black dot means that the corre-
sponding integer is a part and the white dot means otherwise. Disregarding the
last part which is fixed to be 2n− 4 due to the maximality constraint, the anti-
symmetric property with respect to n − 2 can be appreciated. Notice also that
minλ∈ŨT13

mex (λ) = 5 = (n− 3)/2 and that (n− 2)− 5 + 1 = 7 = ⌈n/2⌉.

n− 2 n λt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
• • • • • • ◦ • ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ •
• • • • • ◦ • • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •
• • • • ◦ • • • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

Table 4.1: The anti-symmetric property shown on the partitions λ ∈ ŨT13 ,
λ ̸= π̃13.

Example 4.8. As another significative example, we show in Table 4.2 all the
partitions in ŨT27 = Ũ378, classified according to the description of Theorem 4.3.
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1 ≤ λi ≤ 22 23 ≤ λi ≤ 27 28 ≤ λi ≤ 50 class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 28 50 π̃27

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 26 27 36 50 Ã4

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 24 27 37 50 B̃4
1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 26 38 50 C̃4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 22 26 27 30 31 50 Ã5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 22 26 27 29 32 50 Ã5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 26 27 28 33 50 Ã5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 21 22 24 27 30 32 50 B̃5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 22 24 27 29 33 50 B̃5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 24 27 28 34 50 B̃5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 21 22 23 26 31 32 50 C̃5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 21 22 23 26 30 33 50 C̃5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 22 23 26 29 34 50 C̃5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 23 26 28 35 50 C̃5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 21 22 23 24 31 33 50 D̃5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 21 22 23 24 30 34 50 D̃5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 22 23 24 29 35 50 D̃5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 27 28 29 30 50 B̃6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 23 26 28 29 31 50 C̃6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 23 24 28 30 31 50 D̃6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 23 24 28 29 32 50 D̃6

Table 4.2: Maximal unrefinable partitions of 378 = T27 and the corresponding
classes.

It is important to notice that, when h ≥ 5, partitions in the same class may
appear with different multiplicities. Here all the parts λis of the partitions are
listed, divided in three areas 1 ≤ λi ≤ n − 5, n − 4 ≤ λi ≤ n and n + 1 ≤
λi ≤ 2n − 4 naturally induced by Theorem 4.3. Notice again that we have
minλ∈ŨT27

mex (λ) = 12 = (n− 3)/2.

It is natural to wonder, recalling that in general h ≥ 4, what is an upper
bound for h in a maximal unrefinable partition λ ∈ ŨT2k−1

. The answer to this
question is provided in Proposition 4.11, from which we also derive the result
on the lower bound for the minimal excludant in maximal unrefinable partitions
(cf. Corollary 4.15). Let us address before the two extremal cases h = 4 and
h = 5.

Proposition 4.9. Let n ≥ 7 be odd. We have:

1. ŨTn
∩ D̃4 = ∅,

2. ŨT7
∩ C̃4 = ∅ and if n ≥ 9, then #(ŨTn

∩ C̃4) = 1,

3. ŨT7
∩ B̃4 = ŨT9

∩ B̃4 = ∅ and if n ≥ 11, then #(ŨTn
∩ B̃4) = 1,

4. ŨT7
∩ Ã4 = ŨT9

∩ Ã4 = ∅ and if n ≥ 11, then #(ŨTn
∩ Ã4) = 1.
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Proof. Let λ ∈ ŨTn be obtained by removing the integers a1, a2, a3, a4 and
adding the replacements α1 and α2 = 2n−4, which need to satisfy the following
conditions:

(i) 1 ≤ a1 ≤ n− 5,

(ii) n− 4 ≤ a2 < a3 < a4 ≤ n,

(iii) n+ 1 ≤ α1 = 2n− 4− a1,

(iv) a1 + a2 + a3 + a4 = α1 + α2.

For a contradiction, let us assume that λ ∈ D̃4, and so a2 = n − 2, a3 = n − 1
and a4 = n. From Equation (iv) we obtain

a1 =
n− 5

2
and α1 =

3n− 3

2
.

Notice that a1 + (n + 1) = α1 and, by hypothesis, α1 ≥ n + 1. If α1 = n + 1,
we obtain n = 5, a contradiction. Otherwise, since (n+ 1) /∈ λ, we obtain that
λ is refinable. The claim (1) is then proved.

Let us now address the case (2). Similarly as before, we now have a2 =
n− 3, a3 = n− 2 and a4 = n and so we determine

a1 =
n− 3

2
and α1 =

3n− 5

2
.

Notice that from α1 ≥ n + 1 we obtain n ≥ 7. However, assuming n = 7 leads
to a1 + a2 = 6 = n − 1 ∈ λ, a contradiction since λ is unrefinable. Let us now
prove that the obtained partition

λ =

(
. . . ,

n̂− 3

2
, . . . , n− 4, n− 1,

3n− 5

2
, 2n− 4

)
is unrefinable by showing that each possible sum ai + aj , with 1 ≤ i < j ≤ 4,
is different from α1. Recall that by the classification of Theorem 4.3 we have
already ruled out those partitions which contradict the unrefinability in 2n− 4.
Since n ≥ 9, we have that a1 + a2 = (3n− 9)/2 > n − 1. Consequently,
every sum of missing parts is larger than n − 1 ∈ λ. Moreover, a1 + a2 ̸= α1,
a1 + a3 = (3n− 7)/2 ̸= α1, a1 + a4 = (3n− 3)/2 > α1, a2 + a3 = 2n− 5 > α1

and therefore a2 + a4, a3 + a4 > α1. Therefore λ ∈ C̃4 and it is unique by
construction, which proves the claim (2).

In the case of B̃4, we find

a1 =
n− 1

2
and α1 =

3n− 7

2
.

From α1 ≥ n + 1 we have n ≥ 9, and assuming n = 9 contradicts again the
unrefinability; therefore n ≥ 11. With arguments similar to those of the previous
case the partition(

. . . ,
n̂− 1

2
, . . . , n− 5, n− 3, n,

3n− 7

2
, 2n− 4

)
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is proved unrefinable and unique by construction, hence (3) is obtained.

Finally, considering the case of Ã4, we obtain

a1 =
n+ 1

2
and α1 =

3n− 9

2
.

Now, α1 ≥ n + 1 implies n ≥ 11 and a1 + a2 = (3n− 7)/2 > α1. This proves
that (

. . . ,
n̂+ 1

2
, . . . , n− 5, n− 1, n,

3n− 9

2
, 2n− 4

)
∈ Ã4,

i.e., the claim (4).

Proposition 4.10. Let n ≥ 7 be odd and k ≥ 0. We have:

1. if n < 15, then ŨTn∩C̃5 = ∅ and if n ≥ 15, then #(ŨT15+2k
∩C̃5) = ⌊k/2⌋+1,

2. if n < 17, then ŨTn
∩ B̃5 = ∅ and if n ≥ 17, then #(ŨT17+2k

∩ B̃5) =
⌊k/2⌋+ 1,

3. if n < 17, then ŨTn
∩ D̃5 = ∅ and if n ≥ 17, then #(ŨT17+2k

∩ D̃5) =
⌊k/2⌋+ 1,

4. if n < 19, then ŨTn
∩ Ã5 = ∅ and if n ≥ 19, then #(ŨT19+2k

∩ Ã5) =
⌊k/2⌋+ 1.

Proof. Let us proceed as in the proof of Proposition 4.9. Let λ ∈ ŨTn
be

obtained by removing the integers a1, a2, . . . , a5 and adding the replacements
α1, α2 and α3 = 2n− 4, which need to satisfy the following conditions:

(i) 1 ≤ a1 < a2 ≤ n− 5,

(ii) n− 4 ≤ a3 < a4 < a5 ≤ n,

(iii) n+ 1 ≤ α2 = 2n− 4− a2 < α1 = 2n− 4− a1,

(iv) a1 + a2 + a3 + a4 + a5 = α1 + α2 + α3.

First, let us address the case (1). We have a3 = n − 3, a4 = n − 2 and a5 = n
and, from Equation (iii) and Equation (iv), a1 and a2 satisfy the condition

a1 + a2 =
3n− 7

2
. (4.4)

We first consider the case when a2 is maximal, i.e., a2 = n − 5, in which we
have a1 = (n + 3)/2 and consequently α1 = (3n − 11)/2 and α2 = n + 1.
Notice then that the condition of Equation (4.4) can be met in ⌊(a2−a1−1)/2⌋
other ways by taking the first two parts to be removed as a1 + i and a2 − i, for
1 ≤ i ≤ ⌊(a2 − a1 − 1)/2⌋. Now, from a1 < a2 we obtain n ≥ 15. If n = 15, the
partition (

. . . ,
n̂+ 3

2
, . . . , n̂− 5, n− 4, n− 1, n+ 1,

3n− 11

2
, 2n− 4

)
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is unique by construction and is unrefinable since a1 + a2 > α1. In the other
cases, which are ⌊

a2 − a1 − 1

2

⌋
=

⌊
n− 15

4

⌋
, (4.5)

we obtain an unrefinable partition since, letting α′
1 = 2n − 4 − (a1 + i) and

α′
2 = 2n− 4− (a2 − i), we have

(a1 + i) + (a2 − i) = a1 + a2 > α1 > α′
1 > α′

2.

The claim (1) is then obtained writing n = 15 + 2k in Equation (4.5).
The proofs for (2) and (4) are obtained in the same way. When n = 17, the

partition(
. . . ,

n̂+ 5

2
, . . . , n̂− 5, n− 3, n, n+ 1,

3n− 13

2
, 2n− 4

)
∈ B̃5

and is unique by construction, and when n > 17 it can be modified in ⌊(a2 −
a1−1)/2⌋ = ⌊(n−17)/4⌋ ways as in the proof of (1). Analogously, when n = 19
the partition(

. . . ,
n̂+ 7

2
, . . . , n̂− 5, n− 1, n, n+ 1,

3n− 15

2
, 2n− 4

)
∈ Ã5

and is unique by construction, and when n > 19 it can be modified in ⌊(n−19)/4⌋
ways.

It remains to prove the slightly different case (3). Here, we have a1 + a2 =
(3n− 9)/2 and, proceeding as above, from a2 = n− 5 we obtain a1 = (n+1)/2
and α1 = (3n − 9)/2. This leads to the contradiction a1 + a2 = α1. The
argument of (1) is here replicated starting from a2 = n − 6. It is now easy to
see that, when n = 17, the partition(

. . . ,
n̂+ 3

2
, . . . , n̂− 6, . . . , n− 3, n+ 2,

3n− 11

2
, 2n− 4

)
,

unique by construction, is unrefinable. When n > 17, it can be modified in
⌊(n− 17)/4⌋ ways, which proves (3).

Proposition 4.11. Let n ≥ 7 be odd and h ≥ 6. We have

1. ŨTn ∩ D̃h ̸= ∅ if and only if n ≥ h2 − h− 7,

2. ŨTn
∩ C̃h ̸= ∅ if and only if n ≥ h2 − h− 5,

3. ŨTn
∩ B̃h ̸= ∅ if and only if n ≥ h2 − h− 3,

4. ŨTn ∩ Ãh ̸= ∅ if and only if n ≥ h2 − h− 1.
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Proof. We proceed as in Proposition 4.9 and Proposition 4.10, assuming the
conditions

(i) 1 ≤ a1 < a2 < · · · < ah−3 ≤ n− 5,

(ii) n− 4 ≤ ah−2 < ah−1 < ah ≤ n,

(iii) n + 1 ≤ αh−3 = 2n − 4 − ah−3 < αh−4 = 2n − 4 − ah−4 < · · · < α1 =
2n− 4− a1,

(iv)
∑
ai =

∑
αi.

If λ ∈ ŨTn∩D̃h, then ah−2+ah−1+ah = 3n−3 and therefore, from Equation (iii)
and Equation (iv),

a1 + a2 + · · ·+ ah−3 =
(h− 2)(2n− 4)− (3n− 3)

2
=

(2h− 7)n+ 11− 4h

2
.

Let us now assume that ah−3 = n− 5, ah−4 = n− 6, . . . , a2 = n− h, i.e., let us
maximize the sum a2 + · · ·+ ah−3. We obtain

a2 + · · ·+ ah−3 = (h− 4)n−
h∑

i=5

i = (h− 4)n− h(h+ 1)

2
+ 10,

from which we can calculate

a1 =
n+ h2 − 3h− 9

2
.

Imposing a1 < a2 we obtain n > h2 − h− 9. In this setting, we have

α1 =
3n− h2 + 3h+ 1

2
and a1 + a2 =

3n+ h2 − 5h− 9

2
.

Notice that a1 + a2 > α1 is satisfied for h ≥ 6, hence the provided construction
leads to a partition λ which belongs to D̃h if and only if n ≥ h2−h−7, i.e., (1).

In the cases (2), (3) and (4) we proceed analogously, maximising a2 + a3 +
. . . ah−3, provided that ah−2, ah−1, ah are modified accordingly. In particular,

when considering C̃h we have

a1 =
n+ h2 − 3h− 7

2
and α1 =

3n− h2 + 3h− 1

2
.

From a1 < a2 we have n ≥ h2 − h− 5 and from

α1 < a1 + a2 =
3n+ h2 − 5h− 7

2

we obtain λ ∈ C̃h, i.e., the claim (2) follows.
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In the case of B̃h we have

a1 =
n+ h2 − 3h− 5

2
and α1 =

3n− h2 + 3h− 3

2
.

From a1 < a2 we have n ≥ h2 − h− 3 and from

α1 < a1 + a2 =
3n+ h2 − 5h− 5

2

we obtain λ ∈ B̃h, i.e., the claim (3) is proved.

Finally, assuming the conditions of Ãh we have

a1 =
n+ h2 − 3h− 3

2
and α1 =

3n− h2 + 3h− 5

2
.

From a1 < a2 we have n ≥ h2 − h− 1 and from

α1 < a1 + a2 =
3n+ h2 − 5h− 3

2

we obtain λ ∈ Ãh, from which the desired result (4) follows.

By interchanging the role of n and h in the statements of Proposition 4.11,
we obtain the following description of the set of maximal unrefinable partitions
of triangular numbers of an odd number, where we can read the upper bound
for h in each different class.

Corollary 4.12. Let n ≥ 7 be odd. Then

ŨTn
= {π̃n} ∪̇

⌊ 1+
√

29+4n
2 ⌋⋃

h=5

D̃h ∪̇
⌊ 1+

√
21+4n
2 ⌋⋃

h=4

C̃h ∪̇
⌊ 1+

√
13+4n
2 ⌋⋃

h=4

B̃h ∪̇
⌊ 1+

√
5+4n
2 ⌋⋃

h=4

Ãh

 .

Remark 4.13. In the proof of Proposition 4.11 we have exhibited an example of
unrefinable partition for each class, constructed by maximising a2+a3+ . . . ah−3

and consequently by determining a1. The unrefinability of the obtained partition
is then granted from the fact that a1+a2 > α1. Notice that, each other partition
λ′ of the same class is determined by the removed parts a′1, a

′
2, . . . , a

′
h−3 such

that a′1 = a1 + i and a′s = as − is−1 for s > 1 and is ≥ 0, where i =
∑h−4

s=1 is,
provided that a′i < a′s for i < s. The unrefinability of λ′ is then easily proved,
since

a′1 + a′2 = a1 + i+ a2 − ii ≥ a1 + a2 ≥ α1 ≥ α′
1.

Example 4.14. Let n = 49. For the bound in the previous corollary, when
considering partitions of class D̃ we have 5 ≤ h ≤ (1 +

√
29 + 4n)/2 = 8. Let

us fix h = 7 and construct all the partitions in ŨT49 ∩ D̃7. We recall that, for

Theorem 4.3, a partition of class D̃7 is given when a1, a2 . . . , ah−3 = a4 are
specified. Therefore, for the sake of simplicity, we denote the partitions just by
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listing the removed parts (a1, a2, a3, a4). Let us start, as in Proposition 4.11,
from the partition(

n+ h2 − 3h− 9

2
, n− 7, n− 6, n− 5

)
= (34, 42, 43, 44) .

All the remaining partitions in D̃7, obtained as in Remark 4.13, are:

(35, 41, 43, 44) (36, 40, 43, 44)

(37, 39, 43, 44) (36, 41, 42, 44)

(37, 40, 42, 44) (38, 39, 42, 44)

(38, 40, 41, 44) (37, 41, 42, 43)

(38, 40, 42, 43) (39, 40, 41, 43)

The partitions in other classes are obtained analogously.

We have already highlighted in Example 4.7 and in Example 4.8 what
minλ∈ŨTn

mex (λ) looks like. The intuition can now be easily proved as a con-

sequence of the previous propositions.

Corollary 4.15. Let n ≥ 7 be odd. For each λ ∈ ŨTn
we have

mex (λ) = µ1 ≥
(n− 3)

2
.

Proof. Notice that µ1 = a1. The claim is trivial if λ = π̃n. Otherwise it follows
from Propositions 4.9, 4.10 and 4.11, recalling that a1 was calculated in order
to be minimal, since a2 + a3 + · · · + ah−3 was maximised. The results are
summarised in Table 4.3, where it is not hard to check that (n− 3)/2 is the
smaller value that a1 can assume.

4.4 The bijection

Notice that, by the anti-symmetric property (Remark 4.6) and by the bound on

the minimal excludant (Corollary 4.15), a partition in ŨTn
is determined by at

most

(n− 2)− n− 3

2
=
n+ 1

2
− 1 =

⌈n
2

⌉
− 1

parts. The following theorem is used to establish a bijection between ŨT2k−1

and Dk.

Theorem 4.16. Let a1, a2, . . . , au be the missing parts smaller than or equal
to n − 3 of an unrefinable partition λ ̸= π̃n of Tn, for some odd integer n ≥ 7.
Then n, λ and its class are uniquely determined.
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class a1

C̃4 (n− 3)/2

B̃4 (n− 1)/2

Ã4 (n+ 1)/2

D̃5 (n+ 3)/2

C̃5 (n+ 3)/2

B̃5 (n+ 5)/2

Ã5 (n+ 7)/2

D̃h (n+ h2 − 3h− 9)/2

C̃h (n+ h2 − 3h− 7)/2

B̃h (n+ h2 − 3h− 5)/2

Ãh (n+ h2 − 3h− 3)/2

Table 4.3: Values of a1 in the construction of Propositions 4.9, 4.10 and 4.11,
for h = 4, h = 5 and h ≥ 6.

Proof. Let us start by proving that n can be obtained from knowing a1, a2, . . . , au.
In particular, let us prove that

n =
2
∑u

i=1 ai + 1 + 4u

2u− 1
(4.6)

by distinguishing the four possible classes. Let us first assume λ ∈ D̃h for some
h ≥ 5. Recalling that au ≤ n−3 and, by the definition of D̃h and by Remark 4.6,
since ah−1 = n−1 and ah = n, we have au /∈ {n−3, n−4}. Therefore au ≤ n−5,
and so u = h− 3. Recalling that the following conditions hold

(i) 1 ≤ a1 < a2 < · · · < ah−3 ≤ n− 5,

(ii) n− 4 ≤ ah−2 < ah−1 < ah ≤ n,

(iii) n < αh−3 = 2n−4−ah−3 < αh−4 = 2n−4−ah−4 < · · · < α1 = 2n−4−a1,

(iv)
∑
ai =

∑
αi,

we obtain
u∑

i=1

ai =
(u+ 1)(2n− 4)− (3n− 3)

2
,

from which we determine n as claimed.
Let us consider the class C̃h. In this case, reasoning as above, we have

au = n− 3 and au−1 ≤ n− 5, which means u− 1 = h− 3. Therefore

u∑
i=1

ai − (n− 3) =

u−1∑
i=1

ai =
u(2n− 4)− (3n− 5)

2
,
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from which we obtain again Equation (4.6).

When λ ∈ B̃h, we have au = n− 4, which means h = u+ 2, so

u∑
i=1

ai − (n− 4) =

u−1∑
i=1

ai =
u(2n− 4)− (3n− 7)

2
,

from which the same n is determined.
In conclusion, if λ ∈ Ãh, we have au = n− 3 and au−1 = n− 4, so h = u+1

and Equation (4.6) is satisfied since

u∑
i=1

ai − (n− 4)− (n− 3) =

u−2∑
i=1

ai =
(u− 1)(2n− 4)− (3n− 9)

2
.

Now that n is determined from a1, a2, . . . , au, the class of the partition can
be recognised by looking at au−1 and au. In particular

• au < n− 4 ⇐⇒ λ ∈ D̃u+3,

• au = n− 3 and au−1 < n− 4 ⇐⇒ λ ∈ C̃u+2,

• au = n− 4 ⇐⇒ λ ∈ B̃u+2,

• au = n− 3 and au−1 = n− 4 ⇐⇒ λ ∈ Ãu+1.

To conclude, we determine the partition by using the anti-symmetric property
(cf. Remark 4.6).

We are now ready to prove our last main result of the chapter, in which we
show that the number of maximal unrefinable partitions of T2k−1 coincides with
the number of partitions of k into distinct parts Dk.
Denoting by D the set of all the partitions into distinct parts, let us define the
following subsets of D:

Ã∗
t = {λ = (λ1, . . . , λt) | λ ∈ D, λ1 = 1, λ2 = 2, t ≥ 3},
B̃∗t = {λ = (λ1, . . . , λt) | λ ∈ D, λ1 = 2, t ≥ 2},
C̃∗t = {λ = (λ1, . . . , λt) | λ ∈ D, λ1 = 1, λ2 > 2, t ≥ 2},
D̃∗

t = {λ = (λ1, . . . , λt) | λ ∈ D, λ1 > 3, t ≥ 2}.

It is not hard to notice that

D = Ã∗ ∪̇ B̃∗ ∪̇ C̃∗ ∪̇ D̃∗,

where
Ã∗ =

⋃
t≥3

Ã∗
t , B̃∗ =

⋃
t≥2

B̃∗t , C̃∗ =
⋃
t≥2

C̃∗t , D̃∗ =
⋃
t≥2

D̃∗
t .
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Theorem 4.17. Let k ∈ N, k ≥ 7, n = 2k − 1 and N = Tn. Let τ : ŨTn → Dk

be such that

λ 7→

{
(3, k − 3) λ = π̃n

(n− 2− au, . . . , n− 2− a2, n− 2− a1) λ ̸= π̃n
,

where, if λ ̸= π̃n, then (a1, a2, . . . , au) are the missing parts of
Mλ ∩ {1, 2, . . . , n − 3} as in Theorem 4.16. Then τ is bijective, therefore

#ŨT2k−1
= #Dk.

Proof. For the sake of brevity and by virtue of Theorem 4.16, we will denote each
λ ∈ ŨTn

\{π̃n} by listing its missing parts a1, a2, . . . , au inMλ∩{1, 2, . . . , n−3}.
We prove that τ is bijective by proving explicitly that partitions of Ã ∩ ŨT2k−1

are in one-to-one correspondence with those of Ã∗∩Dk and that the same holds

respectively for B̃ and B̃∗, C̃ and C̃∗, and D̃ ∪ {π̃n} and D̃∗.

Let us start by proving that τ is well defined, i.e., for each λ ∈ ŨTn we have
that τ(λ) is a partition of k into distinct parts. If λ = π̃n there is nothing
to prove, otherwise, since the missing parts of λ are distinct, so are the parts
n − 2 − au < · · · < n − 2 − a2 < n − 2 − a1 of τ(λ). We now prove that
the sum of the parts of τ(λ) is k in each possible case, making extensive use of
Proposition 4.9, Proposition 4.10 and Proposition 4.11 without further mention.
If λ ∈ Ã4, then λ = ((n+ 1)/2, n− 4, n− 3) and so

τ(λ) =

(
1, 2, n− 2− n+ 1

2

)
=

(
1, 2,

n− 5

2

)
=

(
1, 2,

n+ 1

2
− 3

)
= (1, 2, k − 3) ∈ Dk.

Notice that, in particular, τ(λ) ∈ Dk ∩ Ã∗
3. Similarly, if λ ∈ B̃4, then λ =

((n− 1)/2, n− 4) and τ(λ) = (2, (n+ 1)/2− 2) = (2, k − 2) ∈ Dk ∩ B̃∗2 . If

λ ∈ C̃4 we have λ = ((n− 3)/2, n− 3), so τ(λ) = (1, (n+ 1)/2− 1) = (1, k−1) ∈
Dk ∩ C̃∗2 .
If λ ∈ Ã5, then λ = ((n+ 7)/2 + i, n− 5− i, n− 4, n− 3), for 0 ≤ i ≤ ⌊(n −
19)/4⌋, and

τ(λ) =

(
1, 2, 3 + i,

n− 11

2
− i
)

=

(
1, 2, 3 + i,

n+ 1

2
− 6− i

)
= (1, 2, 3 + i, k − 6− i) ∈ Dk,

for 0 ≤ i ≤ ⌊(n − 19)/4⌋. In particular, τ(λ) ∈ Dk ∩ Ã∗
4. Similarly, if λ ∈ B̃5,

then λ = ((n+ 5)/2 + i, n− 5− i, n− 4) and

τ(λ) =

(
2, 3 + i,

n+ 1

2
− 5− i

)
= (2, 3 + i, k − 5− i) ∈ Dk ∩ B̃∗3 ,

for 0 ≤ i ≤ ⌊(n−17)/4⌋. If λ ∈ C̃5, we have λ = ((n+ 3)/2 + i, n− 5− i, n− 3)
and so

τ(λ) =

(
1, 3 + i,

n+ 1

2
− 4− i

)
= (1, 3 + i, k − 4− i) ∈ Dk ∩ C̃∗3 ,

66



for 0 ≤ i ≤ ⌊(n− 15)/4⌋. In the case when λ = ((n+ 3)/2 + i, n− 6− i) ∈ D̃5,
we have

τ(λ) =

(
4 + i,

n+ 1

2
− 4− i

)
= (4 + i, k − 4− i) ∈ Dk ∩ D̃∗

2 ,

for 0 ≤ i ≤ ⌊(n− 17)/4⌋.
Let us now consider λ ∈ D̃h for h ≥ 6. In this case

λ =
(
(n+ h2 − 3h− 9)/2 + i, n− h− i1, . . . , n− 5− ih−4

)
,

where i =
∑h−4

s=1 is, and so

τ(λ) =

(
3 + ih−4, . . . , h− 2 + i1,

n− h2 + 3h+ 5

2
− i
)

=

(
3 + ih−4, . . . , h− 2 + i1, k + 2− h2 − 3h

2
− i
)
.

Notice that

(3 + ih−4) + (4 + ih−5) + · · ·+ (h− 2 + i1)+

+

(
k + 2− h2 − 3h

2
− i
)

=

h−2∑
j=3

j +

h−4∑
s=1

is + k + 2− h2 − 3h

2
− i =

(h− 2)(h− 1)

2
− 3 + k + 2− h2 − 3h

2
=

h2 − 3h

2
− 2 + k + 2− h2 − 3h

2
= k,

and so τ(λ) ∈ Dk ∩ D̃∗
h−3. Similarly, if λ ∈ C̃h, then

λ =

(
n+ h2 − 3h− 7

2
+ i, n− h− i1, . . . , n− 5− ih−4, n− 3

)
and

τ(λ) =

(
1, 3 + ih−4, . . . , h− 2 + i1, k + 1− h2 − 3h

2
− i
)
∈ Dk ∩ C̃∗h−2

since the sum of the first h− 3 terms is (h2 − 3h)/2− 1 +
∑h−4

s=1 is. If λ ∈ B̃h,
we have

λ =

(
n+ h2 − 3h− 5

2
+ i, n− h− i1, . . . , n− 5− ih−4, n− 4

)
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an so

τ(λ) =

(
2, 3 + ih−4, . . . , h− 2 + i1, k −

h2 − 3h

2
− i
)
∈ Dk ∩ B̃∗h−2,

since the sum of the first h− 3 terms is (h2 − 3h)/2 +
∑h−4

s=1 is. Finally, in the
case when

λ =

(
n+ h2 − 3h− 3

2
+ i, n− h− i1, . . . , n− 5− ih−4, n− 4, n− 3

)
∈ Ãh,

(4.7)
we obtain

τ(λ) =

(
1, 2, 3 + ih−4, . . . , h− 2 + i1, k − 1− h2 − 3h

2
− i
)
∈ Dk ∩ Ã∗

h−1,

(4.8)

noticing that the sum of the first h− 2 terms is (h2 − 3h)/2 + 1 +
∑h−4

s=1 is.
We proved that τ is well defined. Notice also that τ is trivially injective.

Therefore it remains to prove that τ is surjective. In particular, it suffices to
check that for each partition λ∗ ∈ (Ã∗ ∪̇ B̃∗ ∪̇ C̃∗ ∪̇ D̃∗)∩Dk, λ

∗ ̸= (3, k−3), there
exists λ ∈ (Ã ∪̇ B̃ ∪̇ C̃ ∪̇ D̃)∩ ŨT2k−1

such that τ(λ) = λ∗, since τ(π̃n) = (3, k−3)
by definition. Given λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
t ) ∈ Dk, by the definition of τ we have

that the partition λ denoted by its missing parts (n−2−λ∗t , . . . , n−2−λ∗2, n−
2 − λ∗1) is such that τ(λ) = λ∗. It remains to prove that such λ is a maximal
unrefinable partition of n. The full details of the proof are here omitted since
they can be obtained by arguments very similar to those used for proving that
τ is well defined. As an example, let us consider the case when λ∗ ∈ Ã∗

t ∩ Dk,
for t ≥ 5, and let us prove that λ∗ is the image of an unrefinable partition λ of
class Ã. Since λ∗ is a partition of k into t distinct parts and contains 1 and 2
by definition we can write

λ∗ =

(
1, 2, 3 + i1, . . . , t− 1 + it−3, k −

t−1∑
s=1

λ∗s

)
, (4.9)

where
t−1∑
s=1

λ∗s =
(t− 1)t

2
+

t−3∑
s=1

is

for some i1, i2, . . . , it−3 ≥ 0 (cf. also Equation (4.8)). We can now substitute
t−1 to h−2 and (n+1)/2 to k in Equation (4.9). Applying the correspondence
λi ↔ n−2−λ∗t−i+1 and denoting the obtained partition λ by listing its missing
parts, we obtain

λ =

(
n+ h2 − 3h− 3

2
+ i, n− h− ih−4, . . . , n− 5− i1, n− 4, n− 3

)
as in Equation (4.7). This proves that λ ∈ ŨT2k−1

∩Ãt+1 is unrefinable (cf. Propo-
sition 4.11 and Remark 4.13) and such that τ(λ) = λ∗. The remaining cases are
similar.
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Remark 4.18. The bijection τ is not well defined when k < 7. However, it can
be easily shown that the result of Theorem 4.17 is still valid when k = 4 and
k = 5, where we have #ŨT7

= #D4 = 1 and #ŨT9
= #D5 = 2, respectively.

The claim is false instead in the case k = 6, where we have #ŨT11
= 4 and

#D6 = 3.

Corollary 4.19. Let ũ(i) = #ŨTi
and let q(i) be the i-th coefficient of the

polynomial
∏

j≥1(1 + xj) . We obtain

ũ(2k − 1) = q(2k − 1)− 1

Proof. It is a direct consequence of Theorem 4.17 and Equation 1.3.

In the proof of Theorem 4.17 we showed that τ is a bijection from ŨT2k−1
to

Dk. Moreover, we also proved that τ is bijective when it is restricted to each
class.

Corollary 4.20. The function τ of Theorem 4.17 maps in a bijective way

(i) Ãh ∩ ŨT2k−1
to Ã∗

h−1 ∩ Dk,

(ii) B̃h ∩ ŨT2k−1
to B̃∗h−2 ∩ Dk,

(iii) C̃h ∩ ŨT2k−1
to C̃∗h−2 ∩ Dk,

(iv) D̃h ∩ ŨT2k−1
to
(
D̃∗

h−3 \ {(3, k − 3)}
)
∩ Dk.

Example 4.21. Coming back to the case of Example 4.7, we represent in Ta-
ble 4.4 the bijection τ between maximal unrefinable partitions of 13 obtained in
the case h = j − 2 (hence those different from π̃13), represented by black dots,
and the partitions of 7 into distinct parts, represented by ⋆. Notice that the
partition (3, 4) is not displayed since it corresponds to π̃13. Here x corresponds
to

x = min
λ∈ŨT13

mex (λ) .

Equivalently, by the anti-symmetric property, partitions of 7 into distinct parts
can be read looking at the black dots on the right side of the table.
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x n− 2 n λt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
6 5 4 3 2 1

• • • • • • ◦ • ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ •
• • • • • ◦ • • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •
• • • • ◦ • • • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

Table 4.4: The bijection τ shown on the partitions of λ ∈ ŨT13
, λ ̸= π̃13. Like

in Table 4.1 we indicate with • the integers that are in the partition and with
◦ the missing parts. The function τ acts on the missing parts signed by ◦
.

class f(n, h) g(n, h)

Ãh
−h3+6h2+(n−8)h−4n+2

2
n−h2+3h−5

2

B̃h −h3+6h2+(n−6)h−4n−6
2

n−h2+3h−3
2

C̃h −h3+6h2+(n−4)h−4n−14
2

n−h2+3h−1
2

D̃h
−h3+6h2+(n−2)h−4n−22

2
n−h2+3h+1

2

Table 4.5: The values of f(n, h) and g(n, h) for each class.

Remark 4.22. Another combinatorial equality can be derived from the provided
construction for ŨN . Indeed, assuming n = 2k − 1 for k ≥ 7, h ≥ 6, and

reasoning as in Example4.14, it can be easily shown that #
(
ŨTn
∩ D̃h

)
equals

the number of partitions in h− 3 parts of f(n, h) in which each part is smaller
than or equal to g(n, h), where

f(n, h) =
−h3 + 6h2 + (n− 2)h− 4n− 22

2
and g(n, h) =

n− h2 + 3h+ 1

2
.

The proof is obtained from Proposition 4.11, considering the bijection

ai ↔ ai − a1 + 1. (4.10)

In Table 4.5 the result is summarised for each class. Notice that, using the
bijection of Equation (4.10) on the partitions shown in Example 4.14, one can
recover the eleven partitions of 31 in 4 parts, where each part is not larger than
11.
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Chapter 5

Classification of maximal
unrefinable partitions in
general case

In this chapter we complete the classification of maximal unrefinable partitions,
extending the previous result to the case of non-triangular numbers. If N ∈ N
is non-triangular, then it is uniquely determined a pair (n, d) where n ∈ N and
1 ≤ d ≤ n− 1 such that N = Tn − d, and we denote such integer N by Tn,d.
We proceed in the same way of Chapter 4. First of all we show the bound
that λt reach in Section 5.1. The bounds are obtained constructively, i.e., we
show actual partitions which reach the bounds. Such constructions are then
extended in Section 5.2 in a complete classification of maximal unrefinable par-
titions reaching the corresponding bounds. With similar arguments but slightly
different computations, we address the cases λt ≤ 2n − 4 and λt ≤ 2n − 5 in
two separate subsections, i.e., respectively in Subsection 5.2.1 and in Subsec-
tion 5.2.2. In particular, the already mentioned counting result proved by a
bijective argument can be read in Theorem 5.28 and in Theorem 5.39. As in the
case of triangular numbers, maximal unrefinable partitions can be expressed in
terms of suitable partitions into distinct parts, for sufficiently large n. We will
show the following result.

5.1 Upper bounds

Proposition 5.1. Let N ∈ N be such that Tn−1 < N < Tn for some n ∈ N.
For every unrefinable partition λ = (λ1, . . . , λt) of N we have

n ≤ λt ≤ 2n− 2. (5.1)
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Equivalently, √
1 + 8(N + d)− 1

2
≤ λt ≤

√
1 + 8(N + d)− 3,

where d = Tn −N .

Proof. Let us start by considering d and the partition πn,d ⊢ N . Other partitions
of N are obtained from πn,d by removing some parts smaller than or equal to
n which are replaced by d and other parts larger than n or only by other parts
larger than n. Proceeding as in the proof of Proposition 4.1, let h, j ∈ N and
let us denote by 1 ≤ a1 < a2 < · · · < ah ≤ n the candidate parts to be removed
from πn,d to obtain a new partition of N , and by α1 < α2 < · · · < αj the
corresponding replacements. Since

∑
ai =

∑
αi we have h ≥ j > 1, and we

may obtain h = j only if α1 = d. For this reason, we need to consider the two
cases separately.

Let us assume αi > n, for every 1 ≤ i ≤ j. Reasoning as in the proof of
Proposition 4.1 we can count m = (h + 1) + αj − n − j. On the other hand,
if α1 = d and αi > n for every 2 ≤ i ≤ j, then we obtain just h missing
parts in the interval {1, 2, . . . , n} and exactly j − 1 parts appear in the interval
{n+ 1, n+ 2, . . . , αj}, therefore we obtain the same formula for the number of
missing parts m = h+ αj − n− (j − 1). By Lemma 3.6 we obtain

h+
⌈αj

2

⌉
− n− j + 1 ≤ 0. (5.2)

If αj > 2n− 2, then ⌈αj/2⌉ ≥ n and from Equation (5.2) we obtain h ≤ j − 1,
a contradiction.

From now on, let us assume n ≥ 11. In this section we show that the bound
for the largest part in an unrefinable partition for a non-triangular number
depends on the parity of the distance from the index of the successive triangular
number. To do this, we start from πn,d, a privileged partition.
In order to construct other partitions of Tn,d, we will proceed as follows: starting
from πn,d ∈ Tn,d, we create a new partition λ by removing from πn,d some of
its parts, namely a1, a2, . . . , ah ∈ {1, 2, . . . , d− 1, d+1, . . . , n}, and, at the same
time, by adding to λ new parts α1, α2, . . . , αj ∈ {d } ∪ {s | s ≥ n + 1}, for
some positive integers h and j. This leads to the creation of a partition λ that,
provided j ≤ h and

h∑
i=1

ai =

j∑
i=1

αi,

is such that λ ⊢ Tn,d, and which, in general, may not be unrefinable. This
notation will be used in the reminder of the paper and this strategy, in addition
to further unrefinability checks, will lead to the classification of ŨTn,d

.

Notice that when λ is an unrefinable partition of ŨTn,d
, the missing part

d in πn,d can be either one of the replacements αis or not. We will show in
Proposition 5.2 that, depending on this, we will obtain two different bounds.
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Proposition 5.2. Let N = Tn,d with n ∈ N and 1 ≤ d ≤ n − 1, and let

λ = (λ1 . . . , λt) ∈ ŨN . Then

λt ≤

{
2n− 2 d ∈ λ,
2n− 4 d ̸∈ λ.

Proof. Let us first assume that d ̸∈ λ, then the number of missing parts of λ is
h+1+ (λt−n− j). From Lemma 3.6, we have h+1+ λt−n− j ≤ ⌊λt/2⌋ and
so

h ≤ ⌊λt/2⌋ − λt + n+ j − 1

= n+ j − 1− ⌈λt/2⌉. (5.3)

If d ̸∈ λ, then we have j < h and so n− 1− ⌈λt/2⌉ ≥ 1, i.e., λt ≤ 2n− 4. If we
assume d ∈ λ, from Equation (5.3) and from j ≤ h we have n− 1− ⌈λt/2⌉ ≥ 0,
i.e., λt ≤ 2n− 2.

Remark 5.3. First notice that 1 ≤ a1 < a2 < · · · < ah ≤ n, d < n and
n+1 ≤ αi ≤ λt for each 1 ≤ i ≤ j such that αi ̸= d, hence, since

∑
ai =

∑
αi,

if d ∈ λ then j ≤ h, otherwise j < h. In particular if λt ∈ {2n − 3, 2n − 2},
which is by Proposition 5.2 only possible when d ∈ λ, we have j ≤ h. Moreover,
from Equation (5.3) we have h ≤ j + n − 1 − ⌈λt/2⌉ = j. In other words, if
λt ∈ {2n − 3, 2n − 2}, then h = j. In the case when λt = 2n − 4, if d ∈ λ we
have j ≤ h and, from Equation (5.3), h ≤ j + 1, and so h ∈ {j, j + 1}; instead
if d ̸∈ λ, since j < h, we obtain h = j + 1.

Remark 5.4 (Anti-symmetry). Let λ = (λ1, . . . , λt) ⊢ N be unrefinable. Notice
that if an integer x in {1, . . . , λt−n− 1} is such that x ̸∈ λ, then it corresponds
to an element x′ = λt − x ∈ {n + 1, . . . , λt − 1} such that x′ ∈ λ, otherwise
x + x′ = λt and λ is refinable. Therefore, the parts of λ can belong to three
consecutive areas of {1, 2, . . . , λt − 1}, as shown in Figure 5.1. We call

• the first area the set {s ∈ N | 1 ≤ s ≤ λt − n− 1},

• the free area the set {s ∈ N | λt − n ≤ s ≤ n},

• the last area the set {s ∈ N | n+ 1 ≤ s < λt}.

Choosing elements in the first area implies fixing parts in the last one. For this
reason, if we consider πn,d and if we obtain a new unrefinable partition λ ⊢ Tn,d
from πn,d removing a1, a2, . . . , ah ≤ n and replacing them with α1, α2, . . . , αj,

then each ai in the first area determines λt − ai ∈ {αi}j−1
i=1 . Accordingly, we

denote the element λt − ai by αi. In particular λt = αj and, when d ∈ λ, we
denote d by αj−1.

By Proposition 5.2 we know that if λ ∈ ŨTn,d
, then λt ≤ 2n − 2. In the

following sections, we will distinguish all the possible cases for λt and we will
provide the corresponding constructions.
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ṅ1 λt − n− 1 ṅn 1λt

first
area

free
area

last
area

Figure 5.1: The three areas of the parts in an unrefinable partition

5.1.1 The case λt = 2n− 2

By virtue of Proposition 5.2 we know that if λ ∈ ŨTn,d
, then d ∈ λ implies

λt ≤ 2n− 2. Let us now show that the bound is tight only for a single choice of
d.

Proposition 5.5. Let λ = (λ1, . . . , λt) ∈ ŨTn,d
. If λt = 2n− 2, then d = 1 and

such partition is unique.

Proof. From Proposition 5.2 we have that λt = 2n − 2 implies d ∈ λ and by
Remark 5.3 we also know that h = j ≥ 2. From the hypothesis λt = 2n− 2 we
obtain that the free area corresponds to the set {n−2, n−1, n}. By Remark 5.4
we have that αh−1 = d and αh = 2n − 2 are fixed. Therefore, since h = j,
the free area can contain two or three parts, but we must rule out the second
option since it would violate unrefinability. We are then only left with the case
of two parts chosen among {(n− 2, n− 1), (n− 1, n)}. The case (n− 2, n) is not
considered since n− 2 + n = 2n− 2 and λ is unrefinable. Let us distinguish all
the possible cases for h.

Let h = 2. Since α1 and α2 are already fixed, we have that a1 and a2 are
free elements. From

∑
ai =

∑
αi we have that either

(n− 2) + (n− 1) = d+ 2n− 2 or

(n− 1) + n = d+ 2n− 2.

From the first equation we obtain d = −1, a contradiction. From the second one
we obtain d = 1, as claimed. Indeed the obtained partition λ = (1, 2, . . . , n −
2, 2n − 2) is unrefinable since the sum of the first two missing parts n − 1 and
n is larger than λt = 2n− 2. Let us now prove that the remaining cases lead to
contradictions.

Let h = 3. From the hypothesis and from Remark 5.4, we have α3 = 2n− 2,
α2 = d, α1 = 2n − 2 − a1 is determined by the choice of a1 and (a2, a3) ∈
{(n− 2, n− 1), (n− 1, n)}. Let us assume that (a2, a3) = (n− 1, n). Then, by∑
ai =

∑
αi, we obtain

a1 + n− 1 + n = 2n− 2− a1 + d+ 2n− 2,

from which

a1 =
2n− 3 + d

2
.

By checking if a1 ≤ n − 3 as it should be, we determine a contradiction on d.
The other option for (a2, a3) corresponds to a larger value for a1, even more so
a contradiction.
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Let h ≥ 4. We are assuming αh = 2n − 2, αh−1 = d, (ah−1, ah) ∈ {(n −
2, n − 1), (n − 1, n)} and 1 ≤ a1 < a2 · · · < ah−2 ≤ n − 3, which determine
α1, α2, . . . , αh−2 as αi = 2n− 2− ai. From

∑
ai =

∑
αi we obtain

a1 + a2 + · · ·+ ah−2 =
(h− 1)(2n− 2) + d− (ah−1 + ah)

2
.

Proceeding as in the previous case, we can choose to maximise a2 + · · ·+ ah by
setting ah−2 = n−3, ah−3 = n−4, . . . , a2 = n−h+1 and ah−1 = n−1, ah = n.
From this we obtain

a1 =
2n+ h2 − 3h− 3 + d

2
.

Checking a1 < a2 = n−h+1, we obtain h2−h−5+d < 0, which is impossible in
the current setting where d > 0 and h ≥ 4. Notice that the choice of maximising
a2 + · · ·+ ah leads to the minimum value for a1. Any other choice of a2, . . . , ah
would lead to a contradiction even more so.

Example 5.6. Let λ = (1, 2, 3, 4, 5, 6, 7, 16). We can observe that λ ∈ U , due to
the sum of the two smallest missing parts 8+9 > 16. Furthermore λ ⊢ 44 = T9,1
and the largest part is 16 = 2 · 9− 2, hence λ ∈ ŨT9,1

.
We can notice that we obtain the partition λ from the partition
π9,1 = (2, 3, 4, 5, 6, 7, 8, 9) removing the 8 and 9 and adding 1 and 16.

Notice that in the previous proof only one construction was successful.
Therefore, the following consequence is trivially obtained.

Corollary 5.7. #ŨTn,1
= 1.

In the following sections we will investigate the remaining possibilities for λt.
Notice that we will mimic the arguments of Proposition 5.5. As before, given
the value of λt, we will determine the free area and the number of elements that
can be chosen in the free area. Then we will attempt to construct partitions
for each possible value of h. In the general case we will derive the conclusion
starting from the choice which maximises the sum of the values assigned to
a2, a3, . . . , ah, and minimises a1. We will use this strategy also in the following
proofs, without further mention.

5.1.2 The case λt = 2n− 3

Proposition 5.8. Let λ = (λ1, . . . , λt) ∈ ŨTn,d
. If λt = 2n− 3, then d = 2 and

such partition is unique.

Proof. From the hypothesis and from Remark 5.3 we obtain that d ∈ λ and
h = j. The free parts are those belonging to {n − 3, . . . , n}. We have already
fixed two of the αis and it is not possible to choose more that two parts in the
free area without reaching a contradiction on the unrefinability of λ. Therefore,
we are left with the case of two free parts and h − 2 parts in the first area
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to be determined. Only four conditions on (ah−1, ah) do not contradict the
unrefinability on 2n− 3, namely

(ah−1, ah) ∈ {(n− 3, n− 2), (n− 3, n− 1), (n− 2, n), (n− 1, n)}.

Let us distinguish the possible cases for h.
Let h = 2. From

∑
ai =

∑
αi we obtain four equations

(n− 3) + (n− 2) = 2n− 5 = d+ 2n− 3,

(n− 3) + (n− 1) = 2n− 4 = d+ 2n− 3,

(n− 2) + n = 2n− 2 = d+ 2n− 3,

(n− 1) + n = 2n− 1 = d+ 2n− 3.

From the first two equations we obtain the contradiction of d being a negative
integer. From the third equation we obtain d = 1, which means that the parti-
tion is not maximal (cf. Proposition 5.5). From the last one we obtain d = 2,
as claimed. Notice that the obtained partition λ = (1, 2, . . . , n − 2, 2n − 3) is
unrefinable since the sum of the least missing parts n − 1 and n is larger than
2n − 3. In the remainder of the proof we will show that the remaining cases
lead to contradictions.

Let h = 3. In the current setting we have α2 = d, α3 = 2n − 3, (a2, a3) ∈
{(n − 3, n − 2), (n − 3, n − 1), (n − 2, n), (n − 1, n)}, 1 ≤ a1 ≤ n − 4 and α1 =
2n − 3 − a1. Proceeding as usual, let us consider the case where a2 + · · · + ah
is maximal, which corresponds to the choice a2 = n − 1 and a3 = n. From∑
ai =

∑
αi we obtain

a1 =
2n− 5 + d

2
,

and checking if a1 ≤ n− 4 we obtain a contradiction on d.
Let h ≥ 4. Maximising a2 + · · · + ah, i.e., setting ah−2 = n − 4, ah−3 =

n− 5, . . . , a2 = n− h, ah−1 = n− 1 and ah = n, from
∑
ai =

∑
αi we have

a1 =
2n+ h2 − 2h− 8 + d

2
.

Imposing a1 < a2 = n− h leads to a contradiction.

Example 5.9. Let λ = (1, 2, 3, 4, 5, 6, 7, 8, 17). We can observe that λ ∈ U ,
due to the sum of the two smallest missing parts 9 and 10 is bigger than 17.
Furthermore λ ⊢ 53 = T10,2 and the largest part is 17 = 2 · 10 − 3, hence

λ ∈ ŨT10,2
.

We can notice that we obtain the partition λ from the partition
π10,2 = (1, 3, 4, 5, 6, 7, 8, 9, 10) removing the 9 and 10 and adding 2 and 17.

Corollary 5.10. #ŨTn,2 = 1.
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5.1.3 The case λt = 2n− 4

In this case, by Proposition 5.2, we have to consider both cases d ̸∈ λ and d ∈ λ.
Let us start by showing that the first assumption gives only one contribution.

Proposition 5.11. Let λ = (λ1, . . . , λt) ∈ ŨTn,d
be such that d ̸∈ λ. If λt =

2n− 4, then d = n− 5 and such partition is unique.

Proof. We derive the claim by proving the following two statements:

1. if d ≤ n− 5, then d = n− 5 and there exists only one partition;

2. no partition exists if n− 4 ≤ d < n.

Let us now prove each claim separately.

1. If λt = 2n− 4 the free area is {n− 4, . . . , n} and we have, by Remark 5.3,
that h = j + 1. Moreover, from the fact that d ̸∈ λ and d ≤ n − 5,
or in other words d is outside the free area, we must have λt − d ∈ λ
since λ is unrefinable. Hence we are left with j − 2 parts in the last
area to be determined. Now, choosing four parts in the free area would
contradict the unrefinability of λ. We also obtain a contradiction choosing
less than two parts in the free area, i.e., more than h − 2 = j − 1 parts
in the first area. We conclude we can only choose three parts in the free
area. In particular we have only four possible cases, i.e., (ah−2, ah−1, ah) ∈
{(n−4, n−3, n−2), (n−4, n−2, n−1), (n−3, n−2, n), (n−2, n−1, n)}.
Let h = 3. From

∑
ai =

∑
αi we obtain four equations by the four

possible options in the free area:

3n− 9 = 4n− 8− d,
3n− 7 = 4n− 8− d,
3n− 5 = 4n− 8− d,
3n− 3 = 4n− 8− d.

The first three equations lead to a contradiction on d while from the last
one we obtain d = n− 5, corresponding to the partition

λ = (1, 2, . . . , n− 6, n− 4, n− 3, n+ 1, 2n− 4)

which is unrefinable since, by hypothesis, we have n ≥ 11.

Let h = 4. As usual, maximising a2 + a3 + a4, from
∑
ai =

∑
αi we

determine

a1 =
3n− 9− d

2
.

Imposing a1 < n− 4 we obtain d > n− 1, a contradiction.

Let h ≥ 5. Maximising a2 + a2 + · · ·+ ah, from
∑
ai =

∑
αi we obtain

a1 =
3n+ h2 − 3h− 13− d

2
,
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being meaningful when a1 < a2 = n − h, from which we obtain n − d +
(h2 − h− 13) < 0, a contradiction if h ≥ 5.

2. Notice that, since d ̸∈ λ and n − 4 ≤ d < n, we can only choose ah−1

and ah in the free area, being the third spot occupied already by d. From∑
ai =

∑
αi, in this case we have

a1 + a2 + · · ·+ ah−2 =
(h− 1)(2n− 4)− (ah−1 + ah)

2
. (5.4)

Let us now examine each possible choice of d. If d = n−4 or d = n−2, then
ah−1+ah is odd, therefore Equation (5.4) cannot be satisfied. Let us now
assume that d = n−3. In this case (ah−1, ah) ∈ {(n−4, n−2), (n−2, n)}.
Let h = 3. Maximising a2 + a3, we can calculate

a1 =
4n− 8− (a2 + a3)

2
,

and so a1 > n− 5, a contradiction.

Let h ≥ 4. Maximising a2 + a3 + · · ·+ ah, from
∑
ai =

∑
αi we obtain

a1 =
2n+ h2 − h− 12

2
.

Checking if a1 < a2 = n − h − 1, we derive that h2 + h − 10 < 0, a
contradiction. The same contradiction is obtained when d = n− 1.

Let us address the remaining case d ∈ λ. Recall that, in this case, by
Remark 5.3 we have h ∈ {j, j + 1}.

Proposition 5.12. Let λ = (λ1, . . . , λt) ∈ ŨTn,d
be such that λt = 2n − 4 and

d ∈ λ. If h = j, then d = 3 and such partition is unique. If h = j + 1, then for
each 1 ≤ k ≤ ⌊(n− 2)/2⌋ there exists λ ∈ ŨTn,d

with d = n− (2k− 1) and there

not exists λ ∈ ŨTn,d
with d = n− 2k.

Proof. Let us assume that h = j. Since, by Remark 5.4, αh−1 = d and αh =
2n − 4 are already fixed, then ah−1 and ah are parts of the free area. Notice
that the free area cannot contain more than three parts.

Let us first assume that it only contains two parts, i.e., (ah−1, ah) ∈ {(n −
4, n− 3), (n− 4, n− 2), (n− 4, n− 1), (n− 3, n− 2), (n− 3, n), (n− 2, n− 1), (n−
2, n), (n− 1, n)}.

Let h = 2. We must have a1 + a2 = 2n− 4 + d. In the case when (a1, a2) =
(n−1, n) we obtain d = 3. which is the claim, since the corresponding partition
λ = (1, 2, . . . , n − 2, 2n − 4) is unrefinable. If (a1, a2) = (n − 2, n − 1) or
(n − 2, n), we respectively obtain d = 1 and d = 2, which, by Proposition 5.5
and Proposition 5.8, contradicts the maximality of λ. In the remaining cases,
we obtain d ≤ 0 which is a contradiction.
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Let h = 3. From
∑
ai =

∑
αi, we have

a1 =
4n− 8− (a1 + a2) + d

2
.

Considering the maximal choice (a2, a3) = (n− 1, n) we obtain a1 = (2n− 7 +
d)/2 < n− 4 when d < −1, a contradiction.

Let h ≥ 4. From
∑
ai =

∑
αi we obtain

a1 + a2 + · · ·+ ah−2 =
(h− 1)(2n− 4)− (ah−1 + ah) + d

2
.

Maximising a2 + . . .+ ah, we have

a1 =
2n+ h2 − h− 13 + d

2
,

which satisfies a1 < a2 when h2 + h− 11 + d < 0, a contradiction when h ≥ 4.

Under the assumption that h = j, it remains to consider the case of three
parts in the free area, i.e., (ah−2, ah−1, ah) ∈ {(n − 4, n − 3, n − 2), (n − 4, n −
2, n−1), (n−3, n−2, n), (n−2, n−1, n)}. In this case a1, a2, . . . , ah−3 determine
α1, α2, . . . , αh−3=j−3, while the part n + 1 ≤ αj−2 ≤ 2n − 5 is not determined
by one of the αis.

Let h = 3. We have a1+a2+a3 = 2n−4+d+α1, with n+1 ≤ α1 ≤ 2n−5
and each possible choice of the parts in the free area implies that α1 < n+ 1.

Let h = 4. From
∑
ai =

∑
αi we have

a1 =
2(2n− 4)− (a2 + a3 + a4) + d+ α2

2
,

and maximising a2+a3+a4 we obtain a1 = (n−5+d+α2)/2. Since a1 < n−4,
then α2 < n− 3− d < n− 3, a contradiction.

Let h ≥ 5. From
∑
ai =

∑
αi we have

a1 + a2 + · · ·+ ah−3 =
(h− 2)(2n− 4)− (ah−2 + ah−1 + ah) + d+ αh−2

2
.

From the maximal choice of a2 + a3 + · · ·+ ah, we obtain

a1 =
n+ h2 − 3h− 9 + d+ αh−2

2
,

and checking if a1 < a2 = n−h leads to (αh−2−n)+(h2−h−9)+d < 0 which
is not compatible with h ≥ 5.

This concludes the case h = j.

Let us now address the remaining case h = j+1. In this setting we have only
three parts in the free area and, as before, the possible choices are the following
triple of elements

(ah−2, ah−1, ah) ∈ {(n−4, n−3, n−2), (n−4, n−2, n−1), (n−3, n−2, n), (n−2, n−1, n)}.
(5.5)
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Let h = 3. We have a1 + a2 + a3 = 2n − 4 + d. In the case (a1, a2, a3) =
(n− 2, n− 1, n) we obtain d = n+ 1, a contradiction. In the other three cases
we obtain d equals n− 1, n− 3 and n− 5, or, in other words, d = n− (2k − 1)
for 1 ≤ k ≤ 3 as claimed. The remaining cases 3 ≤ d ≤ n− 7 are considered by
showing partitions obtained in the case h = 4.

Let h = 4. We have

a1 =
2(2n− 4)− (a2 + a3 + a4) + d

2
.

Notice that, for each choice of (a2, a3, a4), we have a2 + a3 + a4 = 3n− (2t+1),
for some t ≥ 0. Therefore, since a1 is an integer, n is even if and only if d is
odd. Precisely, d = n − (2k − 1) for some 1 ≤ k ≤ ⌊(n − 2)/2⌋ (recall that, by
Proposition 5.5 and Proposition 5.8, the cases d = 1, 2 are not maximal when
λt = 2n − 4). To prove that for all 3 ≤ d ≤ n − 7 there exists λ ∈ ŨTn,d

,
consider, for example, the assignment (a2, a3, a4) = (n − 3, n − 2, n). In this
case, from

∑
ai =

∑
αi, we obtain a1 = (n−3+d)/2 which satisfies a1 < n−4

if and only if d < n− 5 and the corresponding partition is unrefinable. Indeed,
we can violate the refinability only if either a1 + a2 = α1 or a1 + a3 = α1 or
a1 + a4 = α1, and this is only possible if d ∈ {−1, 1, 2}, a contradiction.

If h ≥ 5, from
∑
ai =

∑
αi we have

a1 + a2 + · · ·+ ah−3 =
(h− 2)(2n− 4)− (ah−2 + ah−1 + ah) + d

2
,

from which we obtain again that n is even if and only if d is odd, i.e., d =
n− (2k − 1) for some positive integer k.

Corollary 5.13. Let n be odd. Then #ŨTn,3
= 1.

Proof. By Proposition 5.11, if d ̸∈ λ then there not exists any maximal unrefin-
able partition with d = 3. By Proposition 5.12, if d ∈ λ then we have that, for
h = j + 1, n odd implies d even and, for h = j, there exists only one maximal
unrefinable partition with d = 3.

5.1.4 The case λt = 2n− 5

Also in this case, by Proposition 5.2, we have to consider both cases d ̸∈ λ and
d ∈ λ. Let us address the two cases separately.

Proposition 5.14. Let λ = (λ1, . . . , λt) ∈ ŨTn,d
such that d ̸∈ λ. If λt = 2n−5,

then d = n− 6 and such partition is unique.

Proof. We derive the claim from proving the following two statements:

1. if d ≤ n− 6, then d = n− 6 and there exists only one partition;

2. no partition exists if n− 5 ≤ d < n.

Let us now prove each claim separately.
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1. If λt = 2n− 5 the free area is {n− 5, . . . , n} and we have, by Remark 5.3,
that h = j + 1. Moreover, from the fact that d ̸∈ λ and d ≤ n − 6, or in
other words d is outside the free area, we must have λt − d ∈ λ since λ is
unrefinable. Hence we are left with j − 2 = h − 3 parts in the last area
to be determined. Now, as already concluded in the case λt = 2n− 4, we
can only choose three parts in the free area. In particular we have only
eight possible cases, i.e.,

(ah−2, ah−1, ah) =


(n− 5, n− 4, n− 3) , (n− 5, n− 4, n− 2) ,

(n− 5, n− 3, n− 1) , (n− 5, n− 2, n− 1) ,

(n− 4, n− 3, n) , (n− 4, n− 2, n) ,

(n− 3, n− 1, n) , (n− 2, n− 1, n)

 .

Let h = 3. From
∑
ai =

∑
αi we obtain eight equations by the eight

possible options in the free area

4n− 10− d = 3n− 3,

4n− 10− d = 3n− 4,

4n− 10− d = 3n− 6,

4n− 10− d = 3n− 7,

4n− 10− d = 3n− 8,

4n− 10− d = 3n− 9,

4n− 10− d = 3n− 11,

4n− 10− d = 3n− 12.

In the first case we obtain d = n − 7 which is a contradiction since if
λ ∈ ŨTn,n−7

then λt = 2n− 4. In the last six cases we have d > n− 5 and
so we obtain a contradiction. From the second one we obtain d = n − 6,
corresponding to the partition

λ = (1, . . . , n− 7, n− 5, n− 4, n− 2, n+ 1, 2n− 5),

which is unrefinable for n ≥ 11.

Let h = 4. As usual, maximising a2 + a3 + a4, from
∑
ai =

∑
αi we

determine

a1 =
3n− 12− d

2
.

Imposing a1 < n− 5 we obtain n− 2− d < 0, a contradiction.

Let h ≥ 5. Maximising a2 + a2 + · · ·+ ah, from
∑
ai =

∑
αi we obtain

a1 =
3n+ h2 − 2h− 20− d

2
,

being meaningful when a1 < a2 = n− h− 1, from which we obtain

n− d+ (h2 − 18) < 0,

a contradiction if h ≥ 5.
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2. Notice that, since d ̸∈ λ and n − 5 ≤ d < n, we can only choose ah−1

and ah in the free area, being the third spot occupied already by d. From∑
ai =

∑
αi, in this case we have

a1 + a2 + · · ·+ ah−2 =
(h− 1)(2n− 5)− (ah−1 + ah)

2
. (5.6)

We already know that if d = n− (2k−1) and λ ∈ ŨTn,d
, then λt = 2n−4,

so we can suppose that d ∈ {n− 4, n− 2}.

First suppose that d = n− 4. In this case

(ah−1, ah) ∈ {(n− 5, n− 3), (n− 5, n− 2), (n− 3, n), (n− 2, n)}.

Let h = 3. Maximising a2 + a3, we can calculate

a1 =
4n− 10− (a2 + a3)

2
, (5.7)

so a2 + a3 must be an even number. Now if a2 + a3 = 2n− 2, we obtain
a1 = n− 4, a contradiction, and if the sum is a2 + a3 = 2n− 8, we obtain
a1 = n− 1, again a contradiction.

Let h ≥ 4. Maximising a2 + a3 + · · ·+ ah, from
∑
ai =

∑
αi we obtain

a1 =
2n+ h2 − 17

2
.

Checking if a1 < a2 = n − h − 2, we derive that h2 + h − 13 < 0, a
contradiction if h ≥ 4.

Now suppose that d = n− 2. In this case

(ah−1, ah) ∈ {(n− 5, n− 4), (n− 5, n− 1), (n− 4, n), (n− 1, n)}.

Let h = 3. Maximising a2 + a3, from Equation (5.7) a2 + a3 must be
an even number. Now if a2 + a3 = 2n − 4, we obtain a1 = n − 3, a
contradiction, and if the sum is a2 + a3 = 2n − 6, we obtain a1 = n − 2,
again a contradiction.

Let h ≥ 4. Maximising a2 + a3 + · · ·+ ah, from
∑
ai =

∑
αi we obtain

a1 =
2n+ h2 − 18

2
.

Checking if a1 < a2 = n − h − 2, we derive that h2 + h − 14 < 0, a
contradiction if h ≥ 4.

Let us address the case d ∈ λ. Recall that, in this case, by Remark 5.3 we
have h ∈ {j, j + 1}.

82



Proposition 5.15. Let λ = (λ1, . . . , λt) ∈ ŨTn,d
be such that λt = 2n − 5 and

d ∈ λ. If h = j, then d = 4, n is even and such partition is unique. If h = j+1,
then for each 1 ≤ k ≤ ⌊(n− 4)/2⌋ there exists λ ∈ ŨTn,d

with d = n− 2k.

Proof. Let us assume that h = j. Since, by Remark 5.4, αh−1 = d and αh =
2n − 5 are already fixed, then ah−1 and ah are parts of the free area. Notice
that the free area cannot contain more than three parts.

Let us first assume that it only contains two parts, i.e.,

(ah−1, ah) ∈



(n− 5, n− 4) , (n− 5, n− 3) ,

(n− 5, n− 2) , (n− 5, n− 1) ,

(n− 4, n− 3) , (n− 4, n− 2) ,

(n− 4, n) , (n− 3, n− 1) ,

(n− 3, n), (n− 2, n− 1),

(n− 2, n), (n− 1, n)


.

Let h = 2. We must have a1 + a2 = 2n− 5 + d. In the case when (a1, a2) =
(n−1, n) we obtain d = 4. which is the claim, since the corresponding partition
λ = (1, 2, . . . , n−2, 2n−5) is unrefinable. In all the other cases we obtain either
0 < d < 4 which, by Proposition 5.5, Proposition 5.8 and Proposition 5.12,
contradicts the maximality of λ, or d ≤ 0 which is also a contradiction.

Let h = 3. From
∑
ai =

∑
αi, we have

a1 =
4n− 10− (a1 + a2) + d

2
.

Considering the maximal choice (a2, a3) = (n− 1, n) we obtain a1 = (2n− 9 +
d)/2 < n− 5 when d < −1, a contradiction.

Let h ≤ 4. From
∑
ai =

∑
αi we obtain

a1 + a2 + · · ·+ ah−2 =
(h− 1)(2n− 5)− (ah−1 + ah) + d

2
.

Maximising a2 + . . .+ ah, we have

a1 =
2n+ h2 − h− 18 + d

2
,

which satisfies a1 < a2 = n − h − 2 when h2 + h − 14 + d < 0, a contradiction
when h ≥ 4.

Under the assumption that h = j, it remains to consider the case of three
parts in the free area, i.e.,

(ah−2, ah−1, ah) ∈


(n− 5, n− 4, n− 3) , (n− 5, n− 4, n− 2) ,

(n− 5, n− 3, n− 1) , (n− 5, n− 2, n− 1) ,

(n− 4, n− 3, n) , (n− 4, n− 2, n) ,

(n− 3, n− 1, n) , (n− 2, n− 1, n)

 . (5.8)
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In this case a1, a2, . . . , ah−3 determine α1, α2, . . . , αh−3=j−3, while the element
n+ 1 ≤ αj−2 ≤ 2n− 6 is not determined by one of the αis.

Let h = 3. We have a1+a2+a3 = 2n−5+d+α1, with n+1 ≤ α1 ≤ 2n−5.
If a1 = n − 2, we obtain d + α1 = n + 2 and so we have the only possibility of
d = 1 and α1 = n+1, which, by Proposition 5.5, contradicts the maximality of
λ. In all the other cases we obtain d < 0, a contradiction.

Let h = 4. From
∑
ai =

∑
αi we have

a1 =
4n− 10− (a2 + a3 + a4) + d+ α2

2
,

and maximising a2+a3+a4 we obtain a1 = (n−7+d+α2)/2. Since a1 < n−5,
then α2 < n− 3− d < n− 3, a contradiction.

Let h ≥ 5. From
∑
ai =

∑
αi we have

a1 + a2 + · · ·+ ah−3 =
(h− 2)(2n− 5)− (ah−2 + ah−1 + ah) + d+ αh−2

2
.

From the maximal choice of a2 + a3 + · · ·+ ah, we obtain

a1 =
n+ h2 − 2h− 15 + d+ αh−2

2
,

and checking if a1 < a2 = n − h − 1 leads to (αh−2 − n) + (h2 − 13) + d < 0
which is not compatible with h ≥ 5.

This concludes the case h = j.

Let us now address the remaining case h = j + 1. In this setting we have
only three parts in the free area and the possible choices are those in the set
presented in Equation (5.8).

Let h = 3. We have a1+a2+a3 = 2n−5+d. In the case (a1, a2, a3) ∈ {(n−
3, n− 1, n), (n− 2, n− 1, n)} we obtain d > n, a contradiction. If (a1, a2, a3) =
(n − 4, n − 2, n) or (n − 5, n − 2, n − 1) or (n − 5, n − 4, n − 3) then we obtain
respectively d = n− 1, n − 3 and n− 7 which, by Proposition 5.12, contradict
the maximality of λ. In the other three cases we obtain d equals n−2, n−4 and
n− 6, or, in other words, d = n− 2k for 1 ≤ k ≤ 3 as claimed. The remaining
cases 4 ≤ d ≤ n − 8 are considered by showing partitions obtained in the case
h = 4.

Let h = 4. We have

a1 =
2(2n− 5)− (a2 + a3 + a4) + d

2
.

Notice that, for each choice of (a2, a3, a4) in {(n−2, n−1, n), (n−4, n−3, n), (n−
5, n − 3, n − 1), (n − 5, n − 4, n − 2)}, we have that n is even if and only if d
is odd, which, by Proposition 5.12, contradicts the maximality of λ. In the
other four cases, since a1 is an integer, we obtain that d = n − 2k, for some
integer k. To prove that for all 4 ≤ d ≤ n − 8 there exists λ ∈ ŨTn,d

, consider
for example, the assignment (a2, a3, a4) = (n − 4, n − 2, n). In this case, from

84



∑
ai =

∑
αi, we obtain a1 = (n − 4 + d)/2 which satisfies a1 < n − 5 if and

only if d < n− 6 and the corresponding partition is unrefinable. Indeed, we can
violate the refinability only if either a1+a2 = α1 or a1+a3 = α1 or a1+a4 = α1,
and this is only possible if d ∈ {−1, 1, 3}, a contradiction by Proposition 5.5,
Proposition 5.12 and since d > 0.

If h ≥ 5, from
∑
ai =

∑
αi we have

a1 + a2 + · · ·+ ah−3 =
(h− 2)(2n− 5)− (ah−2 + ah−1 + ah) + d

2
.

Since 2n − 5 is odd, we have to consider the parity of h − 2, and so of h. If
h is even, then we obtain a contradiction for (ah−2, ah−1, ah) in {(n − 2, n −
1, n), (n− 4, n− 3, n), (n− 5, n− 3, n− 1), (n− 5, n− 4, n− 2)} and d = n− 2k
for some positive integer k in the other cases. Instead if h is odd we obtain a
contradiction for (ah−2, ah−1, ah) in {(n−3, n−1, n), (n−4, n−2, n), (n−5, n−
2, n− 1), (n− 5, n− 4, n− 3)} and again d = n− 2k for some positive integer k
in the other cases.

Example 5.16. Let λ = (1, 2, 3, 4, 5, 6, 11) be a partition. We can observe
that λ is unrefinable and λ ⊢ 32 = 36 − 4, hence λ ∈ UT8,4

. Furthermore

λt = 11 = 2 · 8− 5, then λ ∈ ŨTn,d
. We can note that we have removed 7 and 8

from πn,d and we add 4 and 11, so h = j = 2.
If we consider a partition η = (1, 2, 3, 4, 5, 6, 7, 13), similar to the previous one,
we have that η is unrefinable and is weigth is T9,4 = 41, but the partition is not
maximal because n = 9 is odd. For example we have γ = (1, 2, 3, 4, 8, 9, 14) that
is unrefinable and has the same weigth of η, but η8 < γ7.

Example 5.17.

5.2 Counting maximal unrefinable partitions

In the previous section we proved the existence of maximal unrefinable parti-
tions with specific parameters. We use those results in the current section to
specify all the possible configurations meeting the requirements and therefore
counting the corresponding number of partitions. The two cases to be consid-
ered are addressed in this section using the same strategy. Therefore, despite
the problems having a slightly different combinatorial structure, we try to use
a similar notation and terminology in Section 5.2.1 and in Section 5.2.2.

5.2.1 The case λt = 2n− 4

We have already proved that if λ ∈ ŨTn,d
, then d = 3 or d = n − (2k − 1), for

1 ≤ k ≤ ⌊(n − 2)/2⌋. We denote by (α1, . . . , αj) \ (a1, . . . , ah) the partition λ
obtained from πn,d by removing the elements ais and replacing them with the
elements αis. We have already shown in the previous section that, when h ≤ 3,
only the following partitions belong to ŨTn,d

(cf. the proof of Proposition 5.12,
computing αi from the corresponding ai):
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• (3, 2n− 4) \ (n− 1, n) for d = 3,

• (n− 1, 2n− 4) \ (n− 3, n− 2, n) for d = n− 1,

• (n− 3, 2n− 4) \ (n− 4, n− 2, n− 1) for d = n− 3,

• (n− 5, 2n− 4) \ (n− 4, n− 3, n− 2) for d = n− 5,

• (n+ 1, 2n− 4) \ (n− 2, n− 1, n) for d = n− 5 (cf. Proposition 5.11).

Recall that for h ≥ 4 we have the following choices for the free area,
(ah−2, ah−1, ah) ∈ {(n−4, n−3, n−2), (n−4, n−2, n−1), (n−3, n−2, n), (n−
2, n−1, n)}. From now on, according to Proposition 5.11, we must only consider
the case d ∈ λ. Indeed, the only maximal unrefinable partition with d ̸∈ λ and
λt = 2n− 4 is the fifth partition in the previous list.

Let h = 4. We have

a1 =
2(2n− 4)− (a2 + a3 + a4) + d

2
,

and, assigning all the possible values to a2, a3, a4, we obtain the partitions:

• (d, (3n− 3− d)/2, 2n− 4) \ ((n− 5+ d)/2, n− 2, n− 1, n), with d < n− 5,
otherwise a1 ≥ a2, and d ̸= 3, otherwise a1 + a2 = α2;

• (d, (3n− 5− d)/2, 2n− 4) \ ((n− 3+ d)/2, n− 3, n− 2, n), with d < n− 5;

• (d, (3n−7−d)/2, 2n−4)\((n−1+d)/2, n−4, n−2, n−1), with d < n−7;

• (d, (3n−9−d)/2, 2n−4)\((n+1+d)/2, n−4, n−3, n−2), with d < n−9.

Let h ≥ 5. We have

a1 =
n+ (h2 − 3h− 9) + d

2

obtained from the maximal choice for a2+a3+· · ·+ah−3 and from ah−2 = n−2,
ah−1 = n−1 and ah = n, which is also the maximal choice in the free area, and
we obtain the partition(

d, n+ 1, . . . , n+ h− 4,
3n− (h2 − 3h− 1)− d

2
, 2n− 4

)
\(

n+ (h2 − 3h− 9) + d

2
, n− h, . . . , n− 5, n− 2, n− 1, n

)
,

with d < n − (h2 − h − 9). Notice that a1 + a2 > α1, therefore the obtained
partition is unrefinable.

All the others, obtained for the remaining possibilities for a2+a3+· · ·+ah−3,
are obtained replacing (a1, a2, . . . , ah−3) with (a1 + i, a2 − i1, . . . , ah−3 − ih−4),

where i =
∑h−4

r=1 ir and such that a1 + i < a2 − i1 < · · · < ah−3 − ih−4.
We proceed similarly for the other three choices in the free area. All the

results are summarised in Table 5.1 (displayed at the end of the section). The
first row of the table is Corollary 5.13 and the next four rows are summarised
in the following three results.
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Corollary 5.18. #ŨTn,n−1 = 1.

Corollary 5.19. #ŨTn,n−3
= 1.

Corollary 5.20. #ŨTn,n−5
= 2.

We are now ready to address the remaining cases, i.e., to compute explicitly
the number of partitions #ŨTn,d

when 3 ≤ d ≤ n − 7 and d = n − (2k − 1).
Notice that, by Proposition 5.11 and Proposition 5.12, we know that d ∈ λ
and that the partition is uniquely determined when we are given n, d and the
elements a1, a2, . . . , ah to be removed. Moreover, from Equation (5.5) we have
four possible choices for the three elements in the free area which are symmetric
with respect to n− 2, therefore the partitions are determined by the list of the
ais which are smaller than or equal to n− 3. Only one partition is exceptional
with respect to this representation, i.e., the partition

π = (3, 2n− 4) \ (n− 1, n) = (1, 2, . . . , n− 2, 2n− 4).

Definition 5.21. Let d = n− (2k−1) with 3 ≤ d ≤ n−7. Let us define the set

of missing parts, for each λ ∈ ŨTn,d
, which are smaller than or equal to n− 3:

Ũ∗
Tn,d

= {η = (η1, η2, . . . , ηs) | s ≥ 0, ηi ∈Mλ, λ ∈ ŨTn,d
, ηi ≤ n− 3}.

Notice that π corresponds to the empty partition () ∈ Ũ∗
Tn,3

obtained for s = 0.

From the previous argument, ŨTn,d
is in one-to-one correspondence with

Ũ∗
Tn,d

. In order to prove the claimed bijection, let us introduce a partition of

the set Ũ∗
Tn,d

which is convenient for our purposes.

Definition 5.22. Let n, d and h be positive integers. Let us define

Ãn,d,h =
{
η ∈ Ũ∗

Tn,d
| |η| = h− 3, ηh−3 ≤ n− 5

}
,

B̃n,d,h =
{
η ∈ Ũ∗

Tn,d
| |η| = h− 2, nh−3 ≤ n− 5, ηh−2 = n− 3

}
,

C̃n,d,h =
{
η ∈ Ũ∗

Tn,d
| |η| = h− 2, ηh−3 ≤ n− 5, ηh−2 = n− 4

}
,

D̃n,d,h =
{
η ∈ Ũ∗

Tn,d
| |η| = h− 1, ηh−2 = n− 4, ηh−1 = n− 3

}
,

and

Ãn,d =
⋃
h≥4

Ãn,d,h, B̃n,d =
⋃
h≥4

B̃n,d,h,

C̃n,d =
⋃
h≥4

C̃n,d,h, D̃n,d =
⋃
h≥4

D̃n,d,h.

Reading Table 5.1, we can note that

Ũ∗
Tn,d

=

{
Ãn,d ∪̇ B̃n,d ∪̇ C̃n,d ∪̇ D̃n,d 4 ≤ d ≤ n− 7,

{()} ∪̇
⋃

h≥5 Ãn,d,h ∪̇ B̃n,d ∪̇ C̃n,d ∪̇ D̃n,d d = 3.
(5.9)
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Analogously, let us now introduce a convenient partition of Dr, that we will
prove to be related with that of Definition 5.22.

Definition 5.23. Let r and s be positive integers. Let us define

Ã∗
r,s = {λ ∈ Dr,s | λ1 ≥ 3} ,

B̃∗r,s = {λ ∈ Dr,s | λ1 = 1, λ2 ≥ 3} ,

C̃∗r,s = {λ ∈ Dr,s | λ1 = 2} ,

D̃∗
r,s = {λ ∈ Dr,s | λ1 = 1, λ2 = 2} .

It is clear that

Dr =
⋃
s≥2

Ã∗
r,s∪̇

⋃
s≥2

B̃∗r,s∪̇
⋃
s≥2

C̃∗r,s∪̇
⋃
s≥3

D̃∗
r,s. (5.10)

Finally, let us define the following correspondence from Ũ∗
Tn,d
\
{
Ãn,d,4 ∪ {()}

}
to D. We will discuss later how to extend the values of the function on the par-

titions of
{
Ãn,d,4 ∪ {()}

}
.

Definition 5.24. Let us denote

ϕ : Ũ∗
Tn,d
\
{
Ãn,d,4 ∪ {()}

}
−→ D

(η1, η2, . . . , ηt) 7−→ (n− 2− ηt, . . . , n− 2− η2, n− 2− η1).

The two following result will be used in Theorem 5.28 to prove the part of
our main result related to the case λt = 2n− 4.

Proposition 5.25. Let d = n − (2k − 1) such that 3 ≤ d ≤ n − 7 and h ≥ 5.

Then ϕ sends bijectively Ãn,d,h into Ã∗
k,h−3.

Proof. Let us start by proving that the correspondence is well defined, i.e., if
η ∈ Ãn,n−(2k−1),h, then ϕ(η) ∈ Ã∗

k,h−3. Let η ∈ Ãn,n−(2k−1),h. Then, by
Table 5.1,

η =

(
n+

(
h2 − 3h− 9

)
+ d

2
+ i, n− h− i1, . . . , n− 5− ih−4

)
,

for some positive integers i, i1 ≥ i2 ≥ . . . ≥ ih−4 such that i =
∑h−4

j=1 ij . By
definition of ϕ we have

ϕ(η) =

(
3 + ih−4, 4 + ih−5, . . . , h− 2 + i1, k +

−h2 + 3h+ 4

2
− i
)
.

Notice that |ϕ(η)| = h − 3, ϕ(η)1 ≥ 3 and that ϕ(η) ⊢ k. Therefore ϕ(η) ∈
Ã∗

k,h−3.
Notice also that ϕ is trivially injective and so, in order to conclude the proof,

it remains to prove that ϕ is surjective from Ãn,n−(2k−1),h to Ã∗
k,h−3. For this
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purpose, let ρ = (ρ1, ρ2, . . . , ρh−3) ∈ Ã∗
k,h−3. Then the general expression for

such ρ is

ρ =

(
3 + i1, 4 + i2, . . . , h− 2 + ih−4, k +

−h2 + 3h+ 4

2
− i
)
,

for some positive integers i, i1 ≤ i2 ≤ . . . ≤ ih−4 such that i =
∑h−4

j=1 ij . It is
easy to see that

η = (n− 2− ρh−3, . . . , n− 2− ρ2, n− 2− ρ1)

is such that ϕ(η) = ρ. We need to prove that η ∈ Ãn,n−(2k−1),h. We have

η =

(
n− 2−

(
k +
−h2 + 3h+ 4

2
− i
)
, n− 2− (h− 2 + ih−4), . . . , n− 2− (3 + i1)

)
=

(
n+ d+ h2 − 3h− 9

2
+ 1, n− h− ih−4, . . . , n− 5− i1

)
,

which, from Table 5.1, is exactly the generic form of a partition in Ãn,n−(2k−1),h.

Similar computations lead to the corresponding results for B̃∗, C̃∗ and D̃∗.
Precisely:

Proposition 5.26. Let d = n − (2k − 1) such that 3 ≤ d ≤ n − 7 and h ≥ 5.
Then ϕ sends bijectively

1. B̃n,n−(2k−1),h into B̃∗k,h−2,

2. C̃n,n−(2k−1),h into C̃∗k,h−2,

3. D̃n,n−(2k−1),h into D̃∗
k,h−1.

Moreover, in the case h = 4 we have

1. B̃n,n−(2k−1),4
ϕ←→ {(1, k − 1)} = B̃∗k,2,

2. C̃n,n−(2k−1),4
ϕ←→ {(2, k − 2)} = C̃∗k,2,

3. D̃n,n−(2k−1),4
ϕ←→ {(1, 2, k − 3)} = D̃∗

k,3.

Remark 5.27. Notice that Ãn,d,4 contains only the (trivial) partition η̃ =

(n−5+d
2 ), and so, extending the function ϕ on Ãn,d,4 implies to consider the

(trivial) partition of k in a single part, i.e., ϕ(η̃) = (k). Similarly, with an

abuse of notation we can assume ()
ϕ7→ (). This extends the definition of ϕ also

on
{
Ãn,d,4 ∪ {()}

}
, making the function defined on the whole set Ũ∗

Tn,d
.
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We can finally summarise the above results. From Proposition 5.25, Propo-
sition 5.26, Remark 5.27 and from Equation (5.10) we obtain:

Theorem 5.28. Let d = n− (2k − 1) be such that 3 ≤ d ≤ n− 7. Then

#ŨTn,n−(2k−1)
= 1 +#Dk.

Proof. Let us assume first that 4 ≤ d ≤ n − 7. Then, since the empty par-
tition () appears only in the case d = 3 which is not considered, we have (cf.
Equation (5.9))

ŨTn,d
↔ Ũ∗

Tn,d
=

⋃
h≥4

Ãn,d,h

 ∪
⋃

h≥4

B̃n,d,h

 ∪
⋃

h≥4

C̃n,d,h

 ∪
⋃

h≥4

D̃n,d,h


ϕ↔ {(k)} ∪

⋃
s≥2

Ã∗
k,s

 ∪
⋃

s≥2

B̃∗k,s

 ∪
⋃

s≥2

C̃∗k,s

 ∪
⋃

s≥3

D̃∗
k,s


= {(k)} ∪ Dk,

from which we obtained the desired claim. In the remaining case d = 3, we pro-
ceed in the same way and, using the corresponding description of Equation (5.9),
we obtain

ŨTn,d
↔ Ũ∗

Tn,d

ϕ↔ {()} ∪ Dk.
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d (a1, . . . , ah) (α1, . . . , αj)

3 (n− 1, n) (d, 2n− 4)
n− 1 (n− 3, n− 2, n) (d, 2n− 4)
n− 3 (n− 4, n− 2, n− 1) (d, 2n− 4)
n− 5 (n− 4, n− 3, n− 2) (d, 2n− 4)
n− 5 (n− 2, n− 1, n) (n+ 1, 2n− 4)

3 < n− (2k − 1) ≤ n− 7
(
n−5+d

2 , n− 2, n− 1, n
) (

d, 3n−3−d
2 , 2n− 4

)
3 ≤ n− (2k − 1) ≤ n− 7

(
n−3+d

2 , n− 3, n− 2, n
) (

d, 3n−5−d
2 , 2n− 4

)
3 ≤ n− (2k − 1) ≤ n− 9

(
n−1+d

2 , n− 4, n− 2, n− 1
) (

d, 3n−7−d
2 , 2n− 4

)
3 ≤ n− (2k − 1) ≤ n− 11

(
n+1+d

2 , n− 4, n− 3, n− 2
) (

d, 3n−9−d
2 , 2n− 4

)
3 ≤ n− (2k − 1) ≤ n−

(
h2 − h− 7

) (
n+(h2−3h−9)+d

2 + i, n− h− i1, . . . (d, n+ 1 + ih−4, . . . , n− 4 + h+ i1,

for h ≥ 5 n− 5− ih−4, n− 2, n− 1, n)
3n−(h2−3h−1)−d

2 − i, 2n− 4
)

3 ≤ n− (2k − 1) ≤ n−
(
h2 − h− 5

) (
n+(h2−3h−7)+d

2 + i, n− h− i1, . . . (d, n+ 1 + ih−4, . . . , n− 4 + h+ i1,

for h ≥ 5 . . . , n− 5− ih−4, n− 3, n− 2, n)
3n−(h2−3h+1)−d

2 , 2n− 4
)

3 ≤ n− (2k − 1) ≤ n−
(
h2 − h− 3

) (
n+(h2−3h−5)+d

2 + i, n− h− i1, (d, n+ 1 + ih−4, . . . , n− 4 + h+ i1,

for h ≥ 5 . . . , n− 5− ih−4, n− 4, n− 2, n− 1)
3n−(h2−3h+3)−d

2 , 2n− 4
)

3 ≤ n− (2k − 1) ≤ n−
(
h2 − h− 1

) (
n+(h2−3h−3)+d

2 + i, n− h− i1, (d, n+ 1 + ih−4, . . . , n− 4 + h+ i1,

for h ≥ 5 . . . , n− 5− ih−4, n− 4, n− 3, n− 2)
3n−(h2−3h+5)−d

2 , 2n− 4
)

Table 5.1: List of all the possible maximal constructions when λt = 2n− 4

5.2.2 The case λt = 2n− 5

We can now count the number of maximal unrefinable partitions in the case
of λt = 2n − 5. We use the same notation of Section 5.2.1 and using similar
argument, although the combinatorial nature of the problem is more complex.
We have already proved that if λ ∈ ŨTn,d

, then d = n − 2k, for 1 ≤ k ≤
⌊(n−4)/2⌋. Moreover, we have already proved in Section 5.1.4 that, when h ≤ 3,

only the following partitions belong to ŨTn,d
(cf. the proof of Proposition 5.15):

• (4, 2n− 5) \ (n− 1, n) for d = 4,

• (n− 2, 2n− 5) \ (n− 4, n− 3, n) for d = n− 2,

• (n− 4, 2n− 5) \ (n− 5, n− 3, n− 1) for d = n− 4,

• (n− 6, 2n− 5) \ (n− 5, n− 4, n− 2) for d = n− 6,

• (n+ 1, 2n− 5) \ (n− 3, n− 1, n) for d = n− 6 (cf. Proposition 5.14).

For h ≥ 4 we have the following eight choices for the free area, i.e.,

(ah−2, ah−1, ah) ∈


(n− 5, n− 4, n− 3) , (n− 5, n− 4, n− 2) ,

(n− 5, n− 3, n− 1) , (n− 5, n− 2, n− 1) ,

(n− 4, n− 3, n) , (n− 4, n− 2, n) ,

(n− 3, n− 1, n) , (n− 2, n− 1, n)

 .
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Also in this case, we only consider the case d ∈ λ (cf. Proposition 5.14), indeed
the only maximal unrefinable partition with λt = 2n − 5, obtained assuming
d /∈ λ is the last of the previous list.

Let h = 4. Since n is even if and only if d is even, and since, from
∑
ai =∑

αi, we can calculate

a1 =
2 (2n− 5) + d− (a2 + a3 + a4)

2
,

then a2 + a3 + a4 is even if and only if n is even. Therefore, the only possible
choices compliant with the previous requirement are

(a2, a3, a4) = {(n− 5, n− 4, n− 3), (n− 5, n− 2, n− 1), (n− 4, n− 2, n), (n− 3, n− 1, n)} .

We obtain the partitions

• (d, (3n− 4− d)/2, 2n− 5)\((n− 6 + d)/2, n− 3, n− 1, n), with d < n−6,
otherwise a1 ≥ a2, and d ̸= 4, otherwise a1 + a2 = α2;

• (d, (3n− 6− d)/2, 2n− 5)\((n− 4 + d)/2, n− 4, n− 2, n), with d < n−6;

• (d, (3n− 8− d)/2, 2n− 5) \ ((n− 2 + d)/2, n− 5, n− 2, n− 1), with d <
n− 8;

• (d, (3n− 12− d)/2, 2n− 5) \ ((n+ 2 + d)/2, n− 5, n− 4, n− 3), with d <
n− 12.

If h ≥ 5, we need to distinguish the two cases h odd and h even, as already
observed at the end of Proposition 5.15. The only difference between the two
cases is in the triple (ah−2, ah−1, ah) to be chosen in the free area. Let h ≥ 5, h
odd. We have

a1 =
n+

(
h2 − 2h− 15

)
+ d

2
obtained from the maximal choice for a2+a3+· · ·+ah−3 and from ah−2 = n−2,
ah−1 = n−1 and ah = n, which is also the maximal choice in the free area, and
we obtain the partition(

d, n+ 1, . . . , n+ h− 4,
3n−

(
h2 − 2h− 5

)
− d

2

)
\(

n+
(
h2 − 2h− 15

)
+ d

2
, n− h− 1, . . . , n− 6, n− 2, n− 1, n

)
with d ≤ n −

(
h2 − 11

)
. Notice that a1 + a2 > α1, therefore the obtained

partition is unrefinable. The remaining cases for h are treated analogously.
All the other partitions, obtained for the remaining possibilities for a2+a3+

· · ·+ah−3, are obtained replacing (a1, a2, . . . , ah−3) by (a1+i, a2−i1, . . . , ah−3−
ih−4), where i =

∑h−4
r=1 ir and such that a1 + i < a2 − i1 < · · · < ah−3 − ih−4.

We proceed similarly for the other seven choices in the free area. All the
results are summarised in Table 5.3 (displayed at the end of the section), and
the following consequences are easily noted.
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Corollary 5.29. #ŨTn,n−2 = 1.

Corollary 5.30. #ŨTn,n−4
= 1.

Corollary 5.31. #ŨTn,n−6
= 2.

As in the previous section, it remains to compute #ŨTn,d
when 4 ≤ d ≤ n−8

and d = n− 2k. Notice that the partition is uniquely determined when we are
given n, d and the list of the ais which are smaller than or equal to n − 3.
Only one partition is exceptional with respect to this representation, i.e., the
partition

τ = (4, 2n− 5) \ (n− 1, n) = (1, 2, . . . , n− 2, 2n− 5).

The following definition is the counterpart of Definition 5.21 for the case
under consideration here. The defined set will be again in one-to-one corre-
spondence with ŨTn,d

.

Definition 5.32. Let d = n − 2k with 4 ≤ d ≤ n − 8. Let us define the set of
missing parts, for each λ ∈ ŨTn,d

, which are smaller than or equal to n− 3:

Ũ∗
Tn,d

= {(η1, η2, . . . , ηs) | s ≥ 0, ηi ∈Mλ, λ ∈ ŨTn,d
, ηi ≤ n− 3}.

Notice that τ corresponds to the empty partition () ∈ Ũ∗
Tn,4

obtained for s = 0.

Notice that when h ≥ 5 we have (cf. Table 5.3)

a1 =
n+ d+

(
h2 − 2h+ t

)
2

for some t ∈ Z. Since the numerator must be even, we have that h is even if and
only if t is even. From this, we obtain a convenient partition of the set Ũ∗

Tn,d
,

similar to that introduced in Section 5.2.1, but which takes into account also
the parity of h.

Definition 5.33. Let n, d and h be positive integers. If h is odd, let us define

Ẽ1n,d,h =
{
η ∈ Ũ∗

Tn,d
| |η| = h− 3, ηh−3 ≤ n− 6

}
,

Ẽ2n,d,h =
{
η ∈ Ũ∗

Tn,d
| |η| = h− 1, nh−3 ≤ n− 6, ηh−2 = n− 4, ηh−1 = n− 3

}
,

Ẽ3n,d,h =
{
η ∈ Ũ∗

Tn,d
| |η| = h− 1, ηh−2 = n− 5, ηh−1 = n− 3

}
,

Ẽ4n,d,h =
{
η ∈ Ũ∗

Tn,d
| |η| = h− 1, ηh−2 = n− 5, ηh−1 = n− 4

}
.

Moreover
Ẽ1n,d =

⋃
h≥5

Ẽ1n,d,h, Ẽ2n,d =
⋃
h≥5

Ẽ2n,d,h,

Ẽ3n,d =
⋃
h≥5

Ẽ3n,d,h, Ẽ4n,d =
⋃
h≥5

Ẽ4n,d,h.
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If h is even, let us define

F̃1
n,d,h =

{
η ∈ Ũ∗

Tn,d
| |η| = h− 2, ηh−3 ≤ n− 6, ηh−2 = n− 3

}
,

F̃2
n,d,h =

{
η ∈ Ũ∗

Tn,d
| |η| = h− 2, nh−3 ≤ n− 6, ηh−2 = n− 4

}
,

F̃3
n,d,h =

{
η ∈ Ũ∗

Tn,d
| |η| = h− 3, ηh−3 ≤ n− 6, ηh−2 = n− 5

}
,

F̃4
n,d,h =

{
η ∈ Ũ∗

Tn,d
| |η| = h, ηh−2 = n− 5, ηh−1 = n− 4, ηh = n− 3

}
.

Moreover
F̃1

n,d =
⋃
h≥4

F̃1
n,d,h, F̃2

n,d =
⋃
h≥4

F̃2
n,d,h,

F̃3
n,d =

⋃
h≥4

F̃3
n,d,h, F̃4

n,d =
⋃
h≥4

F̃4
n,d,h.

Finally, let us denote

Ẽn,d = Ẽ1n,d ∪ Ẽ2n,d ∪ Ẽ3n,d ∪ Ẽ4n,d,

F̃n,d = F̃1
n,d ∪ F̃2

n,d ∪ F̃3
n,d ∪ F̃4

n,d.

Reading Table 5.3, we can note that

Ũ∗
Tn,d

=

{
Ẽn,d ∪̇ F̃n,d 5 ≤ d ≤ n− 8,

Ẽn,d ∪̇ {()} ∪̇
(⋃

h≥6 F̃1
n,d,h

)
∪̇ F̃2

n,d ∪̇ F̃3
n,d ∪̇ F̃4

n,d d = 4.

(5.11)
The sets defined next play in this section the same role of those defined in
Definition 5.23.

Definition 5.34. Let n, d and h be positive integers. If h is odd, let us define

Ẽ1
∗

n,d,h =
{
ρ ∈ Dk+(h−1)/2 | |ρ| = h− 3, ρ1 ≥ 4

}
,

Ẽ2
∗

n,d,h =
{
ρ ∈ Dk+(h+1)/2 | |ρ| = h− 1, ρ1 = 1, ρ2 = 2, ρ3 ≥ 4

}
,

Ẽ3
∗

n,d,h =
{
ρ ∈ Dk+(h+1)/2 | |ρ| = h− 1, ρ1 = 1, ρ2 = 3

}
,

Ẽ4
∗

n,d,h =
{
ρ ∈ Dk+(h+1)/2 | |ρ| = h− 1, ρ1 = 2, ρ2 = 3

}
.

If h is even, let us define

F̃1∗

n,d,h =
{
ρ ∈ Dk+h/2 | |ρ| = h− 2, ρ1 = 1, ρ2 ≥ 4

}
,

F̃2∗

n,d,h =
{
ρ ∈ Dk+h/2 | |ρ| = h− 2, ρ1 = 2, ρ2 ≥ 4

}
,

F̃3∗

n,d,h =
{
ρ ∈ Dk+h/2 | |ρ| = h− 2, ρ1 = 3, ρ2 ≥ 4

}
,

F̃4∗

n,d,h =
{
ρ ∈ Dk+1+h/2 | |ρ| = h, ρ1 = 1, ρ2 = 2, ρ3 = 3

}
.

In the following definition we adapt the description of ϕ (cf. Definition 5.24)

to the current representation of Ũ∗
Tn,d

.
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Definition 5.35. Let us define the following correspondence from Ũ∗
Tn,d
\{()} to

D. We will discuss later how to extend the values of the function on the empty
partition (). We denote

ϕ : Ũ∗
Tn,d
\ {()} −→ D

(η1, η2, . . . , ηt) 7−→ (n− 2− ηt, . . . , n− 2− η2, n− 2− η1).

Proposition 5.36. Let d = n− 2k such that 4 ≤ d ≤ n− 8 and h ≥ 4. Then,
for 1 ≤ i ≤ 4, ϕ sends bijectively

1. Ẽ in,d,h into Ẽ i∗n,d,h,

2. F̃ i
n,d,h into F̃ i∗

n,d,h,

Proof. Let us prove that Ẽ1n,d,h
ϕ↔ Ẽ1∗n,d,h. The other claims can be proved in the

same way. Let us start by proving that the correspondence is well defined, i.e.,
if η ∈ Ẽ1n,d,h, then ϕ(η) ∈ Ẽ1

∗

n,d,h. Let η ∈ Ẽ1n,d,h. Then, by Table 5.3,

η =

(
n+

(
h2 − 2h− 15

)
+ d

2
+ i, n− h− 1− i1, . . . , n− 6− ih−4

)
,

for some positive integers i, i1 ≥ i2 ≥ . . . ≥ ih−4 such that i =
∑h−4

j=1 ij . By
definition of ϕ we have

ϕ(η) =

(
4 + ih−4, . . . , h− 1 + i1,

n− h2 + 2h+ 11− d
2

− i
)
.

Notice that |ϕ(η)| = h− 3, ϕ(η)1 ≥ 4 and that ϕ(η) ⊢ k + (h− 1)/2. Therefore

ϕ(η) ∈ Ẽ1∗n,d,h.
Notice also that ϕ is trivially injective and so, in order to conclude the proof,

it remains to prove that ϕ is surjective from Ẽ1n,d,h to Ẽ1∗n,d,h. For this purpose,

let ρ = (ρ1, ρ2, . . . , ρh−3) ∈ Ẽ1
∗

n,d,h. Then the general expression for such ρ is

ρ =

(
4 + i1, 5 + i2, . . . , h− 1 + ih−4, k +

−h2 + 2h+ 11

2
− i
)

for some positive integers i, i1 ≤ i2 ≤ . . . ≤ ih−4 such that i =
∑h−4

j=1 ij . It is
easy to see that

η = (n− 2− ρh−3, . . . , n− 2− ρ2, n− 2− ρ1)

is such that ϕ(η) = ρ. We need to prove that η ∈ Ẽ1n,d,h. We have

η =

(
n− 2−

(
k +
−h2 + 2h+ 11

2
− i
)
, n− 2− (h− 1 + ih−4), . . . , n− 2− (4 + i1)

)
=

(
2n− 2k + h2 − 2h− 15

2
+ i, n− h− 1− ih−4, . . . , n− 6− i1

)
.

which, from Table 5.3, is exactly the generic form of a partition in Ẽ1n,d,h.

95



Notice that, as in Proposition 5.26, each of the sets F̃ i∗

n,d,h, with h = 4,
contains only one partition.

Remark 5.37. Let h = 4 and d = n− 2k be such that 4 ≤ d ≤ n− 8. We have

1. F̃1
n,d,h

ϕ↔ F̃1∗

n,d,h =
(
1, k + h

2 − 1
)
, for d ̸= 4,

2. F̃2
n,d,h

ϕ↔ F̃2∗

n,d,h =
(
2, k + h

2 − 2
)
,

3. F̃3
n,d,h

ϕ↔ F̃3∗

n,d,h =
(
3, k + h

2 − 3
)
,

4. F̃4
n,d,h

ϕ↔ F̃4∗

n,d,h =
(
1, 2, 3, k + h

2 − 5
)
.

We now show how the partitions of Ẽ i∗n,d, and F̃ i∗

n,d, represent a convenient
partition of the set Dk+(h−1)/2, which will be used to prove the claimed bijection.

Proposition 5.38. Let d = n− 2k such that 4 ≤ d ≤ n− 8 and h ≥ 5 be odd.
Then we have

Dk+(h−1)/2, h−3 = Ẽ1
∗

n,d,h ∪ Ẽ2
∗

n,d,h−2 ∪ Ẽ3
∗

n,d,h−2 ∪ Ẽ4
∗

n,d,h−2 ∪

∪ F̃1∗

n,d,h−1 ∪ F̃2∗

n,d,h−1 ∪ F̃3∗

n,d,h−1 ∪ F̃4∗

n,d,h−3, (5.12)

where the set Dk+(h−1)/2, h−3 indicates the set of partitions of k+(h− 1)/2 into
h− 3 distinct parts.

Proof. It follows from Definition 5.34 that each partition in one of the sets in
the right side of Equation (5.12) is a partition of k+(h− 1)/2 into h−3 distinct
parts, therefore we have

Dk+(h−1)/2, h−3 ⊇ Ẽ1
∗

n,d,h ∪ Ẽ2
∗

n,d,h−2 ∪ Ẽ3
∗

n,d,h−2 ∪ Ẽ4
∗

n,d,h−2 ∪

∪ F̃1∗

n,d,h−1 ∪ F̃2∗

n,d,h−1 ∪ F̃3∗

n,d,h−1 ∪ F̃4∗

n,d,h−3.

To prove the converse, it is enough to notice that the claimed sets form a
partition of the set Dk+(h−1)/2, h−3, indeed we can write

Ẽ1
∗

n,d,h =
{
λ ∈ Dk+(h−1)/2, h−3 | λ1 ≥ 4

}
,

F̃1∗

n,d,h−1 =
{
λ ∈ Dk+(h−1)/2, h−3 | λ1 = 1, λ2 ≥ 4

}
,

F̃2∗

n,d,h−1 =
{
λ ∈ Dk+(h−1)/2, h−3 | λ1 = 2, λ2 ≥ 4

}
,

F̃3∗

n,d,h−1 =
{
λ ∈ Dk+(h−1)/2, h−3 | λ1 = 3, λ2 ≥ 4

}
,

Ẽ2
∗

n,d,h−2 =
{
λ ∈ Dk+(h−1)/2, h−3 | λ1 = 1, λ2 = 2, λ3 ≥ 4

}
,

Ẽ3
∗

n,d,h−2 =
{
λ ∈ Dk+(h−1)/2, h−3 | λ1 = 1, λ2 = 3, λ3 ≥ 4

}
,

Ẽ4
∗

n,d,h−2 =
{
λ ∈ Dk+(h−1)/2, h−3 | λ1 = 2, λ2 = 3, λ3 ≥ 4

}
,

F̃4∗

n,d,h−3 =
{
λ ∈ Dk+(h−1)/2, h−3 | λ1 = 1, λ2 = 2, λ3 = 3

}
.
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We now use Proposition 5.38 to show the claimed bijection related to the
case λt = 2n−5 of the main result. Recall that DO

k indicates the set of partitions
in distinct parts of k such that every part is an odd number.

Theorem 5.39. Let d = n− 2k such that 4 ≤ d ≤ n− 8. Then

ŨTn,d
↔ DO

2(k+1).

Proof. Let us start assuming d > 4. We obtain the claim by showing first that
ŨTn,d

↔
⋃

i≥0Dk+2+i,2+2i and successively that
⋃

i≥0Dk+2+i,2+2i ↔ DO
2(k+1).

The first claim follows directly from Proposition 5.38, indeed

ŨTn,d
↔Ũ∗

Tn,d

= Ẽn,d ∪ F̃n,d

=
⋃
h≥5

Ẽ1n,d,h ∪
⋃
h≥5

Ẽ2n,d,h ∪
⋃
h≥5

Ẽ3n,d,h ∪
⋃
h≥5

Ẽ4n,d,h∪

∪
⋃
h≥4

F̃1
n,d,h ∪

⋃
h≥4

F̃2
n,d,h ∪

⋃
h≥4

F̃3
n,d,h ∪

⋃
h≥4

F̃4
n,d,h

↔
⋃
h≥5

Ẽ1
∗

n,d,h ∪
⋃
h≥5

Ẽ2
∗

n,d,h ∪
⋃
h≥5

Ẽ3
∗

n,d,h ∪
⋃
h≥5

Ẽ4
∗

n,d,h∪

∪
⋃
h≥4

F̃1∗

n,d,h ∪
⋃
h≥4

F̃2∗

n,d,h ∪
⋃
h≥4

F̃3∗

n,d,h ∪
⋃
h≥4

F̃4∗

n,d,h

=
⋃
h≥5

h odd

(
Ẽ1

∗

n,d,h ∪ Ẽ2
∗

n,d,h−2 ∪ Ẽ3
∗

n,d,h−2 ∪ Ẽ4
∗

n,d,h−2

)
∪

⋃
h≥5

h odd

(
F̃1∗

n,d,h−1 ∪ F̃2∗

n,d,h−1 ∪ F̃3∗

n,d,h−1 ∪ F̃4∗

n,d,h−3

)
=
⋃
h≥5

h odd

Dk+(h−1)/2, h−3

=
⋃
i≥0

Dk+2+i, 2+2i.

Notice that the union in the last equation does not provide any contribution
when i is sufficiently large, therefore it represents a finite union of sets. No-
tice that the largest number of parts that can appear in a partition of Tn,d is
approximatively the square root of n, while there is a linear dependence in i
between k + 2 + i and 2 + 2i.

Let us now prove that
⋃

i≥0Dk+2+i,2+2i ↔ DO
2(k+1). First notice that, if

λ ∈ DO
2(k+1), then |λ| is even, therefore the following equation trivially holds

DO
2(k+1) =

⋃
i≥0

DO
2(k+1), 2+2i,
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where the last union is again only formally infinite. Let us define

ψ : Dk+2+i, 2+2i → DO
2(k+1), 2+2i

(λ1, . . . , λ2+2i) (2λ1 − 1, . . . , 2λ2+2i − 1)

and let us prove that ψ is bijective. Clearly ψ is well defined, indeed if λ ∈
Dk+2+i, 2+2i, then

ψ (λ) ⊢ 2λ1 − 1 + · · ·+ 2λ2+2i − 1 = 2 (λ1 + · · ·+ λ2+2i)− 2− 2i

= 2 (k + 2 + i)− 2− 2i

= 2k + 2.

Let us now prove that ψ is surjective. Let σ = (σ1, σ2, . . . , σ2+2i) ∈ DO
2(k+1), 2+2i.

It is easy to verify that

ρ =

(
σ1 + 1

2
,
σ2 + 1

2
, . . . ,

σ2+2i + 1

2

)
is such that ψ(ρ) = σ. Since ψ is trivially injective, the claim is proved for
d > 4. In the case d = 4, from Equation (5.11) we have

ŨTn,4 ↔Ũ∗
Tn,4

= Ẽn,4 ∪̇ {()} ∪̇

⋃
h≥6

F̃1
n,4,h

 ∪̇ F̃2
n,4 ∪̇ F̃3

n,4 ∪̇ F̃4
n,4.

The claim is obtained as before, only noticing the empty partition () replaces

the partition of F̃1
n,d,4, which is not defined when d = 4 (cf. Remark 5.37).

Now we completed the classification of maximal unrefinable partitions. We
have that, if N is the triangular number Tn, then the number of maximal un-
refinable partitions of Tn is one if n is even and coincides with the number of
partitions of (n + 1)/2 into distinct parts if n is odd. If N is non-triangular,
i.e., if N = Tn,d for some n ≥ 11 and 1 ≤ d ≤ n − 1, from Theorem 5.28 and
Theorem 5.39 we obtain:

Corollary 5.40. Let n ≥ 11 and 1 ≤ d ≤ n− 1 be integers. If n is odd, then

#ŨTn,d
=


1 + #D(n−d+1)/2 if d > 3 is even,

#DO
n−d+2 if d > 3 is odd,

1 if d ∈ {1, 2, 3}.

Otherwise

#ŨTn,d
=


1 + #D(n−d+1)/2 if d > 2 is odd,

#DO
n−d+2 if d > 2 is even,

1 if d ∈ {1, 2}.
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N λtmax #ŨN N λtmax #ŨN
Tn−1 2n− 4 Dn/2 Tn 2n− 4 1
Tn,n−1 2n− 4 1 Tn+1,n 2n− 4 1
Tn,n−2 2n− 5 1 Tn+1,n−1 2n− 5 1
Tn,n−3 2n− 4 1 Tn+1,n−2 2n− 4 1
Tn,n−4 2n− 5 1 Tn+1,n−3 2n− 5 1
Tn,n−5 2n− 4 2 Tn+1,n−4 2n− 4 2
Tn,n−6 2n− 5 2 Tn+1,n−5 2n− 5 2

...
...

...
...

...
...

Tn,n−(2k−1) 2n− 4 Dk+1 Tn+1,n+1−(2k−1) 2n− 4 Dk+1

Tn,n−(2k) 2n− 5 DO
2k+2 Tn+1,n+1−(2k) 2n− 5 DO

2k+2
...

...
...

...
...

...
Tn,4 2n− 5 DO

n−2 Tn+1,5 2n− 5 DO
n−2

Tn,3 2n− 4 D(n−2)/2 Tn+1,4 2n− 4 D(n−2)/2

Tn,2 2n− 3 1 Tn+1,3 2n− 4 1
Tn,1 2n− 2 1 Tn+1,2 2n− 3 1
Tn 2n− 4 1 Tn+1,1 2n− 2 1
⋆ ⋆ ⋆ Tn+1 2n− 4 D 1+n/2

Table 5.2: The number of maximal unrefinable partitions between two consec-
utive triangular numbers. Here n is an even number.

The two results can be appreciated in Table 5.2, where we list the number
of maximal unrefinable partitions for integers included between two consecutive
triangular numbers. Precisely, we start from an even integer n and list the
number #ŨTn,d

and the corresponding maximum λt, for each integer in {s ∈
N | Tn−1 ≤ s ≤ Tn+1}. The same combinatorial structure replicates in other
intervals between two consecutive triangular numbers, according to the rules of
Theorem 5.28 and Theorem 5.39.
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d (a1, . . . , ah) (α1, . . . , αj)

4 (n− 1, n) (d, 2n− 5)
n− 2 (n− 4, n− 3, n) (d, 2n− 5)
n− 4 (n− 5, n− 3, n− 1) (d, 2n− 5)
n− 6 (n− 5, n− 4, n− 2) (d, 2n− 5)
n− 6 (n− 3, n− 1, n) (n+ 1, 2n− 5)

4 < n− 2k ≤ n− 8
(
n−6+d

2 , n− 3, n− 1, n
) (

d, 3n−4−d
2 , 2n− 5

)
4 ≤ n− 2k ≤ n− 8

(
n−4+d

2 , n− 4, n− 2, n
) (

d, 3n−6−d
2 , 2n− 5

)
4 ≤ n− 2k ≤ n− 10

(
n−2+d

2 , n− 5, n− 2, n− 1
) (

d, 3n−8−d
2 , 2n− 5

)
4 ≤ n− 2k ≤ n− 14

(
n+2+d

2 , n− 5, n− 4, n− 3
) (

d, 3n−12−d
2 , 2n− 5

)
4 ≤ n− 2k ≤ n−

(
h2 − 11

) (
n+(h2−2h−15)+d

2 + i, n− h− 1− i1, . . . (d, n+ 1 + ih−4, . . . , n− 4 + h+ i1,

for h ≥ 5, h odd n− 6− ih−4, n− 2, n− 1, n)
3n−(h2−2h−5)−d

2 − i, 2n− 5
)

4 ≤ n− 2k ≤ n−
(
h2 − 10

) (
n+(h2−2h−14)+d

2 + i, n− h− 1− i1, . . . (d, n+ 1 + ih−4, . . . , n− 4 + h+ i1,

for h ≥ 5, h even n− 6− ih−4, n− 3, n− 1, n)
3n−(h2−2h−4)−d

2 − i, 2n− 5
)

4 ≤ n− 2k ≤ n−
(
h2 − 8

) (
n+(h2−2h−12)+d

2 + i, n− h− 1− i1, . . . (d, n+ 1 + ih−4, . . . , n− 4 + h+ i1,

for h ≥ 5, h even n− 6− ih−4, n− 4, n− 2, n)
3n−(h2−2h−2)−d

2 − i, 2n− 5
)

4 ≤ n− 2k ≤ n−
(
h2 − 7

) (
n+(h2−2h−11)+d

2 + i, n− h− 1− i1, . . . (d, n+ 1 + ih−4, . . . , n− 4 + h+ i1,

for h ≥ 5, h odd n− 6− ih−4, n− 4, n− 3, n)
3n−(h2−2h−1)−d

2 − i, 2n− 5
)

4 ≤ n− 2k ≤ n−
(
h2 − 6

) (
n+(h2−2h−10)+d

2 + i, n− h− 1− i1, . . . (d, n+ 1 + ih−4, . . . , n− 4 + h+ i1,

for h ≥ 5, h even n− 6− ih−4, n− 5, n− 2, n− 1)
3n−(h2−2h)−d

2 − i, 2n− 5
)

4 ≤ n− 2k ≤ n−
(
h2 − 5

) (
n+(h2−2h−9)+d

2 + i, n− h− 1− i1, . . . (d, n+ 1 + ih−4, . . . , n− 4 + h+ i1,

for h ≥ 5, h odd n− 6− ih−4, n− 5, n− 3, n− 1)
3n−(h2−2h+1)−d

2 − i, 2n− 5
)

4 ≤ n− 2k ≤ n−
(
h2 − 3

) (
n+(h2−2h−7)+d

2 + i, n− h− 1− i1, . . . (d, n+ 1 + ih−4, . . . , n− 4 + h+ i1,

for h ≥ 5, h odd n− 6− ih−4, n− 5, n− 4, n− 2)
3n−(h2−2h+3)−d

2 − i, 2n− 5
)

4 ≤ n− 2k ≤ n−
(
h2 − 2

) (
n+(h2−2h−6)+d

2 + i, n− h− 1− i1, . . . (d, n+ 1 + ih−4, . . . , n− 4 + h+ i1,

for h ≥ 5, h even n− 6− ih−4, n− 5, n− 4, n− 3)
3n−(h2−2h+4)−d

2 − i, 2n− 5
)

Table 5.3: List of all the possible maximal constructions when λt = 2n− 5
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Chapter 6

Conclusion and future
reasearch

In this last chapter we show some relations between unrefinable partitions and
numerical semigroups. We also present some possible future directions to study.

6.1.1 Unrefinable partitions and numerical semigroups

Let S = {0, s1, . . . , sn,→} be a numerical semigroup and Sc = {sc1, . . . , sct} be
the set of gaps of S. We can observe, by definition of numerical semigroups,
that the sum of si, sj ∈ S is such that si+sj /∈ Sc, in other words every element
of Sc cannot be obtained as a sum of two or more elements that are not in Sc.
We obtain that every set of gaps of a numerical semigroup Sc coincides with an
unrefinable partition λ. More precisely we have the following correspondences

Sc = {sc1, . . . , sct} → λ = (λ1, . . . , λt)

S = {0, s1, . . . , st + 1,→} → {0} ∪Mλ ∪ {λt + 1,→}
G(S) → len(λ)

F (S) → λt

M(S) → mex(λ) = µ1

Ap(S, s1) → p⃗λ

We can observe another relation between numerical semigroups and unrefinable
partitions. The Apery set respect s1 coincides with the vector of forbidden parts
of the unrefinable partition, except for the first position where in the case of the
Apery set appears 0, while in the vector 2s1.

Example 6.1. Let S = {0, 4, 7, 8, 10, 11, 12, 14,→} be a numerical semigroup,
then the comlementary Sc = {1, 2, 3, 5, 6, 9, 13} defines the unrefinable partition
λ = (1, 2, 3, 5, 6, 9, 13). We can observe that Mλ = {4, 7, 8, 10, 11, 12} coincides
with Sc \ ({0}∪ {14,→}). Moreover, the set of gaps represents the length of the
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partition G(S) = 7 = len(λ), the Frobenius number coincides with the maximal
part of λ F (S) = 13 = λ7 and M(S) = 4 is the mex(λ). The Apery set of S
respect to 4 is {0, 17, 10, 7} while the vector p⃗λ = {8, 17, 10, 7}.

As a direct consequence of these correspondences we have the following re-
sult.

Proposition 6.2. Let NS be the set of numerical semigroups and U be the set
of unrefinable partitions into distinct parts. We have

NS ⊂ U

Notice that the other inclusion is false. If λ ∈ U then, by definition every
λi ∈ λ cannot be substituted as the sum of two equal missing parts, so if
µ1 ∈ Mλ then 2µ1 might be a part of λ, contrary to the case of numerical
semigroups for which if a positive integer is an element of S then its double
must also be in S. So every unrefinable partition λ, in general every partition
into distinct parts, defines a numerical set Sλ such that Sc

λ = λ.

Example 6.3. The partition λ = (1, 2, 5, 6, 8) is an unrefinable partition, while
the set Sλ = {0, 3, 4, 7, 9,→} is not a numerical semigroup because 6 = 3 + 3
and 8 = 4 + 4 are not in Sλ.

By the characterisation of hooksets of numerical semigroups (Proposition
2.16), we can prove a similar result in the case of unrefinable partition.

Lemma 6.4. Let λ = (λ1, . . . , λt,→) be an unrefinable partition corresponding
Young tableau YSλ

, where Sλ is the numerical set associates to λ. Then:

1. The hook length of the box in the first column and ith row is λi;

2. For each 2 ≤ i ≤ #Mλ the hook length of the top box of the ith column of
YSλ

is equal to λt − µi−1;

3. λ is a unrefinable partition if and only every length of the hook of the boxes
of YSλ

(a) is contained in the first column YSλ
;

(b) does not appear in the first column of YSλ
, then the length of the hook

of the cell in the first column and the same row is its double.

Proof. The proof of Part (1) and Part (2) is the same that we used in Proposi-
tion 2.16, and it is true in general for all partitions into distinct parts.
Let λ be an unrefinable partitions. If λ corresponds to a numerical semigroup
Sλ then, by Proposition 2.16 Part (3), all the cells are marked with numbers of
the first column, so the statement (a) is proved. If Sλ /∈ NS, then there exists
µj ∈ Mλ such that kµj ∈ λ. In particular we can set k = 2, otherwise the
partition is refinable. By the fact that 2µj ∈ λ we know that there exists one
row whose its first box is marked by 2µj (Part (1)) and all the other boxes in
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the row are such that 2µj − si, with si ∈ Sλ and si < µj , so we have a box
marked by 2µj −µj = µj . If neither the condition (a) and the condition (b) are
satisfied, then there exists a box marked by x such that it does not appear in
the first column, so, by Part (1), x /∈ λ. Moreover, let z be the first element in
the same row of x, we have x = z − si, with si ∈ Sλ. By the fact that z ̸= 2x
and z = x+ si we obtain a contradiction because λ is refinable.
Conversely, if only condition (a) is satisfied then we obtain a numerical semi-
group Sλ and then λ is unrefinable. If conditions (a) and (b) are verified there
is a box not in the first column signed by µj and the first element of its row is
2µj then 2µj ∈ λ by Part (1), which cannot be replaced by the sum µj + µj , so
the partition is unrefinable.

Notice that the previous result gives another method for recognising if a
partition into distinct parts is unrefinable or not

Example 6.5. If we consider the unrefinable partition λ = (1, 2, 5, 6, 8), as in
the Example 6.3, and write the hook length of every cell, we obtain

1

2

5

6

8

2

3

5

1

2

4 1

We can observe that the condition (a) and (b) of Lemma 6.4 Part (3) are satis-
fied, then λ is unrefinable.

Let us introduce another subset of the set containing all the unrefinable
partitions useful for obtaining relations with numerical semigroups.

Definition 6.6. Let λ = (λ1, . . . , λt) be an unrefinable partition. We denote by
U(λt) the set of the unrefinable partitions with the maximal part is equal to λt.
Let us define the subset of U(λt) composed by all the partitions with maximal
number of missing parts

Ū(λt) =
{
λ ∈ U | #Mλ =

⌊
λt
2

⌋}
Lemma 6.7. Let NS(k) be the set of numerical semigroups such that F (S) = k.
Then we obtain

#NS(k) < #U(k).

Proof. Is a direct consequence of Proposition 6.2.

We can observe some properties.

Lemma 6.8. If λ ∈ Ū(λt) and let x ̸= λt

2 , then x ∈ λ if and only if λt−x ∈Mλ.
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Proof. By the anti-symmetry property if λt−x /∈ λ then x must be a part of λ.
Conversely, if we suppose that x ∈ λ and λt − x ∈ λ then, since #Mλ =

⌊
λt

2

⌋
,

there exists y /∈ λ such that λt − y /∈ λ which is a contradiction.

Lemma 6.9. If λ = (λ1, . . . , λt) ∈ Ū(λt), then λt

2 /∈ λ.

Proof. If λt is an odd number then the element λt

2 is not an integer number, so
it cannot appear in λ.
If λt is an even number, we have λt

2 missing parts in the integer interval

[1, λt − 1]. Let x ∈
[
1, λt

2 − 1
]
, by Lemma6.8 we have that if x /∈ λ then

λt − x ∈ λ, otherwise if x ∈ λ the element λt − x /∈ λ. So we set λt

2 − 1 missing

parts in the interval
[
1, λt

2 − 1
]
∪
[
λt

2 + 1, λt − 1
]
, then λt

2 /∈ λ.

Proposition 6.10. Let Û be the subset of Ũ defined as follows

Û = {(1, . . . , 2k − 3, 4k − 6) | k ≥ 4}⋃
{(1, . . . , 2k − 2, 4k − 5) | k ≥ 4}

⋃
{π̃n | n ≥ 6} .

The subset of maximal unrefinable partitions Ũ \ Û is contained in the set of
unrefinable partitions with maximal number of missing parts Ū .(

Ũ \ Û
)
⊆ Ū

Proof. In Chapter 4 and in Chapter 5 we construct maximal unrefinable parti-
tions. In particular in Theorem 4.3 we define the maximal unrefinable partition
π̃n = (1, . . . , n− 3, n+ 1, 2n− 4) obtained from πn removing three parts and
adding two new elements, hence we have #Mπ̃n

= n− 3 < n− 2 =
⌊
2n−4

2

⌋
. So,

for every n ≥ 6 the partition π̃n /∈ Ū .
In the first part of Proposition 5.12 we obtain a maximal unrefinable parti-
tion λ = (1, . . . , n− 2, 2n− 4) of Tn,3 when n is an odd number. In this case
#Mλ = n− 3 < n− 2, hence λ /∈ Ū .
Similarly, in Proposition 5.15 we obtain a maximal unrefinable partition for Tn,4
when n is an even number. In this case the partition η = (1, n− 2, 2n− 5) has
n− 4 missing parts, while

⌊
2n−5

2

⌋
= n− 3, so η /∈ Ū .

All the others maximal unrefinable partitions obtained in Theorem 4.3, Propo-
sition 5.5, Proposition 5.8, Proposition 5.11, Proposition 5.12, Proposition 5.14,
Proposition 5.15 have the maximal number of missing parts.

Lemma 6.11. Let λ ∈ Ū(λt) and let λt be an odd number such that λt ̸= 3µi

for all µi ∈ Mλ. Then the numerical set Sλ associated to λ is a numerical
semigroup.

Proof. We suppose that there exists a numerical set Sλ that is not a numerical
semigroup, in other words exists µi ∈ Mλ such that kµi ∈ λ. We can set
k = 2, otherwise if 2µi /∈ λ then all the multiples of µi are not in λ. So we
have 2µi ∈ λ and then λt − 2µi /∈ λ by Lemma 6.8. If λt − 2µi ̸= µi we have
λt − 2µi + µi = λt + µi /∈ λ, but this is a contradiction because λt − µi ∈ λ by
Lemma6.8. If λt−2µi = µi, then λt = 3µi and this is another contradiction.
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Example 6.12. Let λ = (1, 2, 3, 4, 7, 9, 10, 15) and µ = (1, 2, 3, 5, 7, 9, 11, 15).
We can observe that it holds #Mλ = #Mµ = 7 =

⌊
15
2

⌋
, and hence λ, µ ∈

Ū(15). However, while Sλ = {0, 5, 6, 8, 11, 12, 13, 14, 16,→} is not a numerical
semigroup, indeed 10, 15 /∈ Sλ, Sµ is.

Corollary 6.13. Let λ ∈ Ū(λt), such that λt is an odd number coprime with 3,
then the numerical set associated Sλ is a numerical semigroup.

This result follows directly from Lemma 6.11, but it is possible to state even
a stronger version.

Corollary 6.14. Let λ ∈ Ū(λt), such that λt is a prime number, then the
numerical set associated Sλ is a numerical semigroup.

Theorem 6.15. Let λt be a prime number. Then we have

#Ū(λt) = # {S ∈ SNS | F (S) = λt}

Proof. The claim follows from Corollary 6.14 and Definition 2.24.

Now we introduce two sets those induce a useful decomposition of U(λt).
Let us define

U(λt, µ1) = {λ ∈ U(λt) | µ1 = mex (λ)} ,
Ū(λt, µ1) =

{
λ ∈ Ū(λt) | µ1 = mex (λ)

}
We can obtain the first set starting from the second one. Let λ ∈ Ū(λt) such that
λt is prime and let p⃗λ be the vector of forbidden integers (Definition 3.8). By
Theorem 6.15 Sλ is a numerical semigroup then we have (p⃗λ)1 = 2µ1, the other
(p⃗λ)i, with 2 ≤ i ≤ µ1, are equal to the lower integers modulo µ1 such that they
are not a parts of λ. If there exists 1 ≤ i ≤ µ1 such that (p⃗λ)i ̸= (p⃗λ)j + (p⃗λ)k
for 1 ≤ j < k ≤ µ1 such that j, k ̸= i, we can obtain a new unrefinable partition
λ∗ ∈ U(λt, µ1) such that λ∗ = λ∪{(p⃗λ)i}. The vector p⃗λ∗ changes from p⃗λ only
in the position i, i.e., (p⃗λ∗)i = (p⃗λ)i + µ1.

Example 6.16. Let λt = 13 and µ1 = 3, we have Ū(λt, µ1) = {λ}, where
λ = (1, 2, 4, 5, 7, 10, 13) and p⃗λ = (6, 16, 8). Since 13 ≡ 1 (mod 3), all the lower
integers in the same modulo class are in λ. We can add to λ the integers of the
others modulo classes µ1, respecting the unrefinability. So we can obtain new
unrefinable partitions adding these integers to λ (see fig. 6.1).

Here we have proved just some relationship between unrefinable partitions
and numerical semigroups. A future research could be devoted to understand
such connection more deeply and finding formulas for Ū(λt).

6.1.2 Unrefinable partitions and Polytopes

Definition 6.17. A polytope P is a non-empty and bounded intersection of
finitely many closed halfspaces in Rn. Any intersection of some of the halfspaces
defining the polytope P and P itself is called face. The face of dimension 0 are
the vertices of P . If the vertex coordinates are rational, then P is a rational
polytope[Zie95].
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{8, 11} {6, 8, 11} {6, 8, 9, 11} {6, 8, 9, 11, 12}

{8} {6, 8} {6, 8, 9} {6, 8, 9, 12}

{0} {6} {6, 9} {6, 9, 12}

Figure 6.1: Given λ = {1, 2, 4, 5, 7, 10, 13}, any directed path from {0} to
{6, 8, 9, 11, 12} gives a sequence of integers that, added to λ, keep it an un-
refinable partition. These are all the unrefinable partitions such that λt = 13
and µ1 = 3.

Definition 6.18. A non-empty set C ⊆ Rn is a cone if αx+ βy ∈ C for each
x, y ∈ C and α, β ∈ R≥0. A cone is polyhedral if it is finitely generated

Let S be a numerical semigroup and M(S) = m.

Proposition 6.19 ([Kap17]). Let S be a numerical semigroup with Apery set
{m, k1m+ 1, . . . , km−1m+m− 1} with respect m, where ki ≥ 1. Then

m−1∑
i=1

ki = G(S)

Notice that the different choices of ki are a composition of G(S). Recall that
a composition of an integer n is a way of writing n as a sum of positive integers
where the order of these integers does matter.

Proposition 6.20 ([Kap17]). The set {m, k1m+ 1, . . . , km−1m+m− 1} is the
Apery set of the numerical semigroup S = ⟨m, k1m+ 1, . . . , km−1m+m− 1⟩ if
and only if for all 1 ≤ i ≤ m− 1, (ki − 1)m+ i /∈ S

There are some necessary conditions for {m, k1m+ 1, . . . , km−1m+m− 1}
to be an Apery set.The results of [RGSGGB02] and [Kun87] are that these
conditions completely determine which compositions of G(S) lead to a valid
Apery set. Consider the following set of inequalities

xi ≥ 1 ∀i ∈ {1, . . . ,m− 1}
xi + xj ≥ xi+j ∀1 ≤ i ≤ j ≤ m− 1, i+ j ≤ m− 1

xi + xj + 1 ≥ xi+j−m ∀1 ≤ i ≤ j ≤ m− 1, i+ j > m− 1

xi ∈ Z ∀i ∈ {1, . . . ,m− 1}
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Proposition 6.21 ([Kun87],[RGSGGB02]). There is a one to one correspon-
dence between solutions {k1, . . . , km−1} to the above inequalities and the Apery
sets of numerical semigroups with multiplicity m. If we add the condition
that

∑m−1
i=1 ki = G(S), there is a one to one correspondence between solution

{k1, . . . , km−1} to the above inequalities and the Apery sets of numerical semi-
groups with multiplicity m and genus G(S).

Each of above inequalities defines a half space in Rm−1 and their intersec-
tion defines a rational polyhedral cone. If we fix

∑m−1
i=1 ki = G(S) then each

ki ≤ G(S) and we obtain a rational polytope. It is possible to use the the-
ory of integer points in rational polytopes to count the numerical semigroups
with genus G(S) and multiplicity M(S), and we might extend such method for
counting unrefinable partitions with fixed minimal excludant and fixed number
of parts.

6.1.3 Density and generating function of unrefinable par-
titions

Definition 6.22. Let f and g two functions, we denote f(λt) ∼ g(λt), if for
λt →∞ we have

f(λt)

g(λt)
= 1

Fixing λt as the maximal part of unrefinable partitions λ, we try to count
the elements of U(λt) depending on the cardinality ofMλ.
Let 0 ≤ h ≤

⌊
λt

2

⌋
be the cardinality ofMλ. It is easy to verify that

#U(λt, h = 0) = 1 and #U(λt, h = 1) = λt − 1. If h = 2 we can count these
partition depending on 2 ≤ µ1 ≤ λt−2. We can observe that if 2 ≤ µ1 ≤

⌈
λt

2

⌉
−1

then µ2 is such that λt − µ1 < µ2 < λt, while if
⌈
λt

2

⌉
≤ µ1 ≤ λt − 2, then

µ1 < µ2 < λt. We obtain

#U(λt, 2) ∼
(λt − 1)

2

4
,

Also if h = 3 we obtain something similar

#U(λt, 3) ∼
λ3t
24

When h becomes bigger it is more difficult to understand in which way the
missing parts can be disposed.

Conjecture 1. Let 0 ≤ h ≤
⌊
λt

2

⌋
#U(λt, h = k) ∼ λkt

2k−1k!

We also can observe that the number of partitions into distinct parts with

maximal part λt and h missing parts is equal to
(
λt−1
h

)
∼ λh

t

h! , so we conjecture
the following
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Conjecture 2.

lim
λt→∞

#U(λt)
#Dλt

= 0

Another interesting aspect of further research is to find some combinatorial
properties of unrefinable partitions into distinct parts in order to define their
generating functions.
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