
Computer Networks 247 (2024) 110444

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Taming latency at the edge: A user-aware service placement approach
Carlo Centofanti ∗, Walter Tiberti, Andrea Marotta, Fabio Graziosi, Dajana Cassioli
Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, via Vetoio, L’Aquila, 67100, Italy

A R T I C L E I N F O

Keywords:
Edge computing
Orchestration
Service placement
Kubernetes
Latency optimization

A B S T R A C T

Modern network and computing infrastructures are tasked with addressing the stringent demands of today’s
applications. A pivotal concern is the minimization of latency experienced by end-users accessing services.
While emerging network architectures provide a conducive setting for adept orchestration of microservices
in terms of reliability, self-healing and resiliency, assimilating the awareness of the latency perceived by
the user into placement decisions remains an unresolved problem. Current research addresses the problem
of minimizing inter-service latency without any guarantee to the level of latency from the end-user to the
cluster. In this research, we introduce an architectural approach for scheduling service workloads within a
given cluster, prioritizing placement on the node that offers the lowest perceived latency to the end-user. To
validate the proposed approach, we propose an implementation on Kubernetes (K8s), currently one of the most
used workload orchestration platforms. Experimental results show that our approach effectively reduces the
latency experienced by the end-user in a finite time without degrading the quality of service. We study the
performance of the proposed approach analyzing different parameters with a particular focus on the size of
the cluster and the number of replica pods involved to measure the latency. We provide insights on possible
trade-offs between computational costs and convergence time.
1. Introduction

The increase of Internet of Things (IoT) devices and the rising
demand for real-time processing [1] have highlighted the importance
of edge computing in the modern computing ecosystem. Unlike cen-
tralized cloud computing, edge computing shifts processing closer to
the data sources, which include devices like smartphones, IoT sen-
sors, Augmented Reality (AR), and Virtual Reality (VR) devices, and
autonomous vehicles. This shift not only promises to offload computa-
tional resources from centralized data centers, thereby reducing their
burden, but also signifies a paradigmatic move towards reduced latency
and improved data processing efficiency. However, the decentraliza-
tion process introduces new challenges, chief among them being the
scheduling and allocation of services on edge nodes. This problem is
known in the literature as the Service Placement problem [2]. The
placement of services on appropriate edge nodes is crucial for the
optimization of network-wide performance metrics and for enhancing
end-user Quality of Service (QoS). The action of choosing a node to
place a service on is also known as service scheduling. The heteroge-
neous nature of edge resources, coupled with dynamic and often unpre-
dictable network traffic, amplifies the challenges of service scheduling
in the distributed edge context. The challenge lies in reconciling mul-
tiple objectives: minimizing latency, maximizing resource utilization,
optimizing geospatial service distribution, and catering to user-specific

∗ Corresponding author.
E-mail address: carlo.centofanti1@univaq.it (C. Centofanti).

or application-specific requirements. An ineffectual scheduling risks
not only a degradation of QoS but also potential resource imbalances,
leading to network inefficiencies and potential bottlenecks.

A technological foundation of service placement is represent by
Microservice (𝜇𝑆) architectural approach. Microservices represent a
modern software design paradigm, to decompose applications into a
collection of a set of loosely coupled, independently deployable, and se-
cure services [3,4]. The evolution of 𝜇𝑆 architecture is known as cloud-
native architecture. In contemporary research, cloud-native architec-
ture is delineated as an architectural approach optimized for cloud com-
puting environments [5,6]. This architecture predominantly employs
microservices, containerization, continuous integration/continuous de-
livery, and orchestration tools, such as Kubernetes, ensuring resilience,
flexibility, and efficient scaling in response to dynamic cloud-based
workloads. Each microservice implements a specific responsibility, en-
abling fine-grained scalability, resiliency, and maintainability. The ap-
plication is then composed as an aggregation of these microservices.
However, when deploying microservices in distributed systems like
edge computing environments, the placement of individual microser-
vices on specific nodes becomes a critical concern [7]. The location
of these services strongly influences the End-to-End (E2E) experienced
latency of the entire application. For example, services that frequently
vailable online 24 April 2024
389-1286/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2024.110444
Received 31 October 2023; Received in revised form 22 March 2024; Accepted 18
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

April 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:carlo.centofanti1@univaq.it
https://doi.org/10.1016/j.comnet.2024.110444
https://doi.org/10.1016/j.comnet.2024.110444
http://creativecommons.org/licenses/by/4.0/

Computer Networks 247 (2024) 110444C. Centofanti et al.
Fig. 1. High level concept of the inter-service latency-based placement vs. the proposed
latency-aware placement approach.

communicate each other might be placed on nearby nodes to reduce
the overall communication delay due to the required information ex-
change. In the literature this delay is referred to as inter-service latency
and many studies emphasize the placement of microservices to optimize
this latency. This approach is shown in Fig. 1 with the horizontal red
arrow.

However, an even more critical aspect is represented by the latency
between the users and the microservices they request, i.e., along the
vertical green arrow in Fig. 1. In this complex scenario there is an
exigent need for an architectural framework adept at making informed
and fast service scheduling decisions at the edge.

To this purpose, we embark on an exploration of this pertinent chal-
lenge and extend our previous work [8] by proposing a novel Latency-
Aware scheduler architecture tailored to service placement in edge
computing environments, with a focus on addressing the low latency
challenges intrinsic to this computational modality. Our Latency-Aware
scheduler is designed to optimize the latency between the service and
the user which can reduce further the experienced E2E latency in the
context of a distributed cluster, by seamlessly reducing the Round Trip
Time (RTT) while maintaining the QoS required by that user.

1.1. Contributions

This paper introduces several significant advancements in the field
of service placement within edge computing environments, specifically
focusing on the critical role of latency in shaping user experience and
system performance. The novel contributions of this research are as
follows:

• Introduction of a Latency-Aware Scheduler architecture, specifically
designed for edge computing scenarios. This architecture en-
hances the end-to-end latency by optimizing the latency between
the service and the user through service migration to the end user.

• Detailed exploration of the impact of sentinel deployment on system
scalability and performance, facilitated by the development of an
analytical framework and the introduction of a new quantita-
2

tive metric. This analysis provides insights into the trade-offs
between resource efficiency and latency reduction, advancing the
discourse on distributed computing system design and operational
management.

• Empirical validation of the Latency-Aware scheduling approach
within a Kubernetes cluster, demonstrating its effectiveness in
achieving optimal service placement efficiently. The established
relationship between the number of sentinels and the system’s
convergence time highlights the intricate balance between re-
source allocation and system performance.

These contributions underscore the innovative approach of this
research in addressing the complex challenges of latency-sensitive ser-
vice placement within edge computing. By prioritizing latency as a
key factor in scheduling decisions, this work enables more advanced
user-centric and efficient distributed computing environments.

1.2. Paper organization

The remainder of this paper is organized as follows: Section 2
delves into the related works, providing an overview of previous studies
and methodologies that bear relevance to our approach. In Section 3,
we detail our system model, elucidating the design principles and
architectural considerations. Section 4 presents the Implementation on
Kubernetes, outlining the steps and processes employed to bring our
model to fruition within the Kubernetes ecosystem. Section 5 focuses
on the validation and performance evaluation, and provides a compre-
hensive discussion of our results, highlighting the key outcomes and
implications of our findings. Finally, in Section 6, we draw conclu-
sions from our study, summarizing the key takeaways and suggesting
avenues for future research.

2. Related work

Due to its intrinsic distributed nature, the edge computing, and even
more the fog paradigm, pose new challenges to orchestrators, because
the management complexity is much higher in a distributed computing
infrastructure than in a traditional centralized cloud-computing envi-
ronment. To increase the elasticity and resilience of a fog computing
system, cluster federation was applied in [9] by means of the Ku-
bernetes Cluster Federation (KubeFed), augmented with a two-phase
workload placement mechanism to smartly distribute applications’ mi-
croservices among the federated infrastructure. The implementation
resulted in a decentralized control plane able to take into account
networking issues in a highly distributed architecture.

Current research contributions on service placement and compu-
tation offloading in fog computing-based IoT are surveyed in [10],
whereas [11] focuses on nature-inspired approaches applied to the
service placement and computation offloading in emerging edge
technologies, formulated as NP-hard problems.

The baseline problem underlying the placement optimization of
micro-services in a highly distributed environment is the container
scheduling. There exist many surveys presenting container scheduling,
and some others related to containers’ orchestration in fog/edge ar-
chitectures. In [12], a survey on the state-of-the-art of the Kubernetes
orchestrator including relevant contributions from the 2016 to 2022
period is presented and open challenges and research opportunities on
the topic are identified. It provides a study of empirical research on
Kubernetes scheduling techniques and a new taxonomy for Kubernetes
scheduling.

In order to realize the more reasonable allocation of Pod scheduling
on Kubernetes, a new cost function combining the resource and load
balancing costs is defined in [13] to optimize the task scheduling in the
cloud computing environment by means of a meta heuristic algorithm
derived from the combination of the adaptive particle swarm algorithm
and an improved version of the ant colony algorithm.

Computer Networks 247 (2024) 110444C. Centofanti et al.
However, a centralized scheduler model, as Kubernetes, has been
proved not to perform well in all scenarios like, e.g., for resiliency
and fault-tolerance scheduling. Moreover, it cannot solve problems
like service high-availability, collocation interference, priority preemp-
tion or inherent rescheduling. Hence, a novel hybrid-state scheduling
framework for the Kubernetes system has been proposed in [14]; it
provides scheduling corrections for the processing of unscheduled and
unprioritized jobs and assigns distributed agents to optimize locally the
main tasks, whereas the application-level scheduler synchronizes the
cluster state across all agents.

A policy-based scheduling is proposed in [15] for multi-cloud de-
ployments, where realistic experiments have shown that the proposed
method balances the resource allocation across multiple geo-distributed
clusters and reduces the fraction of pending pods from 65% in the case
of Kubernetes Federation to 6% for the same workload.

Unfortunately, the aforementioned papers do not address the spe-
cific low-latency requirement imposed to modern communication
systems. Orchestration driven by application requirements still repre-
sents an open challenge in Kubernetes environment and some research
efforts have been made in this direction. To achieve this goal, archi-
tectural solutions enabling network-awareness in scheduling decisions
need to be investigated. A network-aware resource scheduling approach
for delay-sensitive and data-intensive services in fog computing envi-
ronments is proposed in [16] for container-based applications in smart
city deployments, and validated on the Kubernetes platform. Imple-
mented as an extension to the default scheduling mechanism available
in Kubernetes, it enables resource provisioning decisions based on the
current status of the network infrastructure, thus achieving reductions
up to 80% in terms of network latency when compared to the default
scheduling mechanism. The node selection is based on the minimization
of the nominal RTT estimated on the basis of the target location for
the service, as specified on the pod configuration file. However, the
nominal RTT is an optimistic metric, whereas an experimental measure
taken on top of the micro-service stack (as proposed in this paper) is a
more effective metric for a latency-aware scheduler.

In [16] a scheduling strategy is proposed based on static charac-
terization of network latency between cluster nodes. [17] proposes a
heuristic strategy for the deployment of placeholder pods for enhanced
reliability and takes into account inter-node latency. [18,19] propose
Kubernetes scheduler extensions to introduce network-awareness for
efficient placement of pods. The above mentioned approaches focus on
network awareness and rely on latency metrics collected at the network
layer via independent applications responsible to monitor network
performance parameters to optimize inter-container latency.

However, latency experienced by end-users includes network la-
tency to reach the cluster and a non-negligible contribution of the
application-layer which for example may be impacted by compu-
tational resource saturation, hardware heterogeneity through cluster
nodes and other external conditions. The problem of optimizing E2E la-
tency is not directly addressed in literature and can be solved reporting
to the scheduler the measured E2E latency, as proposed in this work.

It is worth mentioning that the proposed approach enables fine-
tuned mobility management which still represents an open issue in
the context of service orchestration in decentralized architectures. A
performance cost analysis of IPv6-mobility management in Kubernetes
environment has been conducted in [20].

3. System model

To ensure operational efficiency, the concept of service placement is
pivotal since making timely decisions without disrupting the user expe-
rience is imperative. Expanding upon this, we introduce the proposed
latency aware service placement, an approach to ensure optimal system
responsiveness and E2E performances.

Distributed clusters are a crucial concept in the domain of cloud
computing and modern application deployment. This concept refers
3

Fig. 2. System model.

to multiple interconnected nodes or clusters spanning various geo-
graphical locations or different cloud providers [21]. By leveraging
these geographically distributed systems, organizations can ensure
high availability, fault tolerance, and optimal performance by serving
end-users from the nearest data center. However, in clusters with ge-
ographically distributed nodes, varying latencies can be observed. We
consider the system model shown in Fig. 2 representing a distributed
cluster where nodes exhibit different latencies with respect to the
end-user.

The architecture of the considered distributed cluster comprises
several elements. The Nodes are primary units, responsible for hosting
services. Each node can be interpreted as a physical server, a virtual
machine, or a container, depending on the deployment granularity.
Service Instances are the deployable units of software in this system.
These can be applications, microservices, or other computational enti-
ties. They are dispersed across nodes and are ready for execution. The
Network Fabric encompasses physical links, switches, routers, and other
networking equipment, determining communication paths, latencies,
and communication speeds. end-users, either humans or systems, en-
gage with the services furnished by the architecture. Their geographic
positions and access patterns play into service placement and migration
decisions.

All the mentioned elements are overseen by an Orchestrator which
has the significant role of managing, deploying, and ensuring fault
tolerance of services across nodes. Furthermore, it facilitates service
migration between nodes, considering various factors, including latency
optimization.

As illustrated in Fig. 2, being = {𝑛1, 𝑛2,… , 𝑛𝑘} the set of nodes
possessing the capability to host multiple service instances. The over-
arching goal is to fine-tune the placement of these services taking into
account latency, i.e. RTT, experienced by the users.

The RTT is illustrated at the top of the figure, with a wider RTT
indicating greater network delay. Within this reference architecture, it
is evident that the green node offers the lowest RTT. Thus, positioning
the service 𝑆𝑘 on this node would optimize the latency experienced
by the end-user. As shown in Fig. 2 for the service S1, moving a
service from a node with higher RTT (i.e. 𝑛1) to one with a lower
one (i.e. 𝑛2), implies a reduction in the latency experienced by the
user. The operation to move the service from one node to another
is termed as migration. Transitioning the service to a specific node

Computer Networks 247 (2024) 110444C. Centofanti et al.
must be executed transparently to ensure the end-user experiences no
service disruptions or interruptions. In the considered architecture the
operation of instantiating a service on a node is accomplished by the
Scheduler component while the one of removing a service instance from
a node is performed by the De-Scheduler.

Amid this context, the placement of a service within a distributed
cluster based on latency becomes central. It is the aim of our system to
position a service in such a manner that it is as proximate to the end-
user in terms of response time as possible. This kind of optimization
becomes especially significant for applications where swift responses
are imperative, such as real-time multimedia sharing, online interactive
experiences, and rapid financial transactions.

Achieving this optimal placement is not straightforward with con-
ventional orchestration scheduling mechanisms. Hence, our system
introduces a latency-aware service management approach. Central to
our system is an iterative discovery strategy ensuring the best ser-
vice allocation based on the latency experienced by application users.
This strategy encompasses custom latency-aware scheduling and de-
scheduling components integrated within the orchestration platform.
These components work in unison, evaluating and, when necessary,
relocating the service to the location providing the shortest latency to
the end-user.

The task of collecting latency measures is performed by a Latency
reporting element within the orchestrator. This tool operates on a
client–server paradigm, with the client positioned at the user’s side and
the server within the orchestration’s service instance. Communication
between this tool and the de-scheduling component is managed through
a messaging protocol, e.g. Message Queuing Telemetry Transport
(MQTT).

To obtain achievable performance of the service over different
nodes, the orchestrator creates a unique ‘‘sentinel’’ variant of the
service to measure iteratively the E2E latency for specific locations in
the cluster. After each iteration, only the service version with the most
advantageous latency remains active, with decisions guided by the de-
scheduling component. A new version then initiates at another location,
and the cycle persists until the most favorable placement is discerned.

Our system differentiates between standard service instances and
‘‘sentinels’’. It initiates with a service’s commencement at a location,
followed by a sentinel’s onset at an alternate location for latency
measurement. This sequence is reiterated with subsequent sentinels,
each contributing latency data. The service’s position either remains
or shifts depending on which location yields the shortest latency.

Moreover, the system remains vigilant about latency. Should la-
tency exceed a predetermined threshold, the iterative discovery process
recommences, prompting sentinels at diverse locations. This adaptabil-
ity ensures the system’s responsiveness to evolving network scenarios
or changes in user locations.

Without the intervention of Sentinel replicas, latency from the
user to the service endpoints remains anchored to the initial node
allocation decisions made by Kubernetes. In scenarios where Kuber-
netes’ scheduling decisions are primarily influenced by factors such as
resource availability rather than latency, the resultant user-perceived
latency can be suboptimal. This static approach to service deployment
neglects the dynamic nature of network conditions and user locations,
potentially locking the user experience into the latency characteristics
of the initially selected nodes without the possibility for continuous
optimization.

To clarify this aspect, consider the example of a cloud applica-
tion designed to serve a global user base. Suppose the application
is scaled to 100 instances (i.e., replicas), distributed across a net-
work that encompasses 10 nodes in Europe, 10 in Asia, and 10 in
North America. Utilizing a static allocation mechanism in conjunction
with a load-balancer, service orchestrators might default to an even
distribution, allocating approximately 3 replicas per node. However,
from the perspective of user experience and perceived latency, such
4

a configuration may not represent the optimal approach. Latency is
inherently dynamic, subject to fluctuations influenced by many factors,
including time of day and user traffic volume. At any given moment,
a predominant segment of the user base might experience enhanced
service quality by accessing replicas hosted on, for instance, European
nodes. Conversely, a few hours later, the demographic shift might favor
users predominantly located in North America, who would then find the
latency from Asian or European nodes unsatisfactory.

Our methodology offers a solution to this issue by dynamically
adjusting the allocation of replica-node pairs in response to real-time la-
tency perceptions. While it is challenging to predict latency reductions
in advance due to the variable nature of user and node configurations,
our approach is designed to minimize latency, ensuring that optimal
allocation is achieved through iterative adjustments.

Additionally, this principle can be effectively scaled and adapted
to edge computing scenarios, where the complexity and scale of the
system are reduced. The underlying strategy of relocating services
closer to users to minimize latency remains consistent across different
computing paradigms.

3.1. Real-world network latencies scenarios

We explore the practical implications of network latencies across a
spectrum of global server locations provided by Amazon Web Services
(AWS), with a particular focus on how these latencies impact user expe-
riences and network reliability. The considered server destinations are
Milan, google.com, Frankfurt, London, Stockholm, Ireland, Northern
Virginia, Tokyo. The measurement procedure was designed to capture
an accurate representation of network latencies. This process was facil-
itated through the deployment of a Bash script, leveraging the Internet
Control Message Protocol (ICMP) protocol via the ping command. For
each location pair, the script conducted 1000 measurements over a
duration of 100 s, systematically repeating this measurement cycle
every hour for a total period of 24 h. Subsequent to the data collection
phase, statistical analysis was performed to calculate the average, min-
imum, and maximum latency values, as well as the standard deviation
for each set of measurements. The Time To Live (TTL) values were
directly taken from the ping command responses, while the number
of network hops was derived through a calculation involving the sub-
traction from a default TTL value of 128, as it is the standard value for
the ping command on Ubuntu systems. This methodological approach
ensures a comprehensive dataset, providing a foundational basis for
understanding the real-world dynamics of network latencies. Table 1
provides a comprehensive overview of the latency metrics observed
from an Italian Gigabit Passive Optic Network (GPON) fixed access
line connection originating in L’Aquila – a city in the center of Italy
– to the above-mentioned server destinations. It should be noted that
the domain google.com is resolved by Google’s Domain Name System
(DNS) and is directed to Google’s Content Delivery Network (CDN)
located in Milan. The study was further enriched by a measurement
conducted within Milan itself, targeting a server situated in the same
city to represent one of the intended destinations. The numerical values
are reported in Table 2. This particular measurement was aimed at a
local server in Milan to derive a real-world estimate of the potential
end-to-end edge latency achievable within the current technological
landscape. These metrics are expressed in milliseconds and include min-
imum (Min), average (Avg), maximum (Max) latencies, the standard
deviation (Stddev) of latencies, TTL values, and the number of network
hops required to reach each destination.

This analysis reveals significant variability in network performance,
with latencies ranging from as low as 4 ms for local connections to
over 300 ms for transcontinental communication to Tokyo. Notably, the
standard deviation and the number of network hops provide insights
into the stability and complexity of the paths traversed by packets
across the network. For instance, the high standard deviation observed
for the Tokyo connection suggests greater variability in latency, likely

due to the longer and more complex route. Conversely, the relatively

Computer Networks 247 (2024) 110444C. Centofanti et al.

.

c
s
W
c
p
t
n
c
l
t

l
a
o
f
c

s
d
f
w
c

Table 1
Ping and route statistics for an Italian fixed line from L’Aquila to various server locations

Location Min (ms) Avg (ms) Max (ms) Stddev (ms) TTL #Hops

Milan 20.079 23.098 26.838 1.600 49 79
google.com 28.427 30.929 34.613 1.592 115 13
Frankfurt 32.873 34.707 49.142 1.896 35 93
London 43.837 45.281 47.242 0.824 44 84
Stockholm 54.934 56.649 61.209 0.888 44 84
Ireland 56.102 58.140 73.651 2.474 43 85
N. Virginia 111.657 113.236 118.181 0.987 36 92
Tokyo 248.467 256.050 300.447 12.533 29 99

Table 2
Ping and route statistics for an Italian fixed line from Milan to Milan server.

Location Min (ms) Avg (ms) Max (ms) Stddev (ms) TTL #Hops

Milan-to-Milan 4.013 6.172 20.624 2.492 51 13

lower standard deviation values for closer destinations indicate more
stable latency performance.

These findings underscore the critical importance of geographic
proximity, network infrastructure, and routing efficiency in determin-
ing real-world network latencies. Moreover, the dataset underscores
a crucial consideration in network management: while the strategic
placement of services in proximity to end-users is vital for reducing
latency, network conditions are inherently time-variant. These condi-
tions are significantly influenced by network congestion events, during
which latency times and standard deviation values may see substantial
increases. Remarkably, such dynamics can lead to scenarios where
geographically closer locations experience higher latencies compared to
more remote ones. This phenomenon highlights the complex interplay
between geographic distance, network infrastructure, and temporal
variations in network traffic, challenging the assumption that proximity
invariably equates to lower latency. Understanding these nuances is
critical for designing robust network systems capable of maintaining
optimal performance and user experiences despite fluctuating network
conditions.

4. Implementation on Kubernetes

Kubernetes1 (abbr. K8s) is a powerful open-source container or-
hestration platform. Its primary role is to automate the deployment,
caling, and operation of containers across a cluster of host machines.
hile containers can help manage individual tasks, managing multiple

ontainers and ensuring they interact seamlessly is challenging. K8s
rovides the technical tool to solve this kind of problems in an au-
omated and seamless way. The K8s architecture comprises a master
ode (or control plane) and a number of worker nodes. The master node
oordinates the cluster, while worker nodes host the containers inside
ogical groups of containers, known as pods. In K8s, a pod represents
he smallest schedulable unit of workload.

Applications are usually deployed on K8s by means of higher-
evel abstractions, e.g., Services, Deployements, Daemon Sets, etc. Those
bstractions avoid developers to manage complex and redundant set
f pods manually and enable applications to benefit from additional
eatures such as self-healing, replica management, assisted rollback,
ontrolled rollout, etc.

In this section we provide an overview of the default Kubernetes
cheduling strategy (which we adopt as benchmark) and show the
etails of our proposed latency-aware approach. Description of the
undamental elements of the proposed architecture is provided. Lastly,
e analyze a step-by-step example to illustrate the functioning and

ooperation of the involved elements.

1 Kubernetes homepage: https://kubernetes.io.
5

4.1. Default Kubernetes scheduling

As previously mentioned, the scheduler is in charge to deploy pods
in the K8s cluster. The K8s environment is normally equipped with
a default scheduler, known as kube-scheduler, which takes scheduling
decisions take into account the following factors:

• Resource Requirements: If a pod needs specific resources (CPU,
memory), the scheduler ensures that the node where the pod
places has enough of these resources

• Node Conditions: The scheduler ensures pods do not get
scheduled on nodes that are in NotReady or Unschedulable state

• Affinity and Anti-Affinity Rules: These rules allow users to
specify conditions regarding where pods should or should not be
placed relative to others. For example, two pods that need fre-
quent communication might have an affinity rule to be scheduled
on the same node

• Taints and Tolerations: Nodes can taint themselves to repel
certain pods unless the pod has a matching toleration

• Node Selector: It is a simple way to force a pod to run on a node
using the labels mechanism provided by K8s

Kubernetes’ scheduler, by considering the above factors, decides the
optimal node for a pod to run on. Once a decision is made, the pod is
bound to the chosen node, and the kubelet on that node is informed
of the decision. The kubelet is an agent that runs on each node in
a Kubernetes cluster and will oversee the lifecycle of the scheduled
pods. In a healthy environment, there is no need to kill a running pod
migrating it to another node of the cluster unless some resource limit
is reached by the node and the kubelet is forced to kill that pod.

A representation of the K8s default scheduling process is shown in
Fig. 3. Kubernetes relies heavily on its scheduler to ensure that pods
are efficiently and correctly placed onto nodes within a cluster.

The scheduler’s operation leverages on framework designed to
assure extensibility and customization. This framework is structured
around several stages, primarily: PreFilter, Filter, PostFilter, Score,
NormalizeScore, Reserve, Permit, Bind, and PostBind. All those phases
aim to let the developer guide the Scheduler’s behavior. The main focus
of the default scheduler is to take placement decision for pods in a fast
and structured way. In a healthy cluster where each node has enough
available resources, the default behavior is to randomly pick one node
from the resultant set of nodes that fulfill all the requirements at each
step. Fig. 3 shows an empty cluster at Step 0. The default scheduler
is called to schedule a pod P1. The scheduler may pick each of the
available nodes of the cluster, so resulting in one of the steps Step 1a –
Step 1d. In the illustrated example, which shows a distributed cluster
with varying latencies for each node, the default scheduler ignores the
latencies when making its placement decision. Step 1d occurs with a
probability of 1∕𝑘, where 𝑘 is the number of available nodes in the
cluster.

A wider view is given by Fig. 4, where the whole scheduling process
is analyzed from a software point of view. The process initiates when
the Kubernetes scheduler requests the next unscheduled pod from the
API server (Step 1). This pod is awaiting to be assigned to a node for
execution. The API server returns an unscheduled pod object to the
scheduler (Step 2), which triggers the scheduling algorithm (Step 3) to
determine the best node for this pod based on various criteria such as
resource requirements, node conditions, affinity and anti-affinity rules,
taints and tolerations, and other factors that were previously described.

Once an appropriate node is selected, the scheduler communicates
the chosen node updating the pod object’s status to ‘‘scheduled’’ (Step
4), which is acknowledged by the API server (Step 5). The kubelet then
polls the API server to get the scheduled pod (Step 6 and Step 7),
proceeding to create the pod on the node (Step 8).

The pod’s status is updated to ‘‘running’’ once it is successfully
created and operational (Step 9) and the status is reported back to

the API server (Step 10), which acknowledges back (Step 11). The API

https://kubernetes.io

Computer Networks 247 (2024) 110444C. Centofanti et al.
Fig. 3. The default Kubernetes Scheduler.
Source: Adapted from K8s scheduling frame-
work [22].
Fig. 4. Pod creation workflow with Load Balancer updates in a Kubernetes Cluster.
server maintains a list of all running pods thanks to the etcd component,
which is continuously updated. The service object, created in advance
in the deployment, constantly polls the API server to check for any
state of the pods change within the cluster (Step 12 and Step 13). The
final step in the scheduling process entails the updating of the Load
Balancer’s forwarding rules (Step 14). This critical action ensures that
network traffic is correctly routed to the newly running pods, thereby
sustaining the availability and performance of the application.
6

An analogous process occurs during the de-scheduling phase, as
depicted in Fig. 5, where a ‘‘Delete Pod’’ request initiates the sequence.
This request leads to an announcement to the Load Balancer, instruct-
ing it to cease forwarding requests to the pod slated for deletion.
Subsequently, the pod is effectively removed from the node. This de-
scheduling operation is crucial for maintaining the cluster’s service
reliability, ensuring that resources are efficiently allocated and that
traffic is directed only to active pods capable of handling requests.

Computer Networks 247 (2024) 110444C. Centofanti et al.
Fig. 5. Pod deletion workflow with Load Balancer updates in a Kubernetes Cluster.
4.2. Latency-aware Kubernetes scheduling strategy

The pod allocation performed by the Kubernetes scheduler is not
always optimal from the point-of-view of the end-user latency. Once
the application pods are allocated on the available cluster nodes, an
user can experience high or low latency depending on which pod is
providing response to the user requests.

In order to minimize (and stabilize) the latency perceived by the
application users, we propose a mechanism that iteratively forces Ku-
bernetes scheduler to allocate the pods on the nodes which offer the
minimum measured (at runtime) E2E latency as experienced by the
end-user. The proposed approach is summarized by the following steps:

1. Decide a number of sentinel instances 𝑆 of the application. This is
the number of instances (i.e., pods) that will be used to measure
the application latency on the cluster nodes.

2. Allocate 𝑅 + 𝑆 instances, where we refer to 𝑅 as the number of
replicas that are required from the developer. This guarantees
that, at any moment, at least 𝑅 replicas will be available to serve
user requests. 𝑅 can be 1 in case redundancy in not required
by the developer. It is worth mentioning that when multiple in-
stances of the same pod are deployed (whether they are sentinels
or replicas), the load balancer within the K8s service of each
deployment evenly forwards traffic to all healthy and running
pods available.

3. Wait for users to provide feedback on their currently experienced
latency and rank nodes according to the reported E2E latency.

4. Remove the pods from the 𝑆 nodes with worst latency, and
replace them with 𝑆 new pods. Keep track of the removed nodes
and force the Kubernetes scheduler to ignore them for new pod
allocations. This step is repeated until all the nodes are either
marked or running an application pod, i.e., the optimal (in terms
of latency) pod allocation is achieved.

Our implementation of the system architecture is based on a setup
that encompasses a distributed Kubernetes cluster composed by a col-
lection of 𝑘 worker nodes, denoted as 𝑁 = {𝑛1, 𝑛2,… , 𝑛𝑘}, under the
supervision of a Control Plane, as illustrated in the diagram in Fig. 6.
In the figure, for the sake of presentation, we color each node according
to the latency between the user and the node.

The architectural components required for the implementation are
listed below and explained in the following subsections:

1. the Latency-Aware Scheduler;
2. the Latency-Aware De-Scheduler;
3. the MQTT latency reporting channel and the MQTT broker.
7

Fig. 6. System Architecture: a Kubernetes cluster with 𝑘 = 4 nodes, a MQTT broker
and a control plane featuring the Latency-Aware Scheduler and the Latency-Aware
De-Scheduler. Nodes are colored according the supposed latency: red for high latency,
orange for medium-high latency, yellow for medium-low latency and green for low
latency.

4.3. Latency-aware scheduler

In the Kubernetes Scheduling Framework, as illustrated in Fig. 3,
the orchestration of pods, is managed through a series of well-defined
extension points across two main phases: the scheduling cycle and
the binding cycle. The scheduling cycle is responsible for selecting a
suitable node for the pod, while the binding cycle applies this decision
to the cluster. These cycles constitute the scheduling context that en-
sures system resilience and efficient resource management, even under
scenarios of substantial load.

The robustness of the system in managing multiple sentinels, even in
high resource occupancy situations, stems from the framework’s ability
to prioritize workloads and optimize resource allocation dynamically.
Sentinel pods, serving as replicas of the service pods, are scheduled
based on the same criteria as regular pods, including resource require-
ments, node conditions, and various scheduling policies defined by the
administrator.

Computer Networks 247 (2024) 110444C. Centofanti et al.
During the scheduling cycle, various plugins work in concert to
evaluate the feasibility of placing a pod on a node. For instance,
Filter plugins screen nodes to ensure sufficient resources are available
for the pod’s demands. If a sentinel pod cannot be allocated due to
resource constraints, it is placed in the internal unschedulable Pods
list, preventing any negative impact on the system’s performance. Fur-
thermore, Reserve and Permit plugins work to prevent race conditions
by temporarily reserving resources on nodes and ensuring that pods
are only scheduled when the system can accommodate them without
compromising the stability of other services.

When resource occupancy is high, the system’s QueueingHint func-
tion plays a vital role in deciding whether sentinel pods can be
requeued for scheduling. This ensures that only when there is a genuine
opportunity for the sentinel pods to be scheduled without disrupting ex-
isting workloads, they are considered for placement. This mechanism is
crucial in maintaining a balance between high availability and resource
efficiency.

The Latency-Aware Scheduler is our custom Kubernetes scheduler
that adds an additional scheduling policy when a pod needs to be sched-
uled for execution on a node of the cluster. In particular, following
the proposed approach, the Latency-Aware Scheduler is set up to check
available worker nodes and keep track of which node has a pod of a
target application running, following the Algorithm 1. Upon a request
to schedule a new pod of the target application, the Latency-Aware
Scheduler forces the node selection to be restricted to nodes which have
never host a pod for that application before, thus avoiding nodes that
are (a) currently running an application pod or (b) ran an application
pod recently.

This behavior can cause the Latency-Aware Scheduler to run out
of unmarked nodes: to avoid this, the Latency-Aware Scheduler in-
cludes a clean-up mechanism that periodically unmarks all the nodes,
so that they become again available to host an application pod. This
ensures also that, in case the latency changes over time, the Latency-
Aware scheduler can adapt automatically to find the new optimal pod
allocation.

Finally, the Latency-Aware Scheduler make sure that, when a target
application is set to require 𝑅 working replicas, it instead schedules
additional 𝑆 replicas required by the proposed mechanism to measure
the E2E latency (i.e., the sentinels). While this process is transparent to
the application, the number 𝑆 is configurable. This allows deployers to
balance the trade-off between having additional workload due to the 𝑆
extra replicas and the time required by the proposed approach to find
the optimal allocation. We refer to this time as the Convergence Time
𝑇𝐶 .

A representation of the Latency-Aware Scheduler is shown in Fig. 7.

Algorithm 1: Scheduling logic
Input: Application 𝐴𝑝𝑝
Input: Set of nodes in the cluster 𝑁
Input: Set of visited nodes 𝑉
Input: Set of untested nodes 𝑈
Output: The selected node 𝑛𝑖 ∈ 𝑁

𝑈 ← 𝑁 − 𝑉
while 𝑈 ≠ {} do

𝑛𝑖 ← random(𝑈)
𝑉 ← 𝑉 ∪ {𝑛𝑖}
scheduleProbe(𝑛𝑖)
𝑈 ← 𝑁 − 𝑉

return 𝑛𝑖
8

Fig. 7. Latency-Aware: scheduling process of pod 𝑃1 with a sentinel replica 𝑆1.

4.4. Latency-aware de-scheduler

In Kubernetes, pods are meant to be unique and replaceable,
i.e., moving a pod from a node to another is not a direct operation,
but rather a combination of (a) the deletion of the pod and (b) the
creation of a new pod. The Latency-Aware Scheduler ensures that the
latter operation (creation of the new pod) involves only a restricted
set of nodes. On the other hand, the proposed approach requires a
controlled (i.e., latency-based) pod deletion.

This task is performed by our Latency-Aware De-Scheduler. This com-
ponent is responsible for listening to incoming latency measurements,
deduce the subject (i.e., pod and node names) of the measurement and
keep an updated ranking of nodes according to their latency. Finally,
when the Latency-Aware De-Scheduler has received measurements for
all the cluster nodes currently running application pods, it triggers the
deletion of the pods running on the 𝑆 nodes with worst latency.

Algorithm 2: De-scheduling logic
Input: Application 𝐴𝑝𝑝
Input: De-Scheduling Threshold 𝑇
Input: Latency Measurements 𝐿𝑀

while True do
𝑀 ← number of measured pods for 𝐴𝑝𝑝
if 𝑀 ≥ 𝑇 then

// Retrieve the pod with maximum RTT
𝑝𝑘 ← max𝑅𝑇𝑇 (𝐿𝑀,𝐴𝑝𝑝)
// Deschedule 𝑝𝑘 and clear its entry in 𝐿𝑀
Deschedule(𝑝𝑘)
𝐿𝑀[𝐴𝑝𝑝][𝑝𝑘] ← None

An example of the Latency-Aware De-Scheduler is depicted in Fig. 8,
and the underlying algorithm is presented in Algorithm 2. In the figure,
nodes are colored according to their latencies. At the initial phase (Step
0), we have a configuration with 𝑅 = 1, 𝑆 = 1 (one sentinel only), node
𝑛2 running pod 𝑃1, node 𝑛3 running a recently launched sentinel pod
𝑆1 and nodes 𝑛1, 𝑛4 have no pods running and are available for pod
allocation. After Step 0, the Latency-Aware De-Scheduler receives the
measurement about 𝑆1, that provides a latency measurement for node

𝑛3.

Computer Networks 247 (2024) 110444C. Centofanti et al.
Fig. 8. Latency-Aware De-Scheduler: the pod running on the higher-latency node is
removed and the sentinel become a proper application pod - 𝑆1 → 𝑃2.

At Step 1, the Latency-Aware De-Scheduler has ranked all the nodes
running pods according to their latency and triggers the removal of
𝑆 = 1 pods, i.e., the pod 𝑃1 running on node 𝑛2 (the one with the worst
latency). The removal of 𝑃1 causes the sentinel pod 𝑆1 to cease being
a sentinel and to become a proper application pod. To enforce this, we
changed the name of 𝑆1 into 𝑃2.

Finally, at Step 2, 𝑃1 has been successfully deleted and the cluster
now runs the application pod in a node offering better latency with
respect to the starting allocation.

4.5. Latency reporting channel

Since the final objective of the proposed approach is to reduce the
perceived E2E latency as perceived by the users, it is crucial to establish
a communication channel that they can provide feedback on the latency
they are currently experiencing. This means that we require users to
measure and communicate the latency measurements to the control
plane, i.e., the Latency-Aware De-Scheduler. The decision on which
kind of communication channel, the protocol and the format to be used
to send latency measurements is left to the deployers.

We realized the communication among the clients and the Latency-
Aware Descheduler by using the MQTT publisher/subscriber protocol
and a MQTT broker. During application execution, the latency mea-
surements are published by the application clients using an application-
specific MQTT topic (e.g., latency-reporting-app1). At the same time,
the Latency-Aware De-Scheduler, already subscribed to the application
topics, listen to incoming messages, receive the latency measure-
ments published and perform node ranking and deletion according the
description in Section 4.4.

The format adopted to send a latency measurement is a JSON data
structure (shown in Fig. 9) with the application name, a timestamp
and the measured round trip time latency. The Latency-Aware De-
Scheduler, upon the reception of a message, enrich the received latency
measurement with the responding pod ID and the hosting node ID. This
structure allows us to store information for multiple applications and
to handle them separately. This way the Latency-Aware De-Scheduler
can navigate through the stored latency measurements of running pods
along the information about the nodes hosting them. Additionally, a
timestamp is for checking the freshness of the measurements and, if
required, add an aging mechanism to ensure that the measurements are
9

Fig. 9. Latency Measurements data structure used to collect and store latency
information.

always reflecting the most recent node latencies. Finally, this structure
ensures a fast removal of the latency measurements when a pod is
removed by the Latency-Aware De-Scheduler.

4.6. Combined operation

A combined example of both the Latency-Aware Scheduler and
the Latency-Aware De-Scheduler is shown in Fig. 10. In the initial
status (Step 0) we have a 4-nodes Kubernetes cluster (with nodes
colored according the supposed latency) in which an application is
being deployed and configured to have 𝑅 = 1 (one replica required),
𝑆 = 1 (one sentinel pod). Then, the following steps take place:

Step 1 The first application sentinel pod is allocated by the Latency-
Aware Scheduler. Since there is no other running pod, the
sentinel becomes directly a proper application pod, 𝑃1. The
current allocation is given by this initial condition, with node
𝑛2 being the allocation for the 𝑅 = 1 application pod.

Step 2 Sentinel pod 𝑆1 is allocated onto node 𝑛3. After receiving a
latency measurement from both pod 𝑃1 and 𝑆1 (i.e., nodes 𝑛2
and 𝑛3), the Latency-Aware De-Scheduler triggers the deletion
of the pod running on the (only, since 𝑆 = 1) node with worst
latency, i.e., 𝑃1 on node 𝑛2.

Step 3 The sentinel pod 𝑆1 becomes the proper application pod 𝑃2.

Step 4 A new sentinel pod 𝑆2 is allocated by the Latency-Aware Sched-
uler onto node 𝑛1. The Latency-Aware De-Scheduler receives the
latency measurement from the user related to pod 𝑆2 and node
𝑛1. Since 𝑛1 has the worst latency, 𝑆2 is deleted.

Step 5 Pod 𝑆2 has been deleted and node 𝑛3 remains the best current
allocation.

Step 6 A new sentinel pod 𝑆3 is allocated by the Latency-Aware Sched-
uler onto node 𝑛4. The Latency-Aware De-Scheduler receives the
latency measurement from the user related to pod 𝑆3 and node
𝑛4. Since 𝑛3 has the worst latency, 𝑃2 is deleted.

Step 7 The sentinel pod 𝑆3 becomes a proper application pod 𝑃3
and, since all the nodes in the cluster have been marked, the
allocation of the 𝑅 = 1 pods on the cluster is now the optimal
allocation.

Computer Networks 247 (2024) 110444C. Centofanti et al.
Fig. 10. Operation of the combined Latency-Aware Scheduler and De-Scheduler operations: The application pod 𝑃1 is iteratively ‘‘moved’’ from node 𝑛2 (medium-high perceived
latency) to node 𝑛4 (low latency).
From the perspective of the Latency-Aware scheduler, the sentinel
is a role that is assigned to a replica in order to measure the latency
experienced by users on a node. In case of descheduling, this role is
passed to another replica automatically, with no downtime or service
interrupts since, during this operation, we ensure that at least 𝑅 replicas
are always simultaneously available, triggering the replica removal
only when the number of active replicas is greater than 𝑅. Nonetheless,
Kubernetes ensures that pod/replica removal is handled gracefully with
no or minimal downtime (i.e., high-availability property). This allows
our Latency-Aware scheduling approach to work flawlessly even during
scheduling and descheduling operations.

5. Results

In order to validate the implementation of the proposed approach,
we set up a Kubernetes cluster on a commercial cloud platform with a
set of 𝑘 = 10 nodes. We suppose that such nodes are geographically
distributed, so that application instances running on them suffer from
a different E2E latency (as perceived by the end-users) depending
on which node physically hosts the responding application instance.
Since it is not generally possible to select and position the cluster
nodes to have clear latency differences when using a cloud provider,
we decided to enforce this assumption by hard-coding a known set
of simulated delays to applications depending on the node on which
they are running. This enabled us to quickly validate the approach
in different latency scenarios without changing the setup or the cloud
provider configuration.

5.1. Considerations on the convergence time

A critical aspect of the proposed approach is the time needed to
migrate the application pods to the nodes that offer the least E2E latency
for users. This duration, denoted as 𝑇𝐶 is a pivotal performance metric
in our evaluation. Specifically, 𝑇𝐶 represents the time interval required
to reach the optimal scheduling decision that minimizes the perceived
E2E latency at the application layer for the end-user. 𝑇𝐶 is influenced by
several factors. In particular, accounting for the deployment of multiple
10
sentinels, we extend our previous model in [8]. Thus, 𝑇𝐶 , which we
refer to as the convergence time, can be modeled as:

𝑇𝐶 = 𝑁
𝑆

× (𝑇𝑂 + 𝑇𝑆 + 𝑇𝐷 + 𝑇𝐶𝑂𝑀), (1)

where:

• 𝑁 denotes the number of nodes present in the Kubernetes cluster;
• 𝑆 is the number of sentinels
• 𝑇𝑂 is the required Observation Time to consistently measure the

latency from a responding service;
• 𝑇𝑆 refers to the Scheduling Time, which our Latency Aware

Scheduler requires to allocate the pod via the Kubernetes REST
API;

• 𝑇𝐷 stands for the De-Scheduling Time, necessary for our De-
Scheduler to terminate and remove the chosen pod using the
Kubernetes REST API;

• 𝑇𝐶𝑂𝑀 is the Communication Time needed to relay messages to
the de-scheduler through the MQTT Broker.

We empirically assessed the average time taken by Kubernetes APIs for
scheduling and de-scheduling actions. Based on our evaluations, we set
𝑇𝑆 = 0.7 s and 𝑇𝐷 = 0.7 s. Given that the communication time 𝑇𝐶𝑂𝑀
is in the order of milliseconds, we deem the impact of 𝑇𝐶𝑂𝑀 to be
negligible.

Given that the values of 𝑇𝑆 and 𝑇𝐷 depend on the Kubernetes cluster
configuration, we assess the convergence time by altering the two
remaining variables, namely 𝑇𝑂 and 𝑁 , as illustrated in Fig. 11. The
convergence time 𝑇𝐶 increases linearly with 𝑇𝑂 and the slope becomes
steeper as 𝑁 increases. As shown in Figs. 11(b) through 11(d), the
introduction of more sentinels results in a linear decrease of 𝑇𝐶 . The
determination of the optimal value for 𝑇𝑂 is a trade-off between the
system’s responsiveness and the precision of the measurements. It is
worth mentioning that here we assumed only one sentinel alongside
one replica of the pod (𝑅 = 1, 𝑆 = 1) in the iterative discovery process.
We also introduce 𝑇𝑇 , denoted as the Trigger Timer, which represents a
predefined time interval established by the developer to orchestrate the
subsequent execution of our algorithm. It is imperative that this timer

Computer Networks 247 (2024) 110444C. Centofanti et al.

i
m
𝑇
n
l
a
o

5

i
f
a
t
Z
A
n
s
o

Fig. 11. Theoretical convergence time for different number of sentinels.
s set to a duration exceeding 𝑇𝐶 , as configuring it to a lesser interval
eans to restart the execution before the end. Upon the expiration of
𝑇 , our mechanism embarks on a new cycle of execution. It is worth
oting that at this point the probability to find a node with lower
atency is reduced as the node selected in the previous run was the best
vailable option. In the following section, we will analyze the impact
f the number of sentinels on the convergence time.

.2. Experimental setup

To validate our Service Placement approach, it was essential to
mplement it within a real Kubernetes cluster. We used 10 machines
rom Amazon Web Services (AWS) to establish the cluster, with an
dditional machine allocated for deploying our client application. All
he Virtual Machine (VM)s were deployed within the same Availability
one (AZ), ensuring that the nodes were co-located within a singular
WS data center. This choice was instrumental in minimizing potential
etwork interferences. Given that the latency between nodes remained
ignificantly below 1 ms, we could effectively neglect this latency in
ur analysis. For our experiments, we provisioned AWS t3.medium

instances, each equipped with 2Virtual Central Processing Unit (vCPU)
and 4GiB of Random Access Memory (RAM). These VMs run Ubuntu
Server 22.04.03 LTS and are equipped with 8GiB of AWS Elastic Block
Store (EBS) gp2 Solid State Drive (SSD) for storage purposes, and
controlled network impairments on latency are applied accordingly to
11

Table 3.
Table 3
Simulated latencies for network experimentation in a distributed cluster.

Node Latency [ms] Equivalent location

𝑛1 0 Edge Computing
𝑛2 10 Metro
𝑛3 25 National
𝑛4 50 Continental
𝑛5 75 Continental
𝑛6 100 Intercontinental
𝑛7 150 Intercontinental
𝑛8 200 Intercontinental
𝑛9 300 Global
𝑛10 500 Extreme Distance
client 0 –

On the top of the Ubuntu Server, we installed Microk8s v1.27.5 and
created a cluster composed by the 10 nodes. One more VM has been
deployed in AWS to run the client-side part of a sample distributed
web REST-based application. The client VM has the same hardware
resources allocated to any other node of the cluster.

In this section, we evaluate the performance of the introduced
Service Latency-Aware Placement approach. Being the pioneers in at-
tempting to minimize End-to-End latency by dynamically relocating
the service to the node closest in terms of latency to the end-user,
we need to demonstrate first that our algorithms can chose the best

node in a real environment. For this purpose, we varied the number

Computer Networks 247 (2024) 110444C. Centofanti et al.

o
s
t

n
T
a
s
i

t
t
t
d
t
a
w

r
t
𝑇
a
v
a
f
I
h
e

Fig. 12. Convergence examples for different number of sentinels.
t
m
c

i
(

f sentinels to demonstrate the procedure’s accuracy, and subsequently
et up a series of experiments to study the convergence time by altering
he sentinel number.

The main aspect we want to examine is whether increasing the
umber of sentinels 𝑆 leads to a reduction in the convergence time.
o achieve this, we gathered metrics from various runs in our testbed,
ltering the number of sentinels involved. For clarity, we only plot
ingle runs in Fig. 12 to illustrate the convergence time during a single
teration of the experiment.

Fig. 12(a) illustrates an execution of the experiment using one sen-
inel. The results indicate that the RTT measured fluctuates throughout
he experiment, aligning closely with the anticipated values based on
he network latencies characterizing the nodes of the cluster. The plot
isplays the time interval for the experiment on the x-axis, spanning up
o 50 s. On the y-axis, the observed RTT is plotted. Multiple RTT values
t the same time index indicate that at that specific moment, a sentinel
as running concurrently with the pod providing the service.

The K8s load balancer distributes the traffic between the two
eplicas of the service (one pod and one sentinel). It is worth noting
hat the values on the y-axis represent average values calculated over
𝑂 = 1 s and reported with a periodicity 𝑇𝑂. A key observation is that
fter a certain duration, the latency stabilizes at the lowest achievable
alue and remains consistent at that level. This observation can be
ttributed to the tested scenario where user mobility is not accounted
or, and the network conditions are assumed to be relatively stable.
n a real-world environment, these two assumptions may not always
old true. Network latency is time-variant and influenced by param-
12

ters and conditions beyond the scope of this study. However, this
does not invalidate our findings because the Latency-Aware Placement
process can always be restarted to determine if network conditions have
changed and if another node now offers the lowest possible latency.
The convergence time is crucial in this context and must be minimized
to enable a more frequent execution of the Latency-Aware Placement
process. Fig. 12(a) also displays a red vertical line that marks the
convergence time for that particular experimental run.

In our system model and experimental setup, we have considered
the potential impact of environmental noise, such as Additive White
Gaussian Noise (AWGN), on the network’s latency dynamics. Our obser-
vations indicate that the inclusion of AWGN does not significantly alter
the process of selecting the optimal node for service placement. This
resilience is largely due to the method by which client devices measure
latency. Latency values are measured over a 𝑇𝑂 interval and reported as
average values. This averaging process effectively mitigates the impact
of transient noise spikes, ensuring that node selection remains stable
despite underlying variability in network conditions.

To gain a deeper understanding of the convergence time, we repeated
he experiment multiple times to determine the mean, minimum, and
aximum values for this particular scenario. The mean value for
onvergence time and one sentinel is 40 s, as shown in Fig. 13.

The repetition of the same experiment with two sentinels is shown
n Fig. 12(b). In this instance, as many as three delay measurements
𝑅 = 1, 𝑆 = 2) can occur at a specific time. It is evident that the
convergence time is reduced and consequently the experimental duration
for this run is slightly shorter than that observed in Fig. 12(a). The

instances where fewer than three sentinels are displayed at a specific

Computer Networks 247 (2024) 110444C. Centofanti et al.

t
i
i

i
m
r
t
i
p
s
t
(
o
u
o

𝑂

Fig. 13. Average convergence time for different number of replicas and relative
reduction in a cluster composed by 10 nodes.

time can be attributed to the inherent nature of K8s architecture. In
fact, K8s does not ensure that multiple replicas of a pod, scheduled
simultaneously, will commence operations concurrently.

Subsequently, we conducted the same experiment using three sen-
tinels, with the results illustrated in Fig. 12(c). We observed a further
reduction in the convergence time, though the decrease was slightly less
pronounced than in previous trials. Following the convergence time, the
minimal latency persisted until the conclusion of the experiment.

We conducted our final experiment using four sentinels, as illustrated
in Fig. 12(d). We observed a further reduction in the convergence time,
though the decrease was modest.

These values are insufficient for a comprehensive statistical analysis,
so we replicated each of the four experiments 100 times to gather more
precise data. Fig. 13 presents the consolidated results of our experi-
ments, showing the average values and variance for each experimental
set. With a single sentinel, we observe the longest convergence time and
he greatest variability in the measurement. The mean convergence time
n this case is around 40 s, which is in line with the model in Eq. (1). By
ncreasing the number of sentinels, we not only reduce the convergence
time but also decrease the measurement variance. This arises because
our scheduler is designed to schedule containers in groups, thereby
requiring fewer steps to explore the entire cluster. Results in Fig. 13 are
in line with the theoretical behaviors depicted in Fig. 11. This validates
the proposed theoretical model.

Fig. 13 also illustrates the relative reduction in convergence time
(expressed as a percentage) achieved by increasing the number of
sentinels. In our experiments, transitioning from a single sentinel to two
led to a 50% reduction in convergence time while an increase from three
to four sentinel resulted in a reduction of less than 25%.

Apart of the convergence time, a final consideration concerns the
amount and the impact of the de-scheduling and re-scheduling op-
erations required to reach the optimal allocation. From the users’
point of view, both the impact of de-scheduling and re-scheduling
operations and their number is transparent, since our approach ensures
a minimum number of available replicas (𝑅) while Kubernetes itself
ensures graceful de-scheduling/scheduling operations with minimal
service down-time. At system level, while it is desirable to minimize the
number of operations required to reach the optimal allocation, this is
not feasible when no additional information about the network state are
available. In other terms, as long as the end-user latency to every node
at every point in time is not estimable a-priori, our iterative approach
is the best solution to ensure the achievement of an optimal alloca-
tion. In this regards, we observed that the number of de-scheduling
13

and re-scheduling operations decreases significantly after the optimal
allocation has been achieved. During our experiments we noted that,
after an optimal allocation has been achieved, non-extreme latency
variations cause the future optimal allocation to be almost always
within a very limited number of re-scheduling operations. Nevertheless,
we are planning on adopting machine learning techniques to obtain a
partial estimation of end-user latency and to further reduce the number
of operations and the convergence time to reach the optimal allocation.

5.3. Scalability and performance analysis of sentinel deployment

In the domains of edge and distributed computing, the efficiency
of resource allocation is crucial for assuring scalability and optimal
performance under diverse workloads. The architecture of our pro-
posed Kubernetes-based Low-latency Scheduler allows for an analytical
assessment of the Overload 𝑂 associated with the deployment of a spec-
ified number of sentinels, represented as 𝑆, together with 𝑅 replicas,
required by the service.

Eq. (2) defines the Offload 𝑂, calculated as the percentage increase
n the total number of deployed entities within a Kubernetes environ-
ent, relative to the original number of pod replicas. Specifically, 𝑅

epresents the count of pod replicas. On the other hand, 𝑆 denotes
he number of sentinels. The equation aims to quantify the overhead
ntroduced by the deployment of sentinels in addition to the original
od replicas, thereby offering a metric to evaluate the scalability and re-
ource utilization within the orchestrated environment. By multiplying
he ratio of the sum of replicas and sentinels to the number of replicas
𝑅+𝑆
𝑅) by 100, the equation outputs 𝑂, the percentage that reflects the

ffload, thereby providing insights into the balance between enhanced
ser experience through reduced latency and the resource implications
f such an optimization.

=
(𝑅 + 𝑆

𝑅

)

× 100, (2)

This quantitative metric permits a rigorous exploration of the sen-
tinel pods’ proportional impact on the system. An augmented 𝑆 to 𝑅
ratio reflects a strategic focus aimed at reducing service latency and
minimizing the system’s convergence time (𝑇𝐶), albeit at the expense
of elevated resource allocation during the duration of 𝑇𝐶 . Conversely,
a diminished ratio illustrates a strategy of conservative resource de-
ployment, potentially increasing 𝑇𝐶 but enhancing resource efficiency
overall. Notably, the cost escalates linearly with 𝑅, while 𝑇𝐶 decreases
in a non linear manner, as evidenced in Fig. 13. This trend is reported
in Fig. 14 for clarity.

The resolution of this trade-off is at the discretion of the developer,
who is empowered to set these parameters, thus enabling the selection
of an optimal strategy that aligns with the specific demands of each
application and conforms to overarching business objectives.

However, it is essential to consider that relative to the execution
time of a service, even substantial increases, such as 1600%, constitute
manageable spikes for the cluster and remain present only for a brief
period of time, denoted as 𝑇𝐶 . If minimizing 𝑇𝑇 is not a necessity, then
the cost associated with these resources becomes negligible in scenarios
such as emergencies and latency-sensitive applications.

6. Conclusions and future works

The microservices architectural paradigm has significantly trans-
formed contemporary software development practices by splitting
complexity by promoting modularity. Building upon this foundation,
cloud-native architectures have been devised to exploit enhanced scal-
ability, availability, and resilience. Service placement becomes more
relevant as those architecture goes close to the edge, in support of
real time or near real time applications. Current literature focuses on
reducing the inter-application latencies, minimizing the communication
time within the cluster through co-location of services that need to
interact often. Our proposed approach explores a different dimension
of this problem, i.e., the latency measured from the service location to

Computer Networks 247 (2024) 110444C. Centofanti et al.
Fig. 14. Pod deletion workflow with Load Balancer updates in a Kubernetes Cluster.

the end-user in a distributed cluster. In this context, our work presents
a robust approach to dynamically migrate a service among the nodes
without disrupting the user-level service, aiming to place it to the node
exhibiting the minimal latency within the cluster, by means of a novel
‘‘sentinel-based’’ mechanism.

In our research, we have demonstrated the feasibility of our ap-
proach by designing and implementing a custom scheduler in a K8s
cluster. Results demonstrate that the convergence to the optimal place-
ment is achieved within a finite time. We provide a seamless migration
from the current node to a more performant one in terms of la-
tency measured by the end-user. A relationship between the number
of sentinels and the convergence time has been established for our
system. Our analysis indicates that utilizing two sentinels reduces the
convergence time by 50% compared to the case with only one sentinel.
However, this reduction in time is accompanied by increased costs,
directly proportional to the number of deployed sentinels. Thus, the
decision to scale the number of sentinels while balancing costs is up
to the developer, based on the specific application requirements and
the target trade-off between costs and benefits of reaching sooner the
optimal placement.

Future works will integrate Service Level Agreement (SLA) into
the scheduler to further decrease convergence time and minimize
the energy consumption to enhance the overall system energy
sustainability.

CRediT authorship contribution statement

Carlo Centofanti: Conceptualization, Data curation, Investigation,
Methodology, Project administration, Software, Validation, Writing
– original draft, Writing – review & editing. Walter Tiberti: In-
vestigation, Methodology, Software, Validation, Writing – original
draft, Writing – review & editing. Andrea Marotta: Conceptualiza-
tion, Formal analysis, Funding acquisition, Methodology, Supervision,
Validation, Visualization, Writing – original draft, Writing – review
& editing. Fabio Graziosi: Funding acquisition, Supervision, Writ-
ing – review & editing. Dajana Cassioli: Methodology, Supervision,
Validation, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Dajana Cassioli reports financial support was provided by European
Commission. Fabio Graziosi reports financial support was provided
by Ministero dell Universit e della Ricerca. Andrea Marota reports
financial support was provided by Italian Government. Carlo Centofant
reports financial support was provided by Italian Government. If there
14
are other authors, they declare that they have no known competing
financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work has been partially supported by the European Union
through H2020-MSCA-RISE OPTIMIST project (GA: 872866), SNS
Joint Undertaken SEASON project (GA: 101096120), NextGener-
ationEU under the Italian Ministry of University and Research
(MUR) National Innovation Ecosystem (ECS00000041 - VITALITY
- CUP E13C22001060006), and partnership on ‘‘Telecommunica-
tions of the Future’’ (PE00000001 - program ‘‘RESTART’’ - CUP
E83C22004640001).

Disclosures

During the preparation of this work the authors used ChatGPT in
order to assist with general language refinement. After using this tool,
the authors reviewed and edited the wording as needed and take full
responsibility for the content of the publication.

References

[1] Cisco, Cisco Annual Internet Report (2018–2023) White Paper, vol. 10, (no. 1)
Cisco, San Jose, CA, USA, 2020, pp. 1–35.

[2] T.P. Sadatacharapandi, S. Padmavathi, Survey on service placement, provision-
ing, and composition for fog-based IoT systems, Int. J. Cloud Appl. Comput.
(2022) http://dx.doi.org/10.4018/ijcac.305212.

[3] A. Hannousse, S. Yahiouche, Securing microservices and microservice ar-
chitectures: A systematic mapping study, Comp. Sci. Rev. 41 (2021)
100415.

[4] I.K. Aksakalli, T. Çelik, A.B. Can, B. Tekinerdoğan, Deployment and communi-
cation patterns in microservice architectures: A systematic literature review, J.
Syst. Softw. 180 (2021) 111014.

[5] N. Kratzke, P.-C. Quint, Understanding cloud-native applications after 10 years
of cloud computing-a systematic mapping study, J. Syst. Softw. 126 (2017) 1–16.

[6] J. Alonso, L. Orue-Echevarria, V. Casola, A.I. Torre, M. Huarte, E. Osaba, J.L.
Lobo, Understanding the challenges and novel architectural models of multi-
cloud native applications–a systematic literature review, J. Cloud Comput. 12
(1) (2023) 1–34.

[7] X. Zhao, Y. Shi, S. Chen, MAESP: Mobility aware edge service placement in
mobile edge networks, Comput. Netw. 182 (2020) 107435.

[8] C. Centofanti, W. Tiberti, A. Marotta, F. Graziosi, D. Cassioli, Latency-aware
kubernetes scheduling for microservices orchestration at the edge, in: 2023
IEEE 9th International Conference on Network Softwarization, NetSoft, 2023,
pp. 426–431, http://dx.doi.org/10.1109/NetSoft57336.2023.10175431.

[9] F. Faticanti, D. Santoro, S. Cretti, D. Siracusa, An application of kubernetes clus-
ter federation in fog computing, in: Conference on Innovation in Clouds, Internet
and Networks, 2021, http://dx.doi.org/10.1109/icin51074.2021.9385548.

[10] K. Gasmi, S. Dilek, S. Tosun, S. Ozdemir, A survey on computation offloading
and service placement in fog computing-based IoT, J. Supercomput. (2021)
http://dx.doi.org/10.1007/s11227-021-03941-y.

[11] D. Kumar, G. Baranwal, Y. Shankar, D.P. Vidyarthi, A survey on nature-inspired
techniques for computation offloading and service placement in emerging edge
technologies, World Wide Web (2022) http://dx.doi.org/10.1007/s11280-022-
01053-y.

[12] M.C. Carrión, Kubernetes scheduling: Taxonomy, ongoing issues and challenges,
ACM Comput. Surv. (2022) http://dx.doi.org/10.1145/3539606.

[13] Z. Weiguo, M. Xi-lin, Z. Jin-zhong, Research on kubernetes’ resource scheduling
scheme, in: International Conference on Communication and Network Security,
2018, http://dx.doi.org/10.1145/3290480.3290507.

[14] O.-M. Ungureanu, C. Vladeanu, C. Vlădeanu, R.E. Kooij, Kubernetes cluster
optimization using hybrid shared-state scheduling framework, in: International
Conference on Future Networks and Distributed Systems, 2019, http://dx.doi.
org/10.1145/3341325.3341992.

[15] M.A. Tamiru, G. Pierre, J. Tordsson, E. Elmroth, Mck8s: An orchestration plat-
form for geo-distributed multi-cluster environments, in: International Conference
on Computer Communications and Networks, 2021, http://dx.doi.org/10.1109/
icccn52240.2021.9522318.

http://refhub.elsevier.com/S1389-1286(24)00276-7/sb1
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb1
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb1
http://dx.doi.org/10.4018/ijcac.305212
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb3
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb3
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb3
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb3
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb3
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb4
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb4
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb4
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb4
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb4
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb5
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb5
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb5
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb6
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb6
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb6
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb6
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb6
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb6
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb6
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb7
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb7
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb7
http://dx.doi.org/10.1109/NetSoft57336.2023.10175431
http://dx.doi.org/10.1109/icin51074.2021.9385548
http://dx.doi.org/10.1007/s11227-021-03941-y
http://dx.doi.org/10.1007/s11280-022-01053-y
http://dx.doi.org/10.1007/s11280-022-01053-y
http://dx.doi.org/10.1007/s11280-022-01053-y
http://dx.doi.org/10.1145/3539606
http://dx.doi.org/10.1145/3290480.3290507
http://dx.doi.org/10.1145/3341325.3341992
http://dx.doi.org/10.1145/3341325.3341992
http://dx.doi.org/10.1145/3341325.3341992
http://dx.doi.org/10.1109/icccn52240.2021.9522318
http://dx.doi.org/10.1109/icccn52240.2021.9522318
http://dx.doi.org/10.1109/icccn52240.2021.9522318

Computer Networks 247 (2024) 110444C. Centofanti et al.
[16] J. Santos, T. Wauters, B. Volckaert, F.D. Turck, Towards network-aware resource
provisioning in kubernetes for fog computing applications, in: IEEE Confer-
ence on Network Softwarization, 2019, http://dx.doi.org/10.1109/netsoft.2019.
8806671.

[17] L. Toka, Ultra-reliable and low-latency computing in the edge with kubernetes,
J. Grid Comput. 19 (3) (2021) 31.

[18] Ł. Wojciechowski, K. Opasiak, J. Latusek, M. Wereski, V. Morales, T. Kim,
M. Hong, Netmarks: Network metrics-aware kubernetes scheduler powered
by service mesh, in: IEEE INFOCOM 2021-IEEE Conference on Computer
Communications, IEEE, 2021, pp. 1–9.

[19] A.C. Caminero, R. Muñoz-Mansilla, Quality of service provision in fog computing:
Network-aware scheduling of containers, Sensors 21 (12) (2021) 3978.

[20] Á. Leiter, P.B. osy, M. Kis, L. Bokor, Performance costs for IPv6-based mobil-
ity management on the top of kubernetes, in: IEEE Conference on Network
Softwarization, 2023, http://dx.doi.org/10.1109/netsoft57336.2023.10175456.

[21] A.N. Toosi, R.N. Calheiros, R. Buyya, Interconnected cloud computing envi-
ronments: Challenges, taxonomy, and survey, ACM Comput. Surv. (2014) http:
//dx.doi.org/10.1145/2593512.

[22] Kubernetes, Scheduling framework, Kubernetes, 2023, https://kubernetes.io/
docs/concepts/scheduling-eviction/scheduling-framework/. (Accessed 9 October
2023).

Dr. Carlo Centofanti received his Ph.D. in Information and
Communication Technology from the Department of Infor-
mation Engineering, Computer Science, and Mathematics at
the University of L’Aquila, Italy. He earned his M.Sc. degree
in Computer Science Engineering and his Bachelor’s degree
in ICT Engineering from the same university. His research
areas include Edge Computing, Software Defined Network-
ing, and Network Slicing. He has actively contributed to
ECSEL-RIA AfarCloud Project (GA: 783221), and is actively
contributing to MSCA-RISE OPTIMIST Project (GA: 872866),
and SNS-SEASON Project (GA: 101096120).

Walter Tiberti is an Assistant Professor at the Depart-
ment of Information Engineering, Computer Science and
Mathematics of the University of L’Aquila, where he re-
ceived his B.Sc, M.Sc. degree in Computer Engineering and
his Ph.D. in Information and Communications Technology
working on embedded systems security, in particular, wire-
less sensor network security. He was a visiting researcher
at the Research Centre in Real-Time and Embedded Com-
puting Systems (CISTER) of Porto (Portugal). He is part
of the technical committee member of IEEE conferences
and he isinvolved in italian initiatives to promote nation-
wide cyber-security education and training.His research
work is focused on software security, network security and
cryptography.

Andrea Marotta is Assistant Professor at the Department of
Information Engineering, Computer Science and Mathemat-
ics of the University of L’Aquila, Italy. He received his M.Sc.
degree in Computer Engineering and his Ph.D. in Informa-
tion and Communications Technology from the University of
L’Aquila in 2015 and 2019, respectively. He was a visiting
researcher at the Group for Research on Wireless (GROW)
at the Instituto Superior Técnico/University of Lisbon, at
the Research Institute of Communication, Information and
Perception Technologies (TeCIP) of Scuola Superiore di studi
universitari e di perfezionamento Sant’Anna in Pisa, and
15
at the Computer Networks Lab (NetLab) of the University
of California, Davis. He actively participates in the TPC
of IEEE Communications Society conferences. He performs
research on Network Reliability, SDM Optical Networks,
Multi-Access Edge Computing, 5G Software Defined Access,
CoMP Coordinated Scheduling.

Fabio Graziosi was born in L’Aquila, Italy, in 1968. He
received the Laurea degree (cum laude) and Ph.D. in Elec-
tronic Engineering from the University of L’Aquila, Italy, in
1993 and 1997, respectively. Since February 1997, he has
been with the Department of Electrical and Information En-
gineering at the University of L’Aquila, where he currently
holds the position of Full Professor in Communications
Systems.

The research activity led to more than 200 publications
in international journals and conferences and was initially
focused on modeling and performance evaluation of wireless
systems in complex propagation scenarios. Subsequently, the
research approach has been enriched thanks to the contam-
ination with other scientific areas, i.e. electronics, computer
science, and control systems. Research activities on wireless
sensor networks and networked embedded systems actually
fall within this exciting, multidisciplinary context which has
been progressively extended to scientific areas historically
far from Communications, such as Structural Engineering.

Dajana Cassioli is Associate Professor of Telecommunica-
tions Engineering at the University of L’Aquila, Italy, where
she is the Head of the Study Program in Telecommuni-
cations Engineering: Advanced Technologies and Services.
Her main research interests are in wireless communications,
5G/B5G networks and cybersecurity. She is the Chair of the
IEEE ComSoc RCC SiG on Propagation Channels for 5G&B
and the Diversity, Equity and Inclusion Activity Coordinator
of the IEEE Italy Section. She is Past Chair of IEEE WIE
AG Italy Section (2016–2022) and IEEE VT06/COM19 Italy
Chapter (2011–2017). Since 2015 she is the coordinator
of the University of L’Aquila Node of the CINI National
Lab of Cybersecurity, where she led the CyberEquality WG
(2020–2021). She has been awarded the ERC StG VISION
(Video-oriented UWB-based Intelligent Ubiquitous Sensing)
- 2010 and the ERC PoC Grant iCARE (MobIle health-Care
system for monitoring toxicity and symptoms in cAncer
patients Receiving diseasE-oriented therapy) - 2016. She
was the CEO (2014–2018 and 2019) of the spin-off of the
University of L’Aquila ‘‘Smartly: Natives of Smart Living
srl.’’ She served as the IEEE EUROCON 2023 WIE Chair,
the IEEE ICC 2023 CISS Co-Chair, PIMRC2018 Industry
Co-Chair, RTSI WIE Chair in 2018, 2019 and 2020, MELE-
CON2020 and MetroInd4.0, and TPC member of several
International Conferences (ICC, PIMRC, VTC, GLOBECOM,
etc.). She serves/served as Associate Editor of IET Electron.
Lett. and IEEE Communicat. Lett., and Executive Editor of
Wiley Internet Technol. Lett. and Transact. on Emerging
Telecommun. Technol. In 2000 she was Summer Manager at
the Wireless Systems Research Dep. - AT&T Labs-Research,
NJ, USA. She participated in the definition of the standard
channel model for the IEEE 802.15.4 standard (2005). In
2022 she was a visiting short-term scholar at the University
of Southern California, LA, USA.

http://dx.doi.org/10.1109/netsoft.2019.8806671
http://dx.doi.org/10.1109/netsoft.2019.8806671
http://dx.doi.org/10.1109/netsoft.2019.8806671
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb17
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb17
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb17
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb18
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb18
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb18
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb18
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb18
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb18
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb18
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb19
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb19
http://refhub.elsevier.com/S1389-1286(24)00276-7/sb19
http://dx.doi.org/10.1109/netsoft57336.2023.10175456
http://dx.doi.org/10.1145/2593512
http://dx.doi.org/10.1145/2593512
http://dx.doi.org/10.1145/2593512
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

	Taming latency at the edge: A user-aware service placement approach
	Introduction
	Contributions
	Paper organization

	Related work
	System Model
	Real-World Network Latencies Scenarios

	Implementation on Kubernetes
	Default Kubernetes Scheduling
	Latency-aware Kubernetes scheduling strategy
	Latency-Aware Scheduler
	Latency-Aware De-Scheduler
	Latency Reporting Channel
	Combined operation

	Results
	Considerations on the Convergence Time
	Experimental Setup
	Scalability and Performance Analysis of Sentinel Deployment

	Conclusions and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Disclosures

	References

