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ABSTRACT

Recently Aragona et al. have introduced a chain of normalizers in a Sy-

low 2-subgroup of Sym(2n), starting from an elementary abelian regular

subgroup. They have shown that the indices of consecutive groups in the

chain depend on the number of partitions into distinct parts and have

given a description, by means of rigid commutators, of the first n − 2

terms in the chain. Moreover, they proved that the (n − 1)-th term of

the chain is described by means of rigid commutators corresponding to

unrefinable partitions into distinct parts. Although the mentioned chain

can be defined in a Sylow p-subgroup of Sym(pn), for p > 2 computing

the chain of normalizers becomes a challenging task, in the absence of

a suitable notion of rigid commutators. This problem is addressed here

from an alternative point of view. We propose a more general framework

for the normalizer chain, defining a chain of idealizers in a Lie ring over

Zm whose elements are represented by integer partitions. We show how

the corresponding idealizers are generated by subsets of partitions into at

most m− 1 parts and we conjecture that the idealizer chain grows as the

normalizer chain in the symmetric group. As evidence of this, we establish

a correspondence between the two constructions in the case m = 2.
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1. Introduction

Let n ≥ 3 be an integer and Σ ≤ Sym(2n) be a Sylow 2-subgroup containing

an elementary abelian regular subgroup T . Let us define N0 = NΣ(T ) and

recursively let Ni be the normalizer in Σ of the previous term, i.e.,

(1) Ni = NΣ(Ni−1).

Aragona et al. [ACGS21b] have recently shown that, for 1 ≤ i ≤ n − 2, a

transversal of Ni−1 in Ni can be put in one-to-one correspondence with a set of

partitions into distinct parts in such a way that, denoting by {q2,i}i≥1 the partial

sum of the sequence {p2,i}i≥1 of partitions into distinct parts, the following

equality is satisfied:

(2) log2|Ni : Ni−1| = q2,i+2.

The first numbers of the mentioned sequences and the relative OEIS references

are displayed in Table 1.

Table 1. First values of the sequences {p2,i} and {q2,i}

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 OEIS

p2,i 0 0 1 1 2 3 4 5 7 9 11 14 17 21 26 31 A111133

q2,i 0 0 1 2 4 7 11 16 23 32 43 57 74 95 121 152 A317910

In a subsequent work [ACGS22], the authors introduced the concept of unre-

finable partitions and proved that a transversal of Nn−2 in Nn−1 is in one-to-

one correspondence with a set of unrefinable partitions whose minimal exclu-

dant satisfies an additional requirement. The study of the chain on normalizers

(Ni)i≥0 has been carried out up to the (n−1)-th term by means of rigid commu-

tators [ACGS21b], a set of generators of Σ, which is closed under commutation

and which was intentionally designed for the purpose. However, the technique

of rigid commutators could not be easily generalized to the odd case of the nor-

malizer chain, i.e., the one defined in a Sylow p-subgroup of Sym(pn), with p

odd. Understanding the behavior of the chain in the odd case was indeed left

as an open problem by the authors.

https://oeis.org/A111133
https://oeis.org/A317910
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1.1. Overview of the new contributions. In an attempt to achieve re-

sults in this direction, we introduce the graded Lie ring associated to the lower

central series of Σ, which is the iterated wreath product of Lie rings of rank

one, and reflects the construction of the Sylow p-subgroup of Sym(pn) (cf. also

Sushchansky and Netreba [SN05]), for any prime p ≥ 2.

More generally, given any integer m ≥ 2, we endow the set of partitions,

where each part can be repeated no more than m− 1 times, with the Lie ring

structure mentioned above. We call it the Lie ring of partitions (cf. Section 2).

In this ring we recursively define the analog of the chain of normalizers, i.e.,

the idealizer chain, starting from an abelian subring that plays the role of the

elementary abelian regular subgroup T . Notice that, when m = 2, no part can

be repeated, i.e., that we have the same combinatorial setting as in Aragona

et al. [ACGS21b]. Not surprisingly, we could notice that the behavior of the

first n − 2 terms of the chain of idealizers is in complete accordance with that

of the chain of normalizers, i.e., Equation (2) has an analogous version for

the terms of the idealizer chain, summarized in Theorem 2.14. Interestingly,

this result can be made even more general in the setting of the Lie ring of

partitions. Indeed the mentioned theorem holds in the case when m is any

integer greater than two, provided that partitions with at most m− 1 repeated

parts are considered in place of partitions into distinct parts. In Theorem 2.15

we prove that the growth of the idealizer chain is related to the partial sums

of the sequence of the number of partitions with at most m− 1 repeated parts.

This result involves the first n − 1 terms of the idealizer chain, one more than

the case m = 2. We conjecture that Theorem 2.15 is the p-analog of the chain

of normalizers in Sym(pn), where m = p is odd.

Section 3 is totally devoted to the case m = 2, where we show that the terms

of the normalizer chain can be actually computed via the Lie ring structure

described in this paper (see Theorem 3.4). Precisely, we define a bijection (cf.

Definition 3.2) from the basis elements of the Lie ring of partitions to the set

of rigid commutators which preserves commutators.

In Section 4 we address the problem of first idealizer not following the rules of

Theorems 2.14 and 2.15, i.e., the (n− δm,2)-th. If m = 2, it has been proved by

Aragona et al. [ACGS22] that log2|Nn−1 : Nn−2| depends on the number of a

suitable subset of unrefinable partitions satisfying some additional constraints.

We introduce here a natural generalization of the concept of unrefinability for

partitions with at most m−1 repeated parts. We prove, in the Lie ring context,
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that the (n − δm,2)-th idealizer is determined by unrefinable partitions with

at most m − 1 repeated parts satisfying the same additional constraints as

in Aragona et al. [ACGS22] (see Theorem 4.5). We conclude the section by

giving a characterization of the n-th idealizer (cf. Theorem 4.7), which, by

virtue of Theorem 3.4, also allows to give a precise characterization of the n-th

normalizer Nn, improving already known results [ACGS21b, ACGS22].

Section 5 concludes the paper with some comments on open problems.

1.2. Related works in the combinatorics on integer partitions. The

original notion of unrefinability for partitions into distinct parts is at least as old

as the OEIS entry A179009 [OEI] (due to David S. Newman in 2011) and has

been formally introduced by Aragona et al. [ACGS22]. In that paper, unrefin-

able partitions satisfying a special condition on the minimum excludant appear

in a natural way in connection to the chain of normalizers [ACGS21b]. The

notion of minimum excludant has been studied in the context of integer parti-

tions by other authors [AN19, BM20, HSS22, DT23], although it also appears in

combinatorial game theory [Gur12, FP15]. Partial combinatorial equalities re-

garding unrefinable partitions have been recently shown in [ACCL22, ACC22],

and the study of the algorithmic complexity of generating all the unrefinable

partitions of a given integer has been addressed [ACCL23].

2. A polynomial representation of partitions of integers

Let Λ = {λi}∞i=1 be a sequence of non-negative integers with finite support, i.e.,

such that

wt(Λ) =
∞∑
i=1

iλi < ∞.

The sequence Λ defines a partition of N = wt(Λ). Each non-zero i is a part

of the partition, the integer λi is the multiplicity of the part i in Λ and the

support of Λ is denoted by supp(Λ) = {i | λi �= 0}. The maximal part of Λ is

the maximum i such that λi �= 0, i.e., max supp(Λ). The set of the partitions

whose maximal part is at most j is denoted by P(j) and we define for eachm > 0

Pm(j) = {Λ ∈ P(j) | λi ≤ m− 1 for all i}

as the set of partitions with maximal part at most j and where each part has

multiplicity at most m− 1. We set also

Pm =
⋃
j≥1

Pm( j).

https://oeis.org/A179009
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2.1. Power monomials. In the polynomial ring Z[xk]
∞
k=1 we consider the

monomials xi
k where i is a non-negative integer. The power monomial xΛ,

where Λ is a partition, is defined as

xΛ =
∏
i

xλi

i .

These monomials clearly form a basis for Z[xk]
∞
k=1 as a free Z-module. The set

of power monomials in at most n variables is denoted by

Monn = {xΛ | Λ ∈ P(n)}.

The degree of the power monomials xΛ is defined as deg(xΛ) =
∑

i≥1 λi.

Note that

xΛxΘ =
∏
i

xλi+θi
i = xΛ+Θ.

In particular the Z-module Z[x1, . . . , xn], with basis Monn, has a natural struc-

ture of Z-algebra and is the ring of polynomials in n variables with coefficients

in Z.

The k-partial derivative is defined by

∂k(x
Λ) =

⎧⎨
⎩
0 if λk = 0,

λkx
Dk(Λ) otherwise,

where Dk(Λ) = {λi − δik}∞i=1. In particular ∂k can be extended by linearity to

a derivation over Z[x1, . . . , xn].

Let m be a positive integer and consider the ideal I = (xm
1 , . . . , xm

n )

of Z[x1, . . . , xn]. Clearly ∂k(I) ⊆ mZ[x1, . . . , xn] and so the k-th partial deriva-

tive can be seen also as a derivation defined on the ring of power monomials

modulo m in n variables (see also Strade [Str17])

Om(n) = Zm[x1, . . . , xn]/(x
m
1 , . . . , xm

n ).

Starting from a modular Lie ring g over Z, let us define g↑ = Om(1) ⊗Z g.

We also define the inflated Lie algebra as

Inf(g) = 〈∂ ⊗ 1〉� g↑,

where ∂ is the standard derivative.
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2.2. Lie rings of partitions. The Lie ring L(n) over Zm of partitions

with maximal part at most n − 1 is obtained starting from the trivial Lie

ring L(1) = Zm and defining iteratively L(i) = Inf(L(i − 1)). For the sake of

brevity, we shall write L in place of L(n).

In order to have a description which is more suitable for computations, L can

be seen as the free Zm-module with basis B =
⋃n

i=1 Bi, where

Bi = {xΛ∂i | xΛ ∈ Om(n) with Λ ∈ Pm(i− 1)}.

The Lie bracket is defined on this basis by

(3)

[xΛ∂k, x
Θ∂j ] = ∂j(x

Λ)xΘ∂k − xΛ∂k(x
Θ)∂j

=

⎧⎪⎪⎨
⎪⎪⎩

∂j(x
Λ)xΘ∂k if j < k,

−xΛ∂k(x
Θ)∂j if j > k,

0 otherwise,

and is extended to L by bilinearity. If Li is the Zm-linear span of Bi then Li is

an abelian subring of L and [Li,Lj ] ⊆ Lmax(i,j) and, as a Zm-module,

L(n) =

n⊕
i=1

Li = L(n− 1)⊕ Ln .

Moreover Ln is an ideal and so L(n) = L(n− 1)� Ln, as a Lie ring.

For a subset H of L we set

Zm H = {axλ∂k | a ∈ Zm and xλ∂k ∈ H}.

Let ϕΘ,j : B → Zm B be the right adjoint map defined by

ϕΘ,j(x
Λ∂k) = [xΛ∂k, x

Θ∂j ].

Lemma 2.1: Let xΘ∂j ∈ B and E = {xΛ∂k ∈ B | ϕΘ,j(x
Λ∂k) �= 0}. Then the

restriction of ϕΘ,j to E is injective.

Proof. Assume that xΛ∂k, x
Ξ∂l ∈ E are such that

(4) ϕΘ,j(x
Λ∂k) = ϕΘ,j(x

Ξ∂l).

Since both ϕΘ,j(x
Λ∂k) and ϕΘ,j(x

Ξ∂l) are non-trivial, we either have

j > max(k, l) or j < min(k, l). In the first case, assuming without loss of gen-

erality that k ≤ l < j, from Equation (4) we obtain ∂k(x
Θ)xΛ∂j = ∂l(x

Θ)xΞ∂j ,

i.e.,

(5) xΛ∂k(x
Θ) = xΞ∂l(x

Θ).
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If we assume by contradiction that k < l, since λl = ξl = 0, we have the expo-

nent of xl is left unchanged by the derivative ∂k in the left term of Equation (5)

while it is decreased by one in the right term of Equation (5), a contradic-

tion. Hence we have k = l, from which we obtain xΛ∂k(x
Θ) = xΞ∂k(x

Θ), and

therefore xΛ = xΞ, the claim.

In the second case, j < min(k, l) means

(6) ∂j(x
Λ)xΘ∂k = ∂j(x

Ξ)xΘ∂l,

from which immediately k = l. Then Equation (6) implies ∂j(x
Λ) = ∂j(x

Ξ),

therefore xΛ = xΞ.

Definition 2.2: A Lie subring H of L is said to be homogeneous if it is the

Zm-linear span of a subset H of B.

Example 2.3: The Zm-submodule T of L spanned by T = {∂1, . . . , ∂n} is a

homogeneous (abelian) Lie subring. Notice that ∂i is the generator of the center

of L(i). When m is prime, this shows that T is the natural counterpart for the

elementary abelian regular subgroup of the Sylow p-subgroup of Sym(pn).

Definition 2.4: If H is a subset of B, then its idealizer is defined as

NB(H) = {b ∈ B | [b, h] ∈ Zm H for all h ∈ H}.

The following theorem shows that the idealizers of homogeneous subrings H

can be efficiently computed directly from the intersection H ∩ B.

Theorem 2.5: Let H be a homogeneous subring of L having basis H ⊆ B. The
idealizer of H in L is the homogeneous subring of L spanned by NB(H) as a free

Zm-module.

Proof. Let N = NL(H) be the idealizer of H in L and let

z =
∑

xΛ∂k∈B
lΛ,kx

Λ∂k ∈ N.

We need to show that lΛ,kx
Λ∂k ∈ N for all Λ and k. Since H is a homogeneous

subring then for all xΘ∂j ∈ H it suffices to show that if [lΛ,kx
Λ∂k, x

Θ∂j ] �= 0

then [lΛ,kx
Λ∂k, x

Θ∂j ] = lΛ,kϕΘ,j(x
Λ∂k) ∈ Zm H. Indeed, if xΘ∂j ∈ H, then

H � [z, xΘ∂j ] =
∑

xΛ∂k∈B
lΛ,kϕΘ,j(x

Λ∂k).
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Since ϕΘ,j(x
Λ∂k) ∈ Zm B, since the set B is a basis for L and since the

subset H ⊆ B is a basis for H, by Lemma 2.1 we have lΛ,kϕΘ,j(x
Λ∂k) ∈ Zm H

as required.

2.3. The idealizer chain. Let us now define the bases for the chain of ideal-

izers, starting from the subring T defined in Example 2.3.

Definition 2.6: For −1 ≤ i ≤ n− 1− δm,2, set

(7)

U = T ∪ {xj∂k | 1 ≤ j < k ≤ n},

Ni =

⎧⎪⎪⎨
⎪⎪⎩

T if i = −1

U if i = 0

Ni−1 ·∪Wi otherwise

where

(8) Wi = {xΛ∂k ∈ B | n− i+ 1 ≤ k ≤ n and wt(Λ) = k + i− n+ 1 + δm,2}.

Remark 1: The need for the symbol δm,2, as will be clearer later, depends on

the fact that the case m = 2 is different from the other cases since there is no

partition of 2 into at least two distinct parts.

Remark 2: Note that from (7) it follows that

Nn−1−δm,2 = {xΛ∂k ∈ B | wt(Λ) ≤ k},

Nn−2−δm,2 = {xΛ∂k ∈ B | wt(Λ) ≤ k − 1},

and in general for 3 + δm,2 ≤ i ≤ n

Nn−i = {xΛ∂k ∈ B | wt(Λ) ≤ k − i+ 1+ δm,2} ∪ U .

Definition 2.7: The idealizer chain starting from the Zm-submodule T of L

(cf. Example 2.3) is defined as follows:

(9) Ni =

⎧⎨
⎩
NL(T) i = 0,

NL(Ni−1) i ≥ 1.

We will prove that for 0 ≤ i ≤ n− 1 the Lie subring Ni is the Zm-linear span

of Ni. To do so, we need the next results.
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Lemma 2.8: N0 = NB(T ).

Proof. We clearly have T ⊆ NB(T ). Now, if xi∂j ∈ U with i < j, then

Zm T � [xi∂j , ∂k] =

⎧⎨
⎩
∂j k = i,

0 k �= i,

therefore U ⊆ NB(T ).

Conversely, let xΛ∂j ∈ NB(T ). For 1 ≤ k ≤ n we have

[xΛ∂j , ∂k] = ∂k(x
Λ)∂j ∈ Zm T .

This is possible when Λ=0 or if xΛ=xk for some 1≤k≤n, i.e., xΛ∂j∈N0.

The following result, which will be useful later on, is straightforward.

Lemma 2.9: If [xΛ∂j , x
Θ∂k] = cxΓ∂u, where 0 �= c ∈ Zm, then u = max(j, k)

and wt(Γ) = wt(Λ) + wt(Θ)−min(j, k).

Lemma 2.10: If 1 ≤ i ≤ n− 1− δm,2, then [U ,Wi] ⊆ Zm Ni−1.

Proof. Let xΛ∂j ∈ Wi and xeh
h ∂k ∈ U , where 0 ≤ eh ≤ 1 and let

cxΓ∂u = [xΛ∂j , x
eh
h ∂k],

where 0 �= c ∈ Zm. If xΓ∂u ∈ U there is nothing to prove, so assume xΓ∂u /∈ U .
If k ≤ j, then either c = 0 or, since wt(Γ) < wt(Λ), xΓ∂u ∈ Ni−1. Otherwise,

if k > j, then cxΓ∂u = ∂j(x
eh
h )xΛ∂k �= 0 if and only if h = j and eh = 1.

Moreover, since we are assuming xΓ∂u /∈ U , then it satisfies Equation (8), and

we have

wt(Λ) = j + 1− (n− 1) + δm,2.

Now, cxΓ∂u = xΛ∂k and

wt(Γ) = wt(Λ) = j + i− (n− 1) + δm,2

≤ k + i− 1− (n− 1) + δm,2,

therefore xΓ∂u ∈ Ni−1.

Lemma 2.11: If 1 ≤ i < h ≤ n− 1− δm,2 then [Wi,Wh] ⊆ Zm Nh−1.

Proof. Let xΛ∂j ∈ Wi and xΘ∂k ∈ Wh. Let us denote [xΛ∂j , x
Θ∂k] = cxΓ∂u

with c �= 0 and let us assume that xΓ∂u /∈ U otherwise, as before, there is

nothing to prove. By xΛ∂j ∈ Wi we obtain wt(Λ) = j + i− (n− 1) + δm,2 and
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by xΘ∂k ∈ Wh we obtain wt(Θ) = k + h− (n− 1) + δm,2. Now, by Lemma 2.9

we have

wt(Γ) = wt(Λ) + wt(Θ)−min(j, k)

= j + i− (n− 1) + δm,2 + k + h− (n− 1) + δm,2 −min(j, k)

= max(j, k) + i− (n− 1) + δm,2 + h− (n− 1) + δm,2

= u+ h− (n− 1) + δm,2 + i− n+ 1 + δm,2

≤ u+ (h− 1)− (n− 1) + δm,2,

which implies xΓ∂u ∈ Nh−1.

Proposition 2.12: If 1 ≤ i ≤ n− 1− δm,2, then Ni = NB(Ni−1).

Proof. The inclusion Ni ⊆NB(Ni−1) follows from the previous lemmas. It re-

mains to prove that NB(Ni−1) ⊆ Ni. Let xΛ∂j ∈ NB(Ni−1). Then for

each 1≤ l≤n−1−δm,2 and for each xΘ∂k∈Wl we have [x
Λ∂j , x

Θ∂k]∈Ni−1 \ N0.

Let k < j be minimum such that λk �= 0, and let xΘ∂k = xk−1∂k. Then,

since λk �= 0, we have [xΛ∂j , xk−1∂k] �= 0 and, by hypothesis, [xΛ∂j , xk−1∂k] is

a scalar multilple of an element xΓ∂j ∈ Ni−1 such that

wt(Γ) = wt(Λ)− 1 ≤ j + i− 1− (n− 1) + δm,2

< j + i− (n− 1) + δm,2.

Therefore wt(Λ) ≤ j + i− (n− 1) + δm,2, i.e., x
Λ∂j ∈ Ni.

Based on the previous Lemma for all i ∈ N we may define

(10) Ni = NB(Ni−1).

Theorem 2.13: The Lie subring Ni is homogeneous and the Lie subring Ni is

the Zm-linear span of Ni.

Proof. The statement is a straightforward consequence of Theorem 2.5 and of

Lemma 2.8 and Proposition 2.12.

2.4. Connections with integer partitions. Let pm,i be the number of

partitions of i into at least two parts, where each part can be repeated at

most m− 1 times, and let qm,i be the partial sum

qm,i =

i∑
j=1

pm,j.
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The first values of the sequences are shown in Table 2. Notice that the last

three OEIS entries of the table include the partition of i with a single part that

we do not consider.

Table 2. First values of the sequences (pm,i) and (qm,i) for

2 ≤ m ≤ 5

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 OEIS

p2,i 0 0 1 1 2 3 4 5 7 9 11 14 17 21 26 31 A111133

q2,i 0 0 1 2 4 7 11 16 23 32 43 57 74 95 121 152 A317910

p3,i 0 1 1 3 4 6 8 12 15 21 26 35 43 56 69 88 A000726

q3,i 0 1 2 5 9 15 23 35 50 71 97 132 175 231 300 388

p4,i 0 1 2 3 5 8 11 15 21 28 37 49 63 81 104 131 A001935

q4,i 0 1 3 6 11 19 30 45 66 94 131 180 243 324 428 559

p5,i 0 1 2 4 5 9 12 18 24 33 43 59 75 99 126 163 A035959

q5,i 0 1 3 7 12 21 33 51 75 108 151 210 285 384 510 673

From Theorem 2.13 we derive the following corollaries, here stated in the case

m = 2 and m > 2 separately.

Theorem 2.14: Let m = 2 and 1 ≤ i ≤ n − 2. Then, for n − i + 1 ≤ k ≤ n

we have |Wi ∩Bk| = p2,k+2+i−n and therefore the free Z2-module Ni/Ni−1 has

rank q2,i+2.

Notice that the result of Theorem 2.14 is in complete accordance with the

analogous result found in the case of the chain of normalizers in the Sylow

2-subgroup of Sym(2n) starting from an elementary abelian regular subgroup

([ACGS21b, Corollary 5]). This is not surprising: we will indeed prove in

Section 3 that there exists a correspondence between the two constructions.

More importantly, the use of the Lie ring of partitions introduced here allows

to easily generalize the result to the case m > 2.

Theorem 2.15: Let m > 2 and 1 ≤ i ≤ n− 1. Then, for n− i+ 1 ≤ k ≤ n we

have |Wi ∩ Bk| = pm,k+1+i−n and therefore the free Zm-module Ni/Ni−1 has

rank qm,i+1.

https://oeis.org/A111133
https://oeis.org/A317910
https://oeis.org/A000726
https://oeis.org/A001935
https://oeis.org/A035959
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3. An explicit correspondence in the case m = 2

In this section we will assume m = 2 without further reference. As already

anticipated above, we now prove that for any i ≥ 1 the ranks of the quo-

tients Ni/Ni−1 are equal to the logarithms log2|Ni : Ni−1| of the factors of the

normalizer chain in the Sylow 2-subgroup of Sym(2n) starting from an elemen-

tary abelian regular subgroup. This is constructively accomplished by showing

a bijection which maps rigid commutators into basis elements of the Lie ring of

partitions and which preserves commutators.

3.1. Correspondence with Sylow 2-subgroups of Sym(2n). We recall

here some fundamental facts about rigid commutators, although we advise

the reader to refer to Aragona et al. [ACGS21b] for notation and results.

We use the punctured notation as in the mentioned paper. More precisely,

if {s1, s2, . . . , sn} is the considered set of generators of the Sylow 2-subgroup

of Sym(2n) and X = {x1 > x2 > · · · > x�} is a subset of {1, . . . , n}, we denote

by [X ] the left normed commutator [sx1 , sx2 , . . . , sx�
]. The rigid commutator

based at b and punctured at I is

∨[b; I] = [{1, . . . , b} \ I] ∈ R∗,

where 1 ≤ b ≤ n and I ⊆ {1, . . . , b − 1} and the symbol R∗ denotes the set of

non-trivial rigid commutators. We also denote R = R∗ ∪{[∅]}. We will use the

commutator formula

(11) [∨[a; I],∨[b; J ]]=

⎧⎨
⎩
∨[max(a, b); (I ∪ J)\{min(a, b)}] if min(a, b)∈I∪J
1 otherwise

proved in Proposition 4 of the referenced paper. We also recall that the el-

ementary abelian regular group T is obtained in terms of rigid commutators

as T = 〈t1, . . . , tn〉, where ti = ∨[i; ∅] for 1 ≤ i ≤ n.

The mentioned bijection that will be soon defined relies crucially on the rep-

resentation of rigid commutators provided by the following result.

Lemma 3.1: Let S ⊆ R be normalized by {t1, . . . , tn}. If ∨[a;X ] is any rigid

commutator normalizing S and ∨[b;Y ] ∈ S, then there exists a rigid commuta-

tor ∨[b;Z] ∈ S such that Z ∩X = ∅ and

[∨[a;X ],∨[b;Y ]] = [∨[a;X ],∨[b;Z]].
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Proof. Let i ∈ X ∩ Y . Note that

[∨[a;X ],∨[b;Y \ {i}]] = [∨[a;X ], [∨[b;Y ], ti]] = [∨[a;X ],∨[b;Y ]].

In this way we can remove one by one from Y all the elements in X ∩ Y

obtaining Z and preserving the commutator.

Let us now define the bijection f between basis elements of the Lie ring and

the set of rigid commutators. We will show later that f preserves commutators.

Definition 3.2: Let f : B ∪ {0} → R be defined by letting

f(0) = [∅] and f(xΛ∂k) = ∨[k; supp(Λ)].

Remark 3: By Equation (11) we have that if either [xΛ∂k, x
Γ∂h] �= 0 or Λ∩Γ = ∅,

then

f([xΛ∂k, x
Γ∂h]) = [f(xΛ∂k), f(x

Γ∂h)].

We note indeed that if [xΛ∂k, x
Γ∂h] = 0 and Λ ∩ Γ = ∅, then k /∈ Γ and h /∈ Λ

and hence both members of the previous equation are the identity element.

Lemma 3.3: If S ⊆ B ∪ {0} is normalized by T = {∂1, . . . , ∂n} and is closed

under commutation, then xΘ∂u normalizes S if and only if f(xΘ∂u) normal-

izes S = f(S).

Proof. We show first that S is closed under commutation. Notice that,

since [T , S] ⊆ S, by Remark 3 we have that f(T ) = {t1, . . . , tn} normalizes S.
Let f(xΛ∂k) and f(xΓ∂h) be two elements in S. By Lemma 3.1, and by Re-

mark 3 we have

[f(xΛ∂k), f(x
Γ∂h)] = [f(xΛ∂k), f(x

Γ′
∂h)] = f([xΛ∂k, x

Γ′
∂h]) ∈ S

for some Γ′ such that supp(Λ) ∩ supp(Γ′) = ∅.
Let xΛ∂k ∈ S and xΘ∂u be a basis element in the Lie ring normalizing S.

The commutator [xΘ∂u, x
Λ∂k] ∈ S, hence, by Lemma 3.1, there exists Λ′ such

that supp(Λ′) ∩ supp(Θ) = ∅ and

[f(xΘ∂u), f(x
Λ∂k)] = [f(xΘ∂u), f(x

Λ′
∂k)] = f([xΘ∂u, x

Λ′
∂k]) ∈ S.

Therefore f(xΘ∂u) normalizes S. Conversely, if f(xΘ∂u) normalizes S
and f(xΛ′

∂k) ∈ S, then [f(xΘ∂u), f(x
Λ∂k)] ∈ S. Thus either

[xΘ∂u, x
Λ∂k] = 0 ∈ S
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or

[f(xΘ∂u), f(x
Λ∂k)] = f([xΘ∂u, x

Λ∂k]) ∈ S = f(S).

Hence [xΘ∂u, x
Λ∂k] ∈ S, as f is a bijection, and so xΘ∂u normalizes S.

We are finally ready to prove the claimed result.

Theorem 3.4: For all non-negative integers i the term Ni of the normalizer

chain is the saturated subgroup generated by the saturated set of rigid commu-

tators f(Ni). In particular, the following equality holds for each i ≥ 1:

rk(Ni/Ni−1) = log2|Ni : Ni−1|.

Proof. This is a straightforward consequence of the previous lemma applying

Theorem 2.13 and [ACGS21b, Corollary 2 and Proposition 5].

4. Unrefinable partitions with repeated parts and the (n− 1)-th ide-

alizer

The definition of unrefinability of a partition into distinct parts has been given

in Aragona et al. [ACGS22] in connection with the (n − 1)-th term in the

chain of normalizers in Sym(2n). We introduce here a natural generalization to

partitions whose parts can be repeated at most m − 1 times and we show the

connection (cf. Theorem 4.5) with the first idealizer not following the rules of

Theorems 2.14 and 2.15, i.e., the (n− δm,2)-th.

Definition 4.1: Let Λ ∈ Pm be a partition where each part has multiplicitiy at

most m − 1 and such that there exist indices j1 < · · · < j� < j satisfying the

conditions

• j =
∑�

i=1 aiji, with ai ≤ m− 1− λji ,

• λj ≥ 1.

The partition Θ obtained from Λ removing the part j and inserting the

parts j1, . . . , j�, each taken ai times, is said to be an a-refinement of Λ

where a =
∑

ai. We shall write Θ ≺ Λ to mean that Θ is a 2-refinement of Λ.

A partition admitting a refinement is said to be refinable in Pm, otherwise it

is said to be unrefinable in Pm.

Remark 4: Notice that, although the part j can appear with multiplicity up

to m − 1, the operation of refinement as in Definition 4.1 is performed on a

single part.
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Proposition 4.2: Every a-refinement of a partition Λ is obtained applying

exactly a− 1 subsequent 2-refinements.

Proof. Let j be the part of Λ replaced by a1 repetitions of j1, . . . , and a�

repetitions of j�. We split the proof in two cases, depending on λj1+j2 ≥ 1

or λj1+j2 =0, and we argue by induction, the statement being trivial when a = 2.

Let λj1+j2 ≥ 1. First we apply the 2-refinement that inserts j1 and j2 in place

of j1 + j2. Subsequently we apply the induction argument on the refinement

replacing j by inserting j1 + j2, j3, . . . , j� via a − 2 subsequent 2-refinements.

Suppose now λj1+j2 = 0. We first apply the (a − 2)-refinement replacing j

by inserting j1 + j2, j3, . . . , j� and subsequently we apply the 2-refinement that

inserts j1 and j2 in place of j1 + j2. In both cases by induction a number a− 1

of 2-refinement are applied. Since every 2-refinement increases by one the total

number of the parts, a − 1 is the minimum possible number of 2-refinements

that we can subsequently perform to obtain the final a-refinement.

Definition 4.3: Let Λ ∈ Pm and t > 0 be an integer. We say that Λ is 0-step

refinable if it is unrefinable in Pm. We say that Λ is t-step refinable if t

is maximal such that there exists a sequence made of t subsequent proper 2-

refinements Λt ≺ Λt−1 ≺ · · · ≺ Λ0 = Λ such that Λt is unrefinable. In other

words, t is the maximum number of 2-refinements to be subsequently applied

starting from Λ in order to obtain some partition that is unrefinable in Pm.

Remark 5: A straightforward consequence of Proposition 4.2 is that a parti-

tion Λ in Pm is t-step refinable if and only if t is maximal among the a such

that Λ admits an a-refinement.

Definition 4.4: Let Λ∈Pm(n−1). Consider the monomial f=
∏n−1

i=1 xm−1
i and let

xμ1
e1 · · ·xμs

es = f/xΛ,

where e1 < · · · < es and μi ≥ 1. The index ei is said to be the i-th excludant

of Λ and μi is its multiplicity. The first excludant of Λ is also called its mini-

mum excludant. We say that xΛ∂k satisfies the i-th excludant condition

if i is the minimum index such that n < k + ei. Moreover, we say that xΛ∂k

satisfies the weak i-th excludant condition if i is the minimum index such

that n < k + e1 + · · ·+ ei.

Note that if a partition satisfies the i-th excludant condition then it also

satisfies the weak j-th excludant condition for some j ≤ i.
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We define the filler element as

(12) fili,j = xixj∂i+j ∈ Nn−1−δm,2 \Nn−2−δm,2 .

Let Λ ∈ Pm(n − 1) be a partition with excludants e1 < · · · < es and suppose

that xΛ∂k ∈ Nj for some j ≥ n − δm,2. If k + ei ≤ n, then the commutator

operation

[xΛ∂k, filei,k] = xeix
Λ∂k+ei ∈ Nj−1

has the effect of filling the i-th excludant of Λ.

We now deal with the main result of the section. The condition for a partition

Λ ∈ Pm(k − 1) to be refinable is equivalent to the fact that there exists a

partition Θ ∈ Pm(h− 1) with h = wt(Θ) < k, such that [xΛ∂k, x
Θ∂h] �= 0.

Theorem 4.5: The elements of the set Nn−δm,2 \ Nn−1−δm,2 are of the

form xΛ∂k ∈ B, where Λ ∈ Pm(n − 1) is an unrefinable partition of k + 1

satisfying the first excludant condition.

Proof. We prove the claim assuming m > 2. The proof of the case m = 2 is

nearly identical, and also unnecessary, by virtue of the correspondence shown

in Section 3.

Let xΛ∂k ∈ Nn\Nn−1 and let e be the minimal excludant of Λ. By Remark 2,

since xΛ∂k �∈ Nn−1, we have wt(Λ) ≥ k + 1. Let h = min{j | λj �= 0} and let

N0 � xΓ∂h =

⎧⎨
⎩
∂1 if h = 1,

xh−1∂h if h > 1.

Since Nn−1 � [xΓ∂h, x
Λ∂k] = xΘ∂k �= 0 it follows that wt(Θ) = wt(Λ)− 1 ≤ k.

Hence wt(Λ) = k + 1.

Let Ξ be any partition of weight k+1. By Lemma 2.9 [xΞ∂k,Nn−2] ⊆ Nn−1,

again by Lemma 2.9 and Remark 2 it follows that xΞ∂k ∈ Nn \ Nn−1 if and

only if [xΞ∂k,Wn−1] = 0. Let then xΣ∂h ∈ Wn−1, so that wt(Σ) = h. The

condition [xΣ∂h, x
Λ∂k] = 0 for all xΣ∂h ∈ Wn−1 \ U with h ≤ k is equivalent

to xΛ∂k being unrefinable. So we assume h > k and xΘ∂h = [xΣ∂h, x
Λ∂k] �= 0.

In particular wt(Σ) ≥ e + k, since σk ≥ 1 and since Σ can have non-zero

components σi only if i �= k is an excludant of Λ. Hence

n ≥ h = 1 + wt(Σ) ≥ e+ k
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yielding k ≤ n− e. Conversely if 0 < k ≤ n− e then file,k ∈ Nn−1 and

[xΛ∂k, file,k] = xex
Λ∂e+k �= 0.

Hence if wt(Λ) = k + 1 then [xΛ∂k,Wn−1 \ U ] = 0 if and only if n− e < k ≤ n

and xΛ∂k is unrefinable in Pm.

4.1. One more idealizer. In this last section we set again m = 2 and we

aim at the characterization of the n-th term of the idealizer chain defined in

Equation (9). By virtue of the results of Section 3.1, the characterization auto-

matically extends to the n-th normalizer in Sym(2n) of Equation (1). The next

contributions are rather technical and will really show the cost, in terms of com-

binatorial complexity, of trying to go beyond the ‘natural’ limit of the (n−1)-th

idealizer/normalizer.

Let xΛ∂k ∈ Nn \Nn−1 and let e1 < · · · < es be the excludants of Λ. We start

by giving some necessary conditions that xΛ∂k has to satisfy since it belongs

to Nn \Nn−1.

By Theorem 2.13, we have wt(Λ) ≥ k + 1. Suppose first that wt(Λ) = k + 1.

By Theorem 4.5 either Λ is refinable or Λ is unrefinable and k ≤ n − e1.

If Λ is refinable, then there exists a partition Γ with h = wt(Γ) < k, such

that Nn−1 � xΘ∂k = [xΛ∂k, x
Γ∂h] �= 0; the partition Θ is then unrefinable and

the minimal excludant e of Θ is such that k > n − e. Suppose that Λ satisfies

the j-th excludant condition with j ≥ 1. Since there exists an unrefinable 2-

refinement Θ of Λ obtained replacing a part λu with two excludants es and et,

then we have j ≤ 3. Moreover, if j ≥ 2, then the commutator element

xΞ∂e1+k = [xΛ∂k, file1,k] = xe1x
Λ∂e1+k ∈ Nn−1,

therefore xΛ∂k satisfies the weak second excludant condition and the partition Ξ

obtained by Λ by filling its minimum excludant is an unrefinable partition. This

implies that any refinement of Λ has 1 in the e1-th component. In the more

specific case j = 3, the same argument applies replacing e1 with e2. Thus every

refinement Θ of Λ has each of the e1-th and e2-th component set to 1. From

Proposition 4.2, we have that if j = 3, then λe1+e2 = 1 and Θ is obtained

from Λ inserting 0 in the (e1 + e2)-th component and 1 in the e1-th and e2-th

component of Λ. A similar argument shows that if Λ is unrefinable, then it has

to satisfy the second weak excludant condition. Let us summarize the previous

conditions as follows:
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Definition 4.6: The element xΛ∂k satisfies the 1-step excludant condition

if wt(Λ) = k + 1 and Λ satisfies one of the following:

(a) Λ is 1-step refinable and it satisfies the first excludant condition,

(b) Λ is 1-step refinable and it satisfies the second excludant condition and

every refinement Θ is such that θe1 = 1,

(c) Λ is 1-step refinable and satisfies both the third excludant condition

and the second weak excludant condition, λe1+e2 = 1, and the only

refinement Θ of Λ is such that xΘ = xe1xe2x
Λ/xe1+e2 ,

(d) Λ is unrefinable and it has to satisfy the second weak excludant condi-

tion.

We are now left with the case wt(Λ) ≥ k + 2. If λ1 = 1, then

xΘ∂k = [xΛ∂k, ∂1] ∈ Nn−1,

and so k + 1 ≤
∑

i≥2 iλi ≤ k + 1 implies

wt(Λ) = k + 2.

The minimal excludant of Θ is 1, which implies k > n − 1, i.e., k = n.

Moreover, Θ has to be unrefinable and so if λi = θi = 0 for some i ≥ 2,

then λi+1 = θi+1 = 0 as well. This implies that there exists an index t such

that λi = 1 for 1 ≤ i ≤ t and λi = 0 for i > t. Thus Λ is a triangular par-

tition. Suppose now that λ1 = 0. Let h be an index such that λh−1 = 0 and

λh = 1. We want to show that h = 2. If h > 2, then the commutator element

xΘ∂k = [xΛ∂k, fil1,h−1] ∈ Nn−1 where wt(Θ) = k + 2, a contradiction. This

implies that there exists an index t > 2 such that λi = 0 for i > t. We will then

say that Λ is a weak-triangular partition. In particular, λ2 = 1 and so the

commutator element

[xΛ∂k, x1∂2] = xΘ∂k ∈ Nn−1,

where the minimum excludant of Θ is 2. Thus n − 2 < k ≤ n, i.e., k is

either n or n − 1. Note that the case k = n − 1 cannot occur since then

[xΛ∂k, fil1,k] = xΘ∂n �= 0 ∈ Nn−1 which yields the contradiction

wt(Θ) = k + 3 = n+ 2 > n+ 1.

We conclude summarizing below what was previously discussed and showing

that the mentioned conditions are also sufficient, with some sporadic exceptions

in the case n = 8.
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Theorem 4.7: With the sole exclusion of the cases n = 8 and

xΛ∂k = x2x7∂8,

xΛ∂k = x4x5∂8,

xΛ∂k = x2x4∂5,

the element xΛ∂k belongs to Nn \ Nn−1 if and only if one of the following

conditions is satisfied:

(1) wt(Λ) = k + 1 and xΛ∂k satisfies the 1-step excludant condition,

(2) wt(Λ) = k + 2, k = n and one of the following holds,

(i) n + 2 is the t-th triangular number and xΛ = x1 · · ·xt, i.e., Λ is

the t-th triangular partition,

(ii) n + 3 is the t-th triangular number and xΛ = x2 · · ·xt, i.e., Λ is

the t-th weak-triangular partition.

Proof. Due to the intricate combinatorial nature of the problem, the long proof

of the result is rather tedious as it is articulated in several cases and sub-cases

and it is therefore omitted. It can be made immediately available by the authors

to the interested reader upon request.

5. Conclusions and open problems

Computing the chain of normalizers of Equation (1) is a computationally chal-

lenging task which soon clashes with the exponential growth of the order of the

considered groups. In fact, as already pointed out in [ACGS21a], computing the

chain of normalizers up to the (n − 2)-th term and more would not have been

possible without introducing rigid commutators [ACGS21b]. Unfortunately, it

appears that there is no natural way to generalize the notion of rigid commu-

tators when p is odd in such a way that these turn out to be closed under

commutation. An odd version of the rigid commutator machinery, as described

in the cited paper for p = 2, would be indeed the key ingredient that could

prove helpful in computing the chain of normalizers in Sym(pn). This task is

otherwise computationally unfeasible when p ≥ 3, even when minimal values

of n are considered.

With this goal in mind, in this work we have introduced a new framework

which moves the setting from the symmetric group to a Lie ring with a basis

of elements represented by partitions of integers which parts can be repeated
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no more than m− 1 times. In this framework, the construction of the Lie ring

reflects the construction of the Sylow p-subgroup of Sym(pn) when m = p is

prime, and still provides meaningful results when m is composite. We defined

the corresponding idealizer chain in the Lie ring and proved, as expected, that

the growth of the idealizer chain goes as in the case of Sym(2n) when m = 2,

and proceeds according to its natural generalization when m > 2 (cf. Theo-

rem 2.14 and Theorem 2.15). In particular, when m = 2 an explicit bijection

between generators which preserves commutators is provided (cf. Definition 3.2

and Theorem 3.4).

The possible obvious extensions of the notion of rigid commutators in the

case p odd, to which will correspond a bijection similar to that given in Def-

inition 3.2, do not produce a set of commutators that turns out to be closed

under commutation, a property that is crucial in the proof of Theorem 3.4. If

a commutation-closed extension were found, it would not be hard to believe

that a natural correspondence preserving commutators between the new rigid

commutators and the basis elements of the Lie ring, as the one of Definition 3.2,

may exist. This would imply that Theorem 2.15 is the p-analog of the chain

of normalizers in Sym(pn), where m = p is odd, which at the time of writing

remains a very plausible conjecture for which this paper, in the absence of any

computational evidence, represents a source of support.
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