

UNIVERSITÀ DEGLI STUDI DELL'AQUILA
DIPARTIMENTO DI INGEGNERIA, SCIENZE DELL’INFORMAZIONE E

MATEMATICA

Doctoral Program in Information and Communication Technology

Curriculum Emerging computational models, software architectures, and intelligent

systems.

XXXV cycle

Thesis Title

Migration to Microservices: a Quality-Driven

Approach

SSD INF/01

Ph.D. Candidate

Roberta Capuano

Doctoral Program Supervisor Tutor

Prof. Vittorio Cortellessa Prof. Henry Muccini

_____________________ __________________

A.A. 2021/2022

Abstract

Microservices architecture has become increasingly popular among software practition-
ers in recent years as an effective approach to building complex applications that are
more scalable, maintainable, and resilient. Top companies like Netflix, Amazon, and
Uber have all successfully modernized their systems migrating them to microservices
architecture. However, this migration process can pose certain challenges that require
careful planning and execution to achieve desired outcomes and ensure that both func-
tional and non-functional requirements are met.

One of the most significant challenges in microservices migration is the planning
phase, as poor planning can lead to increased complexity, reduced scalability, and de-
graded performance of the final system. To address these challenges, we propose a
quality-driven migration approach that considers software qualities in all the migration
stages. Our approach aims to improve software qualities with the migration process by
applying architectural refactoring techniques, such as antipatterns detecion analysis. By
combining techniques from both migration and refactoring, our approach can help orga-
nizations to achieve the desired outcomes of microservices migration while improving or
maintaining quality attributes throughout the process. In addition, we created a novel
quality-driven (antipatterns-based) refactoring approach to be applied to microservices
derived from the migration.

Given the industrial nature of the PhD of which this document represents the final
Thesis, the research has been validated by applying it to a real case study from the BIM
Italia company. In particular, the refactoring approach has been applied for refactoring
two microservices of BIM Italia that suffered from significant performance degradation
after migration. Industrial experimentation in BIM Italia has showcased the importance
of quality-driven migration approaches in a microservices architecture.

This Thesis makes several contributions, including: i) conducting a thorough anal-
ysis of quality-driven migration approaches, ii) proposing a quality-driven migration
process for microservices that relies on antipatterns analysis to ensure a successful mi-
gration, iii) introducing a graph-based software representation with annotations for
antipatterns detection, and iv) developing and validation of a quality-driven refactoring
approach for microservices resulting from the migration of a monolithic system.

The output of this Thesis is a set of guidelines for quality-driven migration to mi-
croservices that can help practitioners to avoid common pitfalls ensuring that their sys-
tems meet the expected quality requirements. Our work demonstrates the importance of
considering quality attributes throughout the migration process and how architectural
refactoring can help achieve these goals.

Keywords: software architecture, migration to microservices, architectural refactor-
ing, software quality.

Contents

List of Figures vii

List of Tables ix

Acronyms xii

1 Introduction 1
1.1 Software Modernization . 1
1.2 Microservices . 2
1.3 Migration to Microservices . 3
1.4 Thesis Context . 4
1.5 Thesis Objectives and Contributions . 5
1.6 Thesis Outline . 7

I Motivations and Background 9

2 Migration to Microservices: an Industrial Perspective 10
2.1 State of the Art Analysis: the Protocol 10
2.2 Search Strategy . 11

2.2.1 Search String Definition . 12
2.2.2 Library Selection . 12
2.2.3 Criteria Definition . 13

2.3 Research Quesitons . 13
2.3.1 Selected Studies . 14
2.3.2 research question (RQ)s Generalizzation 16

2.4 Reported Results . 17
2.4.1 RQ1: What are the reasons and motivations for companies to

migrate from monolithic legacy systems to microservices? 17
2.4.2 RQ2: What are the common challenges faced during the migra-

tion process to a Microservices Architecture (MSA)? 19
2.4.3 RQ3: What are the strategies and approaches adopted by com-

panies during microservices migration? 22
2.5 Discussion . 25
2.6 Conclusion . 26

3 State-of-the-art in Quality-Driven Migration to Microservices 28
3.1 Related Work . 29
3.2 Planning the Review . 31

3.2.1 RQs Definition . 31

iv

3.2.2 Search Strategy . 32
3.2.3 Data Extraction Plan . 33

3.3 Conducting the Review . 35
3.3.1 Search Results . 36
3.3.2 Data Extraction . 37

3.4 Reporting the Review . 38
3.4.1 RQ1: What is the trend in system migration to microservices

from 2015 till now? . 39
3.4.2 RQ2: Are there any studies that address the problem of migration

to microservices considering the quality aspects? 42
3.4.3 RQ3: Which of the three steps for the migration to microservices

did the researchers focus on? . 47
3.5 Discussion . 53
3.6 Conclusion . 54

II Research Contributions 55

4 Quality-Driven Migration Approaches 56
4.1 Related Work . 56
4.2 Process Objective . 57
4.3 Quality-Driven Process . 58

4.3.1 Existing System Comprehension 58
4.3.2 Microservices Identification and Assessment 59
4.3.3 Microservices Packaging . 60
4.3.4 Summary and Evaluation of the Proposed Process 61
4.3.5 Semplification of the Quality-Driven Process 63

4.4 Conclusion . 65

5 Graph-based Software Representation for Antipatterns Detection 66
5.1 System Representation through Graph 66

5.1.1 Type of nodes . 66
5.1.2 Type of edges . 67
5.1.3 Implementation . 71

5.2 Antipatterns Mathematical Formulation 72
5.2.1 God Class Antipattern . 72
5.2.2 Circuitous Threasure Hunt Antipattern 75
5.2.3 Empty Semi-Truck Antipattern 77

5.3 Related Work . 78
5.3.1 Graph-Based Representation of Object-Oriented Projects 79
5.3.2 Antipatterns Detection . 80
5.3.3 Open Challenges of the Approach 81

5.4 Conclusion . 82

6 Quality-Driven Refactoring Approach 83
6.1 Related Work . 83
6.2 Proposed Quality-Driven Refactoring Process 85

6.2.1 Phase 1: Antipatterns Analysis on Monolith and Microservices . 86
6.2.2 Phase 2: Resolutive Patterns selection 88
6.2.3 Phase 3: Code refactoring and assessment 89

6.2.4 Phase 4: Microservice deployment or refactoring 90
6.3 Conclusion . 90

III Industrial Application 92

7 Case Study: BIM Italia 93
7.1 Migration to Microservices: Motivations and Planning 93

7.1.1 Motivations . 93
7.1.2 Planning . 94

7.2 The QuaniSDO Software . 96
7.3 The Migration Approach and Performance Issues 98
7.4 Conclusion . 101

8 Quality-Driven Refactoring in BIM Italia 102
8.1 Control microservice refactoring . 102

8.1.1 Antipatterns Analysis for the Control Microservice 103
8.1.2 Patterns Selection for the Control Microservice 104
8.1.3 Control Microservice Refactoring 106
8.1.4 Control Microservice: refactoring results 107

8.2 Pricing microservice refactoring . 108
8.3 Conclusion . 109

9 Implementation of the Diagnosis Related Group functionality 111
9.1 The Diagnosis Related Group Functionality 111

9.1.1 Diagnosis Related Group Components 112
9.1.2 Equivalence Relationship . 113

9.2 Application of the Approach . 114
9.2.1 Antipatterns Analysis . 114
9.2.2 Patterns Selection . 115

9.3 Results Discussion . 116
9.3.1 Performance Analysis . 116
9.3.2 Time, Effort and Costs Analysis 118

9.4 Conclusion . 120

IV Conclusions 122

10 Conclusions 123
10.1 Thesis Findings . 123
10.2 Future work . 127
10.3 List of Pubblications . 128

bibliography 129

A SLR on Quality-Driven Migration to Microservices: Parameters 144
A.1 General parameters and Values . 144
A.2 RQ1-related Parameters and Values . 145
A.3 RQ2-related Parameters and Values . 145
A.4 RQ3-related Parameters and Values . 146
A.5 Other Parameters and Values . 147

B Antipatterns Detected in the QuaniSDO Software in BIM Italia 149
B.1 Antipatterns Detected on the Monolith - Control Functionality 149
B.2 Antipatterns Detected on the Microservices 153

List of Figures

2.1 Informal Review Procedure . 12

3.1 Process for Planning the Review . 31
3.2 Data Extraction Procedure . 35
3.3 Systematic Literature Review (SLR) Steps 36
3.4 Primary Study Main Topic. 40
3.5 Primary Study Main Topic by Year. 40
3.6 Architecture of the Legacy Application. 41
3.7 Languages of the Case Studies reported in the Accepted Papers. 42
3.8 Domains of the Case Studies reported in the Accepted Papers. 42
3.9 Quality Attributes Considered During Migration. 43
3.10 Quality Attributes in Migration Phases. 44
3.11 Quality Attributes in Comprehension Phase. 44
3.12 Quality Attributes in Microservices Identification Phase. 45
3.13 Quality Attributes in Microservices Assessment. 45
3.14 Comprehension Approaches Distribution 49
3.15 Comprehension Approaches Distribution by Year 50
3.16 Microservices Identification Approaches Distribution 51
3.17 Microservices Identification Approaches Distribution by Year 51

4.1 Overall Quality-Driven Migration to Microservices 58
4.2 Quality-Driven System Comprehension 59
4.3 Details of Quality-Drien Microservices Identification 60
4.4 Quality-Driven Microservices Packaging 61
4.5 Quality-Driven Migration to Microservices Process 62
4.6 Quality-Driven Migration to Microservices Process 63

5.1 extends relation between classes . 67
5.2 implements relation between classes . 67
5.3 imports relation between classes . 68
5.4 composed_by relation between classes . 68
5.5 Owns relation between classes and methods 69
5.6 uses_as_var relation between methods and classes 69
5.7 uses_as_arg relation between methods and classes 69
5.8 uses_as _var relation between methods and classes 70
5.9 calls relation between methods . 70
5.10 God Class - Example: Class Owner . 75
5.11 Circuitous Treasure Hunt - Example . 77

6.1 The Proposed Quality-Driven Refactoring Approach. 86
6.2 Antipatterns in Migration to Microservices: An Example. 88

viii

7.1 The QuaniSDO Defined Microservices. 96
7.2 The General QuaniSDO Workflow. 97
7.3 The Control Microservice Performance Degradation. 100
7.4 The Pricing Microservice Performance Degradation. 100

8.1 Refactoring Timeline. 102
8.2 The Control Microservice Performance Improvement. 107
8.3 The Pricing Microservice Performance Improvement. 109

9.1 Diagnosis Related Group (DRG) Calculation Schema. 112
9.2 DRG Functionality. 113
9.3 DRG Testing Scenario. 116

List of Tables

1.1 Thesis Roadmap . 8

2.1 Mapping between RQs . 17
2.2 Mapping between Motivation for Migration and Research Papers 19
2.3 Mapping between Challenges in Migration and Research Papers 22
2.4 Mapping between Challenges in Migration and Research Papers 25

3.1 SLR: Steps and Activities. 29
3.2 SLR: Inclusions and Exclusions Criteria. 34
3.3 SLR: Digital Libraries Search Results. 36
3.4 SLR: Selection of Studies. 37
3.5 Relation between Case Study and Empirical Study with Quality in Phases 39
3.6 Number of Studies Considering Quality Attributes in More than One Phase 46
3.7 Number of Studies Considering the same Quality Attributes in more than

one Phase . 47
3.8 Number of Studies Working on the Related Phase 47
3.9 Number of Studies Working on the Related Phases 48
3.10 System Comprehension and Microservices Identification Approaches Def-

inition . 48
3.11 Relation Between Approaches Both in Comprehension and Microservices

Identification Phase . 49
3.12 Relation Between Quality Attributes and Comprehension Phase Approaches 52
3.13 Relation Between Quality Attributes and Microservices Identification

Phase Approaches . 53

4.1 Evaluation of the Proposed Quality-Driven Migration Process 62

5.1 God Class - Problem and Solutions . 73
5.2 Results of the Cypher Query for the God Class Antipattern. 75
5.3 Circuitous Treasure Hunt - Problem and Solutions 75
5.4 Empty Semi-Truck - Problem and Solutions 77
5.5 Results of the Cypher Query for the Empty-Semy Truck Antipattern. . . 79

6.1 Antipatterns Relationship and Patterns Selection Strategy 89

7.1 Implementation Technologies . 95
7.2 Monolith’s Requirements . 97
7.3 AWS and PostgreSQL configurations . 99

8.1 Tower of Babel - Control Functionality - Monolith 103
8.2 Data Taffy - Control Functionality - Microservice 104
8.3 Iterator - Control Functionality - Microservice 105

x

8.4 Template-Method (DAL) - Control Functionality - Microservice 105
8.5 Cache-Aside - Control Functionality - Microservice 106
8.6 Performance Analysis after the Refactoring of the Control Functionality 107
8.7 Performance Analysis after the Refactoring of the Pricing Functionality 109

9.1 Average response time after the partial migration of the DRG Functionality117
9.2 Worst case response time after the partial migration of the DRG Func-

tionality . 117
9.3 Time Analysis . 118
9.4 Effort Analysis . 119
9.5 Costs Analysis . 120

A.1 SLR: General Parmeters and Descriptions. 144
A.2 SLR: RQ1 Parmeters and Descriptions. 145
A.3 SLR: RQ2 Parmeters and Descriptions. 145
A.4 SLR: QA-2 - Quality Attributes in Migration Phase Values. 145
A.5 SLR: RQ3 Parmeters and Descriptions. 146
A.6 SLR: MS-1 - System Comprehension Approach Values 146
A.7 SLR: MS-3 - System Comprehension Approach Values 147
A.8 SLR: Other Parmeters and Descriptions. 147
A.9 SLR: OP1 - Main Topic - Values . 148
A.10 SLR: OP2 - Validation Type - Values . 148

B.1 God Class - Control Functionality - Monolith 149
B.2 Circuitous Treasure Hunt - Control Functionality - Monolith 150
B.3 Concurrent Processing - Control Functionality - Monolith 150
B.4 Pipe and Filter - Control Functionality - Monolith 150
B.5 Extensive Processing - Control Functionality - Monolith 151
B.6 Onle-Lane Bridge - Control Functionality - Monolith 151
B.7 Excessive Dynamic Allocation - Control Functionality - Monolith 151
B.8 Tower of Babel - Control and Pricing Functionalities - Monolith 152
B.9 The Ramp - Control Functionality - Monolith 152
B.10 More is Less - Control Functionality - Monolith 152
B.11 Data Taffy - Control and Pricing Functionalities - Microservice 153
B.12 High Service Network Payload - Control Functionality - Microservice . . 153
B.13 N+1 Service Call - Control Functionality - Microservice 153
B.14 Traffic Jam - Control Functionality - Microservice 154

Acronyms

CA Cache-Aside

DAL Template-Method

DRG Diagnosis Related Group

DTS Data Transformation Services

DT Data Taffy

HDR Hospital Discharge Records

ICD-9-CM International Classification of Diseases, Ninth Revision, Clinical Modifi-
cation

RQs research questions

RQ research question

SLR Systematic Literature Review

SSN Italian National Health Service

ToB Tower of Babel

MDC Major Diagnostic Categories

MSA Microservices Architecture

ROI Return on Investment

SOA Service-Oriented Architecture

SOC Service-Oriented Computing

WHO World Health Organization

WS Web Services

xii

Chapter 1

Introduction

This Chapter provides a comprehensive overview of modernization, migration to mi-
croservices and qualities. Additionally, it defines the Thesis objectives, highlighting
its contribution to the field of software architecture. The Thesis structure provides a
roadmap for the reader. By the end of this Chapter, there will be a clear understanding
of the scope and focus of the Thesis, as well as the key concepts and ideas that will be
explored in detail throughout the document.

1.1 Software Modernization

The term "legacy system" denotes a system characterized by its inherent inability to ef-
fectively adjust or accommodate itself in response to dynamic and continuously evolving
business requirements [1]. However, according to Lehman’s first law [2], software needs
to be continuously adapted to changing user requirements and technical environments;
otherwise, it will become progressively less suitable for real-world use.

To address the challenges of increasing system flexibility and reducing maintenance
costs, many companies adopted modernization processes. Software modernization is
defined as "the process of evolving existing software systems by replacing, re-developing,
reusing, or migrating the software components and platforms, when traditional main-
tenance practices can no longer achieve the desired system properties" [3]. Currently,
different approaches are used to modernize legacy systems: refactoring and reengineer-
ing. In the first case, actions are made on the code to improve the software behaviour
or meet new functional requirements [4]. The latter consists in the software analysis,
re-architecting and re-implementation [5]. Despite three decades of legacy system mod-
ernization research, many legacy systems are still in daily operation, and 180-200 billion
lines of legacy code are still in active use [6, 7].

Web-based technologies have played a significant role in encouraging legacy system
modernization over the last 20 years [8–11]. In particular, Service-Oriented Architecture
(SOA) has been a popular target architecture for legacy system modernization [3].

1

1.2. Microservices

1.2 Microservices

Around two decades ago, many businesses were captivated by SOA, Web Services
(WS), and Service-Oriented Computing (SOC) [12]. Most organizations claimed to
have adopted SOA and web services as essential enablers for their projects’ success.
However, the lack of a uniform definition of SOA among companies made it difficult to
recognize its actual value [13].

Today, Microservices Architecture (MSA), are generating the same excitement [14].
MSA is a way of designing and building software applications as a suite of independently
deployable, small, modular services. Thus, each microservice runs a unique process
and communicates through a well-defined, lightweight mechanism such as a RESTFul
API to serve a business goal [15]. The MSA enables organizations to develop, deploy,
and scale applications faster and more efficiently by focusing on each service’s distinct
responsibility addressing the so-called Single Responsibility Principle. MSA share the
same advantages as SOA, including dynamism, modularity, distributed development,
and heterogeneous system integration. Unlike SOA, however, microservices emphasize
independence, replaceability, and autonomy [15]. The services should be conceived,
implemented, and deployed independently, and different versions can even coexist while
allowing the system’s topology to change at runtime as needed. Additionally, each
microservice component should be changeable without affecting the performance of
others. Similar to SOA, microservices are not a panacea. With them, new challenges
emerged, and old ones regained attention. Microservice architectures face various non-
trivial design challenges intrinsic to any distributed system, including data integrity and
consistency management, service interface specification and version compatibility [16].
MSA [17] is based on a few simple principles:

• Bounded Context : Introduced in [18], this principle highlights the importance of
focusing on business capabilities in a MSA. Related functionalities are grouped
together as a single business capability, which is then implemented as a service.

• Size: Size is a critical aspect of microservices and offers significant benefits in
terms of service maintainability and extensibility. The recommended approach in
a MSA is to split a service into two or more services if it is too large, preserving
granularity and focusing solely on providing a single business capability.

• Independence: This principle promotes loose coupling and high cohesion by as-
serting that each service in MSA operates independently of others, with commu-
nication between services only through their published interfaces.

R. Capuano 2

1.3. Migration to Microservices

1.3 Migration to Microservices

In the past ten years, companies started migrating their legacy, most of the time
monolithic-based software systems, to MSA to improve scalability, resilience, time to
market, maintainability, and technology alignment [19]. This results in an improved
ability to deliver value to customers, increased agility, and faster adaptation to chang-
ing business needs [20]. Thus, migration to microservices is defined as the process of
refactoring a monolithic application to adopt MSA. The goal of migration to microser-
vices is to achieve better scalability, and agility for the application, as well as improved
maintainability and faster development cycles. The migration process involves break-
ing down the large, monolithic codebase into smaller, independent services that can
be developed, tested, and deployed separately [21]. In this context, techniques such as
service decomposition, API-first development, and containerization are commonly used
[22, 23].

The migration to microservices can be complex and requires careful planning and
execution to minimize disruption to the existing application and ensure a smooth tran-
sition to the new architecture. Properly managed migration to microservices can result
in improved performance and faster innovation, increasing competitiveness for busi-
nesses [24]. In [20], San Newman provides a guideline to practitioners to migrate their
legacy systems to MSA. The three crucial phases of migration to microservices can be
summarized as follows:

• Planning : the aim of this phase, is to understand the migration goal. The objec-
tive is to analyse why to migrate to microservices. The most impacting reasons for
companies are: i) time-to-market improvement, ii) embrace new technology, and
iii) get a better business value. In this context, it is essential to consider that the
migration to microservices has an impact on the overall organization structure.
This consideration derives from Conway’s Law which assesses that any organiza-
tion that designs a system will inevitably produce a design whose structure is a
copy of the organization’s communication structure [25].

• Splitting the Monolith: in this context, a company may decide to refactor the
monolith using different patterns. The most efficient one is figured out to be
the strangler fig pattern [26]. The idea is that the old and the new system can
coexist. Thus, the new system can slowly grow and potentially replace the old
system supporting its incremental migration. The techniques that can be used to
decompose the monolithic system will be discussed in Chapter 3.

• Database decomposition: Microservices perform best when practising information
hiding, encapsulating the data storage and retrieval mechanisms. Thus, when
migrating toward a microservice architecture, the monolith’s database splitting
shall be run separately to best out of the transition.

R. Capuano 3

1.4. Thesis Context

1.4 Thesis Context

When transitioning from a monolith to a MSA, the planning phase is crucial for the
process’s success. During this stage, a roadmap is developed that outlines the mi-
gration’s scope, goals, and potential obstacles, while also determining the optimal ap-
proach. Proper planning is necessary to evaluate whether microservices are suitable
for a company’s needs. Before committing to this architecture, it is essential to an-
alyze the current systems comprehensively and weight the benefits and drawbacks of
the migration [20]. The planning process involves evaluating the current infrastructure,
anticipating possible issues during the migration, and designing a roadmap for moving
to a MSA. This process can help identify any technical or organizational issues and
ensure a seamless transition without disrupting the company’s operations. To this aim,
it is crucial to consider both functional and non-functional requirements during the
planning phase. Neglecting non-functional aspects may result in additional refactoring,
which can be time-consuming and expensive.

In [27], Li et al. found that despite the rapid adoption of MSA in the software
industry, there is a significant lack of understanding about the quality attributes of
MSA. To address this, they conducted a Systematic Literature Review (SLR) to provide
a comprehensive overview of existing research on the quality attributes related to a
MSA for practitioners and researchers. The authors suggest that caution should be
exercised when considering migrating from monolithic systems to MSA. Practitioners
should evaluate the Return on Investment (ROI) and consider the additional efforts and
costs needed to implement tactics for specific quality attributes identified in the SLR
or other important ones not obtained due to time constraints. Moreover, practitioners
must consider the complex relationships among quality attributes during the migration,
including dependencies and trade-offs. Improving one quality attribute may positively
affect other quality attributes, while addressing one quality attribute may negatively
impact certain quality attributes, creating trade-offs between different quality aspects.

In [28], Bogner et al. investigated how companies perceive the impact of adopt-
ing microservices on the quality of their systems, as defined by the ISO 25010 standard
[29]. They conducted 17 interviews with representatives from 10 companies and focused
on eight software qualities: maintainability, portability, reliability, compatibility, per-
formance, usability, security, and functional sustainability. The findings revealed that
some interviewees perceived a negative impact on certain aspects of software quality.
Specifically, 3 out of 17 participants reported issues with maintainability, while 2 out
of 17 had concerns about reliability, 1 out of 17 expressed dissatisfaction with usability,
and 4 out of 17 had negative views on security. Therefore, it is necessary to determine
strategies that can be implemented to achieve or improve a predefined set of software
qualities during the migration to microservices.

It is challenging to find real-world case studies where a migration to MSA had

R. Capuano 4

1.5. Thesis Objectives and Contributions

a negative outcome, resulting in a degradation of system quality. However, several
scientific articles address the topic of microservices migration not being for everyone
[30][31][32]. These articles emphasize the complexities and challenges associated with
migrating to a MSA and highlight the importance of careful planning and evaluation
before embarking on such a project. Therefore, to enhance the overall success of the
transition and lead to better long-term outcomes for organizations, it is essential to
employ strategies that ensure the migration to microservices enables the achievement
or improvement of a predefined set of software qualities.

Unfortunately, as will be shown in Chapter 3, few of the approaches presented
in the literature currently consider software qualities from the migration planning to
its implementation. As a result, the following research question has been formulated:
What strategies can be employed to ensure that the migration to microservices enables
the achievement or improvement of a predefined set of software qualities? This approach
can enhance the overall success of the transition and lead to better long-term outcomes
for organizations.

1.5 Thesis Objectives and Contributions

The main Thesis objective is the definition of a quality-driven migration to the microser-
vices approach. The approach aims to help organizations achieve the desired outcomes
of microservices migration while improving or maintaining quality attributes throughout
the process. The proposed approach takes into account non-functional requirements as a
first-class entity in all the defined steps. Given the industrial nature of this Thesis, most
of the research activities has focused on the validation of the proposed methods on a
real-world case study which will be explored in Part III of this document. The following
bullet list reports the main research objectives summarizing the Thesis contribution:

• RO1: analysis of the state-of-the-art in migration to microservices. The
aim is twofold: i) understand how companies perceive the migration to microser-
vices, and ii) analyse migration phases and techniques, to investigate if and how
quality constraints are considered during the migration to microservices. The find-
ings will be presented in Chapters 2 and 3. Part of the study has been published
in the IEEE 19th International Conference on Software Architecture Companion
(ICSA-C) [33].

• RO2: definition of a quality-driven migration to microservices approach

aiming to satisfy non-functional requirements. The approach considers the
antipatterns analysis on the monolith ensuring that none of the antipatterns will
reflect on the derived microservices. A first attempt of the approach has been
presented in the Doctoral Symposium at the European Conference on Software
Architecture [34]. This study represents the preliminary idea of the quality-driven

R. Capuano 5

1.5. Thesis Objectives and Contributions

migration approach and it is shown in Chapter 4. In addition, in the same Chap-
ter, a revised version of the approach is presented. The proposed quality-driven
refactoring approach is divided into different phases and tasks. Two of those
tasks have been investigated during the three-years of research and generated the
contribution presented in the RO3 and RO4 respectively.

• RO3: creation of a graph-based representation of a legacy system for
antipatterns detection. The proposed representation is designed to provide
a visual and intuitive way of identifying antipatterns in a legacy system, which
can help developers to improve the system’s performance, reliability, and main-
tainability through migration. The process for developing this graph-based repre-
sentation and the mathematical formulation allowing to detect antipatterns have
been carefully crafted has been accepted in the research track of the 17th Euro-
pean Conference on Software Architecture [35]. The conceptual framework and
the details of its implementation and validation are presented in Chapter 5.

• RO4: definition of a quality-driven refactoring approach of microser-
vices derived from legacy, monolithic-based, software. This approach is
contained in the migration approach defined and takes into consideration not
only the antipatterns detected on the monolith but also the ones detected on
the microservice. The idea behind this choice is to analyse the possible relations
between the two sets of antipatterns. The approach is presented in Chapter 6
and has been published in the 20th IEEE International Conference on Software
Architecture (ICSA-C 2023) [36].

• RO5: analysis of a real-world case study to investigate the migra-
tion process adopted and monitor non-functional requirements pre and
post-migration. The aim is to acquire and understand: i) their motivations
for migration, ii) the approach and technique used, and iii) analyse whether the
non-functional requirements were met or not with migration. The case study is
presented in Chapter 7 and has been published in the 20th IEEE International
Conference on Software Architecture (ICSA-C 2023) [36].

• RO6: application of the quality-driven refactoring approach on the
real-world case study. The objective is to refactor two already implemented
microservices suffering from performance issues. The application results are pre-
sented in Chapter 8 and has been published in the 20th IEEE International Con-
ference on Software Architecture Companion (ICSA-C 2023) [36]. In addition a
modification of the quality-driven refactoring approach is presented and applied in
Chapter 9 for a partial implementation of a new microservices of the same com-
pany. The overall industrial experience is under submission as a journal paper.

R. Capuano 6

1.6. Thesis Outline

1.6 Thesis Outline

Table 1.1 provides an overview of the Thesis structure providing a roadmap for the
reader. The Thesis is organized into four main parts.

• Part I provides the basic knowledge on microservices and motivations for mi-
gration while considering non-functional requirements. In particular, Chapter 2
provides an overview of how companies perceive the migration to microservice.
In addittion, the state-of-the-art in quality-driven migration to microservices is
analysed in Chapter 3.

• Part II presents the research contributions. Chapter 4 aims to describe all the
steps performed to produce the proposed quality-driven migration approach. One
of the tasks of the quality-driven migration approach, namely the graph-based
representation of the system for antipatterns detection is presented in Chapter
5. Lastly, Chapter 6 provides an extension of the quality-driven migration ap-
proach for the refactoring of microservices derived from legacy, monolithic-based,
software.

• Part III is dedicated to the industrial experience. More precisely, Chapter 7
presents the BIM Italia case study, analysing the software under the analysis of
the migration goal, approach, and issues. Thus, Chapter 8 displays the application
of our quality-driven refactoring approach on two already deployed microservices
of BIM Italia. Based on the knowledge acquired, the quality-driven migration ap-
proach is modified and applied for the first implementation of another company’s
microservice in Chapter 9.

• Part IV summarizes the Thesis findings, the lessons learned, and future work on
migration to microservices.

Thesis

Part
Chapter

Research

Objective
Description

Part I
Chapter 2 - Overview of migration in industry.

Chapter 3 RO1
Systematic Literature Rewiew on quality-
driven migration. [33]

Part II
Chapter 4 RO2

Proposed quality-driven migration ap-
proach. [34][36]

Chapter 5 RO3
Graph-based representation for antipat-
terns detection. [35]

Chapter 6 RO4
Proposed quality-driven refactoring ap-
proach. [36]

Continued on next page

R. Capuano 7

1.6. Thesis Outline

Table 1.1 continued from previous page

Thesis

Part
Chapter

Research

Objective
Description

Part III
Chapter 7 RO5 BIM Italia case-study presentation. [36]

Chapter 8 RO6
Application of the quality-driven refactor-
ing approach in BIM Italia. [36]

Chapter 9 RO6
Implementation of the DRG functionality
in BIM Italia. (Under submission)

Part IV
Chapter

10
- Findigs, lesson learned and future works.

Table 1.1: Thesis Roadmap

R. Capuano 8

Part I

Motivations and Background

9

Chapter 2

Migration to Microservices: an
Industrial Perspective

This Chapter, provides an overview of how companies perceive the migration to mi-
croservices, which is of critical importance given the industrial nature of this Thesis.
To this end, we analyze five survey papers found in the scientific literature. By review-
ing these papers, we aim to provide a comprehensive overview of the current state of
industry perceptions towards microservices migration. Understanding these perceptions
is essential for developing effective migration strategies and promoting the adoption of
microservices in industry.

2.1 State of the Art Analysis: the Protocol

The migration to microservices architecture has gained significant attention in recent
years due to its potential benefits for organizations. The objective of this Chapter is to
analyze the current state of the art in microservices migration in companies, with a fo-
cus on its impact on the organization, technologies, and other relevant aspects. In order
to provide a comprehensive understanding and emphasize the importance of careful mi-
gration planning, the chosen approach involves analyzing existing surveys with varying
objectives. The inclusion of various surveys allows us to explore different dimensions
of microservices migration and draw insights from a range of perspectives. While each
survey may have had its own specific research questions, by synthesizing their findings,
we can establish a broader context and capture a more comprehensive overview of the
topic. By analyzing these surveys, we can identify common challenges, best practices,
and lessons learned from real-world experiences. This comprehensive examination en-
ables us to provide valuable insights into the complexities and implications associated
with microservices adoption, ultimately emphasizing the need for a well-executed and
carefully planned migration process.

10

2.2. Search Strategy

The rationale behind the search strategy employed for the analysis of the state of
the art presented in this Chapter is to identify survey papers of high quality that are
specifically relevant to the industry’s migration to microservices. The decision to restrict
the research to survey papers is motivated by several factors:

• Comprehensive overview: Survey papers provide a holistic view of the field, in-
corporating insights from various sources and existing literature reviews.

• Consolidated findings: By analyzing survey papers, common trends, challenges,
and best practices in microservices migration can be identified through the syn-
thesis of multiple studies.

• Industry relevance: Focusing on survey papers related to industry practices en-
sures that the research aligns with real-world experiences and is directly applicable
to practitioners and decision-makers.

• Time efficiency: Analyzing survey papers is a time-efficient approach, as they
summarize and analyze existing research, enabling the gathering of substantial
information within a reasonable timeframe.

Although the approach used in this Chapter is not a systematic review, certain
strategies were employed to refine the research and identify papers closely aligned with
the research objectives. For instance, the search strategy adopted drew inspiration from
systematic reviews, incorporating elements such as the formulation of search strings,
library selection, and the application of inclusion/exclusion criteria. To facilitate the
organization and synthesis of the results, research questions were formulated. These
research questions were derived from the research questions of the individual studies
included, serving as a framework to categorize and analyze the findings. By aligning
the overarching research questions with the specific research questions of the included
studies, the results can be presented in a cohesive and meaningful manner, enabling a
comprehensive understanding of the implications and insights derived from the analyzed
literature. Figure 2.1 provides the four-step roadmap followed to perform the informal
review presented in this Chapter.

2.2 Search Strategy

The first stage of the review process relates to the search strategy. This is a crucial
to identify and collect relevant literature that involves selecting appropriate keywords,
search operators, and techniques to search databases, journals, and other sources of
information. Thus, the search strategy adopted consists of three main tasks namely
the creation of the search string, the library selection and inclusion criteria definition.
Those three task will be explored in details in the next subsections.

R. Capuano 11

2.2. Search Strategy

Search string
definition Library selection Inclusion criteria

definition

Search Strategy

Title and abstract
reading

Dataset filtering

Analysis of the
papers research

questions

Generalized
research question

definition
Research questions analysis

Analysis of the
results

Inclusion criteria
application

Data extraction

Figure 2.1: Informal Review Procedure

2.2.1 Search String Definition

As already mentioned, the adopted search methodology does not strictly adhere to the
conventional systematic review protocol. Indeed, in this Chapter, the objective is not
to produce a systematic literature review but rather to gain an overall understanding
of the migration to microservices in the industry while analyzing a subset of surveys
on the topic. Consequently, the construction of the search string differs from a typical
systematic review process as it aims to capture important concepts and terms related
to microservices migration in industry captured by surveys studies, rather than be-
ing solely focused on identifying works that directly address specific research questions
(RQs). Relevant keywords include microservices migration, microservices adoption, sur-
vey, industry, challenges, benefits, and strategies. Among the highlighted keywords, we
decided to include only the most generic subset to capture as many relevant results as
possible. In fact, a more specific set of keywords could potentially exclude important
literature that uses different terminology. Therefore, we have included broad terms
such as microservices, migration, survey, and industry. While more specific terms like
challenges, benefits, and strategies may also be relevant, we opted for a more inclusive
approach to ensure a comprehensive search. Therefore, the following string has been
developed:

"migration" AND "micro*service*" AND "industry" AND "survey"

2.2.2 Library Selection

In the context of our search strategy, choosing the appropriate digital libraries to retrieve
relevant papers is a crucial step. Although there are several libraries available, such
as ACM Digital Library, IEEE Xplore, Scopus, and others, we decided to use only
one digital library: Google Scholar. The reason for selecting this digital library is

R. Capuano 12

2.3. Research Quesitons

its capability to access potential grey literature, including non-peer-reviewed articles,
which are not typically available in traditional scientific databases. Furthermore, Google
Scholar indexes a wide range of sources, including academic publications, institutional
repositories, and industry reports, making it a valuable tool to search for survey papers
related to microservices migration in industry. We decided to conduct the research
using "All Metadata" as the search scope to ensure comprehensive coverage.

2.2.3 Criteria Definition

To broaden our search and capture the relevant papers while maintaining quality stan-
dards, we chose to define only inclusion criteria for our search strategy. These criteria
include: i) the paper must be written in English, ii) it must investigate the microservices
adoption, and iii) it must have been published between 2015 and 2023. We opted to
set only one exclusion criteria to exclude any papers not reporting real-world company
experiences.

2.3 Research Quesitons

Upon retrieving 6150 results using the search strategy, an analysis of the titles and ab-
stracts of the papers was conducted. In line with the applied inclusion criteria, a careful
selection process was undertaken, resulting in the identification of five relevant works.
The decision to focus on these five papers was justified by their direct relevance to our
research topic and their adherence to the predetermined inclusion criteria. Considering
the large number of retrieved results, it was necessary to implement a selection strategy
to manage the volume of literature. In order to ensure a reasonable and manageable
workload, it was decided to analyze only the first five pages of search results. This
approach strikes a balance between conducting a thorough review and the practical
limitations of time and resources. By examining the titles and abstracts of the papers
within this subset, we were able to identify the most pertinent works that aligned closely
with our research topic and met the established criteria for inclusion.

From the selected five papers, we identified research question (RQ)s that were either
explicitly stated in the papers or could be inferred from the content. These RQs were
then used to create three broad RQs that would guide our study. The decision to create
broad RQs was made to ensure that we were able to capture a comprehensive view
of the state of practice in microservices adoption in industry. By identifying common
themes across the five selected papers and using them to create broad RQs, we aim to
gain a deeper understanding of the challenges, benefits, and strategies associated with
microservices adoption in industry. Additionally, by using broad RQs, we can identify
gaps in the literature and areas for further research, which will help us to contribute to
the existing body of knowledge on microservices adoption in industry.

R. Capuano 13

2.3. Research Quesitons

2.3.1 Selected Studies

For each paper included in our study, we highlighted the objectives, RQs, and popula-
tion. By examining these aspects, we can gain a better understanding of the focus and
scope of each paper and analyse how it fits into our overall research on microservices
migration in industry. The objectives and RQs help us identify the main goals and areas
of inquiry that the authors were investigating, while the population helps us understand
the context and scope of the study. Ultimately, this information will help us synthesize
the findings from each paper and draw meaningful conclusions about the adoption of
microservices in industry.

Paper 1: Processes, Motivations, and Issues for Migrating to Microservices

Architectures: An Empirical Investigation. [19] The authors in this work inter-
viewed 11 practitioners who adopted a MSA style at least two years before the survey
to understand their motivations for adopting microservices. The interviewees differed
in roles (software architects, project managers, senior developers, agile coaches, and
CEOs), organization domains (banks, software service companies, migration consultan-
cies, public administrations, and telecommunications), and types of migration (com-
pleted and ongoing). While the paper does not explicitly mention specific RQs for the
survey, we have deduced the following RQs based on the study’s focus on motivations
for and experiences with MSA. The following are three possible RQs related to the
study:

• P1.RQ1: Why did companies choose to migrate to MSA?

• P1.RQ2: What are the common issues encountered during migration to MSA?

• P1.RQ3: What are the benefits that companies experienced migrating to MSA?

• P1.RQ4: What are the common steps in the migration process to MSA?

Paper 2: Migrating towards Microservices Architectures: an Industrial Sur-

vey. [37] The study investigates the migration practices towards MSA by studying
the activities and challenges faced by industrial practitioners. The research method-
ology involved conducting 5 exploratory interviews and an online survey questionnaire
among 18 practitioners across 16 different IT companies. The main contributions of the
paper are a survey of 18 practitioners, an analysis of the collected data, a discussion
of the obtained results, and the study replication package. The analysis of the col-
lected data discusses practitioners’ perspectives on migration activities and challenges
in the three phases of architecture recovery, transformation, and implementation, and
potentially relevant research directions. The paper aims to answer the following RQs:

• P2.RQ1: What are the activities carried out by practitioners when migrating
towards a MSA?

R. Capuano 14

2.3. Research Quesitons

• P2.RQ2: What are the challenges faced by practitioners when migrating towards
a MSA?

Paper3: Microservices Migration in Industry: Intentions, Strategies, and

Challenges. [38] This work discusses the limited impact of academic research on
Microservices adoption and the strong industry interest in migrating legacy systems.
To address this gap, the authors conducted 16 in-depth interviews with software profes-
sionals based in Germany from 10 different companies. The goal was to reveal intentions
and strategies for such migrations as well as challenges that companies were faced with.
The interviews covered other topics, such as used technologies and practices to assure
the evolvability of Microservices, which are presented in two additional publications.
The study provides empirical and industry-focused research and aims to provide ratio-
nales and successfully applied practices for Microservices migrations. In this context,
researcher generated the following RQs:

• P3.RQ1: What are intentions for migrating existing systems to microservices?

• P3.RQ2: Which Microservices migration strategies and decomposition approaches
do companies apply?

• P3.RQ3: What are the major technical and organizational challenges during a
microservices migration?

Paper 4: Are we speaking the industry language? The practice and litera-

ture of modernizing legacy systems with microservices. [39] The paper aims
to investigate the use of microservices in the industry for modernizing legacy systems
and whether there is alignment between industry and academic practices. The authors
designed a survey based on an 8-step modernization process roadmap and received
responses from 56 software companies, of which 35 (63.6%) adopt the MSA in their
legacy systems. The survey results provide a comprehensive characterization of indus-
trial practices and reveal that they are aligned with existing research, reinforcing the
use of the modernization process roadmap. The paper also identifies research oppor-
tunities in database aspects as an input to the modernization process and a factor to
reduce microservices coupling at runtime. This survey was conceived to answer the
main RQ : Are the practice and literature of the modernization of legacy systems with
microservices aligned? To this purpose, authors defined the following three sub-RQs:

• P4.RQ1. Why do companies migrate monolithic legacy systems to microservices?

• P4.RQ2. How do companies perform the migration of monolithic legacy systems
to microservices?

• P4.RQ3. What are the aspects of data persistence considered in the modernization
of legacy systems with microservices?

R. Capuano 15

2.3. Research Quesitons

Paper 5: Revisiting the practices and pains of MSA in reality: An industrial

inquiry. [40] This paper discusses the challenges of designing software architecture
and how microservices can improve current practices. The author conducted a study
through interviews with practitioners from 20 software companies to investigate the gaps
between ideal visions and real industrial practices in microservices and the expenses they
bring. The study’s main contributions are identifying the gaps between the best-known
characteristics and real practices in microservices, proposing a unified overview map
of general practices and pains, and condensing five decisions that practitioners should
make. The author also discusses potential future research directions in this area. To
characterize the practices and challenges related to the migration and adoption towards
microservices, the authors defined the following RQs:

• P5.RQ1: What are the gaps between visions and the reality of microservices?

• P5.RQ2: What are the pains of implementing microservices in practice?

2.3.2 RQs Generalizzation

To make the results of the five highlighted papers comparable, we clustered their RQs
into three more general RQs. This approach allowed us to identify common themes and
trends across the papers, and to explore the RQs from a broader perspective. By creat-
ing these more general RQs, we were able to conduct a more comprehensive analysis of
the literature and gain a deeper understanding of the key issues and challenges related
to the topic. Overall, this clustering process helped us to synthesize the findings of the
five papers and draw more robust conclusions about the state of research in the field.
The three broader categories selected are: reasons and motivations for migration, com-
mon challenges faced during migration, and strategies and approaches adopted during
migration. For each paper, Table 2.1 maps the RQs reported (or deducted) in the paper
with the generalized form. In the following we present the generated RQs:

• RQ1: What are the reasons and motivations for companies to migrate from mono-
lithic legacy systems to microservices? This question aims to understand the main
drivers that lead companies to adopt microservices.

• RQ2: What are the common challenges faced during the migration process to a
MSA? The goal of this question is to explore the challenges that companies face
when migrating to microservices.

• RQ3: What are the strategies and approaches adopted by companies during mi-
croservices migration? The aim of this question seeks to identify the best practices
for designing and implementing microservices.

R. Capuano 16

2.4. Reported Results

RQ Paper 1 Paper 2 Paper 3 Paper 4 Paper 5

RQ1 P1.RQ1 - P3.RQ1 P4.RQ1 P5.RQ1
RQ2 P1.RQ2 P2.RQ2 P3.RQ2 - P5.RQ2
RQ3 P1.RQ4 P2.RQ1 P3.RQ2 P4.RQ2 -

Table 2.1: Mapping between RQs

The provided RQs will be discussed within their result in the followig section.

2.4 Reported Results

In this section, we will delve into the results of each of the five papers to address the
three general RQs formulated. By analyzing the results of each paper in the context of
these three questions, we hope to gain a comprehensive understanding of the current
state of microservices adoption in industry.

2.4.1 RQ1: What are the reasons and motivations for companies to
migrate from monolithic legacy systems to microservices?

The aim of RQ1 is to investigate and understand the motivations and reasons that drive
companies to migrate from monolithic legacy systems to MSA. This RQ seeks to identify
the factors that encourage companies to adopt microservices and the specific benefits
that they expect to gain from the migration. By answering this question, researchers
can provide valuable insights into the practical applications of microservices and the
real-world problems that they address. This information can be useful for companies
that are considering adopting microservices and for researchers who are interested in
studying the adoption and implementation of MSA.

Results from Paper 1 [19] The paper discusses the motivations driving the adop-
tion of MSAs. The primary reasons for adoption are software maintenance, scalability,
delegation of team responsibilities, and DevOps support. Other motivations reported
were the ease of technology experimentation, fault tolerance, and separation of software
responsibilities. Microservices are seen as more maintainable than monolithic systems
because they enable developers to make changes and test their service independently,
increasing code understandability. In terms of scalability, scaling microservices is easier
than scaling monoliths as each microservice can be deployed on different servers with
different levels of performance, and a bottleneck in one microservice can be containerized
and executed across multiple hosts in parallel. The delegation of clear and independent
responsibilities among teams allows splitting large project teams into several small and
more efficient teams. Moreover, microservices are cool and popular, and companies are
adopting them to avoid being out of the market because of a wrong technology choice.

R. Capuano 17

2.4. Reported Results

Finally, microservices are responsible for one single task within well-defined boundaries
and are self-contained, greatly simplifying development.

Results from Paper 3 [41] The main reasons for replacing the old system were
related to the lack of maintainability, with symptoms such as loss of overview, high cost
of changes, and potential side effects. Additionally, there were issues with operability,
such as missing traceability, long startup times, downtime during updates, and diffi-
culties in applying updates. Participants also noted problems with performance and
the inability to address current functional requirements due to deprecated technolo-
gies or existing design limitations. The need to bring new features to market quickly
was another driver for change, especially for one system that had a five-month lead
time for major changes. The decision to adopt microservices was driven by scalability
requirements, as well as the benefits for development teams and the possibility of a
multi-vendor strategy. The goal of achieving better manageability and maintainability
through smaller, more manageable units was highlighted in several cases.

Results from Paper 4 [39] The transition towards a MSA is driven by various fac-
tors that originate from operational, technical, and organizational aspects. It has been
observed that the top three driving forces are consistent with the ones highlighted in
the modernization process roadmap literature. These include the facilitation of mainte-
nance and evolution, improved scalability, and the ability to deploy independently and
automatically. Notably, more than 70% of the organizations cited these three driving
forces as the most common ones.

Results from Paper 5 [40] The text discusses the motivations of organizations for
adopting microservices. According to a survey, continuous delivery and DevOps are the
most common reasons cited by 60% of interviewees. Microservices allow for indepen-
dent development and deployment, easy scaling and upgrading, and can facilitate the
application of DevOps, reducing lead time. Other motivations include reduction of inde-
pendent organization, technology heterogeneity, and independent testing. Motivations
vary by industry, with extensibility and independent organization being important in
software/IT, scalability and independent organization in IT service providers, and con-
tinuous delivery and DevOps in telecommunications, e-commerce, banking, and finance
industries.

Summary Various papers indicate that the primary reasons for adopting microser-
vices include software maintenance, scalability, delegation of team responsibilities, De-
vOps support, ease of technology experimentation, fault tolerance, separation of soft-
ware responsibilities, and quick feature deployment. Microservices offer greater main-
tainability and scalability than monolithic systems by allowing developers to make

R. Capuano 18

2.4. Reported Results

changes and test their services independently, leading to increased code understand-
ability. The decision to adopt microservices is often driven by scalability requirements
and benefits for development teams, including the possibility of a multi-vendor strat-
egy. Motivations for adopting microservices vary by industry, with extensibility and
independent organization being important in software/IT, scalability and independent
organization in IT service providers, and continuous delivery and DevOps in telecommu-
nications, e-commerce, banking, and finance industries. Table 2.2 presents the mapping
between each motivation for migration and the research papers in which they are dis-
cussed.

Motivation Papers

Maintenance and Evolution Paper 1, Paper 4
Scalability Paper 1, Paper 3, Paper 4, Paper 5
Independent Development and Deployment Paper 3, Paper 4, Paper 5
DevOps and Continuous Delivery Paper 1, Paper 5
Application of Independent Testing Paper 5
Reduction of Independent Organization Paper 5
Technology Heterogeneity Paper 5

Table 2.2: Mapping between Motivation for Migration and Research Papers

2.4.2 RQ2: What are the common challenges faced during the migra-
tion process to a MSA?

The aim of RQ RQ2 is to identify the common challenges that organizations face while
migrating from a monolithic legacy system to a MSA. The focus is on understanding the
difficulties encountered during the migration process, such as technical challenges and
issues with the adoption of new tools and technologies, as well as non-technical chal-
lenges, such as the need for cultural change and organizational restructuring. The goal
is to gain insights into the factors that impede the successful adoption of microservices,
which can help organizations to prepare better and mitigate risks during the migration
process.

Results from Paper 1 [19] The paper discusses the various challenges and issues
that can arise when adopting a microservices-based architectural style. While there are
certainly benefits to this approach, such as improved maintenance, increased scalabil-
ity, and better performance, there are also several challenges that practitioners may
encounter. One major issue that practitioners face is decoupling from the monolithic
system. Database migration and data splitting are other issues that need to be addressed
carefully. Some participants recommended splitting the data in existing databases so
that each microservice accesses its private database. Communication among services

R. Capuano 19

2.4. Reported Results

is also a crucial issue, and every microservice needs to communicate, which can add
complexity to implementation, along with possible network-related issues. Estimating
the development time for a microservices-based system is considered less accurate than
estimating a monolithic system. The interviewees reported an effort overhead of nearly
20% more compared to the effort required for developing a monolithic solution. How-
ever, the benefits of increased maintainability and scalability highly compensate for the
extra effort. Adopting microservices also requires adopting a DevOps infrastructure,
which requires a lot of effort and needs to be taken into account in addition to the
development effort. Existing libraries require more effort for conversion and cannot be
simply reused. Microservices-based architectural styles also require an orchestration
layer, which adds complexity to the system and needs to be developed reliably. Peo-
ple’s minds are another issue, as changes in existing architectures are generally an issue
for several developers. They may consider the legacy system as their creation and be
reluctant to accept such an important change to the software they wrote. Finally, ROI
is perceived as an important issue because of the increased effort required for adopting
microservices. However, in some cases, practitioners reported that migration was the
only choice, independent of the costs, because they were forced to migrate due to the
lack of maintainability and the impossibility to scale their legacy systems.

Results from Paper 2 [37] The paper discusses challenges faced during the process
of reverse engineering, architecture transformation, and forward engineering. In reverse
engineering, participants found releasing new features and maintaining and testing the
pre-existing system to be challenging. Technical challenges related to side effects, low de-
veloper productivity, and lack of proper documentation were also identified. Convincing
business/management about the need for migration was another challenge. Architecture
transformation posed challenges related to high coupling among parts of the pre-existing
system and identifying service boundaries. Participants also found configuration and
setup of automation support for testing to be challenging. Forward engineering pre-
sented challenges in setting up the initial infrastructure for microservices, adapting to
a different developer mindset, and knowledge sharing. Distributed aspects related to
monitoring, logging, and debugging were also reported as challenging. Testing the new
system and getting the first team to work together were identified as additional chal-
lenges. Some participants reported specific challenges, such as the impact of deploying
new microservices on the system, working with the business for testing, and needing
infrastructure for container management and service discovery. Overall, the challenges
related to technical aspects, communication, business-IT alignment, and management.

Results from Paper 3 [38] The main challenges reported by participants during
the transition to a MSA were finding the appropriate decomposition approach and a
lack of expertise in the field, which were reported equally often. The issue was to

R. Capuano 20

2.4. Reported Results

become familiar with the various technologies and tools in a timely manner. The dif-
ficulty in recruiting skilled personnel added to the challenge. The establishment of
DevOps practices, such as build and test automation, was necessary to fully benefit
from Microservices. However, many organizations faced challenges or postponed such
activities. While most participants reported a decent degree of automation, fully au-
tomated continuous deployment existed in only three cases. Integrating the services
and interoperability with third-party software or the existing monolith was a challenge
for three systems. The size, complexity, or outdated technologies of the legacy system
were obstacles for some organizations. Assuring the system’s security was also reported
as a challenge for several systems. Additionally, building a resilient architecture with
fault-tolerant services was seen as challenging for some participants. Some organiza-
tions needed to transition from traditional process models towards agile methodologies,
which involved a mindset change from Waterfall to Agile. Collaboration between au-
tonomous teams was seen as challenging in several cases, causing constant frictions in
collaboration during the initial months of restructuring. Companies tried to mitigate
this by regular coaching.

Results from Paper 5 [40] The main pain points mentioned by interviewees are
outlined in this paper. The most common challenge among those in the software/IT and
Telecommunication domains is fault localization complexity. The IT service provider
domain identifies fault localization complexity, monitoring complexity, and performance
reduction as the main issues. In the e-commerce domain, monitoring complexity is the
main concern. Finally, with the exception of monitoring complexity and performance
reduction, all other pain points in the figure are associated with the Bank and Finance
domain.

Summary The challenges can categorized into technical and non-technical issues.
Technical challenges included decoupling from the monolithic system, communication
among services, database migration, and finding the appropriate decomposition ap-
proach. Non-technical challenges included cultural change and organizational restruc-
turing. Other challenges identified in various papers included resistance to change
among developers, lack of expertise, system security, and collaboration between au-
tonomous teams. The challenges varied across different domains, with fault localiza-
tion complexity being the most common challenge among those in the software/IT
and telecommunication domains, monitoring complexity being a primary issue in the
e-commerce domain, and other challenges associated with the banking and finance do-
main. To present the mapping between challenges and related papers in a concise and
organized manner, the Table 2.4 was created with unique challenges as rows and related
papers as columns. The table lists the challenges and corresponding papers in a clear
and readable format, with the number of papers related to each challenge ranging from

R. Capuano 21

2.4. Reported Results

one to five. By creating this mapping table, researchers and practitioners can easily
identify and address the challenges associated with migrating from monolithic legacy
systems to MSAs.

Challenges Related Papers

Technical challenges during migration pro-
cess

Paper 1, Paper 2, Paper 3, Paper 5

Non-technical challenges such as cultural
change

Paper 1, Paper 3

Decoupling from monolithic system Paper 1, Paper 2
Database migration and data splitting Paper 1
Communication among services Paper 1, Paper 2
Resistance to change among developers Paper 1
Challenges during reverse engineering
(coupling)

Paper 2

Challenges in finding appropriate decom-
position approach

Paper 3

Lack of expertise in the field Paper 3
Difficulty in becoming familiar with new
technologies

Paper 3

Assuring system security Paper 3
Building resilient architecture with fault-
tolerant services

Paper 3

Transitioning from traditional process
models to agile methodologies

Paper 3

Fault localization complexity Paper 5
Monitoring complexity Paper 2, Paper 5
Performance reduction Paper 5

Table 2.3: Mapping between Challenges in Migration and Research Papers

2.4.3 RQ3: What are the strategies and approaches adopted by com-
panies during microservices migration?

The aim of this RQ is to identify and analyze the various strategies and approaches
adopted by companies during the migration process from monolithic legacy systems
to MSA. The focus is on understanding the practical implementation of the migration
process and identifying the best practices, tools, and frameworks used by companies
to address the challenges and risks associated with the migration. By answering this
RQ , the study aims to provide insights into the real-world scenarios of microservices

R. Capuano 22

2.4. Reported Results

migration and help organizations to plan their migration process effectively.

Results from Paper 1 [19] The article discusses three different processes for mi-
grating from a monolithic system to a microservices-based one. All three processes
involve analyzing the system structure, defining the system architecture, prioritizing
feature or service development, and carrying out coding and testing. The main dif-
ference between the processes is in the prioritization of feature/service development.
The first two processes involve reimplementing the system from scratch, while the third
approach involves implementing new features as microservices and gradually eliminat-
ing the existing system. The main benefit of the first two processes is the complete
rearchitecture of the whole system, while the main benefit of the third process is the
lower migration cost. The main issue with the third process is the longer time needed
to completely abandon the legacy system once all new features have been completely
replaced by new ones.

Results from Paper 2 [37] The study describes how practitioners approach the
process of reverse engineering and architecture transformation for microservices. The
study reveals that participants rely on low-level sources of information such as source
code and test suites, as well as higher-level sources such as textual and architectural
documents, data models, and diagrams. Knowledge about the system also resides in
the people within the organization. When it comes to architecture transformation, the
major activities involved include domain decomposition, service identification, applica-
tion of domain-driven design practices, and system decomposition. Participants also
emphasized the need to experiment with microservices through proof-of-concept ser-
vices or Minimum Viable Products. The main driver of migration was identified as the
functionalities, followed by factors such as customer needs and processes, business-IT
alignment, and trade-offs between costs and benefits. During forward engineering, par-
ticipants either started by adding new functionalities as independent microservices or by
reimplementing existing functionalities in the pre-existing system as microservices. The
initial set of functionalities to migrate from the pre-existing system was identified based
on factors such as less dependencies, less use by users, and importance to customers.
Phased adoption was the most common method used for adopting the new system in
production, with the strangler pattern being a popular approach. Parallel adoption and
big bang adoption were less common.

Results from Paper 3 [38] In the study, the most common migration strategy for
the systems investigated was rewriting the existing application (nine cases) while also
extending its functionality (seven cases). The Strangler pattern [26] was employed in
seven cases to gradually replace the existing system with Microservices. However, some
practitionairs encountered challenges with splitting up complex systems. The time

R. Capuano 23

2.4. Reported Results

frames for the migrations ranged from 1.5 to over 3 years, with some projects start-
ing with a large team which was later reduced in size. For larger projects, multiple
contractors were involved or the migration passed through multiple phases until tran-
sitioning into a continuous product development mode. Decomposition, which involves
dividing a system or problem space into smaller parts, was used by seven participants
using a functional decomposition approach, as per Microservices design principles [14].
Domain-Driven Design was used explicitly in only three systems, while other approaches
were also used, often described as the architect’s task or the result of architecture group
meetings. In some cases, the existing system’s structure served as a basis for decom-
position. However, the Wrong Cuts antipattern [42] was identified in three cases, and
the Shared Persistency and Inappropriate Service Intimacy antipatterns were observed
as a result of inappropriate cuts. While some participants appreciated the flexibility
that comes with fine-grained services, many consciously aimed for more coarse-grained
services due to difficulties in finding the right service cut and a desire to avoid complex
macro architectures. Microservices-specific refactoring approaches that offer tool sup-
port were not considered by any of the participants, with some even believing that it
cannot be automated.

Results from Paper 4 [39] According to the survey result, most companies have
completed all the activities outlined in the modernization process roadmap that are:
analysis ot the driving forces, legacy systems understanding, legacy system decompo-
sition, architecture definition, modernization execution, microservices integration with
the legacy system, microservices verification and validation and, microservices mon-
itoring. About 50% of companies opted for an incremental migration approach to
decompose their legacy systems based on business capabilities. Companies mainly use
scalability (85.7%), requirements (45.7%), and reusability (45.7%) as criteria to identify
microservice candidates. Nearly 65% of companies use more than one programming lan-
guage for their projects. Unit and integration testing are widely used by at least 77% of
companies. Only a small percentage (22.9%) of companies address code duplication, and
there is no standard policy for customizing source code. The communication interface
used to integrate microservices is mostly REST API. Almost all companies (97.1%) use
cloud infrastructure services, primarily Amazon Web Services. Spring Boot, Jenkins,
Docker, Kubernetes, and ELK are the most popular technologies used for infrastruc-
ture configuration, continuous integration, containerization, microservice monitoring,
and logging management. The survey results align with the literature on modernizing
legacy systems with microservices, as both emphasize the same driving forces, migra-
tion strategy, and criteria. The use of at least two programming languages in a project
reflects the technology flexibility provided by microservices.

R. Capuano 24

2.5. Discussion

Summary The papers reports on the strategies and approaches companies use when
migrating from monolithic legacy systems to MSA. The papers discuss different pro-
cesses for migrating, including re-implementing the system from scratch or implementing
new features gradually. They also highlight the importance of domain decomposition,
service identification, and proof-of-concept services. The papers mention several an-
tipatterns that can arise during the migration process. The results of a survey indicate
that most companies have completed the modernization process roadmap, and about
50% opted for an incremental migration approach based on business capabilities. Com-
panies use scalability, requirements, and reusability as criteria to identify microservice
candidates, and almost all use cloud infrastructure services and REST API commu-
nication interfaces. Spring Boot, Jenkins, Docker, Kubernetes, and ELK are popular
technologies used for infrastructure configuration, continuous integration, containeriza-
tion, microservice monitoring, and logging management.

Migration Phase Related Papers

Analyzing the system structure Paper 1, Paper 2, Paper 4
Defining the system architecture Paper 1, Paper 4
Prioritizing feature or service development Paper 1
Domain decomposition Paper 2, Paper 3
Application of domain-driven design practices Paper 2, Paper 3
System decomposition (or service identification) Paper 2, Paper 3, Paper 4
Incremental migration approach Paper 3, Paper 4
Microservices monitoring Paper 4

Table 2.4: Mapping between Challenges in Migration and Research Papers

2.5 Discussion

Migrating from monolithic legacy systems to MSA is becoming a popular choice for
many companies due to various reasons. One of the main drivers behind this shift is the
need for improved quality of the system. Companies strive to achieve better maintain-
ability, scalability, and performance, which are essential for meeting the evolving needs
of their customers. Even if these quality objectives are not the primary reasons for the
migration, they still represent the ultimate goals that companies aim to achieve. As a
result, it is crucial to consider the qualities of the system that one wants to obtain by
migrating to a MSA. This consideration ensures that the migration process is aligned
with the overall objectives of the organization and meets the needs of the end-users.
By focusing on quality attributes such as maintainability, scalability, and performance,
companies can ensure that their systems remain relevant and competitive in today’s
fast-paced business environment. With a well-planned migration strategy that em-

R. Capuano 25

2.6. Conclusion

phasizes these objectives, companies can achieve significant benefits such as increased
agility, reduced costs, and improved customer satisfaction. Therefore, it is essential to
carefully evaluate the system’s qualities and ensure that they are adequately addressed
during the migration process to MSA.

Although microservices offer many benefits such as increased agility, scalability, and
better alignment with business requirements, the migration process is not without its
challenges. Companies need to carefully plan and execute the migration, considering
factors such as system analysis, defining the system architecture, domain decomposition,
and application of domain-driven design practices. Additionally, the migration process
requires a high degree of coordination and communication among development teams,
infrastructure teams, and stakeholders. Antipatterns can arise during the migration
process, and companies need to be aware of these to avoid potential problems. Thus,
it is crucial to avoid bad practices that could have negative effects on the resulting
system. Therefore, a well-planned migration process can prevent the emergence of
antipatterns. Addressing these challenges can be complex and time-consuming, and
requires careful planning and execution. However, by carefully designing the migration
process and following best practices, it is possible to mitigate these challenges and
achieve the benefits of a MSA.

Companies follow different processes when migrating to microservices, depending
on factors such as the size and complexity of the existing system, available resources,
and business requirements. Two primary patterns for migration have been identified:
complete rewriting and strangler pattern. In complete rewriting, the entire system
is re-implemented from scratch in a MSA. This approach is more suitable for small
or medium-sized systems that are not very complex. On the other hand, the stran-
gler pattern involves gradually replacing parts of the legacy system with microservices.
This approach is more suitable for larger, more complex systems that are critical to
business operations. Despite the different processes, there are three common phases
in the migration process: legacy system comprehension, microservices identification,
and microservices assessment and monitoring. During the legacy system comprehen-
sion phase, companies analyze the existing system and its components to understand
its structure and dependencies. In the microservices identification phase, companies
identify potential microservices by applying domain-driven design practices, such as
domain decomposition and bounded context identification. Finally, in the microser-
vices assessment and monitoring phase, companies assess the quality of microservices,
evaluate their performance, and monitor their behavior in the production environment.

2.6 Conclusion

This Chapter provided an overview of the challenges and benefits involved in adopting
microservices, which is of critical importance given the industrial nature of this Thesis.

R. Capuano 26

2.6. Conclusion

Through the analysis of five survey papers, a comprehensive view of the current state
of industry perceptions towards microservices migration is provided. The investigation
process employed to explore the current state of practice in microservices migration
involved a search strategy to identify and collect relevant literature. After analyzing
the five selected papers, three broad RQs were formulated to guide the study, which
were grouped into categories including reasons and motivations for migration, common
challenges faced during migration, benefits of migration, and strategies and approaches
adopted during migration. Migrating from monolithic legacy systems to MSA is be-
coming a popular choice for many companies due to various reasons, with improved
quality of the system being the main driver behind this shift. The careful evaluation
of the system’s qualities is essential to ensure that they are adequately addressed dur-
ing the migration process to MSA. Although microservices offer many benefits such
as increased agility, scalability, and better alignment with business requirements, the
migration process is not without its challenges, including cultural, organizational, and
technological challenges. The results of this study provide valuable insights into the
challenges and benefits of microservices adoption, the strategies and best practices em-
ployed by companies, and the perceptions and experiences of industry practitioners.
These insights can be used to develop effective migration strategies and promote the
adoption of microservices in industry.

R. Capuano 27

Chapter 3

State-of-the-art in Quality-Driven
Migration to Microservices

In [20], Newman describes different patterns allowing to migrate from monolithic to
MSA. Since each monolith is different, choosing the right approach for migrating to
microservices is a challenging task. Thus, formalizing a single approach to migration
is an impossible chore to achieve. The adopted technique must consider different pa-
rameters as the context in which the system lives and the objectives to be achieved
with migration. In this context, it is essential not only to focus on the system’s func-
tionalities, denying its dependencies and responsibilities but, also to consider all those
software qualities on which migration can impact. This Chapter aims to understand
how researchers consider software qualities during the migration to microservices. Thus,
we investigate possible quality-driven migration approaches by conducting a Systematic
Literature Review (SLR) on the topic. An SLR is a research method that involves a
comprehensive and structured approach to identifying, evaluating, and synthesizing all
relevant literature on a particular RQ or topic. It is used to provide an overview of
the current state of knowledge on a topic and inform policy or practice. The process
involves several key steps, including defining the RQ , searching for relevant studies,
screening and selecting studies, assessing study quality, and synthesizing the findings.
The SLR reported in this Chapter follows the rigorous research method presented by
Kitchenham et al. [43]. The research method applied to systematically review the sci-
entific literature follows the three-step process proposed by Kitchenham et al. in [43]:
Planning, Conducting and Reporting. The main activities carried out to perform this
study are reported in Table 3.1.

28

3.1. Related Work

SLR Phase Activities

Planning RQs definition
Search Strategy Definition
Data Extraction Plan

Conducting Study selection
Data extraction

Reporting Results discussions

Table 3.1: SLR: Steps and Activities.

3.1 Related Work

The subject of migration to microservices has garnered significant research interest
because MSA offers various benefits, such as flexibility, scalability, and better maintain-
ability of software systems. This architecture breaks down an application into smaller,
more manageable services, which can be independently developed, deployed, and main-
tained. However, migrating to MSA can be a challenging task due to the need to
understand the current monolithic system, identify services, and package them effec-
tively. Therefore, several surveys, systematic reviews, and mapping studies have been
conducted to investigate the best practices, challenges, and solutions for migrating to
MSA, making this an active area of research.

In this section, we compare the systematic study presented in this Chapter with
some of the significant works found in the literature. The authors of [44] aim to address
the various challenges associated with MSA, including the migration problem. After
explaining the reasons for adopting this architecture, the authors focus on the quality
aspects that impact the migration process, which they refer to as factors. These factors
include performance, interdependency, costs, scalability, reusability, and continuous de-
velopment. Additionally, the authors attempted to compile all the techniques used to
migrate a system to microservices, but were unsuccessful in their efforts. The authors of
[45] seek to examine the significance of variability in the migration process, specifically
regarding its mechanisms to support and guide the migration of configurable systems to
a MSA. They also aim to explore how variability manifests after migrating to a MSA.
The survey conducted by the authors found that 50% of the participants addressed
variability with at least one system module from which microservices were extracted.
Furthermore, 69% of the participants who migrated systems considered variability a
useful or very useful criterion during the migration process. The authors highlight that
microservices are typically extracted through an incremental process. The authors in
[41] suggest that conventional academic techniques often utilize coupling and cohesion
as the primary criteria for microservice extraction. However, as limited knowledge exists
on criteria useful to practitioners, they conducted an exploratory online survey to deter-

R. Capuano 29

3.1. Related Work

mine the relative usefulness of seven possible decision-making criteria for microservice
extraction. These criteria include coupling, cohesion, communication overhead, reuse
potential, requirement impact, and visual models. The survey results show that partic-
ipants consider criteria related to modularity and requirement impact as relevant, while
the other three criteria are considered moderate. Furthermore, the usefulness of the
criteria varies depending on the context. The authors of [46] examine the challenges
and techniques involved in transitioning from a monolithic to a MSA. They analyze
five different migration methods, highlighting their advantages and disadvantages. The
main conclusion drawn from this study is that there is no one-size-fits-all approach to
migrating from a monolithic to a MSA due to the uniqueness of each application. Var-
ious factors such as the application’s objectives, complexity, technologies, team size,
and skill set must be considered when planning and executing a migration strategy. A
rapid review of the migration from monolithic to MSA was presented in [47]. The study
analyzed techniques proposed in the literature, the systems to which those techniques
were applied, and the type of validation performed. The authors identified three main
approaches: model-driven, static analysis, and dynamic analysis. Additionally, they
highlighted the challenges associated with migrating from monolithic to MSA and re-
ported evidence of successful migrations from web-based applications to microservices.
The validation of the approach was conducted through case studies, which generally in-
volved comparing the performance of the existing monolithic version of the system with
the microservices-based version. The study also revealed challenges related to database
migration and migration planning, including resource management, developer skills,
and implementing the new organization of the company. In [48], a systematic mapping
study was conducted to identify the issues and difficulties associated with the migration
from monolithic to MSA. The authors identified several challenges, including the re-
quirement for appropriate tools to facilitate migration, the need for team restructuring,
the necessity for incremental migration processes, and the challenge of identifying and
designing microservices. Additionally, they recognized the importance of ensuring data
consistency when transitioning from a single database to multiple databases. Our SLR
differs from previous studies in several ways:

• Instead of exclusively emphasizing migration techniques, we synchronize each tech-
nique with its respective phase within the migration process.

• Our study explores quality factors relevant to all stages of the migration process.

• In contrast to other studies, our primary aim is to determine whether enhancing
software quality is a common goal across migration-related literature.

R. Capuano 30

3.2. Planning the Review

3.2 Planning the Review

The objective of the Planning stage in the SLR presented in this Thesis is to establish
the link between migration strategies to microservices and software qualities. To achieve
this, a set of RQs were formulated, which were used to generate the research string.
Furthermore, the digital libraries to be considered were defined, along with the inclusion
and exclusion criteria. The activities carried out during the planning phase are detailed
in the following section. Figure 3.1 shows the activities carried out to perform the
planning of this SLR.

Research Question
Definition

Search String
Definition Library Selection

Research Questions

Search Strategy

Data Synthesis
Planning

Data Extraction
Procedure Definition

Inclusion/Exclusion
Criteria Definition

Data Extraction Plan

Figure 3.1: Process for Planning the Review

3.2.1 RQs Definition

The aim of establishing RQs in a SLR is to provide a clear and structured framework
for the review process. It helps the reviewers to define the scope of the review and
determine which studies to include or exclude based on their relevance to the RQs. It
also helps to identify gaps in the literature and generate insights into the state of the art
in a particular research area. The objective of this Thesis is to investigate the following
set of RQs:

RQ1 : What is the trend in system migration to microservices from 2015 till now?
The aim of this RQ is to explore the architectures, languages, and domains asso-

ciated with the migration scenario. Consequently, the subsequent sub-questions were
formulated:

RQ1.1 What are the software architectures of the systems that have been migrated
to microservices?

RQ1.2 What are the programming languages of systems migrated to microser-
vices?

R. Capuano 31

3.2. Planning the Review

RQ1.3 Which are the domains of the system migrated to microservices?

It should be noted that this study takes into account research published from 2015, in
accordance with the initial publication date of the book by Newman [15] titled "Building
Microservices", and July 2020 that corresponds to the last update of the papers to be
analysed for the data extraction.

RQ2: What are the key attributes and characteristics exhibited by the existing studies
that investigate the problem of migrating to microservices while considering software
qualities?

We aim to examine how software qualities are taken into account during the migra-
tion to MSA and identify the quality attributes considered in each of the three canonical
phases. Therefore, the following research sub-questions were formulated:

RQ2.1 What are the quality attributes of the system considered in the migration
scenario?

RQ2.2 At what stage of the migration to microservices are quality aspects con-
sidered?

RQ3 : Which of the three steps for the migration to microservices did the researchers
focus on?

The objective of this RQ is to examine the techniques employed in different migra-
tion stages and link them with quality factors. The subsequent research sub-questions
have been identified:

RQ3.1 What techniques are used for the comprehension phase of the system to
be migrated?

RQ3.2 What techniques are used for the microservices identification phase of the
system to be migrated?

RQ3.3 What techniques are used for the packaging phase of the new microservice-
based system?

RQ3.4 For each quality attributes and each phase of the migration process, which
are the most used techniques?

3.2.2 Search Strategy

Establishing a good research string during the planning phase of a SLR is crucial as
it helps to identify relevant studies for inclusion in the review. A good research string
consists of a combination of keywords, Boolean operators, and search terms that are
tailored to the RQs being investigated. By using a well-designed research string, re-
searchers can ensure that they are capturing all relevant studies and avoiding irrelevant

R. Capuano 32

3.2. Planning the Review

ones, thus increasing the accuracy and completeness of their review. This can ulti-
mately lead to more robust conclusions and recommendations based on the evidence
available in the literature. Based on the identified RQs, a set of keywords was selected
for conducting the literature search. Consequently, the following research string was
generated:

("micro service" OR "microservice" OR "serverless" OR "lambda function" OR
"function as service" OR "FaaS" OR "cloud function" OR "utility computing") AND

((("system" OR "software") AND ("evolution" OR "transformation" OR
"refactoring" OR "rearchitect*" OR "re architect*" OR "reengineer*" OR "re

engineer*" OR "migration" OR "modernization" OR "decomposition" OR
"modularization")) OR (("service" OR "microservice" OR "micro service") AND

"identification"))

The keywords quality and its synonyms were not included in the research as this
results in a limited set of papers. Moreover, serverless and its synonyms were added
to the search string since container technology allows for building microservice-oriented
systems with easy scalability and availability, as noted in [49].

The search was conducted on three different digital libraries, including the ACM
Digital Library, IEEE Explore, and Scopus. It is worth noting that the ACM Digital Li-
brary provides two search modes, namely ACM Full-Text Collection and ACM Guide to
Computing Literature. However, not all the ACM Full-Text Collection is included in the
ACM Guide to Computing Literature. Therefore, we performed the search using both
modes to ensure comprehensive coverage. After the search was completed, duplicate
papers were removed, and the final set of results was included in a single spreadsheet.

3.2.3 Data Extraction Plan

The data extraction plan is an important component of the SLR process as it provides
a clear and structured approach to data extraction, which helps to ensure the quality
and reliability of the findings. It also helps to ensure that the review is transparent,
replicable, and provides valuable insights for practice and research.

The data extraction plan typically defines the following information:

• Inclusion and exclusion criteria: This outlines the criteria used to determine
whether a study should be included or excluded from the review.

• Data extraction procedures: This outlines the procedures to be followed when
extracting data from the studies, such as the tools to be used, the methods for
checking the accuracy of the extracted data, and any quality control procedures.

• Data synthesis: This outlines how the extracted data will be synthesized, ana-
lyzed, and presented in the final report.

R. Capuano 33

3.2. Planning the Review

Inclusion and Exclusion Criteria

Establishing inclusion and exclusion criteria is important in a SLR because it helps to
define the boundaries of the review and ensure that the selected studies are relevant
to the RQs. Inclusion criteria define the characteristics that a study must have in
order to be considered for inclusion in the review, while exclusion criteria specify the
characteristics that would make a study ineligible for inclusion. These criteria are
important to ensure that the studies selected are of high quality and relevant to the
RQs, and to avoid the inclusion of studies that may bias the results or not be applicable
to the research objectives. The inclusion and exclusion criteria, presented in Table 3.2,
were established to achieve the SLR goal. It should be noted that we chose to consider
papers published between 2015 and July 2021.

Inclusion Criteria Exclusion Criteria

Paper published from 2015 to 2021. PDF not Available.
The paper refers to migration to MSA or cloud
platform.

Paper not in English.

The paper refers to a case study in migration to
MSA or cloud platform.

Not Primary Study.

The paper refers to quality aspects in migration
to MSA or cloud platform.
The paper refers to microservices identification
from the existing system.

Table 3.2: SLR: Inclusions and Exclusions Criteria.

Data Extraction Procedure

In our SLR, we used Zotero1 and a series of spreadsheets to manage the data extraction
process. Zotero is a free and open-source reference management software that can be
used to import and organize the papers retrieved during the literature search. We used
Zotero to import all the papers identified during the search process, and then eliminate
duplicates based on the title, authors, and publication year.

Once we had a final list of papers, we used Excel to create a list of papers and track
the data extraction process. Through Excel we recorded the study details, inclusion
and exclusion criteria, and specific data items to be extracted from each paper. The
specific data items extracted from each paper will be listed in the next section of the
review protocol, where we will detail the variables of interest and the outcomes we will
be looking for. These variables and outcomes will be based on the RQ and review
objectives, and will be used to guide the data extraction process. We will also use

1https://www.zotero.org/

R. Capuano 34

3.3. Conducting the Review

Excel to monitor the progress of the data extraction process, ensuring that all relevant
data items are extracted and recorded accurately. The data extraction procedure is
summarized in Figure 3.2.

Search in Digital
Libraries

Import Paper in
Zotero Duplicates Removal

Data Items Excel
Generation

Performing the search

Search in Digital
Libraries

Import Paper in
Zotero

Dataset Definition

Data Extraction Documentation

Figure 3.2: Data Extraction Procedure

Data Synthesis Planning

To ensure that our data synthesis is comprehensive and rigorous, we will use appropriate
statistical methods and qualitative techniques, depending on the type of data extracted.
We will identify patterns, trends, and themes in the data, and synthesize them into
meaningful insights that answer the RQ and review objectives.

In the final report, we will present all the data necessary to answer the RQ and
review objectives. We will provide a summary of the findings, including any significant
patterns, trends, and themes that emerged from the synthesis. We will also present the
limitations of the studies included and the review process, and suggest areas for future
research. Our aim is to provide a comprehensive and reliable synthesis of the available
evidence to inform practice and policy decisions.

3.3 Conducting the Review

According to the Kitchenham [43] guidelines, the conduction phase of a SLR involves
carrying out the search, selection, and quality assessment of studies that meet the
inclusion and exclusion criteria established in the planning phase. This phase also
involves extracting relevant data from the selected studies and synthesizing the findings
to address the RQs.

R. Capuano 35

3.3. Conducting the Review

3.3.1 Search Results

In this phase, we applied the search strategy to identify the papers that will be included
for further reading. The process conducted after creating the Excel sheet is depicted in
Figure 3.3.

Read Title and
Abstract

Read Introduction
and Conclusion

Full Papers Reading

Data Extraction Data Synthesis

Paper Filtering

Reading Phase

Analysis of the results

Figure 3.3: SLR Steps

Table 3.3 summarizes the search results of the digital libraries, indicating the number
of papers retrieved from each library, and the total number of studies after removing
duplicates. To determine the final set of papers for the systematic literature review,
we followed a two-step approach: first, we screened titles and abstracts, and then we
evaluated the introductions and conclusions.

Digital Library Number of Papers

ACM Full-Text Collection 856
ACM Guide to Computing Literature 1286
IEEE Explore 137
Scopus 375

Total number of papers found 2654

Number of papers after duplicates removal 1615

Table 3.3: SLR: Digital Libraries Search Results.

The numerical outcomes of each step are presented in Table 3.4.

R. Capuano 36

3.3. Conducting the Review

Phase Number of Papers Included

Title and Abstract reading 133
Introductions and Conclusions reading 77
Full reading 58

Table 3.4: SLR: Selection of Studies.

3.3.2 Data Extraction

In our SLR, we established a range of item types, and defined several parameter cat-
egories, including general, RQ1-related, RQ2-related, RQ3-related, and an other cate-
gory. The RQ-related parameters are intended to capture all necessary data for address-
ing the RQs and their sub-questions. The data extraction parameters for the SLR are
presented in detail in Appendix A. This appendix contains two types of tables: one set
of tables represents the parameters themselves, and the other represents the possible
values associated with some of these parameters. The tables are organized into four
columns: ID, attribute name, type, and description. The ID column provides a unique
identifier for each parameter, while the attribute name column gives a clear and concise
name for the parameter. The type column indicates whether the parameter has an open
value, a single value, or multiple values. Finally, the description column provides a brief
explanation of the parameter’s meaning and purpose.

Table A.1 outlines the general parameters and descriptions. The parameters include
information about the study itself, such as its unique identifier (ID), title, authors, in-
stitution, venue, page count, keywords, and digital library source. The final parameter,
"DOI" (Digital Object Identifier), is a unique identifier assigned to a digital object,
such as a research article.

Table A.2 presents the parameters needed to answer RQ1, including publication year,
old software architecture, new architecture, old programming language, and application
domain. Publication year is a singular type, while old software architecture and old
programming language are open types. The new architecture parameter is of multiple
types, and the application domain parameter is of an open type.

Table A.3 lists the quality attributes considered in the study and the phase of mi-
gration in which they are considered. The second attribute is of type multiple, meaning
there can be multiple phases where quality attributes are considered. Table A.4 presents
the possible values associated with the second parameter, which are Comprehension,
MS Identification, MS Packaging, and MS Assessment. These values indicate the phase
of migration in which quality attributes are considered, such as understanding the ex-
isting system’s structure and behavior or assessing the quality attributes of the newly
migrated microservices system.

Table A.5 summarizes the parameters related to RQ3, which focuses on which of

R. Capuano 37

3.4. Reporting the Review

the three steps for migration to microservices the researchers focused on. The table lists
six parameters, identified by the IDs MS-1 through MS-6, along with their associated
attribute name, type, and description. The first two parameters, MS-1 and MS-2, are
related to the system comprehension step, which involves understanding the existing
system before migrating to microservices. MS-1 and MS-2 describe the techniques and
tools used to understand the system. The next two parameters, MS-3 and MS-4, are
related to the microservices identification step, which involves identifying the microser-
vices within the existing system. MS-3 and MS-4 describe the techniques and tools
used to identify microservices. The final two parameters, MS-5 and MS-6, are related
to the system packaging step, which involves packaging the system into microservices.
MS-5 and MS-6 describe the techniques and tools used for this process. Two additional
tables (Table A.6 and Table A.7) provide more details about the possible values for the
MS-1 and MS-3 parameters. Table A.6 describes the different techniques that can be
used to comprehend a system before migrating to microservices, including static anal-
ysis, dynamic analysis, model-driven analysis, data-driven analysis, and domain-driven
analysis. Table A.7 describes the different techniques that can be used to identify mi-
croservices in a system, including static analysis, dynamic analysis, model-driven anal-
ysis, data-driven analysis, domain-driven analysis, and machine learning/optimization
driven.

Table A.8, provides parameters that are not directly related to answering RQs but
can be helpful in analyzing trends in the migration to microservices. These parameters
include the main topic of the study and how the approach is validated. The Main
Topic attribute includes values such as migration to microservices, migration to cloud,
migration to microservices and quality, and migration to cloud and quality. Those
values are reported in Table A.9. The Evaluation attribute has two values: Empirical,
indicating that the approach for migration is presented, and Case Study, which can
occur in two ways: the authors either show the approach and apply it to a case study
or they share the lessons learned from the migration. The described values are reported
in Table A.10.

3.4 Reporting the Review

The scope of data synthesis in a SLR is to analyze and summarize the findings of the
primary studies included in the review. This involves extracting data from the studies,
organizing and categorizing the data, and synthesizing the data to answer the RQs.
The data synthesis phase is a critical step in a SLR, as it allows researchers to draw
conclusions and make recommendations based on the findings of the studies reviewed.
The synthesis may involve qualitative or quantitative methods, or a combination of
both, depending on the nature of the RQs and the available data.

In our SLR, we integrated the thematic analysis method [50] for qualitative data

R. Capuano 38

3.4. Reporting the Review

synthesis and utilized meta-analysis [51] for quantitative data synthesis. The following
section presents the analysis results to address the given RQs. It should be noted
that the small number of primary studies, which were considered until July 2021, is
insignificant for the purpose of the annual analysis presented in this section.

Migration Phase Case Study Empirical Study

Comprehension

[52] [53] [54] [55] [56] [57]
[58] [59] [60] [61] [62] [63]
[64] [65] [66] [67] [68] [69]
[70] [71] [72] [73] [74] [75]
[76] [77] [78] [79] [80] [81]

[82] [83] [84] [85] [86]

Comprehension and
Quality

[52] [87] [88] [89] [90] [91]
[92] [93] [94]

[95] [96]

Microservices
Identification

[52] [53] [54] [56] [97] [58]
[87] [60] [61] [49] [88] [89]
[63] [67] [68] [69] [90] [71]
[98] [72] [74] [99] [100] [75]
[77] [94] [79]

[101] [83] [84] [102] [85] [95]
[96]

Microservices
Identification and Quality

[55] [57] [59] [62] [64] [65]
[66] [70] [91] [73] [76] [92]
[86] [93] [78] [80] [81] [103]

[82]

Microservices
Assessment (Quality)

[104] [56] [59] [105] [87] [49]
[64] [69] [99] [75] [93] [79]
[106]

[102] [96]

Packaging [105] [49] [62] [90] [99] [83] [84]

Packaging and Quality [77]

Table 3.5: Relation between Case Study and Empirical Study with Quality in Phases

3.4.1 RQ1: What is the trend in system migration to microservices
from 2015 till now?

The objective of this RQ is to obtain a comprehensive understanding of the migration
to microservices by examining the relevant architectures, languages, and domains as-
sociated with the migration process and the resulting systems. Based on the target
architecture of the migration, we have identified three primary categories of papers: i)
papers focused on the migration to microservices; ii) papers on the migration to the
cloud ; and iii) papers on the migration to cloud microservices. For each of these cate-
gories, there is a corresponding sub-category denoted by the suffix “and quality”. Papers
that discuss quality aspects in any phase of the migration process are included in these

R. Capuano 39

3.4. Reporting the Review

sub-categories.

Figure 3.4: Primary Study Main Topic.

The number of papers found within the defined categories is presented in Figure 3.4.
Moreover, Figure 3.5 provides an annual view that highlights the increasing trend of
migration to microservices, specifically in relation to quality attributes over the years.

Figure 3.5: Primary Study Main Topic by Year.

We targeted primary studies based on the type of validation approach presented,
which falls into two categories: i) case study (82.76%); ii) explanatory study (17.24%). In
the first group, we included papers that presented approaches validated through at least
one case study. The second group includes papers with purely theoretical approaches.
We will focus on the case study labeled papers to answer RQ1.2 and RQ1.3. Table 3.5
summarizes for each validation category, which papers considered the defined phases of

R. Capuano 40

3.4. Reporting the Review

the migration process. Note that this table also distinguishes papers that considered
quality aspects during the migration phases from those that did not.

RQ1.1: What are the software architectures of the systems that have been
migrated to microservices? Figure 3.6 depicts the software architectures of the
systems used as case studies to validate the migration approaches. The majority of
these systems are built upon a monolithic architecture. Furthermore, as the migration
process is predominantly implemented on legacy systems, researchers do not always
provide information on the software architecture, which is often undefined for these
types of systems. As a result, numerous generic migration approaches exist that do not
rely on the initial system architecture for architectural refactoring.

Figure 3.6: Architecture of the Legacy Application.

RQ1.2: What are the programming languages of systems migrated to mi-
croservices? The programming languages used in the systems that were considered
to validate the approaches presented in the primary studies are illustrated in Figure
3.7. It is important to note that in several cases, the programming language was not
explicitly mentioned in the primary studies but inferred from the domain of the ap-
plication described in the case study. As per the previous findings, it is unsurprising
that Java is the most commonly used language in the systems targeted for migration.
Additionally, the systems that typically use Java as their programming language are
those that employ monolithic architectures, which are the most commonly considered
for migration.

RQ1.3: Which are the domains of the system migrated to microservices? In
Figure 3.8, the application domains of the case studies used for validating the presented

R. Capuano 41

3.4. Reporting the Review

Figure 3.7: Languages of the Case Studies reported in the Accepted Papers.

approaches are displayed. As expected, a large proportion of these domains are re-
lated to web-based applications. Many of the systems being considered are open-source
projects. Another commonly studied domain is Industrial Applications, highlighting
the strong connection between research and business. As mentioned earlier, the field of
migration is highly valued in industrial settings as well.

Figure 3.8: Domains of the Case Studies reported in the Accepted Papers.

3.4.2 RQ2: Are there any studies that address the problem of migra-
tion to microservices considering the quality aspects?

The data analysis conducted to answer RQ RQ1 has revealed a growing interest in
considering software quality aspects when migrating a software system to MSA. This
subsection presents an overview of the quality attributes identified and how they are

R. Capuano 42

3.4. Reporting the Review

related to the different stages of the migration process.

RQ2.1: What are the quality attributes of the system considered in the mi-
gration scenario? The number of occurrences and all the quality attributes identified
during the reading phase of the accepted papers are displayed in Figure 3.9.

Figure 3.9: Quality Attributes Considered During Migration.

The findings indicate that researchers tend to take into account quality attributes
like coupling, cohesion, scalability, and performance while making decisions about mi-
grating to microservices. It is also worth noting that a considerable number of papers
mention data consistency. These results are not particularly unexpected as properties
such as coupling, cohesion, scalability, and modularization are inherent aspects of a
MSA. However, the information on performance and data consistency is particularly
noteworthy.

RQ2.2: At what stage of the migration to microservices are quality aspects
considered? The relationship between the number of quality attributes found and
each phase of the migration process is depicted in Figure 3.10. It is worth noting
that an additional step, referred to as Microservices Assessment, has been introduced.
This step involves evaluating the quality aspects of the identified microservices before
proceeding with their packaging. Table 3.5 maps each primary study with the respective
phase in which quality aspects are considered.

The findings reveal a tendency among researchers to focus on quality aspects during
microservices identification and assessment. The limited attention given to quality at-
tributes during the system comprehension phase suggests that the primary goal of most
microservices migrations is not to enhance or meet specific quality requirements. The
small number of works considering quality attributes during the microservices packaging

R. Capuano 43

3.4. Reporting the Review

Figure 3.10: Quality Attributes in Migration Phases.

phase is attributed to its infrequent use in modernization processes. Figure 3.11 depicts
the quality attributes considered during the comprehension phase of the system and
their association with the reference period. The results indicate a growing interest in
performance and scalability, while the trend for other quality attributes remains steady.

Figure 3.11: Quality Attributes in Comprehension Phase.

On the other hand, Figure 3.12 illustrates an increasing trend in the consideration
of attributes such as availability, cohesion, coupling, modularity, and scalability during
the identification phase of microservices.

The trend observed during the microservices assessment process shows that re-
searchers shift their focus from studying properties such as availability, modularity,
and scalability to placing greater attention on cohesion, coupling, and performance.

R. Capuano 44

3.4. Reporting the Review

Figure 3.12: Quality Attributes in Microservices Identification Phase.

This trend is highlighted in Figure 3.13.

Figure 3.13: Quality Attributes in Microservices Assessment.

The quality attributes analyzed in the packaging phase of microservices deserve a
separate discussion, as only a limited number of works exist on this topic. In fact, we
found that only one work has considered data consistency in the system packaging phase
[77].

Another noteworthy point to examine is the extent to which works address quality
aspects in more than one phase of the migration. Table 3.6 presents the different com-
binations of migration phases and the number of papers that cover quality attributes.

R. Capuano 45

3.4. Reporting the Review

Migration Phases Number of Papers

Comprehension Phase and Microservices Identification
Phase

2

Comprehension Phase and Microservices Assessment 2
Comprehension Phase and Packaging Phase 0
Microservices Identification Phase and Microservices As-
sessement

2

Microservices Identification Phase and Packaging Phase 0
Microservices Assessment and Packaging Phase 0
Comprehension Phase, Microservices Identification Phase
and Microservice Assessment

1

Comprehension Phase, Microservices Identification Phase
and Packaging Phase

0

Comprehension Phase, Microservices Assessment, Packag-
ing Phase

0

Microservices Identification Phase, Microservices Assess-
ment and Packaging Phase

0

Comprehension Phase, Microservices Identification Phase,
Microservices Assessment, Packaging Phase

0

Table 3.6: Number of Studies Considering Quality Attributes in More than One Phase

Based on the analysis of the data, it appears that not all migration phases reflect the
quality aspects considered in the different approaches. Only in one study [93], quality
aspects were taken into account in three out of the four migration phases.

An additional interesting finding pertains to the quality attributes that are examined
in more than one phase of the migration within the same study. Table 3.7 indicates
that only a few quality attributes are considered in more than one phase within the
same paper: i) Coupling [93], ii) Functionality [91], and iii) Performance [84] [96].

The analysis carried out reveals a significant correlation between coupling and co-
hesion. Specifically, papers that consider multiple quality attributes in the same phase
tend to study coupling and cohesion together in: i) 27.27% of cases in the comprehen-
sion phase, ii) 47.37% of cases in the microservices identification phase, and iii) 36.36%
of cases in the microservices assessment phase.

R. Capuano 46

3.4. Reporting the Review

Quality

Attributes
Migration Phases Number of Papers

Coupling
Comprehension and Microservices
Identification

1

Functionality
Comprehension and Microservices
Identification

1

Performance
Comprehension and Microservices
Identification, Comprehension and
Microservices Assessment

2

Table 3.7: Number of Studies Considering the same Quality Attributes in more than one
Phase

3.4.3 RQ3: Which of the three steps for the migration to microser-
vices did the researchers focus on?

The aim of this RQ is to examine which of the three migration phases researchers focus
on more and the techniques used. The number of papers working on each migration
phase is summarized in Table 3.8.

Migration Phases Number of Papers

System Comprehension 44
Microservices Identification 53
Packaging 7

Table 3.8: Number of Studies Working on the Related Phase

In general, there is a higher inclination towards identifying microservices by con-
ducting a thorough examination of the system being migrated. Another interesting
aspect to consider is the correlation between the different migration phases in the same
paper. In particular, Table 3.9 presents the count of primary studies that concentrate
on the mentioned migration phases.

R. Capuano 47

3.4. Reporting the Review

Migration Phases Number of Papers

Only on System Comprehension 0
Only on Microservices Identification 6
Only on Packaging 1
Comprehension and Microservices Identification 41
Comprehension and Packaging 0
Microservices Identification and Packaging 3
Comprehension, Microservices Identification
and Packaging

3

Table 3.9: Number of Studies Working on the Related Phases

The findings indicate a close correlation between the understanding of the current
system and the identification of microservices. This is because the techniques for identi-
fying microservices are often based on the output obtained in the system comprehension
phase. The following paragraphs will describe the most commonly used approaches for
each phase. It is worth noting that for both the system comprehension phase (CP) and
microservices identification phase (MIP), the six categories listed in Table 3.10 were
established.

Approach Phase Description

Static Analysis CP, MIP
The approach is based on: code, depen-
dencies, classes, methods, packages, files,
directories, text analysis.

Dynamic Analysis CP, MIP
The approach is based on: logs, traces, use
case testing, user experience testing, user
stories testing.

Model-Driven
Analysis

CP, MIP
The approach is based on: models and
meta-models of the system.

Data-Driven
Analysis

CP, MIP The approach is based on data.

Domain-Driven
Analysis

CP, MIP
The approach is based on: bounded con-
text, business process, requirements anal-
ysis.

Machine Learning
or Optimization
Driven

MIP
The approach is based on clustering tech-
niques.

Table 3.10: System Comprehension and Microservices Identification Approaches Definition

Finally, we examined whether the same approach was used in more than one phase

R. Capuano 48

3.4. Reporting the Review

within the same paper. Table 3.11 displays the results, showing a tendency to use static
analysis and domain-driven approaches together in both the system comprehension and
microservice identification phases. However, regarding the use of the same approaches
in both phases, the only significant finding is the simultaneous use of static analysis and
domain-driven approaches.

Approach Number of Papers

Static Analysis 9
Domain-Driven 6
Dynamic Analysis 3
Static Analysis and Domain Driven 2
Data Driven 1
ML/OPT 1
Static Analysis and Dynamic Analysis 1
Domain-Driven, Data-Driven 1
Model-Driven, Domain-Driven 1

Table 3.11: Relation Between Approaches Both in Comprehension and Microservices Identi-
fication Phase

RQ3.1: What techniques are used for the comprehension phase of the sys-
tem to be migrated? The distribution of system comprehension approaches among
the primary studies included in this SLR is depicted in Figure 3.14.

Figure 3.14: Comprehension Approaches Distribution

The majority of the works included in this SLR utilize techniques that fall into three

R. Capuano 49

3.4. Reporting the Review

categories: static analysis, dynamic analysis, and domain-driven analysis. Several pa-
pers also focus on data-driven approaches. Figure 3.15 presents a diagram that displays
the distribution of these approaches over the reference period. The graph indicates a
growing interest in techniques such as static and dynamic analysis, as well as the study
of the domain, which is consistent with the previous graph in Figure 3.14.

Figure 3.15: Comprehension Approaches Distribution by Year

Upon analyzing the papers that perform the comprehension phase, it is evident that
27.27% of them use both static and dynamic analysis techniques simultaneously. Addi-
tionally, static analysis has been combined with domain-driven approaches in 20.45% of
the papers. Finally, domain-driven approaches are used in conjunction with data-driven
techniques in 9.09% of the papers.

RQ3.2: What techniques are used for the microservices identification phase
of the system to be migrated? As we move on to the phase of microservices identi-
fication, there is a noticeable change in the approach. As illustrated in Figure 3.16, the
three most commonly used techniques remain those of static and dynamic analysis of the
system, with a considerable rise in the use of machine learning/optimization. Cluster-
ing algorithms are frequently employed on graphs created based on the aforementioned
static and dynamic analyses.

The distribution of techniques over time is illustrated in Figure 3.17. It is evi-
dent that the use of static analysis, machine learning/optimization, and domain-driven
approaches has been increasing over time.

The analysis results reveal significant relationships between various approaches. One
notable finding is that the ML/OPT category of approaches is often paired with i) static
analysis in 17% of the papers, ii) domain-driven approaches in 5.66% of the papers, and

R. Capuano 50

3.4. Reporting the Review

Figure 3.16: Microservices Identification Approaches Distribution

Figure 3.17: Microservices Identification Approaches Distribution by Year

iii) data-driven approaches in 5.66% of the papers. Furthermore, there is a strong
correlation between data-driven and domain-driven techniques, which are used together
in 7.55% of the cases. Lastly, there is an interesting trend towards the concurrent use
of static analysis and domain-driven approaches, which is observed in 13.21% of the
papers.

RQ3.3: What techniques are used for the packaging phase of the new microservice-
based system? There are only seven papers that address the microservices packaging
phase, which are listed in Table 3.5. All of these studies utilize containerization tech-
niques, employing tools such as Google Cloud and Docker.

RQ3.4: For each quality attributes and each phase of the migration pro-
cess, which are the most used techniques? The research sub-question aims to

R. Capuano 51

3.4. Reporting the Review

explore the relationship between quality attributes and the approaches used in the sys-
tem comprehension and microservices identification phases. The matching of the top
five approaches used in each phase is summarized in Tables 3.12 and 3.13.

Quality
Data Domain Dynamic Model Static

Driven Driven Analysis Driven Analysis

Cohesion X X X
Coupling X X X
Data Synch. X X
Functionality X
Performance X X X X X
Scalability X

Table 3.12: Relation Between Quality Attributes and Comprehension Phase Approaches

Upon analyzing the relationship between quality attributes and approaches in the
comprehension phase, it appears that the coupling and cohesion quality attributes are
assessed using the same techniques: static and dynamic analysis, and model-driven
approaches. The same trend is observed in the microservices identification phase, with
the addition of data-driven, domain-driven, and ML/OPT approaches to the static and
dynamic analysis techniques used in the comprehension phase.

However, when it comes to the performance attribute, there is no overlap between
the approaches used in the two phases. Regarding the scalability attribute, there is
a discrepancy between the approaches used in the two phases. While in the compre-
hension phase, scalability is associated solely with domain-driven approaches, in the
microservices identification phase, dynamic analysis and ML/OPT techniques are also
used.

R. Capuano 52

3.5. Discussion

Quality
Data Domain Dynamic ML or Static

Driven Driven Analysis OPT Analysis

Availability X X X X
Cohesion X X X X X
Coupling X X X X X
Data Consistency X X X
Efficiency X X
Functionality X
Granularity X X
Modularity X X X
Network Overhead X X X
Performance X
Responsibility X X
Reusability X X X
Scalability X X X
Security X

Table 3.13: Relation Between Quality Attributes and Microservices Identification Phase Ap-
proaches

3.5 Discussion

The trend of considering quality attributes during microservices migration is increasing
in the research community. Out of all the papers included in this SLR, 67.24% of them
consider software qualities during migration. However, quality improvement does not
seem to be a primary goal of migration, as only a limited number of works (5.12%)
consider the same set of quality attributes in at least two phases of the migration.
The most commonly considered quality aspects during the comprehension phase are
coupling (36.36%), cohesion (27.27%), performance (54.54%), and scalability (27.27%).
Similarly, during the microservices identification phase, the most studied qualities are
coupling (57.89%), cohesion (52.63%), scalability (21.05%), availability (15.79%), and
modularity (15.79%). When assessing the identified microservices, the most studied
quality attributes are cohesion (35.71%), coupling (35.71%), and performance (28.57%).

Although many approaches are based on the static and dynamic structure of the
system, the relationship between quality aspects and the techniques used in each phase
is not consistent. In the comprehension and microservices identification phases, Data-
Driven, Domain-Driven, Dynamic Analysis, and Static Analysis approaches are used
primarily to focus on system functionality. Clustering algorithms are often applied to
identify microservices based on the system’s static and dynamic structure. However,
there is no evidence of qualities related to the packaging phase since researchers con-

R. Capuano 53

3.6. Conclusion

sider this phase in very few cases. The results indicate a great interest in attributes
such as coupling and cohesion, while other quality aspects are not given much atten-
tion. Nonetheless, performance-related aspects are gaining increasing attention from
researchers.

3.6 Conclusion

The trend of migrating to microservices is increasingly popular in the research commu-
nity. When planning this process, software engineers must take various parameters into
account, from functionality to the quality of the system. Additionally, it is crucial to
have a clear goal for the migration. To examine how researchers have considered quality
aspects in the migration process, we conducted a SLR on quality-driven approaches to
migration. Our selection procedure resulted in 58 papers published between 2015 and
July 2021, out of over 2000 results. The study revealed that while many researchers
consider quality attributes during the migration, none seem to prioritize quality im-
provement as a goal. Most of the selected works propose migration approaches from
monolithic systems, predominantly web-based languages. We also analyzed the quality
attributes focused on during each phase of migration, highlighting strong attention to
attributes such as coupling, cohesion, and performance. Finally, we related a set of
related approaches to each quality attribute for each migration phase.

R. Capuano 54

Part II

Research Contributions

55

Chapter 4

Quality-Driven Migration
Approaches

This Chapter introduce the concept of a quality-driven migration approach and how it
differs from other migration approaches. The significant stages involved in this approach
and how each stage impacts the overall success of the migration project will be discussed.
The Chapter will present two different conceptual approaches. The first, has been
presented in the Early Career Research forum at the European Conference on Software
Architecture 2021 but not implemented. The latter, is a refinement of the process that
allows to overcome the limitations of the previous one. Part of the second approach has
been validated as reported in next Chapters. By the end of this Chapter, readers will
have a deeper understanding of the benefits of a quality-driven approach to software
migration and will be equipped with the knowledge needed to plan, execute, and validate
a successful migration project that meets the desired quality standards.

4.1 Related Work

This Section reports the major work presented in the literature to highlight the novelty
of the proposed approach. As reported in Chapter 3, different researches addressed the
problem of migration to microservices from monolithic systems. In [87], the authors
present a program analysis-based method to migrate monolithic applications to a mi-
croservices architecture using static and dynamic analysis of the system. Their method
has high accuracy and low performance cost. The authors in [88], propose an approach
for automatic identification of microservices from Object Oriented source code, mea-
suring both the structural and behavioural validity of the identified microservices and
their data autonomy. In [107], a tool to continuously streaming down performance data,
analyzing them and feeding back to the migration process the results of the analysis is
presented. This approach guarantee that the new system does not fall short in terms
of performance. The authors in [108] consider five quality criteria observed as rele-

56

4.2. Process Objective

vant by practitioners for system migration. Compared with a baseline approach that
considers just coupling and cohesion, their approach reinforced the need for adopting
more criteria than traditional ones. In [91], the authors decompose a monolith appli-
cation into independent microservices. The functionality distribution is optimized to
guarantee a system with high cohesion, low coupling and good-sized services focused
on core functionality. The authors in [79] propose the Functionality-oriented Service
Candidate Identification (FoSCI) framework for the identification of service candidates
from a monolithic system. Both the dynamic analysis and search-based functional atom
grouping algorithm serves to service candidates extraction. The service candidate evalu-
ation suite uses 8 different metrics, measuring functionality, modularity, and evolvability
of the identified service candidates. In [106] the authors provide a validation framework
for microservices resulted from (semi-)automatic decomposition of monoliths validated
through an open-source framework.

The analysis of the state of the art, as reported also in Chapter 3, revealed that the
main driver for the decomposition of legacy systems are the functional requirements.
In addition, non of the approaches found in the literature considers antipatterns as a
technique to comprehend the existing systems for performing the migration. In the
approach presented in this Chapter, the uncovered aspects are examined with the aim
of performing a quality-driven migration to microservices.

4.2 Process Objective

The current state of migration to microservices aims to move from a monolithic ar-
chitecture to microservices. In the identification of microservices, two quality aspects,
namely coupling and cohesion, are given due consideration. Further, an evaluation of
the extracted microservices is carried out to guarantee their quality. The migration pro-
cess follows a functionality-driven approach, where the functionality of the monolithic
application serves as a basis for extracting microservices.

To enhance the quality attributes of a system, we propose a quality-driven migra-
tion to a MSA. In our context, the migration to microservices will serve as an instru-
ment used to enhance software qualities. To ensure the success of this migration, our
quality-driven process prioritizes software qualities such as performance, security, and
maintainability throughout the migration process. Our focus will be on developing high-
quality microservices that are well-designed, structured, and documented. By following
a quality-driven process, we aim to ensure that the migrated system meets our quality
standards and delivers the expected benefits.

As mentioned in the introduction, the main goal of this Thesis is to define a process
that can enhance system quality attributes by migrating to microservices. Thus, we
have formulated a RQ and sub-RQs that guide our investigation.

R. Capuano 57

4.3. Quality-Driven Process

RQ1 : How to create a quality-driven migration process?

RQ1.1 : How to perform a quality-driven microservices identification?

RQ1.2 : How to deal with multiple quality attributes?

The idea behind our process is to start by identifying a subset of quality attributes
that we want to improve and analyze the existing system’s problems in relation to those
quality aspects. Once we have identified the weaknesses, we will proceed by resolving
them by migrating to microservices. By following this approach, we aim to develop a
process that can effectively enhance the system’s qualities. Figure 4.1 shows the overall
idea of the process.

Figure 4.1: Overall Quality-Driven Migration to Microservices

4.3 Quality-Driven Process

One of the goal of this Thesis is to define a process allowing to improve software qualities
by migrating to microservices. The aim of the process is to guide software architects
migrating their systems to microservices while preserving or achieving predefined non-
functional requirements. The proposed approach matches the common system migration
to microservices process focusing on a set of system quality attributes. The three
considered steps for migration are the following: the existing system comprehension,
microservices identification and assessment, and microservices packaging.

4.3.1 Existing System Comprehension

A crucial step in establishing a quality-driven migration process is to gain a compre-
hensive understanding of the current system and identify areas where quality is lacking.
This involves pinpointing specific quality attributes that require improvement. Next,
microservices are identified for their potential to address the corresponding quality is-
sues. Thus, the microservices are then packaged.

One obstacle in the creation of a quality-driven migration process is to understand
the part of the system degrading the defined quality of the legacy system. To address this

R. Capuano 58

4.3. Quality-Driven Process

challenge, an antipattern analysis can be conducted. Antipatterns are commonly used
to identify recurring design problems and poor programming practices that negatively
affect software qualities. By analyzing the existing system for antipatterns associated
with the targeted subset of quality attributes, areas that need attention can be identified
and prioritized for migration to microservices.

The process of understanding the existing system, referred to as the "existing system
comprehension phase" in Figure 4.2, involves examining the system for antipatterns that
impact the subset of quality attributes selected for enhancement. This stage employs a
range of artifacts, including models, code, traces, and logs, to obtain a comprehensive
understanding of the system. The process is driven by quality concerns and involves
both static and dynamic analysis of the system. To determine the quality aspects
that require improvement, architects may need to conduct a preliminary analysis of
the system. To recognize the elements that are diminishing the system’s quality for
each quality attribute, a set of architectural antipatterns is provided. This process is
known as antipattern detection and produces the number of instances of the identified
antipatterns and a collection of associated patterns.

Figure 4.2: Quality-Driven System Comprehension

4.3.2 Microservices Identification and Assessment

Various approaches are available to perform a quality-driven microservices identification,
such as static analysis, dynamic analysis, domain-driven analysis, data-driven analysis,
and others, to address RQ1.1. However, the challenge is to select the most suitable ap-
proach that aligns with the project’s goals and requirements. Therefore, the proposed
solution is to apply well-defined patterns that can serve as a microservices identification
approach. These patterns provide a set of guidelines for identifying, extracting, and
defining microservices, ensuring a quality-driven migration process and achieving the
desired outcomes. The microservices identification phase inherits the quality aspects
directly from the system’s comprehension phase. The list of patterns is restricted to
the set of antipatterns detected in the first phase of migration. Each pattern consists
of several tactics, and the goal is to augment each pattern with a well-defined microser-
vices identification strategy based on a static or dynamic view of the system. The
microservices identification is then performed according to the augmented pattern, and

R. Capuano 59

4.3. Quality-Driven Process

the new system is simulated and analyzed to check if the quality attribute is achieved.
These steps are repeated until the most suitable tactic is added to the pattern. The
microservices identification phase outputs one possible decomposition for each quality
attribute to be improved. The process of identifying microservices is detailed in Figure
4.3.

Figure 4.3: Details of Quality-Drien Microservices Identification

In the microservices identification and assessment phase, the input is the antipat-
terns identified during the Existing System Comprehension Phase and the available
microservices identification strategies, and the output is the selected pattern serving as
the microservices identification strategy for the migration process. The method used
involves generating patterns for microservices identification and then applying them
to identify the microservices needed. Finally, the system is simulated to assess their
effectiveness in improving the identified quality attributes.

4.3.3 Microservices Packaging

In order to address multiple quality attributes during microservices identification, it is
necessary to prioritize and select the most important ones for improvement. However,
choosing a microservices identification approach that maximizes the results for all qual-
ity attributes can be a difficult task. To tackle this issue, an optimization algorithm can
be used to determine the most suitable microservices identification strategy based on
the prioritization of quality attributes. The algorithm can take into account various fac-
tors, such as the effectiveness of the strategy, the implementation cost, and the overall
impact on the system. With the application of an optimization algorithm, an informed

R. Capuano 60

4.3. Quality-Driven Process

decision can be made about the microservices identification strategy that will provide
the best overall result for the system. The microservices identification and assessment
phase yields a collection of possible decompositions, with each of them relating to a
single quality attribute to be improved. As our objective is to propose the optimal
system decomposition strategy based on a set of quality attributes, a pre-processing
step is required in this phase. To achieve this, the idea is to provide a multi-objective
optimization algorithm to discover the optimal decomposition. The output of this algo-
rithm will be the set of microservices to be packaged and deployed. Figure 4.4 outlines
the necessary steps involved in performing the packaging phase.

Figure 4.4: Quality-Driven Microservices Packaging

4.3.4 Summary and Evaluation of the Proposed Process

Figure 4.5 depicts the entire Quality-Driven Migration process. The figure represents
the complete flow of operations required to achieve the desired objective.

The process consists of three phases. The first phase, existing system comprehension,
encompasses all activities necessary to understand the existing system. In our case,
this involves analyzing the system’s problems, which entails identifying and analyzing
antipatterns. The second phase, microservices identification and ssessment, focuses on
identifying microservices and assessing them based on their quality characteristics. This
phase also involves increasing the number of solution patterns using tactics, which are
strategies for decomposition. The third phase, microservices packaging, evaluates all
the proposed decompositions and selects the best one that satisfies most (if not all) of
the non-functional requirements. This phase ensures that the final microservices-based
system meets the quality constraints specified in the first phase. Overall, the figure
presents a comprehensive overview of the Quality-Driven Migration process, highlighting
the key steps involved in achieving the desired outcomes.

Table 4.1 provides a clear and concise summary of the pros and cons of the quality-
driven process.

R. Capuano 61

4.3. Quality-Driven Process

Figure 4.5: Quality-Driven Migration to Microservices Process

Pros Cons

Ensures high quality software by focus-
ing on quality attributes in each phase

Lengthy and complex process

High probability of meeting established
quality constraints

Difficulties in categorizing anti-patterns
and associating them with quality at-
tributes

Promotes effective decomposition
Determining decomposition strategies for
resolution patterns can be challenging

Enhances software qualities required
Selected patterns must not negatively im-
pact other software qualities

-
May discourage or intimidate companies
from using due to its complexity and
length

Table 4.1: Evaluation of the Proposed Quality-Driven Migration Process

Pros Focusing on quality attributes in each phase ensures that the resulting software
is of high quality, which is a major advantage. However, there are several challenges
associated with this process. The process is lengthy and complex, which can make it
difficult to implement.

R. Capuano 62

4.3. Quality-Driven Process

Cons One of the challenging aspects of the quality-driven process is how to categorize
antipatterns and associate them with one or more quality attributes. Additionally,
determining which decomposition strategies to associate with resolution patterns can
be difficult. It is also crucial to ensure that the selected patterns do not negatively
impact other software qualities required. Moreover, it is important to consider that this
process’s industrial nature may discourage or even intimidate companies from using
it due to its complexity and length (evaluated with the partner company). This is
especially relevant in the context of this doctoral Thesis, which aims to produce a final
product that meets industrial standards.

Solutions Therefore, a simplified version of the process has been created to mitigate
these concerns, which will be presented in the next section. Overall, while the quality-
driven process has many benefits, its length and complexity present several challenges
that must be overcome to ensure successful implementation.

4.3.5 Semplification of the Quality-Driven Process

The process shown in the previous section provided an opportunity to develop a more
streamlined quality-driven migration process in which microservice migration and ar-
chitectural refactoring are integrated to create a single approach. The final migration
process is depicted in Figure 4.6. This quality-driven migration process consists of three
phases: migration planning, system decomposition and migration execution. Each of
these phases will be explained in detail in the following subsections.

Migration Planning

System Analysis

Quality Constraints
Definition

System Decomposition

Microservices
Identification

Antipatterns
Analysis

System
Representation
Through Graph

Migration Execution

Microservices
Deployment

Microservices
Refactoring*

Microservices
Assessment

Microservices
Implementation

(*) The Quality-Driven Refactoring Process will be presented in Chapter 6

Figure 4.6: Quality-Driven Migration to Microservices Process

It is important to note that the process presented is merely a guideline for practi-
tioners. As such, precise details on how to carry out all subtask associated with the
various phases are not provided. Every system is unique, and the specific requirements
and challenges of each migration project will vary. Therefore, it is up to the practition-
ers to tailor the process to fit the specific needs of their project. However, the general
framework presented here provides a solid foundation for approaching quality-driven
migration to microservices.

R. Capuano 63

4.3. Quality-Driven Process

Migration Planning The migration planning phase of our quality-driven migration
approach involves analyzing the current system’s functionality and dependencies, con-
text, and eventually market demands with the aim of planning the migration process.
In this phase, the quality objectives are then defined, which may involve improving or
maintaining existing quality levels in the legacy system, or achieving new quality goals.

System Decomposition The system decomposition phase is a crucial step in our
quality-driven migration process, which involves several activities. Firstly, we conduct
an in-depth analysis of the legacy system to identify any antipatterns that are relevant
to the quality objectives we have defined. Next, a graphical representation of the system
in terms of classes and methods is created. Then, a graph augmentation techniques is
applied to visualize the antipattern data on the graph. A possible system representation
of a legacy system will be provided in Chapter 5. Finally, based on the informations
reported on the graph, the system is decomposed using machine learning or optimization
algorithms that are tailored to meet the system’s specific requirements. By breaking
down the system into its individual components, we can ensure that it meets the quality
standards we set.

Migration Execution In the migration execution phase of our quality-driven migra-
tion process, the microservices are implemented, followed by an assessment to determine
if they meet the defined quality standards. The assessment can have one of two out-
comes: either the microservice(s) meet the quality criteria, and can be deployed, or
the microservice(s) require refactoring to improve their quality. If the microservice(s)
meet the defined quality standards, they can proceed to deployment. However, if the
assessment indicates that the microservice(s) do not meet the quality standards, a
quality-driven refactoring process is required to improve them. We will discuss the
refactoring process in more detail in the Chapter 6. Overall, the migration execution
phase is critical to ensure that the microservices are implemented correctly and meet
the required quality standards.

Process Improvements and Weaknesses The modified version of the quality-
driven migration approach eliminates many of the drawbacks of its predecessor. Firstly,
the identification of microservices is simplified, removing the difficulty of associating
each pattern with a decomposition strategy. Secondly, the process is made more
straightforward, leaving companies with the sole task of defining quality constraints
and executing the migration. By streamlining the microservice identification process,
the updated approach removes a significant obstacle in the migration journey. In the
original method, determining which microservices to create and how to break down
monolithic applications into these services was a complex and time-consuming process.
With the new approach, this process is simplified, allowing companies to more easily

R. Capuano 64

4.4. Conclusion

identify and define the necessary microservices. Additionally, the updated approach
allows for greater flexibility in defining quality constraints. This flexibility allows busi-
nesses to tailor the migration process to their specific needs and goals.

The proposed approach still remains conceptual since not all the component has been
implemented and validated. In addition, only the performance has been considered as a
quality aspect. Chapters 5 will present the semi-automatic approach for the detection
of performance antipatterns on a graph based representation of the system. Chapter 6
presents the qualtiy-driven (antipatterns-based) refactoring component validated within
the real-world case study presented in Part III.

4.4 Conclusion

This Chapter presented two different quality-driven migration approaches. The first
process consists of three phases: system comprehension, microservice identification and
assessment, and microservices packaging. Quality attributes are considered in each
phase, and the output of the quality attributes is inherited from the previous phase.
During the system comprehension phase, an analysis of antipatterns is performed. The
aim is to eliminate identified antipatterns not only by applying related patterns dur-
ing microservice implementation but also by increasing these patterns with tactics that
represent precise decomposition strategies. Among all possible decompositions, the one
that comes closest to optimal is selected. The Chapter highlights how this process
is lengthy and complex and emphasizes the challenges involved. Therefore, a second
quality-driven approach based on antipattern analysis is also presented. In this case,
the process consists of three phases: migration planning, system decomposition, and
migration execution. In migration planning, the system is analyzed, and quality con-
straints are defined. During the system decomposition phase, antipattern detection is
performed. The system is then represented through an augmented graph that allows
not only the visualization of classes, methods, and dependencies but also the antipat-
terns present in the system. The graph-based representation of the system will be
analysed in Chapter 5 within its implementation. The output of the microservices iden-
tification phase is a unique system decomposition. In the migration execution phase,
microservices are implemented, and an assessment is made that can have two different
results: the microservice(s) comply with the quality constraints and are implemented,
or the constraints are not met, and the system needs to undergo a refactoring process
explained in Chapter 6. Both proposed approaches provide guidelines for practitioners.

R. Capuano 65

Chapter 5

Graph-based Software
Representation for Antipatterns
Detection

This Chapter presents a graph-based approach for modeling software, along with a
mathematical formulation for detecting common antipatterns. We provide implementa-
tion details and examples of antipattern detection. Our approach accurately identifies
potential antipatterns in the system and offers insights for software design improvement.

5.1 System Representation through Graph

The presented graph-based modeling approach visually represents the software system,
with nodes representing classes or methods and edges representing their relationships.
We created a directed graph G = (V,E) to capture all relations between classes and
methods, where V is the set of nodes representing classes and methods, and E is the
set of edges representing different types of relationships between them.

5.1.1 Type of nodes

We define the set of nodes V as the union of two disjoint sets: V = M ∪ C. The set
C consists of nodes representing classes, while the set M consists of nodes representing
methods. We define these sets as follows:

C = c1, c2, ..., cn, where each ci is a unique identifier for a class in the graph.

M = m1,m2, ...,mk, where each mj is a unique identifier for a method in the
graph.

66

5.1. System Representation through Graph

5.1.2 Type of edges

The set of edges E depicts various types of relationships between nodes. Relationships
are determined based on the types of nodes involved. Below are the types of edges we
have identified along with the relationships they represent:

Relations between classes The investigation primarily focuses on analyzing class
relationships to uncover the intricate structure and dependencies inherent in the system,
thereby providing valuable insights into its underlying architecture. In this study, we
consider two general classes, referred to as c1 and c2, both belonging to the set of
classes C. We have identified four types of relationships between these classes: exists
implements, imports, and composed_by.

• exists: The exists relationship establishes class hierarchies and reveals interde-
pendencies between classes. This relationship occurs when class c1 is a subclass
of class c2. Figure 5.1 provides an example of the exists relationship between c1

and c2, represented by a directed arrow, indicating that c1 exists within the class
set C and is a subclass of c2.

Figure 5.1: extends relation between classes

• implements: The implements relationship provides insights into the interdepen-
dencies and interactions within a software system. When class c1 implements
class i1, the implements relationship is established as (c1, i1) ∈ E. Please note
that interfaces and abstract classes are nodes in the class relationship graph. By
establishing the implements relationship, class c1 realizes the specified methods
and behaviors encapsulated by class i1. Figure 5.2 depicts a scenario where class
c1 effectively implements the methods and behaviors specified by interface i1. The
relation is represented by the directed arrow from class c1 to interface i1.

Figure 5.2: implements relation between classes

• imports: The imports relationship represents a dependency between classes,
where one class relies on another for specific functionality. If class c1 imports
class c2, it establishes the imports relationship (c1, c2) ∈ E and is represented in

R. Capuano 67

5.1. System Representation through Graph

Figure 5.3 by the directed arrow from c1 to c2. This relationship highlights the
dependency of class c1 on class c2 for the necessary functionality.

Figure 5.3: imports relation between classes

• composed_by: The composed_by relationship signifies the composition and ag-
gregation of classes in a system. Note that, if the class c1 is composed_by the
class c2, than c1 has an attribute of type c2. Thus, if class c1 is composed or
aggregated by class c2, then the edge (c1, c2) ∈ E is created. Figure 5.4 provides
an example of the composed_by relationship where class c1 is composed or aggre-
gated by class c2. The relationship is represented by the directed arrow from c1 to
c2. Understanding the composed_by relationship provides insights into the struc-
tural organization of classes in the system, showcasing how they are composed or
aggregated to create more complex entities.

Figure 5.4: composed_by relation between classes

Relations between classes and methods Another type of relationships that we an-
alyze are those that exist between classes and methods. These relationships play a cru-
cial role in understanding the interactions and dependencies within a software system.
Specifically, we consider four types of relationships: owns, uses_as_var, uses_as_arg,
and returns. For the sake of exemplification, in the following we consider two classes,
c1, c2 ∈ C ⊂ V and a method m1 ∈ M ⊂ V .

• owns: The owns relationship is essential for organizing and defining software sys-
tems. It allows classes to manage and manipulate methods efficiently, leading to
coherent designs. When a class owns a method, denoted as (c1,m1) ∈ E, it takes
responsibility for its implementation and accessibility within its scope. This re-
lationship enables encapsulation, with the class gaining authority over the owned
method. Class c1 owning method m1 is visually represented in Figure 5.5 as a
directed edge outgoing from c1. and incoming in m1.

• uses_as_var: Understanding the uses_as_var relationship between methods and
classes is essential for comprehending data flow in a software system. It enables the

R. Capuano 68

5.1. System Representation through Graph

Figure 5.5: Owns relation between classes and methods

effective utilization of method outputs as variables, supporting class functionalities
and complex computations. The uses_as_var relationship signifies the usage of
a method’s return value as a variable within a class. If method m1 defines a
local variable of type c2, this relationship can be represented as (m1, c2) ∈ E.
Figure 5.6 illustrates an example of the uses_as_var relationship, representing a
dependency where a class relies on a method’s return value for specific operations.
Modeling these dependencies provides insights into the interdependencies between
classes and methods, facilitating better analysis and design.

Figure 5.6: uses_as_var relation between methods and classes

• uses_as_arg: Analyzing the uses_as_arg relationship, along with other class-
method relationships, enhances our understanding of how classes depend on method
parameters to achieve desired functionalities. It reveals interactions and depen-
dencies within a system, contributing to software architecture comprehension and
design. The uses_as_arg relationship involves the utilization of method param-
eters within a class. If method m1 has a parameter of type c2, we represent this
relationship as (m1, c2) ∈ E. It signifies the dependency between a method and a
class, where the class relies on a specific parameter of the method to fulfill function-
alities. By capturing and analyzing these dependencies, we gain a deeper under-
standing of the interactions and interdependencies between classes and methods
in a system. Figure 5.7 visually represents an instance of the uses_as_arg rela-
tionship, showing a directed edge from method m1 to class c2 to symbolize their
dependency. This edge visualizes the flow of information or data from the method
to the class, highlighting the significance of the method’s argument in the class’s
functionality.

Figure 5.7: uses_as_arg relation between methods and classes

R. Capuano 69

5.1. System Representation through Graph

• returns: Understanding and analyzing the returns relationship aids in compre-
hending how methods generate specific object or class outputs. It reveals depen-
dencies and interactions within a system, contributing to software architecture
comprehension and design. The returns relationship denotes the return type of
a method, which can be an object or a class. If method m1 returns an object of
type c2, we represent this relationship as (m1, c2) ∈ E. It signifies the dependency
between a method and an object or class, where the method produces an output of
type c2 upon execution. By capturing and analyzing these dependencies, we gain
a deeper understanding of the relationships between methods and their return
types. Figure 5.8 provides an example of the returns relationship, illustrating
the connection between method m1 and object c2, where m1 returns an object
of type c2. This visual representation emphasizes the dependency between the
method and its return type, illustrating their connection.

Figure 5.8: uses_as _var relation between methods and classes

Relations between methods In the scope of graph representation for Java systems
outlined in this Chapter, we have specifically focused on the calls relationship as the
sole relationship between methods that is crucial for our objectives. The calls relation-
ship denotes the invocation of one method by another method within the system. The
calls relationship as the primary connection that adequately represents the method-
level dependencies essential to achieving our objectives. By leveraging this relationship,
we can establish a comprehensive understanding of how methods interact and rely on
one another within the Java system. If we have two methods, m1,m2 ∈ M , where m1

calls m2, we represent this relationship as (m1,m2) ∈ E. This relationship captures the
fundamental dependencies and interactions between methods, allowing us to analyze
the control flow and data flow within the system. Figure 5.9 depicts an example of
the calls relationship. Thus, if the method m1 calls method m2, then a direct edge is
created.

Figure 5.9: calls relation between methods

R. Capuano 70

5.1. System Representation through Graph

5.1.3 Implementation

The creation of the graph representation of the system has been implemented to capture
class and methods relations in Java project. The Java source code files have been parsed
by a custom Java source code parser based on ANTLR1 and Java 9 grammar definition2.
In particular, ANTLR has been instructed to generate a Java lexer and a Java parser
skeleton using Python3 as destination language with the following commands:

antlr4 -o parser -Dlanguage=Python3 java_grammars/JavaLexer.g4

antlr4 -o parser -Dlanguage=Python3

-lib parser/lexer java_grammars/JavaParser.g4

The parser skeleton has been then adopted in a custom Python3 script. The script
is used to intercept the class definitions, method definitions and all the relations defined
in the previous Section to derive a structured representation. For example, starting
from the following Java source code file:

pub l i c c l a s s Example {
pub l i c s t a t i c void main (St r ing [] a rgs)
{

method () ;
}

pub l i c void method ()
{

System . out . p r i n t l n ("He l lo ␣world") ;
}

}

the script produces the following Python3 data structure:

{ ’ He l lowor ld ’ : {
’ imports ’ : s e t () ,
’ extends ’ : None ,
’ i n t e r f a c e s ’ : s e t () ,
’ methods ’ : {

’main ’ : {
’ vars ’ : s e t () ,
’ a rgs ’ : { ’ S t r ing ’ } ,
’ r e turn ’ : None ,
’ use ’ : s e t () ,
’ c a l l s ’ : {"method" } ,
’ v a r i n f o ’ : s e t ()

} ,
’method ’ : {

’ vars ’ : s e t () ,

1https://www.antlr.org/
2https://github.com/antlr/grammarsv4

R. Capuano 71

5.2. Antipatterns Mathematical Formulation

’ a rgs ’ : s e t () ,
’ r e turn ’ : None ,
’ use ’ : s e t () ,
’ c a l l s ’ : {

’ System . out : : p r i n t l n ’
} ,
’ v a r i n f o ’ : s e t ()

}
} ,
’ composed ’ : s e t ()

}}

The script is capable of combining data from multiple Java source files and complete
codebases into a single resulting data structure. The final graph is created by using
Neo4J graph-based DBMS 3 and its official Python3 library.

5.2 Antipatterns Mathematical Formulation

In the forthcoming subsections, we will introduce the mathematical formulations of
three specific antipatterns: God Class, Circuitous Treasure Hunt, and Empty Semi-
Truck. We decided to analyse those three antipatterns since they are largely discussed
in the litterature, giving us the opportunity to evaluate the results of the application of
our approach. Each mathematical formulation will be applied on the PetClinic project
to exemplify their application. Using the mathematical models, we aim to identify
potential instances of these antipatterns to be considered in the refactoring process.

5.2.1 God Class Antipattern

The God Class antipattern occurs when a class takes on excessive responsibilities and
violates the Single Responsibility Principle [109][110][111]. The problem arises when a
class performs all of the application’s work or holds all of its data, leading to increased
message traffic and degraded performance. The recommended solution involves redis-
tributing intelligence across top-level classes, achieving a balanced distribution of data
and behavior throughout the system. Table 5.1 shows the problem and possible solution
as they has been represented in the literature [109].

3https://neo4j.com/

R. Capuano 72

5.2. Antipatterns Mathematical Formulation

God Class

Problem Solution
Occurs when a single class or component
either 1) performs all of the work of an
application or 2) holds all of the applica-
tion’s data. Either manifestation results in
excessive message traffic that can degrade
performance.

Refactor the design to distribute intelli-
gence uniformly over the application’s top-
level classes, and to keep related data and
behavior together.

Table 5.1: God Class - Problem and Solutions

To identify instances of the God Class antipattern within the graph representation, a
metric C has been devised based on the class nodes’ incoming and outgoing edges. The
metric, denoted as C(c), quantifies the complexity of a class node c ∈ C ⊂ V relative
to the total number of nodes N = |V | in the graph. A high number of connections
indicates a God Class burdened with numerous relationships and functionality. The
metric is calculated using the formula:

C(c) =
I(c) +O(c)

N
(5.1)

Where:

• I(c) is the number of incoming edges to class node c ∈ C ⊂ V .

• O(c) is the number of outgoing edges from class node c ∈ C ⊂ V .

• N(c) is the number of class and method nodes in the graph.

In the context of the modeled graph, the calculation of the metric C(c) considers
the following edges:

• owns: given a class c ∈ C ⊂ V , we analyse all its outgoing edges labeled as
owns. As already described, the owns relation connect the class with each of its
methods. Thus, we can recognize the number of method in the class. Indeed, a
class that contains to many methods have an high probability to expose to many
functionalities having high responisibility.

• import: given a class c ∈ C ⊂ V , we count both the incoming and outgoing edges
of this type. On one hand, if the class c imports a lot of classes, there is an high
probability that it will be used for many funtionalities violating the principle of
single responsibility. On the other hand, if c is imported into many classes, this
means that it is required to performs different operations. This situation may
represent a high degree of coupling.

R. Capuano 73

5.2. Antipatterns Mathematical Formulation

• implements: given a class c ∈ C ⊂ V , that implements interfaces, we consider all
the outgoing edges of this type. If a class implements a lot of interfaces, there is
an high probability that the class has to many responsibility.

By comparing the calculated values across class nodes, excessively connected classes,
known as God Classes, can be identified. This metric helps detect and assess God
Classes, allowing developers to address design issues and improve software quality and
maintainability.

To identify instances of God Classes, a threshold value T is established. If the
calculated metric C(c) for a class node c ∈ C ⊂ V exceeds the threshold value (C(c) >

T), the corresponding class node is classified as a God Class. Thus, the presence of
the God Class antipattern within the graph can be evaluated using the mathematical
expression:

∀c ∈ C, if C(c) > T , then c is a God Class. (5.2)

The threshold value T is specific to the domain and may vary across different projects.
By applying this mathematical expression software developers and analysts can effec-
tively detect potential God Classes within the graph representation of the system.

Example. In the following we provide an example of the detection of this antipatterns
into the PetClinic application. o this purpose, we generated the following Cypher code
running on the Neo4j Graph to retreive all the information needed to evaluate the metric
C(c). Table 5.2 reports the first six results of the Cypher query.

MATCH (c:Class)

RETURN c.name,

size([o=(c)-[:OWNS]-()|o]) AS ownsOutgoing,

size([i1=(c)-[:IMPORTS]-()|i1]) AS imports,

size([i2=(c)-[:IMPLEMENTS]-()|i2]) AS implements,

(size([o=(c)-[:OWNS]-()|o])

+size([i1=(c)-[:IMPORTS]-()|i1])

+size([i2=(c)-[:IMPLEMENTS]-()|i2])) AS totalEdges,

(size([o=(c)-[:OWNS]-()|o])

+size([i1=(c)-[:IMPORTS]-()|i1])

+size([i2=(c)-[:IMPLEMENTS]-()|i2]))/187.0 AS complexity,

ORDER BY (complexity) DESC

If we consider the threashold T > 0.9, the classes Owner and Pet reveal the pos-
sible God Class antipattern. Figure 5.10 highlights all the relationship of type owns,
implements, and import in which the class Owner is involved.

R. Capuano 74

5.2. Antipatterns Mathematical Formulation

c.name ownsOut. imports implements totalEdges complexity
"Owner" 11 10 0 21 0.11229946
"Pet" 7 13 0 20 0.10695187
"Vet" 6 10 0 16 0.08556149
"OwnerController" 12 2 0 14 0.07486631
"PetController" 10 2 0 12 0.06417112
"Visit" 4 5 0 9 0.04812834

Table 5.2: Results of the Cypher Query for the God Class Antipattern.

Figure 5.10: God Class - Example: Class Owner

5.2.2 Circuitous Threasure Hunt Antipattern

The Circuitous Treasure Hunt antipattern is distinguished by an extended sequence of
method invocations or attribute accesses spanning across multiple classes degrading the
software performance [109][112][111]. Table 5.3 shows the problem and possible solution
for this antipattern [109].

Circuitous Treasure Hunt

Problem Solution
Occurs when an object must look in sev-
eral places to find the information that it
needs. If a large amount of processing is
required for each look, performance will
suffer.

Refactor the design to provide alternative
access paths that do not require a Cir-
cuitous Treasure Hunt (or to reduce the
cost of each look).

Table 5.3: Circuitous Treasure Hunt - Problem and Solutions

To detect the Circuitous Treasure Hunt antipattern in the graph representation, we
use a metric that measures the length and complexity of method call chains. The metric
is based on the idea that a long and convoluted call chain indicates participation in the
antipattern. To this end, we introduce the metric C(m) for a method node m ∈ M ⊂ V ,

R. Capuano 75

5.2. Antipatterns Mathematical Formulation

defined as follows:
C(m) = L(m)×W (m) (5.3)

In the above formula:

• L(m) denotes the length of the method call chain originating from the method
node m. The recursive definition of L(m) is as follows:

L(m) =

0 ∀ m ∈ M s.t. ∄ m′ ∈ M s.t. (m,m′) ∈ E

1 + max(L(m′)) ∀ m′ ∈ M s.t. (m,m′) ∈ E
(5.4)

Thus, the value L(m) is equal to 0 if m lacks outgoing edges representing method
call. Otherwise, the value is set to 1 + max(L(m′)) for all m′ such that m calls
m′.

• W (m) signifies the weight of the method node m, reflecting its complexity. We
define W (m) as follows:

W (m) = N(m) + 1 (5.5)

Note that N(m) represents the count of outgoing edges from m that pertain to
method calls, incremented by one to avoid multiplication by zero in formula (5.3)
when m lacks outgoing edges representing method calls. Note that W (m) is neces-
sary to avoid that wrapper and helper function are wrongly detected as Circuitous
Threasure Hunt. Thus, the parameter is used to improve the trustability of the
formula.

Considering the graph-based representation of the system, this antipattern can be rec-
ognized on a method m ∈ M ⊂ V by analysing its outgoing edges of type calls.

For the purpose of identifying the Circuitous Treasure Hunt antipattern, a threshold
value T is established. If the calculated metric C(m) for a method node m exceeds the
predefined threshold value (C(m) > T), the corresponding method node is considered
to be part of the antipattern. Consequently, we formulate the mathematical expression
to assess the presence of the Circuitous Treasure Hunt antipattern within the graph as
follows:

∀m ∈ M, if C(m) > T, then m is part of the Circuitous Treasure Hunt . (5.6)

Note that the threshold value T is context-dependent and may vary based on the specific
characteristics of the project. The utilization of this mathematical expression empow-
ers software developers and analysts to effectively detect instances of the Circuitous
Treasure Hunt antipattern within the system’s graph representation.

Example. In the following we provide an example of the detection of this antipatterns
into the PetClinic application. To this purpose we created the Cypher query shown in

R. Capuano 76

5.2. Antipatterns Mathematical Formulation

Figure 5.11: Circuitous Treasure Hunt - Example

Figure 5.11. The query is performed to evaluate the parameter L(m) = 4. Considering,
the number of outgoing edges of type calls of the method m processNewVisitForm,
its weight results to be W (m) = 3. Thus, in this case the metric is equal to C(m) =

4× 3 = 12.

On the other hand, the same metric for the lenght of the method m′ loadPetWith-
Visit is W (m′) = 2. Thus, in this case the metric results to be C(m′) = 4 × 2 = 8. If
we consider the threashold T = 8, then we can consider the method m named process-
NewVisitForm as a part of a potential Circuitous Threasure Hunt.

5.2.3 Empty Semi-Truck Antipattern

The Empty Semi-Truck antipattern occurs when a class lacks attributes or methods
and serves solely as a namespace or grouping mechanism [109][110]. It represents a sit-
uation where the class lacks functionality and is used only for organizing or categorizing
elements. The problems and solutions related to the Empty Semi-Truck are presented
in Table 5.4 [109].

Empty Semi-Truck

Problem Solution
Occurs when an excessive number of re-
quests is required to perform a task. It
may be due to inefficient use of avail-
able bandwidth, an inefficient in terface,
or both.

The Batching performance pattern com-
bines items into messages to make better
use of available bandwidth. The Coupling
performance pattern, Session Facade de-
sign pattern, and Aggregate Entity design
pattern provide more efficient interfaces.

Table 5.4: Empty Semi-Truck - Problem and Solutions

To identify this antipattern within the graph-based representation of the system,
we introduce a metric that gauges the emptiness of a class node. The emptiness metric

R. Capuano 77

5.3. Related Work

E(c) for a class node c is defined as follows:

E(c) = F (c) +M(c) (5.7)

In the provided formula, F (c) denotes the number of attributes associated with the class
node, whereas M(c) signifies the number of methods associated with the class node c.

To evaluate if a class c represent this antipattern, we evaluate two types of edges:

• composed_by: the sum of the outgoing edges of this type, represents the number
of field of the class c ∈ C ⊂ V .

• owns: the number of outgoing edges of this type, represents the number of methods
associated to the node class c ∈ C ⊂ V .

To detect the Empty Semi-Truck antipattern, a threshold value T is established.
If the calculated emptiness metric E(c) for a class node c falls below the predefined
threshold (E(c) < T), the class node c is identified as part of the potential antipattern.
Thus, the related mathematical expression is formulated as follows:

∀c ∈ C, if E(c) < T , then c is part of the Empty Semi-Truk. (5.8)

Example. In the following we provide an example of the detection of this antipatterns
into the PetClinic application. To this purpose we created the following Cypher query
to extract all the composed_by and owns relationship in wich the class c is involved.
Thus, the metric E(c) has been evaluated by following the proposed formula. Table 5.5
shows the first six results of the created query.

MATCH (c:Class)

RETURN c.name,

size([o=(c)-[:COMPOSED_BY]-()|o]) AS compositionsNumber,

size([i1=(c)-[:OWNS]-()|i1]) AS methodsNumber,

size([o=(c)-[:COMPOSED_BY]-()|o])

+size([i1=(c)-[:OWNS]-()|i1]) AS complexity

ORDER BY complexity

5.3 Related Work

In recent years, there has been a growing interest in the field of software engineering
to develop effective techniques for refactoring and improving the quality of software
systems. In this context two types of studies can be identified. On one hand there are
scientific works addressing the challenge of software comprehension through graph-based
representation of the software. On the other hand, researchers have explored various

R. Capuano 78

5.3. Related Work

c.name compositionsNumber methodsNumber complexity
"Visit" 1 0 1
"OwnerController" 1 0 1
"PetType" 1 0 1
"SetVisit" 1 0 1
"PetController" 1 0 1
"PetTypeFormatter" 1 0 1

Table 5.5: Results of the Cypher Query for the Empty-Semy Truck Antipattern.

approaches to address common code smells and antipatterns in software projects. In
this section we will present the main contributions in the field, comparing them to our
work.

5.3.1 Graph-Based Representation of Object-Oriented Projects

In the realm of representing dependency relationships, various language-specific graph
variations have been proposed for C++ [113][114][115][116] and Java programs. These
variations aim to capture the interdependencies among elements within the program.
One such representation is the call-based object-oriented system dependence graph
(COSDG), which incorporates additional annotations to account for calling context
and method visibility details. Several studies have employed and advocated for the
use of COSDG in their research [117][118]. Another notable representation is the Java
software dependence graph (JSDG), which comprises multiple dependence graphs that
depict control, data, and call dependencies among different program elements. JSDG
has gained extensive usage within the Java context [119]. In order to enhance the ca-
pabilities of JSDG, Zhao proposed an augmented version known as the Java system
dependence graph (JSDG+), which includes a specialized mechanism to handle poly-
morphism and interfaces, thereby improving the representation of dependencies in Java
programs [120]. Building upon JSDG, JavaPDG provides a static analyzer for Java
bytecode as well as a browser for visualizing various graphical representations, such as
the procedure dependence graph, system dependence graph, control flow graph, and
call graph [121][119]. Additionally, an improved version of JavaPDG called jpdg focuses
specifically on enhancing the representation of program dependence graphs (PDGs) for
code mining purposes [122][121].

Our proposed tool for graph-based representation carefully analyzes the relationships
between classes and methods. In contrast to the existing works, our approach utilizes
a simpler notation and focuses solely on capturing the essential elements required for
detecting antipatterns. As a result, our approach achieves easier graph generation
and, unlike other tools, it has been specifically designed for the purpose of antipattern
detection.

R. Capuano 79

5.3. Related Work

5.3.2 Antipatterns Detection

Authors in [123] introduce MicroART, an Architecture Recovery Tool systems based on
microservices. Utilizing Model-Driven Engineering principles, this tool generates soft-
ware architecture models for microservice-based systems. These models can be man-
aged by software architects to support system maintenance and evolvability. In [124]
the PADRE tool is presented, which detects performance antipatterns in UML models.
The tool also applies refactoring techniques to eliminate identified antipatterns from
the UML models. Similarly, in [125], the authors propose a technique for enhancing
the quality of use case models, demonstrated using a real-world system. This method
detects antipattern defects in use case models and automatically refactors them through
appropriate model transformations. Authors in [126] propose an algorithm that ana-
lyzes multiple architectural antipatterns representing the modularization problems to
identify refactoring opportunities. The recommendations aim to minimize changes that
have a significant impact on the overall system quality. In the study presented in [127],
authors provide a systematic process, to identify and resolve performance issues with
runtime data by using load testing and and data profiling. Similarly, authors in [128],
presents a tool for antipatterns detection that uses Java profilers allowing to perform
the dinamic analysis of the system. It is noticeable to present two industrial project:
Arcan4 and Designate5. The first, helps discovering the architectural debt to prevent
its accumulation. The second, identifies architecture smells and visualize them. Each
detected smell is presented with its definition and its cause.
Our work differs from the presented because of the following advantages:

• Our approach does not require the use of UML models, which can be limiting.
Nowadays, with the increasing adoption of agile development processes, there is
a lack of documentation. This often results in the absence of pre-existing UML
models, which need to be regenerated. Even though automatic generation of such
models is possible, it still requires the intervention of a software architect to ensure
their correctness. In contrast, our system relies solely on the code, reducing the
need for software architect intervention.

• The dynamic analysis of the system facilitates the detection of antipatterns as
the system is simulated, producing more accurate results. However, with the ad-
vent of cloud architectures, dynamic system analysis becomes more complicated.
Simulating the behavior of the system becomes challenging because a single ap-
plication can be executed simultaneously on multiple cloud nodes. This makes
the analysis of results more difficult, as they are influenced by uncontrollable ex-
ternal factors. Our approach, on the other hand, focuses solely on the internal
structure of the system, bringing to light the most common antipatterns that have

4https://www.arcan.tech/
5https://www.designite- tools.com/

R. Capuano 80

5.3. Related Work

been deemed significant and impactful on performance within the scientific and
industrial community.

5.3.3 Open Challenges of the Approach

This section highlights potential limitations that affect our study.

• Limited coverage of antipatterns: although the graph representation presented in
this study is sufficiently general to detect various antipatterns, its coverage is still
limited. Additionally, not all antipatterns can be identified solely through static
analysis; dynamic analysis is required. To overcome these limitations, we plan to
expand the range of antipatterns that our tool can detect by i) carefully analyzing
new antipatterns to create a valuable mathematical formulation, ii) incorporate
dynamic analysis capabilities to annotate the graph, thereby potentially increasing
the number of detectable antipatterns.

• Manual intervention for antipattern detection: while we employed static analy-
sis techniques to automatically construct the graph representation, our approach
does not include an automated antipattern detection mechanism. As a result, the
architect’s assistance is necessary to identify the antipatterns by manually creat-
ing Cypher queries. By highlighting this limitation, we emphasize the need for
developing an automated tool based on our methodology. This would not only
validate its effectiveness but also enhance its practical usage, as it would eliminate
the reliance on manual intervention and make the detection process more efficient.

• Lack of comparative tools for validation: as discussed various tools have been
proposed in both academic and industrial contexts. However, we were unable to
directly compare our work with these tools for a significant reason: unlike other ex-
isting approaches, our methodology relies solely on static analysis. Consequently,
we cannot evaluate the accuracy of our results through a comparative analysis.

• Specificity to Java projects: Although the methods for representing software us-
ing graphs and detecting antipatterns mathematically are universally applicable
to Object Oriented languages, the tool designed for automatic graph generation is
limited to Java projects. This restriction arises from the tool’s reliance on a parser
developed specifically for the Java 9 grammar. Therefore, while the general ap-
proaches and mathematical formulations are transferable, the tool’s functionality
is confined to Java-based systems.

R. Capuano 81

5.4. Conclusion

5.4 Conclusion

In this chapter, the approach to modeling legacy systems was presented. This ap-
proach represents one of the task related to the microservices identification phase of
the quality-driven migration approach shown in Chapter 4. The graph representation
considers nodes of class and method types, and edges that represent the various possible
relationships between them. An implementation of the representation was shown using
ANTLR based on Java parser and Neo4j.

The chapter presented the mathematical formulation that allows the detection of
three antipatterns: God Class, Circuitous Threasure Hunt, and Empty Semi-Truck. For
each antipattern, an example of detection on a case study was reported. The graph rep-
resentation and ANTLR-based parser can facilitate the visualization and manipulation
of complex legacy systems, making it easier to identify antipatterns and dependencies
that might otherwise be difficult to discern.

R. Capuano 82

Chapter 6

Quality-Driven Refactoring
Approach

The current Chapter presents a quality-driven refactoring approach, which corresponds
to the refactoring activity described in Chapter 4 of the quality-driven migration ap-
proach. The approach is novel compared to existing refactoring processes in the field,
as the antipattern detection is not limited to the microservice under refactoring but
also covers the monolith it originates from. Although the relationships between an-
tipatterns and quality metrics have been extensively explored in the literature, to the
best of our knowledge, the relationships between antipatterns themselves have not been
investigated yet. The validation of the proposed process will be presented in Part III.

6.1 Related Work

Refactoring is defined as the process of improving the design of existing code by changing
its internal structure without affecting its external behaviour [4]. Despite there is explicit
assumption that software refactoring improves the quality of the software, a lot of effort
has been made by researchers to investigate their correlation. In [129], the authors
present a hierarchical quality model to study the effect of software refactoring on the
quality model concerning reusability, flexibility, extendibility and effectiveness. The
results show that despite the majority of the refactoring techniques adopted do improve
quality, some approaches have a negative impact. The goal of the authors in [130] is
to quantitatively assess the effect of refactoring on different external quality attributes,
which are: adaptability, maintainability, understandability, reusability, and testability
to decide if the cost and time put into refactoring are worthwhile. Even in this case, the
results show that refactoring does not necessarily improve these quality attributes. In
[131] the authors analyse source code version control system logs of open-source software
systems. The aim was to detect changes to examine their impact on software metrics. In
this case, the results suggest that: i) the refactoring process does not always improve the

83

6.1. Related Work

software quality in a measurable way and ii) developers do not use refactoring effectively
as a means to improve the quality of the system. A similar approach has been adopted
in [132]. In this work, the authors mine the history of three Java open-source projects.
The goal is to investigate whether refactoring activities occur on code components for
which quality metrics might be needed for refactoring operations. Their results pointed
out that there is no clear relationship between refactoring and quality metrics.

In the literature, architectural smells and antipatterns have been largely considered
in the refactoring scenario. In fact, software development is a complex process that in-
volves solving various problems during the design and development phases. To simplify
this process, designers and developers use design patterns and antipatterns as guides
to identify common solutions and pitfalls. Design patterns are solutions to common
problems that have emerged through experience in software development. They provide
a general solution that can be adapted to a specific context. Best practices for software
system design are derived from the knowledge gained through design patterns. This
enables the reuse of such knowledge and its application in the design of different types
of software systems. Design patterns can be applied to different categories of problems
and solutions related to software development, including architecture, design, and de-
velopment. On the other hand, antipatterns are the opposite of design patterns. They
document recurring solutions to common design problems that are often suboptimal
and lead to negative consequences. Antipatterns are conceptually similar to patterns in
that they document the "bad practices" applied during software development, as well
as solutions to them. Antipatterns provide indications on what to avoid and how to
correct design problems if they are encountered. Like patterns, antipatterns address
both architectural and design problems and can be applied to the development process.
In [133], authors present a methodology to systematically identify the architectural
smells that possibly violate the main design principles of microservices and to select
suitable architectural refactorings to resolve them. An Architecture Recovery Tool for
microservice-based systems called MicroART is presented in [123]. This tool using
Model-Driven Engineering principles generates models of the software architecture of
a microservice-based system, that can be managed by software architects for multiple
purposes supporting the maintenance and evolvability of the system. The authors in
[124] present the PADRE tool. It permits the detection of performance antipatterns in
UML models. In addition, the tool refactors the UML models removing the detected
antipatterns. A similar approach is presented in [125]. In this paper, the authors pro-
pose a technique for improving the quality of use case models and demonstrate it on
a real-world system. The method detects defects, in terms of antipatterns, in a use
case model and automatically performs improvements by refactoring the use case mod-
els through proper model transformations. The authors in [126] propose an algorithm
that, based on the simultaneous analysis of multiple architectural antipatterns, provides
high-impact refactoring opportunities. The suggestions aim to reduce the number of

R. Capuano 84

6.2. Proposed Quality-Driven Refactoring Process

changes having a major impact on the overall quality of the system. The algorithm has
been then validated on 95 open-source Java programs for instances of four architectural
patterns representing modularisation problems.

Our work propose a quality-driven refactoring approach supporting the refactoring of
microservice derived from legacy systems. Thus, it is interesting to investigate whether
researchers and practitioners consider quality aspect to drive the migration to microser-
vice. As stated before, a non-quality-driven process would entail the need to refactor
the developed microservices to respect software quality constraints, which would justify
the need for our proposed approach. The results of our investigation shown that few
works consider quality constraints during the migration to microservices. We briefly re-
port some of them. In [88] authors propose an approach to identify microservices from
OO source code in an automatic way. A quality function is used to measure both the
structural and behavioural validity of microservices and their data autonomy. Authors
in [57], incorporate security and scalability requirements in their conceptual methodol-
ogy of decomposing systems into microservices. In [92], authors proposed an automated
microservice identification (AMI) approach that extracts microservices considering both
functional and non-functional metrics.

In summary, the analysis of the state of the art revealed that:

• Refactoring does not necessarily allow software quality improvements.

• Antipatterns analysis revealed to be a suitable approach for software refactoring
aiming to improve software quality aspects.

• Quality improvement is not the main goal when considering migration to microser-
vices. Thus, a quality-driven refactoring approach may be needed.

Antipatterns analysis demonstrated to be a good choice when deciding to perform
software refactoring considering software quality. In addition, despite the number of
related works found, none of them refers to the refactoring of microservices derived
from legacy systems. The novelty of our quality-driven refactoring approach consists
of the application of antipatterns analysis in both monolith and microservices in the
scenario of refactoring microservices decomposed from a legacy system with the aim to
achieve predefined performance requirements.

6.2 Proposed Quality-Driven Refactoring Process

Microservices revealed to be a powerful architectural style for monolithic system mod-
ernization through migration. A microservice based system has a dynamic nature due
to its continuous integration and delivery. Unfortunately, often this can lead to design
and implementation decision that introduce poorly design solutions: the antipatterns.
Those antipatterns may affect the maintainability and other quality aspects of the

R. Capuano 85

6.2. Proposed Quality-Driven Refactoring Process

system [134]. Therefore, a quality-driven refactoring process should consider the an-
tipatterns affecting the system. Those shall be restrict to the quality constraints the
architect wants to improve or achieve. In the following we present a quality-driven refac-
toring approach based on antipatterns analysis that can be applied for the refactoring
of microservices migrated from legacy systems regardless of whether these have been
deployed or not. Please note that the refactoring process is an essential component of
the migration process from monolithic systems to microservices, as discussed in Chapter
4, and it considers both of these software architectures. Nevertheless, the process has
been designed in a generalized manner to facilitate its adoption and adaptability for
architectural refactoring based on various architectures. An overview of the process is
depicted in Figure 6.1 where a BPMN model is presented. According to the BPMN
notation, the ‘+‘ symbol represents parallel activities. On the other hands, the ‘x’
notation denotes two (or more) alternative activities.

PHASE P4PHASE P3PHASE P2PHASE P1

Antipattern
Analysis on

Monolith

Antipattern
Analysis on

Microservices

Microservices
Pattern Selection

Microservices
Code Refactoring

Microservices
Deployment

Microservices
Refactoring

Microservices
Assessment

Figure 6.1: The Proposed Quality-Driven Refactoring Approach.

The presented quality-driven refactoring approach takes in input both the monolith
and the derived microservices and consists of four phases. The first phase focuses on
analyzing antipatterns in the monolith and its corresponding microservices. In this
phase, various relationships between the antipatterns are analyzed. In fact, considering
those relations in the refactoring process enables us to gain comprehensive insights,
facilitate a seamless transition, transfer knowledge, and adapt best practices. The
second phase aims to select patterns that help resolve the antipatterns that degrade
the quality of the system. Once again, the selection of these patterns is not only based
on the microservice antipatterns, but also on those present in the monolith. The third
phase corresponds to code refactoring and assessment of the microservice. In the fourth
and final phase, based on the assessment results, a decision is made whether to proceed
with deployment or iterate the refactoring process. The four constituent phases are
described in the following subsections.

6.2.1 Phase 1: Antipatterns Analysis on Monolith and Microservices

The first phase of the proposed quality-driven refactoring approach consists of two
macroactivities. Firstly, antipattern detection is performed on both monolith and mi-

R. Capuano 86

6.2. Proposed Quality-Driven Refactoring Process

croservices. Secondly, we analyze whether there is a relation between the antipatterns
detected on the monolith and the microservices.

In particular, we analyze the relationships between two sets of antipatterns: one
identified in the monolithic system and the second set specific to the microservices-
based application. In the following we discuss the main reason for consider both the
subset and not only the antipatterns affecting the microservices:

• Comprehensive understanding: By examining the antipatterns in both the mono-
lithic system and the microservices-based application, we develop a comprehensive
understanding of the potential design flaws or architectural limitations present in
the system. This analysis helps us identify areas that require improvement and
optimization.

• Targeted refactoring: Analyzing the antipatterns in the monolithic system allows
us to identify the areas where the original architecture might have hindered scal-
ability, maintainability, or flexibility. By understanding these issues, we can focus
our refactoring efforts on those specific aspects to enhance the overall quality of
the microservices architecture.

• Proactive issue resolution: Studying the antipatterns specific to the microservices-
based application helps us proactively address any potential challenges or pitfalls
that might arise due to the decomposition process or the complexities of the
microservices architecture. This analysis enables us to identify patterns that could
lead to suboptimal design choices or performance issues, allowing us to rectify
them during the refactoring process.

• Optimal adaptation: By examining the relationships between the antipatterns in
the monolithic system and the microservices-based application, we can adapt best
practices and strategies to ensure optimal refactoring. This analysis helps us lever-
age past learnings and experiences to identify the most effective approaches for
improving the microservices architecture. Additionally, by studying the antipat-
terns, we can also identify worst practices to avoid during the migration process.
This comprehensive analysis allows us to design a set of guidelines encompassing
both the best practices to adopt and the worst practices to steer clear of during
the migration to microservices.

In this context, we distinguished three different cases:

1. Intersection between antipatterns: The migration strategy did not resolve
the issues with the monolith, as at least one antipattern that was present in the
monolith was also found in the microservice. Figure 6.2 provides an example, il-
lustrating two sets of antipatterns. The first set includes the antipatterns detected

R. Capuano 87

6.2. Proposed Quality-Driven Refactoring Process

Monolithic
Antipatterns

Microservice
Antipatterns

CASE 1.1

MOA-
1

MOA-
1

MOA-2

CASE 1.2

Monolithic
Antipatterns

Microservice
Antipatterns

MOA-
1

MIA-
1

MIA-2MOA-2

CASE 1.3

Monolithic
Antipatterns

Microservice
Antipatterns

MOA-2

Figure 6.2: Antipatterns in Migration to Microservices: An Example.

in the monolith, while the second set corresponds to the antipatterns identified in
the microservices-based system. Case 1.1 is represented by the two monolithic
antipatterns MOA-1 and MOA-2, which persist in the microservices-based system
after migration. In Figure 6.2, the lined arrows indicate that the antipatterns are
still present in the microservices-based system, while the crossed arrows indicate
that the antipatterns are eliminated with migration.

2. Disjoint sets of antipatterns - cause-effect relation: There are no antipat-
terns found in the microservice that were detected in the monolith. In this sce-
nario, it is advisable to investigate if any of the antipatterns identified in the
monolith are responsible for the emergence of one or more new antipatterns in
the microservice. Migration strategies and decisions can potentially give rise to
fresh antipatterns in the migrated microservices. Figure 6.2 illustrates this sit-
uation. In Case 1.2 , MOA-1 and MOA-2 related to the monolith antipattern
set, evolved into MIA-1 and MIA-2 of the microservices respectively. The dotted
arrows indicate the evolution of one antipattern into another. An example of a
cause-effect relation between antipatterns will be provided in III while the process
will be applied on a real-world case study.

3. Disjoint sets of antipatterns - none relations: There are no antipatterns that
are present in both sets of antipatterns. Additionally, none of the antipatterns
that were identified in the monolithic system resulted in any antipatterns in the
MSA. This scenario can be seen in Case 1.3 of Figure 6.2, where all the arrows
from the monolithic to microservices antipatterns set are shown as crossed.

6.2.2 Phase 2: Resolutive Patterns selection

In the second phase of our quality-driven refactoring approach, we select patterns that
are designed to address the issues identified through the detection of antipatterns in
both the monolithic and microservices systems. The patterns selection depends on the
relation between antipatterns resulting from the first phase of the process. Therefore,
the possible selection strategies fall into the following cases:

R. Capuano 88

6.2. Proposed Quality-Driven Refactoring Process

1. Intersection between antipatterns: Referring to Case 1.1 depicted in Figure
6.2, the primary objective is to address the set of antipatterns that are shared
between the monolithic and microservices systems. In such cases, the selection of
patterns is limited to those that assist in resolving the common antipatterns.

2. Disjoint sets of antipatterns - cause-effect relation: This scenario pertains
to Case 1.2 of the first phase of the refactoring process, wherein there is no shared
antipattern between the monolithic and microservices systems. However, if the
antipattern analysis has identified that an antipattern in the monolithic system
caused a distinct antipattern in the MSA, the pattern selection should be focused
on those that can resolve both antipatterns.

3. Disjoint sets of antipatterns - none relations: This case refers to case 1.3

where, no common antipatterns are found and no monolithic antipatterns caused
a different microservice antipattern. Thus, the idea is to restrict the patterns
selection to the ones allowing to solve just the microservices antipatterns.

Table 6.1 summarize the pattern selection strategies based on the relationship found
between antipatterns detected in the monolith and the microservices.

Antipatterns Detected Pattern Selection Strategy

The antipattern MOA-1 is detected on
both monolith and micorservices.

Select a pattern that resolve MOA-1.

The antipattern MOA-1 detected on
the monolith caused the presence of
MIA-1 in the microservices.

Select the patterns that resolve MOA-1
and MIA-1.

There are no relationship between the
antipatterns of the monolith and the
antipatterns of the microservices.

Select the patterns that allow to resolve
the microservices antipatterns.

Table 6.1: Antipatterns Relationship and Patterns Selection Strategy

6.2.3 Phase 3: Code refactoring and assessment

During the third phase of the quality-driven migration process, the focus is on refactor-
ing the microservice using the patterns that were selected in the previous phase. Before
applying the selected patterns, a preliminary analysis is conducted to determine their
suitability with respect to the microservice’s code structure and estimated applicability
cost. This analysis helps to identify potential issues that may arise during the refac-
toring process. By taking these factors into consideration, the team can ensure that
the selected patterns are the best fit for the microservice and that their application will
result in an improved overall system. Since the primary goal of the refactoring process

R. Capuano 89

6.3. Conclusion

is to satisfy software quality constraints, an assessment is performed to evaluate the
impact of the changes on the overall system. This assessment process ensures that the
refactored microservice meets the required quality standards without negative effects.

6.2.4 Phase 4: Microservice deployment or refactoring

The fourth phase of the quality-driven refactoring process leads to one of two possible
outcomes upon assessment. The first outcome is that the microservices meet the quality
constraints, and no further action is required. In such a case, the microservices can be
deployed as is.

However, if the quality constraints are not met, another round of refactoring is
necessary. In this scenario, the antipattern detection process is performed solely on the
microservices since the antipatterns present in the monolithic architecture are already
known. During the microservices refactoring process, new antipatterns may arise, and
thus, it is crucial to conduct another round of antipattern detection. On the other hand,
the relationship between the antipatterns present on the monolith and the ones detected
in the microservices must be analysed according to the process. The remaining phases
are performed as already shown.

6.3 Conclusion

This Chapter introduced the quality-driven refactoring process as part of the quality-
driven migration approach presented Chapter 4. The novelty of this process was high-
lighted in comparison to the state of the art, and the process was explained in each of
its four phases. The first phase considers the analysis of antipatterns in both the mono-
lith and microservices. Various relationships that may occur between the antipatterns
found in the monolith and those related to microservices were explained. Three possible
relationships were analyzed: i) one or more antipatterns in the monolith also appear in
microservices, ii) one or more antipatterns in the monolith cause the emergence of one
or more antipatterns in microservices, iii) no relationship is identified.

In the second phase, resolution patterns are selected. The resolution strategy de-
pends on the relationships found in the previous phase. Specifically, if one or more
antipatterns in the monolith are also found in microservices, the strategy involves re-
solving only the common antipatterns. Alternatively, if one or more antipatterns in
the monolith cause one or more antipatterns in microservices, the idea is to resolve
both antipatterns. In fact, one of the triggering causes of this situation could be an
incorrect design choice made to solve an antipattern in the monolith, which led to the
introduction of another antipattern in microservices. A concrete example of this case
will be shown in Part III of the Thesis. Finally, if the sets of antipatterns are disjoint,
the classic solution is to resolve only the antipatterns present in microservices.

R. Capuano 90

6.3. Conclusion

The third phase of the quality-driven refactoring process involves the actual refactor-
ing of microservices using the selected patterns. The microservices are then subjected to
an assessment process that can have two outputs: i) the microservices meet the required
system quality, ii) the microservice does not comply with quality constraints. Based
on this result, it is decided whether the system will be deployed in the fourth phase or
whether the process needs to be repeated.

R. Capuano 91

Part III

Industrial Application

92

Chapter 7

Case Study: BIM Italia

Planning the migration of a system to microservices is a very delicate activity. On one
hand, an accurate migration planning supports the creation of a microservices-based
system faithful to the original while satisfying all the functional and non-functional
requirements. On the other hand, poor migration planning can slow down the mod-
ernization process as it requires more iterations to meet requirements. A real-world
example comes from BIM Italia. Their migration planning was conducted by dividing
the system functionalities according to dependencies and risks. Despite the adoption of
the best practices, the company encountered performance issues on the migrated mi-
croservices. This Chapter presents the BIM Italia case study, focusing on its product,
the migration approach and the related issues on the first two microservices deployed.

7.1 Migration to Microservices: Motivations and Planning

BIM Italia is a company operating in the Healthcare sector offering solutions that
integrate software products and professional services. The company is experienced in
evaluating and measuring production in the healthcare sector. BIM Italia counts among
its clients Hospital Companies, Local Healthcare Companies, and private hospitals in
the national territory. The most relevant software of BIM Italia is called QuaniSDO.
This system helps the clients in the monitoring of hospital discharge flows before they
are reported to the regional health authority.

7.1.1 Motivations

In recent years, the company has decided to make an architectural refactoring of the
QuaniSDO software moving to microservices-based system. The QuaniSDO product is
a legacy system based on monolithic architecture.

The software has more than ten years and has gone through several changes. The
reasons are that i) the application domain is continuously evolving as the local au-
thority’s rules are frequently changing and ii) new features are deployed according to

93

7.1. Migration to Microservices: Motivations and Planning

the customer’s needs. Thus, the monolithic system encountered maintenance problems
quantified by analyzing related time, costs, and effort. This analysis considered the re-
visions that might need to be applied to the monolith to implement the annual changes
requested by the regional authorities. Furthermore, customers often requested to pur-
chase only part of the product limited to certain features. Unfortunately, due to the
monolithic nature of the system, this was not possible and caused economic losses. To
tackle these problems, the company decided to modernize the system. They decided to
design the new version of the QuaniSDO using a MSA. Thus, the company conceived
a system whose microservices could be sold separately reducing its maintenance time,
cost, and effort over time. The new version of the system would also be released to old
customers. Thus, the migration approach was constrained to keep the response time
of the new system comparable to the one of the legacy system. Otherwise, the old
customer could have complained about a slowdown in operations.

7.1.2 Planning

The transition to a MSA is a multifaceted process that necessitates meticulous plan-
ning and execution. This process affects not just the product, but the organization as
a whole. The move from a monolithic architecture to microservices entails breaking
down the system into smaller, independently deployable components, which necessi-
tates changes to the development process and could even require adjustments to the
organizational structure and development team [135]. In a monolithic architecture, the
development team might be organized to match the system’s structure, with different
teams managing different parts of the application. In contrast, microservices teams
could be organized around particular microservices, with each team accountable for
building, deploying, and maintaining their own microservice [135]. While this can lead
to a more decentralized and flexible development process, it also necessitates changes to
team structure and management. In summary, migrating to a MSA necessitates careful
consideration of various technical and organizational factors, and it is critical for com-
panies to approach this process with a clear understanding of the potential impacts and
resource requirements needed to make the transition to a MSA successfully.

In order to successfully migrate to a MSA, BIM Italia conducted a thorough analy-
sis of the necessary steps and technologies to be used, taking into account not only the
technical aspects but also the organizational structure of the team. The planning of the
migration process was carefully divided into several stages, each of which was essential to
ensure a smooth transition. Firstly, the team received training on MSAs, including the
principles and best practices associated with this approach. This training was designed
to ensure that the team had a thorough understanding of the benefits and challenges
of microservices, as well as the technical skills required to implement this architecture.
Secondly, the team was divided according to their technological and domain skills. This

R. Capuano 94

7.1. Migration to Microservices: Motivations and Planning

ensured that each member of the team was working on tasks that aligned with their
areas of expertise, and that the team as a whole had the necessary skillset to effectively
manage the migration process. Thirdly, the system was functionally decomposed into
smaller, independently deployable components. The team analyzed the system’s depen-
dencies and made any necessary adjustments to ensure that each microservice could be
developed, deployed, and maintained independently. This involved making changes to
the codebase, as well as modifying the team’s development processes to accommodate
the new architecture.

Table 7.1 provides a comprehensive list of technologies employed for different aspects
of the MSA. The table includes the backend technologies used for the microservices, the
tools utilized for automating the front-end development process, the frameworks for ex-
ecuting JavaScript code, the packet managers used for managing JavaScript packages,
the database management systems used for data storage and retrieval, the container-
ization tools used for packaging the microservices, the orchestrators for automating the
deployment and scaling of containers, and the cloud platforms for hosting and managing
the MSA.

Context Technology

Backend Java (OpenJDK 11)
Build automation tool Grandle 6.2.1
Web development framework Angular 8.0
JavaScript runtime NodeJS 10.16.0
JavaScript Packet Manager npm 6.9.0
DBMS PostgreSQL 11 / OracleDatabase
Containerization Docker
Orchestrator Kubernetess
Cloud platform AWS: Elastic Kubernetess Services

Table 7.1: Implementation Technologies

Figure 7.1 displays a diagram showing six microservices identified by the company.
Each of these microservices is centered around the Hospital Discharge Record (HDR),
which serves as the core of the computation. The three microservices considered in this
Thesis are highlighted in yellow in the diagram, providing a clear visual representation
of the components that are the focus of our study.

Henceforth, the microservice formerly known as "Formal Logic Controls" will be
referred to as "Control" for the sake of simplicity.

After defining a set of microservices to be implemented, the company started a prior-
itization process that took into account several factors. Firstly, they analyzed the com-
plexity of implementing each microservice, taking into account the required resources,

R. Capuano 95

7.2. The QuaniSDO Software

DRG

Processes:
sampling,

stratification,
production analysis

Pricing

Quality control

PNE
HDR

Formal logic controls

DRG

PNE
HDR

PricingDRG

PNE
HDR

Pricing

Quality control

Formal logic
controls

Figure 7.1: The QuaniSDO Defined Microservices.

time, and skillset. Secondly, they evaluated the ease of isolating each microservice from
the monolithic architecture. Lastly, they considered the market demands and require-
ments to ensure that the implementation of microservices aligns with the company’s
goals and meets customer needs. By following this process, the company was able to
prioritize the implementation of microservices effectively and efficiently. The outcome
of this prioritization process resulted in selecting the pricing and control functionalities
as the first ones to be implemented as microservices. These two functionalities will be
explained in detail in the following section. In addition, their implementation, equiv-
alence relationship, and performance issues will be addressed in the remaining part of
the Chapter.

7.2 The QuaniSDO Software

BIM Italia’s most notable software, known as QuaniSDO, assists clients in monitoring
the flow of hospital discharges before they are reported to the regional health authority.
It is crucial to validate the data for refund estimation, and it is essential that the data
submitted to the Region complies with the established formalism; otherwise, the refunds
cannot be processed.

The hospital is a human service enterprise whose products are the specific sets of
services provided to individual patients [136]. In this context, the QuaniSDO system,
takes as input one or more Hospital Discharge Records (HDR). An HDR is the main
instrument for collecting information on patients discharged from public and private
hospitals in the country [137]. Each hospital product has a different price. To identify
each product a HDR must be processed and categorized using a system called Diagnosis
Related Group (DRG) [138]. Based on this information, each HDR is priced to compute
the refund to be requested from the regional authority. Once an HDR has been priced,
it is processed following rigorous checks. The goal is to verify that each HDR respects
the defined regional rules. Figure 7.2 shows the event flow, to clarify how the system

R. Capuano 96

7.2. The QuaniSDO Software

works.

HDR to be
classified

DRG Pricing
Classified
HDR to be

priced

Priced
HDR to be
controlled

Control

Refund

Figure 7.2: The General QuaniSDO Workflow.

Hardware and software requirements of the monolith are shown in Table 7.2.

Client Server

Hardware Requirements

Platform Windows 7/10 Windows Server 2008 R2
RAM 4 GB 4 GB
NIC 1000 Mbps 1000 Mbps
Processor 2 CPUs real/virtual 2 CPUs real/virtual
Hard Disk 50 GB 100 GB

Software Requirements

Frameworks .NET 3.5/.NET 4.5.1 SQL Server 2008
Programming Languages Visual Basic 6 Visual Basic 6

Table 7.2: Monolith’s Requirements

This Chapter will focus on the Control and Pricing features. They correspond to
the two microservices first deployed by the company. In the following we provide a brief
description of the two features reporting how the company performed the migration.
The DRG Calculation functionality will be described in the next Chapter 9.

• The Pricing feature is responsible for attributing an economic reimbursement
value to an HDR. A tariff is assigned to each element of the HDR which takes
into account all the variables expressed at the regulatory level such as acute and
post-acute, ordinary regime or day hospital, threshold days and over-threshold
rates, etc.. The software maintains a complete history of regional tariffs that are
applied to the HDR based on the discharge date. The data processed by this
feature is fundamental for the calculation of the reimbursement obtained for that
specific admission. This highlights the importance of this feature for monitoring
the activity of a Hospital Company, or for regions that use it as a reference product

R. Capuano 97

7.3. The Migration Approach and Performance Issues

and certification of the data.

• The Control feature verifies the data reported on the HDR based on the defined
regional rules. Each rule represents a particular check. It is important to highlight
that if there is an error in the HDR, it can not be processed and accepted by the
local authority and thus not refund. This highlights the importance of this feature
for the customer, who can detect the presence of any errors in a preliminary stage
of the flow. QuaniSDO is constantly updated to the regional specifications for
formal validation of the HDR flow. The software maintains a complete history of
the formalisms that are automatically applied to the cards based on the discharge
date. The formalisms check both the obligatoriness and the validity of the data
reported on the SDO. When an error is detected, the incorrect SDOs are moved
to a specific area, each with an indication of its type of error. Any type of possible
modification is automatically verified by the tool, which certifies its correctness
or not.

7.3 The Migration Approach and Performance Issues

The system migration started with the development of the Pricing microservice. Before
its release, the microservice was tested to ensure that performance constraints were
met. The successful testing allowed to release the Pricing microservice. Although
the company had not yet received customer feedback for the Pricing microservice, the
development of the Control microservice started. This microservice was developed based
on the knowledge acquired from the experiece of migrating the Pricing functionality.
This was possible due to their equivalence:

1. They both need a type conversion to proceed with the computation. In fact,
in both functionalities, the data to be processed is allocated to a regionalized
SQL Database, which is invoked to retrieve all the data needed to perform the
calculation. After loading the data from the database, the Data Transformation
Services (DTS) create a package to make the data available to the calling function.
Thus, the HDR write the retrieved data into a .txt file. This operation implies,
in both functionalities, the need to perform data conversion.

2. Each functionality foresees the application of a set of regional rules. For the
Pricing the rules defines the set of prices to be applied. Concerning the Control,
the rules defines the set of check to be performed to the HDR. The regional rules
are constantly subject to annual regulatory adjustments and change based on the
region. The only difference in the application of the rules lies in the fact that, to
price the HDR, the application sequence is well-defined, while for its Control, the
application can occur randomly.

R. Capuano 98

7.3. The Migration Approach and Performance Issues

3. The two identified functionalities are the most relevant for the system. In fact,
their application is essential for the QuansiSDO purposes.

Even for the Control microservice, the necessary performance tests were succesfully
carried out. The implemented microservice has been deployed to AWS. Technical details
about the AWS, and PostgreSQL configurations are reported in Table 7.3.

AWS PostgreSQL

Type T2.large db.t3.small
Operating System Linux Centos 7.7.1908 -
CPU 2, virtual 2, virtual
RAM 8 GB 2 GB
Hard Disk 10 GB -

Table 7.3: AWS and PostgreSQL configurations

As already mentioned, the testing results reveald that the microservice met the
required constraints. Unfortunately, the performance testing was executed using old
and incomplete data. Thus, once the customers operate on the system using the real
data, some criticism arised for the Control microservice. In fact, the response time
worsened considerably. In particular, considering a number of requests equal to 10,000,
the response time went from 177.0 seconds for the monolithic system to 560.0 seconds
for microservices-based one. Therefore, using the same input dataset, the company
carried out new tests on the Pricing microservice. In this case, a minor deterioration
in performance was noticed. In particular, for 10,000 requests, the response time went
from 12.2 seconds to 14.2 seconds. The migration of the Control microservice was
conducted, as mentioned, using the lesson learned from the Pricing migration. While
this strategy helped to quickly develop the Control microservice, it did not consider its
peculuarities. As a consequence, the decrease in performance observed on the Control
microservice was more prominent than the Pricing microservice. Figure 7.3 shows the
Control performance degradation. The orange pipe, represents the monolothic response
time over the number of requests. It is considered as the response time baseline.

The Control microservice response time, represented as yellow pipe, has an expo-
nential trend. Figure 7.4 shows the same trend for the Pricing microservice.

Based on this performance issues, the company decided to proceed with a refactoring
of the two microservices.

R. Capuano 99

7.3. The Migration Approach and Performance Issues

Figure 7.3: The Control Microservice Performance Degradation.

Figure 7.4: The Pricing Microservice Performance Degradation.

R. Capuano 100

7.4. Conclusion

7.4 Conclusion

The company then identified the functionalities and dependencies of the monolithic
system to determine the microservices required. The prioritization of microservices led
to the selection of controls and pricing as the first two functionalities to implement. The
equivalence relationship between these functionalities led to the same implementation
choices for both microservices.

Despite thorough testing before the product release, the customer reported a signif-
icant degradation in system performance, particularly in terms of response time. This
highlights the importance of continuous monitoring and optimization of microservices
to ensure their performance meets customer expectations.

Overall, BIM Italia’s experience with QuaniSDO underscores the importance of care-
ful planning, prioritization, and testing when migrating to MSA. It also emphasizes the
ongoing need for monitoring and optimization to ensure optimal system performance.

In the next Chapter, the process of quality-driven refactoring presented in Chapter 6
will be applied to the two microservices, controls, and pricing. By applying this process
to the two microservices, BIM Italia aims to improve the performance of the system
and address any issues that may have arisen after its release.

R. Capuano 101

Chapter 8

Quality-Driven Refactoring in BIM
Italia

This Chapter presents the proposed the application of the quality-driven refactoring
approach presented in Chapter 6 for the refactoring of the Pricing and Control mi-
croservices migrated from BIM Italia.

8.1 Control microservice refactoring

This section presents the application of the quality-driven refactoring method presented
in Chapter 6 for the reengineering of the Control microservice. Thus, the process follows
the four steps: i) antipattern analysis on monolith and microservices, ii) resolutive pat-
terns selection, iii) code refactoring and assessment, and iv) microservices deployment or
refactoring. Since the performance problems arises form the Control microservice, this
was the first refactored by the company. The expertise acquired during the refactoring
of this microservice, has been employed as a basis for the refactoring of the Pricing
microservice. The entire process reflected the steps represented in Figure 8.1.

Antipatterns Analysis
on Monolith and

Microservice
(Controls)

Pattern Selection for
Refactoring
(Controls)

Code Refactoring and
Assessment

(Controls)

Deployment
(Controls)

Antipatterns Analysis
on Monolith and

Microservice (Pricing)

Pattern Selection,
Code Refactoring and
Assessment (Pricing)

Deployment (Pricing)

Figure 8.1: Refactoring Timeline.

102

8.1. Control microservice refactoring

8.1.1 Antipatterns Analysis for the Control Microservice

As shown in Figure 8.1, the refactoring process starts with the antipattern detection on
both monolith and Control microservice. The objective is to investigate whether the
performance antipattern present in the monolith affected the migrated microservice.

Monolith Antipatterns. The company adopted static and dynamic analysis to de-
tect antipatterns on the monolith. The first, has been performed throught code analysis.
The latter one, considering the data flow necessary to carry out the two functionalities.
Due to the old nature of the technology employed by the monolith, both the analysis
has been executed manually, based on the team’s knowledge. Table 8.1 describe the
most relevant performance antipattern over the ten found referring to the Control fun-
nctionality in the monolith: the Tower of Babel (ToB). It highlights the descriptions,
the causes and their identification in the monolith. Based on the developers experience
and measurements, we discovered that the predominant antipattern affecting the per-
formance of the monolith has been the ToB . The other antipatterns detected on the
monolith are shown in Appendix B.

Tower of Babel

Description Occurs when processes excessively convert, parse, and trans-
late internal data into a common exchange format [139].

Causes The same information is often translated into an exchange
format (by a sending process) and then parsed and translated
into an internal format (by the receiving process).

Identification The data has been converted at least two times: from data
to DTS and viceversa.

Table 8.1: Tower of Babel - Control Functionality - Monolith

Micorservices Antipatterns The antipatterns detection on the microservice was
conducted using Embold1, an IntelliJ IDE plugin. Embold is a software analytics tool
based on Artificial Intelligence. This plugin is conceived to improve software quality
by analyzing source code. Using this platform, the development team recognized four
antipatterns on the Control microservice. Table 8.2 describes the most relevant per-
formance antipatterns detected: the Data Taffy (DT). Indeed, the DT has the highest
impact on performance. In particular, the access to the database revealed to represent a
bottleneck due to the DBMS has to respond to the requests coming from both the mono-
lith and the microservice. The remaining antipatterns detected on the microservices are
shown in Appendix B.

1https://plugins.jetbrains.com/plugin/14711-embold

R. Capuano 103

8.1. Control microservice refactoring

Data Taffy

Description All services have full access to all objects in the database.
This is also referred as Entangled Data [140, 141].

Causes Lots of stored procedures, embedded complex queries, and
object relationship managers all accessing the database [142].

Identification The access to data is always complete regardless the invoca-
tion.

Table 8.2: Data Taffy - Control Functionality - Microservice

8.1.2 Patterns Selection for the Control Microservice

Once the antipatterns has been detected, following our quality-driven refactoring ap-
proach, the company evaluated the three cases intersection between antipatterns, disjoint
sets of antipatterns - cause-effect relation, and disjoint sets of antipatterns - none re-
lations mentioned in Chapter 4. The analysis displayed that none of the antipatterns
detected on the monolith is still present in the microservice (no intersection between
antipatterns). In addition, the analysis revealed a cause-and-effect relationship between
the two antipatterns ToB and DT (case disjoint sets of antipatterns - cause-effect re-
lation). This relationship emerge from the excessive use of DTS and further parsing
and transformation of data in the monolith. Investigating the BIM Italia migration
approach, we realized that the company gave direct and complete access to all database
objects to avoid the excess in parsing. This strategy caused the presence of the DT
antipattern on the microservice.

As a consequence, the pattern selection was performed to solve this two antipatterns.
The patterns selected are presented in Tables 8.3, 8.4, and 8.5. For each pattern are
reported the description, application strategy and the motivations behind their choice.
Note that iterator and Template-Method (DAL) pattern resolve the ToB antipattern
present in the monolith whereas the Cache-Aside (CA) is adopted as a solution for the
DT antipattern.

R. Capuano 104

8.1. Control microservice refactoring

Iterator

Description Allows to process every element of a container while
isolating the user from the internal structure of the
container [143].

Application Strategy Provides a way to access the elements of an aggregate
object without exposing its underlying representation.
This permits to step through the elements of an ag-
gregate without knowing how things are represented
[143].

Motivation The Control functionality uses complex data struc-
tures. This pattern helps to simplify access to data.

Table 8.3: Iterator - Control Functionality - Microservice

Template-Method (DAL)

Description Also called DAL, it defines the skeleton of an algo-
rithm deferring some steps to sub-classes. Sub-classes
redefine certain steps of an algorithm without chang-
ing the algorithm’s structure [144].

Application Strategy Minimize the number of primitive operations that a
subclass must override to flesh out the algorithm.
Identify the operations that should be overridden by
adding a prefix to their names [144].

Motivation The Control functionality uses a complex algorithm
which proceeds in steps using similar structure. Thus,
the application of the patterns allows optimize the
code.

Table 8.4: Template-Method (DAL) - Control Functionality - Microservice

R. Capuano 105

8.1. Control microservice refactoring

Cache-Aside

Description Applications use a cache to optimize repeated access
to information held in a data store [145].

Application Strategy Determine whether the item is currently held in the
cache. If the item is not currently in the cache, read
the item from the database. Store the copy of the item
in the cache [145].

Motivation For each request, the data are retrieved from the
database even if similar requests have been already
performed. The result is a performance setback. This
pattern solves the problem.

Table 8.5: Cache-Aside - Control Functionality - Microservice

8.1.3 Control Microservice Refactoring

In the following we describe how the selected patterns has been used for the refactoring
of the Control microservice. Note that each pattern has been applied once.

DAL Since the validation check algorithm used by the Control functionality con-
sists in different checks, the DAL pattern has been applied for refactoring the
Control microservice. Each check uses the same structures to access or validate
the data for a given predefined date and time. Thus, the algorithm has been refac-
tored: an abstract class has been introduced to take care of the common parts
while a set of subclasses is responsible for each specific check to be implemented.

Iterator The data stored in the database are complex. To make the access and
the retreival process more efficient, the Iterator pattern has been applied. Thus,
an OdrIterator class has been introduced. This represent the iterator for the
HDRs class. The iterator class is accountable for retrieving only the data needed.
Therefore, it is no more necessary to get back all the classes from the database.

CA The analysis of the system behaviour concerning the Control functionality
revealed that the catalogues stored in the databases are retrieved different time
to satisfy similar requests. Thus, the CA pattern has been applied by converting
the catalogues in a JSON file. Once the data queried from the database is saved
in the cache, they remain available to satisfy new similar request.

Figure 8.2 shows the performance improvement that will be discussed in the next Sec-
tion.

R. Capuano 106

8.1. Control microservice refactoring

Figure 8.2: The Control Microservice Performance Improvement.

8.1.4 Control Microservice: refactoring results

As stated before, the performance testing on the first version on the microservices has
been performed using old and incomplete data. Thus, the refactored Control microser-
vice has been tested using the JSON files directly provided by the customers. This
allowed to have a more reliable results making the testing outcome comparable with
both the monolith and the first version on the Control microservice. Since each HDR
different information can be requested to the database, the test has been replicated
30 times. Table 8.6 compares the average response time of the monolith and the two
versions of the Control microservice. The new version of the Control microservice has
a mean response time improvement of the 47% with respect to the monolith. The en-
hancement with respect to the first version of the microservise is of the 69%. Concerning
10,000 numbers of requests, whose worsening caused the need of refactor the Control
microservice, the perfomance improvement is considerable. In fact, the refactored ver-
sion of the Control microservice performs five times faster than the first version of the
microservice.

Number of Requests Monolith
Control Refactored

Microservice Microservice

1 3.0 seconds 1.1 seconds 0.15 seconds
10 7.2 seconds 5.9 seconds 3.0 seconds
100 28.0 seconds 50.0 seconds 19.0 seconds
1000 70.0 seconds 197.0 seconds 58.0 seconds
10000 177.0 seconds 560.0 seconds 120.0 seconds

Table 8.6: Performance Analysis after the Refactoring of the Control Functionality

R. Capuano 107

8.2. Pricing microservice refactoring

8.2 Pricing microservice refactoring

In this section we briefly describe the application of the presente quality-driven refac-
toring approach on the Pricing microservice.

Antipatterns Analysis As already mentioned, the refactoring of the Pricing mi-
croservice started simultaneously with the Control assessment and deployment. Based
on the performance results, we decided to tackle the refactoring of the Pricing microser-
vice using the same approach. Due to the limited time required for the refactoring of
the Pricing microservice, the company decided to restrict the antipatterns detection
to ToB . This was possible because of the already presented equivalence relationship
between the two functionalities. Similarly, the set of antipatterns considered to be de-
tected on Pricing microservice was then restricted to the DT . The analysis revealed
that this two antipatterns also affected the monolith and the Pricing microservice.

Patterns Selection and Pricing Microservice Refactoring The Pricing mi-
croservices was refactored based on the lesson learned of the Control microservice refac-
toring. Thus, the selected patterns and the refactoring strategy were directly inherited.
Therefore, the adopted patterns are DAL, Iterator, and CA. As for the Control microser-
vice, for the refactoring of the Pricing microservice, each pattern has been applied once.
The Pricing microservice uses a pricing algorithm that associate a value to each part of
the HDR. Thus, the DAL was applied using the same strategy adopted for the Control
microservice. Even for the Pricing microservice, for an efficient access to the complex
data, the Iterator pattern was applied. Thus, an iterator class has been introduced.
Using this strategy the microservice retreives only the needed data. The pricing func-
tionality does not uses catalogues. Thus, the CA pattern has been applied by using
the memory cache to store partial data retreived for each request. Figure 8.3 shows the
performance improvement.

Pricing Microservice: refactoring results We report below the results of the test-
ing carried out on the second version of the Pricing microservice. Table 8.6 summarizes
the obtained results. The refactored Pricing microservice has a mean response time
improvement of the 39.8% compared with the monolith. The improvement with respect
to the original microservice is 51% on average. Concerning 10,000 numbers of requests,
the refactored microservice performs till 2 times faster than the monolith and the first
version of the microservice.

R. Capuano 108

8.3. Conclusion

Figure 8.3: The Pricing Microservice Performance Improvement.

Number of Requests Monolith
Pricing Refactored

Microservice Microservice

1 2.6 seconds 2.1 seconds 0.401 seconds
10 1.9 seconds 2.5 seconds 1.1 seconds
100 3.0 seconds 4.2 seconds 2.4 seconds
1000 7.1 seconds 8.4 seconds 5.9 seconds
10000 12.2 seconds 14.2 seconds 7.9 seconds

Table 8.7: Performance Analysis after the Refactoring of the Pricing Functionality

8.3 Conclusion

This Chapter presented a quality-driven refactoring approach and its application for
the refactoring of microservices migrated from BIM Italia’s monolithic system. The
goal was to perform a refactoring process to guarantee performance quality constraints
satisfaction. In fact, the two migrated microservices, Control and Pricing, revealed
performance issues once deployed. The applied quality-driven refactoring approach is
based on 4 phases: i) antipattern analysis on monolith and microservice, ii) resolutive
patterns selection, iii) code refactoring and assessment, and iv) microservice deployment
or refactoring. The antipattern detection revealed the presence of the ToB on the
monolith and the DT on the microservices. In Section 8.1.2 we reported how the
strategy adopted to remove the presence of the problems concerned to the ToB , caused
the presence of the DT in the microservices. Thus, in the studied case study presented,
a correlation between these two antipatterns was displayed. This helped us in the
selection of the resolutive patterns: DAL, Iterator, and CA. The application of our
quality-driven refactoring approach results in till 86% of performance improvement on

R. Capuano 109

8.3. Conclusion

the Control microservice. Then, the analysis of the Pricing refactored microservice
showed a performance enhancement up to 81%.

The presented case study pointed out the need for a migration planning that care-
fully considers the quality aspects that the system should respect. In fact, a more
accurate migration planning, can prevent the need of microservices refactoring. In this
scenario, understanding the legacy system to be migrated is crucial. There are sev-
eral reasons behind the need for legacy system understanding. The first is to evaluate
if migration is really what the system needs. In fact, in some cases, it might even be
enough to proceed with a simple legacy system refactoring rather than change the entire
system architecture. Actually, the migration is a very expensive operation in terms of
time, cost, and effort. Thus, the choice of migrating to microservices must be carefully
agreed [20]. An accurate analysis of the legacy system, supports the creation of a new
microservices-based system that is faithful to the original and that fully satisfies the cus-
tomers requests. Moreover, by comprehension of the system, it is possible to measure
the reusability of the legacy system, and whether external components may be needed.
Finally, it is also useful to perform a thorough analysis of dependencies, especially if the
company intends to perform an incremental migration. The legacy system failures are
an important aspect to consider during its understanding. In fact, the migration should
be planned to ensure that these problems do not recur within the migrated system.
Consequently, a system satisfying quality constraints can be obtained.

R. Capuano 110

Chapter 9

Implementation of the Diagnosis

Related Group functionality

In this Chapter, a revised version of the quality-driven refactoring method introduced
in Chapter 6 is applied for the migration of the functionality revealed to be equivalent
to Controls and Pricing : the DRG . We will carefully analyze each step of the method
and explore the decisions made and their effect on the microservice.

9.1 The Diagnosis Related Group Functionality

The DRG system, which groups patients with similar clinical characteristics and di-
agnoses for payment purposes, was developed in the United States in the 1980s by
researchers from Yale University and the University of California [138]. To address
concerns about the rising healthcare costs and the need for more transparent and stan-
dardized payment for hospital services, the Medicare program first implemented the
DRG system in 1983. The DRG system determines the reimbursement amount that
hospitals will receive for inpatient stays, incentives them to provide effective and effi-
cient care. The DRG system criteria for patient grouping and payment amounts may
vary by country. In Italy, the system is known as DRG Italia, and the Italian National
Health Service (SSN) uses it to reimburse hospitals for inpatient services. DRG Italia
groups patients based on their clinical characteristics, diagnoses, and procedures, and
each group is assigned a DRG code with a predetermined payment amount. DRG Italia
employs the International Classification of Diseases, Ninth Revision, Clinical Modifica-
tion (ICD-9-CM) coding system to classify patients based on their medical conditions
and diagnoses. Patient factors like age, comorbidities, and length of stay are also taken
into account. Each DRG is assigned a relative weight based on the average cost of
treating patients with similar clinical characteristics. Hospitals are reimbursed based
on the DRG code assigned to each patient, with adjustments made for regional and
hospital-specific factors. In addition to ICD-9-CM , the DRG system utilizes Major

111

9.1. The Diagnosis Related Group Functionality

Diagnostic Categories (MDC) to group patients with similar diagnoses and medical
conditions. These 25 distinct groups are based on the ICD-9-CM codes and provide
further categorization of patients into DRGs, which is essential for determining re-
imbursement amounts for hospitals. Overall, DRG Italia has helped standardize and
streamline the payment process for hospital services in Italy, incentives hospitals to
provide high-quality care while promoting efficiency and controlling costs. The system
serves as a benchmark for evaluating hospital performance and resource allocation in
the Italian healthcare system. Figure 9.1 highlights the phases of the DRG calculation
as reported in the World Health Organization (WHO) guidelines 1.

Figure 9.1: DRG Calculation Schema.

9.1.1 Diagnosis Related Group Components

The functionality of DRG has been broken down into two sub-components. We will
going into detail of the implemention of only the more performance-intensive sub-
component. To understand how these sub-components were identified, it’s essential
to understand how this functionality is implemented in the monolith.

Figure 9.2 shows the general functioning of the DRG . When calculating the DRG ,
a query is made to the database, and the data from the HDR is extracted. The data
considered in this phase includes sex, age, principal diagnosis, secondary diagnoses,
procedures and interventions, and the discharge status. This data undergoes a coding
process and is transformed into a text file that will then be passed to the grouper for

1https://tinyurl.com/drgwho

R. Capuano 112

9.1. The Diagnosis Related Group Functionality

HDR

Regionalized
Database

Sex

Age

...

HDR

Data Prepocessing

Data in a
textual
format

Data
Coding

Data in a
textual
format

DRG Calculation

DRG
Calculation

Data
encoded

Data
Coding Data in a

textual
format (new)

Regionalized
Database

Data in a
textual

format (new)
DTSData

encoded

Data
Coding

Data Storage

Figure 9.2: DRG Functionality.

the necessary calculations. To manipulate the data, the grouper converts it to assign
the correct data type item. Once the calculation is done, the grouper generates a new
text file that will be used by the DTS to insert the calculated values into the source
database.

The two sub-components of DRG functionality were identified based on their per-
formance requirements. The more performance-intensive sub-component involves the
calculation process that occurs within the grouper, which is resource-intensive. There-
fore, we will implement this sub-component only to reduce the overall computational
load on the system. The two sub-components identified are code conversion and DRG
attribution. For our analysis, we will consider the code conversion sub-component as
a black box, while we will implement the DRG attribution part. The DRG attribu-
tion sub-component involves verifying the input data based on certain classifications
and sets of procedures and diagnoses to assign the correct type of DRG . This process
is computationally expensive, but it is a crucial step in the calculation of the DRG .
The company decided to use the Strangler Pattern to gradually migrate the DRG func-
tionality to a new microservice. As a result, it will also be possible to measure the
performance (response time) and compare it to that of the monolith.

9.1.2 Equivalence Relationship

To ensure the successful implementation of the DRG microservice version using our
approach, it is important to conduct a comprehensive analysis of the three functionalities

R. Capuano 113

9.2. Application of the Approach

- Pricing, Control, and DRG - and determine their equivalence. In our analysis, we have
identified two main points of equivalence that need to be addressed for a successful
implementation. Firstly, there is the need to perform parsing and encoding of the
data at every step of the process, with a massive use of DTS to ensure the correct
formatting and manipulation of data. This is crucial to ensure that the data remains
accurate and consistent throughout the entire DRG calculation process, as even small
errors or inconsistencies can result in incorrect DRG calculations. Secondly, there is
the application of a series of checks and rules based on the actual DRG algorithm.
These checks and rules ensure that the DRG calculations are accurate and in line with
the standard DRG methodology. These rules and checks are applied at various points
throughout the DRG calculation process to ensure that the calculations are consistent
and accurate.

By identifying this equivalence, we can apply a modified version of the approach
used for refactoring Pricing and Control to the DRG microservice. This means that we
can leverage the knowledge and experience gained from those previous efforts to ensure
the successful implementation of the DRG microservice. Furthermore, this equivalence
also allows us to compare the migration efforts of the three functionalities - Pricing,
Control, and DRG - in terms of time, costs, and effort. This will help us to identify any
potential challenges or bottlenecks in the migration process and optimize our approach
accordingly.

9.2 Application of the Approach

Regarding the DRG functionality, the refactoring approach proposed was not applied
in its original form. Specifically, the analysis of antipatterns on the related microservice
was not performed as it had not yet been implemented. However, we proceeded with
the migration by performing an the antipatterns analysis on the monolith and select-
ing appropriate patterns for implementing the DRG sub-component. In the upcoming
sections, we will outline the steps we took in more details.

9.2.1 Antipatterns Analysis

Given the equivalence relationship between functionalities shown in Section 9.1.2, and
in order to speed up development times, the company has decided to perform an an-
tipatterns analysis by considering only the subset already identified for the Pricing
and Control functionalities on the monolith. Therefore, the company searched for the
ToB antipattern within the monolith, where operations related to the DRG calculation
functionality are performed. As already explained, this antipattern refers to the pro-
liferation of parsing and serialization code throughout an application, resulting in the
application becoming increasingly complex and difficult to maintain. The identification

R. Capuano 114

9.2. Application of the Approach

of this antipattern within the monolith is likely due to the repeated parsing operations
that are required for the DRG calculation functionality.

As it happened with the refactoring of the two microservices Control and Pricing,
since the monolith was implemented in Visual Basic, the only way to perform analysis of
anti-patterns was to rely on the software system knowledge possessed by the developers.
This highlights the importance of having knowledgeable developers who understand the
intricacies of the software system they are working on, especially when dealing with
legacy code. While modern tools and techniques for identifying anti-patterns can be
helpful, they are not always sufficient in the face of complex and poorly documented
systems. Therefore, investing in the expertise of developers and encouraging knowledge
sharing within the team can be crucial for maintaining and improving software quality
over time.

9.2.2 Patterns Selection

In contrast to the approach taken for the refactoring of the Pricing and Control mi-
croservices, the selection of patterns for migrating the DRG functionality has two objec-
tives. Firstly, the migration aims to solve the ToB antipattern detected on the monolith,
and secondly, it aims to avoid the occurrence of DT in the implemented microservice
as occurred in the Control and Pricing microservices. To achieve these goals, the com-
pany decided to use the same patterns used for the refactoring of Pricing and Control,
namely Iterator, DAL, and CA. Based on our experience with the refactoring of Pric-
ing and Control, we have identified these patterns as effective solutions to address the
challenges of the DRG migration. We believe that the Iterator pattern will help in
traversing through the data structures efficiently and effectively, while the DAL pattern
will allow to reuse the common code across multiple DRG functions. Moreover, the CA
pattern will enable the implementation of an high-performance data cache that can sig-
nificantly reduce the load on the database and improve the overall system performance.
By adopting these patterns, we aim to reduce the development time and complexity of
the DRG migration process.

For the implementation of the subcomponent of the DRG functionality, the patterns
have been applied as follows:

DAL: the DRG requires the application of a series of rules to associate the correct
code number to all the HDR parts. Therefore, every data check is carried out
using the same structure. The algorithm related to the DRG calculation has been
reimplemented by inserting an abstract class whose task is to manage the common
parts, leaving the more specific tasks to the subclasses.

Iterator : a class responsible for retrieving the data necessary for the DRG cal-
culation has been implemented. This reduces the need for continuous requests to
the database.

R. Capuano 115

9.3. Results Discussion

CA: the pattern allows avoiding the execution of continuous requests to the
database that are similar to each other. Instead of being lost, the data is saved
in the cache where it will be accessible for similar requests. Even in this case, the
chosen format is JSON.

Applying the DAL and Iterator pattern has allowed solving the ToB issue, ensuring
that it did not occur again in the subcomponent of the implemented microservice. The
CA pattern has allowed overcoming the presence of the DT within the new microser-
vice, an antipattern that had instead emerged in the first implementation of the two
microservices related to Control and Pricing functionalities.

9.3 Results Discussion

Various parameters were taken into account during the analysis of the results obtained
from implementing the modified refactoring approach. The goal was not solely to com-
pare the response time performance of the monolith and the implemented functionality.
The time, cost, and effort involved in implementing the Pricing and Control microser-
vices were also analyzed and compared to those required for implementing DRG .

9.3.1 Performance Analysis

As already mentioned, due to time constraints for development, the company imple-
mented a subcomponent of DRG and adopted the Strangler Pattern, which allowed for
an empirical evaluation of the increase in performance. To test this, a set of ten differ-
ent tests was constructed based on real customer requests. Those tests were performed
on both the monolith and the microservice, which consisted of a black box monolithic
subcomponent and the implemented microservice. The testing scenario is represented
in Figure 9.3.

Performance Analysis of DRG - Monolith

DRG
Attribution

Code
Conversion

Monolith

DRG Functionality

Code
Conversion

Performance Analysis of DRG - Microservice

Code
Conversion

DRG
Attribution

DRG
Attribution

MS

Monolith

DRG Functionality

DRG Attribution
re-implementation

Test Set
A

Figure 9.3: DRG Testing Scenario.

R. Capuano 116

9.3. Results Discussion

Tables 9.1 and 9.2 present the response time data for the average and worst-case
scenarios, respectively, after the partial migration of the DRG functionality to a mi-
croservice architecture. From the analysis of Table 9.1, it can be observed that the
microservice architecture generally outperforms the monolithic architecture in terms of
average response time. For instance, with a single request, the microservice architec-
ture had an average response time of 0.47 seconds, which is significantly better than
the monolithic architecture’s average response time of 3.32 seconds. Even with 10,000
requests, the microservice architecture had an average response time of 7.45 seconds,
which is still better than the monolithic architecture’s average response time of 18.02
seconds. On average, the microservice architecture improved the response time by ap-
proximately 85%.

Number of Requests
Response Time - Average
Monolith Microservice

1 3.32 seconds 0.47 seconds
10 4.17 seconds 1.62 seconds
100 5.29 seconds 2.92 seconds
1000 8.13 seconds 4.38 seconds
10000 18.02 seconds 7.45 seconds

Table 9.1: Average response time after the partial migration of the DRG Functionality

Similarly, in Table 9.2, the microservice architecture generally outperforms the
monolithic architecture in terms of worst-case response time as well. For example,
with only one request, the microservice architecture had a worst-case response time of
2.20 seconds, which is better than the monolithic architecture’s worst-case response time
of 3.48 seconds. Even with 10,000 requests, the microservice architecture had a worst-
case response time of 12.52 seconds, which is significantly better than the monolithic
architecture’s worst-case response time of 18.17 seconds. On average, the microservice
architecture improved worst-case response time by approximately 53%.

Number of Requests
Response Time - Worst Case
Monolith Microservice

1 3.48 seconds 2.20 seconds
10 4.28 seconds 3.12 seconds
100 5.43 seconds 4.09 seconds
1000 8.26 seconds 6.12 seconds
10000 18.17 seconds 12.52 seconds

Table 9.2: Worst case response time after the partial migration of the DRG Functionality

R. Capuano 117

9.3. Results Discussion

In conclusion, the results demonstrate that the microservice architecture generally
outperforms the monolithic architecture in terms of response time, both in terms of
average response time and worst-case response time, with improvements ranging from
approximately 53% to 85%.

9.3.2 Time, Effort and Costs Analysis

When evaluating the effectiveness of our quality-driven refactoring process, it is not
sufficient to only consider response time data. It is also important to examine whether
the process helps optimize the time, cost, and effort required for developing a microser-
vice from a monolithic system. Response time data provides valuable insights into the
performance of the system after refactoring. However, it does not provide a complete
picture of the benefits of the refactoring process.

Time Analysis Table 9.3 summarizes the details of the migration time analysis for the
three implemented microservices: Pricing, Control and DRG . The first table column
describes the parameters considered for calculating the migration times. The next
three columns refer to the three implemented microservices. For each microservice, the
following information is provided: the time required for migration, the time required
for refactoring the microservice, the total time required. Since only the 20% of DRG
has been implemented, the table reports also a row estimating the total time required
to develop the entire microservice.

Parameter Pricing Control DRG

Time required for migration 7.50 weeks 3,75 weeks 0,75 weeks
Time required for refactoring 6,25 weeks 4,00 weeks 0,00 weeks

Total time required 13,75 weeks 7,75 weeks 3,75 weeks

Table 9.3: Time Analysis

The data shows that the migration for Pricing and Control took 7.50 and 3.75 weeks,
respectively, while the migration for DRG took only 0.75 weeks. The refactoring for
Pricing and Control took 6.25 and 4.00 weeks, respectively, while the DRG microservice
was only partially migrated (20%), resulting in a refactoring time of 0.00 weeks.

To calculate the total time required, the migration and refactoring times are added.
The total time required for Pricing and Control was 13.75 and 7.75 weeks, respectively,
while the total time required for DRG was only 3.75 weeks. However, it is important
to note that the total time for DRG was multiplied by a factor of 5 because it was only
partially migrated.

Overall, the data in the table suggests that the quality-driven migration process ap-
plied for the DRG microservice development made it more efficient compared to Pricing

R. Capuano 118

9.3. Results Discussion

and Control. However, it is important to keep in mind that the DRG microservice was
only partially migrated and may require more time in the future.

Effort Analysis Table 9.4 provides an overview of the effort analysis that was neces-
sary to migrate the three microservices. As with the time analysis, the table is composed
of four columns, with the first column describing the parameters that were considered
during the effort calculation. Similarly, the other three columns of the table are dedi-
cated to each of the implemented microservices. The table presents the total number of
people involved in the migration of each microservice, including the number of people
employed for refactoring the Pricing and Control microservices. Additionally, the table
presents the total time spent on the complete migration of the three microservices. The
total effort is expressed in terms of men/months. This value was computed using the
data mentioned previously. As previously stated, the estimation of the total effort for
implementing the DRG microservice is reported in a separate row, owing to the reasons
explained in the preceding paragraph.

Parameter Pricing Control DRG

People required for migration 3 2 2
People required for refactoring 6 1 0

Total number of people required 9 3 2
Total time required 13,75 weeks 7,75 weeks 0,75 weeks

Total effort (men/months) 1,53 2,58 1,88

Table 9.4: Effort Analysis

The data shows that the total effort required for Pricing and Control is higher than
the DRG microservice. The table indicates that three people were required for the
migration of Pricing, two people for the migration of Control, and two people for the
migration of DRG . On the other hand, six people were required for the refactoring of
Pricing, one person for the refactoring of Control, and zero people for the refactoring of
DRG . To calculate the total number of people required, the number of people required
for migration and refactoring are added. The total number of people required for Pricing
and Control is 9 and 3, respectively, while the total number of people required for DRG
is 2. Lastly, based on the provided data, we evaluated that the total effort required for
Pricing, Control, and DRG is 1.53, 2.58, and 1.88 men/months, respectively. Note that,
as for the time analysis, the total effort required for DRG was multiplied by a factor of
5 due to it being only partially migrated.

Costs Analysis The cost analysis for the migration of three microservices is presented
in Table 9.5. Similar to previous tables, it contains four columns, with the first column

R. Capuano 119

9.4. Conclusion

providing details on the cost calculation parameters. The subsequent three columns
represent each microservice: Pricing, Control, and DRG . The parameters considered
for cost calculation are presented as rows in the table and include the number of people
involved in the migration of the three microservices, the total migration time in weeks,
and the extimate average wage hour per person. The table includes also an estimation
of the cost required to develop the entire DRG microservice, as explained in the first
paragraph. Notably, the cost calculation does not include any software or hardware
purchases. The primary goal of the analysis is to evaluate the migration process’s
quality in terms of time, effort, and cost, rather than the overall migration process.

Parameter Pricing Control DRG

Total number of people required 9 3 2
Total time required 13,75 7,75 0,75
Total time (hours) 1320 744 72

Average wage/hour 17,00e 17,00e 17,00e

Total average cost 201960,00e 37944,00e 12249,00e

Table 9.5: Costs Analysis

As previously mentioned, the Pricing and Control microservices had to be refactored
due to poor performance in terms of response time. In contrast, only 20% of the
DRG microservice was developed following our guidelines based on antipatterns. After
taking into account the time and personnel involved in implementing and refactoring the
Pricing and Control microservices, as well as developing 20% of the DRG microservice,
we calculated the costs for the company to be 201,906e for Pricing, 37,944e for Control,
and 12,249e for DRG . It should be noted that the cost for DRG was multiplied by a
factor of five to arrive at the total cost.

Based on the economic data reported earlier, it can be inferred that the development
and refactoring of the Pricing and Control microservices were relatively more expensive
compared to the development of the DRG microservice. Specifically, the cost for Pricing
was 15 times higher than the cost for DRG , while the cost for Control was over 3 times
higher than the cost for DRG . However, it should be noted that additional investment
may be required to complete the DRG microservice and ensure its functionality. As a
result, this cost analysis serves as a preliminary assessment and should not be regarded
as a definitive measure of the project’s success.

9.4 Conclusion

This Chapter has demonstrated the successful application of the quality-driven refac-
toring process, specifically the antipattern-based approach, in implementing the DRG

R. Capuano 120

9.4. Conclusion

microservice. After explaining the purpose of the DRG and how it was split into two
sub-components, it was found that the more complex sub-component, representing only
20% of the total functionality, was the most performance-intensive. Antipattern detec-
tion was applied to this sub-component, using the same subset of antipatterns previously
identified in the analysis of the two microservices Pricing and Control. The applica-
tion of the corresponding patterns resulted in estimated response time improvements
ranging from 53% to 83%. Furthermore, the analysis of time, cost, and effort resulting
from the adoption of our guidelines for implementing DRG resulted in more than 50%
time savings, requiring slightly less effort than Pricing and Control, with a reduced
economic cost of approximately 50%. Overall, this demonstrates the effectiveness of
the quality-driven refactoring approach in improving performance, reducing costs, and
optimizing the implementation of complex microservices like DRG .

R. Capuano 121

Part IV

Conclusions

122

Chapter 10

Conclusions

The process of migrating from a monolithic application to a microservices-based ar-
chitecture involves refactoring the large, monolithic codebase into smaller, independent
services that can be developed, tested, and deployed separately. This migration pro-
cess requires careful planning and execution to ensure a smooth transition to the new
architecture while minimizing disruption to the existing application. Failing to con-
sider software quality attributes during the migration process can lead to added time,
effort, and cost, as the system may require further refactoring to meet the necessary
requirements. The primary focus of this Thesis is to answer the research question:
what strategies can be implemented to ensure that the migration to microservices leads
to the achievement or improvement of a predefined set of software qualities? To achieve
this objective, a quality-driven migration approach to microservices is proposed, which
aims to help organizations achieve their desired outcomes while maintaining or im-
proving quality attributes throughout the migration process. This approach places
non-functional requirements as a first-class entity in all defined steps.

10.1 Thesis Findings

This Section summarizes the findings of the research objectives presented in the Intro-
duction Chapter and addressed with this Thesis.

RO1: analysis of the state-of-the-art in quality-driven migration to microser-
vices.
We conducted the SLR presented in Chapter 3 to investigate how researchers have con-
sidered quality aspects in the migration process. Our search yielded 58 papers published
in the last six years, out of over 2000 results. Our research questions (RQs) were:

RQ1: What is the trend in system migration to microservices from 2015 till now?

RQ2: Are there any studies that address the problem of migration to microservices
considering software qualities?

123

10.1. Thesis Findings

RQ3: Which of the three steps for the migration to microservices did the re-
searchers focus on?

Our results showed that the trend of considering software quality attributes during
microservices migration is increasing. 67.24% of the papers included in our SLR consid-
ered software qualities during migration. However, quality improvement was not the pri-
mary goal of migration, as only a limited number of works (5.12%) considered the same
set of quality attributes in at least two phases of the migration. The most commonly
considered quality aspects during the comprehension phase were coupling (36.36%), co-
hesion (27.27%), performance (54.54%), and scalability (27.27%). Similarly, during the
microservices identification phase, the most studied qualities were coupling (57.89%),
cohesion (52.63%), scalability (21.05%), availability (15.79%), and modularity (15.79%).
When assessing the identified microservices, the most studied quality attributes were
cohesion (35.71%), coupling (35.71%), and performance (28.57%).

Although many approaches are based on the static and dynamic structure of the
system, the relationship between quality aspects and the techniques used in each phase
is not consistent. In the comprehension and microservices identification phases, Data-
Driven, Domain-Driven, Dynamic Analysis, and Static Analysis approaches are used
primarily to focus on system functionality. Clustering algorithms are often applied to
identify microservices based on the system’s static and dynamic structure. However,
there is no evidence of qualities related to the packaging phase since researchers con-
sider this phase in very few cases. The results indicate a great interest in attributes
such as coupling and cohesion, while other quality aspects are not given much atten-
tion. Nonetheless, performance-related aspects are gaining increasing attention from
researchers.

RO2: definition of a quality-drvien migration to microservices approach aim-
ing to sutisfy non-functional requirements.
Chapter 4, presented two distinct quality-driven migration approaches. The first ap-
proach involves three phases, namely system comprehension, microservice identification
and assessment, and microservices packaging. Each phase considers quality attributes,
and the output of each phase is carried over to the next. During the system com-
prehension phase, antipattern analysis is performed to eliminate identified antipatterns
and apply related patterns and tactics for precise decomposition strategies. The most
optimal decomposition strategy is selected. However, this process is complex and time-
consuming, which led to the second quality-driven approach based on antipattern anal-
ysis. This approach involves three phases: migration planning, system decomposition,
and migration execution. In migration planning, quality constraints are defined, and
the system is analyzed. Antipattern detection is performed during system decompo-
sition, and an augmented graph is used to visualize the system’s classes, methods,
dependencies, and antipatterns. The output of this phase is a unique system decompo-

R. Capuano 124

10.1. Thesis Findings

sition. During migration execution, microservices are implemented, and an assessment
is conducted. If the microservice(s) comply with the quality constraints, they are im-
plemented. Otherwise, the system undergoes a refactoring process explained in Chapter
6.

RO3: graph-based representation for antipatterns detection.
We provided a matemathical description of the graphs that represents the legacy sys-
tem. The graph representation is one of the task that is part of the microservices
identification phase of the quality-driven migration approach shown in Chapeter 4. The
graph representation: i) permits to represent the software, ii) permits the detection
of possible antipatterns in the system. The matemathical formulation for the graph
representation and antipatterns detection is shown in Chapter 5. The process for de-
veloping this graph-based representation and the mathematical formulation allowing to
detect antipatterns have been carefully crafted and are currently under submission as a
conference paper.

RO4: definition of a qualtiy-driven refactoring approach of microservices
derived from legacy, monolithic-based, software.
Chapter 6 introduced the quality-driven refactoring process as part of the quality-driven
migration approach presented Chapter 4. The pocess comprises three phases. The first
phase involves the analysis of antipatterns in both the monolith and microservices. The
Chapter discusses the different relationships that may exist between the antipatterns
found in the monolith and those related to microservices. Three potential relationships
were identified, and each was analyzed in detail.

The second phase involves selecting resolution patterns based on the relationships
found in the previous phase. If there are common antipatterns in the monolith and mi-
croservices, the strategy involves resolving only the common antipatterns. Alternatively,
if the antipatterns in the monolith cause the emergence of antipatterns in microservices,
both antipatterns are resolved. Finally, if the sets of antipatterns are disjoint, only the
antipatterns present in microservices are resolved.

The third phase of the quality-driven refactoring process involves the actual refac-
toring of microservices using the selected patterns. The microservices are then assessed,
and the Chapter explains the two possible outputs of this assessment: either the mi-
croservices comply with the required system quality, or they do not. Based on the
assessment’s results, the system is either deployed in the fourth phase, or the process is
repeated.

RO5: analysis of a real-world case study to investigate the migration process
adopted and monitor non-functional requirements pre and post migration.
The challenges and opportunities associated with transitioning from a monolithic ar-

R. Capuano 125

10.1. Thesis Findings

chitecture to microservices are exemplified by BIM Italia’s flagship product QuaniSDO,
which has been examined in 7. BIM Italia made the decision to adopt microservices due
to market demands and the difficulty of maintaining the monolithic system. To pre-
pare for the transition, BIM Italia analyzed the development team’s skills and provided
training on MSA and related technologies.

The company then identified the functionalities and dependencies of the monolithic
system to determine the microservices required. Prioritizing microservices led to the
selection of controls and pricing as the first two functionalities to implement. The equiv-
alence relationship between these functionalities resulted in the same implementation
choices for both microservices.

Despite extensive testing before release, customers reported a significant decline in
system performance, particularly in terms of response time, underscoring the impor-
tance of continuous monitoring and optimization of microservices to meet customer
expectations.

BIM Italia’s experience highlights the significance of careful planning, prioritization,
and testing when migrating to MSA, as well as the ongoing need for monitoring and
optimization to ensure optimal system performance.

RO6: application of the quality-driven refactoring approach on the real-
world case study to refactor two already implemented microservices suffering
of performance issues
In Chapter 8, the quality-driven refactoring approach has been validated by applying
it to the Pricing and Control microservices derived from the QuaniSDO monolithic
system. The aim of the refactoring process was to ensure that performance quality
constraints were met, as the two migrated microservices, Control and Pricing, exhibited
performance issues once deployed. The quality-driven refactoring approach consisted
of four phases: antipattern analysis on the monolith and microservice, selection of
resolutive patterns, code refactoring and assessment, and microservice deployment or
refactoring. The antipattern detection revealed the presence of the TOB on the monolith
and the DT on the microservices. The resolutive patterns selected were DAL, Iterator,
and CASIDE. The application of the quality-driven refactoring approach resulted in
up to 86% performance improvement on the Control microservice, while the Pricing
microservice showed a performance enhancement of up to 81%.

Finally, Chapter 9 has illustrated how the quality-driven refactoring process, specif-
ically the antipattern-based approach, was successfully applied to implement the DRG
microservice. After breaking down the DRG into two sub-components, it was discov-
ered that the more complex sub-component, which accounted for only 20% of the total
functionality, was the most performance-intensive. Antipattern detection was applied
to this sub-component, using the same subset of antipatterns that were previously iden-
tified in the analysis of the two microservices related to DRG . The application of the

R. Capuano 126

10.2. Future work

corresponding patterns resulted in estimated response time improvements ranging from
53% to 83%. Furthermore, an analysis of time, cost, and effort suggested that im-
plementing DRG using our guidelines should result in more than 50% time savings,
requiring slightly less effort than Pricing and Control, and reducing economic costs by
approximately 50%. Overall, these results demonstrate the effectiveness of the quality-
driven refactoring approach in improving performance, reducing costs, and optimizing
the implementation of complex microservices such as DRG .

10.2 Future work

In this Thesis, we have presented: i) the conceptual framework for the quality-driven
migration to microservices, ii) a graph-based modeling of the system for antipatterns
detection, and iii) a quality-driven refactoring approach for the refactoring of microser-
vices derived from a monolithic system. The quality-driven refactoring approach has
been adopted by a national company, BIM Italia, and demonstrated promising results
in improving performance, reducing costs, and optimizing the implementation of com-
plex microservices. However, there are still some future works that could be explored
to further enhance our approach.

Firstly, we plan to expand the graph augmentation technique used in our antipattern-
based approach to incorporate dynamic analysis of software. By doing so, we believe
that we can capture more accurate and diverse antipatterns and improve the overall
effectiveness of our approach.

Secondly, preprocessing strategies should be implemented to address the antipat-
terns identified in the graph. By resolving these issues prior to decomposition, the
quality of the resulting microservices can be improved. This can lead to better perfor-
mance, scalability, and maintainability of the system.

Thirdly, machine learning-based clustering strategies should be implemented to im-
prove the quality and efficiency of the decomposition process. This could result in more
optimal and effective decompositions, which would in turn lead to better microservice
architectures.

Finally, the set of quality criteria that the migration intends to meet should be
expanded, with a particular focus on software sustainability. To this end, we have
already initiated a discovery phase for identifying relevant sustainability patterns and
antipatterns, which will be incorporated into the framework to ensure that the resulting
microservices are not only functional and efficient, but also sustainable over the long
term.

R. Capuano 127

10.3. List of Pubblications

10.3 List of Pubblications

C1 Roberta Capuano. Enhancing System Quality Attributes via Microservices Adop-
tion (short paper). In Robert Heinrich, Raffaela Mirandola, and Danny Weyns,
editors, ECSA 2021 Companion Volume, Virtual (originally: Vaxjo, Sweden),
13-17 September, 2021, volume 2978 of CEUR Workshop Proceedings. CEUR-
WS.org, 2021

C2 Roberta Capuano and Henry Muccini. A Systematic Literature Review on Migra-
tion to Microservices: a Quality Attributes perspective. In IEEE 19th Interna-
tional Conference on Software Architecture Companion, ICSA Companion 2022,
Honolulu, HI, USA, March 12-15, 2022, pages 120–123. IEEE, 2022

C3 Roberta Capuano and Fabio Vaccaro. The Quality-Driven Refactoring Approach
in BIM Italia. In IEEE 20th International Conference on Software Architecture
Companion, ICSA Companion 2023, L’Aquila, IT, March 14-17, 2023. IEEE,
2023

C4 Roberta Capuano and Hnery Muccini. A Graph-based Java Projects Representa-
tion for Antipatterns Detection. In IEEE 17th International Conference on Soft-
ware Architecture, ECSA 2023, Istanbul, Turkey, September 18-22, 2023. IEEE,
2023

R. Capuano 128

Bibliography

[1] Bruno Góis Mateus, Matias Martinez, and Christophe Kolski. Learning migration
models for supporting incremental language migrations of software applications.
Information and Software Technology, 153:107082, 2023.

[2] M.M. Lehman, D.E. Perry, and J.F. Ramil. Implications of evolution metrics
on software maintenance. In Proceedings. International Conference on Software
Maintenance (Cat. No. 98CB36272), pages 208–217, 1998.

[3] Ravi Khadka, Belfrit V Batlajery, Amir M Saeidi, Slinger Jansen, and Jurriaan
Hage. How do professionals perceive legacy systems and software moderniza-
tion? In Proceedings of the 36th International Conference on Software Engineer-
ing, pages 36–47, 2014.

[4] Kent Beck, Martin Fowler, and Grandma Beck. Bad smells in code. Refactoring:
Improving the design of existing code, 1(1999):75–88, 1999.

[5] Linda H Rosenberg and Lawrence E Hyatt. Software re-engineering. Software
Assurance Technology Center, pages 2–3, 1996.

[6] Edmund C Arranga and Frank P Coyle. Cobol: Perception and reality. Computer,
30(3):126–128, 1997.

[7] Niels Veerman. Revitalizing modifiability of legacy assets. Journal of Software
Maintenance and Evolution: Research and Practice, 16(4-5):219–254, 2004.

[8] Gerardo Canfora, Aniello Cimitile, Andrea De Lucia, and Giuseppe A Di Lucca.
Decomposing legacy programs: A first step towards migrating to client–server
platforms. Journal of Systems and Software, 54(2):99–110, 2000.

[9] Andrea De Lucia, Rita Francese, Giuseppe Scanniello, and Genoveffa Tortora.
Developing legacy system migration methods and tools for technology transfer.
Software: Practice and Experience, 38(13):1333–1364, 2008.

[10] Janet Lavery, Cornelia Boldyreff, Bin Ling, and Colin Allison. Modelling the evo-
lution of legacy systems to web-based systems. Journal of Software Maintenance
and Evolution: Research and Practice, 16(1-2):5–30, 2004.

129

BIBLIOGRAPHY

[11] Eleni Stroulia, Mohammad El-Ramly, and Paul Sorenson. From legacy to web
through interaction modeling. In International Conference on Software Mainte-
nance, 2002. Proceedings., pages 320–329. IEEE, 2002.

[12] John Erickson and Keng Siau. Web services, service-oriented computing, and
service-oriented architecture: Separating hype from reality. Journal of database
management (JDM), 19(3):42–54, 2008.

[13] Luciano Baresi and Martin Garriga. Microservices: the evolution and extinction
of web services? Microservices: Science and Engineering, pages 3–28, 2020.

[14] Martin Fowler and James Lewis. Microservices. 2014. URL http://

martinfowler.com/articles/microservices.html.

[15] Sam Newman. Building microservices. " O’Reilly Media, Inc.", 2021.

[16] Olaf Zimmermann. Do microservices pass the same old architecture test? or: Soa
is not dead-long live (micro-) services. In Microservices Workshop at SATURN
conference, SEI, 2015.

[17] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday,
today, and tomorrow. Present and ulterior software engineering, pages 195–216,
2017.

[18] Eric Evans and Eric J Evans. Domain-driven design: tackling complexity in the
heart of software. Addison-Wesley Professional, 2004.

[19] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Processes, motivations, and
issues for migrating to microservices architectures: An empirical investigation.
IEEE Cloud Computing, 4(5):22–32, 2017.

[20] Sam Newman. Monolith to microservices: evolutionary patterns to transform your
monolith. O’Reilly Media, 2019.

[21] Jonas Fritzsch, Justus Bogner, Alfred Zimmermann, and Stefan Wagner. From
monolith to microservices: A classification of refactoring approaches. In Soft-
ware Engineering Aspects of Continuous Development and New Paradigms of
Software Production and Deployment: First International Workshop, DEVOPS
2018, Chateau de Villebrumier, France, March 5-6, 2018, Revised Selected Papers
1, pages 128–141. Springer, 2019.

[22] Alexis Henry and Youssef Ridene. Migrating to microservices. Microservices:
Science and Engineering, pages 45–72, 2020.

R. Capuano 130

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

BIBLIOGRAPHY

[23] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmermann. Ser-
vice cutter: A systematic approach to service decomposition. In Service-Oriented
and Cloud Computing: 5th IFIP WG 2.14 European Conference, ESOCC 2016,
Vienna, Austria, September 5-7, 2016, Proceedings 5, pages 185–200. Springer,
2016.

[24] Shanshan Li, He Zhang, Zijia Jia, Chenxing Zhong, Cheng Zhang, Zhihao Shan,
Jinfeng Shen, and Muhammad Ali Babar. Understanding and addressing quality
attributes of microservices architecture: A systematic literature review. Informa-
tion and software technology, 131:106449, 2021.

[25] James D Herbsleb and Rebecca E Grinter. Architectures, coordination, and dis-
tance: Conway’s law and beyond. IEEE software, 16(5):63–70, 1999.

[26] Martin Fowler and James Lewis. Strangler fig application. 2004. URL https:

//martinfowler.com/bliki/StranglerFigApplication.html.

[27] Shanshan Li, He Zhang, Zijia Jia, Chenxing Zhong, Cheng Zhang, Zhihao Shan,
Jinfeng Shen, and Muhammad Ali Babar. Understanding and addressing quality
attributes of microservices architecture: A systematic literature review. Informa-
tion and software technology, 131:106449, 2021.

[28] Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann. Mi-
croservices in industry: insights into technologies, characteristics, and software
quality. In 2019 IEEE international conference on software architecture compan-
ion (ICSA-C), pages 187–195. IEEE, 2019.

[29] Iso / iec 25010 : 2011 systems and software engineering — systems and software
quality requirements and evaluation (square) — system and software quality
models. 2013.

[30] Lianping Chen. Microservices: architecting for continuous delivery and devops.
In 2018 IEEE International conference on software architecture (ICSA), pages
39–397. IEEE, 2018.

[31] Justas Kazanavičius and Dalius Mažeika. Migrating legacy software to microser-
vices architecture. In 2019 Open Conference of Electrical, Electronic and Infor-
mation Sciences (eStream), pages 1–5. IEEE, 2019.

[32] David Jaramillo, Duy V Nguyen, and Robert Smart. Leveraging microservices
architecture by using docker technology. In SoutheastCon 2016, pages 1–5. IEEE,
2016.

[33] Roberta Capuano and Henry Muccini. A systematic literature review on mi-
gration to microservices: a quality attributes perspective. In 2022 IEEE 19th

R. Capuano 131

https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html

BIBLIOGRAPHY

International Conference on Software Architecture Companion (ICSA-C), pages
120–123. IEEE, 2022.

[34] Roberta Capuano. Enhancing system quality attributes via microservices adop-
tion. 2021.

[35] Henry Muccini Roberta Capuano. A graph-based java projects representation for
antipatterns detection. In ECSA2023, 2023.

[36] Roberta Capuano and Fabio Vaccaro. The Quality-Driven Refactoring Approach
in BIM Italia. In IEEE 20th International Conference on Software Architecture
Companion, ICSA Companion 2023, L’Aquila, IT, March 14-17, 2023. IEEE,
2023.

[37] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. Migrating towards mi-
croservice architectures: an industrial survey. In 2018 IEEE International Con-
ference on Software Architecture (ICSA), pages 29–2909. IEEE, 2018.

[38] Jonas Fritzsch, Justus Bogner, Stefan Wagner, and Alfred Zimmermann. Mi-
croservices migration in industry: intentions, strategies, and challenges. In 2019
IEEE International Conference on Software Maintenance and Evolution (IC-
SME), pages 481–490. IEEE, 2019.

[39] Thelma Colanzi, Aline Amaral, Wesley Assunção, Arthur Zavadski, Douglas
Tanno, Alessandro Garcia, and Carlos Lucena. Are we speaking the industry
language? the practice and literature of modernizing legacy systems with mi-
croservices. In 15th Brazilian Symposium on Software Components, Architectures,
and Reuse, pages 61–70, 2021.

[40] Xin Zhou, Shanshan Li, Lingli Cao, He Zhang, Zijia Jia, Chenxing Zhong, Zhi-
hao Shan, and Muhammad Ali Babar. Revisiting the practices and pains of
microservice architecture in reality: An industrial inquiry. Journal of Systems
and Software, 195:111521, 2023.

[41] Luiz Carvalho, Alessandro Garcia, Wesley KG Assunção, Rafael de Mello, and
Maria Julia de Lima. Analysis of the criteria adopted in industry to extract
microservices. In 2019 IEEE/ACM Joint 7th International Workshop on Con-
ducting Empirical Studies in Industry (CESI) and 6th International Workshop on
Software Engineering Research and Industrial Practice (SER&IP), pages 22–29.
IEEE, 2019.

[42] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Architectural patterns for
microservices: a systematic mapping study. In CLOSER 2018: Proceedings of the
8th International Conference on Cloud Computing and Services Science; Funchal,
Madeira, Portugal, 19-21 March 2018. SciTePress, 2018.

R. Capuano 132

BIBLIOGRAPHY

[43] Staffs Keele et al. Guidelines for performing systematic literature reviews in
software engineering, 2007.

[44] Shahbaz Ahmed Khan Ghayyur, Abdul Razzaq, Saeed Ullah, and Salman Ahmed.
Matrix clustering based migration of system application to microservices archi-
tecture. International Journal of Advanced Computer Science and Applications,
9(1):284–296, 2018.

[45] Luiz Carvalho, Alessandro Garcia, Wesley KG Assunção, Rodrigo Bonifácio,
Leonardo P Tizzei, and Thelma Elita Colanzi. Extraction of configurable and
reusable microservices from legacy systems: An exploratory study. In Proceedings
of the 23rd International Systems and Software Product Line Conference-Volume
A, pages 26–31, 2019.

[46] Justas Kazanavičius and Dalius Mažeika. Migrating legacy software to microser-
vices architecture. In 2019 Open Conference of Electrical, Electronic and Infor-
mation Sciences (eStream), pages 1–5. IEEE, 2019.

[47] Francisco Ponce, Gastón Márquez, and Hernán Astudillo. Migrating from mono-
lithic architecture to microservices: A rapid review. In 2019 38th International
Conference of the Chilean Computer Science Society (SCCC), pages 1–7. IEEE,
2019.

[48] Victor Velepucha and Pamela Flores. Monoliths to microservices-migration prob-
lems and challenges: A sms. In 2021 Second International Conference on In-
formation Systems and Software Technologies (ICI2ST), pages 135–142. IEEE,
2021.

[49] Santonu Sarkar, Gloria Vashi, and PP Abdulla. Towards transforming an in-
dustrial automation system from monolithic to microservices. In 2018 IEEE
23rd International Conference on Emerging Technologies and Factory Automa-
tion (ETFA), volume 1, pages 1256–1259. IEEE, 2018.

[50] James Thomas and Angela Harden. Methods for the thematic synthesis of qual-
itative research in systematic reviews. BMC medical research methodology, 8(1):
1–10, 2008.

[51] Harris Cooper, Larry V Hedges, and Jeffrey C Valentine. The handbook of research
synthesis and meta-analysis. Russell Sage Foundation, 2019.

[52] Antonin Smid, Ruolin Wang, and Tomas Cerny. Case study on data communi-
cation in microservice architecture. In Proceedings of the Conference on Research
in Adaptive and Convergent Systems, pages 261–267, 2019.

R. Capuano 133

BIBLIOGRAPHY

[53] Nuno Santos, Carlos E Salgado, Francisco Morais, Mónica Melo, Sara Silva,
Raquel Martins, Marco Pereira, Helena Rodrigues, Ricardo J Machado, Nuno Fer-
reira, et al. A logical architecture design method for microservices architectures.
In Proceedings of the 13th European Conference on Software Architecture-Volume
2, pages 145–151, 2019.

[54] Hugo Henrique S da Silva, Glauco de F. Carneiro, and Miguel P Monteiro. An
experience report from the migration of legacy software systems to microservice
based architecture. In 16th International Conference on Information Technology-
New Generations (ITNG 2019), pages 183–189. Springer, 2019.

[55] Adambarage Anuruddha Chathuranga De Alwis, Alistair Barros, Colin Fidge, and
Artem Polyvyanyy. Availability and scalability optimized microservice discovery
from enterprise systems. In On the Move to Meaningful Internet Systems: OTM
2019 Conferences: Confederated International Conferences: CoopIS, ODBASE,
C&TC 2019, Rhodes, Greece, October 21–25, 2019, Proceedings, pages 496–514.
Springer, 2019.

[56] Christoph Schröer, Sven Wittfoth, and Jorge Marx Gómez. A process model for
microservices design and identification. In 2021 IEEE 18th International Confer-
ence on Software Architecture Companion (ICSA-C), pages 1–8. IEEE, 2021.

[57] Mohsen Ahmadvand and Amjad Ibrahim. Requirements reconciliation for scalable
and secure microservice (de) composition. In 2016 IEEE 24th International Re-
quirements Engineering Conference Workshops (REW), pages 68–73. IEEE, 2016.

[58] Rui Chen, Shanshan Li, and Zheng Li. From monolith to microservices: A
dataflow-driven approach. In 2017 24th Asia-Pacific Software Engineering Con-
ference (APSEC), pages 466–475. IEEE, 2017.

[59] Genc Mazlami, Jürgen Cito, and Philipp Leitner. Extraction of microservices
from monolithic software architectures. In 2017 IEEE International Conference
on Web Services (ICWS), pages 524–531. IEEE, 2017.

[60] Sinan Eski and Feza Buzluca. An automatic extraction approach: Transition to
microservices architecture from monolithic application. In Proceedings of the 19th
International Conference on Agile Software Development: Companion, pages 1–6,
2018.

[61] Manabu Kamimura, Keisuke Yano, Tomomi Hatano, and Akihiko Matsuo. Ex-
tracting candidates of microservices from monolithic application code. In 2018
25th Asia-Pacific Software Engineering Conference (APSEC), pages 571–580.
IEEE, 2018.

R. Capuano 134

BIBLIOGRAPHY

[62] Adambarage Anuruddha Chathuranga De Alwis, Alistair Barros, Artem
Polyvyanyy, and Colin Fidge. Function-splitting heuristics for discovery of mi-
croservices in enterprise systems. In Service-Oriented Computing: 16th Interna-
tional Conference, ICSOC 2018, Hangzhou, China, November 12-15, 2018, Pro-
ceedings 16, pages 37–53. Springer, 2018.

[63] Andreas Christoforou, Lambros Odysseos, and Andreas S Andreou. Migration of
software components to microservices: Matching and synthesis. 2019.

[64] Shanshan Li, He Zhang, Zijia Jia, Zheng Li, Cheng Zhang, Jiaqi Li, Qiuya Gao,
Jidong Ge, and Zhihao Shan. A dataflow-driven approach to identifying microser-
vices from monolithic applications. Journal of Systems and Software, 157:110380,
2019.

[65] Omar Al-Debagy and Peter Martinek. A new decomposition method for design-
ing microservices. Periodica Polytechnica Electrical Engineering and Computer
Science, 63(4):274–281, 2019.

[66] Islem Saidani, Ali Ouni, Mohamed Wiem Mkaouer, and Aymen Saied. Towards
automated microservices extraction using muti-objective evolutionary search.
In Service-Oriented Computing: 17th International Conference, ICSOC 2019,
Toulouse, France, October 28–31, 2019, Proceedings 17, pages 58–63. Springer,
2019.

[67] Ilaria Pigazzini, Francesca Arcelli Fontana, and Andrea Maggioni. Tool sup-
port for the migration to microservice architecture: An industrial case study. In
Software Architecture: 13th European Conference, ECSA 2019, Paris, France,
September 9–13, 2019, Proceedings 13, pages 247–263. Springer, 2019.

[68] Luís Nunes, Nuno Santos, and António Rito Silva. From a monolith to a microser-
vices architecture: An approach based on transactional contexts. In Software
Architecture: 13th European Conference, ECSA 2019, Paris, France, September
9–13, 2019, Proceedings 13, pages 37–52. Springer, 2019.

[69] Davide Taibi and Kari Systä. From monolithic systems to microservices: A de-
composition framework based on process mining. 2019.

[70] Hugo HOS da Silva, Glauco F de Carneiro, and Miguel P Monteiro. Towards
a roadmap for the migration of legacy software systems to a microservice based
architecture. In CLOSER 2019-Proceedings of the 9th International Conference
on Cloud Computing and Services Science, pages 37–47. SciTePress-Science and
Technology Publications, 2019.

[71] Alexander Krause, Christian Zirkelbach, Wilhelm Hasselbring, Stephan Lenga,
and Dan Kröger. Microservice decomposition via static and dynamic analysis of

R. Capuano 135

BIBLIOGRAPHY

the monolith. In 2020 IEEE International Conference on Software Architecture
Companion (ICSA-C), pages 9–16. IEEE, 2020.

[72] Marx Haron Gomes Barbosa and Paulo Henrique M Maia. Towards identifying
microservice candidates from business rules implemented in stored procedures. In
2020 IEEE International Conference on Software Architecture Companion (ICSA-
C), pages 41–48. IEEE, 2020.

[73] Tiago Matias, Filipe F Correia, Jonas Fritzsch, Justus Bogner, Hugo S Ferreira,
and André Restivo. Determining microservice boundaries: a case study using
static and dynamic software analysis. In Software Architecture: 14th European
Conference, ECSA 2020, L’Aquila, Italy, September 14–18, 2020, Proceedings 14,
pages 315–332. Springer, 2020.

[74] Justas Kazanavičius and Dalius Mažeika. Analysis of legacy monolithic software
decomposition into microservices. 2020.

[75] Omar Al-Debagy and Péter Martinek. Extracting microservices’ candidates from
monolithic applications: interface analysis and evaluation metrics approach. In
2020 IEEE 15th international conference of system of systems engineering (SoSE),
pages 289–294. IEEE, 2020.

[76] Luiz Carvalho, Alessandro Garcia, Thelma Elita Colanzi, Wesley KG Assunção,
Juliana Alves Pereira, Baldoino Fonseca, Márcio Ribeiro, Maria Julia de Lima,
and Carlos Lucena. On the performance and adoption of search-based microservice
identification with tomicroservices. In 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 569–580. IEEE, 2020.

[77] Chia-Yu Li, Shang-Pin Ma, and Tsung-Wen Lu. Microservice migration using
strangler fig pattern: A case study on the green button system. In 2020 Interna-
tional Computer Symposium (ICS), pages 519–524. IEEE, 2020.

[78] Mohamed Daoud, Asmae El Mezouari, Noura Faci, Djamal Benslimane, Zakaria
Maamar, and Aziz El Fazziki. Automatic microservices identification from a set of
business processes. In Smart Applications and Data Analysis: Third International
Conference, SADASC 2020, Marrakesh, Morocco, June 25–26, 2020, Proceedings
3, pages 299–315. Springer, 2020.

[79] Wuxia Jin, Ting Liu, Yuanfang Cai, Rick Kazman, Ran Mo, and Qinghua
Zheng. Service candidate identification from monolithic systems based on exe-
cution traces. IEEE Transactions on Software Engineering, 47(5):987–1007, 2019.

[80] Miguel Brito, Jácome Cunha, and João Saraiva. Identification of microservices
from monolithic applications through topic modelling. In Proceedings of the 36th
Annual ACM Symposium on Applied Computing, pages 1409–1418, 2021.

R. Capuano 136

BIBLIOGRAPHY

[81] Wesley KG Assunção, Thelma Elita Colanzi, Luiz Carvalho, Juliana Alves Pereira,
Alessandro Garcia, Maria Julia de Lima, and Carlos Lucena. A multi-criteria
strategy for redesigning legacy features as microservices: An industrial case study.
In 2021 IEEE International conference on software analysis, evolution and reengi-
neering (SANER), pages 377–387. IEEE, 2021.

[82] Mayank Mishra, Shruti Kunde, and Manoj Nambiar. Cracking the monolith:
Challenges in data transitioning to cloud native architectures. In Proceedings of
the 12th European Conference on Software Architecture: Companion Proceedings,
pages 1–4, 2018.

[83] Alex Kaplunovich. Tolambda–automatic path to serverless architectures. In
2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR), pages 1–8.
IEEE, 2019.

[84] Teguh Prasandy, Dina Fitria Murad, Taufik Darwis, et al. Migrating application
from monolith to microservices. In 2020 International Conference on Information
Management and Technology (ICIMTech), pages 726–731. IEEE, 2020.

[85] Anup K Kalia, Jin Xiao, Chen Lin, Saurabh Sinha, John Rofrano, Maja Vukovic,
and Debasish Banerjee. Mono2micro: an ai-based toolchain for evolving mono-
lithic enterprise applications to a microservice architecture. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1606–1610, 2020.

[86] Athar Sheikh and Anisha Bs. Decomposing monolithic systems to microservices.
In 2020 3rd International Conference on Computer and Informatics Engineering
(IC2IE), pages 478–481. IEEE, 2020.

[87] Zhongshan Ren, Wei Wang, Guoquan Wu, Chushu Gao, Wei Chen, Jun Wei, and
Tao Huang. Migrating web applications from monolithic structure to microservices
architecture. In Proceedings of the 10th Asia-Pacific Symposium on Internetware,
pages 1–10, 2018.

[88] Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Christophe Dony,
and Rahina Oumarou Mahamane. Re-architecting oo software into microservices:
A quality-centred approach. In Service-Oriented and Cloud Computing: 7th IFIP
WG 2.14 European Conference, ESOCC 2018, Como, Italy, September 12-14,
2018, Proceedings 7, pages 65–73. Springer, 2018.

[89] Atsushi Shimoda and Tsubasa Sunada. Priority order determination method for
extracting services stepwise from monolithic system. In 2018 7th International
Congress on Advanced Applied Informatics (IIAI-AAI), pages 805–810. IEEE,
2018.

R. Capuano 137

BIBLIOGRAPHY

[90] Alireza Goli, Omid Hajihassani, Hamzeh Khazaei, Omid Ardakanian, Moe
Rashidi, and Tyler Dauphinee. Migrating from monolithic to serverless: A fin-
tech case study. In Companion of the ACM/SPEC International Conference on
Performance Engineering, pages 20–25, 2020.

[91] Fola-Dami Eyitemi and Stephan Reiff-Marganiec. System decomposition to opti-
mize functionality distribution in microservices with rule based approach. In 2020
IEEE International Conference on Service Oriented Systems Engineering (SOSE),
pages 65–71. IEEE, 2020.

[92] Yukun Zhang, Bo Liu, Liyun Dai, Kang Chen, and Xuelian Cao. Automated
microservice identification in legacy systems with functional and non-functional
metrics. In 2020 IEEE international conference on software architecture (ICSA),
pages 135–145. IEEE, 2020.

[93] Jakob Löhnertz and Ana-Maria Oprescu. Steinmetz: Toward automatic decom-
position of monolithic software into microservices. In SATToSE, 2020.

[94] Deepali Bajaj, Urmil Bharti, Anita Goel, and SC Gupta. Partial migration for re-
architecting a cloud native monolithic application into microservices and faas. In
Information, Communication and Computing Technology: 5th International Con-
ference, ICICCT 2020, New Delhi, India, May 9, 2020, Revised Selected Papers,
pages 111–124. Springer, 2020.

[95] Dilshodbek Kuryazov, Dilshod Jabborov, and Bekmurod Khujamuratov. Towards
decomposing monolithic applications into microservices. In 2020 IEEE 14th In-
ternational Conference on Application of Information and Communication Tech-
nologies (AICT), pages 1–4. IEEE, 2020.

[96] Holger Knoche. Sustaining runtime performance while incrementally modernizing
transactional monolithic software towards microservices. In Proceedings of the
7th ACM/SPEC on International Conference on Performance Engineering, pages
121–124, 2016.

[97] Chen-Yuan Fan and Shang-Pin Ma. Migrating monolithic mobile application
to microservice architecture: An experiment report. In 2017 ieee international
conference on ai & mobile services (aims), pages 109–112. IEEE, 2017.

[98] Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Rahina Oumarou
Mahamane, Pascal Zaragoza, and Christophe Dony. From monolithic architecture
style to microservice one based on a semi-automatic approach. In 2020 IEEE
International Conference on Software Architecture (ICSA), pages 157–168. IEEE,
2020.

R. Capuano 138

BIBLIOGRAPHY

[99] Heimo Stranner., Stefan Strobl., Mario Bernhart., and Thomas Grechenig. Mi-
croservice decompositon: A case study of a large industrial software migration
in the automotive industry. In Proceedings of the 15th International Conference
on Evaluation of Novel Approaches to Software Engineering - ENASE,, pages
498–505, 2020. doi: 10.5220/0009564604980505.

[100] Chang-ai Sun, Jing Wang, Jing Guo, Zhen Wang, and Li Duan. A reconfig-
urable microservice-based migration technique for iot systems. In Service-Oriented
Computing–ICSOC 2019 Workshops: WESOACS, ASOCA, ISYCC, TBCE, and
STRAPS, Toulouse, France, October 28–31, 2019, Revised Selected Papers 17,
pages 142–155. Springer, 2020.

[101] Gabor Kecskemeti, Attila Kertesz, and Attila Csaba Marosi. Towards a methodol-
ogy to form microservices from monolithic ones. In Euro-Par 2016: Parallel Pro-
cessing Workshops: Euro-Par 2016 International Workshops, Grenoble, France,
August 24-26, 2016, Revised Selected Papers, pages 284–295. Springer, 2017.

[102] Davide Taibi and Kari Systä. A decomposition and metric-based evaluation frame-
work for microservices. In Cloud Computing and Services Science: 9th Inter-
national Conference, CLOSER 2019, Heraklion, Crete, Greece, May 2–4, 2019,
Revised Selected Papers 9, pages 133–149. Springer, 2020.

[103] Luciano Baresi, Martin Garriga, and Alan De Renzis. Microservices identification
through interface analysis. In Service-Oriented and Cloud Computing: 6th IFIP
WG 2.14 European Conference, ESOCC 2017, Oslo, Norway, September 27-29,
2017, Proceedings 6, pages 19–33. Springer, 2017.

[104] Gojko Adzic and Robert Chatley. Serverless computing: economic and architec-
tural impact. In Proceedings of the 2017 11th joint meeting on foundations of
software engineering, pages 884–889, 2017.

[105] Jean-Philippe Gouigoux and Dalila Tamzalit. From monolith to microservices:
Lessons learned on an industrial migration to a web oriented architecture. In
2017 IEEE international conference on software architecture workshops (ICSAW),
pages 62–65. IEEE, 2017.

[106] Michel Cojocaru, Alexandru Uta, and Ana-Maria Oprescu. Microvalid: A val-
idation framework for automatically decomposed microservices. In 2019 IEEE
International Conference on Cloud Computing Technology and Science (Cloud-
Com), pages 78–86. IEEE, 2019.

[107] Andrea Janes and Barbara Russo. Automatic performance monitoring and re-
gression testing during the transition from monolith to microservices. In 2019

R. Capuano 139

BIBLIOGRAPHY

IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), 2019. doi: 10.1109/ISSREW.2019.00067.

[108] Luiz Carvalho, Alessandro Garcia, Thelma Elita Colanzi, Wesley K. G. Assunção,
Maria Julia Lima, Baldoino Fonseca, Mãrcio Ribeiro, and Carlos Lucena. Search-
based many-criteria identification of microservices from legacy systems. In Pro-
ceedings of the 2020 Genetic and Evolutionary Computation Conference Compan-
ion, 2020. doi: 10.1145/3377929.3390030.

[109] C Trubiani. Automated generation of architectural feedback from software per-
formance analysis results. Unpublished PhD thesis). Universita di L’Aquila.
Retrieved from http://www. di. univaq. it/catia. trubiani/phDthesis/PhDThesis-
CatiaTrubiani. pdf, 2011.

[110] Connie U Smith and Lloyd G Williams. Software performance antipatterns. In
Proceedings of the 2nd international workshop on Software and performance, pages
127–136, 2000.

[111] Connie U Smith and Lloyd G Williams. New software performance antipatterns:
More ways to shoot yourself in the foot. In Int. CMG Conference, pages 667–674,
2002.

[112] Connie U Smith and Lloyd G Williams. Software performance antipatterns; com-
mon performance problems and their solutions. In Int. CMG Conference, pages
797–806. Citeseer, 2001.

[113] Mary Jean Harrold and Gregg Rothermel. A coherent family of analyzable graph-
ical representations for object-oriented software. Department of Computer and
Information Science, The Ohio State University, Technical Report OSU-CISRC-
11/96-TR60, 1996.

[114] Loren Larsen and Mary Jean Harrold. Slicing object-oriented software. In Pro-
ceedings of IEEE 18th international conference on software engineering, pages
495–505. IEEE, 1996.

[115] Brian Mallo, John D McGregor, Anand Krishnaswamy, and Murali Medikonda.
An extensible program representation for object-oriented software. ACM Sigplan
Notices, 29(12):38–47, 1994.

[116] Rothermel and Harrold. Selecting regression tests for object-oriented software.
In Proceedings 1994 International Conference on Software Maintenance, pages
14–25. IEEE, 1994.

[117] ESF Najumudheen, Rajib Mall, and Debasis Samanta. A dependence graph-
based representation for test coverage analysis of object-oriented programs. ACM
SIGSOFT Software Engineering Notes, 34(2):1–8, 2009.

R. Capuano 140

BIBLIOGRAPHY

[118] ESF Najumudheen, Rajib Mall, and Debasis Samanta. A dependence represen-
tation for coverage testing of object-oriented programs. J. Object Technol., 9(4):
1–23, 2010.

[119] Jian-Jun Zhao. Applying program dependence analysis to java software. 1998.

[120] Neil Walkinshaw, Marc Roper, and Murray Wood. The java system dependence
graph. In Proceedings Third IEEE International Workshop on Source Code Anal-
ysis and Manipulation, pages 55–64. IEEE, 2003.

[121] Gang Shu, Boya Sun, Tim AD Henderson, and Andy Podgurski. Javapdg: A new
platform for program dependence analysis. In 2013 IEEE Sixth International Con-
ference on Software Testing, Verification and Validation, pages 408–415. IEEE,
2013.

[122] Tim AD Henderson and Andy Podgurski. Sampling code clones from program
dependence graphs with graple. In Proceedings of the 2nd international workshop
on software analytics, pages 47–53, 2016.

[123] Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta, Lu-
dovico Iovino, and Amleto Di Salle. Microart: A software architecture recovery
tool for maintaining microservice-based systems. In 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW), pages 298–302. IEEE,
2017.

[124] Vittorio Cortellessa, Daniele Di Pompeo, Vincenzo Stoico, and Michele Tucci.
Software model refactoring driven by performance antipattern detection. ACM
SIGMETRICS Performance Evaluation Review, 49(4):53–58, 2022.

[125] Yasser A Khan and Mohamed El-Attar. Using model transformation to refactor
use case models based on antipatterns. Information systems frontiers, 18:171–204,
2016.

[126] Jens Dietrich, Catherine McCartin, Ewan Tempero, and Syed M Ali Shah. On
the existence of high-impact refactoring opportunities in programs. In Proceedings
of the Thirty-fifth Australasian Computer Science Conference-Volume 122, pages
37–48, 2012.

[127] Catia Trubiani, Alexander Bran, André van Hoorn, Alberto Avritzer, and Hol-
ger Knoche. Exploiting load testing and profiling for performance antipattern
detection. Information and Software Technology, 95:329–345, 2018.

[128] Catia Trubiani, Riccardo Pinciroli, Andrea Biaggi, and Francesca Arcelli Fontana.
Automated detection of software performance antipatterns in java-based applica-
tions. IEEE Transactions on Software Engineering, 2023.

R. Capuano 141

BIBLIOGRAPHY

[129] Raed Shatnawi and Wei Li. An empirical assessment of refactoring impact on soft-
ware quality using a hierarchical quality model. International Journal of Software
Engineering and Its Applications, 5(4):127–149, 2011.

[130] Mohammad Alshayeb. Empirical investigation of refactoring effect on software
quality. Information and software technology, 51(9):1319–1326, 2009.

[131] Konstantinos Stroggylos and Diomidis Spinellis. Refactoring–does it improve soft-
ware quality? In Fifth International Workshop on Software Quality (WoSQ’07:
ICSE Workshops 2007), pages 10–10. IEEE, 2007.

[132] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and
Fabio Palomba. An experimental investigation on the innate relationship between
quality and refactoring. Journal of Systems and Software, 107:1–14, 2015.

[133] Antonio Brogi, Davide Neri, and Jacopo Soldani. Freshening the air in mi-
croservices: resolving architectural smells via refactoring. In Service-Oriented
Computing–ICSOC 2019 Workshops: WESOACS, ASOCA, ISYCC, TBCE, and
STRAPS, Toulouse, France, October 28–31, 2019, Revised Selected Papers 17,
pages 17–29. Springer, 2020.

[134] Rafik Tighilt, Manel Abdellatif, Naouel Moha, Hafedh Mili, Ghizlane El Bous-
saidi, Jean Privat, and Yann-Gaël Guéhéneuc. On the study of microservices
antipatterns: A catalog proposal. In Proceedings of the European Conference on
Pattern Languages of Programs 2020, pages 1–13, 2020.

[135] Claus Pahl and Pooyan Jamshidi. Microservices: A systematic mapping study.
CLOSER (1), pages 137–146, 2016.

[136] Robert B Fetter and Jean L Freeman. Diagnosis related groups: product line man-
agement within hospitals. Academy of management Review, 11(1):41–54, 1986.

[137] Julie A Schoenman, Janet P Sutton, Anne Elixhauser, and Denise Love. Un-
derstanding and enhancing the value of hospital discharge data. Medical Care
Research and Review, 64(4):449–468, 2007.

[138] Robert B Fetter, Youngsoo Shin, Jean L Freeman, Richard F Averill, and John D
Thompson. Case mix definition by diagnosis-related groups. Medical care, 18(2):
i–53, 1980.

[139] Connie U Smith and Lloyd G Williams. More new software performance antipat-
terns: Even more ways to shoot yourself in the foot. In Computer Measurement
Group Conference, pages 717–725. Citeseer, 2003.

R. Capuano 142

BIBLIOGRAPHY

[140] C. Aucion. How anti-patterns can stifle microservices adoption in the
enterprise., 2018. URL https://www.appdynamics.com/blog/engineering/

how-to-avoid-antipatterns-with-microservices/.

[141] J. Kanjilal. 4 microservices antipatterns that ruin migration., 2020.
URL https://www.techtarget.com/searchapparchitecture/tip/

4-deadly-microservices-antipatterns-that-ruin-migration.

[142] J. Kanjilal. Overcoming the common microservices anti-patterns.,
2021. URL https://www.appdynamics.com/blog/engineering/

how-to-avoid-antipatterns-with-microservices/.

[143] Shuai Jiang and Huaxin Mu. Design patterns in object oriented analysis and
design. In 2011 IEEE 2nd International Conference on Software Engineering and
Service Science, pages 326–329. IEEE, 2011.

[144] Erich Gamma, Ralph Johnson, Richard Helm, Ralph E Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH, 1995.

[145] Narendra Babu Pamula, K Jairam, and B Rajesh. Cache-aside approach for
cloud design pattern. International Journal of Computer Science and Information
Technologies, 5(2):1423–1426, 2014.

[146] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Microservices anti-patterns:
A taxonomy. pages 111–128, 2020.

[147] Rafik Tighilt, Manel Abdellatif, Naouel Moha, Hafedh Mili, Ghizlane El Bous-
saidi, Jean Privat, and Yann-Gaël Guéhéneuc. On the study of microservices
antipatterns: A catalog proposal. In Proceedings of the European Conference on
Pattern Languages of Programs 2020, EuroPLoP ’20. Association for Computing
Machinery, 2020.

[148] Andreas Grabner. Locating common micro service performance anti-
patterns. InfoQ, 2016. URL https://www.infoq.com/articles/

Diagnose-Microservice-Performance-Anti-Patterns.

R. Capuano 143

https://www.appdynamics.com/blog/engineering/how-to-avoid-antipatterns-with-microservices/
https://www.appdynamics.com/blog/engineering/how-to-avoid-antipatterns-with-microservices/
https://www.techtarget.com/searchapparchitecture/tip/4-deadly-microservices-antipatterns-that-ruin-migration
https://www.techtarget.com/searchapparchitecture/tip/4-deadly-microservices-antipatterns-that-ruin-migration
https://www.appdynamics.com/blog/engineering/how-to-avoid-antipatterns-with-microservices/
https://www.appdynamics.com/blog/engineering/how-to-avoid-antipatterns-with-microservices/
https://www.infoq.com/articles/Diagnose-Microservice-Performance-Anti-Patterns
https://www.infoq.com/articles/Diagnose-Microservice-Performance-Anti-Patterns

Appendix A

SLR on Quality-Driven Migration
to Microservices: Parameters

A.1 General parameters and Values

ID
Attribute
Name

Type Description

GEN-1 ID Open Unique Identifier of the study.

GEN-2 Item Type Single
Type of the study associated by the
Digital Library.

GEN-3 Title Open Title of the downloaded study.
GEN-4 Authors Open List of authors of the study.

GEN-5 Institution Open
List of the institutions of the study
as reported in the article itself.

GEN-6 Venue Open
Acronym and complete name of the
venue in which the study has been
published.

GEN-7 Page Count Open Number of pages of the study.

GEN-8 Keywords Open
Keywords as they appear in the
downloaded study or in the Digital
Library.

GEN-9 Digital Library Multiple Source library of the study.
GEN-10 DOI Open DOI of the paper.

Table A.1: SLR: General Parmeters and Descriptions.

144

A.2. RQ1-related Parameters and Values

A.2 RQ1-related Parameters and Values

ID Attribute Name Type Description

MT-1 Publication Year Single
Year of publication of the
study as reported by the Dig-
ital Library.

MT-2 Old Software Architecture Open
The architectural style of the
system to be migrated.

MT-3 New Architecture Multiple

MT-4 Old Programming Language Open
The programming language of
the system to be migrated.

MT-5 Application Domain Open
Describe the domain of the
system that generates the ap-
proach.

Table A.2: SLR: RQ1 Parmeters and Descriptions.

A.3 RQ2-related Parameters and Values

ID Attribute Name Type Description

QA-1 Quality Attributes Open
List of Quality Attributes consid-
ered in the work.

QA-2 QA in Migration Phase Multiple
Phase of the migration in which
Quality Attributes are considered.

Table A.3: SLR: RQ2 Parmeters and Descriptions.

QA-2 Value Description

Comprehension
Quality Attributes are considered in the Comprehension
Phase

MS Identification
Quality Attributes are considered in the Micoservices Iden-
tification Phase

MS Packaging Quality Attributes are considered in the Packaging Phase

MS Assessment
Quality Attributes are considered after the microservices im-
plementation

Table A.4: SLR: QA-2 - Quality Attributes in Migration Phase Values.

R. Capuano 145

A.4. RQ3-related Parameters and Values

A.4 RQ3-related Parameters and Values

ID Attribute Name Type Description

MS-1
System Comprehansion
Approach

Multiple
Describes the techniques used for
the comprehension of the system.

MS-2
System Comprehansion
Tools

Open
Describes the tools used for the
comprehension of the system.

MS-3
MS Identification Ap-
proach

Multiple
Describes the techniques used for
the microservices identification.

MS-4 MS Identification Tools Open
Describes the tools used for the
microservices identification.

MS-5
System Packaging Ap-
proach

Open
Describes the techniques used for
the packaging of the system.

MS-6 System Packaging Tools Open
Describes the tools used for the
packaging of the system.

Table A.5: SLR: RQ3 Parmeters and Descriptions.

MS-1 Value Description

Static Analysis
The comprehension has been done analysing: code, depen-
dences, classes, methods, packages, files, directories, text
analysis

Dynamic Analysis
The comprehension has been done analysing: logs, traces,
use case testing, user experience testing, user stories testing

Model-Driven
Analysis

The comprehension has been done using models and meta-
models of the system

Data-Driven
Analysis

The comprehension has been done analysing data

Domain-Driven
Analysis

The comprehension has been done analysing: boundend con-
text, business process, requirements analysis

Table A.6: SLR: MS-1 - System Comprehension Approach Values

R. Capuano 146

A.5. Other Parameters and Values

MS-3 Value Description

Static Analysis
The microservices identification approach is based on: code,
dependences, classes, methods, packages, files, directories,
text analysis

Dynamic Analysis
The microservices identification approach is based on: logs,
traces, use case testing, user experience testing, user stories
testing

Model-Driven
Analysis

The microservices identification approach is based on: mod-
els and meta-models of the system

Data-Driven
Analysis

The microservices identification approach is based on data

Domain-Driven
Analysis

The microservices identification approach is based on:
boundend context, business process, requirements analysis

Machine Learn-
ing/Optimization
Driven

The microservices identification approach is based on clus-
tering techniques

Table A.7: SLR: MS-3 - System Comprehension Approach Values

A.5 Other Parameters and Values

ID Attribute Name Type Description

OP-1 Main Topic Single
Describes the main topic of the
study.

OP-2 Evaluation Single
Describes if the approach shown in
the study has been evaluated.

OP-3 Automated Process Single
Describes if the migration strategy
is automated in the study.

OP-4 Recommendation Single

Table A.8: SLR: Other Parmeters and Descriptions.

R. Capuano 147

A.5. Other Parameters and Values

OP1 Value Description

Migration to Mi-
croservices

The paper refers to migration to microservices

Migration to
Cloud

The paper refers to migration to cloud

Migration to
Microservices and
Quality

The paper refers to migration to microservices considering
quality attributes in the comprehension or in the microser-
vices identification phase

Migration to
Cloud and Qual-
ity

The paper refers to migration to cloud considering also qual-
ity aspects

Table A.9: SLR: OP1 - Main Topic - Values

OP2 Value Description

Empirical Authors shows the approach for migration

Case Study
In two cases: i) authors show the approach and apply it
on a case study; ii) authors show the lesson learned from
migration

Table A.10: SLR: OP2 - Validation Type - Values

R. Capuano 148

Appendix B

Antipatterns Detected in the
QuaniSDO Software in BIM Italia

B.1 Antipatterns Detected on the Monolith - Control Func-

tionality

God Class

Description Occurs when there is one (or more) class(es) that performs
most of the work. The associated other classes are relegated
to minor, supporting role. A variation is described as a class
that contains all the system’s data [139].

Causes Poorly distributed system intelligence, i.e. a poor design
that splits data from the relative processing logic [110].

Identification The responsibility to perform the check is assigned mostly
to two classes.

Table B.1: God Class - Control Functionality - Monolith

149

B.1. Antipatterns Detected on the Monolith - Control Functionality

Circuitous Treasure Hunt

Description Occurs when an object must look in several places to find the
information that it needs. If a large amount of processing is
required for each “look,” performance will suffer [112].

Causes Use of an inadequate architecture. Subdivision of tasks and
structures into small parts that could be merged into the
same structure [110].

Identification Each check performed needs data and structures that are
scattered in different parts of the code.

Table B.2: Circuitous Treasure Hunt - Control Functionality - Monolith

Concurrent Processing

Description Occurs when processing cannot make use of available pro-
cessors [139].

Causes i) non-balanced assignment of tasks to processors ii) single-
threaded code [111].

Identification The monolith process the check one HDR at a time. This
causes an increase in response time while more than one
HDR has to be checked with respect to the locar authority
rules.

Table B.3: Concurrent Processing - Control Functionality - Monolith

Pipe and Filter

Description Occurs when the slowest filter in a “pipe and filter” archi-
tecture causes the system to have unacceptable throughput
[139].

Causes There is a stage in a pipeline which is significantly slower
than all the others [111].

Identification Each HDR is filtered more than once based on the check to
be performed to retreive the data required.

Table B.4: Pipe and Filter - Control Functionality - Monolith

R. Capuano 150

B.1. Antipatterns Detected on the Monolith - Control Functionality

Extensive Processing

Description Occurs when extensive processing in general impedes overall
response time [139].

Causes A long running process monopolizes a processor and prevents
a set of other jobs to be executed until it finishes its compu-
tation [111].

Identification The check of each HDR showed an extensive use of CPUs to
retreive the data required.

Table B.5: Extensive Processing - Control Functionality - Monolith

Onle-Lane Bridge

Description Occurs at a point in execution where only one, or a few,
processes may continue to execute concurrently (e.g., when
accessing a database). Other processes are delayed while
they wait for their turn [139].

Causes Concurrent systems when the mechanisms of mutual access
to a shared resource are badly designed [139].

Identification The access to the database is not parallelized.

Table B.6: Onle-Lane Bridge - Control Functionality - Monolith

Excessive Dynamic Allocation

Description Occurs when an application unnecessarily creates and de-
stroys large numbers of objects during its execution [139].

Causes Poor design solutions adopted to address flexibility ("Just-
in-time" approach) [110].

Identification The data structure are created on-the-fly and destroyed once
each query has been performed.

Table B.7: Excessive Dynamic Allocation - Control Functionality - Monolith

R. Capuano 151

B.1. Antipatterns Detected on the Monolith - Control Functionality

Tower of Babel

Description Occurs when processes excessively convert, parse, and trans-
late internal data into a common exchange format [139].

Causes The same information is often translated into an exchange
format (by a sending process) and then parsed and translated
into an internal format (by the receiving process) [139].

Identification The data has been converted at least two times: from data
to DTS and viceversa.

Table B.8: Tower of Babel - Control and Pricing Functionalities - Monolith

The Ramp

Description Occurs when processing time increases as the system is used
[139].

Causes It is due to the growing amount of data the system stores
and, as the time goes on, the data grow and the processing
time required to perform an operation on such data becomes
unacceptable [139].

Identification The control functionality on the monolith suffers from mem-
ory leaks causing a growing memory utilization.

Table B.9: The Ramp - Control Functionality - Monolith

More is Less

Description Occurs when a system spends more time thrashing than ac-
complishing real work because there are too many processes
relative to available resources [139].

Causes i) running too many processes over time causes too much
paging and too much overhead for servicing page faults ii)
too many database connections are created by causing a sig-
nificant performance loss iii) too many internet connections
or too many pooled resources are allowed [139].

Identification For each HDR to be checked, the monolith performs different
database connections causing performance loss.

Table B.10: More is Less - Control Functionality - Monolith

R. Capuano 152

B.2. Antipatterns Detected on the Microservices

B.2 Antipatterns Detected on the Microservices

Data Taffy

Description All services have full access to all objects in the database.
This is also referred as Entangled Data [140, 141]. This
antipatterns is also known as Shared Persistence [146, 147].

Causes Lots of stored procedures, embedded complex queries, and
object relationship managers all accessing the database [142].

Identification The access to data is always complete regardless the invoca-
tion.

Table B.11: Data Taffy - Control and Pricing Functionalities - Microservice

High Service Network Payload

Description Lack of bandwidth in the cloud environment that causes high
latency in the communication [148].

Causes The size of the data transferred between internal service calls
is bigger than the data sent to the user [148].

Identification The data required to perform the checks on a single HDR
are bigger than the data representing the check outcome.

Table B.12: High Service Network Payload - Control Functionality - Microservice

N+1 Service Call

Description Occurs when the results of a service requires an additional
numbers of different calls [148].

Causes The same operation, e.g. db query, is performed more than
once to require all the data needed [148].

Identification Instead of performing a single database request, many dif-
ferent queries are created to retreive data required for each
check on the same HDR.

Table B.13: N+1 Service Call - Control Functionality - Microservice

R. Capuano 153

B.2. Antipatterns Detected on the Microservices

Traffic Jam

Description Occurs when one problem causes a backlog of jobs that pro-
duces wide variability in response time which persists long
after the problem has disappeared [139].

Causes Large amount of work is scheduled within a relatively small
interval. Eg. when a huge number of processes are originated
at approximately the same time [112].

Identification Checks are not bound. This implies that when a check ref-
erences the null pointer, the entire HDR check process slows
down.

Table B.14: Traffic Jam - Control Functionality - Microservice

R. Capuano 154

La borsa di dottorato è stata cofinanziata con risorse del Programma Operativo Nazionale 2014-2020 (CCI

2014IT16M2OP005), Fondo Sociale Europeo, Azione I.1 “Dottorati Innovativi con caratterizzazione industriale”

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Software Modernization
	Microservices
	Migration to Microservices
	Thesis Context
	Thesis Objectives and Contributions
	Thesis Outline

	I Motivations and Background
	Migration to Microservices: an Industrial Perspective
	State of the Art Analysis: the Protocol
	Search Strategy
	Search String Definition
	Library Selection
	Criteria Definition

	Research Quesitons
	Selected Studies
	rqs Generalizzation

	Reported Results
	RQ1: What are the reasons and motivations for companies to migrate from monolithic legacy systems to microservices?
	RQ2: What are the common challenges faced during the migration process to a msa?
	RQ3: What are the strategies and approaches adopted by companies during microservices migration?

	Discussion
	Conclusion

	State-of-the-art in Quality-Driven Migration to Microservices
	Related Work
	Planning the Review
	rqs Definition
	Search Strategy
	Data Extraction Plan

	Conducting the Review
	Search Results
	Data Extraction

	Reporting the Review
	RQ1: What is the trend in system migration to microservices from 2015 till now?
	RQ2: Are there any studies that address the problem of migration to microservices considering the quality aspects?
	RQ3: Which of the three steps for the migration to microservices did the researchers focus on?

	Discussion
	Conclusion

	II Research Contributions
	Quality-Driven Migration Approaches
	Related Work
	Process Objective
	Quality-Driven Process
	Existing System Comprehension
	Microservices Identification and Assessment
	Microservices Packaging
	Summary and Evaluation of the Proposed Process
	Semplification of the Quality-Driven Process

	Conclusion

	Graph-based Software Representation for Antipatterns Detection
	System Representation through Graph
	Type of nodes
	Type of edges
	Implementation

	Antipatterns Mathematical Formulation
	God Class Antipattern
	Circuitous Threasure Hunt Antipattern
	Empty Semi-Truck Antipattern

	Related Work
	Graph-Based Representation of Object-Oriented Projects
	Antipatterns Detection
	Open Challenges of the Approach

	Conclusion

	Quality-Driven Refactoring Approach
	Related Work
	Proposed Quality-Driven Refactoring Process
	Phase 1: Antipatterns Analysis on Monolith and Microservices
	Phase 2: Resolutive Patterns selection
	Phase 3: Code refactoring and assessment
	Phase 4: Microservice deployment or refactoring

	Conclusion

	III Industrial Application
	Case Study: BIM Italia
	Migration to Microservices: Motivations and Planning
	Motivations
	Planning

	The QuaniSDO Software
	The Migration Approach and Performance Issues
	Conclusion

	Quality-Driven Refactoring in BIM Italia
	Control microservice refactoring
	Antipatterns Analysis for the Control Microservice
	Patterns Selection for the Control Microservice
	Control Microservice Refactoring
	Control Microservice: refactoring results

	Pricing microservice refactoring
	Conclusion

	Implementation of the Diagnosis Related Group functionality
	The Diagnosis Related Group Functionality
	Diagnosis Related Group Components
	Equivalence Relationship

	Application of the Approach
	Antipatterns Analysis
	Patterns Selection

	Results Discussion
	Performance Analysis
	Time, Effort and Costs Analysis

	Conclusion

	IV Conclusions
	Conclusions
	Thesis Findings
	Future work
	List of Pubblications

	bibliography
	SLR on Quality-Driven Migration to Microservices: Parameters
	General parameters and Values
	RQ1-related Parameters and Values
	RQ2-related Parameters and Values
	RQ3-related Parameters and Values
	Other Parameters and Values

	Antipatterns Detected in the QuaniSDO Software in BIM Italia
	Antipatterns Detected on the Monolith - Control Functionality
	Antipatterns Detected on the Microservices

