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Local Boundedness for Vector Valued
Minimizers of Anisotropic Functionals

Francesco Leonetti and Elvira Mascolo

Abstract. For variational integrals F(u) = [ f(z, Du) dz defined on vector valued
mappings v :  C R? = RV, we estabhsh some structure conditions on f that enable
us to prove local boundedness for minimizers v € WH1(Q;RY) of F. These struc-
ture conditions are satisfied in three remarkable examples: f(z, Du) = g(z, |Du}),

f(a:,Du) = Zlgj(m’ |uzjl) and f(vau) = a(mv |(u$1? cee 7u$n—1)|) + b(w’ |uzn|)’ for
]:
suitable convex functions ¢t — g(z,t), t — g;(z,t), t = a(z,t) and t — b(z,1).
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1. Introduction

We are concerned with regularity of minimizers of integral functionals

(u) = / f(z, Du(z)) dz W)

where €0 is a bounded open set of R”, n > 2 and Du denotes the gradient of
a vector-valued function u : Q@ — RY. Moreover f : Q x RV — [0, +00)
is a Caratheodory function, that is, f(z,z) is measurable with respect to x
and continuous with respect to z. The study includes also weak solutions of
nonlinear elliptic systems

ZD% Hz,Du(z)))=0, a=1,...,N,
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where the vector field a = (a@) : O x RV*" — RN*" i5 the gradient with respect
to z of the function f(z, z), i.e.,

af(z,z) = 7as —(z, z).

We consider minimizers v : & C R™ — R¥ of (1), that is, u € WHH(Q; RY) with
finite energy
F(u) < +o0 (2)

and
Flu) < Flu+ o) (3)

for every ¢ € Wy (Q; RY). In the vectorial case it is usual to look for bounded-
ness of minimizers by assuming some structure condition on f. In fact a coun-
terexample of De Giorgi shows that minimizers and weak solutions of systems
do not need to be bounded, [9]. See also Frehse [13], Necas [30] and Sverak-
Yan [32]. However, in the case where f(:v, z) = |z[P, p > 2, Uhlenbeck proved
in [34] that minimizers are Cu%(Q;RY), a result that was later extended by
Tolksdorf [33], Fusco-Hutchinson [14], Giaquinta-Modica [18], Acerbi-Fusco [1],
Marcellini [24], Esposito-Leonetti-Mingione [12], Leonetti-Mascolo-Siepe [20],
Marcellini-Papi [25]. As a first step towards regularity we want to analize the
local boundedness of minimizers u. We assume the p, g-growth condition: There
exist constants ci,cs € (0,+00), ¢2,¢4 € [0,400), p,q € [1,+00) with p < g,
such that

crl|zlP — e < fz,2) < cslz|+ (4)

for almost every z €  and for every z € RV*™. Such a growth assumption is
not strong enough to ensure boundedness even in the scalar case N = 1, when ¢
is large with respect to p (see Giaquinta [17], Marcellini [22,23] and Hong [19]).
This leads to require that ¢ is not too far from p. The previous p, g-growth

arises in the study of
f(z, Du) = g(z,|Dul) (5)

and in the anisotropic energy densities:
f(z, Du) Z 95(, [ug,|), (6)

f(ﬁ, Du) = CL(CL‘, I(ul'l‘r s 7u1n—1)]) + b( |u73n |) (7>

for suitable convex functions ¢t — g¢(z,t), ¢t — g;(z,¢t), t — a(z,t) and t —
b(z,t). In the last years the study of regularity under non standard growth con-
dition has increased. In the scalar case the local boundeness has been proved
by Moscariello-Nania [28] and Fusco-Sbordone [15, 16], by Mascolo-Papi [26]
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and Cianchi [5] with some techniques related with the Orlicz spaces, by Lieber-
man [21] and more recently by Cupini-Marcellini-Mascolo [6]. In the vectorial
case, Dall’Aglio-Mascolo in [8] proved the local boundedness of minimizers of
(5) when g is a N-function with Ay-property. In this paper we give some struc-
ture assumptions in order to garantee the boundedness of minimizers. These
assumptions allow us to give a unified proof (see Theorem 2.1) of local bounde-
ness for (5), (6), and (7), with g, g;, a, b satisfying the A,-property and growth
condition (4), provided p and ¢ are not too far apart. We remark that examples
(6) and (7) are interesting even in the isotropic case p = ¢ since they go away
from Uhlenbeck-structure (5). For the local boundedness of solutions to quasi-
linear systems see Cupini-Marcellini-Mascolo [7]. We remark that boundedness
of minimizers is an important tool in order to achieve higher integrability of Du
as in D’Ottavio [10], Esposito-Leonetti-Mingione [11], Bildhauer-Fuchs [3, 4].
See also Apushkinskaya-Bildhauer-Fuchs [2]. The plan of the paper is the fol-
lowing: In Section 2 we give precise assumptions and state the main theorem.
Section 3 contains preliminary results. In Section 4 we discuss examples (5),
(6) and (7). Section 5 is devoted to the proof of the theorem, which is based
on suitable Caccioppoli estimates and Moser iteration method, [29]. We thank
the referees for useful remarks.

2. Assumptions and result

We consider the functional (1) where u : Q C R* — RY and Q is a bounded
open set, n > 2 and N > 1. Let f: Q x RY*" — [0, 400) be such that: for
almost every z € (2 we have

z— flz,2) is CHRN*™) (8)
for every z € RV*? for any i € {1,...,n} and @ € {1,..., N}, we have
r— f(z,z) and z— aaif(a:,z) are measurable. (9)

2
In the sequel we will write “for a.e. 2” instead of “for almost every ”. Let us
assume:

(H1) Behaviour of g—f: There exist v, L € (0, 4+00), such that for a.e. z € Q, for
every z,v,w € RV*" and ¢t € [-1,1] we have

ZZ 32 z)2f (10)

i=1 a=1

and

ZZ& zo+twl| < S @) + Lfw) (1)

i=1 a=1
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(H2) Monotonicity condition: There exists H € [1, +00) such that for a.e. z €
and for every z,w € RV*™ we have

lzil <Jwi| Vi=1,...,n = f(z,2) < Hf(z,w); (12)

(H3) Sign condition:

n

N Bj N
BRI LIEETD W (1)
=1 a= t =1

for a.e. z € Q, for every z € RV*" and y € RY;
(H4) p, g growth: There exist ¢1,c3 € (0,+00), ¢z, ¢4 € [0, +00), p,q € [1, +00)
with p < g, such that

Cllz’p — e < f(CL’,Z) < C3|Z|q + ¢4, (14)

for a.e. € Q and for every z € RN*",
Let us state our main result:

Theorem 2.1. Let f satisfy (H1)-(H4) and v € WHH(Q; RY) be a minimizer
of F. If

p<n and g¢< PR o (15)
n—=p
then u € LS (Q;RY). Moreover, for every ball B(zg,0), with ¢ < 1 and
B(zy,0) C Q, it results that
|IU/HLDO(B($0’%)) <C (/B( )(1 + |ulP ) dz (16)
ZTo,o0

for a suitable constant C' € (1, +00) depending only on o,n,p,q,v, L, ¢1, s, cs, ¢4.
Remark 2.2. The right hand side in (13), called “indicator function” in the

framework of elliptic systems, seems to play an important role in deriving reg-
ularity properties (see [27] where the isotropic case p = ¢ has been dealt with).

3. Properties of f and Euler-Lagrange system

We first note that positivity of f and coercivity (10) give
f(z,0)=0 (17)

for a.e. x € 2. We have the following
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Proposition 3.1. Let f : Q x RV*™ — [0, +00) satisfy (8) and (11). Then
(@, v+ tw) — f(w,0)] < 2 fl2,v) + Lf (z,w) (18)

and
Fla, v+ tw) < (% + 1) Fla,v) + Lf(z,w) (19)

for a.e. z € Q, for every v,w € RV*™ for any t € [-1,1]. Moreover for
a.e. ¢ €8, for every w € RN*™ for any t € R with |t| < k € N it results that

k41
fa,tw) < 2f(w,w) y (L) (20)
where
E:max{g-+1;L}. (21)

Proof. Let us evaluate the difference

1 n N
flz,v+tw)— f(z,v) :/ Ci[f(a: v+ stw)]ds —/ ZZ Ytwsds
0 =1 a=1
then, using (11) we get
n N
|f(z, v+ tw) — f(z,v)] S/ Zzaa; (z,v + stw)twy| ds
i=1 a=1 B
< [ [5rtwo)+ Litww)] s (22)

— [g_f(:p,v) +Lf(m,w)} 2]
< 2 f(@,v) + Lz, ).

Thus (18) holds true and (19) follows at once. Let L be as in (21), then (19)
gives

flz,v+tw) < L[f(z,v) + f(z,w)] (23)
for a.e. € Q, for every v,w € R¥*"* for any ¢t € [~1,1]. When v = 0, since
f(z,0) =0, we get

flz tw) < Lf(z,w), (24)

and for £ = —1 we have
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for a.e. z € Q, for every w € RV*™. Assume that s € (1,2],then0 <s—1<1
and we can use (23) as follows

f(z,sw) = flz,w+ (s — Dw) < L[f(z,w) + f(z,w)] = 2Lf(z, w).

Iterating the procedure, for every k € N, for any s € (k,k + 1], for a.e. z € Q
and for every w € RV*™ we have

k
flz,sw) < 2f(z,w Z (26)
7=1
Now, if k € Nand ¢ € [~(k + 1), —k), then —t € (k, k+1] and we can use (25),

(26) as follows f(z,tw) = f(z, —(—t)w) < Lf(z, (—t)w) < 2Lf(z,w) ZJ=1(L)
= 2f(z,w) Y51 (L) so that

k+1
f @ tw) < 2f(z,w) > (L)’ (27)
i=1
if ¢ € [~(k+1),—k). Inequalities (24), (26) and (27) merge into (20). O

Remark 3.2. Left hand side of (14) gives that

0< f(z,z) when |27 >%
1

(28)

for a.e. z € Q2. By means of (28), (17) and (19) with v = 0 and ¢t = 1, we get
0< flz,2) < (¥+1) f(z,0)+ Lf(z,2) = Lf(x,2) so that 1 < L. On the other
hand (28), (10) and (11) with v =0, w = z and ¢ = 1 imply

0<yf“<zzaa )28 < 5/(@,0) + Lf(z,2) = Lf(z,2)

i=1 a=1
then
v<L. (29)

Previous properties of f allow us to show that minimizers of (1) satisfy the
Euler system as follows.

Theorem 3.3. Let f : Q x RY*" — [0, +00) satisfy (8), (9) and (11). Let
w e WHHGRY) minimize F so that (2) and (3) hold true. Then u verifies the

Euler system
/ZzaalDuDv dr=0 (30)

=1 a=1

for every v € Wy (Q; RN with, finite energy F(v) < +oo.
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Proof. Note that both u and v have finite energy. Then assumptions (8)
and (11) give additivity property (19), so that

0 < f(z, Du(z) + tDu(z)) < (% + 1) f(z, Du(z)) + Lf(z, Dv(z))

thus u + tv has finite energy for every ¢ € [—1,1]. Moreover, assumption (11)
with ¢t = 0 ensures that

wézzaaz])u v*(z) € LYR).

i=1 a=1

Let us set ¢(t) = F(u+tv). Then ¢ : [-1,1] = R and ¢(0) = minj_1 ;) ¢. We

claim that

zla-—

(31)

If so, since ¢ achieves its minumum value at ¢ = 0, then ¢’(0) = 0 and (30)
follows at once. Let us prove claim (31). Observe that

qS(t) f (z, Du+tDv) — f(z, Du) i (32)
A
and
n N
%1_1}(‘)— f(z, Du(z) + tDv(x)) — f(z, Du(z Z 681; », Du(#)) D ().

i=1 a=1

On the other hand assumption (11) gives us (22) and we get

D tD - flz, D

since = — f(z, Du(z)) € LY(Q) and x — f(z, Dv(x)) € L'(£2), then we can
pass to limit as ¢t — 0 under the integral sign in (32) and (31) is proved. This
ends the proof of Theorem 3.3. O
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4. Examples
In this section we give some densities f verifing assumptions (H1)—(H3).
4.1. Notations and preliminaries. We recall properties of generalized N-

functions of Aj-class ([31]). Let g : Q x [0,-+00) — [0,+00) be a generalized
N-function, i.e., for a.e. z € Q,

t — g(z,t) is convex, increasing and C*([0, +00)), (33)
dg .
é—t-(a:,()) =0=g(z,0) < g(z,t) HfO0<t. (34)
Moreover, for every ¢ € [0, +00),
9g
z—g(z,t) and =z — E(T, t) are measurable. (35)

In addition, we assume As-property uniformly with respect to z: There exists
a constant kg > 0 such that, for a.e. z € Q,

g(x,2t) < kog(z,t) Vt>0. (36)

Now we recall known properties of function g : 2x [0, +00) — [0, +00) satisfying
(33), (34) and (36), see [31]. Fix = € 2. For every s and ¢ in [0, +-c0) convexity
gives

9
9(x,s) 2 gla,t) + S (@,8)(s — ). (37)
We use s = 0 in (37). Since g(z,0) = 0, it results that
gz, t) < g%(:v,t)t Vi > 0. (38)

We use (37) with s = 2t and Ap-property. We get g(z,t) + Z(x,)(t) <
g(z,2t) < kog(z,t) then

0

—a%(m,t)t < (ks — Dgla,t) Vt>0. (39)
Inequalities (38), (39) and (34) show that 1 < ky—1, then 2 < ky. A careful
inspection shows that 2="£%, cannot happen under our assumptions, then 2 < k.
By iterating inequality (36) we get, for every m € N,

g(z,2™) < ky'g(x,t) YVt >0.

Therefore
In(ko)

gz, M) < ko AT gz, t) VA>1, VE>0
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and for every r,t € [0, +00)

In(k)

gz, rt) < kymax {1, TT@T}g(z, t).

Convexity (33) and Ag-property (36) imply that, for every t1,ts € [0, +00)

1 1 1 1 k
g(‘l‘,t1+t2) = g(x,Q({—)—tl'lr'étg)) _<_ kgg <$, §t1+~2‘t2> S é(g(m,tl)-%-g(l,tg))

Now we need the following inequality: Let h, f : I C R — [0, +00) be increasing,
then

h(t)f(s) < h(t)f(t) + h(s)f(s) Vt,se€l. (40)

Let us apply (40) with A(t) = 6—9(1 t) and f(s) = s, so that, for t1,ts € [0, +00),
we have

15} 1s)
Iz 10t + Dz, o)t

dg
< < =
0< o (ot < ot Bt

ot

Moreover, (39) allows us to write

dg
ot

9g

ot (l‘,tz)tg < (kZ - 1)(g($7t1) +g(x’t2))’

—(z, 1)t + =

4.2. Example 1. Let us define

f(‘T: Z) = g($, ‘ZD

where g :  x [0, +00) — [0, +00) satisfies (33), (34) and (36). We obtain

24

~
&y

dg

— if 240
O (= B Py 270
i 0 ifz=0,
so that, if z #£ 0,
n N n N
af zi o Og
—-(x, 2) »~ —l == Nzl Z gl = z
>3 gt P= 3 S D = i o Dl 2ate )=

where we used (38) in the inequality. If z = 0 then ;%%(a:, z) =0 =yg(z,0) =
f(z,z). Then (10) holds true with v = 1. In order to verify (11), assume that
2z =v+tw # 0. By means of properties of g, |z| < |v| + |w|, provided € € (0, 1],
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we have
- Lo giw
< P, opful
=z 2]
el =) [a(o. o)+ (2] (41)

< elka = 1) |9(a ol + ) +9 <“'” |EJ)]

i In(ks) '
k k 1\ =@
<elhe=1) | Folo o)+ Foafol) + 4 (1) ol |w|>J

A {f@ e ( 2 ()j f@,w)} |

Since ke > 2 we take € = ?11)/{ € (0,1) and (41) becomes

ZZ wf

% {f(x,v) + (1 +2k;}%)zl> f(:c,w)} . (42)
=1 a=1

When z = v + tw = 0 easily (42) holds true. Then we checked (11) with
21in(ky)
L=1 (1 + 2k, " ) Inequality (13) follows easily. Indeed, if z # 0 we have

ggwll ZZZ?@/ Zyﬁﬁ

i=1 a=1

DS (el
> 0. =

Now we are going to verify (12). If |z| < |w;| for every 4, then |z| < |wl.
Since ¢ — g(=,1) is increasing, we get f(z, z) = g(z,|z]) < g(z, |w]) = f(z,w).
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Thus (12) holds true with H = 1. Note that (8) is verified. If g satisfies also (35)
then (9) is satisfied, too.

4.3. Example 2. Define
f(iE,Z) = Zgj(ma |Z]|)
j=1

where every g; : Q x [0, +00) — [0, +00) satisfies (33), (34) and (36). Note that
Ag-property (36) holds true with the same constant k, for every g;. Then

9gi
a]; (33,2) =t Bt |ZL|
i 0 if z; =0.

164
A

(@, |a)—  if 2 # 0,

Similar arguments to those performed in the above Example 1 on each g, allow
21n(kg)

us to check (10) with v = 1, (11) with L = £ (1 + 2k, ), (13) and (12)

with H = 1. Note that (8) is verified. If, in addition, every g; satisfies also (35)

then (9) is satisfied, too.

4.4. Example 3. We take
f(z,2) = alz, |2.]) + b(z, |27])

where a,b : Q x [0,4+00) — [0, +00) satisfy (33), (34) and (36). Note that the
Ag-property (36) holds true for a and b with the same constant k. Moreover, I,
and * are not empty subsets of {1,...,n} with L, N [* = () and L UT* =

{1,...,n}.
ze={z}:i€l,anda=1,...,N}

and
F={z:ielfanda=1,...,N}L
We get
0 @
8_(;(33, |24]) |Z| if7 €I, and z, # 0,
of 0 if1 €1, and z, = 0,
(9;[»1 (Q), Z) - b &
h pi® Dy eI and 2 20,
0 if7€l"and z* = 0.
By proceeding as in Example 1, separately on a and b, we obtain (10) with
21n(ko)

v=1, (11) with L = £ { 1+ 2k,™* }, (13) and (12) with H = 1. Note that
(8) is verified. When a and b satisfy also (35) then (9) holds true.




368 F. Leonetti and E. Mascolo

Remark 4.1. Now we show a “negative” example in which sign condition (13)
is not fulfilled. When N = n we take

flo,2) = 2P+ (=) = 3 (22 (Zz )

rs=1

Then —a(u) = 228 +2(3 0, 27) 6ia where 8;, = 1 when i = a and §;o = 0
when ¢ 7é . We take z to be a diagonal matrix and y to be the unit vector
in the first direction: z{* = ¢;0,, for suitable constants ¢;,...,t, and y* = 1.
Then we have

Z Y22 =2 [tl—FZt} <0

provided ty =1, to < =2 and t, =0forr=3,...,n

i,0

5. Proof of Theorem 2.1
Let u be a minimizer of (1). We split the proof into several steps.
Step 1. We construct a suitable test function v to be inserted into Euler sys-

tem (30). Let ¢ : [0, +00) — [0, +00) be increasing and C([0, +00)). Moreover
we assume that there exists a constant ¢ € [1, 400) such that

0<¢(t) <& Vteo +o0) (43)
0<¢(t) <é Vte[0,+oo) (44)
0< @)t <é Ytel0 +oo). (45)

Let B, = B(zo,p) and Br = B(zo, 1) be open balls with the same center zg
and radii 0 < p < R < 1, with Bg C Q. We assume that n : R® — R,
neCi(Br) with0<n<1inR" n=1on B, |[Dy| < ﬁ in R™. Note that
0<R—-p<R<1so0 RLMP > 4. Let m > 1. We consider the test function
v=(vl,...,v") defined as follows

v® = p(|ul)un™. (46)

It results that v® € W, (Bg) € Wa'(Q) and

Div*=n"™¢'(Jul) 1{|u|>o}z (Diu®)u®+¢(lul) Diu| +[¢(|ul)u Di(7™)
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where 14(z) = 1if z € A and 14(z) = 0if v ¢ A. We claim that z —
f(z, Du(z)) € LY(). Indeed, (45) gives

2

S / - uﬁ By, m ~\2 2
> ¢(W\)1{|u1>0}2m(l?iu Jutn™ < (6)%|Dyul. (47)
= B=1
Let us set
N
2 = ¢ (Jul)1{ju>0) Z 7™ and wi = cDu”.
B=

Since inequality (47) gives |z;| < |w;|, by assumption (12) and property (20)
with ¢ < k € N we get:

(z &' (Jul) 1{|“|>0}Z| | [(Du?) x uln’ ) < Hf(z,éDu)
(48)

k+1

< 2H f(z,Du) Y (L)"

i=1

Since u has finite energy (2), the positivity of f and inequality (48) ensure that

T — f(x ¢ (Ju(z)) >0y (z i uﬁ(cz
2 fufo)

(2)) x w(z)n™ (@) ) €LH(S) (49)

Moreover, (43) and properties of 1 give 0 < ¢(|u|)y™ < & < k for a suitable
k € N. Then (20) implies f(z,¢(|u|)n™Du) < 2f(z, Du) Zf:ll(L)” and then

z = f(z, ¢(Ju(@) )™ (z) Du(z)) € L(X2). (50)

Finally, again by (43) and (20) we get f(z, ¢([u[)ux D(n™)) < 2f(z,ux D(n™))

SEHL(L)?. Since u has finite energy (2), the left hand side of (14) guarantees

that Du € L?(f2). Sobolev embedding and (15) give us u € LP (Bg) C LI(Bg).
We recall that n = 0 outside Bg. Since f(z,0) = 0, then
flz,ux D(n™)) = f(z,u x D(n™))1p,.

Now we use the right hand side of (14) and the estimate for |Dn|:

4 q
—p) |ul? + C4) 1Bg-
Since ¢ < p*, we have u € LY(Bg) and

z = f(z, ¢(Ju(@))u(z) x D(n™(2))) € LH(Q). (51)
Inequality (19) and (49), (50), (51) give z — f(z, Dv(x)) € L*(Q).

o DO Ly < el x DO+ ey < (com'
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Step 2. For ¢ and 7 as in the previous step we prove that

/B IDuPg(jul)" e < 2Ley < R4Tp)q /B Iupeulds

vey

(52)
+ <2LC4 + f%) o(|u|) dz.
vcy Cy Br
By inserting v = ¢(|u|)un™ into Euler System (30), we get
n N af 3
OZ/{);;BZ? (z, Du)Dyw® dx
n N af N uﬂ
- /Q E;I ; gae (DU (U)o ; Dy do
n N 6f .
# [ 203 Sete De() Oy s
n N 6]” . -
# 323 e P D)
= (A1) + (A2) + (43).
Thus
(A1) + (A2) = —(As). (53)

We can use assumption (13) with z = Du(z) and y = u(z) in such a way that
0 < (A;p). Coercivity assumption (10) with z = Du(z) gives:

v / £ (2, Dw)g(ful)n™dz < (A3).

We apply (11) with v = Du(z), t = 0 and w = [u(z) x Dn(x)]Jmn~!(z) as follows

n N

—(4s) = /{n>0} - ZZ o1 (z, Du)u*(Dm)n~ me(|u|)n™dx

0z%
;

i=1 a=1

<5 [ fle. Du)oulynds + L/{M} £z fu x D™ (ful ™ de.

These inequalities can be inserted into (53) and we get the following Caccioppoli
estimate

5 /@ Dwsuda < 1[G fux Dajm Yoo ds. (54
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The right hand side of growth assumption (14) allows us to write
| #alux Do o(ful do
{n>0}
< [ feallu x Dalm ™y + e ful™ da
{n>0}

= [ festleiDatem s g{fu) + capl )
{n>0}

= (As).
By choosing m = ¢ + 1, since 0 <7 < 1, we have

(Ag) < L[Cs(IUIqanlqm"QS(IUI) + cag(lul)n™] de.

The left hand side of growth assumption (14) allows us to get

AMWW-MMWWMSLHMMMWWWm

Thus Caccioppoli inequality (54) gives

v
2 [leslDul? ~cal(ul)ds < L f es(lult Dalomeaal) + caplful)nlds
Q Q
so that
2Lcym? 2Lcy
[1ourotuanas < 225 [ upepyitg(udo+ (22 + 2) [ o(ulygas,
Q vep Q vey C1/Ja
By the properties of 7 and |Dn|, we get (52).
Step 3. Let 5 € (1, +00) and assume that
lu| € LIPE-1(BR). (55)

With a suitable choice of ¢ we are going to show that

! P a+p(B-1)Y dg
)ﬁé}+w+ )dz,  (56)

[ 1pupgal e ds < e (7
Bgr R—p
where ¢ = QL(CQ;L%C‘O Indeed, for every k € N, we consider ¢y : [0, +00) —
[0, +00) in C(]0, +00)) such that there exists ¢ € [1,+00) for which the fol-

lowing properties hold true:

¢k (t)7 Q%(t)? ¢;u(t)t € [07 &k] Vie [Oa +OO)7 (‘57)
0 < g(t) < (BtP7H)P vt € [0,+o0), (58)
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lim ¢n(t) = (BtP71)P Vit € [0, +o0). (59)
k—+oo
For instance, the construction of ¢, can be done as follows. We consider
o(t) = ct®

where ¢ = 37 and a = (8—1)p. Since ¢/(t) = cat® ! and ¢"(t) = ca(a—1)t*2,
we have to distinguish the case 0 < o < 1 from 1 < . Indeed, when 0 < o < 1
we see that ¢/ is decreasing and lim, o+ ¢' (t) = +00. On the other hand, When
1 < o, then ¢’ is increasing and lim; ,o+ ¢/(¢t) € R. Thus, when 0 < oo < 1 we

consider . .
o (1 ] 1
¢(A> for ¢ € o,k)

Bu(t) = 4 ¢(t) for t € [%A]
PE)k+1—t) forte (kk+1)
0 for t € [k+1,+00).

When 1 < a it is not necessary to modify ¢/(t) for small t and we can consider

&' (t) for ¢ € [0, k]
O(t) = F(k)(k+1—1t) forte (kk+1)
0 fort € [k+1,+00).
We set or(s fo 01 (t)dt and all the required properties are verified. Con-

sider (52) w1th o) 1ep1aced by ¢r. Assumption (55) and property (58) allow us

to write
0<dw(lul) < BV € LY(Bg),

0 < [ul?¢x(Jul) < BPlu|7P~Y € L}(Bg).

So (52) becomes
[ 1Duponuly i
Br

q
< 2Lcs < 4m > IBPIUIQ+I)(’H~1) da + (2[/04 + Eg) ﬁp|u|p(ﬁ_1) d
vep, \R—p Br vy €1 Br

2L(C2 +c3+cq) < >qﬂp/ (1+ \u]q“’(ﬁ"l)) dr
R—p Br

1451

since 7% > 4m > 4 and (29) implies Z > 1. We set ¢; = 2Hetated) 4p4q get

vey

/B | DulPéy,(Ju))n™ dz < c5 <R4m ) ﬁp/B (1+ |u|q+p(ﬂ—l))d$_

R

Fatou lemma and (59) allow us to let & go to co and (56) follows.
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Step 4. Now we prove that

uwe LPEY(BR)  forsome f>1 = uc L (B) (60)

and the following estimate holds true

*

. L 8m \'F 5
/ (1+|ul?P") dz < csf” <—> </ (14 |ulorPE-1) da:) (61)
B, R—p Br

*

E.
P P
where cg = 2 (1 + |By| %) + 2hlatetete) (p("_l)) ) € (1, +00). Indeed,

vey n—p

assumption (55) and Caccioppoli inequality (56) allow us to check that the

function w = |u|fy™ is in W, ?(Bg) with
| Dl < Blul™ | Duln™ + [ulmn™ | D)
and

/ Dl dz < 27 / | Duf? 87 ufP ey e
Br

+ 2P ) (14 |u7PBE-1) dz

Br
< 2Pcq < ) GP (14 |u]7PF=D) da
Br
( > (14 |u|@PBE=D) da.

Then fB | Dw[Pdz < (1+cs5) ( ) AP fBR(l—!— Ju|?+PB-1)) dz. Since p < n, we
can use Sobolev embedding theorem and we get

P
e

2 e 1Y\ P
< lw[P” dm) < (2—?(”_—1)> [Dwl? dx
Bgr n p Bg

(2 o () o

so that

= q J
</ (JulPy™)P" da:) ’ < cgff” <R8—m> / (1 + |u|7tB-DPY g
Bgr - p Bg
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where ¢ = 2L{c1+categtes) (p(n—l)) (1 —I—OO) since 1 = & < 2La Note that

vey n—p c1 — vex

(1) = ([ ) e
<1+ |Bll"§)(7:_1—;);/BR1dx

<a+iarHe (F2) [ @)

Then we obtain

(/BRH— (Julfp™y )dm> %S 27 (14| By| %) 8P (Rgﬁlp)q/B(1+|u]q+p(’5_1))dx

R

q
+ 25 o8P <§8%> / (14 [u] ™70 dy

Br

8m \?
= ¢, 3P <_> / 14 || 2P0 g
() [ o)

R

where ¢; = 252*”((1 4+ By %) 4 ¢g) € (1,+00). Since n =1 on B, and 0 < n,

2
=

we have (pr(l + |ulfP") dw) < epr ( ) J5, (14 |u[#P=1)) dz and (61)

follows.

Step 5. Now we use Moser’s iteration. Let us recall assumption (15): ¢ < p*.
Then

g+p(f—1)<pp"

Let us define f; such that g+p(f;—1) = p*. It turns out that 8; = 1+(p*—q)/p.
Since ¢ < p*, then 8; > 1 and (60) gives higher integrabilty. We iterate this
procedure as follows. Let B, be the open ball with radius ¢ < 1, centered at
T, with B, C Q. We define the radii pj in this way

plza——é—% and pj+1:pj_21—jjﬁ for j e N.
Then —;—0‘ < pp < %U. We define R;, as follows
Ry=0 and Rj=p;, forjelN
Then Ry, — pr = 5% We define exponents f3; as follows

g+p(fi—=1)=p" and g¢g+p(fia—1)=pB; forjeN.
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It results that §; € (1, +00) and
«\ J
p P —q q—p
’Bj - <—-> * + * :
p/, p—p P —P
We iterate (61) and, for every j € N, we get

[t do< (@)= (1m0 (57

Pi

i ﬁj

x|, <8‘T21+h) () (/13£1+]ulp*)dx>(p>

where all balls have the same center zo. Since § < py, taking the power of both
sides with exponent - we obtain

1

P*Bj
</ |u|P Bj da:>

*\* P_ ik g
< (eg)? 755 The (PF) (Hi . @h ) B; ) (62)
| =) ()
x |, (%%Hh)” S / 1+ |u|P*)dz> "
B,
(%)
Note that for every 7 € N we have 1 < 5 < g::ﬂq?,
(Cs)p*ﬁjz <Ep'> < (CS)’,;'*@’QTQ) (63)
AT ES
and ([, 1+|u|p)dz)( - ) 7 ﬂ]<<fB 7))+ (o 1+|u|p)dl)p<p Z5
Moreover »
“\ITE P —p P o Ll p \*
m_ 505 H < 2 0n(5) Siz k) 60
and i(ﬁ)1+]~)lL
m, ()T e EEG (e

We insert the previous estimates (63), (64) and (65) into (62). For every j € N
we obtain

< Iulp*ﬁjdﬂ3> < (cg) 70" —q>eZ ~q( (PF))ZT A(F)k

Bg
Zz

et B (n(222)) TF (4

:*i
/_\
ST
q o~

el

£

3

B
N
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Again by (15), ¢ < p*, we get

w\ J 1 *
lim f;=4c0 and lim P — = L
! B pp—a)

J—r+00 jotoo \ P
So, taking the limit as j — 400 in (66), we get

*_ * oo . k
[ullzo gy < (cs)p*(pﬂ"*—wei*—a<ln(%>> SR
a

p*—p
X e%H(In(aim))Zﬁz(ip*‘)hh (/ (1+ |u]p)d:v> ) ‘
Bs

This ends the proof. O
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