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Abstract. We analyze the theories of gravity modified by a generic nonderivative potential
built from the metric, under the minimal requirement of unbroken spatial rotations. Using the
canonical analysis, we classify the potentials V' according to the number of degrees of freedom
(DoF) that propagate at the nonperturbative level. We then compare the nonperturbative
results with the perturbative DoF propagating around Minkowski and FRW backgrounds. A
generic V' implies 6 propagating DoF at the non-perturbative level, with a ghost on Minkowski
background. There exist potentials which propagate 5 DoF, as already studied in previous
works. Here, no V' with unbroken rotational invariance admitting 4 DoF is found. Theories
with 3 DoF turn out to be strongly coupled on Minkowski background. Finally, potentials
with only the 2 DoF of a massive graviton exist. Their effect on cosmology is simply equivalent
to a cosmological constant. Potentials with 2 or 5 DoF and explicit time dependence appear
to be a further viable possibility.
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1 Introduction

In the recent years, there has been a substantial progress in understanding possible modi-
fications of Einstein General Relativity at large distances. The quest is on for a theory of
gravity which has a massive graviton in the spectrum at the linearized level, thus realizing a
full nonlinear theory of gravity modified at large distance.

The main goal of the present investigation is to study systematically the theories of
massive gravity obtained by adding a nonderivative potential of the metric components g,,,
to the Einstein Hilbert (EH) action!

S = M3 /d%\/g <R — m? V[g,w]) . (1.1)

A step forward in taming the zoo of possibilities was made in a series of papers [2—4] through
the nonperturbative construction of the most general theories with five propagating degrees of
freedom (DoF), characteristic of a massive graviton.? Besides its theoretical interest, the main
phenomenological goal is to investigate whether a modification of gravity at large distances
and a massive graviton can be realized in a consistent way and in agreement with the wealth
of observational tests of gravity, from the smallest (submillimiter) to largest (cosmological)
scales. Clearly, one of the crucial tests for a theory of gravity is the existence of a realistic
FRW cosmological evolution, which we address later.

1For the rest of the paper we will set Msl = 1 when not important for our intents.
See [11, 12] for a alternative analysis using Kuchar’s Hamiltonian formalism.



The key tool for our analysis is the Hamiltonian formalism, which we will use to classify
the various potentials V' according to the number of degrees of freedom (DoF) that propa-
gate. In GR, where V' = 0, among the ten components of the metric g,,, diffeomorphism
invariance gets rid of eight of them. As soon as we add extra nonderivative terms, diffeomor-
phism invariance is broken. The invariance can be restored by introducing a set of suitable
Stuckelberg fields [6]; of course such procedure does not change the number of DoF. The
action we consider can be obtained by choosing a suitable gauge (unitary gauge) where the
Stuckelberg fields are trivial; thus, all such a theories have a preferred frame.

On general grounds, once diffeomorphism invariance is broken by nonderivative inter-
actions, one expects six DoF, in contrast with the fact that at the linearized level a massive
spin two particle on Minkowski has 5 DoF [14]. Indeed this was the conclusion reached in the
past by Boulware and Deser (BD) [13], by studying the nonlinear generalizations of a Lorentz
invariant Pauli-Fierz graviton mass term. The mismatch between perturbative and nonper-
turbative number of DoF is problematic because it is a signal of strong coupling. Moreover,
the missing sixth mode is a ghost on a Minkowski background. Nevertheless, there exist
particular choices of the potential V' where this counting has to be refined and less than six
DoF are nonperturbatively present. This helps to get rid of the BD ghost and modifies also
the phenomenology of these theories.

According to the Hamiltonian analysis a la Dirac, once we determine all first class (FC)
and second class (SC) constraints [15], the number (#) of DoF is given by

#Donlo—%#SC—#FC. (1.2)

The case of five DoF was discussed in detail in [2, 4], together with the phenomenological [3]
and cosmological [16] consequences.

Among the various theories, one finds the very special case in which Lorentz symmetry
is present around Minkowski background [17], that avoids the BD ghost [18, 19], and is
almost unique [2]; see [5] for a complete review on the subject. This theory however is
phenomenologically very constrained: denoting with m the graviton mass scale, the “tree
level” energy cutoff Az = (szpl)l/ 3 is too low® as already predicted in [6]; the theory
is classically strongly coupled in the solar system [6, 8] and the computation of the static
potential in the vicinity of the earth is not an easy task due to quantum corrections [6, 20-25].
Cosmology is also definitely troublesome: spatially flat homogenous Friedmann-Robertson-
Walker (FRW) solutions simply do not exist [26] in the unitary gauge and even allowing for
open FRW solutions [27] strong coupling [28] and ghostlike instabilities [29] develop. Another
issue is the existence of superluminal modes [30, 31]. In the bigravity formulation [32-40]
FRW homogenous solutions do exist [41-43], however cosmological perturbations turn out to
be strongly coupled [44, 45].

On the other hand, things get better if one gives up Lorentz invariance in the gravita-
tional sector and requires only rotational invariance [3, 9, 10, 46]. Within the general class of
theories which propagate five DoF found in [2, 4], in the Lorentz breaking (LB) case most of
the theories have a much safer cutoff Ay = (mMp;)*/? > A3 [3], which is the maximal cutoff
that one may obtain. They also avoid all of the phenomenological difficulties mentioned
above [3, 16].

3In [7] it has been argued that the cutoff could be higher then As to due environmental effects triggered
by classical strong coupling.



In the present paper we complete the analysis started in [2, 4] by considering all poten-
tials V' which respect rotational invariance, and classify them according to:

e the number of propagating DoF;
e the possibility of a viable FRW cosmology;
e the presence of strong coupling.

The outline of the paper is the following. In section 2, by using Hamiltonian analysis,
we find for each V' the number of DoF (#DoF). In section 3, we compare the #DoF found
by canonical analysis to the #DoF computed using perturbation theory around Minkowski
space; as a result we can determine when strong coupling is present. In section 4 we study
when a generic V' admits a FRW homogeneous solution in the unitary gauge that represents
the reference background for our expanding Universe. In appendix B we extend our finding
to potentials with an explicit time dependence. Our conclusions are given in section 5.

2 Hamiltonian analysis

The standard Arnowitt-Deser-Misner splitting [47] of spacetime leads to the following
parametrization of the metric in terms of lapse IV, shifts N* and spatial metric v;;:

—N2+N1Nj’7ij ’Yz’ij)
. | , 2.1
gu ( ’YijNZ ’Yij ( )

The potential V' (g,,) is thus regarded as a function of N, N? and Vij-
It is also useful to define

with v = det v;;, and to write the Hamiltonian as
o= / P [Ha(t, ) NA(1,2) +V(1,7)] (2.3)

where we collected lapse and shifts in N4 = (N, N*), with A = 0,1,2,3, and the first piece
is the standard GR Hamiltonian.

Exactly as in GR, the lapse and the shifts appear in the Lagrangian with no time
derivatives, so their momenta vanish and lead to the four primary constraints

oH
HA—WNO7 A—0,1,2,3. (24)

These can be enforced by a set of four Lagrange multipliers A in the total Hamiltonian
HT:H+/d3x>\A(t,f)HA(t,f):H+)\A-HA. (2.5)

The time evolution of any function F' of ~;;, N 4 or their momenta is given by the Poisson
bracket with Hp

dFE;;:?) = {F(t, f),HT(t)} = {F(t, f),H(t)} + /d3y AA(t,g){F(t,f),HA(t, gj)}. (2.6)



To avoid excessive cluttering, in the following we will mostly omit the time dependence of
the fields. If not stated explicitly, they are evaluated at the same time t.
The conservation in time of the primary constraints leads to four secondary constraints

SA(Z) = Ha(Z) + Va(@) ~0, A=0,1,2,3, (2.7)

where V4 = 0V/ONA. Imposing again the conservation of the four secondary constraints,
leads to the tertiary conditions

9*v

Ta(@) = {Sa(@), H} + \P(Z) Vap(Z) =0,  Vap= SNAGNE

(2.8)
The nature of these conditions, i.e. whether they are constraints or determine some of the
Lagrange multipliers, depends on the rank of the Hessian of V with respect to N4 = (N, NY),

r = Rank [Vap| . (2.9)
The value of r ranges between zero and four, the dimension of spacetime.

2.1 r=4: 6 DoF

If r = 4, we can determine all four Lagrangian multipliers from (2.8). All constraints are
consistent with the time evolution and the analysis stops here. Thus, we end up with a total
number of DoF

20 — 4(a) — 4(Sa)

2

In other words, in the general case in which det |Vap| # 0, we have 4 (II4) + 4 (S4) = 8
constraints, for a total of 6 propagating DoF. Technically, these 8 constraints are all second
class, being the Rank|{IT4, Sp}| = Rank|Vap| = 4. As a result, no residual gauge invariance
is present. When the action is Lorentz invariant around a Minkowski background, the six
DoF must be organized in a massive spin two (5 DoF) representation plus a scalar (1 DoF).
This is the Boulware-Deser result, valid for a generic potential. The extra scalar, the so called
Boulware-Deser sixth mode [13], turns out to suffer from infinite strong coupling issues and
are indeed hardly viable.

It has to be stressed that the ghost can be absent around a FRW background, see
section 6 in [48]. As shown in that work, no ghost is present at any momentum if some
conditions for the graviton mass terms hold, m? > 0 and 0 < m3 < 6H? (see below section 3
for the notation). Moreover absence of tachyonic instabilities can also be fulfilled by further
conditions. The relative constraints on the potential may lead to an interesting scenario and
we leave it for a separate complete study.

In any case, a first result is that a necessary condition to have a theory with less than
six propagating DoF is that r = Rank|Vap| < 4 (see also [2]).

#DoF = =6. (2.10)

2.2 r < 4: general analysis

Let us describe here in generality the hamiltonian analysis for » < 4, and later specialize
to the various cases r = 3,2,1,0. For r < 4, the matrix V4p has r non null eigenvectors,
denoted by E;:1 withn=1,...,r, and 4 — r null eigenvectors denoted by Xé,

VasxZ =0, a=1,...,4—r. (2.11)



It is useful to decompose the Lagrange multipliers along those eigenvectors,
4—r T
M=>"zaxid+ > da B}, (2.12)
a=1 n=1

effectively trading the 4 Lagrange multipliers A4 for the coefficients z, and d,,.
Of the four original Lagrange multipliers, the r components along E4 are determined
by the tertiary condition (2.8):

_ EMS4,H}

d = —n\9A )
" E;;‘VABE{?’

n=1,...,r. (2.13)

On the other hand, the projection of he conditions (2.8) along the null directions Xﬁ unveils
4 — r genuine tertiary constraints

REX;‘{SA,H}%O, a=1,...,4—r. (2.14)

Indeed, no Lagrange multiplier is involved here.
We have also to impose the conservation in time of these new constraints, which leads
to the conditions

Qu(#) = {Ta(@), H} + / dy [ > (@) {Ta(@), (D)} EL@)
n=1

. (2.15)
_Z Haﬁ(fvg)zﬂ(g) ~ 07
B=1
where the matrix 0,4 is defined as
Oas (T, ) = X (£) {Sa(@), Sp(H)} X5 (@) - (2.16)

The condition (2.15) consists in 4 — r linear equations for the remaining 4 — r Lagrange
multipliers z,. Hence, the number of DoF crucially depends on how many of them can be
determined, i.e. on the rank of 6,3

s = Rank [0,4] . (2.17)

If s = 4 — r, then all the remaining Lagrange multipliers are determined and the procedure
which enforces the consistency of constraints with time evolution ends. On the other hand if
s < 4—r some of the z, are not determined and one has 4 —r — s new quaternary constraints
Q., which further reduce the number of DoF.
Altogether so far one has 16 —2r — s constraints, counting 4 (I14)+4 (Sa)+(4—7) (Ta)+
(4—7r— ) (Qa), and the number of DoF is at this point
20 — (16 — 2r — s)

#DoF < 5 :2+r+§, 0<r<4, 0<s<4d—r. (2.18)

Maximizing s, for fixed r, we have the following upper bound

#D0F§4+%, 0<r<4. (2.19)



Once more, in order to know how far one can go, one has to check the conservation of
the quaternary constraints, that reads

Fold) = {Qu(@). Hr} = {Qu(@), H} + [y gﬁAy Sidsr el | @0
(2.20)
Setting )
Aus(B. 1) = G A, 2.21)

if the matrix A,g is invertible, then (2.20) does not give rise to new constraints but simply
determines the remaining Lagrange multipliers as

Za X — ZAQB ({Qg, H} +Z dy B} 3?,3) . (2.22)

In this case, the procedure ends here and the number of DoF saturates the bound in (2.18).
However, again this is only the maximal number. In fact, if some of the z, are not determined,
more steps are necessary and the net effect is to reduce the number of DoF further. In general,
also first class constraints may be present corresponding to residual gauge invariances, but
again, this implies a further reduction of the number of DoF. In the above discussion we have
also ignored the exceptional cases where some constraints are accidentally trivial, e.g. 0 = 0.

It is important to remark that due to the nontrivial dependence on Z, §, the matrix
005(Z, ¥) is not necessarily antisymmetric and its rank s is not always even. Thus, for s odd
one concludes that an half integer number of DoF is present. This is a peculiar phenomenon
which arises in classical field theories (infinite dimensional Hamiltonian systems) and it is
briefly discussed in general terms in [49] and for Horava-Lifshitz gravity in [50-53]. In general,
this problem occurs when some of the would-be constraints contains differential operators
acting on Lagrange multipliers; the solutions of the resulting differential equations are in
general nontrivial and their form depends strongly on the chosen boundary conditions at
spatial infinity. This phenomenon seams affect only LB theories; indeed, in the LI case time
derivatives are always paired with the spatial ones. To our knowledge, no general analysis
on the nature of such half DoF is present in the literature. We leave the matter for a future
investigation. It turns out that the relevant case is when # DoF is 5+%, see section 2.3.

We recap the steps that are required to compute the number of propagating DoF for a
given deforming potential V:

1. Compute the rank r of the hessian matrix ||[Vag|| (4 X 4 matrix).

2. Compute the null eigenvectors Xé of the matrix Vap.

3. Determine secondary constraints S4 = Ha + Va.

4. Compute the rank s of the matrix || x4 {Sa, Sp} XgBH (4 —r x 4 — r matrix).
5. Plug the numbers in the formula # DoF < 2 +r + s/2.

In the following sections we discuss separately the cases relative to different values of r
and s. The results of this analysis are summarized in table 1, where the maximal number of



r =Rank|Vag| | s =Rank|0,5| | #DoF < | Rotations? | Realized?

4 0 6 V Yes

0 5 V Yes
3 1 5+3 v Yes
2 0 4 X No
2 1 4+ X No
2 2 ) X No
1 0 3 vV Yes
1 1 343 X No
1 2 4 X No
1 3 A+ 3 Vv No
0 0 2 V Yes
0 1 24 3 V No
0 2 3 V Yes
0 3 3+ V No
0 1 4 Vi No

Table 1. Deforming potentials classified according to the rank r of the Hessian and the rank s of the
matrix 6. The number of DoF is obtained from eq. (2.18). The cases consistent with the canonical
algebra are highlighted as bold and marked as Realized. Notice that a non integer number of DoF
can possibly appear with unbroken rotations only in the case » = 3 and s = 1, namely 5—1—% DoF.

DoF resulting from the canonical analysis is shown for different values of r» and s. We also
report whether the resulting theory can be built by respecting rotations (fourth column),
and whether it can be realized at all with some explicit form of the potential (last column),
as we find by direct inspection in the forthcoming sections.

A first outcome of the analysis is that massive deformations of gravity with 5 DoF exist
only in two cases: r =3, s =0 or r = 2, s = 2. The first was discussed in full depth in [2—4]
where all the rotational invariant potentials of this class where constructed. Concerning the
second case, we note that it is not possible to build potentials with » = 2 without breaking
spatial rotations. Indeed, rotational invariance requires either one or at least three non null
eigenvectors of V4p.

In the following we consider potentials that are at least rotationally invariant on
Minkowski space. As a result, we are left only with the cases r = 4,3,1,0, with a num-
ber of DoF between 6 and 2.

Remarkably, the present analysis shed also some light on the existence of models with
4 DoF, often invoked in the context of massive gravity (see for instance [54]). First, they
could exist for » = 2, s = 0, but only with broken rotational invariance. The candidates with
4 DoF having r = 0, s = 4 are actually not realized, as we will see in section 2.6. Thus, we
conclude that the only candidate theories with 4 DoF are to be searched as subcases of the
5 DoF theories with r = 3. This is discussed in section 2.4; the high number and complexity
of the required constraints makes one doubt that such theories can actually be found.

2.3 The case r = 3: massive gravity with 5 DoF

This case was fully analysed in [2-4] (see also [11, 12] for a similar approach). Here for
completeness we recollect the main results. The general potential V' of massive gravity
theories with five propagating DoF can be parametrized in terms of two arbitrary functions



of specific arguments, U[KY = ¥ — ¢ ¢I] and E[¢7, 4],
v5m2ﬁ(Nu+5+u,» Q) (2.23)
where ¢ is defined implicitly by the first of the following equations
N'=Ng+ Q' QT =-Up s

and where U; = OaU and U;; = 0’U/OE'0EI. The use of the variables £ in place of the
shifts N* makes also very transparent the canonical analysis, as recalled in appendix A (see
also [4]). The function & is the bulk on-shell energy (Hamiltonian) density of the system and
it has to be non-negative. We remark that, as shown in appendix A, a necessary condition
to have 5 DoF, is to have £ # 0. Potentials with £ = 0 have six DoF.

Besides its purely theoretical interest, this result is also relevant from a phenomenolog-
ical point of view. A large class of massive gravity theories that are ghost free on Minkowski
space are uncovered, whereas previously, the only known ghost free theory was the four pa-
rameter Lorentz invariant (LI) theory found® in [17-19], which is a special case of our general
construction.” When Lorentz symmetry is enforced, the price to be paid is the impossibility of
using perturbation theory in many physical important situations like inside our solar system.
Moreover, as effective theory, the cutoff is rather low [6], A = (m?Mp;)'/3 ~ 10° Km when m
is taken to be of order of today’s Hubble scale. As a result, even the static potential between
two masses at a distance smaller than 103 Km is difficult to compute perturbatively [6, 22—
24, 55], in contrast with short distance tests of Newton’s force at submillimeter scale, see for
instance [56]. In Lorentz breaking theories we are much better off from a phenomenologically
point of view. It ought to be remarked that Lorentz symmetry we are discussing here only
concerns the gravitational sector and is not the same symmetry that enters in the formulation
of the Einstein’s equivalence principle. As such, it is not subject to strong phenomenological
constraints coming from high energy physics. Thus, we conclude that the viability of the
theory directly requires us to give up Lorentz symmetry in the gravitational sector, a fact
that is testable in the forthcoming gravitational wave experiments.

The concrete phenomenology of the new class of Lorentz breaking theories is also
rather promising, as argued in [3]. From a perturbative point of view, exploiting the gen-
eral expression of V, there exist remarkable relations among the various Lorentz break-
ing graviton masses. At the nonperturbative level, besides the absence of ghosts in the
spectrum, it is of crucial importance to be able to trust the theory up to the cutoff
Ay = (mMpp)Y/? ~ (1073mm)~!, as well as the absence of strong nonlinearities (Vain-
shtein effect) around macroscopic sources. Such class of Lorentz breaking massive gravity
theories is also a natural candidate for dark energy provided its equation of state deviates
from -1 [16].

2.4 The subcase of r = 3 for massive gravity with 4 DoF

In appendix A we give the further conditions under which a potential with r = 3 propagates
only four DoF. In comparison with the case of 5 DoF, two extra (differential) conditions on

4Also Zumino came up with a similar model, see Brandeis Univ. 1970, Lectures On Elementary Particles
And Quantum Field Theory, Vol. 2*¥, Cambridge, Mass. 1970, 437-500.

SFor instance, the minimal version of the dRGT LI massive gravity is obtained by taking U = (Tr[lCl/2] -3)
and £ = (1—£2)71/2 that gives rise to their potential (Tr[v/X]—3) with X# = g"* 1,,. For the other operators
in that theory the correspondence is not known explicitly.



the potential have to be imposed. In the Dirac language, they correspond to the requirement
that the quinary and the senary constraints are independent from the lapse

ONQ = ONF =0. (2.24)

These conditions restrict further the dependence on the ADM variables of the functions I/
and £. However, due to their complexity, at present no solution is known, if any exists. In
this sense no V' with 4 DoF is known. As it will be discussed in section 3, around Minkowski
background only two or five DoF can propagate at linearized level; thus, even if a potential
with four DoF exists it will lead to strong coupling around flat space.

At linearized level, Lorentz-violating potentials which propagate 4 DoF (two tensor and
two vector modes) were analyzed even around a generic FRW background (see ref. [48]).
For instance, on de Sitter background if the graviton mass is precisely m? = 2H?, a fifth
scalar mode disappears from the linearized theory, leading to the so called partially massless
(PM) theory [57-59]. The absence of the helicity-0 mode at linearized level is related to the
existence of a new scalar gauge symmetry (a special combination of a linearized diff. and
a conformal transformation). Unfortunately, the helicity-0 mode reappears non-linearly; so,
rather than being free from the scalar mode, the theory is strongly coupled [60, 61].

2.5 Thecaser =1

When r = 1 and rotations are preserved, the only possible form for V is a function of v;; and
N with nonzero N second derivative:

YV =V|[N,9], with Vnn #0. (2.25)

Following the steps of section 2.2, we have

The secondary constraints in this case are rather simple

SOZ/H—FVN%O, Si:/Hi%O, i=1,2,3. (2.26)

There are three null eigenvectors that can be chosen to be X24 = (5;4.

The matrix 6,5 of (2.16) now vanishes when the constraints are used, namely
0as(Z, ) = 05(7,§) = {Hi(T), H;(7)} < Hi = 0, (2.27)

where GR. algebra has been used. Thus s = 0.

# DoF = 3.

The on-shell bulk Hamiltonian is given by

H\on shell — /dgaj (V - Vn N) (tv f) : (228)



2.6 Thecaser =20

When r = 0 and V is rotational invariant, the only possibility is that V is at most a linear
function in the lapse, hence we can write

V=m?y (N Ulvi;) + E[%]) (2.29)
The Hamiltonian analysis for specific examples in this class was already given in [62, 63].
Consider first the case of generic U # 0:
e The null eigenvectors of the hessian can be chosen to be xﬁ = 5&4 with a =0,1,2, 3.
e The secondary constraints are

So=H+m*/HU=0, S =H;~0, i=1,23. (2.30)

e We calculate ,3 = {Sa, Sg} by using the same algebra of constraints of GR:
boo = [Hi(Z) + Hi(§)]0,: 6(Z — §) =~ 0,
s = 300 (U 5 ) 68 = )+ /7 (1002, 0) 08— ) 20,
0ij = (H;j(Z) Opi + Hi(¥) 0,) (T — ) = 0, (2.31)
so that clearly s = 2.
e As a result, # DoF = 3.

A subcase is also present, which is relevant to our analysis. We note that the equa-
tions (2.15) for the Lagrangian multipliers z, associated with the y; given above are linear
differential equations in the spatial coordinates, of the form A0,z + Bz = C. A similar
structure is found in Horava-Lifshitz gravity [50-53]. Being

U
A < 4404, U, B x 0, <U7 + 2) , (2.32)

it is easy to show that there is a unique potential U (function of the rotational invariants Tr[7],
Tr[v?], Tr[y%]) such that A and B vanish automatically. This corresponds to a cosmological
constant, i.e. m2U = A, or

V=7 (NA+m?Ely)). (2.33)
e In this case the Lagrange multipliers are not determined because even fy; vanish:
Ooo x H; 0;6 = 0, Op; x O;H =~ 0, 0;j cH;0;6~0, (2.34)
thus s = 0.

e As a result, # DoF = 2.

5Such a result is in agreement with the finding of [64, 65] where the requirements of spatial covariance (i.e.
closure of the constraints relate to H;) singles out GR as the unique theory with two DoF. In other words,
the only rotational invariant potential that can be built is a CC.

~10 -



Note, since still V contains m?E[y;;] # 0, the tertiary constraints 7, do not vanish, and the
Lagrange multipliers are determined at the level of quinary conditions F. This corresponds
to a case of 2 DoF but broken diffeomorphisms. This situation contains trivially also the
case U = 0. Clearly instead for E = 0 and V = AN,/v the result is GR with cosmological
constant and 2 DoF are present, with unbroken gauge invariance.

In all these cases the on-shell bulk Hamiltonian is given by

H\on shell = m? /vdgsC \/’VE[Vij](t’ f) : (235)

3 Perturbations around Minkowski

Consider now the perturbative expansion around flat space. Setting g,, = M + hu, ex-
panding the action (1.1) at the quadratic order in h one gets

1
5= / it [L@) b3 (mB R+ 2 G — 3R 2 2m] hooh“-)} ARt

where L) is the standard quadratic Lagrangian for a massless spin 2 particle in Minkowski
space; for V' we have only imposed rotational invariance. The physical consequences of the
quadratic action (3.1) were first discussed in [46]. In our case, the various masses can be
computed explicitly from the potential. Preliminarily, one has to impose that Minkowski
space is a consistent background, i.e. that g,,, = 7., is a solution of the equations of motion;
this is equivalent to

Vv =0, V, =0. (3.2)
The bar indicates that expressions are evaluated on Minkowski space, where we define V., by
OV /0y =V, ~;; . Using the conditions (3.2), we find that

0?V

1 0%V o 1
20NN |,

2:—77 =
M= T N2 . "

(3.3)

The expressions for m% 3,4 are not particularly illuminating and will be omitted. In general,
the following conclusions can be drawn [9, 10, 36, 46, 48]:

e For ma 1 7 0 we have 6 perturbative DoF with one scalar is a ghost around Minkowski
background. At most, 6 healthy modes can be obtained around FRW spaces if m? > 0
and 0 < mZ < 6H?, plus other conditions to avoid tachyonic instabilities [48].

e For m2 =0, m? # 0 we have 5 perturbative DoF.
e For m% # 0, m? = 0 we have 2 perturbative DoF.
e For m(%, 1 = 0 we have 2 perturbative DoF.

In the summary table 2 we compare the number of perturbative DoF around Minkowski
space found here with the corresponding number found in the previous section by using
the nonperturbative and background independent analysis. If the two numbers differ, the
propagation of the missing DoF(s) have to show up at higher orders in the perturbative
expansion, or around non-Minkowski backgrounds. In either case, this is a manifestation of
strong coupling around Minkowski spacetime.
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A comment on the nature of the strong coupling and cutoff scales may be useful. It
is straightforward to get by dimensional analysis the classical strong coupling scale around
flat space starting from the quadratic action. Indeed, generically scalar fluctuations of the
metric behave as [3]

Loy = Mp;m? (0¢)* + Mp;m? (0¢)° + ... + m? % Tnatt ; (3.4)
where Tt is the trace of the matter energy momentum tensor. Thus, in terms of the
canonical field ¢. ~ Mp;m ¢ we get that

(a ¢C)3 + m Qe

Loy =(0¢)” +—+

i+ — — Tatt - 3.5
Mp;m Mp [V] ~ ™ (8:5)

From the above expression we learn two important things. First, the strong coupling scale
of our theory is Ao = \/Mp; m, namely the largest possible cut off scale without an explicit
Higgs phase dynamics. Second, the matter coupling to scalar modes is suppressed by m and
goes like (m/Mp; < 1). These two facts together imply the absence of non linearities around
heavy sources (and no van Dam-Veltman-Zakharov [66-68] discontinuity) or more precisely,
the perturbativity of the weak field expansion down to the Schwarschild radius as in GR.

Recently in [5, 7] it was pointed out that in general the scale at which perturbative
unitarity breaks down (the strong coupling scale) and the cutoff of scale in an effective
field theory can be different. It could be that strong coupling effects - like the Vainsthein
mechanism - could rise the cutoff scale beyond than the “naive” one. However, when no
new strong coupling scale involving m is present, we expect the cutoff scale to be Ay. This
is precisely the case when r = 3 with 5 DoF for LB potential given by (2.23) and when
r = 1 with 2 DoF for the potentials given by (2.33). On the contrary, potential with 3
nonperturbative DoF given by eq. (2.25) and eq. (2.29) has an infinite strongly coupling
scale as soon as flat space is considered as a background.

4 Cosmology

In this section we analyze the conditions under which the potential V admits a FRW back-
ground solution. We take for FRW metric the following diagonal form

goo=—N?, goi=0—=N' =0, gj=r;=a>6;j. (4.1)

Notice that this is the most general ansatz with maximally symmetric ¢ =const hypersurfaces.
Equivalently, the reference frame where the universe is homogenous is the very same frame
of the unitary gauge [16]. For simplicity we have also set the spatial curvature to zero.”

Due to the diagonal form of the FRW metric, its existence probes the functional de-
pendence of V with respect to N and ;; only, no constraints on the N ¢ dependence can
be obtained. The effect of V is equivalent to the presence in the Einstein equations of an
effective energy momentum tensor (EMT) 7, defined by

b /d% V= ;/d%: V9 T 69" (4.2)

"The flat cosmology is by far the most motivate phenomenologically - still, one can check that the conditions
for cosmology and the Bianchi equation which we derive below are maintained even in the context of open
cosmology, insofar as the physical and auxiliary 3D metrics are assumed to be proportional. The perturbations
may display a different behavior instead.
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and given by

2 0V
77“’ = % agp,l/ : (43)
Specializing to the FRW background, the effective EMT reads
N2 2
Too VN, Toi =0, Tij = <175 Yii Vv s (4.4)

- V1/2

where we denote Vy = 0V /0N and we have used the fact that on FRW background 9V /9~v%
is proportional to 7;; by defining V. through 9V/9v% = V, ~;;. (For instance, for V = ™,
with v = Det[v;;], we have V, = —ny™). We retain here the explicit N dependence of g,.;
indeed, besides being instrumental in exploiting constraints on the functional dependence of
VY on N and v;; o a, in general it cannot be gauged away.
The gravitational fluid has energy and pressure densities and effective equation of state
given by
VN 2V, 2y,
Peﬂ”—ma peﬂ_ma weﬁf—NVN-

Because of the Bianchi identities, 7,, must be covariantly conserved. This requires
Otpeft = —3 ¢ (peft + Pefr), Which leads to the condition

(4.5)

. a V.
NVNN_6(L<VN7_]\¥> =0. (4.6)

Notice that 0;V = v;; A Vs + NVy = — % Vy + N Vy. In general eq. (4.6) is a differential
equation which dictates the dynamics of N, as can be seen by solving for N. In this case
N is dynamically determined (and cannot be eliminated by a choice of time). Then, the
Friedmann equation determines the time dependence of the Hubble parameter, and results
in a well-behaved cosmology in the presence of the effective fluid 4.5.

However, looking at the classification of admissible potentials from section 2, we see that
in most cases the situation is crucially different. Except in the case r = 1, in all cases (r = 3
or 0) on FRW background where one has N? = ¢ = 0, the potential is a linear function of
the lapse N. Thus Vyny = 0 and eq. (4.6) has to hold in the form (we consider a # 0 for a
realistic cosmology)

Yy =0, (VN,Y—}}\;> =0. (4.7)

Parametrizing 1V, we find that the Bianchi condition constrains only the N-independent part:

-0, (4.8)
FRW

v=m?5(NA+B) = <ﬁ8>7:ﬁ(l’>’7—§>

where, as in the cases of section 2, A and B are generic functions (of the spatial metric,
on FRW). Note that A as well as N drop out of the Bianchi condition, so that N is now
left undetermined by the background equations. More importantly, we see that in general
the Bianchi condition ends up in an algebraic constraint on the scale factor a, which is
incompatible with a realistic cosmology. Thus, the only possibility is that some specific form
of B is chosen so that B, — g = 0 identically on FRW. As an example, B = 3 Tr[y?] — Tr[y]?
has this property. This is the condition to have a realistic FRW cosmology, and will apply
to the cases of sections 2.3, 2.4 and 2.6.
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Density pressure and equation of state of the gravitational fluid now take the form

per =m* A, e = 2m* <AW—;A> = weff:—1+2j”. (4.9)
We note that they do not depend on the function B.® This can be explained by observing that
only the function B breaks time reparametrizations, in the potential. The function A appears
in the combination NA and has the same structure of the Hamiltonian constraint in GR.
Thus it cancels out from the Bianchi condition (4.6) which is exactly the constraint related
to the (breaking of) time reparametrizations. In other words, the part of 7,, containing A
is automatically conserved, while the remaining part containing B has to be conserved by
itself. We stress that from the existence of a FRW background nothing can be said on the
N dependence of V. Thus, a FRW solution would exist when the potential has the general
structure

V=m? 5 (NA [, Ny, N, N9+ By, N faly, N, N¥)| + Nigg N7 ffy, N, N’“]) :

(4.10)
with f; generic functions and where B must again be chosen such that (/7 B), = 0 on FRW.
We can now put together the results above with the analysis of the previous sections,

and spell out the potentials which exist and admit a consistent FRW background:

(a) 6 DoF with r = 4. Two tensors, two vectors and two scalar modes are present, of which
one is a ghost around Minkowski spacetime. As recalled in section 3, the ghost can be
absent around FRW backgrounds if H' < 0 [16, 48].

(b) 5 DoF with r = 3, s = 0. Here we have

V= mQﬁ(NU['yij — &+ €[V, ¢ +u5igi) and weg = —1 + Quﬂ (4.11)

where we recall that N* = N &' + Q" and Q" = —|[Ugigs || 1 €.

The potential is such that (4.6) is solved in the form (4.7). The existence of a nontrivial
FRW solution requires &, = £/2. This, if combined with the condition for the existence
of a strict Minkowski background (3.2), predicts that the m? in (3.1) is zero. This leads
to strong coupling in the vector and scalar sector of perturbations around the strict
Minkowski background. The same conclusion is reached for a strict de Sitter space,
and the only healthy possibility is to deviate from a de Sitter phase [16].

(c) 3 DoF with 7 =1, s = 0. In this case, generically (4.6) can be solved for N and a FRW
solution exists. The dependence of N on a strongly depends on the explicit form of
V. On Minkowski spacetime strong coupling of gravitational perturbations is present,
see table 2. Instead, by using the results of [48], we see that around FRW 3 DoF are
present in the linearized theory, thus in agreement with the 3 nonperturbative DoF' as
predicted by the canonical analysis.

(d) 3 DoF with r =0, s = 2. Here

V=m?/y (N Uy + E[7]> and  weg = —1+ % . (4.12)

, we have A =1 and A, = 0 giving exactly weg = —1.

8 As a check, for a cosmological constant,V oc Ny'/?
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Nonpert. LB Pert. FRW

Potential #DoF Masses #DoF Cosmo
VN4, 4] 6 ma_“A # 0| 6=5+ghost’ | /
VINUIK] + Ely, ] + U; Q) 5 mg =0 5 VA
As above + Lorentz Invariance 5 m3 =0 5 no
V[N, 7] 3 m? =0 2 Vv
V7 (NU[] + ER)) 3 mg, =0 2 v
V7 (AN +E[4]) 2 mg 4="0 2 Vv 1 (CC)

Table 2. The allowed potentials supporting spatial rotations, and the number of perturbative and
nonperturbative DoF. For perturbative DoF the reference background is Minkowski space. Whether a
realistic spatially flat FRW cosmology is admitted is also shown. The symbol * denotes that a further
tuning of the functional form of V' is required (see condition (4.8)). This tuning is not necessary for
time-dependent potentials (see appendix B and [69]). (T) the scalar ghost state can become safe on
FRW backgrounds (only) [48].

The Bianchi condition is realised in the form (4.7), thus E, — E/2|;p,, = 0 must be
satisfied. For the perturbations, the same considerations hold as in case (c) .

(e) 2 DoF with r =0, s = 0. Here
V=7 (NA + mQEm) and  weg = —1. (4.13)

Even in this case the conservation of the effective EMT is realised in the form (4.7)
and thus one needs E, — E/2|ppyy = 0. However peg = —pesg = A, hence the effect
on cosmology of this class of potentials is indistinguishable from a plain cosmological
constant. Differences with GR may appear in spherically symmetric Schwarzschild-like
solutions. While the matter is beyond the scope of the present analysis, following [48]
we can anticipate that no vDVZ discontinuity is found at the linearized order, both
on Minkowski and on FRW backgrounds. Thus, GR is recovered smoothly in the
limit of small graviton mass. The absence of discontinuity implies also the absence of
Vainshtein spatial strong coupling. As a result, these models could represent a new
interesting class of massive gravity theories.

The results are summarized in table 2.

5 Conclusion

We analyzed the Hamiltonian structure of modified gravity theories obtained by adding a
nonderivative function of the ADM variables V(N, N?, 7ij) to the Einstein-Hilbert action,
and under the minimal requirement of unbroken rotational invariance, thus encompassing
Lorentz-invariant and Lorentz-breaking theories. The classification of the various potentials
according to the number of propagating DoF in the perturbative and nonperturbative regime
was given in table 1. Further restrictions were obtained by requiring the existence of a realistic
FRW cosmology. The results are summarized in table 2.

The simplest deformation, which turns out to propagate 2 DoF, corresponds to a po-
tential of the form /g A+m?,/7 E[y], i.e. a function of the sole 3d metric, besides a standard
cosmological constant. At the level of FRW cosmological background it is indistinguishable
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from GR. Nevertheless, it could lead to possible modifications of gravity in static solutions.
The investigation of the relative phenomenology, for instance of Schwarzschild-like solutions,
is beyond the scope of the present work and will be presented elsewhere.

Potentials that depend on the lapse and the 3d metric, V[N, 7], propagate 3 DoF at non-
perturbative level and they also support FRW solutions where 3 DoF propagate al linear level
(see [48]). Unfortunately, only 2 DoF can propagate at linearized order around Minkowski
background, indicating strong coupling in the scalar sector.

No potential with 4 DoF is found. In fact, it seems very difficult if not impossible
to construct SO(3) invariant deforming potential V with four DoF, and so far no nonlinear
realization of partially-massless gravity has been found [60, 61]. Here we showed that, if any
such theory exists, it will appear as a subclass of the Lorentz-breaking potentials with 5 DoF'.

The case with 5 DoF was discussed in depth in [2, 4, 16] and appears to be promising
from a phenomenological point of view, being that the cutoff of the theory is of the order of
Ay ~ (mM Pz)l/ 2 and no vDVZ discontinuity is present. Although the theory is weakly cou-
pled with 5 DoF on either Minkowski or FRW backgrounds, the background equations result
incompatible with the requirement of a weakly coupled spectrum on both spaces. Choosing
the existence of FRW spacetime as physical request, one has strong coupling around exact
Minkowski and de Sitter space, with progressively safer cutoff as long as weg deviates from
—1. Thus, there is a connection between the infrared behaviour of the theory (cosmological
scales) with the short distance behaviour (possible short distance strong coupling). In fact,
such a behaviour can set the scale for possible deviations from GR, that may be just around
the corner, provided weg # —1 [16]. It is important ro remark that Lorentz breaking the-
ories with 5 DoF are immune from issues of spatial (Vainshtein) strong coupling, and thus
constitute the first modified gravity theories for which a weak field expansion is possible.

As is known, the most general potentials, which propagate 6 DoF’, contain the Boulware-
Deser ghost around Minkowski background. Nevertheless, they can support 6 healthy states
around FRW backgrounds [48] (see section 2.1 and 3) and we intend to analyze in detail the
viability of this scenario in a forthcoming work.

We further found technically possible cases with 5+% DoF', but whether or not one has
to add or subtract a half DoF, and under which conditions this has to be considered, is still
an open question [50-53]. We leave these cases for further investigation.

Finally, our results can be extended to the case of explicitly time-dependent potentials,
as realized if for instance the reference metric is explicitly time dependent. In this case many
issues disappear or are less dangerous (see appendix B): mainly, the strong coupling around
de Sitter of the models with 5 DoF disappears [69], or, in the case of 2 DoF, the tuning of
the potentials required to support a FRW background is no longer needed.

A Less than five DoF

We briefly review first (see appendix A in [4]) the analysis of the 5 DoF potentials working
with the simpler canonical variables N, £, v where the transformation from N* — &' is
given by

Ni=N¢g +Qi¢, 7] with Q' =— (agigju) "o (A1)

As described in the text the potential is of the form
V=mi/y (Nu + 0l O + 5) , (A.2)
and implies the relations OV = mQ\ﬁU, oNiV = mQ\ﬁ@giU.
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The total Hamiltonian in the new variables is
Hy = /d% [HANA+V+AA HA] - /d% [(H0+Hi§i)N+HZ- Q' +V+MIL4], (A3)

where the momenta IIy and II;, relative to the variables N and ¢!, are now the primary
constraints. The secondary and tertiary conditions are given by

So = (Ho+Hie) +m> AU,  Si=(N& +0)S;, (A.4)
T(Z) = To = {So(%), H}, Ti(@) = {Si(), H} +m* Uy (@)N (T)  (A5)
= \Y (undetermined), A" (determined) ,

with S; = (H; + mQ\ﬁ U;), which is assumed to vanish to enforce the constraint S; ~ 0.
The quaternary condition is then

Q(7) = {{So(7), H}, H} + /d3y (A(@) {So(&), So()} + X' (¥) Oei T () (A.6)

and the last lagrange multiplier A\° is again not determined, completing the elimination of
the sixth mode, provided that

{So(Z), So(¥)} = 0. (A7)
This leads to a simple partial differential equation for the potential &, which is solved [4]

by the requirement that U/ is a function of the combination K¥ = ~% — £¢J. Using the
expressions for the secondary constraints we can write the Hamiltonian as

H:/d?’x[SoNJrSZ-Q"erQﬁS}, (A.8)

and we note incidentally that if € = 0 then Q° = 0 and H = f d3x Sy N. Thus if {So, So} =0
then also the tertiary constraint is actually identically zero: T = [d3y N (%) {So(Z), So(9)} =
0. In this case the Dirac analysis stops at the level of secondary constraints, and one is left
with 6 DoF instead of 5. Therefore, £ # 0 is a necessary conditions to have 5 DoF.

We can now find the further conditions under which a potential of the form (A.2)
propagates only 4 DoF. One must require that even the quinary and the senary conditions

F={Q H}+ XN 8:Q+ X dnQ, (A.9)
G={F, Hy+ X 0uF + X ONF (A.10)

do not determine the last lagrange multiplier A\°. This implies the following partial differential
conditions in field space

ONQ =0, and ONF =0. (A.11)

The explicit expressions consist in rather complicated equations for U and £; no solution, if
any exists, is presently known.

The last Lagrange multiplier ought to be determined at the next (septenary) step.
However as usual, even less DoF may be present. For instance, gauge invariance could be
present, if the lagrange multiplier is not determined even by the septenary and octonary
conditions and the procedure stops there. The number of DoF would in this case be 3, with
both second and first class constraints.

9To be rigorous, there exists also a branch of solutions to (A.4) corresponding to (N 53 + Q{) ~ 0. For a
simple solvable case where Q" = ([y]&" (see [4]) this branches gives 6 DoF and is thus unviable, while 5 DoF
are present in the branch S; ~ 0, that we chose.
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B Explicitly time dependent potentials

Here we analyze the case where the potential V has an explicit time dependence allowed by
spatial rotational SO(3) symmetry (see [69] where the class of potentials with 5 DoF was
considered). For what concerns the existence of a FRW background, the Bianchi conservation
equation (4.6) acquires an extra term, namely

. : V
NVNN—GZ (VNW—]\;) +NOVN =0. (B.1)

For the potentials of the form V = /7 (N A+B), with A and B explicitly time dependent,
equation (B.1) becomes an algebraic equation for the lapse N (see [69])

o )
6% (B,Y - 28) +NoA=0. (B.2)

The last term can be understood by the fact that the explicit time dependence of A is also
a source of breaking of time reparametrization. In any case, now N will be determined, and
from the 00 component of the Einstein equations, 3(%)2 = H? = N2p.g, one can determine
the scale factor a, leading to a sensible cosmology.

An straightforward construction leading to explicit time dependence is provided by a
nontrivial spatial reference metric, if one replaces ¢;; with b(t)d;;, see [69]. All invariants are
built from the spatial tensor v** 0x; and the net effect is to replace 74 by b(t)y7 = 4Y. In
this case, we can write eq. (B.2) as:

N o ¥aB =B/2 : (B.3)

b/b A,
where 8, A = 9,5 dwfl and (%U./i = /lﬁ/ij and 9,74 = b~¥. Using comoving time 7 (i.e.
N dt = dr) equation (B.2) remains the same (and determines N (7)) while the 00 Einstein

a'(1)?

eq. becomes 3 AT = 87G p(T) + per(7). Note that Minkowski space is not solution of the

modified Einstein equations. Also, note that the limit of static b is singular, and one turns
back to the constraint B, — B/2 = 0 as in the text.

The analysis reported in the present work, extended to time dependent potentials, gives
basically the same results summarized in table 2, but, despite the need to introduce an
arbitrary time-dependent function, it represents an interesting possibility, because it avoids
the tuning condition for the functional form of V required to have a FRW background.
Moreover, for class of potentials with 5 DoF, the theory is weakly coupled also near de Sitter
backgrounds [69] and thus represent a viable massive gravity with 5 DoF.

We finally carried out a check that all the nonperturbative results mentioned in this
work can be extended to the case of an explicit time dependence, by repeating the analysis
of constraints for the case of 5 DoF'. It is straightforward to check that primary (IT4) and
secondary constraints (S4) are not affected by the explicit time dependence. This is the main
reason why our results can be safely extended. Tertiary constraints are modified according to

T=T+m?8,(/7U), Ti=Ti+ 0,8 (B.4)

where we have denoted with ~ the corresponding constraints in the case of explicit time
dependence, see appendix A. The quaternary constraint becomes

Q=Q+m*{a(yyU), H} +m? 5 (V7U). (B.5)
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The lagrange multiplier \° is again not determined at this stage if {Sp, So} = 0, which is the
same partial differential equation for the potential I as in the time-independent case. Thus,
we again find that the potentials of the form

V=m? 7 (NU+0dl O +€), (B.6)

with U = U [K¥,t] and £ = E[Y¥ 1], propagate nonperturbatively 5 DoF. For the cases with
less than 5 DoF, all the results can be extended along the same lines.
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