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Abstract 
 

The mathematical modelling of infectious diseases is a large research area with a wide literature. In the 

recent past, most of the scientific contributions focused on compartmental models. However, the increasing 
computing power is pushing towards the development of individual models that consider the disease 

transmission and evolution at a very fine-grained level. In the paper, the authors give a short state of the art 

of compartmental models, summarise one of the most know individual models, and describe both a 
generalization and a simulation algorithm. 
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1.0  INTRODUCTION 

 

Computational epidemiology is a multidisciplinary field that 

brings together diverse contributions coming from computer 

science, mathematics, statistics, geographic information science 

and public health, so to help epidemiologists in their studies 

concerning e.g. the evolution of epidemics. 

  In such a context, the mathematical modelling of infectious 

diseases has a long tradition [10, 12]. Currently, different 

approaches exist: compartmental models based on differential 

equations [8, 9], ad-hoc models for the contact process [11, 1], or 

individual-based models [7, 4, 14]. 

  The paper starts describing the compartmental models, then 

discusses a relevant individual-based model (i.e., the Eubank 

model [7]), and delves into a recent extension [14] by presenting 

a further generalisation and diverse stopping criteria. 

 

2.0  COMPARTMENTAL VS INDIVIDUAL MODELS 

 

Compartmental models divide the population into compartments 

(groups of subjects with homogeneous characteristics) and 

describe the variation of the number of subject that moves from 

one compartment to another through differential equations. 

For instance, the SIR model uses the following compartments: (i) 

S: susceptible, (ii) I: infected, and (iii) R: recovered. Furthermore, 

let: 

 

• β be the contact rate, i.e. the rate of becoming infectious 

by contacting another susceptible subject; 

• γ be the recovery rate, i.e. the rate of recovering from an 

infection. 

 

  The variations in the time of the number of susceptible, 

infections and recovered individuals (by also assuming that the 

number of deaths are equivalent to the number of births) are 

described by the following equations: 

 
𝑑𝑆

𝑑𝑡
= −βIS;  

dI

dt
= βIS −  γI;

dR

dt
= γI      (1) 

 

  According to (1), in the time, the number of susceptible 

individuals S decreases as of the infections (calculated in terms 

of the contact rate, number of susceptible and infected 

individuals), and the number of infected individuals I increases 

of the previous quantity and decreases as of the individuals that 

recovers from the infections (calculated in terms of the recovery 

rate and the number of infected individuals). 

  The SIR model can be extended by including, i.e. the 

birth/death rate, vaccinations, and by even adding further 

compartments, thus leading to more complex models (e.g. the 

SIER model). 

  It is worth stressing that the compartmental models are valid 

only in case of sufficiently large populations. Since a large 

population comprises of many different individuals in various 

fields, the diversity is reduced to a few key characteristics which 

are relevant to the infection under consideration, thus smoothing 

over the differences of each individual (e.g. specific behaviours, 

movements). 
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Instead, the so-called individual-based models try to take into 

account the specificities of the individuals composing the 

population and the way in which each individual can differently 

contract the disease or infect another individual. In particular, 

such approaches: 

 

• build up a social network that realistically estimates the 

way in which every individual may contact other 

individuals; 

• divide the epidemic process in terms of two sub-models, 

called between-host disease transmission and within-host 

disease progression. The first takes care of describing the 

disease transmission from one individual to another, the 

second takes care of describing the disease progression 

within each individual. 

 

  One of the most known individual-based models is the one 

proposed by Eubank at al [7]. Such a model has the following 

characteristics: 

 

• the social network is build through a software agent 

called TRANSIM [13, 3], that is able estimate the 

movements of each individual in a urban area; 

• the between-host disease transmission model is based on 

bipartite graphs, in which the two classes of vertices are 

persons and locations, and the edges connects individuals to 

locations with a label that specifies the period of time in 

which an individual visited a location. For instance, the 

graph depicted in Figure 1 shows person p2 in L1 from 8:00 

to 9:00, in L2 from 10:00 to 12:00, and in L3 from 9:00 to 

10:00; 

• the within-host disease progression is modelled as 

follows: an individual becomes infected if in the same place 

of an infected individual for more than a certain period of 

time, and depending on the disease infectious rate. 

 

 
 

Figure 1  Example of bipartite graph estimated by TRANSIM 

 

 

  It is worth noting that Eubank et al. estimated the social 

network for Portland (Oregon, USA), simulated a smallpox 

epidemics, and demonstrated – differently from the 

compartmental models that would have suggested mass 

vaccination – that the epidemics could have been better controlled 

through focused quarantine and vaccinations, combined with 

early detection. 

  To understand such a result, let us take into account Figure 

2. Each node of the graph is an individual, and each edge between 

nodes represents that the two individuals are in contact each 

other, and thus may transmit each other an infectious disease. Let 

us suppose that the epidemic starts in an individual belonging to 

the area enclosed in the dashed box. For the epidemic to spread, 

it has to pass through the “bottleneck”. Therefore, if we could 

have (i) an early detection system able to signal the presence of a 

possible outbreak and (ii) the social network of the population 

under analysis, we could stop the outbreak by putting into 

quarantine the sub-graph enclosed in the dotted box, and by 

targeted vaccination. 

 

 
Figure 2  Sample social network 

 

 

3.0  THE EXTENDED MODEL 

 

The Eubank model uses exact movements of people (in order to 

properly label the arcs) and does not take into account the 

evolution of infectious diseases spread by vectors (the only 

classes of nodes are in fact people and places). 

In this section, we summarize an extension of this model [14], 

that addresses the two limitations above as follows. In the 

between-host disease transmission model we introduce: (i) 

probability functions that captures the uncertainty about the 

movements of people and (ii) a further class of nodes representing 

vectors. 

  Furthermore, we make use of probabilistic timed automata 

[5, 6] to model the within-host progression. 

 

3.1  The Mathematical Basis 

 

3.1.1  Between-host Transmission Model 

 

The between-host model is a tripartite graph with three types of 

vertices that represent people, locations and vectors. A person is 

identified with the notation p, a vector with v, a place with l. Let 

us assume respectively N, V and L be the number of individuals, 

vectors and places. Furthermore, at each discrete time t, a person 

p (or a vector v) is in only one place. 

  The edge that connects a person p (or a vector v) to a place l 

is labelled by a probability function fp,l(t) (or fv,l(t) for a vector), 

which represents the probability that, at time t, person p (or vector 

v) is in location l. 

  A person can contract the disease either by means of a 

contact with an infected person p’ located in the same place of p, 

or due to the presence of a vector v. In addition, the individual 

may contract the disease or not according to a certain probability, 

which may depend on various factors (e.g. by the immune 

resources of the subject, the specificities of the disease, the place 

in which it may be contracted, etc). Therefore, the probability that 

Outbreak origin 

Bottleneck 
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subject p becomes infected because of the infected individual p’, 

in l, at time t, is given by: 

 

fp,l,p’(t) = γp,l,p’(t) · fp,l(t) · fp’,l(t)         (2) 

 

  where γp,l,p’(t) is the probability of disease transmission from 

p to p’ in location l. 

Similarly, if the disease is transmitted by vectors, the probability 

for person p to contract the disease due to the presence of vector 

v in location l in time t is given by: 

 

fp,l,v(t) = τp,l,v(t) · fp,l(t) · fv,l(t)             (3) 

 

  where τp,l,v(t) is the probability for person p to contract the 

disease from vector v in location l. It is worth remarking that the 

model can take into account also aggregations of persons and 

vectors (e.g. a swarm of mosquito). Further details on this can be 

found in [14]. 

 

3.1.2  Within-host Progression Model 

 

The within-host disease evolution is modelled as a finite state 

automata with probabilistic transitions [5], in a manner similar to 

that proposed in the work of Dodds & Watts [6]. The states of the 

automata represent the state of health of subject p (e.g., healthy, 

infected or dead), while the edges that connect the states are 

labelled by probability functions fp,s,s’(t) that describe, in the time, 

the probability for subject p to move from state s state to state s’. 

  For instance, Figure 3 shows a sample automata for a three 

state disease progression (healthy, infected, dead). In particular, 

from the healthy state, an individual may become infected as of 

equations (2) or (3) above. Then, the infected individual can heal 

with probability function ℎ𝑝,𝑑(𝑡), or die with probability function 

𝑑𝑝,𝑑(𝑡), or remain infected with the remaining probability. 

 

 
 

Figure 3  Example of  within-host disease progression 

 

 

3.2  The Simulative Process 

 

An ad-hoc simulation exploits the aforementioned between-host 

transmission and within-host progression models. The simulation 

summarised in Algorithm 1 starts at time t0 and ends at time t1, 

with a discrete time interval ∆t. It simulates firstly the between-

host disease transmission (lines 4–11), then the within-host 

disease progression (lines 13–21). In summary: 

 

• Concerning the between-host disease transmission, the 

algorithm cycles over all locations that (at time t) has an 

infected individual on them. Then, cycles over all healthy 

persons in the same locations. By using equations (2) and 

(3), calculates the probability that each healthy person may 

become infected. Finally, it extracts a random number, and 

if the calculated probability is larger than the random 

number, we assume that the transmission took place; 

• Concerning the within-host disease progression, the 

algorithm cycles over all non-healthy people and examines 

all possible state evolutions of the related probabilistic timed 

automata. Similarly, by using a random number, the disease 

evolves accordingly. 

 

Algorithm 1 Iterative simulation 

1  t = t0 

2  while t ≤ t1 do 

3    // BETWEEN−HOST DISEASE TRANSMISSION 

4    foreach location l with an infected person p’ or 

             vector v do 

5      foreach healthy person p with an edge in l do 

6        prob = fp,l,p’(t) or fp,l,v(t) 

7        r = random [0,1) 

8        if (prob > r) then 

9          p becomes infected 

10     end 

11   end 

12   // WITHIN−HOST DISEASE PROGRESSION 

13   foreach non−healthy person p do 

14     let s be the state of p 

15     foreach state s’ connected to s do 

16       prob = fp,s,s’(t); 

17       r = random [0,1) 

18       if (prob > r) then 

19         p is in state s’ 

20     end 

21   end 

22   t = t + ∆t 

23 end while 

 

 

  It is clear that repeated executions of Algorithm 1, even on 

the same scenario, can produce different results, since both the 

between-host transmissions and the within-host progressions are 

influenced by the extraction of a random number. Therefore, 

similarly to the well-know Montecarlo simulations, we must 

repeat the algorithm as long as an adequate stop criterion is 

fulfilled.  

  It is worth noting the impact of such repetitions. During the 

iterations, different scenarios are generated. By comparing them, 

we could isolate the worst case (e.g. when we have the largest 

number of deaths), the best case, and the average one, so to have 

further opportunities to decide the best preventive and/or healing 

action. 

  Hereafter, two different stop criterions are presented. 

1. The first criterion consists in stopping when the average 

number of persons in a certain state (e.g., infected, 

dead) is enough accurate wrt a given error; 

2. The second criterion, instead, consists in stopping when 

the number of times in which each person is in a certain 

state (e.g., healthy, infected) is enough accurate wrt a 

given error. 
 

  The first criterion is preferable when the researcher is 

interested in studying the epidemics at the high level. When the 

researcher is interested in stabilising also the results of each 

individual, the second criterion is instead more proper. 

 

3.2.1  Stabilisation on the Number of Individuals in a Certain 

State 

 

According to the central limit theorem, the algorithm is stopped 

when the following condition occurs: 
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 2 ·  𝑥α/2 · √𝑆𝑁
2 (𝑡)

𝑁
< 𝜀 (4) 

 

  where N is the current number of iterations, S2
N(t) is the 

variance of the number of subjects belonging to the desired state 

(e.g., infected, dead), 1−α is the confidence level, xα/2 is chosen 

so that ∫ 𝑔(𝑡)𝑑𝑡
𝑥α/2

−∞
= 1 − α/2, g(t) is the normal distribution, 

and 𝜀 is the acceptable error level. 

 

3.2.2  Stabilisation on the Number of Times in which Each 

Individual is in a Certain State 

 

Let us focus on the healthy state. Similar considerations applies 

to any other state. For any person p, we define 

 

𝑇𝑝(𝑁) = number of  time in which the person p  

                 is healthy in the simulation N, 

 

  and 𝑇𝑝
∗ is the associated empirical mean, and 𝑇𝑝 the true 

value. In order to found the simultaneity interval confidence for 

𝑇𝑝, thanks to the Central Limit Theorem, similarly as in §3.2.1, 

we consider that the algorithm must be stopped when the 

following condition occurs for all persons p: 

 

 2 ·  𝑥α/2 · √
𝑇𝑝,𝑁

2 (𝑁)

𝑁
< 𝜀 (5) 

 

  where N is the current number of iterations,  𝑇𝑝,𝑁
2 (𝑁) is the 

variance of 𝑇𝑝
∗, 1−α is the confidence level, xα/2 is chosen so that 

∫ 𝑔(𝑡)𝑑𝑡
𝑥α/2

−∞
= 1 − α/2, g(t) is the normal distribution, and 𝜀 is 

the acceptable error level.  

 

 

4.0  CASE STUDY 

 

The case study describes the effect of probability in the 

transmission of the disease, in comparison with the model 

proposed by Eubank et al. In particular, let us refer to the 

following scenario. Let us suppose that an infected person visits 

a gym from 12:00 to 13:00, and 50 healthy individuals arrive at 

13:00 and go off at 14:00, each for a different location. 

Furthermore, let us assume that the disease is such as to have an 

infectious rate of 10%, without any incubation period. 

  In the model of Eubank et. al., the disease transmission 

occurs only if one can assume a contact for a more than a certain 

period of time. Therefore, in the aforementioned scenario, given 

the absence of any contact between the infected and the healthy 

individuals, the approach of Eubank at al. deduces the 

impossibility of the outbreak. 

 

 
Figure 4  Binomial B(k,q) and uniform U[13,14](t) variables 

However, let us suppose that we could introduce uncertainty 

about the time in which the infected person visits the gym, and in 

particular let us suppose that we could model this uncertainty 

with a Binomial random variable with parameters k = 11 and k · 

q = 2, as shown in Figure 4. 

  

fp,l(t) = B(k,q) 

fp’,l(t) = U[13,14](t) 

γp,l,p’(t) = 0.1 

τp,l,v(t) = 0 

 

Accordingly, equations (2) and (3) become: 

 
fp,l,p’(t) = 0.1 · B(k,q) · U[13,14](t) 

fp,l,v(t) = 0 

 

Furthermore, the equations for the within-host disease 

progression (as of the example model described in §3.1.2) are as 

follows: 

 

  ℎp,d(t) = 𝑑𝑝,𝑑(t) = 0 

 

i.e., an individual, when becomes infected, cannot die nor heal. 

 

  In such a context, it is now possible for the infected 

individual to contact the healthy persons and thus to give birth to 

an epidemic. In particular, the area behind the tail of the binomial 

distribution from 13:00 to 13:40 represents such a probability. 

  Figure 5 shows the results of the simulation applied on the 

case study described above, by using the first stop criterion. In 

particular, the graph shows the best (dotted line), worst (point-

dashed line) and average cases (dashed line). As can be noticed, 

the best case corresponds to the results of the Eubank et al.’s 

model, i.e., the epidemic does not spread. The worst case is that 

the number of infections quickly increases until all individuals 

become infected. Finally, the average case consists in a slower 

increase, until nine infections are detected, with a confidence 

interval of plus/minus one infection. 

 

 
Figure 5  Case study results 

 

 

5.0  CONCLUSIONS 

 

The paper summarises few approaches that take into account 

disease outbreaks, starting with the traditional mathematical 

approaches (e.g. SIR) and ending with individual-based ones. The 

advantages of individual-based approaches were essentially 

connected with the ability of gaining better insights into the 

epidemics. Nevertheless, there are several issues that currently 

limit their application in real scenarios: 

fp,l(t) = B(k,q) 

fp’,l(t) = U[13,14](t) 
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 The creation of the social network is an extremely 

complex process. Although e.g. a software as 

TRANSIMS can estimate the contact network, it is 

limited to only urban areas. However, the possibility of 

approximating portions of the population by adequately 

modifying the probability distributions is a possible 

approach [14]; 

 The execution of the simulation is an extremely 

expensive process from a computational point of view, 

and the resources required are very large. In this 

direction there are proposals that attempt either to 

reduce the algorithmic complexity of the simulation 

[14] or to use parallel architectures [2].  
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