
Experimental Evaluations of Algorithms
for IP Table Minimization

Angelo Fanelli, Michele Flammini, Domenico Mango,
Giovanna Melideo, and Luca Moscardelli

Dipartimento di Informatica, Università di L’Aquila,
Via Vetoio Loc. Coppito, 67010 L’aquila, Italy

{angelo.fanelli,flammini,mango,melideo,moscardelli}@di.univaq.it

Abstract. The continuous growth of the routing tables sizes in back-
bone routers is one of the most compelling scaling problems affecting
the Internet and has originated considerable research in the design of
compacting techniques. Various algorithms have been proposed in the
literature both for a single and for multiple tables, also with the possi-
bility of performing address reassignments [1,5].

In this paper we first present two new heuristics, the BFM and its
evolution called BFM-Cluster, that exploit address reassignments for
the minimization of n > 1 routing tables, and their performances are
experimentally evaluated together with the already existing techniques.
Since a main problem posed by the growth of the routing tables sizes
is the consequent general increase of the table lookup time during the
routing of the IP packets, the aim is twofold: (i) to measure and compare
the compression ratios of the different techniques and (ii) to estimate
the effects of the compression on the lookup times by measuring the
induced improvement on the time of the main algorithms and data
structures for the fast IP address lookup from the original tables to the
compressed ones. Our point is that the existing methods are efficient in
different situations, with BFM-Cluster heuristic outperforming all other
ones.

Keywords: Routing, IP protocol, compression, lookup times, optimal
and approximation algorithms.

1 Introduction and Motivations

In the Internet Protocol (IP) communications between hosts are possible by
means of interconnected forwarding elements called routers. Each router con-
sists of input interfaces, output interfaces, a forwarding engine and a routing
table. Exchanged messages are arranged into packets or datagrams. Unlike the
circuit-switched networks, every packet travels across the network independently
of all others. This implies that each packet is labelled with both a globally unique
source and a destination address, which it must carry along. In a router, the bot-
tleneck in packet forwarding is to lookup the destination address of an incoming

C. Demetrescu (Ed.): WEA 2007, LNCS 4525, pp. 324–337, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Experimental Evaluations of Algorithms for IP Table Minimization 325

packet in the routing database, that is to determine the output interface through
which the packet must be forwarded.

Unfortunately, the huge and disorganized growth of the Internet during the
last years has caused an excessive increase in the number of entries of the rout-
ing tables. Beside their memory requirements, the main problem posed by this
phenomena is the consequent general increase of the table lookup time during
the routing of IP packets. Thus, a considerable research effort has been devoted
in the design of techniques for reducing the size of IP routing tables.

In [5] the authors presented an optimal polynomial time algorithm (Optimal
Routing Table Constructor - ORTC) for constructing a routing table that has
the least possible number of entries, while still providing the same routing in-
formation. Moreover, they experimentally evaluted ORTC by showing that it
reduces the number of prefixes by around 40%.

The envisaged close enhancement of the IP protocol to version 6 urgently re-
quires the solution of the IP routing tables minimization problem in a new and
more effective way, that is by performing address reassignments. Such a facility
can actually be exploited also inside the current version of the protocol, thanks
to the introduction of the so called Network Address Translators, NATs for short,
by which independent address reassignments are possible inside subnetworks [6].
In this scenario, efficient tables minimization algorithms exploiting addresses re-
assignments are of crucial importance. Motivated by the above discussion and
by exploiting address reassignments, in [1] the authors provided a new polyno-
mial time optimal algorithm, called BF, that minimizes the size of single routing
tables and a 3h-approximation algorithm (h is the length of the IP addresses),
called BF-Multi, that minimizes the sum of the sizes of n > 1 routing tables.

Starting from the above results, in this paper we first introduce two new
heuristics, the BFM heuristic and its evolution called BFM-Cluster, that exploit
address reassignments for the minimization of n > 1 routing tables, and then
we focus on the experimental evaluation of the above mentioned techniques for
IP tables minimization (i.e., ORTC, BF, BF-Multi, BFM and BFM-Cluster).
Since a main problem posed by the growth of the routing tables sizes is the
consequent general increase of the table lookup time during the routing of the
IP packets, the aim is twofold: (i) to measure and compare the compression
ratios of these techniques and (ii) to estimate the effects of the compression on
the lookup times by measuring the induced improvement of the time of the main
algorithms and data structures for the IP address lookup (e.g., Binary Search
on prefix Length [18,19], Multi-ary Tries [15,16] and LC-Trie [14]).

The paper is organized as follows. In the next section we present the stat-
of-art in IP address tables minimization; in Section 3 we introduce our new
heuristics. Section 4 is devoted to the implementation details such as software,
hardware, requirements and metrics. Section 5 illustrates our contributions on
the comparison of the compression ratios of the table minimization algorithms
and on the effect of tables minimization on the IP lookup data structures. Sec-
tion 6 concludes by analyzing experimental results and discussing directions for

326 A. Fanelli et al.

future work. We apologize for the many omissions and missing details, but space
constraints imposed several limitations.

2 Preliminaries

In the IP protocol each host is assigned a unique address of h = 32 bits, with h
presumably higher in future versions. Routers consist of input interfaces, output
interfaces, a forwarding engine and a routing table. Each routing table is a list
of entries, where each entry e consists of three different fields: a network mask
maske, a destination network address deste and a next-hop address nexte. Field
maske consists of a h bit binary string of the form 1le0h−le , where le is called
the length of the mask. The network address deste is a h bit binary string
representing the IP address associated to the entry, and the next-hop address
nexte identifies the index of the output interface corresponding to the entry.

A given IP address matches entry e if its leading le bits are coincident with
the respective le ones of deste. Consider two entries e and f such that le < lf
and the leading le bits of destf exactly matching the ones of deste. It is easy
to see that any IP address matching entry f matches also entry e. We then say
that there is an inclusion of entry f in entry e.

Since an IP address can match different entries, routing is performed on a
longest mask matching entry base, that is the output interface chosen to forward
a packet is taken from the matching entry having the longest mask. The efficient
solution of such a problem, called Longest Matching Prefix, has given rise to
different algorithms, some of which are briefly presented in the following subsec-
tions, together with an overview of the minimization ones implemented for the
experimentation. Due to space limitations their presentation is necessarily in-
complete, with many details just mentioned and/or left unspecified. However, the
interested reader can refer to the given literature for a more detailed description.

2.1 IP Lookup Algorithms

Many fast route lookup algorithms have been proposed in the last few
years [2,3,4,8,9,11,14,16,19]. Based on the data structure used, these algo-
rithms can be classified into one of the following three categories: trie-based,
comparison-based and hash-based. The trie-based algorithms use the traditional
key search idea and organize the routing table into a tree-like data structure [7].
Each node in the trie has zero or more child nodes. Each lookup of a key starts
at the root of the trie and then walks down to find the longest match. The idea
underlying comparison-based algorithms is mainly related to the binary search
scheme. Modifications have been devised to accommodate the prefix into sorted
arrays. In hash-based algorithms, the results of hashing functions are used as
indexes into memory. The perfect hash function completes the lookups in only
one memory access that can achieve the highest searching speed.

The particular algorithms used in this paper to evaluate the effect of table min-
imization on their lookup times are among the ones with the best performances:

Experimental Evaluations of Algorithms for IP Table Minimization 327

Binary Search on prefix Length [18,19], which combines comparison-based and
hash-based techniques, and Multi-ary Tries [15,16] and Level Compressed (LC)
Trie [14], both belonging to trie-based category.

2.2 Table Minimization Without Address Reassignment

The Optimal Routing Table Constructor (ORTC) is an algorithm given in [5]
which reduces the number of entries in a routing table.

Given a routing table that provides forwarding information for IP addresses
using longest prefix matching, ORTC produces a new routing table that has the
same forwarding behavior and the least possible number of entries.

A binary tree representation is used to graphically depict a set of prefixes.
Each successive bit in a prefix corresponds to a link to a child node in the tree,
with a 0 corresponding to the left child and a 1 corresponding to the right child.
Note that the binary tree generally contains more nodes than prefixes, since every
successive bit in the prefix produces a node. The nodes are labeled with next-
hop information, typically a small integer or a set of small integers. Roughly
speaking, ORTC optimizes a routing table using three steps over the binary
tree representation. The first step propagates routing information down to the
trees leaves. The second step finds the most prevalent next hops, by propagating
information (sets of next hops) from the leaves back towards the root. In fact,
shorter prefixes close to the root of the tree should route to the most popular or
prevalent next hops. Finally, a third step moves down the tree, choosing a next
hop from the set of possibilities for a prefix and eliminating redundant routes.

The space and time complexity of ORTC algorithm are O(hN), where N is
the number of entries in the input routing table.

2.3 Table Minimization with Address Reassignment

In [1] the authors propose algorithms for the minimization of routing tables using
address reassignments. This approach differs substantially from the ORTC’s one,
where the hosts must maintain their original addresses, and allows to improve
the effect of minimization by assigning IP addresses so as to obtain the maximum
possible compression.

An optimal polynomial time algorithm (called BF) was presented in [1] for
the case of single routing tables.

Let us briefly describe the underlying idea.
Denoted as ai the number of hosts reached through the i-th output interface, if

inclusions between entries are not allowed, then the set of the addresses matching
any entry e in the table has cardinality 2h−le and consequently the minimum
number of entries corresponding to the i-th output interface is at least equal
to the minimum number of powers of 2 whose sum is equal ai. This clearly
corresponds to the number of bits equal to 1 in the h + 1 bit binary string
that encodes ai. Let one(ai) denote such a number. Then the minimum size of
the table is at least

∑δ
i=1 one(ai), where δ is the number of output interfaces.

Moreover, it is not difficult to show that such a number of entries is always
achievable.

328 A. Fanelli et al.

Allowing the inclusion of one entry f in one entry e with nexte �= nextf and
le < lf , modifies the number of addresses matching the entries corresponding to
the output interface nexte from anexte to anexte + 2h−lf . As a consequence,
the number of entries corresponding to the output interface nexte becomes
one(anexte + 2h−lf). Concerning the effect of such an inclusion on the entries
of the output interface nextf , it is possible to charge a cost of one to the in-
clusion to keep track of the fact that such an entry will be effectively realized
inside e, while the number of addresses matching the remaining entries of nextf
becomes anextf

− 2h−lf . Exploiting such ideas, algorithm BF constructs a table
of minimum size in time O(hδ).

Unfortunately, in the general case in which we are interested in minimizing
the sum of the sizes of n > 1 tables1, as shown in [1] this problem is NP-hard,
but there exists a 3h-approximation algorithm, called BF-Multi, that exploits
a matrix representation of the instances of the problem. In fact, the routing
behavior of any router rj can be represented by means of a boolean matrix
Aj in which each row is associated to a destination host and each column to
one output interface of rj . Let A be the global matrix given by the horizontal
concatenation of all the matrices Aj . Let us define a segment in a given col-
umn of A as a maximal vertical sequence of consecutive entries equal to 1 in
the column. The approximation algorithm is based on the idea that any per-
mutation π of the rows of A corresponds in a natural way to an assignment
of addresses to the hosts. Namely, the host corresponding to row i after the
permutation receives the IP address given by the h bit binary string encoding
i − 1. Since each segment corresponds to a limited number of entries in the
IP routing table, a permutation causing a low number of segments in A yields
also a solution with a low overall number of table entries. One of such per-
mutations is than determined by reducing the problem to minimum metrical
TSP.

3 The New Heuristics

In this section we introduce new heuristics for the problem of minimizing the
sum of the sizes of n > 1 tables with address reassignment.

We emphasize that in both heuristics we focus on the address reassignment,
i.e. we care about assigning addresses to host such that the total size of the
routing tables can be minimized. On the other hand, we discard optimization
issues relative to the minimization of each of the final routing tables obtained
after the address reassignment; this is due to the fact that, after the addresses
have been reassigned, such a problem is equivalent to the one of minimizing a
routing table without address reassignment, which is optimally solved by the
ORTC algorithm.

All the details of both heuristics will be shown in the full version of the paper.

1 Notice that without address reassignment the problem can be trivially solved by
independently applying ORTC to each single table.

Experimental Evaluations of Algorithms for IP Table Minimization 329

3.1 BFM Heuristic

The main idea of the BFM heuristic is to construct a new virtual router r̄
starting from the n routers as follows. For each host x we compute a n-tuple
Ux = (out1x, . . . , outnx) containing the n next hop interfaces associated to the host
in each router, i.e. outix is the next hop interface associated to x in router ri. Let
U be the set of all the obtained tuples. For each u ∈ U , let Hu be the set of hosts
corresponding to the n-tuple u. We run the BF algorithm on the new virtual
router r̄, in which each n-tuple u represents a virtual output interface with |Hu|
associated hosts. Finally, starting from the address assignment determined by
BF, we construct each of the n final tables by selecting the corresponding next
hop interfaces from the virtual next hops, i.e. from the n-tuples.

3.2 BFM-Cluster(k) Heuristic

This heuristic is an evolution of the BFM one just described and as an input
parameter k, whose tuning is discussed in subsection 5.2. Since the size of the ta-
bles compressed by BF is usually very close to the number of output interfaces,
in the BFM-Cluster heuristic we try to reduce the number of virtual output
interfaces by clustering the tuples with a low number of not coinciding coordi-
nates. In particular, when constructing the virtual router r̄, we partition the set
of tuples in clusters c1, c2, . . . such that tuples with a low fixed number of differ-
ent components are in the same cluster, and finally, for each cluster ci, we add
to r̄ a virtual output interface with a number of associated hosts equal to the
sum of the numbers of hosts associated to each tuple in ci. More specifically, the
partition process is as described in the following. First of all, let us define tuples
d-close if the number of their different components is at most d. We maintain an
(initially empty) set Ū of leader tuples, and analyze one by one all the tuples in
U : for each u ∈ U , if u is k-close to a leader tuple ū ∈ Ū , we add u to the cluster
whose leader is ū, otherwise we create a new cluster having u as leader. Finally,
as in the BFM heuristic, we have to construct each of the n final tables. To this
aim we first partition the set of addresses assigned to each cluster ci between
the tuples belonging to ci, and then we proceed by selecting from the tuples the
next hop interfaces relative to each table.

4 Methods Testing

We implemented the techniques described in the Section 2 in the C language.
Overall, the developed C code consists of about 3000 lines. Since we are interested
in the compression ratio and in the relative improvement of the lookup time, we
performed the experimentation on a personal computer with a 2-GHz Pentium
4 processor and 256 MB of RAM running Windows XP.

4.1 Test Data

The techniques are tested on 15 existing routing tables, downloaded from the
routing table snapshots provided by the IPMA Project [13,17] and from the

330 A. Fanelli et al.

route server lists provided in [10,12], as well as on 56 artificially generated tables
by independently modifying the next hop of each entry of a starting original
table with a fixed probability between 10% and 30%.

For the minimization techniques, we considered 13 input instances composed
with existing routing tables, and 7 instances composed with artificially gener-
ated ones. More precisely, for every set of tables we have run the implemented
compression techniques and then constructed the auxiliary data structures both
for the initial and compressed tables. In order to test the improvement times of
the IP address lookup algorithms, each technique has been tested against three
different traffic files, each containing 15 · 106 IP addresses on the original tables
and on the compressed ones. Overall, we performed about 3000 different tests.
More precisely, one traffic file is obtained as a permutation and repetition of the
IP addresses originating (i.e., matching at least one entry) from the considered
routing tables, and the other two traffic files contain random IP addresses.

Table 1 describes the existing routing tables features (i.e., the number of the
entries in the routing table, the number of distinct next-hops found in the table
and the date of tables snapshots), and the sets of the tables2 considered in our
tests. In order to have a more compact and readable presentation, we omit the
description of the artificially generated tables and the one of the sets of these
tables.

Table 1. Existing routing tables and their sets used as input instances

Tables Sets
ID Table Date # Entries # Next hop 1 2 3 4 5 6 7 8 9 10 11 12 13
1 utah.rep.net 02-11-04 153 6 x x x x x
2 mae-west 24-08-97 15050 57 x x x x x x x x
3 aasd 24-08-97 20328 19 x x x
4 pb 24-08-97 20637 3 x x x
5 mae-east 24-08-97 38470 59 x x x x x x x x
6 funet 19-11-97 41709 20 x x x x x x x
7 as5388 02-11-04 62531 112 x x x x x x x x x x
8 wcg.net 02-11-04 121800 898 x x x x x x x x x
9 ip.att 02-11-04 145682 23 x x x x x x
10 he 02-11-04 140112 196 x x x x x x x
11 ip.tiscali 02-11-04 145648 1 x x x x x
12 opentransit 02-11-04 153317 15 x x x x x x x x x
13 gbls 02-11-04 154740 303 x x x x x x x x x x
14 oregon-ix 02-11-04 161635 53 x x x x x x
15 colt.net 02-11-04 162008 1 x x x x

2 Unfortunately, we haven’t current snapshots for mae-east, aads, pb, funet and mae-
west. Anyway, we refer to these tables of the 1997 because they were taken as input
in the main experimentation works about IP address lookup and IP tables mini-
mization [5,18].

Experimental Evaluations of Algorithms for IP Table Minimization 331

4.2 Measurement Principles

The main metric used to evaluate the IP tables minimization algorithms is the
compression or reduction ratio, defined as d−dc

d , where d is the initial size of the
table and dc is the size after the compression. More precisely, we have based
our experimental analysis on the comparison between the total number of the
table entries produced by the algorithms and the initial one. Moreover, referring
to the IP lookup algorithms implemented, we have evaluated in percent terms
the improvement of the lookup time (defined as t−tc

t , where t is the lookup
time on the initial table and tc is the lookup time on the compressed one)
achieved starting from the compressed tables with respect to the one yielded by
the original ones.

5 Experimental Results

In order to have a more compact and readable presentation giving a direct indi-
cation of our experimental outcome, we present the results in global way. More-
over, since the tests of the compression algorithms and of the IP address lookup
techniques on the artificially generated tables lead to almost the same results
and considerations, we describe only the experimental results concerning the
real world tables. Finally, concerning the IP address lookup techniques, we show
both the global results relative to all the three traffic files, and the ones relative
only to the ”first” traffic file, i.e., the one containing addresses obtained from
the existing routing tables.

5.1 The Case of a Single IP Routing Table

Table 2 shows the compression ratios obtained by running both the ORTC and
the BF algorithms on the original tables in the case of a single routing table.

Table 2. Compression ratios of the original tables in the case of a single routing table

ORTC BF
Compression ratio 57.66% 99.80%

We notice the excellent compression results provided by the BF algorithm
which can in fact exploit the address reassignment. As an example, after the
compression obtained by BF, the routing table “mae-east” presents only 133 en-
tries versus 38470 entries of the original table. Concerning the ORTC algorithm,
the results pointed out by the experimental study reflect the theoretical analysis
and the experimental evaluation presented in [5].

The effects of the compression on the lookup times are shown in tables 3 and 4
where we provide the average reduction of the lookup times of the implemented
algorithms.

332 A. Fanelli et al.

Table 3. Lookup times improvement of the IP address lookup algorithms executed on
all the traffic files with respect to the original times on uncompressed routing tables

Multibit Binary search LC-Trie
ORTC 8.56% 12.31% 0.65%

BF 77.88% 64.90% 32.22%

Table 4. Lookup times improvement of the IP address lookup algorithms on the first
traffic file with respect to the original times on uncompressed routing tables

Multibit Binary search LC-Trie
ORTC 9.53% 1.59% 12.21%

BF 87.22% 69.60% 43.19%

5.2 The Case of Multiple IP Routing Tables

Tables 5, 6, 7 and 8 show the experimental results in the case of compression of
multiple IP routing tables. More precisely, Table 5 shows the reduction ratios on
the sets of routing tables described in Table 1, Table 6 groups such results by set
cardinality, whereas table 7 and 8 provide a measure of the induced improvement
of the time of the main algorithms and data structures for the fast IP address
lookup from the original tables to the compressed ones. Moreover, tables 9, 10
and 11 show the experimental results of the IP lookup algorithms on the single
sets of routing tables described in Table 1.

Table 5. Compression ratios in the case of multiple routing tables

Set ORTC BF-Multi
BF-Multi
+ ORTC

BFM
BFM +
ORTC

BFM-C.(1)
BFM-C.(1)
+ ORTC

1 33.53% 84.30% 94.44% 94.19% 95.92% 80.52% 96.77%
2 48.86% 55.53% 83.77% 85.29% 90.11% 35.62% 92.11%
3 67.20% 95.04% 98.07% 97.85% 98.78% 89.24% 98.79%
4 55.55% 76.74% 91.82% 92.70% 94.52% 66.73% 95.28%
5 56.48% 56.46% 83.67% 82.46% 89.88% 33.22% 92.72%
6 63.16% 80.62% 93.01% 90.99% 94.97% 64.03% 96.00%
7 60.29% 48.42% 81.96% 74.14% 86.94% 24.69% 91.09%
8 57.66% 12.18% 69.24% 45.08% 75.97% −39.10% 83.74%
9 51.29% −12.97% 60.78% 38.86% 69.61% −55.60% 79.32%
10 51.97% 50.60% 82.80% 81.23% 87.60% 16.79% 90.74%
11 53.72% 44.76% 80.28% 78.62% 86.26% 15.91% 90.17%
12 52.37% 25.01% 73.60% 68.55% 80.30% −4.28% 86.27%
13 53.28% 43.10% 79.91% 78.24% 86.13% 15.42% 90.00%

We evaluated the performance of the BF-Multi, BFM and BFM-Cluster(k)
algorithms also with an additional compression step obtained by running ORTC

Experimental Evaluations of Algorithms for IP Table Minimization 333

Table 6. Compression ratios in the case of multiple routing tables, grouped by set
cardinality

#tables ORTC BF-Multi
BF-Multi
+ ORTC

BFM
BFM +
ORTC

BFM-C.(1)
BFM-C.(1)
+ ORTC

5 57.16% 79.66% 92.61% 93.10% 95.31% 69.35% 96.08%
6 51.97% 50.60% 82.80% 81.23% 87.60% 16.79% 90.64%
7 57.70% 60.18% 85.60% 83.92% 90.26% 37.35% 92.86%
8 52.37% 25.01% 73.60% 68.55% 80.30% −4.28% 86.27%
10 60.29% 48.42% 81.96% 74.14% 86.94% 24.69% 91.09%
13 51.29% −12.97% 60.78% 38.86% 69.61% −55.60% 79.32%
15 57.66% 12.18% 69.24% 45.08% 75.97% −39.10% 83.74%

Table 7. Average lookup times improvement of the IP address lookup algorithms
executed on all the traffic files with respect to the original times on uncompressed
routing tables

Multibit Binary search LC-Trie
BF-Multi 46.68% 38.16% 29.54%

BF-Multi + ORTC 59.35% 49.06% −4.34%
BFM 61.63% 51.34% −19.93%

BFM + ORTC 62.34% 46.77% 8.40%
BFM-Cluster(1) 37.41% −11.73% −17.67%

BFM-Cluster(1) + ORTC 65.44% 51.98% 16.51%

on their output tables. In fact, while on one hand BF-Multi does not exploit
inclusions of entries (optimized by ORTC), that is each IP address matches at
most one entry, on the other hand the BFM and BFM-Cluster(k) heuristics
do not guarantee the minimality of the output tables, since the same output
interface of a table may be associated to many virtual output interfaces (n-
tuples).

In order to tune the parameter k of BFM-Cluster(k), we have executed the
heuristic for different values of k. Since the number of tables to be minimized
simultaneously is never greater than 15, we have obtained better results for small
values of k, and the best ones (presented in the tables) for k = 1.

6 Analysis of the Results and Future Work

First of all, we point out how the reduction in the lookup times is higher when
executing the lookup algorithms on the traffic file containing addresses obtained
from the considered routing tables (i.e. the first traffic file). Thus, it results that
the lookup time for addresses not matching any entry of a table is poorly affected
by the size of the routing table.

The experimentation shown the effectiveness of the BF algorithm for the
compression of a single table. It is worth noticing that BF could obtain a higher

334 A. Fanelli et al.

Table 8. Average lookup times improvement of the IP address lookup algorithms
executed on the first traffic file with respect to the original times on uncompressed
routing tables

Multibit Binary search LC-Trie
BF-Multi 57.57% 48.13% 47.87%

BF-Multi + ORTC 65.94% 55.50% 28.19%
BFM 82.62% 65.64% 15.31%

BFM + ORTC 82.99% 59.50% 37.83%
BFM-Cluster(1) 66.69% 35.87% 7.27%

BFM-Cluster(1) + ORTC 83.66% 60.72% 39.06%

Table 9. Average lookup times improvement on the algorithms executed on all the
traffic files with respect to the original times on uncompressed routing tables (BF-Multi
algorithm)

LC Trie Multibit Binary search on IP length
Set BF-Multi BF-Multi+ORTC BF-Multi BF-Multi+ORTC BF-Multi BF-Multi+ORTC
1 21.80% −3.90% 57.44% 36.86% 37.54% 40.67%
2 30.88% −6.14% 42.86% 48.45% 32.68% 42.95%
3 55.13% 24.80% 68.45% 66.46% 72.29% 73.59%
4 36.90% 14.32% 53.19% 43.04% 50.85% 58.98%
5 28.01% −9.19% 44.89% 46.39% 34.01% 46.51%
6 44.69% 10.08% 58.57% 55.59% 59.03% 66.54%
7 33.56% −9.43% 47.38% 48.11% 36.41% 50.05%
8 23.50% −7.24% 40.16% 32.56% 25.48% 42.00%
9 18.61% −16.38% 29.45% 27.71% 14.14% 31.55%
10 22.72% −16.19% 42.75% 32.83% 32.62% 47.03%
11 19.87% −13.83% 39.67% 27.59% 35.12% 43.96%
12 23.18% −11.87% 39.44% 29.67% 29.07% 47.41%
13 25.28% −11.51% 42.72% 34.60% 36.87% 46.61%

compression thanks to the address reassignment facility, which was not allowed
to ORTC. Concerning the IP lookup times, the multibit and binary search on IP
length algorithms present a better performance on the compressed tables with
respect to LC-Trie. As foreseen, the lookup times are lower when the tables are
compressed by the BF algorithm, with times ranging from 32.22% to 77.88%,
depending on the lookup algorithm.

For the case of multiple tables, we can observe two factors that negatively
affect the performances: (i) the number of tables in the sets and (ii) the “ho-
mogeneity” of the tables. In fact, both the BF-Multi algorithm and the BFM
and BFM-Cluster ones degrade when the number of tables in the sets increases
(see Tables 6 and 12). However, we have shown that it is possible to obtain a
good average compression by further running the ORTC algorithm on the arising
compressed tables. For all the algorithms, we have noticed that the compression

Experimental Evaluations of Algorithms for IP Table Minimization 335

Table 10. Average lookup times improvement on the algorithms executed on all the
traffic files with respect to the original times on uncompressed routing tables (BFM
algorithm)

LC Trie Multibit Binary search on IP length
Set BFM BFM+ORTC BFM BFM+ORTC BFM BFM+ORTC
1 10.49% 10.68% 41.07% 68.91% 67.86% 38.09%
2 −30.42% −0.80% 57.50% 62.50% 59.31% 45.16%
3 31.41% 32.13% 67.11% 77.55% 74.70% 73.72%
4 31.25% 19.24% 73.39% 62.10% 69.80% 51.00%
5 −16.40% 8.16% 58.75% 62.59% 67.62% 46.23%
6 2.59% 27.18% 69.18% 73.63% 70.67% 68.80%
7 −28.52% 9.21% 61.12% 66.03% 64.45% 50.34%
8 −111.07% −3.39% 0.80% 53.57% 48.69% 34.38%
9 −105.17% −11.56% 2.68% 51.52% 47.68% 28.14%
10 −17.35% 5.84% 56.40% 59.61% 65.50% 44.80%
11 −42.02% 6.71% 41.51% 57.96% 41.66% 44.93%
12 −0.10% 0.82% 66.24% 55.73% 60.27% 40.51%
13 16.25% 4.94% 71.68% 58.67% 62.98% 41.85%

Table 11. Average lookup times improvement on the algorithms executed on all the
traffic files with respect to the original times on uncompressed routing tables (BFM-
Cluster(1) algorithm)

LC Trie Multibit Binary search on IP length

Set BFM-C.(1)
BFM-C.(1)
+ ORTC BFM-C.(1)

BFM-C.(1)
+ ORTC BFM-C.(1)

BFM-C.(1)
+ ORTC

1 20.38% 5.36% 59.40% 74.32% 37.56% 39.08%
2 27.36% 12.12% 45.00% 64.66% 37.31% 44.83%
3 29.45% 34.94% 67.60% 79.03% 56.60% 74.06%
4 49.08% 14.60% 59.44% 69.34% 41.25% 57.29%
5 40.27% 18.78% 53.02% 66.96% 37.11% 54.37%
6 45.90% 36.62% 58.97% 75.20% 56.64% 69.06%
7 41.35% 21.18% 50.25% 66.66% 40.75% 55.91%
8 −16.16% 16.19% 27.77% 53.76% −57.74% 41.98%
9 −125.06% 9.44% 27.84% 52.71% −53.52% 37.55%
10 −91.00% 6.55% −41.00% 63.88% −107.27% 53.31%
11 −141.89% 15.20% −4.62% 62.54% −182.52% 44.54%
12 −83.34% 9.81% 37.01% 59.18% −29.64% 51.25%
13 −26.01% 13.90% 45.58% 62.53% −29.64% 52.49%

ratio worsen as the tables become less “homogeneous”. We tried to formalize such
an intuition by running the algorithms on set of tables independently obtained
by perturbing the entries of a real world one with a fixed probability. Table 12
provides the reduction ratios on the sets of routing tables artificially gener-
ated, grouped by cardinality and perturbing probability. We can notice that the

336 A. Fanelli et al.

Table 12. Compression ratio on sets of routing tables obtained by perturbing the
entries of real world one with fixed probability

#tables
Perturbating

Prob.
BF-Multi

BF-Multi
+ ORTC

BFM
BFM +
ORTC

BFM-C.(1)
BFM-C.(1)
+ ORTC

7 10% 33.71% 72.24% 75.23% 78.65% 25.58% 88.41%
15 10% −50.15% 47.90% 35.00% 44.94% −16.77% 62.09%
15 30% −324.16% −46.91% 3.14% 11.33% −12.82% 13.68%

algorithms increase considerably the number of table entries when the homo-
geneity degree of the tables decreases, i.e. when the perturbing probability is
higher.

Overall, the BFM and BFM-Cluster(1) heuristics present better performances
than BF-Multi, with BFM-Cluster(1) being the best one.

Finally, concerning the IP lookup times, we have shown that in the auxiliary
data structures the compression generally induces a proportional improvement.
In fact, we have observed an evident lowering of the lookups times, as shown
in Tables 7, 9 and 10. Again, the multibit and the binary search on IP length
algorithms present a performance on the compressed tables better than the one
obtained by the LC-Trie algorithm.

Many question are left open. First of all, an interesting issue is the extension
of the experimentation work to the new IP release with addresses of 128 bits
(IPv6). Moreover, it would be nice to determine other effective algorithms and
heuristics, also guaranteeing better approximation ratios.

Finally, our work was meant as a first attempt toward the investigation of
the effectiveness of the existing and newly proposed methods for IP tables com-
pression. Starting from this basis, new heuristics should be devised also taking
more into account other intrinsic features of the IP protocol, like for instance
the hierarchical structure of the network.

Acknowledgement. The authors would like to thank Prof. Venkatachary Srini-
vasan for his help during the retrieval of the real world IP routing tables used in
the tests and Prof. Marcel Waldvogel for his suggestions on the implementation
of some auxiliary data structures.

References

1. Bilò, V., Flammini, M.: On the ip routing tables minimization with addresses reas-
signments. In: Proc. of the 18th International Parallel and Distributed Processing
Symposium (IPDPS) (2004)

2. Buchsbaum, A.L., Fowler, G.S., Krishnamurthy, B., Vo, K.-P., Wang, J.: Fast prefix
matching of bounded strings. ACM Journal of Experimental Algorithms, vol. 8
(2003)

3. Crescenzi, P., Dardini, L., Grossi, R.: IP address lookup made fast and simple. In:
Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, Springer, Heidelberg (1999)

4. Degermark, M., Brodnik, A., Carlsson, S., Pink, S.: Small forwarding tables for
fast routing lookups. In: Proceedings of ACM Sigcomm, pp. 3–14 (1997)

Experimental Evaluations of Algorithms for IP Table Minimization 337

5. Draves, R., King, C., Srinivasan, V., Zill, B.: Constructing optimal IP routing ta-
bles. In: Proceedings of The Conference on Computer Communications, 18th joint
conference of the IEEE Computer and Communications Societies (INFOCOM)
(1999)

6. Egevang, K., Francis, P.: The ip network address translator (NAT). Internet RFC
1631 (May 1994)

7. Ford, W., Topp, W.: Data Structures with C++. Prentice-Hall, Englewood Cliffs
(1996)

8. Gupta, P., Lin, S., McKeown, N.: Routing lookups in hardware at memory access
speeds. In: Proceedings of The Conference on Computer Communications, 17th
joint conference of the IEEE Computer and Communications Societies (INFO-
COM), pp. 1240–1247 (1998)

9. Gupta, P., Prabhakar, B., Boyd, S.P.: Near optimal routing lookups with bounded
worst case performance. In: Proceedings of The Conference on Computer Com-
munications, 19th joint conference of the IEEE Computer and Communications
Societies (INFOCOM), pp. 1184–1192 (2000)

10. Kernen, T.: Traceroute org. http://www.traceroute.org/#Route Servers (2005)
11. Lampson, B., Srinivasan, V., Varghese, G.: IP lookups using multiway and multi-

column search. IEEE/ACM Transactions on Networking 7(3), 324–334 (1999)
12. NANOG. The north american network operators’ group.

http://www.nanog.org/lookingglass.html (2005)
13. Nilsson, S.: Home page. http://www.nada.kth.se/s̃nilsson
14. Nilsson, S., Karlsson, G.: Ip-address lookup using lc-tries. IEEE Journal of Selected

Areas in Communications 17(6), 1083–1092 (1999)
15. Srinivasan, V.: Fast and efficient Internet lookups. PhD thesis, Washington Uni-

versity (1999)
16. Srinivasan, V., Varghese, G.: Faster ip lookups using controlled prefix expansion.

ACM Transactions on Computer Systems 17(1), 1–40 (1999)
17. Michigan University and Merit Network. Internet performance and analysis (ipma)

project. http://www.merit.edu
18. Waldvogel, M.: Fast Longest Prefix Matching: Algorithms, Analysis, and Applica-

tions. PhD thesis, Swiss Federal Institute of Technology - Zurich (2000)
19. Waldvogel, M., Varghese, G., Turner, J., Plattner, B.: Scalable high-speed ip rout-

ing lookups. In: Proceedings of ACM Sigcomm, pp. 25–36, (October 1997)

	Introduction and Motivations
	Preliminaries
	IP Lookup Algorithms
	Table Minimization Without Address Reassignment
	Table Minimization with Address Reassignment

	The New Heuristics
	BFM Heuristic
	BFM-Cluster(k) Heuristic

	Methods Testing
	Test Data
	Measurement Principles

	Experimental Results
	The Case of a Single IP Routing Table
	The Case of Multiple IP Routing Tables

	Analysis of the Results and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

