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Abstract

In this paper we study the network design game when the underlying network is a ring.
In a network design game we have a set of players, each of them aims at connecting nodes
in a network by installing links and equally sharing the cost of the installation with other
users. The ring design game is the special case in which the potential links of the network
form a ring. It is well known that in a ring design game the price of anarchy may be as large
as the number of players. Our aim is to show that, despite the worst case, the ring design
game always possesses good equilibria. In particular, we prove that the price of stability of
the ring design game is at most 3/2, and such bound is tight. Moreover, we observe that the
worst Nash equilibrium cannot cost more than 2 times the optimum if the price of stability
is strictly larger than 1. We believe that our results might be useful for the analysis of more
involved topologies of graphs, e.g., planar graphs.

1 Introduction

In a network design problem the goal is to construct a network which satisfies certain connec-
tivity requirements. Formally we are given a graph G = (V,E), in which each edge e ∈ E
has an associated non-negative cost c(e), and a set of n pairs of nodes (si, ti)i=1...n. Each edge
of the graph corresponds to a potential link of the resulting network, and its cost denotes the
effective cost for establishing the corresponding link. Thus the cost of the designed network is
given by the total cost for establishing all its links. The requirement for the resulting network
is that it must contain a set of links guaranteeing the connectivity between each pair of nodes
(si, ti). In other words, the goal is to find a subgraph of G in which each node si is connected
to the corresponding node ti. From a combinatorial optimization perspective, the objective is
to find the subgraph satisfying the connectivity requirements with minimum total cost, and
such problem is known as the minimum Steiner forest problem. In this paper we will look at
the network design problem from a decentralized non-cooperative perspective, considering the
scenario in which there is not only one but several minimization objectives. More specifically,
each connectivity requirement is associated with a player (agent) who greedily choses the path
connecting the two endpoints, aiming at minimizing the cost she incurs for such path. In partic-
ular, each player is charged for a portion of the cost of each edge she uses, and in this work we
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assume that the cost of each edge is equally shared among its users. Thus the players interact
in a non-cooperative game in which the choice of each player affects the choices of the other
players. This model was first considered by Anshelevich et al. [2] and it is known as network
design game.

A state of the game corresponds to a choice of a path by each player, thus guaranteeing
all the desired connectivity requirements. The cost of a state is the cost of the corresponding
subgraph, i.e., the cost of the edges who appear in at least one path. A state in which each
player minimizes his incurred cost, given the choices of the remaining players, is known as Nash
equilibrium. In this paper we only consider pure Nash Equilibria. One property which makes
the network design game particularly interesting also from a theoretical perspective, is that it
always admits a Nash equilibrium and it can be obtained as the result of a natural dynamics.
More precisely, it is well known that the dynamics of the game in which at each time step
there is exactly one player performing an improvement move, i.e., a change of path that strictly
decreases the cost incurred by the moving player, converges to a Nash equilibrium within a
finite number of steps. This property has been proven by Rosenthal [14] for a more general
class of games, called congestion games. He demonstrated the existence of a potential function
which at each time step of the dynamics decreases exactly as much as the cost of the moving
player. In other words, the Nash equilibrium corresponds to the state which locally minimizes
the potential function.

Unfortunately, in a non-cooperative setting, the Nash equilibrium does not necessarily cor-
respond to the state with minimum cost. In particular, this is true for the network design
game where a Nash equilibrium, differently from the optimal state, may also contain cycles.
To capture the deterioration of the performance due to the presence of different self-interested
players, the concepts of Price of Anarchy (PoA) [11] and Price of Stability (PoS) [2] have been
introduced. They are formally defined respectively as the worst-case ratio (PoA) and the best-
case ratio (PoS) between the cost of a Nash equilibrium and the cost of the optimal state. Both
the measures give the interval in which the performances of the game may range. It is trivial to
observe that the PoA in a network design game may be as large as the number of players n, and
such bound is tight. On the counterpart, Chekuri et al. [5], showed that the cost of any Nash
equilibrium reachable by a dynamics starting from an empty state (the state in which no player
is making a choice), is O(

√
n log2 n) times the optimal state. Less is known about the PoS. We

first notice that the current results in the literature are different depending whether the under-
lying graph is directed or undirected. Anshelevich et al. [2] considered network design games
in directed graphs and proved that the price of stability is at most Hn = 1 + 1/2 + . . . + 1/n,
and such bound is tight. The technique used to prove such bound is quite easy and generally
applicable to other settings. It consists in showing first a worst case ratio of Hn between the
potential of the optimal state and the one at any equilibrium, subsequently the result follows by
arguing that there exists a Nash equilibrium reachable from the optimal state and thus having
a potential lower than the one at the optimal state. Although the upper bound proof carries
over to undirected network design games, the lower bound does not. There have been several
attempts to give a significant lower bounds for the undirected case, e.g., [9, 8, 3, 1, 6]. The
best known lower bound so far of 348/155 ≈ 2.245, has been shown in [3]. Upper bounds lower
than Hn have been given only for the special cases of multicast and broadcast games. In the
multicast there is a single node to which every player desires to be connected. The broadcast
is a special case of the multicast in which every node in the graph requires to be connected to
the single source. For broadcast game, Fiat et al. [9] proved an upper bound of O(log log n),
and Lee et al. [13] have improved such bound to O(log log log n). Recently Bilò et al. [4] proved
that the price of stability for broadcast game is O(1), however the constant coming out of such
paper is quite large. For multicast game, Li [12] presented an upper bound of O(log n/ log log n).
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All these upper bounds are not known to be tight. In fact the best known lower bounds for
broadcast and multicast games are 12/7 ≈ 1.714 and 42/23 ≈ 1.826 respectively [3].
Finally [10] considered undirected broadcast games and proved upper and lower bounds on the (NEW)
Potential-Optimal Price of Anarchy (resp. Stability) defined as the ratio between the worst
(resp. the best) cost of Nash equilibrium with optimal potential (i.e., equilibrium minimizing
the value of the potential function) and the minimum social cost.

Despite considerable research effort the gaps on the price of stability remain rather large,
especially for multicast game. We remark that our study considers the more general case where
a player of the game is represented by any pair of nodes of the network. (NEW)

The aim of the current paper is to analyze the network design game when the underlying
graph is a ring. We refer to this special case as ring design game. Notice that in such a setting (NEW)
the strategy set of each player i is composed by exactly 2 different strategies, i.e., the clockwise
and counterclockwise paths connecting si and ti. The ring design game captures the whole
spectra of interesting behavior, i.e., PoA remains equal to the number of players. Moreover,
the ring is crucial in the sense that it is the first non-trivial topology to analyze in the context
of network design and it is the first step in order to cope with more involved topologies, like
planar graphs. Hence, we believe that giving a tight bounds here could give some insight for
studying more general settings.

Our results. Initially, by looking deeper into the structures of Nash equilibria in a ring design (NEW)
game, we observe that, even though in a ring design game in the worst case the price of anarchy
can be arbitrarily large, it suffices to guarantee that the optimum is not a Nash equilibrium
to show that every Nash equilibrium is always at most 2 times the cost of the social optimum.
Subsequently, we show that there always exists a Nash equilibrium of cost at most 3/2 times
the cost of an optimal state, thus giving a bound on the PoS. We show that such equilibrium
can be reached by an improvement dynamics having as initial state an optimal configuration.
Such result also gives some insight on the problem of computing an equilibrium in a ring design
game. In fact, it reveals that if the cost of the entire ring is larger than 3/2 times the cost
of an optimal state, then the improvement dynamics starting from an optimal state converges
quickly, within at most 4 steps, to an equilibrium. We also prove that the bound on the PoS
is tight, by showing an instance for which PoS = 3/2 − ǫ. We conclude by showing a more
involved instance depending on two parameter ǫ and α, which generalizes the lower bound on
the PoS and gives some insight on the relation between the PoA and PoS in a ring design game.
In particular, we observe that by suitable choosing a value of ǫ close to 0, when α approaches
to 1, both the PoA and PoS tend to 3/2. On the counterpart, when α approaches to 0, the PoA
tends to 2 and the PoS gets close to 1.

2 Preliminaries

In an undirected network design game, we are given an undirected graph G = (V,E) and edge
costs given by a function c : E → R

+. The edge cost function naturally extends to any subset
of edges, that is c(B) =

∑

e∈B c(e) for any B ⊆ E. We define c(∅) = 0. There is a set of n
players [n] = {1, . . . , n}; each player i ∈ [n] wishes to establish a connection between two nodes
si, ti ∈ V called the source and destination node of player i, respectively. The set of strategies
available to player i consists of all paths connecting nodes si and ti in G. We call a state of the
game a set of strategies σ ∈ Σ (where Σ is the set of all the states of the game), with one strategy
per player, i.e., σ = (σ1, . . . , σn) where σi denotes the strategy of player i in σ . Given a state
σ, let nσ(e) be the number of players using edge e in σ. Then, the cost of player i in σ is defined

as cσ(i) =
∑

e∈σi

c(e)
nσ(e)

. Let E(σ) be the set of edges that are used by at least one player in state
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σ. The social cost C(σ) is simply the total cost of the edges used in state σ which coincides
with the sum of the costs of the players, i.e., C(σ) =

∑

e∈E(σ) c(e) =
∑

i∈[n] cσ(i) = c(E(σ)).

Let (σ−i, σ
′
i) denote the state obtained from σ by changing the strategy of player i from σi

to σ′
i. Given a state σ = (σ1, . . . , σn), an improving move of player i in σ is a strategy σ′

i such
that c(σ−i,σ′

i
)(i) < cσ(i). A state of the game is a Nash equilibrium if and only if no player can

perform any improving move. An improvement dynamics (shortly dynamics) is a sequence of
improving moves. A game is said to be convergent if, given any initial state σ, any sequence of
improving moves leads to a Nash equilibrium. We denote by NE the set of states that are Nash
Equilibria. Nash equilibrium can be different from the socially optimal solution. Let Opt be a
state of the game minimizing the social cost. We denote by Opti the strategy used by player (NEW)
i in Opt. Furthermore we write Opt = E \ Opt and Opti = E \ Opti. The price of anarchy
(PoA) of a network design game is defined as the ratio of the maximum social cost among all

Nash equilibria over the optimal cost, i.e., PoA = maxσ∈NE C(σ)
C(Opt) . The price of stability (PoS) is

defined as the ratio of the minimum social cost among all Nash equilibria over the optimal cost,
i.e., PoS = minσ∈NEC(σ)

C(Opt) .
In this paper we restrict our attention to the network design game played on rings. We refer

to such game as ring design game. For the sake of clarity, by a ring we mean an undirected
graph G = (V,E) where V = {v1, v2, . . . , vk}, E = {e1, e2, . . . , ek}, and ei = vivi+1, i = 1, . . . , k
(where vk+1 = v1).

It is well known that in a ring design game the PoA may be as large as the number of
players n. Consider the graph in Figure 1 of a ring design game consisting of two nodes s and

b

s
b

t

1

n

Figure 1: In this example there are n players that want to connect s and t. The optimal solution
uses only edge of cost 1, whereas the worst Nash equlibrium uses the edge of cost n. This gives
an n lower bound on the PoA.

t with two edges connecting them. The cost of one edge is n, while the cost of the other edge
is 1. There are n players who want to connect s to t. The state where all the players use the
edge of cost 1 is the optimal state, and it corresponds to a Nash equilibrium as well. The state
where all players use the expensive edge, each paying 1, is a Nash equilibrium with a cost of
n. Thus this example shows that the PoA of a ring design game may be very large. Notice
that it is very unnatural that the players chose the edge of cost n, ending up with the worst
equilibrium of cost n. Furthermore we observe that every dynamics starting from any other
initial state, beside the worst equilibrium, converges to the best equilibrium. In particular, this
holds if we pick as initial state the optimal state. This motivates the study of the quality of
an equilibrium resulting from a dynamics starting from an optimal state. It is easy to see that,
in a ring design game, any improvement dynamics starting from the optimal state leads to an
equilibrium at most 2 times the cost of the optimal state. In fact, either the optimal state is
a Nash equilibrium, or there is a player j wishing to switch from his optimal strategy to the
alternative path. At the optimum, the cost of player j is at most C(Opt), and thus the cost of
the alternative path cannot be more than this quantity. Since the alternative path of j contains
edges of the ring not belonging to E(Opt), it implies that C(Opt) is also an upper bound to
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c(E \ E(Opt)). Consequently, the cost of the entire ring, and thus the cost of any state, is at
most 2C(Opt). As we show later, by doing a more careful analysis, we are actually able to
prove a tight bound of 3/2 ·C(Opt) on the cost of any equilibrium reachable from the optimum.
Obviously, such bound is also a bound on the PoS in a ring design game, as shown in Theorem
1.

3 Upper and lower bounds on the price of stability for ring

design game

In this section we provide matching upper and lower bounds on the price of stability of ring
design game. We start by upper bounding the price of stability. Our technique to prove the
bound on the PoS is different from the previously used ones. Previous techniques used potential
function arguments and proved that any equilibrium reached by any dynamics starting by an
optimal state has potential value at most Hn · C(Opt). Here we also bound the cost of a
Nash equilibrium reachable by a dynamics from the optimal state but without using potential
function arguments. In particular, the analysis is made by cases on the number of moves, and
for each such case we write a linear program that captures the most important inequalities.
The most important observation we use is that one needs to consider the cases when at most 4
players move. We prove that for higher number of moves the PoS can only be smaller.

Our notation includes the number m representing the amount of steps in which some fixed
dynamics reaches a Nash equilibrium starting from an optimal state Opt, the Nash equilibrium
N obtained after m steps, as well as players making a move in the dynamics. Let πj be the (NEW)
player that makes the move at step j = 1, . . . ,m during the dynamics. Note that a player could
make a move at many different steps of the dynamics. Let σ0, . . . , σj , . . . , σm be the states
corresponding to the considered dynamics, where σ0 = Opt and σm = N. Also, let f be a set
of players of interest. The set f will be composed by a subset of the players moving in the
dynamics. The usage of f will be clear in the proof of Theorem 1.
For any A ⊆ f 6= ∅ the set DA will denote the set of edges such that each edge in DA is used (NEW)
by each player in A and no one player from outside of A, formally:

Df
A = {e ∈ E | (∀i ∈ A. e ∈ Opti) ∧ (∀i ∈ f \ A. e ∈ Opti) ∧ (∀i /∈ f. e ∈ Opti)}.

That is an edge e is in Df
A precisely if in state Opt it is used by all members of A, it is used by

no members of f \A, and there are no non-members of f who use it. Notice that when A = ∅,
DA denotes the set of edges used by no player in Opt, i.e, D∅ = Opt.
For any A ⊆ f 6= ∅ the set RA will denote the set of edges such that each edge in RA is used by (NEW)
each player in A and at least one player from outside of f , that is:

Rf
A = {e ∈ E | (∀i ∈ A. e ∈ Opti) ∧ (∀i ∈ f \ A. e ∈ Opti) ∧ (∃i /∈ f. e ∈ Opti)},

That is an edge e is in Rf
A precisely if in state Opt it is used by all members of A, it is used by

no members of f \ A, and there is at least one non-member of f who use it. Notice that when
A = ∅, RA denotes the set of edges used in Opt by at least one player not belonging to f and
no player belonging to f .

For the sake of simplicity in the sequel we will omit the superscript f when it is clear from
the context. In order to make the reader familiar with these definitions, let us consider the
instance depicted in Figure 2. As we will see in Theorem 2, the state Opt where player 1
uses edge e1, player 2 uses e2, player 3 uses e3 and player 4 uses the path composed by edges
{e1, e2, e3} is an optimal state of the instance.
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First, suppose that f = {1}. Then D∅ = {e4}, D{1} = ∅, R∅ = {e2, e3}, and R{1} = {e1}.
Let us now consider the setting where f = {1, 4}. We have: D∅ = {e4}, D{1} = ∅, D{4} = ∅,
D{1,4} = {e1}, R∅ = {e2, e3}, R{1} = ∅, R{4} = ∅ and R{1,4} = ∅. Notice that DA and RA

naturally define a partition of the edges of the ring. Moreover note that for any f we have that:
(NEW)

E(Opt) =
(

⋃

∅6=A⊆f

DA

)

⋃

(

⋃

A⊆f

RA

)

=
(

⋃

A⊆f

DA ∪RA

)

\D∅. (1)

Equation (1) derives from the observation that, for any fixed ∅ 6= f ⊆ [n], the set of edges
E(Opt) =

⋃

i∈[n]Opti can be partitioned into two sets: the set of edges used in Opt only by
players in f , that is

⋃

∅6=A⊆f

DA =
⋃

i∈f

Opti

and the set of edges used in Opt by at least a player not in f , that is
⋃

A⊆f RA.

Moreover let λ > 0 be such that c
(

D∅

)

≤ λC(Opt). Since E(Opt) and D∅ is a partition of E (NEW)
and the cost of any equilibrium N can be at most c(E), then:

PoS ≤ C(N)

C(Opt)
≤ C(Opt) + c

(

D∅

)

C(Opt)
≤ C(Opt) + λ · C(Opt)

C(Opt)
≤ 1 + λ. (2)

Now let us write the necessary conditions for the fact that player πj can move in step j
of the dynamics, for any j = 1, . . . ,m. Such conditions will be expressed by using the above
defined variables DA and RA. Unfortunately, we do not know the exact usage of edges in sets
RA. Let us define functions leftk, rightk : Σ → R for any players k ∈ f . Set dσ(k) and rσ(k)
to be the collection of subsets A of f such that player k is using (all) edges of DA and RA

respectively in state σ, i.e., dσ(k) = {A ∈ 2f | k is using edges of DA in σ}, rσ(k) = {A ∈ 2f |
k is using edges of RA in σ}. Notice that for every A,A′ ∈ dσ(k), DA ∩ DA′ = ∅, for every (NEW)
A,A′ ∈ rσ(k), RA ∩RA′ = ∅, and dσ(k) and rσ(k) are disjoint. Thus

σk =
(

⋃

A∈dσ(k)

DA

)

⋃

(

⋃

A∈rσ(k)

RA

)

.

It results that the cost of player k in σ is given by (NEW)

cσ(k) =
∑

A∈dσ(k)

∑

e∈DA

c(e)

nσ(e)
+

∑

A∈rσ(k)

∑

e∈RA

c(e)

nσ(e)
.

=
∑

A∈dσ(k)

c(DA)

n̂σ(DA)
+

∑

A∈rσ(k)

∑

e∈RA

c(e)

nσ(e)
,

where n̂σ : 2E → N as n̂σ(H) = #{i ∈ f | H ⊆ σi}. In fact, notice that, given A ∈ dσ(k),
∀e ∈ DA, nσ(e) = n̂σ(DA).
A lower bound to cσ(k) is

leftσ(k) =
∑

A∈dσ(k)

c(DA)

n̂σ(DA)
,

and an upper bound to cσ(k) is (NEW)

rightσ(k) =
∑

A∈dσ(k)

c(DA)

n̂σ(DA)
+

∑

A∈rσ(k)

c(RA)

n̂σ(RA) + 1
,
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in fact, given A ∈ rσ(k), ∀e ∈ RA, nσ(e) ≥ n̂σ(RA)+1. Summarising, the following inequalities (NEW)

(NEW)hold for any state σ ∈ Σ:
leftσ(k) ≤ cσ(k) ≤ rightσ(k). (3)

The role of functions leftk and rightk is to weaken the inequalities between player’s utilities
in some neighbour states, so that they become manageable. As we do not know the exact usage
of edges in sets RA, it would be hard to derive the precise bounds. On the lower-hand side we (NEW)
do not take into account the cost of edges of RA while for the upper-hand side we introduce the
minimum number of players using edges of RA in σ, i.e., n̂σ(RA) + 1.

Let us start by proving the following very useful lemma.

Lemma 1 In the ring design game, if in state Opt there are at least two players able to perform
an improving move (both starting from state Opt) then the cost of the whole ring is at most 3

2
times the cost of an optimal solution, that is c(E) ≤ 3

2C(Opt).

Proof: Let an Opt-neighbour state be a state σ′ = (Opt−i, x), where x is a strategy of player
i such that c(Opt−i,x)(i) < cOpt(i). Fix two Opt-neighbour states σ′, σ′′, and two players α
and β that change strategy in those state respectively (starting by Opt). Then the following
inequalities representing necessary condition for player α and β hold:

leftσ′(α) ≤ cσ′(α) < cOpt(α) ≤ rightOpt
(α),

leftσ′′(β) ≤ cσ′′(β) < cOpt(β) ≤ rightOpt
(β).

Setting f = {α, β}, we have that

c
(

D∅

)

1
+

c
(

D{β}

)

2
<

c
(

D{α}

)

1
+

c
(

R{α}

)

2
+

c
(

D{α,β}

)

2
+

c
(

R{α,β}

)

3

c
(

D∅

)

1
+

c
(

D{α}

)

2
<

c
(

D{β}

)

1
+

c
(

R{β}

)

2
+

c
(

D{α,β}

)

2
+

c
(

R{α,β}

)

3

Summing the above up we get

2c
(

D∅

)

1
<

c
(

D{α,β}

)

1
+

c
(

D{α}

)

+ c
(

D{β}

)

+ c
(

R{α}

)

+ c
(

R{β}

)

2
+

2c
(

R{α,β}

)

3
≤ C(Opt),

where the second inequality follows by (1). Hence, we have c
(

D∅

)

≤ 1
2C(Opt), so by (2) PoS

is not higher than 3
2 . 2

We are now ready to prove our main result.

Theorem 1 The price of stability for the ring design game is at most 3
2 .

Proof: The proof is split into five different cases, depending on the amount m of steps in
which some fixed dynamics reaches a Nash equilibrium starting from an optimal state Opt.
Moreover notice that since in a ring design game the strategy set of each player i is composed
by exactly 2 different strategies, i.e., the clockwise and counterclockwise paths connecting si
and ti. This implies that πj 6= πj+1, for any j = 1, . . . ,m − 1. We remark that in some cases
we get the bound by solving a linear program where constraints are naturally defined by using
left and right functions, and where objective functions are proper defined in each of the case.
The picture will be clear in the following.

Case m = 0. The equality m = 0 trivializes the instance into an example where Opt is a
Nash equilibrium, thus PoS = 1.
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Case m = 1. In this case the dynamics reaches a Nash Equilibrium N after one step starting
from Opt. Since player π1 can perform an improving move starting by state Opt, the following
inequalities hold:

leftN(π1) ≤ cN(π1) < cOpt(π1) ≤ rightOpt
(π1).

Therefore, by setting f = {π1} we have that:

c
(

D∅

)

1
<

c
(

D{π1}

)

1
+

c
(

R{π1}

)

2
.

The last inequality directly implies that:

C(N)

C(Opt)
=

c
(

D∅

)

+ c
(

R∅

)

+ c
(

R{π1}

)

c
(

D{π1}

)

+ c
(

R∅

)

+ c
(

R{π1}

)

≤
c
(

D{π1}

)

+ c
(

R∅

)

+ 3
2c
(

R{π1}

)

c
(

D{π1}

)

+ c
(

R∅

)

+ c
(

R{π1}

) ≤ 3

2
.

Case m = 2. When m = 2, the player π1 leads the dynamic from Opt to σ1 and player π2
leads the dynamics from σ1 to N. Therefore the following must hold:

leftσ1(π1) ≤ cσ1(π1) < cOpt(π1) ≤ rightOpt
(π1),

leftN(π2) ≤ cN(π2) < cσ1(π2) ≤ rightσ1(π2).

Therefore, by setting f = {π1, π2} we have that:

c
(

D∅

)

1
+

c
(

D{π2}

)

2
<

c
(

D{π1}

)

1
+

c
(

R{π1}

)

2
+

c
(

D{π1,π2}

)

2
+

c
(

R{π1,π2}

)

3

c
(

D∅

)

2
+

c
(

D{π1}

)

1
<

c
(

D{π2}

)

2
+

c
(

R{π2}

)

2
+

c
(

D{π1,π2}

)

1
+

c
(

R{π1,π2}

)

2

Without loss of generality we can add the following constraints:

∑

e∈OPT

c(e) ≤ 1, ∀e ∈ E. c(e) ≥ 0.

We need to bound the value of c
(

D∅

)

− 1
2c
(

D{π1,π2}

)

with respect to the above inequalities. Such
a bound can be obtained by forming a linear program from all the above equations including
the appropriate objective function. We have solved this linear program on a computer using a
standard LP solver. This way we have obtained the following bound:

c
(

D∅

)

− 1

2
c
(

D{π1,π2}

)

≤ 5

11
<

1

2
.

In the remainder of the proof similar bounds have been obtained in the same way by using a
LP solver. Further, the cost of states N and Opt are:

C(N) = c
(

D∅

)

+ c
(

R∅

)

+ c
(

D{π1}

)

+ c
(

R{π1}

)

+ c
(

D{π2}

)

+ c
(

R{π2}

)

+ c
(

R{π1,π2}

)

,

8



and

C(Opt) = c
(

D{π1,π2}

)

+ c
(

R∅

)

+ c
(

D{π1}

)

+ c
(

R{π1}

)

+ c
(

D{π2}

)

+ c
(

R{π2}

)

+ c
(

R{π1,π2}

)

,

respectively. Therefore, by using the upper bound on c
(

D∅

)

− 1
2c
(

D{π1,π2}

)

we obtain that:

C(N)

C(Opt)
≤ 16

11
<

3

2
.

Case m = 3. Similarly to the previous case, we will construct a suitable linear program. We
know that π1 6= π2 and π2 6= π3. If π1 = π3 then it means that σ1 and σ3 are two Opt-neighbour
states and therefore by Lemma 1 we have that PoS ≤ 3

2 . Therefore we can assume that π1 6= π3.
Since m = 3 then player π1 leads the dynamic from Opt to σ1, player π2 leads the dynamics
from σ1 to σ2 and finaly player π3 from σ2 to N. Therefore the following must hold:

leftσ1(π1) ≤ cσ1(π1) < cOpt(π1) ≤ rightOpt
(π1),

leftσ2(π2) ≤ cσ2(π2) < cσ1(π2) ≤ rightσ1(π2),

leftN(π3) ≤ cN(π3) < cσ2(π3) ≤ rightσ2(π3).

By setting f = {π1, π2, π3} we obtain a set of constraints (for the sake of readability and
completeness we move them to the Appendix A) that along with C(Opt) ≤ 1 and maximization
target c

(

D∅

)

− 1
2c
(

D{π1,π2,π3}

)

constitute a linear program with a solution

c
(

D∅

)

− 1

2
c
(

D{π1,π2,π3}

)

≤ 198

487
<

1

2
.

Substituting it into the ratio of the costs of N and Opt we get that:

C(N)

C(Opt)
≤ 685

487
<

3

2
.

Case m ≥ 4. This case is different because we do not know m. However, it is enough to
consider the case m = 4. This is due to the fact that the inequalities obtained by the dynamics
of the first 4 players are strong enough to bound the cost of the whole ring. This gives the
bound on the cost of any Nash equlibrium the dynamics will converge to, because even if more
players move the cost of the final state will be smaller then the cost of the whole ring. We show
that if m = 4 then c

(

D∅

)

< 1
2 · C(Opt). Clearly, adding new constraints for m > 4 cannot

increase this bound.
Then let us consider m = 4. As in the previous case we have that π1 6= π2 and π2 6= π3 and

π1 6= π3, anyway we are not able to derive any conclusion about π4. It follows that we have
to consider 3 subcases, i.e., π4 = π1, π4 = π2 and π4 6= πz for z = 1, 2, 3. As usually in this
proof, we are going to derive sets of constraints that must hold at every step of the dynamics
by using functions left and right. In the first two subcases, i.e., π4 = π1, π4 = π2, by setting
f = {π1, π2, π3} the constraints set is composed by the ones corresponding to the case m = 3
capturing the dynamics by π1, π2 and π3 (constraints in Appendix A), plus a further constraint
(Appendix B when π4 = π1 and Appendix C when π4 = π2) capturing the fact that players π1
or π2 move back at the fourth step of the dynamics respectively. Concerning the subcase where
π4 6= πz for z = 1, 2, 3, by setting f = {π1, π2, π3, π4} we get the set of constraints included in
Appendix D. By summarizing we get three different sets of constraints corresponding to three
different linear programs. In each of them it suffices to consider maximization target c

(

D∅

)

9



assuming that C(Opt) ≤ 1 without loss of generality. In all cases the maximum value of c
(

D∅

)

turns out to be smaller than 1
2 , specifically for π4 = π1, π4 = π2 and π4 6= πz where z = 1, 2, 3

the bounds are 3
7 ,

63
131 and 114

253 respectively. Hence, by (2) for all these cases we know that PoS
is bounded by 3

2 . 2

It is worth to note that the above theorem give us some insights on the complexity of
computing a Nash equilibrium in ring design game. We will further discuss this issue in Section 4.
The next corollary directly follows from Theorem 1

Corollary 1 In a ring design game, if the cost of the entire ring is larger than 3/2 times the cost
of an optimal state, then the improvement dynamics starting from an optimal state converges
quickly, within at most 3 steps, to a Nash equilibrium.

We are now ready to show a matching lower bound. Let us start by investigating the
structure of Nash equilibria. Notice that, since in any stable configuration each player (given
the strategies of other players) selects the least expensive path, then in any Nash equilibrium
the following property holds:

Property 1 If any player chooses a path w for connecting nodes v and v′, then all players
crossing nodes v and v′ must share the same path w.

Theorem 2 Given any ǫ > 0, there exists an instance of the ring design game such that the
price of stability is at least 3

2 − ǫ.

Proof: We will construct an instance of the ring design game so that there is a distinct
player associated with each edge of the ring that wishes to connect the endpoints of this edge.
This construction guarantees that there is a unique Nash equilibrium in which each player
uses her corresponding edge. Consider a ring consisting of 4 edges E = {e1, e2, e3, e4} where
c(e1) = c(e2) = c(e3) = 2 and c(e4) = 3 − ǫ as shown in Figure 2. There are four players
{1, 2, 3, 4}; player i is interested in connecting the endpoints of edge ei for i = 1, 2, 3, 4. Observe

b b b b
2
e1

2
e2

2
e3

3−ǫ
e4

Figure 2: The lower bound example for PoS on the ring. For the detailed description please see
proof of Theorem 2.

that in any state of the game the edges used by at least one of the players form a connected
spanning subgraph. Therefore the cost of an optimal solution is at least the cost of any minimum
spanning tree. It follows that the state of the game where player 1 uses edge e1, player 2 uses
e2, player 3 uses e3 and player 4 uses the path composed by edges {e1, e2, e3} is an optimal
solution of cost 6. Let σ be the state in which each player uses its corresponding edge, i.e.,
where players 1, 2, 3, 4 use edges e1, e2, e3, e4 respectively. It is easy to check that σ is a Nash
equilibrium. It remains to show that σ is the only Nash equilibrium. Let us suppose that our
instance admits a Nash equilibrium where player 4 uses the path composed by edges {e1, e2, e3}.
By Property 1, players 1, 2, 3 must use edges e1, e2, e3 respectively. However, in such state player
4 is experiencing a cost of 2

2 +
2
2 +

2
2 > 3− ǫ, then player 4 can use its corresponding edge e4 and

10



thus strictly reduces her cost, a contradiction. Let us suppose that our instance admits a Nash
equilibrium where player 1 uses the path composed by edges {e2, e3, e4}. By Property 1, players
2, 3, 4 must use edges e2, e3, e4 respectively. However, in this state player 1 is experiencing a
cost of 2

2 + 2
2 + 3−ǫ

2 > 2, then player 1 can use its corresponding edge e1 and thus strictly
reduces her cost, a contradiction. With similar arguments it is possible to show that in any
Nash equilibrium players 2 and 3 have to use their corresponding edges. It follows that in any
equilibrium of our instance all players have to use their corresponding edges. This completes
the proof. 2

The next theorem generalizes the previous Theorem 2, and gives some insight on the relation
between the PoA and PoS in a ring design game. In particular, we observe that by choosing
a large number of players and setting the value of ǫ to be very small, when α approaches to
1, both the PoA and PoS tend to 3/2. On the counterpart, when α approaches to 0, the PoA
tends to 2 and the PoS gets close to 1.

Theorem 3 Given an integer n ≥ 7, for every ǫ ∈ [ 2
n−4 , 1) and α ∈ (0, 1 − ǫ], there exists an

instance of ring design game with n players, having PoA = 2− α
2(1+ǫ)− 2ǫ

(1+ǫ) and PoS = 1+ α
2(1+ǫ) .

Proof: The instance giving the result is depicted in Figure 3. The game is defined as follows.
For simplicity we say that a player is associated to an edge, if it is interested in connecting its
endpoints. In the game there are n ≥ 7 players. Player 1 is associated to edge e1, player 2 is
associated to edge e2, player 3 is associated to edge e3, player 4 is associated to edge e4, and
the remaining set of n− 4 players R = {5, 6, . . . , n} are associated to edge e6.

b b b b b b
α/3

e2

α/3

e3

α/3

e4

1− α

e5

ǫ
e6

1− α/2

e1

Figure 3: The lower bound example for PoS on the ring. For the detailed description please see
proof of Theorem 3

We observe that the optimal state uses the set of edges E(Opt) = {e2, e3, e4, e5, e6}, and
it costs 1 + ǫ. Subsequently we show that the game admits only two Nash equilibria, namely
N1 and N2. N1 is the state in which the players 1, 2, 3, 4, use their corresponding edge, and
each player in R uses their alternative path {e1, e2, e3, e4, e5}. Thus E(N1) = {e1, e2, e3, e4, e5}
and C(N1) = 2 − 1

2α. N2 is the state in which each player uses the associated edge, thus
E(N2) = {e1, e2, e3, e4, e6}, and C(N2) = 1 + 1

2α + ǫ. Notice that C(N1) ≥ C(N2). Since
PoA = C(N1)/C(Opt) and PoS = C(N2)/C(Opt), the claim follows.

We first show that N1 and N2 are Nash equilibria. In N1, the cost of player 1 is 1−α/2, and
the alternative path {e2, e3, e4, e5, e6} would cost 1−α/2+ǫ/(n−3). The cost of player 2 is α/3
and the alternative path {e3, e4, e5, e6, e1} would cost at least α/3, since he would share e3 and
e4 with player 3 and 4 respectively. The same argument holds for players 3 and 4. Finally, the
cost of each player in R is ǫ/(n−4) ≤ 1/3, and the alternative path {e1, e2, e3, e4, e5} would cost

3/2−3α/4 ≥ 3/4. In N2, the cost of player 1 is 1−α/2
n−3 , and the alternative path {e2, e3, e4, e5, e6}

would cost at least 1−α
n−3 . The cost of player 2 is α/3

n−3 , and the alternative path {e3, e4, e5, e6, e1}
would cost at least 2α/3

n−2 , since he would share both e3 and e4 with other n − 2 players (since

11



n ≥ 7, it turn out that 2α/3
n−2 = α/3

n/2−1 ≥ α/3
n−3). The same argument holds also for player 3 and

4. Finally, the cost of each player in R is 1
n−3(1 − α/2) + 1

n−3α/2 +
1

n−4(1 − α) ≤ 1
n−3 + 1

n−4 ,

and the alternative path would cost ǫ ≥ 2
n−4 .

It remains to show that no other state, beside N1 and N2, is a Nash equilibrium. For this
purpose we use Property 1. We first notice that, by Property 1, there may not exist any Nash
equilibrium in which two different players in R chose different paths. Therefore, let us focus
on states in which all players in R chose the same path {e6} or {e1, e2, e3, e4, e5}. The state in
which player 2 chooses the path alternative to e2 cannot be an equilibrium. In fact, in order
to be a Nash equilibrium, by Property 1, it must hold that each other player must use its
associated edge. Therefore in such state player 2 would pay more than α/3 since, beside the
cost incurred because of other edges, he would share e3 and e4 with player 3 and 4 respectively.
The same argument hold for player 3 and player 4. Finally, by applying Property 1, we notice
that the state in which player 1 choses the path {e2, e3, e4, e5, e6} and players in R chose the
path {e1, e2, e3, e4, e5}, cannot be an equilibrium. It results that the only two states left out,
are N1 and N2. 2

4 Conclusions and open problems

In this paper we have succeeded to give the first nontrivial example of network design games
where our understanding of PoS is tight. We showed that any dynamics starting from Opt re-
turns an equilibrium of cost at most (32)·C(Opt) in at most 4 moves, when c(E) ≥ (3/2)C(Opt).
The major open question is whether the dynamics starting from Opt is still quickly convergent
to an equilibrium when c(E) < (3/2)C(Opt). A positive answer to the previous question would
lead to a polynomial algorithm for computing a Nash equilibrium in the ring design game. We
remark that in the general design game, (i.e., design game for general graph topology), the
problem of computing a Nash equilibrium is PLS-complete [15].

Moreover, we could not manage to find instances with the PoA close to 2 when the PoS is
close to 3/2, thus another interesting problem is to investigate the relation between the costs
of the best and the worst Nash equilibria. We believe that the insight given by our results can
be used for the analysis of more involved graph topologies, e.g., planar graphs. Finally, another
investigating issue would be to derive an exact bound on the price of stability for broadcast
ring design game. We remark that the broadcast game is a special case of the game in which
there is at least one player for every node of the graph requiring to be connected to the single
common source. Observe that our lower bound of 3

2 does not work here. In the following we
give the best lower bound on the price of stability for the broadcast ring game. It would be
interesting to give an accompanying tight upper bound. Let us consider the Figure 4 where
there is one player for each node but the source s. It is well known [3, 9] that in broadcast

b b b b s
1
e1

1
e2

1
e3

11
6 −ǫ

e4

Figure 4: Instance showing a lower bound to the price of stability for broadcast ring design
game.

design game the optimum is a minimum cost spanning tree. Moreover, any Nash equilibrium is
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a spanning tree. Clearly in our instance the optimum state Opt is composed by edges e1, e2, e3.
However, the player corresponding to the leftmost vertex of the figure (i.e., the furthest player
with respect to the source s in state Opt) is paying 11

6 and thus Opt is not an equilibrium
since this player has an improvement move. It follows that any equilibrium is composed by the
edge e4 and other two edges belonging in {e1, e2, e3}. Therefore the cost of any equilibrium is
23
6 − ǫ while the cost of the optimum is 3. It follows that the price of stability for broadcast
ring design game is at least 23

18 − ǫ for any ǫ > 0.
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4.1 Appendix A: proof of theorem 1 case m=3

Player π1 moves:

c
(

D∅

)

1
+

c
(

D{π2}

)

2
+

c
(

D{π3}

)

2
+

c
(

D{π2,π3}

)

3
≤

c
(

D{π1}

)

1
+

c
(

D{π1,π2}

)

2
+

c
(

D{π1,π3}

)

2
+

c
(

D{π1,π2,π3}

)

3
+

c
(

R{π1}

)

2
+

c
(

R{π1,π2}

)

3
+

c
(

R{π1,π3}

)

3
+

c
(

R{π1,π2,π3}

)

4
.

Player π2 moves:

c
(

D∅

)

2
+

c
(

D{π1}

)

1
+

c
(

D{π3}

)

3
+

c
(

D{π1,π3}

)

2
≤

c
(

D{π2}

)

2
+

c
(

D{π1,π2}

)

1
+

c
(

D{π2,π3}

)

3
+

c
(

D{π1,π2,π3}

)

2
+

c
(

R{π2}

)

3
+

c
(

R{π1,π2}

)

2
+

c
(

R{π2,π3}

)

4
+

c
(

R{π1,π2,π3}

)

3
.

Player π3 moves:

c
(

D∅

)

3
+

c
(

D{π1}

)

2
+

c
(

D{π2}

)

2
+

c
(

D{π1,π2}

)

1
≤

c
(

D{π3}

)

3
+

c
(

D{π1,π3}

)

2
+

c
(

D{π2,π3}

)

2
+

c
(

D{π1,π2,π3}

)

1
+

c
(

R{π3}

)

4
+

c
(

R{π1,π3}

)

3
+

c
(

R{π2,π3}

)

3
+

c
(

R{π1,π2,π3}

)

2
.

4.2 Appendix B: proof of theorem 1 case m ≥ 4, and π4 = π1

Player π1 moves back:

c
(

D{π1}

)

3
+

c
(

D{π1,π2}

)

2
+

c
(

D{π1,π3}

)

2
+

c
(

D{π1,π2,π3}

)

1
≤

c
(

D∅

)

3
+

c
(

D{π2}

)

2
+

c
(

D{π3}

)

2
+

c
(

D{π2,π3}

)

1
+

c
(

R∅

)

4
+

c
(

R{π2}

)

3
+

c
(

R{π3}

)

3
+

c
(

R{π2,π3}

)

2
.

4.3 Appendix C: proof of theorem 1 case m ≥ 4, and π4 = π2

Player π2 moves back:

c
(

D{π2}

)

3
+

c
(

D{π1,π2}

)

2
+

c
(

D{π2,π3}

)

2
+

c
(

D{π1,π2,π3}

)

1
≤

c
(

D∅

)

3
+

c
(

D{π1}

)

2
+

c
(

D{π3}

)

2
+

c
(

D{π1,π3}

)

1
+

c
(

R∅

)

4
+

c
(

R{π1}

)

3
+

c
(

R{π3}

)

3
+

c
(

R{π1,π3}

)

2
.
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4.4 Appendix D: proof of theorem 1 case m ≥ 4, and π4 6= πz where z = 1, 2, 3

Player π1 moves:

c
(

D∅

)

1
+

c
(

D{π2}

)

2
+

c
(

D{π3}

)

2
+

c
(

D{π4}

)

2
+

c
(

D{π2,π3}

)

3
− c

(

D{π2,π4}

)

3
− c

(

D{π3,π4}

)

3
+

c
(

D{π2,π3,π4}

)

4
≤

c
(

D{π1}

)

1
+

c
(

D{π1,π2}

)

2
+

c
(

D{π1,π3}

)

2
+

c
(

D{π1,π4}

)

2
+

c
(

D{π1,π2,π3}

)

3
+

c
(

D{π1,π2,π4}

)

3
+

c
(

D{π1,π3,π4}

)

3
+

c
(

D{π1,π2,π3,π4}

)

4
+

c
(

R{π1}

)

2
+

c
(

R{π1,π2}

)

3
+

c
(

R{π1,π3}

)

3
+

c
(

R{π1,π4}

)

3
+

c
(

R{π1,π2,π3}

)

4
+

c
(

R{π1,π2,π4}

)

4
+

c
(

R{π1,π3,π4}

)

4
+

c
(

R{π1,π2,π3,π4}

)

5
.

Player π2 moves:

c
(

D∅

)

2
+

c
(

D{π1}

)

1
+

c
(

D{π3}

)

3
+

c
(

D{π4}

)

3
+

c
(

D{π1,π3}

)

2
+

c
(

D{π1,π4}

)

2
+

c
(

D{π3,π4}

)

4
+

c
(

D{π1,π3,π4}

)

3
≤

c
(

D{π2}

)

2
+

c
(

D{π1,π2}

)

1
+

c
(

D{π2,π3}

)

3
+

c
(

D{π2,π4}

)

3
+

c
(

D{π1,π2,π3}

)

2
+

c
(

D{π1,π2,π4}

)

2
+

c
(

D{π2,π3,π4}

)

4
+

c
(

D{π1,π2,π3,π4}

)

3
+

c
(

R{π2}

)

3
+

c
(

R{π1,π2}

)

2
+

c
(

R{π2,π3}

)

4
+

c
(

R{π2,π4}

)

4
+

c
(

R{π1,π2,π3}

)

3
+

c
(

R{π1,π2,π4}

)

3
+

c
(

R{π2,π3,π4}

)

5
+

c
(

R{π1,π2,π3,π4}

)

4
.

Player π3 moves:

c
(

D∅

)

3
+

c
(

D{π1}

)

2
+

c
(

D{π2}

)

2
+

c
(

D{π4}

)

4
+

c
(

D{π1,π2}

)

1
+

c
(

D{π1,π4}

)

3
+

c
(

D{π2,π4}

)

3
+

c
(

D{π1,π2,π4}

)

2
≤

c
(

D{π3}

)

3
+

c
(

D{π1,π3}

)

2
+

c
(

D{π2,π3}

)

2
+

c
(

D{π3,π4}

)

4
+

c
(

D{π1,π2,π3}

)

1
+

c
(

D{π1,π3,π4}

)

3
+

c
(

D{π2,π3,π4}

)

3
+

c
(

D{π1,π2,π3,π4}

)

2
+

c
(

R{π3}

)

4
+

c
(

R{π1,π3}

)

3
+

c
(

R{π2,π3}

)

3
+

c
(

R{π3,π4}

)

5
+

c
(

R{π1,π2,π3}

)

2
+

c
(

R{π1,π3,π4}

)

4
+

c
(

R{π2,π3,π4}

)

4
+

c
(

R{π1,π2,π3,π4}

)

3
.
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Player π4 moves:

c
(

D∅

)

4
+

c
(

D{π1}

)

3
+

c
(

D{π2}

)

3
+

c
(

D{π3}

)

3
+

c
(

D{π1,π2}

)

2
+

c
(

D{π1,π3}

)

2
+

c
(

D{π2,π3}

)

2
+

c
(

D{π1,π2,π3}

)

1
≤

c
(

D{π4}

)

4
+

c
(

D{π1,π4}

)

3
+

c
(

D{π2,π4}

)

3
+

c
(

D{π3,π4}

)

3
+

c
(

D{π1,π2,π4}

)

2
+

c
(

D{π1,π3,π4}

)

2
+

c
(

D{π2,π3,π4}

)

2
+

c
(

D{π1,π2,π3,π4}

)

1
+

c
(

R{π4}

)

5
+

c
(

R{π1,π4}

)

4
+

c
(

R{π2,π4}

)

4
+

c
(

R{π3,π4}

)

4
+

c
(

R{π1,π2,π4}

)

3
+

c
(

R{π1,π3,π4}

)

3
+

c
(

R{π2,π3,π4}

)

3
+

c
(

R{π1,π2,π3,π4}

)

2
.
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