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Mancinelli R, Glaser S, Francis H, Carpino G, Franchitto A,
Vetuschi A, Sferra R, Pannarale L, Venter J, Meng F, Alpini G,
Onori P, Gaudio E. Ischemia reperfusion of the hepatic artery
induces the functional damage of large bile ducts by changes in the
expression of angiogenic factors. Am J Physiol Gastrointest Liver
Physiol 309: G865–G873, 2015. First published September 21, 2015;
doi:10.1152/ajpgi.00015.2015.—Liver transplantation and cholangio-
carcinoma induce biliary dysfunction following ischemia reperfusion
(IR). The function of the intrahepatic biliary tree is regulated by both
autocrine and paracrine factors. The aim of the study was to demon-
strate that IR-induced damage of cholangiocytes is associated with
altered expression of biliary angiogenic factors. Normal and bile duct
ligation rats underwent 24-h sham or hepatic reperfusion after 30 min
of transient occlusion of the hepatic artery (HAIR) or portal vein
(PVIR) before collecting liver blocks and cholangiocyte RNA or
protein. We evaluated liver histology, biliary apoptosis, proliferation
and expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2 in
liver sections and isolated small and large cholangiocytes. Normal rat
intrahepatic cholangiocyte cultures (NRICC) were maintained under
standard conditions in normoxic or under a hypoxic atmosphere for 4
h and then transferred to normal conditions for selected times. Sub-
sequently, we measured changes in biliary proliferation and apoptosis
and the expression of VEGF-A/C and VEGFR-2/3. In vivo, HAIR
(but not PVIR) induced damage of large bile ducts and decreased
proliferation and secretin-stimulated cAMP levels. HAIR-induced
damage of large bile ducts was associated with increased expression
of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2. In vitro, under
hypoxic conditions, there was increased apoptosis and reduced pro-
liferation of NRICC concomitant with enhanced expression of VEGF-
A/C and VEGFR-2/3. The functional damage of large bile ducts by
HAIR and hypoxia is associated with increased expression of angio-
genic factors in small cholangiocytes, presumably due to a compen-
satory mechanism in response to biliary damage.

angiogenic factors; biliary tree; cholangiocytes; liver; transplantation

CHOLANGIOCYTES LINE THE INTRAHEPATIC biliary epithelium, a
complex network of interconnecting ducts of different sizes
and functions (5, 35). In humans, cholangiocytes are the target
cells in a number of biliary disorders characterized by dysregu-
lation between biliary growth/loss (23). Normally, cholangio-
cytes have low replicative activity, but proliferate in experi-
mental models that mimic human pathologies, such as ligation

of the extrahepatic bile duct (BDL) and acute carbon tetrachlo-
ride administration (CCl4) (3, 32). The human and rodent
biliary epithelium is morphologically and functionally hetero-
geneous (5, 21, 27, 32, 35, 38). In rat liver, isolated small
cholangiocytes lining smaller ducts (�15 �m in diameter) are
mitotically dormant and exert their functions by activation of
the D-myo-inositol 1,4,5-trisphosphate (IP3)/Ca2�/calmodulin-
dependent protein kinase I signaling pathway (1, 13, 35). On
the other hand, isolated large cholangiocytes lining larger ducts
(�15 �m in diameter) secrete and proliferate by activation of
cAMP-dependent signaling (2, 5, 21, 27, 35).

Several experimental models have shown that ischemia
reperfusion (IR) injury plays a role in liver pathophysiology
(43). Orthotopic liver transplantation (OLT) has been shown to
be a successful treatment choice for patients with end-stage
chronic or acute liver failure. However, biliary complications
remain a significant source of morbidity (51, 52). Most of these
complications consist of anastomotic or nonanastomotic stric-
tures (NAS), biliary necrosis, or leakage (48). Therefore, bili-
ary complications represent major causes of morbidity and
graft failure as well as mortality after liver transplantation (26,
34). Hepatic IR elicits hepatic tissue repair, which is charac-
terized by the proliferation of hepatocytes, removal of necrotic
tissue, and restoration of the hepatocellular and hepatic micro-
vascular architecture (44). Several mediators, including cyto-
kines and angiogenic factors, regulate the mechanisms under-
lying hepatocellular regeneration. The function of the intrahe-
patic biliary epithelium is linked to its vascular supply
sustained by the peribiliary arterial plexus (PBP) (15, 47), since
alterations of intrahepatic bile duct mass are associated with
architectural changes in the PBP (14). The PBP stems from the
hepatic artery, nourishes the biliary tree, and sustains a coun-
tercurrent of substances reabsorbed from bile toward paren-
chymal cells (17). After BDL, the increase in intrahepatic bile
duct mass is followed by a parallel growth of the PBP, which
is fundamental in sustaining the enhanced nutritional and
functional demands of the proliferating biliary epithelium (16,
22). Nevertheless, the proliferation of the PBP occurs only
after the hyperplasia of the biliary epithelium (17), suggesting
a cross-talk mechanism between cholangiocytes and endothe-
lial cells, an interaction that mediates the adaptive changes of
these cells during liver damage (14, 45).

VEGF is a family of related growth factors including
VEGF-A, -B, -C, -D, and -E and placenta growth factor (11).
VEGF is secreted by a number of epithelia including cholan-
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giocytes where it modulates functions by autocrine and para-
crine mechanisms by interacting with VEGFR-2 and VEGFR-3
(14, 15). Other important angiogenic factors are the Angiopoi-
etins (Ang-1 and Ang-2), which bind to the tyrosine kinase
receptor Tie-1/2 (41). Angiopoietins have opposite effects on
their receptors: Ang-1 activates Tie-2 by tyrosine phosphory-
lation, whereas Ang-2 antagonizes the Ang-1/Tie-2 binding
(40). In primary biliary cirrhosis the enhanced expression of
VEGF-A, Ang-1, Ang-2, and Tie-2 receptor by endothelial
cells and periportal hepatocytes is responsible for the angio-
genesis occurring in close proximity to the damaged bile ducts
(40), which may contribute to recruit the inflammatory cells
worsening the pathology. Reduced portal fibrosis and hyper-
tension was observed in cholestatic rats by inhibition of
VEGFR-2 (39).

In this study, we evaluated the impact of the IR of hepatic
artery and portal vein on biliary functions and the role of the
angiogenic factors during these conditions.

MATERIALS AND METHODS

Materials. All reagents were purchased from Sigma Chemical (St.
Louis, MO) unless otherwise indicated. The primary antibodies were
obtained from Santa Cruz Biotechnology (Santa Cruz, CA). The selected
rat primers were purchased from SABiosciences (Qiagen, Valencia, CA)
and designed using sequences with the following NCBI GenBank Ac-
cession numbers: PCNA, NM_022381; Bax NM_017059; VEGF-A
NM_031836; VEGF-C NM_053653; VEGFR2 NM_013062; VEGFR3
NM_053652; angiopoietin 1 NM_053546; angiopoietin 2 NM_134454;
Tie-1 NM_053545; and Tie-2 NM_001105737. The RNeasy Mini Kit to
purify total cholangiocyte RNA was purchased from Qiagen. The RIA

Fig. 1. In bile duct ligation (BDL) rats, hepatic artery ischemia reperfusion (HAIR) increased apoptosis by terminal deoxynucleotidyl transferase dUTP-mediated
nick-end labeling (TUNEL) analysis (A) and decreased the proliferation by reduced proliferating cell nuclear antigen (PCNA) expression (B) of large
cholangiocytes in liver sections. Original magnification, �20; scale bar � 60 �m (for semiquantitative analysis, see Table 1). C: there was increased Bax
expression (D) and reduced PCNA presence in purified cholangiocytes from normal and BDL rats by immunoblots. *P � 0.05 vs. BDL rats.
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kits for the measurement of intracellular cAMP (cAMP [125I] Biotrak
Assay System, RPA509) were purchased from GE Healthcare (Little
Chalfont, Buckinghamshire, UK).

In vivo and in vitro models. Male 344 Fischer rats (150–175 gm)
were purchased from Charles River (Wilmington, MA) and kept in a
temperature-controlled environment (22°C) with 12-h:12-h light/dark
cycles. Animals were fed ad libitum and had free access to drinking
water. The studies were performed in normal rats and rats that after

1 wk of BDL underwent 30 min of transient occlusion of the
hepatic artery (HAIR) or the portal vein (PVIR) followed by 24 h
of hepatic reperfusion or sham surgery (28). BDL was performed
as described (3). From these groups of animals, we collected liver
blocks and cholangiocytes. Before each procedure, animals were
injected with euthasol following the regulations of the panel of
euthanasia of American Veterinarian Medical Association, and
protocols were approved by Baylor Scott & White Institutional

Fig. 2. In BDL rats, there was enhanced expression of VEGF-A/C, VEGFR-2, and R3 (A) and Ang-1/2 and Tie-1/2 (B) in biliary epithelium compared with
normal rats by immunohistochemistry. In BDL � HAIR rats, there was increased expression of VEGF-A/C, VEGFR-2, and R3 (A) and Ang-1/2 and Tie-1/2
(B) in bile ducts and purified cholangiocytes compared with BDL rats by real time PCR (C). The increase in the aforementioned growth factors/receptors was
smaller in BDL � PVIR rats compared with BDL � HAIR rats. Original magnification, �20; scale bar � 60 �m (for semiquantitative analysis, see Table 2).
*P � 0.05 vs. the corresponding sham value.
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Animal Care and Use Committee. The in vitro studies were
performed in our normal rat intrahepatic cholangiocyte line
(NRICC) that displays morphological and functional phenotypes
similar to freshly isolated cholangiocytes (4).

Evaluation of liver histology. We measured necrosis, and the
degree of portal inflammation in hematoxylin-eosin (H&E)-stained
paraffin-embedded liver sections (4 to 5 �m thick, 3 sections evalu-
ated per group of animals) from the animal groups of Table 1. At least
10 different portal areas (from 3 different sections) were evaluated for
each parameter. Liver sections were examined in a coded fashion by
BX-51 light microscopy (Olympus, Tokyo, Japan) equipped with a
camera (49).

Evaluation of cholangiocyte apoptosis. Apoptosis in small and
large cholangiocytes was evaluated by quantitative terminal deoxy-
nucleotidyl transferase dUTP-mediated nick-end labeling (TUNEL)
analysis (Apoptag; Chemicon, Billerica, MA) in liver sections and
immunoblots (12) for Bax expression in isolated cholangiocytes from
the selected groups of animals. Sections were analyzed in a coded
manner using BX-51 light microscopy (Olympus, Tokyo, Japan) with
a video cam (Spot Insight; Diagnostic Instrument, Sterling Heights,
MI) and processed with an Image Analysis System (Delta Sistemi,
Rome, Italy). At least 10 different portal areas (from 3 different
sections) were evaluated. Bax expression was performed in protein
(10 �g) from whole cell lysates from purified cholangiocytes. Immu-
noblots were normalized by 	-actin. The intensity of the bands was
determined by scanning video densitometry using the phospho-im-
ager, Storm 860 (GE Healthcare, Piscataway, NJ) and the ImageQuant
TL software version 2003.02 (GE Healthcare) (8).

Evaluation of cholangiocyte proliferation. Cholangiocyte prolifer-
ation was studied in liver sections by PCNA immunohistochemical
expression. Immunohistochemistry was performed in 3 to 4 �m thick
sections. Sections were deparaffinized and endogenous peroxidase
activity was blocked by a 30-min incubation in methanolic hydrogen
peroxide (2.5%). Later, the endogenous biotin was blocked by a biotin
blocking system (code X0590; Dako, Copenhagen, Denmark) accord-
ing to the instructions supplied by the vendor. Sections were then
hydrated in graded alcohol and rinsed in 1� PBS (pH 7.4) before
applying the selected primary antibody. Sections were incubated
overnight at 4°C with PCNA polyclonal antibodies (Santa Cruz
Biotechnology, Milan, Italy). The following day, samples were rinsed
with PBS for 5 min, incubated for 20 min at room temperature with
secondary biotinylated antibody (LSAB Plus system; Dako, Milan,
Italy) and then with Dako ABC (LSAB Plus system; Dako), and
finally developed with 3,3=-diaminobenzidine. To confirm the speci-
ficity of immunoreaction, negative controls were performed for all
immunoreactions. We measured the percentage of PCNA-positive
small and large cholangiocytes (36). At least 10 different portal areas
(from 3 different sections) were evaluated. Intrahepatic bile duct mass
(BDM) was evaluated by determining the area fraction of liver
parenchyma occupied by bile ducts using BX-51 light microscopy
(Olympus, Tokyo, Japan) with a video cam (Spot Insight; Diagnostic
Instrument, Sterling Heights, MI) and processed with an Image
Analysis System (Delta Sistemi, Rome, Italy) (20). BDM was ex-
pressed as percentage of area occupied by bile ducts with respect to
the total liver parenchyma. Proliferation was also evaluated by mea-
surement of PCNA protein expression by Western blots using specific
antibody and normalized by 	-actin as seen previously.

Expression of angiogenic factors in cholangiocytes. The immuno-
histochemical expression of VEGF-A, VEGF-C, VEGF-R2, VEGF-
R3, Ang-1, Ang-2, Tie-1, and Tie-2 (Santa Cruz Biotechnology,
Milan, Italy) in small and large cholangiocytes was evaluated in liver
sections. Immunohistochemistry for these proteins was performed as
described above for PCNA staining. We measured the percentage of
cholangiocytes expressing the selected angiogenic factors (36). At
least 10 different portal areas (from 3 different sections) were evalu-
ated for each parameter. Real time PCR analysis was performed using
specific primers designed against rat VEGF-A, VEGF-C, VEGFR-2,

VEGFR-3, Ang-1, Ang-2, Tie-1, and Tie-2 genes. A delta delta of the
threshold cycle (

CT) analysis was performed using normal cholan-
giocytes as the control sample; as housekeeping, we used GAPDH (8).

Measurement of cAMP levels in purified cholangiocytes. We mea-
sured basal and secretin-stimulated cAMP levels, a functional marker
of cholangiocyte proliferation (24, 31), in purified cholangiocytes
from the selected groups of animals. Following incubation for 1 h at
37°C (5, 29), cholangiocytes (1 � 105 cells) were stimulated at room
temperature for 5 min with 0.2% BSA (basal) or secretin (100 nmol/l
in 0.2% BSA). Intracellular cAMP levels were assessed with com-
mercially available kits (31, 32).

In vitro effect of normoxia and hypoxia on apoptosis, proliferation,
and expression of VEGF-A/-C and VEGFR-2/-3 in NRICC. The in
vitro experiments were performed in our NRICC (4). NRICC were
maintained in culture with DMEM-F-12, MEM nonessential amino
acids solution, Insulin-Transferrin-Selenium-X, chemically defined
lipid concentrate, MEM vitamin solution, L-glutamine, Pen/Strep,
Gentamicin, Bovine pituitary extract, Dexamethasone, 3,3=,5-triiodo-
L-thyromine, EGF, FBS, and forskolin. NRICC were maintained
under standard conditions in normoxic atmosphere of 21% O2, 74%
N2, and 5% CO2 to reflect physiologic conditions or under a hypoxic
atmosphere of 5% O2, 90% N2, and 5% CO2 for 4 h and transferred
to normal conditions for different times (1–3 h) with or without
pre-incubation with an antibody anti-VEGF-A or anti-Angiopoietin-1.
Cells were plated at 80% confluence 1 day before the incubation under
hypoxic or normoxic conditions. The cells were seeded in Petri dishes
and maintained in their medium. Cells were then placed in the
incubator at 37°C and exposed to hypoxia in a modular incubator
chamber (C-Chamber Hypoxia chamber) with continuous monitoring
and automated adjustments to maintain the several parameters stable
(ProOx controller; Biospherix, Redfield, NY). Afterward, we ex-
tracted from NRICC proteins and total RNA to measure changes in 1)
proliferation and apoptosis by immunoblotting and real-time PCR for
PCNA and Bax, respectively; and 2) mRNA expression of VEGF-A/C
and VEGFR-2/3 by real-time PCR (12). A 

CT analysis was
performed using NRICC maintained at normal levels of oxygen for 7
h as the control sample.

RESULTS

Effect of HAIR and PVIR on liver histology and biliary
apoptosis and proliferation. There were no significant histo-
logical differences between the experimental groups of normal
rats and normal rats plus HAIR or PVIR (not shown). On the

Fig. 3. Basal cAMP levels of cholangiocytes from BDL rats were higher than
cAMP levels of normal cholangiocytes. In BDL (but not BDL � HAIR) rats,
secretin increased cAMP levels in purified cholangiocytes. Data are means �
SE of 6 experiments. *P � 0.05 vs. the corresponding basal value; #ns, not
significant vs. the corresponding basal value.
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contrary, both HAIR and PVIR induced lobular damage and areas
of focal necrosis and portal inflammation in normal compared
with BDL rats. In both normal and BDL rats, HAIR (and at lower
degree PVIR) induced apoptosis of large bile ducts as evidenced
by TUNEL in liver sections (Fig. 1A and Table 1) and decreased
proliferation of large cholangiocytes (by reduced PCNA expres-
sion in liver sections) (Fig. 1B and Table 1). There were increased
Bax and reduced PCNA expression in purified cholangiocytes
from the selected groups of animals (Fig. 1, A and B, lower
graphs).

Expression of angiogenic factors in cholangiocytes. In BDL
rats, there were 1) enhanced expression of VEGF-A/C,
VEGFR-2/3, Ang-1/2, and Tie-1/2 in small bile ducts (in
liver sections) (see Table 2) and purified pooled cholangio-
cytes (that include both small and large cholangiocytes) (5)
compared with normal rats; and 2) decreased expression of
VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2 in large bile
ducts (Fig. 2, A and B, and Table 2). In BDL rats, HAIR (and

at lower degree PVIR) determined a further increased ex-
pression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2
in small bile and decreased expression of VEGF-A/C,
VEGFR-2/3, Ang-1/2, and Tie-1/2 in large bile ducts com-
pared with BDL sham rats (Fig. 2, A and B, and Table 2);
there was low expression of these factors in hepatocytes
(Fig. 2, A and B). The increase in the aforementioned growth
factors/receptors was lower in BDL � PVIR rats compared
with BDL � HAIR rats (Fig. 2, A and B, and Table 2). The
same results were obtained by real time PCR in purified
pooled cholangiocytes, where angiogenic factors and recep-
tors were present at higher levels after HAIR both in normal
and BDL rats compared with control animals (Fig. 2C).

Measurement of basal and secretin-stimulated cAMP levels.
Consistent with previous findings (19), basal cAMP levels of
cholangiocytes from BDL rats were higher than cAMP levels of
normal cholangiocytes (Fig. 3). In BDL (but not BDL � HAIR)
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Fig. 4. A, top: evaluation of cholangiocyte apoptosis (by immunoblotting analysis for Bax) in normal rat intrahepatic cholangiocyte cultures (NRICC) maintained
in condition of normoxia or hypoxia for 4 h and transferred to normal conditions for different times (1–3 h) with or without pre-incubation with an antibody
anti-VEGF-A or anti-Ang-1. Bax expression was increased when NRICC were incubated under hypoxia; this effect was higher after 4 h of hypoxia followed
by 2 h of normoxia, but it decreases after 4 h of hypoxia followed by 3 h of normoxia. These effects were reversed administering an antibody anti-VEGF-A or
anti-Ang-1, where the levels of Bax expression were enhanced after 4 h of hypoxia � 3 h of normoxia. A, bottom: measurement of cholangiocyte proliferation
(by immunoblotting analysis for PCNA) in the same samples. Without the pre-incubation with the antibodies anti-VEGF-A and anti-Ang-1, PCNA expression
was increased only after 3 h of normoxic conditions. Conversely, administration of the antibodies increased proliferation in the first hours of normoxia but
inhibited it after 3 h. Data are means � SE of 6 blots. *P � 0.05 vs. its corresponding control value; #P � 0.05 vs. normoxia control value. B, top: cholangiocyte
apoptosis was also assessed by real time PCR for Bax in the several treatments of NRICC. The apoptotic degree was lower in the last sample, where the cells
returned to the normoxic conditions for 3 h after 4 h of hypoxia. Instead, pre-incubation with an anti-VEGF-A or an anti-Ang-1 enhanced the mRNA expression
of Bax. B, bottom: cholangiocyte growth was investigated by real time PCR for PCNA in the same in vitro samples. PCNA mRNA expression was significantly
increased after 3 h of reoxygenation, whereas it was worsened with the administration of the antibodies, in particular after treatment with an anti-Ang-1. Data
are means � SE of 6 blots. *P � 0.05 vs. its corresponding control value; #P � 0.05 vs. normoxia control value.
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rats, secretin increased cAMP levels of purified pooled cholan-
giocytes (Fig. 3).

In vitro effect of normoxia and hypoxia on apoptosis, pro-
liferation, and expression of VEGF-A/C and VEGFR-2/3 in
NRICC. To verify if the in vivo findings were specific to
cholangiocytes, we performed in vitro studies in NRICC dur-
ing hypoxic (4 h) conditions using antibodies against VEGF-A
and Ang-1 or controls (nonimmune serum). Consistent with
previous studies showing increased apoptosis during hypoxic
conditions (46, 53), there was increased Bax expression when
NRICC were incubated under hypoxia; this effect was higher
after 4 h of hypoxia and 2 h of normoxia, but it was increased
after 3 h of reoxygenation if we pre-incubated cells with
the antibodies for anti-angiogenic factors (Fig. 4, A and B).
NRICC also displayed a lower proliferative rate (by PCNA
expression) following hypoxic conditions that was enhanced
using an anti-VEGF-A or an anti-Ang-1 antibody (Fig. 4A-B).
Recovery of the normoxic conditions led to restoration of
cholangiocyte proliferation and prevention of biliary apoptosis
in a time-dependent manner (Fig. 4, A and B). During hypoxic
conditions, there was a significant increase in mRNA expres-
sion of VEGF-A, VEGF-C, VEGFR-2, and VEGFR-3 (mea-
sured as ratio to GAPDH mRNA) (Fig. 5). These increased
values returned to normal levels following restoration of nor-
moxic conditions for 1, 2 or 3 h (Fig. 5).

DISCUSSION

Our study has shown that in normal and BDL rats, HAIR
(and to lesser extent PVIR) induced a functional damage of bile
ducts as demonstrated by increased apoptosis of large bile
ducts in liver sections and Bax expression in purified pooled
cholangiocytes. In BDL rats, HAIR decreased proliferation of
large cholangiocytes in liver sections, and PCNA expression
and secretin-stimulated cAMP levels of pooled cholangiocytes
compared with BDL sham rats. In BDL rats, HAIR and PVIR
induced lobular damage and focal areas of necrosis compared

with normal and BDL rats without HAIR or PVIR. HAIR-
induced damage of large bile ducts was coupled with increased
expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2
in small bile ducts and decreased expression of VEGF-A/C,
VEGFR-2/3, Ang-1/2, and Tie-1/2 in large bile ducts compared
with BDL sham rats. The increased expression of angiogenic
factors in small cholangiocytes is likely due to a compensatory
mechanism due to the damage of large BDL cholangiocytes by
HAIR. In vitro, during hypoxia/normoxia conditions there was
increased apoptosis and reduced proliferation of NRICC con-
comitant with enhanced expression of VEGF-A/C and
VEGFR-2/3.

The liver is susceptible to I/R injury that often occurs after
conditions such as shock, trauma, surgical hepatectomy, and
transplantation. Hepatic I/R leads to an acute inflammatory
response, causing significant hepatocellular damage and liver
dysfunction. The mechanisms of hepatic I/R injury are com-
plex and involve multiple mechanisms (50). For example,
I/R-induced apoptosis of bile ducts may contribute to the
pathogenesis of biliary complications after liver transplantation
(9). To begin to understand the mechanisms of I/R-induced
biliary disorders, we used, in vivo, an experimental model of
BDL rats that underwent 24 h of hepatic reperfusion immedi-
ately following sham or 30 min of transient occlusion of HAIR
or PVIR. The in vitro model consisted of NRICC that were
exposed to normoxic or hypoxic conditions for 4 h and then to
normoxia for 1 to 4 h.

Previous studies have shown that 45 min of ischemia in
cholestatic rats resulted in extensive damage during 24 h of
reperfusion, leading to the premature death of most of these
animals (30). Therefore, for our experiments, ischemia time
was reduced to 30 min to achieve a nonlethal I/R injury model.
In our model, the reperfusion time was extended to 24 h,
resulting in hepatic necrosis and an inflammatory response.
Another study in mice has demonstrated that cholestasis pro-
tected against I/R injury (18). The study suggested that hyper-
bilirubinemia induces decreased inflammatory response and
subsequent reduced injury (42). As an alternative protective
mechanism, the study suggested that cholestatic mice failed to
activate NF-�B and TNF-� synthesis, two mediators of post-
ischemic liver inflammation (18). In our study a marked
inflammatory response persisted in the presence of cholestasis,
possibly indicating a species difference in the inflammatory
response during cholestasis. In addition, we also evaluated
during I/R damage the role of selected angiogenic such as
VEGF, which upon multiple stimuli is produced by endothelial
cells, macrophages, activated T cells, and cholangiocytes (22,
36). VEGF plays important roles in both physiologic as well as
pathologic vasculogenesis and angiogenesis (11, 37). Because
ischemia is a potent stimulus for VEGF synthesis, it has been
suggested to play a role during I/R-induced liver injury (33).
Also, a recent study has shown that endogenous VEGF in the
liver is expressed and released after transplantation and that the
administration of neutralizing VEGF antibody during reperfu-
sion attenuated liver damage in a cold I/R injury model (6).
Among other angiogenic factors, Ang-1 is a strong vascular
protective agonist of the Tie-2 receptor responsible for sup-
pressing vascular leakage, maintaining endothelial cell sur-
vival, and inhibiting vascular inflammation. Ang-2 promotes in
a dose-dependent manner destabilization, vessel leakage, and
inflammation (7, 10). In the kidney, I/R induces a dysregula-

Fig. 5. Treatment in hypoxic conditions induced a significant increase in the
message expression of VEGF-A, VEGF-C, VEGFR-2, and VEGFR-3 (mea-
sured as ratio to GAPDH mRNA). This increase returned close to normal
values proportionally following restoring of normoxia for 3 h. Data are means
� SE of 6 experiments. *P � 0.05 vs. the corresponding basal value.
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tion in Ang-2/Ang-1, which is accompanied by a loss of
endothelial cells, proliferation of pericytes, and development of
fibrosis.

With regard to the expression/role of vascular factors on the
biliary epithelium after I/R injury, we propose that small
cholangiocytes express higher levels of VEGF after HAIR
most likely due to a compensatory mechanism to maintain
biliary homeostasis following the injury of large cholangio-
cytes following I/R. In fact, the in vitro study with NRICC
treated in hypoxic conditions displayed a lower proliferative
rate (by PCNA expression) following the first 2 h of normoxic
conditions, but proliferation began to increase after 3 h of
normoxia. An effect that was blocked by the pre-incubation
with antibodies against VEGF-A and Ang-1. In fact, cholan-
giocyte growth is inhibited to confirm the key role of these
angiogenic factors in the recovery after hypoxic damage. In
fact, it has been shown that 1) angiogenic factors modulate cell
growth by autocrine and paracrine mechanisms in liver; and 2)
overexpression in small cholangiocytes, together with the in-
hibitory effects of the antibodies in cholangiocyte proliferation,
show that under hypoxic conditions, VEGFs and angiopoietins
may contribute to hepatic repair. On the other hand, we also
found that the biliary apoptosis is controlled by angiogenic
factors as protective factors, since the pre-incubation with an
anti-VEGF-A or an anti-Ang-1 induces an increase in cholan-
giocyte apoptosis after the first hours of reoxygenation. Sup-
porting this finding, a number of studies support the concept
that small cholangiocytes are more resistant than large cholan-
giocytes to hepatic injury (32, 35). The higher resistance of
small cholangiocytes to damage may be due to their undiffer-
entiated nature, whereas large cholangiocytes are more differ-
entiated and more susceptible to injury (25). The locally
produced VEGF may be an early mediator promoting hepatic
I/R injury. Therefore, the blockade of this endogenous VEGF
may have a cytoprotective effect. On the other hand, exoge-
nous VEGF may also exert cytoprotection during I/R injury.
Additional studies need to be performed to clarify the under-
lying mechanisms, but the manipulation of the small cholan-
giocyte compartment may be the key in the regulation of the
expression/secretion of angiogenic factors and for the manage-
ment of I/R induced biliary injury.
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