Noname manuscript No.
(will be inserted by the editor)

An Improved Algorithm for Computing All the Best
Swap Edges of a Tree Spanner

Davide Bilo - Feliciano Colella - Luciano
Guala - Stefano Leucci - Guido Proietti

Received: date / Accepted: date

Abstract A tree o-spanner of a positively real-weighted n-vertex and m-edge
undirected graph G is a spanning tree T of G which approximately preserves
(i.e., up to a multiplicative stretch factor o) distances in G. Tree spanners with
provably good stretch factors find applications in communication networks,
distributed systems, and network design. However, finding an optimal or even
a good tree spanner is a very hard computational task. Thus, if one has to
face a transient edge failure in T', the overall effort that has to be afforded
to rebuild a new tree spanner (i.e., computational costs, set-up of new links,
updating of the routing tables, etc.) can be rather prohibitive. To circumvent
this drawback, an effective alternative is that of associating with each tree edge
a best possible (in terms of resulting stretch) swap edge — a well-established
approach in the literature for several other tree topologies. Correspondingly, the
problem of computing all the best swap edges of a tree spanner is a challenging
algorithmic problem, since solving it efficiently means to exploit the structure
of shortest paths not only in G, but also in all the scenarios in which an edge

D. Bilo
Universita di Sassari, Italy
E-mail: davide.biloQuniss.it

F. Colella
Gran Sasso Science Institute, L’Aquila, Italy
E-mail: feliciano.colella@gssi.it

L. Guala
Universita di Roma “Tor Vergata”, Italy
E-mail: guala@mat.uniroma?2.it

S. Leucci
ETH Ziirich, Switzerland
E-mail: stefano.leucci@inf.ethz.ch

G. Proietti

Universita degli Studi dell’Aquila, Italy

Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy.
E-mail: guido.proiettiQunivaq.it

2 Davide Bilo et al.

of T has failed. For this problem we provide a very efficient solution, running
in O(n?log* n) time, which drastically improves (almost by a quadratic factor
in n in dense graphs) on the previous known best result.

Keywords Transient edge failure - Swap algorithm - Tree spanner

1 Introduction

The problem of computing all the best swap edges (ABSE) of a tree has a
long and rich algorithmic tradition. Basically, let G = (V(G), E(G),w) be
an n-vertex and m-edge 2-edge-connected undirected graph, with edge-weight
function w : F(G) — R, and assume we are given a spanning tree T of G,
which was computed by addressing some criterion (i.e., objective function) ¢.
Then, the problem is that of computing a BSE for every edge e € E(T'), namely
an edge f € E(G)\ E(T) such that the swap tree T,/ obtained by swapping
e with f in T optimizes some objective function ¢’ out of all possible swap
trees. Quite reasonably, the function ¢’ must be related (if not coinciding at
all) with ¢.

The first immediate motivation for studying an ABSE problem comes from
the edge fault-tolerance setting — a commonly accepted framework. Broadly
speaking, the algorithmic question here is to design sparse subgraphs that
guarantee a proper level of functionality even in the presence of an edge failure.
In such a context, the rationale of an ABSE-based solution is the following:
operations are normally performed on a (possibly optimal) spanning tree, and
whenever an edge failure takes place, a corresponding BSE is plugged in. This
way, the connectivity is reestablished in the most prompt and effective possible
way (see also [14,20] for some additional practical motivations).

Besides their practical relevance, ABSE problems have also an interesting
theoretical motivation. Indeed, swapping can be reviewed as an exploration of
the space of the perturbed (w.r.t. an edge swap) solutions to a given spanning
tree optimization problem. Thus, the algorithmic challenge of solving efficiently
an ABSE problem is related with the understanding of the structure of this
space of perturbed solutions. And this is exactly why each ABSE problem
has its own combinatorial richness, and thus requires a specific approach to
be solved efficiently. Then, different ABSE problems have required the use
of completely different approaches and methods in order to obtain efficient
solutions. For instance, the most famous and studied ABSE problem comes
when 7T is a minimum spanning tree (MST) of G. In this case, a best swap
is of course a swap edge minimizing the cost (i.e., sum of the edge weights)
of the swap tree, i.e., a swap edge of minimum weight (and we know this
produces a MST of the perturbed graph). This problem is also known as
the MST sensitivity analysis problem, and can be solved in O(m log a(m,n))
time [19], where « denotes the inverse of the Ackermann function, by using an
efficient data structure, namely the split-findmin [12]. This was improving on
another efficient solution given by Tarjan [22], running in O(m a(m,n)) time
and making use of the transmuter, namely a compact way of representing the

An Improved Algorithm for Computing All the BSEs of a Tree Spanner 3

cycles of a graph. Other data structures which revealed their usefulness to solve
efficiently ABSE problems include kinetic heaps [6], top trees [3], mergeable
heaps [18], and many others.

In this paper, we focus on the ABSE problem on the elusive spanning tree
structure, namely the tree spanner (ABSE-TS problem in the following). A tree
spanner is built with the aim of preserving node-to-node distances in G. Indeed,
the stretch factor o of a spanning tree T of G is defined as the mazimum,
over all the pairs u,v € V(G), of dr(u,v)/dc(u,v), where dr and dg denote
distances in T" and G, respectively. Correspondingly, an optimal tree spanner
has minimum stretch out of all the spanning trees of G. Unfortunately, finding
an optimal tree spanner is notoriously an APX-hard problem, with no known
o(n)-approximation. Hence, once a given solution undergoes a transient edge
failure, the recomputation from scratch of a new (near) optimal solution is
computationally unfeasible. Thus, swapping in a tree spanner is even more
attractive than in general, and indeed the ABSE-TS problem was studied in
[10], where the authors devised two solutions for both the weighted and the
unweighted case, running in O(m?logn) and O(n?®) time, respectively, and
using O(m) and O(n?) space, respectively. However, there the authors assume
that a BSE is an edge minimizing the stretch of the swap tree w.r.t. distances
in the original graph G, and not in the graph G deprived of e, say G — e. This
contrasts with the general assumption (and the intuition) that the quality
of a swap tree should be evaluated in the surviving graph. Hence, in [3] the
authors resorted to such a standard setting, and provided two efficient linear-
space solutions for both the weighted and the unweighted case, running in
O(m?log a(m,n)) and O(mnlogn) time, respectively, and both using linear
space. Notice that from a computational point of view, as shown in [3], the two
settings are substantially equivalent, so our solutions can be used to improve
the results given in [10] as well.

1.1 Our result

In this paper, we present a new algorithm that solves the ABSE-TS problem
in O(n?log*n) time and O(n? + mlog® n) space. Thus, our solution improves
on the running time of both the algorithms provided in [3], for weighted and
unweighted graphs, respectively, whenever m = 2(n log® n). Most remarkably,
for dense weighted graphs, the improvement is almost quadratic in n.

To put into focus our result, it is worth noticing that, as observed in [10],
the estimation of the stretch of the swap tree induced by a single swap edge
f for a given failing edge e, would in principle ask for the evaluation of the
stretch of O(m) relevant pairs of nodes in G, namely the endvertices of all the
non-tree edges that may serve as swap edge for e besides f. And in fact, a
critical edge for f is the one whose endvertices maximize such a stretch out of
these non-tree edges, and two swap edges will be essentially compared on the
basis of their stretch w.r.t. their critical edge. This is basically the reason why
both previous approaches take £2(m?) time. Thus, to avoid such a bottleneck,

4 Davide Bilo et al.

we drastically reduce, on the one hand, the number of candidate best swap
edges, and on the other hand, the number of potential critical edges that need
to be checked. More precisely, for each of the n — 1 considered edges in T, we
succeed in reducing to O(nlogn) the number of best swap edge candidates,
and for each one of them we just need to check O(log2 n) possible critical edges.
The key ingredients to reach such a goal are the following;:

— A centroid decomposition of T, which consists of a log-depth hierarchical
decomposition of the vertices in T'; a careful use of such a decomposition,
combined with a set of preprocessing steps that associate various information
with the tree nodes, allows us to reduce the number of candidate BSEs and
of their corresponding candidate critical edges. As far as we know, this is
the first time that such a decomposition is used to solve an ABSE problem,
and we believe it will possibly be useful in other contexts as well.

— The second ingredient is given by the dynamic maintenance of the upper
envelopes of a set of linear functions. Each of these functions is associated
with a non-tree edge, and whenever the failure of a given tree edge is
considered, it expresses the stretch such a non-tree edge induces w.r.t. a
variable candidate BSE. This way, when we have to find a critical edge
for a given candidate BSE f, we have to select the mazimum out of
all the functions once they are evaluated in f. In geometric terms, this
translates into the maintenance of the upper envelope of a set of functions,
with the additional complication that, for consistency reasons, this set
of functions must be suitably partitioned into groups according to the
underlying centroid decomposition, and moreover these groups are dynamic,
since they depend on the currently considered tree edge.

1.2 Related work

The research on tree spanners is very active, also due to the strong relationship
with the huge literature on spanners, where distances in G are approximately
preserved through a sparse spanning subgraph. As mentioned before, finding
an optimal tree spanner is a quite hard problem. More precisely, on weighted
graphs, if G does not admit a tree 1-spanner (i.e., a spanning tree with o =1,
which can be established in polynomial time [9]), then the problem is not
approximable within any constant factor better than 2, unless P=NP [16]. In
terms of approximability, no non-trivial upper bounds are known, except for
the O(n)-approximation factor returned by a minimum spanning tree (MST)
of G. If G is unweighted, things go slightly better. More precisely, in this
case the problem becomes O(logn)-approximable, while unless P=NP, the
problem is not approximable within an additive term of o(n) [11]. Moreover,
the corresponding decision problem of establishing whether G admits a tree
spanner with stretch o is NP-complete for every fixed o > 4 (for o = 2 it is
polynomial-time solvable [9], while for o = 3 the problem is open). Finally, it
is known that constant-stretch tree spanners can be found for several special

An Improved Algorithm for Computing All the BSEs of a Tree Spanner 5

classes of (unweighted) graphs, like strongly chordal, interval, and permutation
graphs (see [7] and the references therein).

Concerning the problem of swapping in spanning trees, this has received
a significant attention from the algorithmic community. There is indeed a
line of papers that address ABSE problems starting from different types of
spanning trees. Just to mention a few, besides the MST, we recall the minimum
diameter spanning tree (MDST), the minimum routing-cost spanning tree
(MRCST), and the single-source shortest-path tree (SPT). Concerning the
MDST, a best swap is instead an edge minimizing the diameter of the swap
tree [13,17], and the best solution runs in O(mlog a(m,n)) time [6]. Regarding
the MRCST, a best swap is clearly an edge minimizing the all-to-all routing
cost of the swap tree [23], and the fastest solution for solving this problem has
a running time of O (m20(@(7) Jog? n) [5]. Concerning the SPT, the most
prominent swap criteria are those aiming to minimize either the maximum or
the average distance from the root, and the corresponding ABSE problems
can be addressed in O(mloga(m,n)) time [6] and O(m a(n,n)log®n) time
[21], respectively. Recently, in [4], the authors proposed two new criteria for
swapping in a SPT, which are in a sense related with this paper, namely the
minimization of the maximum and the average stretch factor from the root,
for which they proposed an efficient O(mn + n?logn) and O(mnlog a(m,n))
time solution, respectively.

Finally, for the sake of completeness, we mention that for the related concept
of average tree o-spanners, where the focus is on the average stretch w.r.t. all
node-to-node distances, it was shown that every graph admits an average tree
O(1)-spanner [1].

1.3 Preliminary definitions

Let G = (V(G), E(G),w) be a 2-edge-connected, edge-weighted, and undirected
graph with cost function w : E(G) — RT. We denote by n and m the number
of vertices and edges of G, respectively. If X C V(G), let E(X) be the set of
edges incident to at least one vertex in X. When X = {v}, we may write E(v)
instead of E({v}). Given an edge e € E(G), we will denote by G — e the graph
obtained from G by removing edge e. Similarly, given a vertex v € V(G), we
will denote by G — v the graph obtained from G by removing vertex v and
all its incident edges. Given a spanning tree T of G, and an edge e € E(T),
we let S(e) be the set of all the swap edges for e, i.e., all edges in E(G) \ {e}
whose endpoints lie in two different connected components of 7' — e. We also
define S(e, X) = S(e) N E(X), and S(e, X,Y) = S(e) N E(X)N E(Y). When
X = {v}, we will simply write S(e,v) in lieu of S(e, {v}). For any e € E(T)
and f € S(e), let T, /5 denote the swap tree obtained from T' by replacing e
with f.

Given two vertices z,y € V(G), we denote by dg(z,y) the distance between
z and y in G. We define the stretch factor of the pair (z,y) w.r.t. G and T as

6 Davide Bilo et al.

oa(T,z,y) = %. Accordingly, the stretch factor og(T") of T w.r.t. G is

defined as o¢(T) = max, yev(q) oc(T,z,y).

Definition 1 (Best Swap Edge) An edge f* € S(e) is a best swap edge
(BSE) for e if f* € argminfege) 0G—e(Te/f)-

In the sequel, in order to solve the ABSE-TS problem, we will show how to
efficiently find a BSE for every edge e of a tree spanner T of G. After providing
a high-level description of our approach, we will explain in detail how it works,
by organizing our analysis as specified in the next section.

2 High-level description of the algorithm

Let us consider the tree T spanning G as rooted at any fixed arbitrary vertex.
W.l.o.g., and for the sake of simplifying the exposition of our algorithm, we can
assume that 7" is binary. Indeed, if this is not the case, then we can transform G
and T into an equivalent graph G’ with weight function w’, and a corresponding
binary spanning tree 7', with |[V(G’)| = ©(n) and |E(G’)| = ©(m), and such
that a BSE for any edge of T is univocally associated with a BSE for a
corresponding edge of T”. This transformation requires linear time and works
as follows.

Initially, G',w’, and T coincide with G, w, and T, respectively. We itera-
tively search for a vertex v in T” that has 3 or more children, and we lower
its degree. Let vq,...,v,, with h > 3, be the children of u. We remove all
the edges {(u,v;) : 1 <4 < h} from both G’ and T”, then we add to both
G’ and T’ a binary tree whose root coincides with u, and that has exactly h
leaves x1,...,x,. We assign weight w’(e) = 0 to all the edges e of this tree.
Finally, we add to G’ and T” an edge (z;,v;) for each 1 < i < h, and we set
w'(x;,v;) = w(u,v;). An example of such a transformation is shown in Figure 1.

Clearly, |V(G")| = O(|[V(G)|), |[E(G")| = O(|E(G)]|), and, moreover, the
computation of G’ and T” requires linear time. Now, observe that, for every
a,b € V(G), it holds that dr,,,(a,b) = dTé/f (a,b). Furthermore, for every
edge e = (u,v;) of T, f is a swap edge for e in T iff f is a swap edge for the
edge (z,v;) in 77, where z is the parent of v; in 7”. As a consequence, we can
conclude that, for every edge e = (u,v;) of T, f € S(e) is a BSE for e w.r.t. T
iff f is a BSE for the edge (z,v;) w.r.t. T', where z is the parent of v; in T".

Thus, let us assume T is binary. As a preprocessing step we compute a
centroid decomposition of T. A centroid of an n-vertex tree is a vertex whose
removal splits T into subtrees of size at most n/2 [15]. A centroid decomposition
of T can be computed in O(nlogn) time, and can be represented by a tree
T of height O(logn), whose nodes are actually subtrees of T'. T is recursively
defined as follows: the root of 7 is T'. Then, let 7 be a node of T (i.e., a subtree
of T') such that 7 contains more than one vertex, and let ¢ be a centroid of 7.
Since T is binary, the forest 7 — ¢ contains at most 3 trees, that we call 72,
72, and 72 (if 7 — ¢ generates less than 3 subtrees, we allow some 7! to be the

An Improved Algorithm for Computing All the BSEs of a Tree Spanner 7

Fig. 1 Reducing the degree of vertices in G: on the left side, the tree T (solid edges)
embedded in G, on the right side the superimposition of the binary tree to T' in order to
get a maximum degree of 3. Solid edges in the gray area have weight 0, while the weight of
(z4,v4) is w(u,v;).

empty tree). Moreover, let 70 be the subtree of T' containing the sole vertex
c. Then, 7 will have in T a child for each of the subtrees 7¢,i = 0,...,3 (see
Figure 2 (a)). Since a centroid on a n-vertex tree can be found in linear time,
the whole procedure requires O(nlogn) time, and it is easy to see that the
height of T is O(logn).

Our solution (see Algorithm ABSE-TS) works in n — 1 phases, one for each
tree edge as considered in preorder w.r.t. T, and at the end of each phase
returns a BSE for that edge. Let e € E(T) be the currently considered edge, and
let U (resp. D.) be the set of vertices that belong to the connected component
of T' — e that contains (resp. does not contain) the root of 7. We break down
each of these phases into O(n) additional sub-phases: when edge e is failing, we
consider all the vertices in U, and, for each such vertex v, we solve a restricted
version of the ABSE-TS problem where we compute: (i) a v-restricted best swap
edge (v-BSE for short) for e, i.e., an edge f, € argmingeg(e,v) 0g—c(Te/¢),
and (ii) the corresponding stretch factor og_c(7T/s,). To simplify handling
of special cases, whenever S(e,v) =), we assume that f, = L and that
0G—e(Te/s,) = +00. Once all the v-BSEs for e are computed, a BSE f* for e
can be found as the one minimizing the associated stretch factor.

The core of our algorithm is exactly the efficient computation of a v-BSE
and of its stretch factor. As we will discuss in more detail in Section 3, this is
done through a clever selection of a set of O(logn) candidate v-BSEs, each of
which is evaluated against O(log” n) candidate critical edges (see Section 4).
As we will show in Section 5, each of these latter candidates can be efficiently
selected in O(logn) time, by dynamically maintaining the upper envelopes of
a set of linear functions expressing the criticality of an edge w.r.t. a given
candidate swap edge. In this way, a total of O(log3 n) pairs swap-critical edge

8 Davide Bilo et al.

Algorithm: ABSE-TS(G, T)

1 T <+ Centroid decomposition of T}

2 foreach e € E(T) in postorder do // m —1 phases

3 U < vertices of the component of T' — e that contains the root of T

4 1 // Current BSE for e

5 foreach v € U do // O(n) sub-phases

6 compute a v-BSE f, for e and og—c(Te/5,); // This takes O(log*n)
time

7 if 0g_e(Te/s,) <0G—e(Te/s+) then f* « fu;

®

return f* as BSE for e and continue with the next phase.

are evaluated, at a cost of O(logn) time each, and thus in O(log* n) we are
able to retrieve a v-BSE for the currently considered tree edge e.

3 Selecting a candidate best swap edge

To show how a v-BSE for e can be computed efficiently, we need some prelimi-
nary definitions:

Definition 2 (Critical Edge) Given e € E(T) and a swap edge f = (v,u) €

S(e,v), a critical edge' for f is an edge g = (x,y) € S(e) maximizing ¢(f,g) =

dr(z,v) + w(f) + dr(u,y)
w(g)

Definition 3 (Best Cut Edge) A v-best cut edge for e (v-BCE) is an edge
f € S(e,v) minimizing p.(f) = maxgege) 4(f, 9)-

Then, we will make use of the following property, which was given in [3]:
Proposition 1 Every v-BCE for e is a v-BSFE for e.

Let us first provide a high-level description of how we compute a v-BCE
(i.e., a v-BSE) for e. The algorithm will compute O(logn) v-BCE candidates,
the best of which will be a v-BCE for e. Informally speaking, each candidate f
will be a swap edge close to the centroid of a certain subtree A of T'. Depending
on the position of a critical edge for f, the algorithm will recurse on a subtree of
A and it will look for the next candidate. Thanks to the centroid decomposition
of T', the number of recursions/candidates will then be O(logn).

The key ingredient for the correctness of our algorithm is the next lemma.
Given a subtree T of T', a vertex ¢ € V(T), and a vertex y € V(T), consider
the first vertex z of the unique path from y to ¢ in T" that also belongs to V(f)
The (¢,y)—tree of T is defined as follows: (1) if z = ¢, then it is the empty
tree; otherwise (2) it is the tree of the forest T — ¢ that contains . Then, the
following holds (see also Figure 2 (b) and (c)):

1 Notice that this definition does not contain dg—c(z,y) at the denominator, as expected,
since it already incorporates the property stated in the forthcoming Proposition 1.

An Improved Algorithm for Computing All the BSEs of a Tree Spanner 9

Fig. 2 (a) An example of centroid decomposition of the tree T' (which corresponds to the
first vertex of 7). (b) and (c): Two of the four possible cases situation illustrated in Lemma 1.

The subtree T is represented by the three gray triangles along with the vertex c. f is a
swap edge for e that minimizes w(f) + dr(u,c), and g is its corresponding critical edge. The
(e,y)-tree of T is drawn in bold. Notice that f and g do not need to be incident to T.

Lemma 1 Let T be a subtree of T such that V(T) C D., and let ¢ € V(T).
Moreover, let f = (v,u) € S(e,v) be a swap edge for e that minimizes w(f) +
dr(u,c), and let g = (z,y) be a critical edge for f. Assume that S(e, v,V (T))
contains a v-BCE fore. If f is not a v-BCE for e, then S(e,v,V(T")) contains
a v-BCE for e, where T' is the (c,y)-tree of T.

Proof Suppose that f is not a v-BCE for e, we will show that no swap edge
= (,u) € S(e,v) with ' & V(T") can be a v-BCE for e. Indeed:

o) = o(f',g) = BT U;(f;i ey

_ dT(i'yU) + w(fl) + dT(ul,C) + dT(C7 y)
w(g)

S dr(@,v) +w(f) + dr(u,c) + dr(e,y)

- w(g)

> o(f,9) = o(f),

where we used the fact that dr(v',y) = dr (v, ¢) + dr(c,y) as either v’ = ¢ or
u’ and y are in two different connected components of T' — c.

Lemma 1 allows us to design a recursive algorithm for computing a v-BCE
for e, whose key steps are highlighted in Procedure FindBCE (notice that v
and e are fixed). More precisely, the algorithm takes a tree A of the centroid
decomposition 7 such that V(A) N D, # 0, and it computes a pair (f*, g*)
such that if S(e,v,V(A) N D,) contains a v-BCE for e, then f* is a v-BCE for
e, and ¢g* is its critical edge. Procedure FindBCE makes use of an additional
function FindCritical(f,T') that returns a critical edge for f w.r.t. the failure
of e. The initial call will be FindBCE(T'). In order to handle base cases, we
assume ¢(L, 1) = +o0.

We now prove the correctness of the procedure:

Lemma 2 Procedure FindBCE(T) computes a v-BCE for e.

10 Davide Bilo et al.

Procedure FindBCE(A)

1 if |[V(A)] =0 then return (L,1);

2 ¢ <« Centroid of A;

3 if c € Ue then

4 7 < unique child of A in 7 that contains all the vertices in V(A) N De;

5 return FindBCE (7);

6 else // c € D¢

7 Compute an edge f = (v,u) € argming, ,)es(e,v) {w(v, u) + dr(u,c)};

8 g1 = (x,y) « FindCritical(f,T); // Compute a critical edge for f (see

Sec. 4)

9 T < (¢, y)-tree of 4; // Either 7 is empty or it is a child of A in T
10 (f’,g2) < FindBCE (7);
11 if ¢(f,91) < o(f', g2) then return (f, g1); else return (f’, g2);

Proof Consider an invocation of the procedure and let A and (f*, g*) be its
parameter and the edges it returns, respectively. We prove the following claim
by induction on the cardinality of V' (A): if S(e, v, V(A)ND,) contains a v-BCE
for e, then f* is a v-BCE for e and ¢* is a critical edge for f*.

If [V(A)] = 0, then the claim trivially holds. Otherwise, |V (A)| > 0, and
we distinguish two cases depending on the position of the centroid ¢ of A. If
¢ € U,, then there is only one child 7/ of A in 7 that contains all the vertices
in V(A) N D, as otherwise the vertices in D, would be disconnected in A.
Hence, if S(e,v,V(A) N D,) contains a v-BCE for e, then S(e,v, V()N D,)
also contains a v-BCE for e, and the claim follows by the inductive hypothesis
(as [V (72)| < |[V(A)]). The remaining case is the one in which ¢ € D, here
the claim follows from Lemma 1 (where now T is the subtree of T induced by
V(A) N D,.) together with the inductive hypothesis.

Next lemma provides an upper bound to the running time of the procedure:

Lemma 3 Procedure FindBCE(T) requires O((Icana + [¥c)logn) time, where
Icang and Igc is the time required to perform Steps 7 and 8, i.e., the time to find
a candidate v-BCE f, and to execute Procedure FindCritical, respectively.

Proof First of all, notice that Step 4 can be performed in O(1) time, after
a O(logn) preprocessing time in which we mark all the nodes of 7 on the
path between the leaf of 7 containing the lower vertex of e (which clearly
belongs to D,) and the root of 7. Then, we only need to bound the depth of the
recursion of the call FindBCE(T). Observe that each time Procedure FindBCE(A)
recursively invokes itself on a tree A’, we have that A’ is a child of A in 7. The
claim follows since the height of 7 is O(logn).

Actually, Procedure FindCritical will require O(log®n) time and
O(m log? n) space, as we will show in the rest of the paper. On the other
hand, we now show that I;ang = O(logn), after a preprocessing time and space
of O(n?), by making use of top-trees [2]. A top-tree is a dynamic data structure
that maintains a (weighted) forest F' of trees under link (i.e., edge-insertion)
and cut (i.e., edge-deletion) operations. Moreover, some of the vertices of F

An Improved Algorithm for Computing All the BSEs of a Tree Spanner 11

T N T,

--e

(a) (b)

Fig. 3 (a) The subtree of T induced by D, along with swap edges in S(e,v), and (b) the
corresponding top-tree 15,. The black vertices of 1%, are the same of the tree T. For each
u € V(T) such that f = (v,u) € S(e,v), 7, contains an additional vertex @ (shown as a
white square), and a corresponding edge (u,u) with weight w(f).

can be marked and the top-tree is able to perform closest marked vertex (CMV,
for short) queries, i.e., it can report the marked vertex that is closest to a given
vertex z. A top-tree on n vertices can be built in linear time and each of all
the aforementioned operations requires O(logn) time.

We maintain a top-tree 1, of size O(n) for each vertex v € V(T'), and so
we use a total of O(n?) space. Each of these top-trees is the tree T' augmented
with some additional marked vertices. More precisely, for each v € V(T') and
for each edge f = (v,u) € E(G) \ E(T) we add to T, a marked vertex @ and
the edge (u, @) with a weight of w(f) (see Figure 3).

Whenever we are finding a v-BSE for e and we need to find the edge f
minimizing w(f) + dr(u,c) we do the following: (i) we cut the edge e from 7,,
(ii) we perform a CMV query on 7, to find the closest marked vertex @ to ¢, if
any, (iii) we undo the cut operation by linking the endpoints of e in 7,,, and
finally (iv) we return the edge (v, u) (or L if no @ has been found).

We can then give the following:

Lemma 4 Let e € E(T) be a failing edge and let ¢ € D,. An edge f = (v,u) €
S(e,v) minimizing w(f) + dr(u,c) can be found in O(logn) time. Moreover,
all the top-trees T,, can be initialized in O(n?) time, and their space usage is

O(n?).

Proof Each of the n top-trees 7, can be built in time O(n) by explicitly
considering all the edges in E(v) (notice that 7, contains at most 2n vertices
as there can be at most one marked vertex per vertex in V(T)).

As for the time complexity of finding edge f, it immediately follows from
the fact that we perform a constant number of link, cut, and CMV query
operations, hence we only need to argue about correctness.

Notice that after we cut edge e from 7, in step (i), the tree T of T,
containing ¢ has exactly one (distinct) marked vertex @ for each edge (u,v) €
S(e,v). The claim follows as, by construction, the distance from ¢ to @ in 7" is
dr (Cvﬂ) = dT’(Ca u) + dp (ua ﬂ) = dT(Cv u) + w(f)

12 Davide Bilo et al.

4 Selecting a candidate critical edge

To implement Procedure FindCritical in the promised O(log®n) time, we
will compute O(log? n) candidate critical edges for f, by paying O(logn) time
to select each one of them, and as anticipated one out of them will be a critical
edge for f.

More precisely, we look at O(logn) subtrees of the centroid decomposition
T and, for each such subtree A, we will consider O(logn) subtrees ¥ to find
a critical edge candidate having one endpoint in ¥ and the other in A. The
choice of the O(log2 n) pairs of trees is guided by the position of f, while the
computation of a candidate for a given pair (¥, A) is the core of the procedure,
and is performed efficiently through the dynamic maintenance of the upper
envelope of a set of linear functions, as described in the next section.

Definition 4 ((¥, A)-Critical Edge) Given a failing edge e and a swap edge
f=(v,u) € S(e,v), and given two trees ¥, A of the centroid decomposition 7,
a (¥, A)-critical edge for f is an edge

- b E b ! .
g=(z,y) argg,es(eywr)rg]aéymml)e)¢(f q)

When ¥ =T we will refer to a (¥, A)-critical edge as a A-critical edge.

Let f = (v,u) € S(e,v) and let A be a tree of the centroid decomposition
T such that u € V(A). Procedure FindCritical returns a A-critical edge for
f, when edge e fails (such an edge always exists as f has one endpoint in
U, and the other in V(A4) N D.). Notice that the call FindCritical(f,T) in
Procedure FindBCE computes a critical edge for f, since a T-critical edge for f
is actually a critical edge for f.

Procedure FindCritical uses Procedure FindCriticalCandidate(f, ¥,
A) as a subroutine, which for the sake of clarity will be described in the next
subsection. For the moment, it suffices to know that FindCriticalCandidate
receives three inputs, i.e., edge f = (v, u) and two subtrees ¥, A of the centroid
decomposition T such that v € ¥ and, either u & V(A) or A is the tree
containing the sole vertex u, and it returns a (¥, A)-critical edge for f. If no
such edge exists, then FindCriticalCandidate returns 1 and we assume that

¢(f7 J—) = —0oC.

Lemma 5 Let f = (v,u) € S(e,v), and let A be a tree of the centroid de-
composition T such that u € V(A). Procedure FindCritical(f, A) returns a
A-critical edge for f.

Proof The proof is by induction on the cardinality of V(A).

If |V(A)| = 1, then u is the only vertex in A and Procedure FindCritical
invokes Procedure FindCriticalCandidate(f,T, A). Hence, assuming such a
procedure is correct, it returns a (T, A)-critical edge, i.e., a A-critical edge. If
[V(A4)] > 1 then we distinguish two cases, depending on the position of the
centroid ¢ of A.

An Improved Algorithm for Computing All the BSEs of a Tree Spanner 13

Procedure FindCritical(f = (v,u), A)

if V(A) = {u} then return FindCriticalCandidate(f, T, A) ;
¢ < Centroid of A;

Let j be the unique index in {0,1,2,3} such that u € V(72);

if ¢ € U, then return FindCritical(f,7I) ;

G « {FindCriticalCandidate(f,T,7i) i =0,1,2,3 Ai # j}; // Here c€ De.
g1 + argmaxgeg ¢(f, 9);

g2 < FindCritical(f,7d);

return arg maxge (4, g,3{(f,9)};

0N oUW N

If ¢ € D, it is sufficient to notice that a A-critical edge for f must be incident
to a tree 72 for some i = 0,1,2,3. Let j be the unique index in {0,1,2,3} such
that uw € V(77). If j # i then, assuming Procedure FindCriticalCandidate
is correct, it returns a (T, A)-critical edge g1 (and hence a A-critical edge)
for f. Procedure FindCritical then returns either g; or another edge g such
that ¢(f,g) = ¢(f,91). If j = 4, the algorithm is recursively invoked and,
since |V (1) < |V (A)| we know, by the induction hypothesis, that it correctly
returns a 7.-critical edge for f, which is also A-critical edge for f.

If ¢ € U,, then we know that there is at most one 7/ containing one or more
vertices in D, (as otherwise the vertices in V' (A) N D, would be disconnected
in A, a contradiction). Moreover, since u € V(A) N D,, there is exactly one
such tree 72, namely 7. The algorithm recursively invokes itself on 7J and,
since |V (1) < |V (A)|, we know, by induction hypothesis, that it returns a
Td-critical edge for f, which is also A-critical edge for f.

Lemma 6 Procedure FindCritical(f, A) requires O(Iscclogn) time, where
Tkcc is the time required by an invocation of Procedure FindCriticalCandidate.

Proof Notice that Procedure FindCritical performs exactly one recursive
invocation for each vertex of the tree 7 on the unique path between the root
of T and w in 7. The claim follows since the height of T is O(logn).

In the next subsection, we show that Ipcc = O(log2 n).

4.1 Procedure FindCriticalCandidate

In this subsection, we describe the core of the procedure that computes a critical
edge for f. Let us first describe informally the main idea of this part. Let b € U,
and ¢ € D,, and consider any two edges f = (v,u),g = (x,y) € S(e) such that
b (resp. ¢) is on the unique path from x to v (resp. from y to u) in T (see Figure
4). It turns out that the stretch factor of any f w.r.t. a given g can be though
as a linear function @y ¢ 4(t) = ap.c(g) - t + Bp,c(9), where oy o(g) and Bpo(9)
only depend on g. More precisely, we will have that ¢(f,g) = Pp,c,g(ts,c(f)),
for a suitable value ¢, .(f) which only depends on f. Hence, whenever we look
for a critical edge for f, we can ask for a corresponding function @y . 4(t) with

14 Davide Bilo et al.

maximum value on ¢, .(f). Since we do not know a priori the edge f for which
we need to compute a critical edge, we will maintain this information as the
upper envelope of a suitable set of functions. Let us make this idea more precise.

Definition 5 (Upper Envelope) Let F = {®1,Po,...,P;} be a finite set of
functions, where @; : R — R for every ¢ = 1,2,...,£. The upper envelope of F
is defined as UEf : t € R — arg gm])__(@(t) c2”.

€

Let b € U, and ¢ € D.. Given an edge f = (v,u), define ¢ .(f) as the
quantity dr(b,v) + w(f) + dr(u,c). Given an edge g = (z,y), define ap (g9) =
ﬁ and Bp(g9) = W. Notice how, once b and c¢ are fixed, tp c(f)
only depends on f while as .(g9) and By.(g) only depend on g. Let @y . 4(t) =

ab,c(g) T+ ﬂb,c(g)'

Lemma 7 Let f = (v,u) € S(e,v). Let b € U. and ¢ € D,. Let X (resp. Y)
be a set of vertices x € U, (resp. y € D) such that vertex b (resp. ¢) is on the
unique path from x to v (resp. from y to u) in T. For every g € S(e, X,Y) we
have ¢(fa g) = st,c,g(tb,c(f))'

Proof Let g = (z,y). We have:

_ dr(z,v) + w(f) + dr(u,y)

o(f,9)

w(g)
_ dT(xa b) + dT(bv U) + w(f) + dT(U, C) + dT(cv y)
w(g)
_ dr(b,v) + w(f) +dr(u,) n dr(z,b) +dr(c,y)
w(g) w(g)
= ap,c(9)tn,c(f) + Br.c(9)
= P c,g(tv,c(f))-

Definition 6 (Parent centroid) Let 7 be a tree of the centroid decomposi-
tion 7. The parent centroid of T is the centroid of the parent of 7 in T .

Lemma 7 is instrumental to proving the following (see Figure 4):

Lemma 8 Let f = (v,u) € S(e,v), and let ¥, A be two trees of the centroid
decomposition of T such that the following conditions hold: (i) v & V(¥) or
V(&) ={v}, and (ii) u ¢ V(A) or V(A) = {u}. Let b (resp. c¢) be the parent
centroid of ¥ (resp. A), and assume that b € U, (resp. ¢ € D). Then, an
edge g is a (¥, A)-critical edge for f if and only if $p ¢ g € UEF£(tpy,o(f)) where
F=APpcy :9 €S, VW)NU,,V(A)ND,)}.

Proof First of all we show the following property of the centroid decomposition
T:let p,q € V(T), and suppose that the unique path in 7 between the leaf
nodes associated with p and ¢ contains a node whose corresponding centroid
is z. Then, the unique path between p and g in T contains z. Indeed, if z is

An Improved Algorithm for Computing All the BSEs of a Tree Spanner 15

Fig. 4 Illustration of Lemma 8. f is a swap edge for e, ¥ and A are two trees of the
centroid decomposition, and b and c are their corresponding parent centroids. g is a potential
(¥, A)-critical edge for f. Notice that the unique path from z to v (resp. from y to u) passes
through b (resp. c).

either p or g, the property is trivially true. On the other hand, suppose that
2 & {p,q}, and let 7 be the subtree of T associated with z in 7. Then, let 7¢
be the child subtree of 7 containing p. Observe that ¢ is not in 72. Moreover,
by construction, each path from a node of 7¢, and in particular from p, to any
node outside 7, and in particular to ¢, must pass through 2.

We now prove the claim. If V(&) = {v} (resp. V(A) = {u}) then it follows
from Lemma 7 by choosing X = {v} and Y =V (A)N D, (resp. X = V(¥)NU,
and Y = {u}). The complementary case is the one in which v ¢ V(¥) and
u & V(A). Consider the vertices v and b (resp. v and ¢) in 7 and notice that v
(resp. u) cannot be an ancestor of b (resp. ¢). Indeed, if that were the case, then
the subtree of T induced by the vertices in V(&) (resp. V(A)) would contain
b (resp. ¢) contradicting the hypothesis. Hence, the path from any vertex in
V(¥) to v (resp. V(A) to u) traverses b (resp. ¢) in 7 and therefore the same
holds in T'. The claim follows by invoking Lemma 7 with X = V(¥) N U, and
Y =V (4)N D,.

Lemma 8 allows us to design a recursive procedure to compute a (¥, A)-
critical edge for f (see Procedure FindCriticalCandidate). To this aim we
will make use of a data structure Q. that, for each edge f € S(e), and for each
pair of trees ¥, A of the centroid decomposition, can perform a query operation
that we name Q. (f, ¥, A). This query reports an edge whose function @y . 4 is
in UE£(tp,c(f)) where b and c are the parent centroids of ¥ and A, respectively,
and F = {Dpcq : 9 € S(e, V(¥)NU.,V(A)N D)}

Next two lemmas show the correctness and the running time of the proce-
dure:

Lemma 9 Let be given an edge f = (v,u) € S(e,v) and two trees ¥, A of
the centroid decomposition such that: (i) v € V(¥), and (ii) u & V(A) or
V(A) = {u}. Then, Procedure FindCriticalCandidate(f, W, A) computes a
(@, A)-critical edge for f.

16 Davide Bilo et al.

Procedure FindCriticalCandidate(f = (v,u), ¥, A)

if V(A) N De =0 then return L;

if V(¥) = {v} then return QO.(f,¥, A);

b < Centroid of ¥;

Let j be the unique index in {0, 1, 2,3} such that v € V(Tg);

if b € D, then return FindCriticalCandidate(f, 7}, A);

G+ {Qe(fimi,A) i =0,1,2,3N5#j}; // Here b e U,
g1 - argmaxgeg ¢(f, 9);

g2 + FindCriticalCandidate(f, 7], A);

return arg maxge(q,,g,3{(f;9)};

© ® N0 oA W=

Proof First of all notice that if V(A) N D, = (), then the algorithm correctly
returns L. We now prove the claim by induction on |V/(¥)|. If |V (¥)| = 1, then
the only vertex in ¥ must be v and Procedure FindCriticalCandidate queries
Q. for Q.(f, ¥, A). By Lemma 8, the returned edge is a (¥, A)-critical edge
for f. If |V(¥)| > 1 then we distinguish two cases, depending on the position
of the centroid b of ¥. If b € U, it is sufficient to notice that a (¥, A)-critical
edge for f must be incident to a tree 7¢ for some i = 0,1,2,3. Let j be the
unique index in {0, 1,2,3} such that v € V(Tg). If j # i then, by Lemma 8§,
the query Qc(f, 7}, A) returns a (77, A)-critical edge ¢’ (and hence ¢’ is also a
(@, A)-critical edge) for f. Procedure FindCritical then returns either ¢’ or
another edge g such that ¢(f, g) = ¢(f, ¢'). If j = 4, the algorithm is recursively
invoked and, since |V (|7{])| < |[V(¥)| we know, by the induction hypothesis,
that it returns a (77, A)-critical edge for f, which is also (¥, A)-critical edge for
f-If b€ D, then there is at most one Tg containing at least one vertex in U,
(as the converse would imply that the vertices in V(@) NU, are disconnected in
¥, a contradiction). Moreover, since v € V(¥) N U, there is exactly one such
tree 7/, namely 73 . The algorithm recursively invokes itself on 77 and we know,
by induction hypothesis, that it returns a Tg -critical edge for f, which is also
(@, A)-critical edge for f.

Lemma 10 Procedure FindCriticalCandidate(f, ¥, A) requires O(I'g, logn)
time, where I'g, is the time required by a query on Q..

Proof Notice that Procedure FindCriticalCandidate performs exactly one
recursive invocation for each vertex of the tree 7 on the unique path between
the root of 7 and u in 7. The claim follows since the height of T is O(logn).

Thus, to get the promised running time of O(log2 n) for Ivce, we are left
to prove that I'o, = O(logn). Actually, such a bound can be obtained by
suitably implementing Q. in such a way that all the underlying upper envelope
functions are efficiently maintained, as we explain in details in the next section.

An Improved Algorithm for Computing All the BSEs of a Tree Spanner 17

5 Dynamic maintenance of the upper envelopes

Procedure FindCriticalCandidate needs the auxiliary structure Q.. Explic-
itly building such a structure for each edge e would be too expensive. Here we
show how all the Q.’s can be built in O(m log* n) time and O(mlog® n) space.
The idea is to exploit the order in which failing edges are considered, so as to
reuse previously computed information to build Q..

We implement Q. as a dictionary that allows us to add, delete, and search
for elements in O(logn) time per operation. Each element of Q. is a data
structure that can store a set F of linear functions and is able (i) to dynamically
add/remove a function to/from F in O(log |F|) time, (ii) given t € R, to report
a function in UE£(¢) in O(log | F|) amortized time [8].

Each data structure in the dictionary is associated with a pair ¥, A of trees
of 7 and will contain all the functions @ ., where b and c¢ are the parent
centroids of ¥ and A, respectively, and g € S(e, V(&) NU,, V(A) N D.). We
name such a structure H¢, , . The pair (@, A) is also the key of H{y ay in the
dictionary. Then, we have the following:

Lemma 11 The query Q.(f, ¥, A) (used in FindCriticalCandidate) can be
executed in O(logn) amortized time.

Proof We search for Hy, 4 € Qe in O(logn) time, and then we perform a query
operation on Hg, 4 with t = #; (f) where b and c are the parent centroids of ¥
and A, respectively (see Lemma 7).

We now show how to build and maintain the Q.’s. Remember that we
process the edges e € E(T) in a bottom-up fashion. Let T, be the subtree of
T induced by D.. Whenever T, consists of a single vertex, we build Q. from
scratch. If T, contains 2 or more vertices then there are at most two edges e,
es € E(T.) that are incident to e. We build Q. by merging Q., and Q.,. This
merge operation consists of a join step followed by an update step.

Whenever we add a function @ . 4 to a structure ’Heg,’ 4 of Q. and we are
either performing the update step or we are building Q. from scratch, we say
that we insert ., into Q.. We associate a non-negative integer v, to Q.
that we call virtual size of Q.. The virtual size of Q. is the overall number of
inserts that have been performed either on Q. itself or on any other ’Hf; 2

such that e’ is an edge of T,.

5.1 Building Q. from scratch

We start by creating an empty dictionary Q. (initially v, = 0). Since we are
building Q. from scratch, T, contains only one vertex, say y. For each edge
g=(x,y) € S(e,Ue.,y), we explicitly consider all the pairs of trees (¥, A), such
that ¥ contains x and A contains y, and we let b and ¢ be the parent centroids
of ¥ and A, respectively. We look for qu,’ A) in the dictionary of Q,, if Hf% 2
already exists, we add @y ¢4 to H{y 4. If H{y 4 is not found, we create a new

18 Davide Bilo et al.

empty structure ’H(,I, Ay We add @y ¢ 4 into H (w, 1) and we add H¢ (w,4) to Q..
In both cases we have that @y . 4 is inserted mto Q. and hence we 1ncrease Ve
by 1.

5.2 Building Q. by merging

Let e = (p,q) and remember that T, contains more than 1 vertex. Since g has
degree at most 3 in T, there are either 1 or 2 edges in 7, that are incident to
q. Here we will discuss the case in which those edges are exactly 2 (as the case
in which ¢ is incident to only one edge is simpler).

Let €1, e2 be the two edges incident to ¢ in T,. We will merge Q., and Q.,
in order to obtain Q.. This operation is destructive, i.e., Q., and Q., will no
longer exist at the end of the merge operation. Notice, however, that since we
are processing the edges of T" in a bottom-up fashion, Q., and Q., will no
longer be needed by the algorithm.

The merge operation consists of two steps: the join step and the update
step.

5.2.1 The join step

W.lo.g., let v, > v.,. We start by renaming Q., to Q. (so that all the
structures that belong to the dictionary of Q., that were named 7—[&1—,) are
now named H{y 4)).

Now, for each structure Hf@ A) in Q.,, we first search for the structure
’wa 2 in Q. and, if such a structure is not found, we add new empty structure
'wa 2 to Q.. Then, we move each function @ . 4 in Hf@,/}) to "H(ew,A), ie., we
remove 9y . , from H(w A and, if @ . 4 is not in ’H‘(EW)A), we add it to ’H‘(EW)A).
Finally, after all the structures Hf;) in Q., have been considered, we destroy
Q, and we set Ve t0 Ve, + Ve,.

5.2.2 The update step

After the merge step is completed, Q. contains all the functions corresponding
to the edges g in S(e1) U S(ez).

Notice, however, that all the edges (x,y) such that the lowest common
ancestor (LCA) of z and y in T is g are both in S(e;) and S(e2) but they do not
belong to S(e), and hence they should not appear in Q.. On the converse, the
edges in S(e, Ue, q) are neither in S(e;) nor in S(e3) but they belong to S(e),
hence their corresponding functions should be added to Q.. This is exactly the
goal of the update step.

We start by deleting the extra functions from Q.. We iterate over each edge
g = (z,y) such that the LCA of z and y is ¢ and, for each pair of trees (¥, A)
such that ¥ contains = and A contains y, we delete ® ¢4 from Hf, ;) where

An Improved Algorithm for Computing All the BSEs of a Tree Spanner 19

b and ¢ are the parent centroids of ¥ and A respectively. If H?‘p, 2) becomes
empty, we also delete ’Hf% 2) from Q..

We now add the missing functions to Q.. For each g = (z,q) € S(e, Ue, q),
and for each pair of trees (¥, A), such that ¥ contains x and A contains g,
we first search for H¢, w,A) in Q. and, if it does not exist, we add new empty

structure H¢ (w, 1) to é Then, we add ®p ¢, to HY (@, 1)’ where b and ¢ are the
parent centr01ds of ¥ and A respectively. We i 1ncreabe ve by 1 to account for
this insertion.

5.3 Analysis

Here we bound the time required to dynamically maintain all the upper envelope
structures.

Lemma 12 The overall number of distinct functzons Dy c.g ever inserted into
at least one of the structures Q. is O(m log? n).

Proof Let us consider any edge g = (z,y) € E(G) \ E(T). If a function @ ¢ 4
associated with ¢ is inserted into any Q., this means that it added to some
H{y p) such that © € V(¥), y € V(A), and b (resp. c) is the parent centroids of
¥ (resp. A). Notice that there are O(logn) trees 7 of the centroid decomposition
T that contain x (resp. y), meaning that there are O(log® n) functions Dy c.g
associated to g. The claim follows by summing over all the edges in E(G)\ E(T).

Lemma 13 FEach function @y .4 contributes at most 2 to the virtual size v,

of any Q..

Proof It suffices to bound the overall number of insertions of @ . 4 (regardless
of the structure Q. into which @ . 4 is inserted). To this aim, consider the
edge g = (z,y) associated with @, . , and, w.l.o.g., let be the vertex that is
closest to the root of T'. Let also e, (resp. e,) be the edge from the parent of =
to x (resp. from the parent of y to y) in T'. We distinguish two cases depending
on the relative positions of x and y in 7. If x is an ancestor of y, then & . 4 is
only inserted in Q. . Indeed, g belongs to S(e,) but it does not belong to any
S(e’) where ¢’ € E(T ,) is incident to e, in T, . For any other pair of edges

e’ e € E(T) such that e’ is incident to e” in T,~» we have that either g does
not belong to S(e”), or it belongs to both S(e””) and S(e”), and hence Py . 4 is
not added to Q. If = is not an ancestor of y, then a similar argument shows
that @ . , can only be inserted in Q., and in Q. . The claim follows.

Lemma 14 FEach function ®y . 4 is moved O(logn) times.

Proof When a function is moved from any Q., to Q. it is because we are
merging Q., with Q.,, where e; and ey are edges incident to e in 7,. Notice
that, before the merge operation takes place, we must have v., > v, and hence,
at the end of the merge operation, v, > v, + e, > 2v,. In other words, each

time a function @y, . 4 is moved, we have that the virtual size of the structure

20 Davide Bilo et al.

to which @ . , belongs at least doubles. Therefore, after a function has been
moved 7 times, the structure containing ®; . , must have a virtual size of at
least 2".

Notice now that Lemma 12 and Lemma 13 imply an upper bound of
O(mlog®n) to the virtual size of any Q.. We can conclude that a function can
be moved O(log(mlog®n)) = O(logn) times.

From the above lemmas, we can now prove the following:

Proposition 2 The total time spent building and merging all the data struc-
tures Q. is O(mlog*n).

Proof From Lemma 12 and Lemma 13 we have that the total number of
insertions of functions @, ¢ 4 into the structures Hfy, 4 is O(m log® n) and, since
each insertion requires time O(logn), the total time spent due to insertions
is O(mlog®n). Moreover, since each function is deleted at most once, and a
deletion takes O(logn) time, we have that the total time spent for deleting
functions is O(mlog® n).

Concerning moving of functions, by Lemma 14 we have that every function
is moved O(logn) times. Since there are O(mlog” n) functions, as shown by
Lemma 12, and a function can be moved in O(logn) time, we have that the
total time spent moving functions is O(m log* n).

By combining Lemmas 3, 4, 6, 10, 11 and Proposition 2, we can finally give
our main result:

Theorem 1 The ABSE-TS problem can be solved in O(n*log*n) time and
O(n? 4+ mlog®n) space.

6 Conclusion

In this paper we have provided a new time-efficient algorithm for finding all
the best swap edges of a tree spanner. This has been obtained by suitably
combining a centroid decomposition of the tree spanner along with an efficient
dynamic maintenance of the upper envelopes of a set of linear functions. We
believe that our approach may be useful to solve other related swap problems.

Although our improvement was substantial as compared to the state of the
art, the problem of designing an o(n?) time algorithm remains a challenging
open problem, even for the unweighted case. Another interesting research
direction is that of studying the swap problem on the minimum average-stretch
tree spanner, for which a solution whose average stretch is O(1) away from
the distances in the underlying graph can be computed in polynomial time
[1]. Finally, we mention the related problem of computing good swap edges
for a tree spanner, namely sub-optimal swap edges that can be computed fast
(ideally, in linear time), and whose induced stretch factor is provably close to
that provided by a corresponding best swap edge.

An Improved Algorithm for Computing All the BSEs of a Tree Spanner 21

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Abraham, I., Bartal, Y., Neiman, O.: Embedding metrics into ultrametrics and graphs

into spanning trees with constant average distortion. In: Proc. of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 502-511 (2007)

. Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Maintaining information in fully

dynamic trees with top trees. ACM Transactions on Algorithms 1(2), 243-264 (2005).
DOI 10.1145/1103963.1103966

. Bilo, D., Colella, F., Guala, L., Leucci, S., Proietti, G.: A faster computation of all the

best swap edges of a tree spanner. In: Proc. of the 22nd Intl. Colloquium Structural
Information and Communication Complexity, pp. 239-253 (2015). DOI 10.1007/978-3-
319-25258-2_17

. Bilo, D., Colella, F., Guala, L., Leucci, S., Proietti, G.: Effective edge-fault-tolerant single-

source spanners via best (or good) swap edges. In: Proc. of the 24th Intl. Colloquium
Structural Information and Communication Complexity (in press)

. Bilo, D., Guala, L., Proietti, G.: Finding best swap edges minimizing the routing cost of

a spanning tree. Algorithmica 68(2), 337-357 (2014). DOI 10.1007/s00453-012-9674-y

. Bilo, D., Guala, L., Proietti, G.: A faster computation of all the best swap edges of a

shortest paths tree. Algorithmica 73(3), 547-570 (2015). DOI 10.1007/s00453-014-9912-6

. Brandstadt, A., Chepoi, V., Dragan, F.F.: Distance approximating trees for chordal and

dually chordal graphs. J. Algorithms 30(1), 166-184 (1999). DOI 10.1006/jagm.1998.0962

. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proc. of the 43rd Annual IEEE

Symposium on Foundations of Computer Science, pp. 617-626. IEEE (2002)

. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discrete Math. 8(3), 359-387 (1995).

DOI 10.1137/S0895480192237403

Das, S., Gfeller, B., Widmayer, P.: Computing all best swaps for minimum-stretch tree
spanners. J. Graph Algorithms Appl. 14(2), 287-306 (2010)

Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted
graphs. STAM J. Comput. 38(5), 1761-1781 (2008). DOI 10.1137/060666202

Gabow, H.N.: A scaling algorithm for weighted matching on general graphs. In: Proc. of
the 26th Annual Symposium on Foundations of Computer Science, pp. 90-100 (1985).
DOI 10.1109/SFCS.1985.3

Italiano, G.F., Ramaswami, R.: Maintaining spanning trees of small diameter. Algorith-
mica 22(3), 275-304 (1998). DOI 10.1007/PL00009225

Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Polynomial-time computable backup tables
for shortest-path routing. In: Proc. of the 10th Intl. Colloquium Structural Information
and Communication Complexity, pp. 163-177 (2003)

Jordan, C.: Sur les assemblages de lignes. J. Reine Angew. Math 70(185), 81 (1869)
Liebchen, C., Wiinsch, G.: The zoo of tree spanner problems. Discrete Applied Mathe-
matics 156(5), 569-587 (2008). DOI 10.1016/j.dam.2007.07.001

Nardelli, E., Proietti, G., Widmayer, P.: A faster computation of the most vital edge of a
shortest path. Inf. Process. Lett. 79(2), 81-85 (2001). DOI 10.1016/50020-0190(00)00175-
7

Nardelli, E., Proietti, G., Widmayer, P.: Nearly linear time minimum spanning tree
maintenance for transient node failures. Algorithmica 40(2), 119-132 (2004). DOI
10.1007/s00453-004-1099-9

Pettie, S.: Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time.
In: Proc. of the 16th Intl. Symposium on Algorithms and Computation, pp. 964-973
(2005). DOI 10.1007/11602613_96

Proietti, G.: Dynamic maintenance versus swapping: An experimental study on shortest
paths trees. In: Proc. of the 4th Intl. Workshop on Algorithm Engineering, pp. 207-217
(2000). DOI 10.1007/3-540-44691-5_18

Salvo, A.D., Proietti, G.: Swapping a failing edge of a shortest paths tree by mini-
mizing the average stretch factor. Theor. Comput. Sci. 383(1), 23-33 (2007). DOI
10.1016/j.tcs.2007.03.046

Tarjan, R.E.: Sensitivity analysis of minimum spanning trees and shortest path trees.
Inf. Process. Lett. 14(1), 30-33 (1982). DOI 10.1016,/0020-0190(82)90137-5

Wu, B.Y., Hsiao, C., Chao, K.: The swap edges of a multiple-sources routing tree.
Algorithmica 50(3), 209-311 (2008). DOI 10.1007/s00453-007-9080-z

