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ABSTRACT

In this chapter we test the hypothesis that uneven links distributions and uneven absorptive capacity 
between an industrial cluster members provide some kind of competitive advantages. Through an agent-
based model has been built and calibrated on real data taken from an aerospace industrial cluster, that 
hypothesis is contrasted against the normal, the uniform, and the U-shaped distribution. The focus of 
the model is on knowledge variables, agents’ learning capacities, and structural variables, like firms 
size and proximity. Physical production is not considered, excepted for its degree of complexity, which 
determines also the degree of knowledge complexity. This work shows that, actually, the best performance 
in terms of cluster knowledge creation, growth and diffusion is obtained when firms connectedness and 
absorptive capacity are distributed in a scale-free way. More generally, the more unbalanced are these 
two variables (especially absorptive capacity), the better is knowledge performance. These results are 
rather robust, and obtained while keeping all other variables very balanced at the beginning of each 
simulation.

INTRODUCTION

What appeared more and more evident during the last two decades is that, given its tremendous complex-
ity and methodological heterogeneity, it is very hard to find clear, sound and convergent results from 
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empirical studies on knowledge transfer, industrial clusters and innovation networks, often reciprocally 
incomparable and theoretically inconclusive. To face with these limitations agent-based simulation 
modelling (ABSM) are diffusing (Carley, 2009; Davis et al., 2007; Gilbert, 2008; Gilbert & Terna, 
2000; Gilbert & Troitzsch, 2005; Harrison et al., 2007; Tesfatsion & Judd, 2006; Uhrmacher & Weyns, 
2009), with the hope to build strong and comparable results. When these models are not too abstract, 
and especially if its parameters are calibrated - inspired by and set up - with real data, results of virtual 
experiments can dramatically improve and increase our scientific knowledge. This paper adopts this 
methodological perspective by building KNOWTIC, an agent-based model on knowledge creation, 
growth, and transfer of industrial clusters (IC).

According to various scholars (Arikan, 2009; Lorenzen & Maskell, 2004; Maskell, 2001; Tallman 
et al., 2004), the need to build, enhance, and exploit collective knowledge is supposed to be one of IC 
major drivers. The process of collective knowledge formation occurs through recursive and (mostly) 
self-organizing mechanisms (Biggiero, 2001, 2006), that is, grounding on largely spontaneous bottom-
up forces. After one or more forms of proximity have been established (Boschma, 2005), knowledge 
creation and transfer (Ernst, 2002) is enabled. Indeed, this picture requires a number of other favourable 
conditions to occur, and their exploration is just at the beginning. In fact, many IC decline and fail, and 
many of them loose identity, structure, social cohesion, and competitive advantages. Moreover, nobody 
knows how many IC could have been formed but never born. In this paper we do not investigate such 
contextual conditions, and assume that an IC already exists.

The focus is on the way that tacit and explicit knowledge circulates and grows, and how knowledge 
is employed in collaborative and non-collaborative activities, depending on agents’ collaborative pro-
pensity, learning attitude, imitation or innovation choice, research expenditure, geographical proximity, 
size, and a number of other variables whose discussion is succinctly made in the third section. The core 
research issue concerns if and how the specific distribution of firms’ absorptive capacity (ABC) and con-
nectedness (Dc) influence an IC knowledge performance. To this aim, a normal distribution of these two 
variables is benchmarked, ceteris paribus, against a uniform, a U-shaped, and a power-law distribution.

Theoretical supports to our KNOWTIC Model are the following two: the research stream viewing 
ICs as cognitive systems (Belussi & Gottardi, 2000; Camuffo & Grandinetti, 2011), and the research 
stream of communities and networks of practices (Agterberg et al., 2010; Anderson et al., 2010; Lave & 
Wenger, 1991; Wenger 1998), which are combined with the knowledge networks literature (Kreis-Hoyer 
& Grünberg, 2002; Hildreth & Kimble, 2004; Sammarra & Biggiero, 2008) to ground IC knowledge 
creation and growth on the firms’ micro-level. These theoretical backgrounds are summarized in next 
section, while the model structure is outlined in section three. Agents’ autonomy, cognition, behaviour, 
and decision making processes are described in the next section, followed by the description of virtual 
experiments. In section six the main results are evidenced, and then discussed and compared with current 
literature. In extreme synthesis, the analysis indicates clearly that, ceteris paribus, ABC and Dc nonlinear 
distributions influence significantly knowledge performance, and the former more than the latter.

THEORETICAL BACKGROUND

We assume the knowledge-based theory of IC formation and evolution (Arikan, 2009; Lorenzen & 
Maskell, 2004; Maskell, 2001; Tallman et al., 2004). Notwithstanding the variety between and within 
ICs (Belussi et al., 2003; Belussi & Sammarra, 2005, 2010; Giuliani et al., 2005; Karlsson et al., 2005; 
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Karlsson, 2008; Porter, 1998a), as a whole and to a higher extent in some of their areas, they share 
common practices, especially in terms of social, economic, and technological behaviours. These are 
the conditions that allow and enhance knowledge creation and exchange in a way that, when social, 
economic and technological factors interact in a virtuous loop, generates IC’s competitive advantage 
(Belussi & Pilotti, 2002; Belussi & Sedita, 2012; Biggiero, 2006; Brenner, 2007; Henry & Pinch, 2006; 
Malmberg & Power, 2005; Maskell, 2001a, 2001b; Tallman et al., 2004). Practices are common and 
well performed when knowledge – especially in its tacit form - is effectively and efficiently exchanged 
and shared (Amin & Roberts, 2008; Biggiero, 2006, 2012; Brown & Duguid, 1991, 1998, 2000; Gertler, 
2003; Huysman & de Wit, 2002; Wenger, 1998). And this, in turn, occurs when people trust each other, 
have short cognitive distance (Nooteboom, 1999, 2000; Nooteboom et al., 2007), and feel a sense of 
common identity (Camuffo & Grandinetti, 2011; Sammarra & Biggiero, 2001).

These traits make ICs good examples of network of practices (NoP), because their members are nurtured 
within the same cultural, social, economic and epistemic environment (Håkanson, 2005; Thompson, 2005) 
through recursive and dense interactions. Therefore, ICs are (partially) self-organizing inter-organizational 
networks (Baker & Faulkner, 2002; Biggiero, 2001b; Capasso et al., 2005; Carayannis et al., 2008; Monge 
& Contractor, 2003; Nooteboom, 2004; Rycroft & Kash, 2004). These characteristics are much more 
accentuated when ICs are also industrial districts, because in those contexts socio-economic density is 
much higher, geographical area narrower, average firm’s size much lower, and the degree of industrial 
specialization higher1. Hence, industrial districts are dense and (largely) self-organizing entrepreneur-
ial networks (Biggiero, 2001), where cognitive, cultural, institutional and organizational proximity is 
very high. This view is fully consistent with Anderson et al. (2010), who underlie that entrepreneurial 
networks and developmental processes are extensively based on shared practices and imitation. These 
properties show that a substantial aspect of ICs is being also NoPs.

Be them geographically specified or not, NoPs are, at the same time, knowledge networks that usually 
are structured into sub-networks (Andriessen et al., 2004; Hildreth & Kimble, 2004; Tallman & Chacar, 
2011a, 2011b). Therefore, inside them a large amount of common tacit knowledge does circulate in a 
largely free way, and this aspect is especially accentuated when practices are characterized by complex 
tasks and behaviors in an uncertain environment. Consequently, ICs can be seen as geographically speci-
fied NoPs, whose knowledge creation, growth and exchange depends largely on the complexity of the 
products and on the underlying industrial and social structure.

The fundamental difference between the way in which the concept of NoP is used here and the 
way in which it is used in NoP literature – and even more in its precursor literature on communities of 
practices – is that here NoP’s members are organizations while in the original approach they are single 
individuals. That is, we have applied the same concept to a superior level of aggregation respect to the 
original formulation. In general, this conceptual transfer hides a lot of subtle epistemological questions, 
at least because entities lying at different levels of aggregation are ontologically different, and thus, noth-
ing guarantees that they can have the same properties2. Therefore, it cannot be accepted automatically. 
Our rationale for the transfer of NoP concept from individuals’ networks to organizations’ networks3 is 
supported by the three following facts: i) ICs are characterized by a dense net of inner recursive interac-
tions between their constituting organizations; ii) such interactions are quasi-stable practices4; iii) such 
practices are carried on by entrepreneurs, managers, employees, and continually renewed and breed 
by their mobility between cluster organizations (and marginally, even with non-cluster organizations). 
Hence, the network aspect, the practice-centered aspect, and the human-embodied aspect all hold also 
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when applying the NoP concept to an IC. As already addressed before, this use of the NoP concept is 
even more appropriate when the IC is also an industrial district.

Of course, an IC is “more” than a NoP, because there are many economic, social, institutional and 
economic aspects that influence (and are influenced by) its characteristics. However, we can focus 
only on some cluster traits that depicts it as a NoP: from hereafter we can speak of IC-NoP (IC’s NoP). 
Knowledge creation, growth, and transfer is maybe the most important of these traits, as we said before. 
Another one is ICs’ internal heterogeneity, which has been recently highlighted: Giuliani (2006) for the 
wine industry, and Biggiero & Sammarra (2010; Sammarra & Biggiero, 2008) for the aerospace indus-
try have shown that trade, collaboration, and knowledge transfer underlying a cluster structure have an 
irregular topology. Often it follows a power-law structure (Barabasi, 2002; Caldarelli, 2007), and thus, 
a very unbalanced distribution: few large hubs and many scarcely connected nodes. R&D collaboration 
networks funded by EU are interesting examples, albeit at regional (supra-national) level (Biggiero & 
Angelini, 2015). Hence, to the aim of understanding under which structural context knowledge growth is 
more efficient and effective, it becomes interesting, at the whole cluster level, to discover the appropriate 
distribution of some key variables, which characterize each IC.

Here we focus on firm’s direct centrality (Dc) and absorptive capacity (ABC). The former is con-
sidered one of the most important indicators of actor’s relevance (Wasserman and Faust, 19945), and 
thus, of a firm’s position in a cluster structure (Sammarra & Biggiero, 2008). The latter is assuming a 
growing relevance not only at organizational level (Cohen & Levinthal, 1990, 2000; Zahra & George, 
2002), but also at inter-organizational and cluster level (Camison & Forés, 2011; Cowan et al., 2004; 
Giuliani, 2005; Lane and Lubatkin, 1998; Nicotra et al., 2013). The basic idea is that, in order to use the 
“flowing” or accessible knowledge, and thus, to transform it into innovations or imitations, appropriate 
knowledge should be acknowledged, acquired, and used. Building mostly on empirical researches, schol-
ars agree – more or less explicitly - that ICs, even respect to knowledge distribution, are not internally 
homogeneous. Therefore, cluster firms differ either in terms of Dc or ABC. In this perspective we have 
“customized” the KNOWTIC Model6 in a way that allows to contrast uneven vs. even distributions of 
these two variables. Both them have been defined and distributed in relative terms7.

For we aim at studying the influence of ABC and Dc different distributions on IC-NoP knowledge 
performance through an agent-based simulation model, we looked for contributions concerning also NoP 
modelling. However, while there is a plenty of case studies in the field of communities and networks of 
practices (Jeon et al., 2011; Kodama, 2002; McLure Wasko & Faraj, 2005; Pan & Leidner, 2003; Storck 
& Hill, 2000; Wenger, 1998; Wenger et al., 2002), there are no formal neither computational models, and 
most empirical works are hardly comparable, because of their extreme methodological and ontological 
variety. Indeed, most concepts used in this literature has even not yet defined in formal ways, so to be 
treated in quantitative or formal approaches.

We looked also for computational agent-based models concerning ICs knowledge dynamics. However, 
a scouting into what is becoming a rather crowded research area (Albino et al., 2003, 2006; Boero et al., 
2004; Borrelli et al., 2005; Brenner, 2004; Brusco et al., 2002; Fioretti, 2001; Merlone & Terna, 2007; 
Squazzoni & Boero, 2002) has been not very helpful, because there is no any model that, by taking into 
account all the variables we consider in our model, allows to study the NoP aspect of ICs8.

As concerning knowledge, we have followed the classical distinction between explicit and tacit knowl-
edge (Amin & Cohendet, 2004; Ancori et al., 2000; Cowan et al., 2000; Gertler, 2003; Lissoni, 2001), 
and related this latter with inter-firm interactions through collaboration (Malmberg & Maskell, 1999). 
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We are aware to have adopted an oversimplifying assumption concerning knowledge cumulativeness 
as a stockpile, that is as a scalar, while it had to be properly considered as a vector of characteristics. 
However, this assumption adds to the many that are usually required for agent-based modelling, even 
though not specifically focused on knowledge recombination.

Our model, which is discussed in detail in the next two sections, has the following characteristics:

• It is enough detailed and realistic to be applied to concrete case studies or to be used to explore 
the theoretical relationships of different variables and so to test different theoretical approaches;

• It combines knowledge network aspects with geographical and economic aspects;
• It distinguishes different types of knowledge (tacit and explicit) and ways to create them (imita-

tions, innovations, patents);
• It allows to explore both emergent properties at the macro level, and the individual (or sub-network 

level) at the micro level, even taking into account the feedback from the macro- to the micro-level.

Our model overlooks production and trade aspects of ICs9, and it focuses on 12 structural, cognitive-
behavioural, economic, and knowledge variables affecting IC-NoP knowledge performance. Therefore, 
notwithstanding the lack of production and trade aspects it is enough rich and articulated to be used as 
a laboratory to explore a vast research area. In this particular contribution it is finalized to shed light on 
the relative relevance played by the initial level and distribution of ABC and Dc, while keeping stable 
the other 10 variables. More precisely, this paper answers the following research question:

How does the average level and the distribution of ABC and Dc affect the speed, amount and type of 
knowledge creation, and the type of its diffusion within an IC-NoP?

THE KNOWTIC MODEL

General Outline

The core structure of this model is made by a decision-action cycle, which is completed in each step 
(Figure 1): after comparing his knowledge with the average knowledge possessed by that IC-NoP part 
that is visible to him, an agent decides whether imitate (if his knowledge is inferior the the average level) 
or innovate (if it is superior). This decision might lead to knowledge growth and to major profits that can 
be reinvested in further imitation/innovation, depending on his relative (to the average) performance in 
terms of knowledge stock. The evaluation of past investments in the light of the actual outcome could 
determine a reallocation of agent’s investments between collaborative or non-collaborative strategies. In 
short, the model’s “engine” is that agents seek to increase their knowledge, and in order to reach this goal 
they can allocate a certain amount of research expenditure between collaborative vs. non-collaborative 
and imitation vs. innovation choices. By collaborating and imitating, knowledge is transferred and dif-
fused within the IC-NoP, while through innovation it is created ex-novo.

The amount of research expenditure depends on how profitable has been the knowledge they have 
previously achieved. Knowledge-related variables refer to the distinction between patents, tacit and 
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explicit knowledge, and the channels through which it is acquired. Knowledge can be accumulated, and 
actually this is the main goal of agents.

The model works and can be investigated at three levels of description (Figure 2):

• At micro-level, which is made by single agents, with their own characteristics, strategies, and 
performance;

• At meso-level, which is made by four geographical areas of major proximity;
• At macro-level, which is that of the whole IC-NoP.

Figure 1. A decision-action cycle

Figure 2. Emergence, immergence, and levels of description



319

Knowledge Creation, Growth, and Transfer within Industrial Networks of Practices
 

Since the three levels are interdependent this model is both “emergentist” and “immergentist”, because 
the influence exerted by each level goes either bottom-up or top-down. Through reciprocal interactions 
agents determine the structure and performance of the four geographical areas, which in turn interact 
each other to produce the collective behaviour of the whole NoP. Hence, the model is “emergentist”, 
because macro-behaviour depends on micro- (and meso-)behaviour. However, macro-behaviour enters 
as a point of reference into agents’ learning and decision processes, so that the model is also “immer-
gentist”, because the micro-behaviour is influenced also by the macro-behaviour.

Pivotal, Structural, and Economic Variables

Pivotal Variables

The two most important variables are ABC and Dc, because IC-NoP’s knowledge performance is analysed 
in relation to 16 combinations between four different distributions of these two variables. ABC is defined 
as the capacity an agent has to acquire tacit or explicit knowledge, and it is modelled as a fixed parameter 
varying between 0 and 1, which can be differentiated among agents. As discussed right below, it is not 
the only parameter concurring to determine the actual knowledge stock an agent creates or transfers. Dc 
and other variables contribute to increase or decrease knowledge stock in a different way for tacit and 
explicit knowledge, and in a different way for collaborative or non-collaborative imitation or innovation.

Dc is defined as the agent’s degree of connectivity for collaboration with other agents, and as such 
intervenes on the ABC that is formed through imitation by collaboration (ABCOLL), according to the 
following algorithm:

ABCOLL = (1-ABS)*Dc (1)

This ABCOLL increments an agent’s ABC, because it is supposed that his collaboration network 
expands his capacity to receive others’ knowledge. Conversely, if knowledge is acquired without col-
laboration, Dc loses its role. Besides ABC and Dc, three groups of variables should be introduced and 
distinguished: structural, economic, and knowledge-related.

Structural Variables

These variables concern agent’s size, location, and visibility. Agents’ size is given and distinguishes only 
large from small agents in terms of their visibility to others: the former are visible in the whole IC-NoP, 
while the latter only in the area of closest proximity in which they are located. Dc is also a structural 
variable, because it identifies an agent’s degree of centrality.

Though small agents at the beginning can be visible only in their geographical area, even a small 
agent can become visible for all agents if it is a strong knowledge creator. These mechanisms are so 
powerful that a small agent can become even the IC-NoP’s leader, as it happens in some experiment 
with high initial values and with a scale-free distribution for ABC and Dc. Such a process can also be 
inverted because of a decline in the agent’s ability to innovate or imitate.
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Economic Variables

These variables concern investments in collaborative or non-collaborative research and in imitative or 
innovative activities. Agents start with an initial budget, and receive a certain amount of money in each 
step independently on their actions, but they acquire new budget depending on their strategies and luck. 
In this version of the model financial resources cannot be capitalized, because they are spent in each 
step, adding those eventually gained in the previous step. Further variables refer to the costs of the fol-
lowing variables:

• Knowledge costs, which can be differentiated between non-collaborative or collaborative research;
• Knowledge productivity in terms of expenditure capacity, that is the capacity of a knowledge unit 

to produce income, which also is supposed to be spent in R&D in the next step.

It is supposed that knowledge acquired through collaboration is more costly because in general 
collaborating is time and resource consuming to allow partners understanding10. The mix between non-
collaborative and collaborative research depends on single agents’ choices, on their budgets for research 
expenditures, and on the costs of such forms of collaboration.

Knowledge-Related Variables

Explicit Knowledge

The actual increase of explicit knowledge depends on the amount of available knowledge and on agents’ 
choices between imitation or innovation, and collaboration or non-collaboration (Table 1). The first 
choice depends on the amount of an agent’s knowledge respect to that possessed by the agents visible 
to it: he chooses to innovate if it is superior, or vice versa to imitate. Firms increment their knowledge 
stock through creation or acquisition, and in both cases it might be realized by means of an external 
(collaboration) or an internal way. The decision making process of this (second) choice, which concerns 
collaborating or non-collaborating, is a little bit more complex than that between innovating and imitat-
ing, and it is formally illustrated with the flowchart in Appendix 2. The four combinations of the two 
couples of variables – imitation vs. innovation and external vs. internal way – correspond to the four 
possible cases that provide explicit knowledge to agents.

Table 1. Sources of single agents’ explicit knowledge

Collaborative Non-collaborative

Imitation Difference between the knowledge possessed 
by the knowledge leader and single agent’s 
knowledge, multiplied per ABCOLL, and per 
a random coefficient (between 1 and 2) of 
misinterpretation

Difference between the knowledge possessed by the 
knowledge leader and single agent’s knowledge, multiplied 
per ABC, and per a random coefficient (between 1 and 2) 
of misinterpretation

Innovation Agent’s total knowledge multiplied per the ratio 
between a random coefficient (between 0 and 1) 
of misinterpretation and visible agents share, and 
per ABCOLL

Agent’s total knowledge multiplied per the ratio between a 
random coefficient (between 0 and 1) of misinterpretation 
and visible agents share, and per ABC
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In the case an agent follows a path of collaborative imitation, it is supposed that it increments its 
knowledge according to the following mechanism:

EKGimcoll = {[(MVAK – SAK) * ABCOLL * RCMim] * UCK} – ARE (2)

where:

EKGimcoll = explicit knowledge increment obtained through collaborative imitation;
MVAK = knowledge possessed by the knowledge leader;
SAK = single agent’s knowledge;
RCMim = random coefficient (between 1 and 2) of misinterpretation;
UCK = unitary knowledge cost;
ARE available amount of research expenditure.

It means that when an agent imitates the knowledge leader, it gains a knowledge increment propor-
tional to the gap between its knowledge and that of the leader, moderated by its ABCOLL, which takes 
into account also its R&D collaborations, and by a random error of knowledge leader misinterpretation. 
Moreover, for these knowledge units have a cost (UCK), the actual amount of knowledge increment is 
limited by available resource expenditure (ARE). Otherwise, if agent’s choice is still through imitation, 
but it follows only the internal way, then it gets new knowledge according to the follow mechanism, 
which differs from the previous one only because ABC doe not take into account agent’s collaboration 
network (Dc):

EKGim = {[(MVAK – SAK) * ABC * RCMim] * UCK} – ARE (3)

Conversely, an innovation choice is expressed by another mechanism because the agent’s benchmark 
is not more the knowledge leader, but rather the mean value between a stochastic number (between 0 and 
1) and the share of all agents that it can see respect to all agents. The rest of expression [2] is analogous 
to that of imitation, and it involves ABC, UCK, and ARE. Notice that here the stochastic number varies 
in a minor range than for imitation, because it is implicitly supposed that it is harder to innovate than to 
imitate. This mechanism is a little bit more complex than that of imitation, because it should take into 
account not just the best agent, but all the agents that are visible to the agent’s subjective perspective. 
In other words, it is plausible to argue that the probability and amount of knowledge obtained through 
innovation depends also on the knowledge circulating and employed by at least the most visible agents, 
who – at least partially – are supposed to be the best knowledge performers. In fact, if an agent would 
not take into account others’ knowledge, then it would risk to innovate by creating knowledge that is 
new for it but already possessed by other agents. This risk decreases as more agents are visible respect 
to all agents. At the extreme, if all agents were visible, such a risk would be cancelled.

EKGincoll = {[SAK * (RCMin/VAS) * ABCOLL] * UCK} – ARE (4)

where:

EKGincoll = explicit knowledge increment obtained through collaborative innovation;
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RCMin = random coefficient (between 0 and 1) of misinterpretation;
VAS = visible agents share.

If innovation were pursued only by internal ways, then the only change in the previous equation is that 
ABCOLL becomes just ABC. As aforementioned, the actual increment of explicit knowledge depends 
on the knowledge that could be acquired given the available amount of research expenditure and the 
unitary cost of knowledge. Explicit knowledge is acquired until the budget allows it, and it is completely 
employed, because it is supposed that the whole budget is spent in every step. The available amount of 
research expenditures is given by the sum of a fixed budget plus the budget gained in the previous step, 
which is given by the cumulated degree of knowledge productivity per the knowledge incremented in 
the previous step. In fact, in this model it is truly assumed that firm’s competitiveness is determined by 
knowledge growth and productivity. The former is given by increments of knowledge stock, while the 
latter in terms of expenditure capacity.

Tacit Knowledge

It is supposed that this type of knowledge is related only to collaboration activities (Table 2), and it is 
pulled by explicit knowledge acquired through imitation or innovation. In the former case it is obtained 
by multiplying the actual increment of explicit knowledge per ABCOLL and per the level of knowledge 
complexity. In fact, the idea is that through an R&D collaboration it is mutually transferred not only 
explicit but also tacit knowledge, in a share that depends on knowledge complexity: the more complex 
the knowledge involved, the higher the share of tacit knowledge, because its characteristic is just to 
be hardly codifiable (Ancori et al., 2000). Of course, correspondingly to what formalized for explicit 
knowledge growth, the actually acquired tacit knowledge depends also on agent’s ABC, according to 
the following mechanism:

TKGimcoll = EKGimcoll * ABCOLL * KC (5)

where:

TKGimcoll = tacit knowledge increment obtained through collaborative imitation;
KC = knowledge complexity.

Analogously, tacit knowledge acquired through innovation is expressed by:

TKGincoll = EKGincoll * ABCOLL * KC (6)

Table 2. Increment of (collaborative) tacit knowledge

Imitation Actual increment of explicit knowledge (acquired through the same way) per ABCOLL per knowledge 
complexity

Innovation Actual increment of explicit knowledge (acquired through the same way) per ABCOLL per knowledge 
complexity
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Knowledge complexity indicates the degree of true uncertainty (Biggiero, 2012; Yolles, 2006), non-
routinization (Amin & Roberts, 2008), interdependence with other activities (Verburg & Andriessen, 
2011) and non-codifiability (Biggiero, 2009; Brown & Duguid, 1998, 2000; Butler, 2003; Cowan, 2001; 
Cowan et al., 2000; Cowan & Foray, 1997) of practices characterizing a specific NoP. Because all these 
aspects increase the share of tacit knowledge implied by a certain activity, then the higher is knowledge 
complexity, the higher is the potential amount of tacit knowledge an agent can acquire through collaboration.

Patents: Another form of knowledge created and transferred within the NoP is represented by patents, 
and in fact agents can stochastically record a patent if the chance outcome is inferior to its total knowl-
edge share of the whole NoP. This algorithm makes unlikely that an agent with relatively few knowledge 
obtain a patent, and vice versa.

What Do Agents Do?

At each step agents seek to increase their knowledge through imitation or innovation, which in turn can 
be implemented through collaborative or non-collaborative R&D activities. In order to decide whether 
imitating or innovating, an agent compares his own total knowledge with the average total knowledge 
of the IC-NoP part that is visible to him, depending on the specific NoP sector. Agents can see all the 
large agents, plus all the small in its area, plus the small ones who became visible anywhere into the 
community because of an excellent knowledge performance in terms of patents and R&D expenditure. 
However, excellence can be just temporary, because wrong choices and/or bad luck can lead to temporary 
or permanent decline. It is supposed that this information is accessible through either informal interac-
tions with other network members or formal publications made by some local government institution 
or private companies, like those made by trade associations or unions, or public research centres, like 
universities. If agent’s knowledge is superior to the average, then it does not find convenient to imitate, 
because likely it will not gain new knowledge from others. In this case the agent will follow an innova-
tion strategy. Conversely, an agent decides to imitate from who gets the highest knowledge among the 
ones it can see.

The imitating agent will spend all the budget to imitate the knowledge leader, trying to fill in the 
gap. The amount of knowledge acquired by imitation is given by multiplying that gap per a stochastic 
number between 1 and 2. This number aims to introduce the case of bad or (partially) incorrect imita-
tion. Indeed, the actual knowledge acquired through imitation and innovation depends not only on the 
amount obtained through the two mechanisms, but also on the agent’s degree of collaborative or non-
collaborative ABS and Dc, according to what has been discussed in the previous section concerning 
explicit and tacit knowledge.

What Do Agents Know?

An agent knows its own and the average knowledge possessed by the agents it can see, and that possessed 
by the knowledge leader. Hence, agents have only partial and local information, limited to the others 
that are visible in each specific sector of major proximity. Supported by their propensity to collaborate 
and change, this information makes agents able to decide whether imitate or innovate. The paucity of 
available information and the simplicity of decision making give these agents bounded and local, albeit 
intentional rationality (Gigerenzer, 2008; Gigerenzer & Selten, 2001; Simon, 1969, 1977, 1997). Thus, 
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agents cannot find an optimal strategy to increase their knowledge growth rate or their total knowledge, 
but rather they just tend to increase their current amount of knowledge.

In order to seek this goal, firms employ also a learning capacity, which (see Appendix 2), by looking 
back at their past outcomes, steers them to eventually change the expenditure mix between collaborative 
and non-collaborative behavior. However, for they cannot explore all the possibilities and neither gather all 
necessary information, they are satisfiers and not maximizers in this respect too. Their learning capacity 
articulates in how frequently they analyze their past performance and compare it with the current one. 
This parameter addresses to a very important (and realistic) capability of individuals: to look back at 
past choices, and eventually change decision making. This is what Argyris & Schoen (1996) call double 
loop learning, and Bateson (1972) calls learning of the first (logical type) level. Either the frequency of 
past performance analysis or the propensity to change their expenditure mix are parameters that can be 
varied and differentiated between agents. The path- and perception- and cognition-dependent type of 
learning processes makes it very close to the situated learning theorized in communities and networks 
of practice literature (Brown & Duguid, 1991, 1998; Wenger, 1998; Wenger et al., 2002).

CONFIGURATION OF VIRTUAL EXPERIMENTS

In each step a whole cycle of decision-action takes place, and supposing that it can represent a real context 
in which it lasts one week, 250 steps describe 5 years of NoP’s evolution. Besides building a model of 
collective knowledge dynamics, the primary goal of our contribution is investigating how two strongly 
nonlinear distributions, like power-law and U-shaped, impact on the amount and speed of both tacit 
and explicit knowledge, respect to what happens with the normal and uniform distributions. Therefore, 
experiments are executed varying ABS and Dc distributions while keeping invariant all other variables. 
Crossing these two variables per the four types of distributions we obtain the 16 different experiments 
(Table 3).

ABC and Dc are jointly distributed to the same agents, which means that their cardinality varies in 
the same way for each agent. However, its assignment is given randomly respect to agent’s size. In other 
words, the highest values of ABC and Dc are not necessarily given to large agents, and vice versa. We 
made this choice to avoid an initial unbalance between large and small agents, even though it would have 
been quite reasonable and realistic. The advantage of this modelling choice is that results will be even 
more meaningful, because they cannot depend on biases due to a specific initial assignment of major 
advantages to large firms. From a field research on the aerospace cluster of the Lazio Region (Biggiero 
& Sammarra, 2010; Sammarra & Biggiero, 2008) it can be drawn that a Dc mean value of 0.05 can be 

Table 3. Synopsis of virtual experiments

ABC

Normal Power-law Uniform U-shaped

Dc

Normal Exp1 Exp2 Exp3 Exp4

Power-law Exp5 Exp6 Exp7 Exp8

Uniform Exp9 Exp10 Exp11 Exp12

U-shaped Exp13 Exp14 Exp15 Exp16
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considered quite realistic. We set up it varying from 4 to 7% for the irregular and between 4 and 5% for 
the regular distributions. Unfortunately, lacking any empirical cues about real ABC values, we chose 
varying it in the same way of Dc. Then, in order to explore whether and how results are sensitive to 
parameters scale, we have run experiments with higher values obtained by multiplying per 10 the previ-
ous values. Because of the high number of variables and the value that each variable may assume for 
each agent, it’s assumed that virtual experiments differ only in terms of agents’ ABC and Dc. All other 
variables (Table 4) are distinguished between those that are differentiated among agents and those that 
have the same initialization for all agents. Anyway, it should be underlined that all variables can be 
differentiated for any single agent, hence giving KNOWTIC Model a high potentiality of experimental 
research and theory testing.

Variables with different initialization among agents. The community is composed of 48 firms (Table 
4), a small number that allows a good control over the simulation. Indeed, this is too the sample size 
of the abovementioned research on the Lazio Region aerospace IC. The whole cluster was estimated to 
count around 80 agents, research centers and private/public institutions included, out of which 12 large 
agents, who are visible by all the others. In our model all agents are divided evenly among the four areas 
of major geographical proximity, among which large agents are proportionally distributed too. Thus, 16 
large and 32 small agents as a whole, partitioned into 4 large and 8 small agents in each geographical 
area. As stated before, all large agents are visible in the whole network, while small firms are visible 
only within their belonging area. However, according to the conditions discussed in the previous section, 
even small firms could be visible at the whole level, if they overcome a visibility threshold, which is set 
up at 0.06, because this value is three times bigger than the value of the share of knowledge and patents 
an agent would hold in case of an even distribution.

Large firms have been supposed to have more resources, human capital and knowledge stock than 
others to be employed to learn from their past experiences. Hence, they do it with a frequency of 10% 
while the others only 5%. Consistently, initial knowledge stock is set up at 100 units for small and 200 
for large agents, and research expenditures budget is as well differentiated: 1 for small and 3 for large 
agents. Thus, since the formers are the double (32) than the latter (16), the amount of initial knowledge 
is equally distributed between the two groups of agents.

Table 4. Configuration of virtual experiments

Variables with Different Initialization Variables with the Same Initialization

Geographical structure: agents are evenly divided into four 
different areas of major proximity.

Propensity to change the mix of research expenditures: 10% of 
the whole budget.

Agents’ size: in each experiment we have 16 large agents and 32 
small agents.

Practices (knowledge) complexity: 0.5 (it can be initialized from 
0 to 1).

Visibility threshold (of small agents): 0.06. Percentage of non-collaborative expenditure: 50% of resources.

Learning attitude: 0.10 for large agents, 0.05 for the others (it can 
be initialized from 0 to 1).

Knowledge productivity in terms of expenditure capacity: 
0.05 per knowledge unit (it cumulates).

Amount of initial knowledge: 100 for small and the double for 
large agents.

Knowledge costs: 1 for non-collaborative research and 1.2 for 
collaborative.

Fixed amount of research budget: 1 for small and 3 for large 
agents.
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Variables with the same initialization for all agents. The percentage of non-collaborative expenditure 
was set up uniformly to 50% in order to not unbalance simulation from the beginning with a specific 
preference of expenditure. When agents decide to change their mix of research expenditures, they have 
a fixed propensity of shifting 10% of their budget from collaborative to non-collaborative strategy, or 
vice versa. Hence, average and individual propensity to collaborate can and will likely change over time. 
However, given different agents’ size and knowledge stock due to agents’ micro-interactions game, noth-
ing can be predicted about the effects of their propensity on the resulting knowledge stock in terms of 
collaboration channels, as well as their achievement through imitation or innovation.

Practices are supposed to be at an intermediate level of complexity, again in order to keep these 
simulation neutral respect to this aspect. Knowledge productivity, which determines budget increment 
(for research expenditure) is fixed at 5%. Knowledge costs, which (in conjunction with the available 
research expenditure budget) determine the amount of knowledge that could be acquired through col-
laborative and non-collaborative research, are supposed to be more costly than in the former case, due 
to human resources employed in collaborating.

Initial knowledge stock, research budget, knowledge cost and its productivity in terms of consequent 
expenditure capacity are set up in a way that, in the very early steps, it is impossible to increase agent’s 
knowledge more than 5%. This configuration choice aims at getting a balanced initial setting, so to reduce 
any arbitrary modeling distortion of results. According to the findings of field research on the aerospace 
IC, it seems a realistic picture if a simulation step represents a working week, as we have chosen. For 
this analysis is not aimed to study equilibrium conditions, results are distinguished and compared to the 
100th and 250th steps. In fact, for all other parameters are supposed unchanged and each step is supposed 
to equal a working week, it is reasonable that a mature IC and its underlying NoP can keep invariant 
for five years, at least as concerning its main traits, like density and topology, learning mechanisms, 
propensity to collaborate, etc.

Most results are referred to the whole community, that is at aggregate level, and they are the average 
of 100 runs per each experiment, measured in terms of the following indexes:

• Total knowledge (TK),
• Total knowledge realized by visible agents (VIK),
• Total knowledge obtained through imitation (KIM);
• Total knowledge held by the best agent (TKA),
• Non-collaborative knowledge (NCK),
• Total expenditure (TE),
• Tacit knowledge (TaK),
• Imitation (IME) vs. innovation (IVE) events (in average),
• Share of innovators on total firms (INF/TF).

THE MAIN RESULTS

Static Analysis

In average, with ABC and Dc low initial values nothing really changes in all the 16 experiments. Thus, 
NoPs keep stable and distributions are not able to differentiate outcomes. Conversely, with high initial 
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values, total cumulated knowledge (TK in Figure 3) varies – even if not considerably - among distribu-
tions, as indicated by a 17% coefficient of variation. Interestingly, the maximum value corresponds to 
the most unbalanced distribution, which is the Exp6 when the scale-free holds for both the key-variables 
(ABC and Dc). The following better scores correspond to Exp14, 2, 10 and 8, but while these are grouped 
in 20 points of distance, between the first (Exp6) and the second (Exp14) there are 30 points gap. Hence, 
that gain is much more relevant than what is obtained raising from the fifth to the second best distribu-
tion. Even more noteworthy, in all the four experiments (14, 2, 10 and 8) there is still at least one of the 
two key-variables distributed in a scale-free shape. Conversely, the lowest performance occurs in Exp1, 
3, 9 and 11, where ABC and Dc are normally or uniformly distributed. It seems hence that the more 
unbalanced are the distributions the better the performance, and in fact the scale-free, which is more 
unbalanced than the U-shaped, gives the major outcomes. Further, in three out of the four experiments 
the scale-free shape refers to ABC, that is, it seems that, respect to Dc, ABC scale-free distribution is 
more effective in enhancing the generation of major knowledge. These five best outcomes are also the 
ones – and matching the respective proportions - in which the increment has been much larger during 
the second stage (between the 100th and the 250th step). It shows that the unbalance effects occur over 
time in a reinforcing process.

The highest cumulated knowledge produced by visible firms (ViK), which rounds about 68%, rep-
licates what we found for total knowledge, with an even more accentuated gap between the first and 
the following four, and with more variability between all experiments (coefficient of variation 27%). 
Also in this case the major increases occurred during the second stage and was higher for the five better 
performing distributions, but interestingly the net gain was 3-4 percentage points systematically higher 
than that for total knowledge. And the best combination (when both ABC and Dc are scale-free) scores 
an increment about 7 percentage points superior. This means that visible firms are the most benefited 
by an uneven distribution, and over time they increase their share on total knowledge. In fact, it rounds 
about 56% across all the 16 combinations at the 100th step, and though it increases about 6-10 percentage 
points in any experiment, it reaches 25 points more in Exp6, and it is also much higher for the follow-
ing four second bests (Figure 4 and Table 5 in Appendix 1). Here, as well as for total knowledge, worst 
performances correspond to the most balanced distributions.

Figure 3. Various types of cumulated knowledge and total expenditure
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Figure 4. Shares of knowledge of visible firms, leader firms, and tacit knowledge

Table 5. Performance ranking of all experiments in terms of TK and ViK

Exp/step TK Exp/step ViK

Exp6 250 196229 Exp6 250 158000

Exp14 250 162653 Exp14 250 120913

Exp2 250 153067 Exp2 250 111148

Exp10 250 148452 Exp10 250 106030

Exp8 250 142292 Exp8 250 102913

Exp16 250 130843 Exp5 250 89260

Exp5 250 130292 Exp16 250 89237

Exp7 250 124003 Exp7 250 82392

Exp4 250 123282 Exp4 250 80890

Exp12 250 121101 Exp12 250 78504

Exp13 250 120090 Exp13 250 77816

Exp15 250 116040 Exp15 250 73787

Exp1 250 115090 Exp1 250 71949

Exp9 250 113848 Exp9 250 70479

Exp3 250 112539 Exp3 250 69421

Exp11 250 111452 Exp11 250 68266
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Data shows also that the advantage of unbalanced ABC and Dc distributions benefits especially the 
best agent, whose share on visible firms (excluding itself) reaches 50% in Exp6 and rounds about 38% 
for the four (Figure 4). Hence, we can say that the higher knowledge produced is largely due to the faster 
growing performance of the best firm, and (again) this gain is reinforcing and occurring mostly in the 
second stage. Moreover, if we consider that at the end of the first stage its share is about 10% in all 
combinations, in the double scale-free case the leader firm increases five times its share. It means that 
there is a self-reinforcing process, and that its speed grows following the skewness of the distribution. 
Noticeably, this does not seem to occur at the expense of the other firms, but mostly by “enlarging the 
pie”, that is by making the cluster more performing in general in terms of cumulated knowledge. Hence, 
under nonlinear ABC and Dc distributions visible firms pull NOP’s knowledge growth. As concerning 
the differentiation between tacit vs. explicit knowledge, distribution forms and even parameters scales 
are absolutely irrelevant, holding tacit knowledge at 27% in any case (Figure 4). As well insensitive is 
the share of expenditure for innovation, which is stably about 50%.

The model structure and the parameters setting determine a strong prevalence (78%) of imitation over 
innovation events (Figure 5), but, quite interestingly, imitation generates less knowledge than innovation 
(39%). It means that cluster’s knowledge is mostly produced by the leader and the visible firms through 
innovations, while small firms make – as a whole - a lot of imitations, which however do not account 
more than 25% of total knowledge. Moreover, both these shares are very insensitive to distribution forms, 
as witnessed by the small coefficient of variation (4 and 10%, respectively). However, if we look closely 
at their light variations, we see that the minimum KIM (knowledge by imitation) occurs in Exp6 (and in 
other good outcomes), when total knowledge is maximum, and that IME (imitation events) is maximum 
in Exp1 (and very high in other bad outcomes). Hence, it is clear that good knowledge performances 
are determined by innovation events, which, by means of competitive advantages that few visible firms 
acquire with unbalanced distributions, produce more knowledge than imitation events realized by many 
small or peripheral firms.

Figure 5. Imitation choices, knowledge through imitation and innovation
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As can be seen from the following table, if we measure NoP performance in terms of cumulated 
knowledge, experiments lying in diagonal (Table 5) by combining the same distribution of both the key-
variables show the most interesting combinations. Both total and visible knowledge rank experiments 
in almost the same order, in which Exp6 is at the top and Exp16 at the sixth place: that is, the most 
unbalanced configurations are the best performing. At the opposite, the most even distribution – the 
uniform-uniform of Exp11 – is the worst one, and the normal-normal (Exp1) is very close to it. Hence, 
instead of commenting all the 16 configurations, in the following dynamic analysis we will address the 
attention to all or some of the four in diagonal: Exp1, Exp6, Exp11, and Exp16.

Dynamic Analysis

Shifting the attention to dynamics, we see (Figure 6) that the normal-normal and the uniform-uniform 
distributions behave in the same way, either in terms of total knowledge (TK) or in terms of economic 
resources employed to produce it. Conversely, the double scale-free structure produces a fast knowledge 
growth, and at the same time it consumes an enormous amount of resources, which anyway are produced 
internally.

As shown in the decision-making process between collaborative and non-collaborative choices, the 
current model architecture gives a moderate preference for the former, and in fact in all experiments 
we witness to the following outcomes: 1) the increment of non-collaborative knowledge respect to the 

Figure 6. Comparison of total knowledge and expenditure between three key-configurations
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increment of total knowledge (NcK(inc)/TK(inc)) significantly declines after the fatal 100th step; 2) non-
collaborative expenditure (NcE%) slowly declines; 3) the increment of tacit knowledge respect to the 
increment of total knowledge (TaK(inc)/TK(inc)) significantly grows after the fatal 100th step, because 
tacit knowledge is produced only through collaborative behavior. Moreover, these trends are substantially 
insensitive to the different combinations of ABC and Dc distributions. Therefore, we will not show these 
indicators when commenting the other experiments. Among the four indicators showed in Figure 7a, the 
only one that markedly change is that of the productivity of budget expenditure in terms of knowledge 
increment (K(inc)/Exp), which grows in all experiments remaining between 30 and 40%, excepted for 
Exp6 where it reaches 50%. Hence, this confirms that when ABC and Dc are very nonlinearly distrib-
uted investments are much more productive in terms of knowledge growth (still at the aggregate level).

Figure 7b shows that the share of knowledge produced by visible agents (ViK/TK) constantly grows, 
and it is followed by that produced by the knowledge leader agent (TKA/TK) covering little less than 
10% of the former. A look at the other experiments shows that the same happens in all experiments, but 
in Exp6 both curves grow more sharply, and in particular that of the knowledge leader. Clearly, the major 
knowledge growth enhanced by power-law distributions occurs by favouring the pulling role played by 
visible agents and especially by the knowledge leader among them.

Imitations, which already start at 65% of events, grow up to 80% (IME/IME+IVE(avg)), because 
the more (few) visible agents produce knowledge over the average, the more followers choose to imitate 
instead of innovate by themselves. Consistently, the share of innovators over all agents (INF/TF) declines 
correspondingly. However, the increment of knowledge produced by imitation (KIM(inc)/TK(inc)) slows 
about the 160th step, and soon starts declining. This effect is due to the fact that, even if the number of 
imitation events grows their knowledge content is progressively inferior, because realized by agents 
with a weak capacity to produce knowledge (small budget to be invested, small knowledge productiv-
ity of such budgets). As expected, all these trends hold for the other experiment too, but with the usual 
difference between the more and the less unbalanced distributions: the latter (Exp16) shows the mildest 
variations, while the former (Exp6) the sharpest. In fact, at the end of simulation time (250th step), in 
front of 80% of imitation events respect to all events, their contribution to knowledge growth falls down 
30% (from an initial 40%).

Figure 7. The dynamics of some main indicators in Exp1 and Exp6
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As shown in previous analysis, all relevant changes appear around the 80th step: some variables strongly 
accentuate their slope, like TKA/TK, while others even revert it, like KIM(inc)/TK(inc). In order to focus 
the trends of these two interesting variables, we have calculated their correlation before and after the 80th 
step (Table 6 and Figure 9). This correlation is particularly instructive, because it shows that the leader’s 
knowledge share is highly correlated with knowledge increments by imitation respect to total knowledge 
increments. However, before the 80th step correlation is positive while after it is negative. It means that, 
because good knowledge performers (not only the leader11) do innovate and not imitate, as far as their 
share of total knowledge grow, imitation events (and the corresponding knowledge share produced that 
way) decreases, and NoP becomes more and more innovative. More interestingly, before the breakpoint 
the four highest correlations occur with the most linear distributions, expressed by Exp11 (double uni-
form), Exp3 (uniform-normal), Exp9 (normal-uniform), and Exp1 (double normal). Conversely, after 
the 80th step the four highest correlations correspond to the most nonlinear distributions: Exp6 (double 
power-law), Exp14 (power-law with U-shaped), Exp8 (U-shaped with power-law), and Exp10 (power-law 
with uniform). Therefore, nonlinearity divaricates the trends of leader’s knowledge and imitation events. 
Moreover, even in this case, when comparing the influence of ABC and Dc nonlinearity, we see that the 
former is much more influential, because it appears in any of the early eight experiments showing the 
highest (negative) correlation values after the breakpoint.

Figure 8. The dynamics of some main indicators in Exp11 and Exp16

Table 6. Correlation between TKA/TK and KIM(inc)/TK(inc)

exp1 exp2 exp3 exp4 exp5 exp6 exp7 exp8

correlation before TKA/TK 0.8 0.935 0.914 0.937 0.803 0.883 0.833 0.896 0.795

correlation after TKA/TK 0.8 -0.941 -0.994 -0.928 -0.853 -0.994 -0.999 -0.992 -0.995

exp9 exp10 exp11 exp12 exp13 exp14 exp15 exp16

correlation before TKA/TK 0.8 0.937 0.918 0.945 0.815 0.847 0.900 0.855 0.682

correlation after TKA/TK 0.8 -0.946 -0.995 -0.879 -0.792 -0.940 -0.998 -0.883 -0.885
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DISCUSSION AND CONCLUSION

We can summarize the most important results as follows:

• The more nonlinear are ABC and Dc distributions the better the performance, and in fact the 
scale-free, which is more unbalanced than the U-shaped, gives the major outcomes, while worst 
performances correspond to the most balanced distributions of ABC and Dc;

• Visible firms - and especially the knowledge leader - are the most benefited by nonlinearity, and 
over time they increase their relative share on total knowledge;

• Better performances corresponding to the strongly nonlinear distributions configurations are ob-
tained by improving and speeding up the whole network, and not at the expense of less performing 
agents: under nonlinear ABC and Dc distributions visible firms pull NOP’s knowledge growth;

• ABC and Dc distribution leaves untouched the partition between tacit and explicit knowledge;
• Though imitation events outrank innovation events, good knowledge performances are determined 

by innovation events, which, by means of competitive advantages that few visible firms acquire 
with unbalanced distributions, produce more knowledge than imitation events realized by many 
small or peripheral firms;

• Assuming the two variables at the same level, ABC distribution is more influential than Dc 
distribution;

• In more performing combinations knowledge production considerably increases;
• In order to allow an IC-NoP significant growth and to produce differences between the vari-

ous combinations, average level of capabilities in terms of ABC and average level of connected-
ness should be sufficiently high. In other words, IC-NoPs characterized by lowly connected firms 
which have weak absorptive capacity do not evolve

Figure 9. Correlation zooming on the four critical experiments with identical distributions
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• Finally, it should be noticed that all these results have been obtained by varying the distribution 
shape, and only very marginally value ranges: just two points in the maximum value. Moreover, 
simulations have been designed in order to keep, at the beginning and early stages, all variables 
very balanced, excepted ABC and Dc in some experiment.

The model discussed by Cowan et al. (2004) is not directly comparable with ours, because it does 
not consider the same variables and it is aimed at investigating other issues. Moreover, while they put 
an inverse relationship between ABC and TaK, we supposed a direct relationship. However, our results 
are compatible with their and with the other scholars who investigated the role of ABC at cluster level 
(Camison & Forés, 2011; Giuliani, 2005; Lane & Lubatkin, 1998; Nicotra et al., 2013). As well compat-
ible it is with Carbonara’s results of next chapter, but while the two models allow in principle to design 
experiments to test some common hypothesis the actual experiments designed here and there address 
different issues, and thus, it is not possible a strict comparison.

In short, we can say that when both ABC and Dc are distributed in a scale-free form, in few years 
NoP’s knowledge creation and innovation capacity speeds up, and investments in innovation become 
more efficient. However, this outcome is obtained at the price of a sharp and progressive polarization of 
the NoP structure and roles. Even though the distribution of the two key-variables did not change – as 
in our model – small firms (and some large too) will shift even more peripherally, and subordinate to 
what the leader and some large firms will do. Similar (but smoothly) results would be obtained from 
a combination of scale-free and U-shape distributions. Conversely, with more balanced distributions 
NoP grows slower and less efficiently, even though more balanced in terms of innovation/imitation and 
collaboration/autonomy ratios. Absorptive capacity and degree centrality distributions cease to produce 
any distinction if their values are low, because NoPs fall down in a very static state.

Of course, these results cannot be generalized too much, because there can be many other counter-
forces that balance nonlinear effects of absorptive capacity and degree centrality. Some of them could be 
explored with the KNOWTIC Model as it is now, just varying in a future research agenda all the other 
variables that here have been kept fixed. A further interesting analysis could be done by distinguishing 
the analysis per the four sub-cluster areas with higher proximity. Among the others, it could allow to 
answer to the relevant question whether the outcomes split uniformly between them or concentrates in 
high- and low-performing areas. It would be also very interesting to investigate scale effects regarding 
agents number, and some initial conditions about the proportion between large and small firms, and 
many other initial or structural conditions. However, notwithstanding its simplicity, this model can 
give interesting suggestions and establishes some clear conceptual relationship concerning the ways in 
which knowledge is produced and distributed under the given assumptions. In this perspective, the pres-
ent contribution underlines the fundamental role played by ABC and Dc distribution. In particular, the 
strong positive effect given by the scale-free distribution seems very consistent with the empirical fact 
that many (most?) real inter-organizational R&D collaboration networks, like the EURJVs, are scale-
free shaped, likely in many sectors, and certainly in the aerospace sector (Biggiero & Angelini, 2014).

The risk to oversimplify real phenomena crosses scientific research and grow in social and natural 
sciences since ever, and it heavily impacts on agent-based simulation modelling. In this perspective, this 
model doesn’t accomplish the KISS (Keep It Simple, Stupid) requisites, because it is already too complex. 
It’s much more complex than that built by Cowan and colleagues (2004). It’s complexity is closer to that 
built by Brenner (2004) into the (near) field of ICs formation and growth. KNOWTIC can be defined 
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as a rich middle-range model, which can deal with a large class of phenomena concerning how various 
types of knowledge are produced and distributed inter-organizational R&D collaboration networks.

The major limitations of this model, which could be indeed overcome by enriching this model towards 
a more realistic, are the following:

• There is no any turn-over of agents, that is nobody enters or exits the community;
• Agents cannot increase or decrease their size, and neither move among the four geographical 

areas;
• ABS and Dc are fixed during the simulation;
• Production and trade of goods are neglected;
• There is not a true topology, because the various distributions are built just varying quantitative 

ABC and Dc values. Therefore, it was not possible to concern also the small-world structure, 
which indeed is the other interesting hypothesis to be tested, due to its wide diffusion among real 
inter-organizational R&D collaboration networks.

However, these limitations are moderated by the assumption that the hypothesized NoP is mature 
and it is observed for a limited time run. Other major limitations are the following: i) knowledge is not 
distinguished in technological, market and managerial or other types of categorizations; ii) single in-
novations and their possible imitations cannot be traced; iii) agents spend all the budget in each step 
preventing the accumulation of R&D capital; iv) there is not a portfolio strategy among different types 
of knowledge acquisition. The latter two aspects play more severely regarding large agents. Finally, 
knowledge is oversimplified in a scalar, instead of being articulated in a vector of characteristics, so to 
enable complementarity and specificity effects.
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ENDNOTES

1  To know more about the – currently inconclusive – debate about the differences between ICs and 
industrial districts, see: Belussi & Caldari, (2009), Biggiero (1999), Markusen (1996), Paniccia 
(2002), Porter (1998a, 1998b), Storper (1995). Indeed, as anticipated by Nooteboom and colleagues 
(2007) and recently confirmed by Broekel and Boschma (2012) proximity should not be too short, 
because the advantages become obstacles to innovation and growth.

2  For further remarks on this issue, see the Chapter 1 of this volume.
3  It could be said also: from intra- to inter-organizational networks.
4  They could be seen also as evolving routines between organizations.
5  For a better understanding of the importance and interpretation of direct centrality in network 

topology, see also other references on network analysis, and especially on social network analysis 
discussed in the Chapter 2 of this volume.

6  This model has potentialities that go far beyond the specific use we made in this paper.
7  For details, see next two sections on the model architecture and main variables.
8  Perhaps, one of the nearest model is that presented in Chapter 14 by Nunzia Carbonara.
9  Indeed, it overlooks many other aspects, namely: social, and institutional, technological, financial, 

demographical, and other aspects related to the competitive environment faced by the cluster. 
Moreover, even the 12 variables dealt with are not modelled at fine grain, otherwise they would 
generate dozens new variables, and a consequent overwhelming complexity. On the other hand, 
IC are entire economies on a small scale, with the consequent untreatable complexity. Therefore, 
each agent-based cluster model drastically simplifies the cluster representation.

http://dx.doi.org/10.1002/kpm.368
http://dx.doi.org/10.1017/CBO9780511815478
http://dx.doi.org/10.1017/CBO9780511803932
http://dx.doi.org/10.1111/j.1467-8551.2004.t01-1-00403.x
http://dx.doi.org/10.1142/4929
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10  Indeed, there can be many contexts where, especially for radical or pioneering in-house innovations, 
collaborations would be cheaper.

11  Indeed, a similar correlation would occur if we substituted TKA/TK with ViK/TK, that is leader’s 
knowledge share with that of visible firms.
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APPENDIX 2

The choices between innovation or imitation and between collaborative and non-collaborative behavior 
have been discussed in section 3. The former choice is quite simple: the agent compares his own total 
knowledge with that possessed by the agents that are visible to him. Then, he innovate if his knowledge 
is superior and imitate if it’s inferior, because it is likely that he can find competitors with better products, 
able to generate more knowledge. The latter choice, instead, deserves a further deepening, because it 
implies to consider also economic variables, as represented by the flow chart in Figure 10. Let’s focus on 
the first step: budget control. For agents don’t activate their learning function every step, budget control 
is not always activated. If yes, then the agent compares his own with others’ average knowledge in the 
last step, and if it results superior he doesn’t change his expenditure mix between collaborative and non-
collaborative. Conversely, if he finds to be under the average, then he wonders whether his investments 
in knowledge are more or less productive respect to the past: that is, he compares his last knowledge/
budget ratio with that he got during last 9 steps. If they equal, then he choose a stochastic expenditure 
mix change. Conversely, if the last investment has been more or less productive than in the past, then he 
decides to make an analogous comparison, now restricted only to the non-collaborative part of expen-
diture. In both cases – more or less productive – if the non-collaborative part of expenditure in the last 
step was equal than in the past, then he choose a stochastic expenditure mix change.
If last knowledge investment was more productive than in the past and if non-collaborative expenditure 
is too higher than in the past, then the agent concludes that this choice was successful, and thus, he de-
cides to increase it. Analogously, if last non-collaborative expenditure was lower than in the past, then 
the agent concludes that this choice was successful, and thus, he decides to further reduce it. Conversely, 
if the last knowledge investment was less productive than in the past 9 steps, the previous reasoning 
should be just reversed.
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Figure 10. Agent’s decision making between collaborative and non-collaborative behavior


