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GLOBAL EXISTENCE OF FINITE ENERGY WEAK SOLUTIONS OF

QUANTUM NAVIER-STOKES EQUATIONS

PAOLO ANTONELLI AND STEFANO SPIRITO

Abstract. In this paper we consider the Quantum Navier-Stokes system both in two and
in three space dimensions and prove global existence of finite energy weak solutions for large
initial data. In particular, the notion of weak solutions is the standard one. This means
that the vacuum region are included in the weak formulations. In particular, no extra term
like damping or cold pressure are added to the system in order to define the velocity field
in the vacuum region. The main contribution of this paper is the construction of a regular
approximating system consistent with the effective velocity transformation needed to get
necessary a priori estimates.

1. Introduction

In this paper we study the Quantum-Navier-Stokes (QNS) system on (0, T ) × Ω,

(1.1)

∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u) +∇ργ − 2ν div(ρDu)− 2k2ρ∇
(

∆
√
ρ

√
ρ

)

= 0,

with initial data

(1.2)
ρ(0, x) = ρ0(x),

(ρu)(0, x) = ρ0(x)u0(x).

The domain Ω we consider is the d-dimensional torus with d = 2, 3. The unknowns ρ, u
represent the mass density and the velocity field of the fluid, respectively, ν and κ are positive
constants and they are called the viscosity and the dispersive coefficients.

The above system belongs to a wider class of fluid dynamical evolution equations, called
Navier-Stokes-Korteweg systems, which read

(1.3)
∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u) +∇p = div S+ divK,

where S = S(∇u) is the viscosity stress tensor

S = h(ρ)D u+ g(ρ) div uI,

and K = K(ρ,∇ρ) the capillarity (dispersive) term, defined through

divK = ∇
(

ρdiv(k(ρ)∇ρ)− 1

2
(ρk′(ρ)− k(ρ))|∇ρ|2

)

− div(k(ρ)∇ρ ⊗∇ρ).

Furthermore, similar systems arise also in the description of quantum fluids. For example
the inviscid system, i.e. (1.1) with ν = 0, is the well known Quantum Hydrodynamics
(QHD) model for superfluids [26]. Global existence of finite energy weak solutions for the
QHD system has been studied in [1, 2]. Inviscid systems with a general capillarity tensor are
also studied extensively, for example in [6] the local well-posedness in high regularity spaces
of the Euler-Korteweg system is treated. Recently in [4] the global well-posedness of the same
system for small irrotational data was proved. The viscous correction term in (1.1) has been
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2 P. ANTONELLI AND S. SPIRITO

also derived in [13], by closing the moments for a Wigner equation with a BGK term. For
more details about the derivation of the QNS system we refer the reader to [22].

The main result we are going to prove in our paper is the existence of global in time finite
energy weak solutions for the Cauchy problem (1.1), (1.2). This is the first result of global
existence for finite energy weak solutions to a Navier-Stokes-Korteweg system in several space
dimensions. For the one dimensional case, in [23] the global existence of weak solutions for the
QNS system (1.1) is proved. Furthermore, in [18] the authors consider a large class of NSK
systems in one dimension, for which they prove the existence of global in time finite energy
weak solutions. We also mention [15] where the authors show the existence of global classical
solutions around constant states in one space dimension. Concerning the multidimensional
setting, in [20] the existence of global strong solutions to (1.1) is shown, by choosing a linear
pressure and κ = ν.

A global existence result for (1.1), (1.2) with finite energy initial data was already obtained
by Jüngel in [21] in the case κ > ν and γ > 3. However, the notion of weak solutions in
[21] requires test functions of the type ρφ, with φ smooth and compactly supported. This
particular choice of such test functions does not consider the nodal region {ρ = 0} in the
weak formulation, where there are the main difficulties in dealing with the convective term
and it was introduced in [9] to prove a global existence result for a Navier-Stokes-Korteweg
system (1.3) with a specific choice of viscosity and capillarity coefficients.

Furthermore, some global existence results by using the classical notion of weak solutions
have been shown by augmenting the system (1.1) with some additional terms: for example,
[19] considers a cold pressure term, whereas in [31] damping terms are added. Those aug-
mented systems ensure that the velocity field is well defined also in the vacuum region and
it lies in some suitable Lebesgue or Sobolev spaces. From such a priori estimates it is then
possible to infer the sufficient compactness properties for the weak solutions, in particular to
deal with the convective term in the vacuum region.

When κ = 0 in (1.1), global existence results for finite energy weak solutions have been
recently obtained by [30] and [27]. One of the main tools to treat the convective term is the
Mellet-Vasseur inequality [29]. There the authors prove the compactness of finite energy weak
solutions for the Navier-Stokes equations with degenerate viscosity by obtaining a logarithmic
improvement to the usual energy estimates, namely they show the quantity

ρ|u|2 log
(

1 + |u|2
)

is uniformly bounded in L∞
t L

1
x.

The presence of the dispersive term in (1.1), however, prevents to directly prove a Mellet-
Vasseur type inequality. This was indeed already remarked in [30], where the authors can
only prove an approximate estimate by exploiting the extra damping terms and a truncation
technique for the mass density.

In [3] we overcome this difficulty by using an alternative formulation for (1.1) in terms of
an effective velocity w = u + c∇ log ρ. In this way it is possible to tune the viscosity and
capillarity coefficients such that the dispersive term vanishes in the new formulation. The
Mellet-Vasseur inequality is proved then for the auxiliary system and, by using the a priori
bounds obtained from a BD [7, 8] type estimate, we prove the compactness of solutions to
(1.1), (1.2). We refer to [3] for a more detailed discussion on the stability properties of (1.1),
(1.2). We mention [11, 10], where a similar effective velocity was used to study fluid dynamical
systems with a two-velocity formulation. We also refer to [23] for a further introduction on
models where similar effective velocities are considered.

In this paper we continue our analysis of system (1.1), (1.2) by showing the global exis-
tence of finite energy weak solutions. The main difficulty here is to construct a sequence of
approximating solutions which satisfy the a priori bounds in [3]. More precisely, we need to
consider an approximating system with the following properties: first of all, it must retain
all the a priori estimates, such as the energy and the BD entropy estimates. This further
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implies that the approximating system must be consistent with the transformation performed
in [3] in terms of the effective velocity. Moreover, we need that the auxiliary system satisfies
a Mellet-Vasseur type estimate. Finally, the approximating solutions must be regular. We
notice that standard approximation procedures based on Faedo-Galerkin method can not be
used here since the a priori estimates in [3] heavily depend on the structure of the system.

The approximating system we are going to study is the following one

∂tρε + div(ρεuε) = 0,

∂t(ρεuε) + div(ρεuε ⊗ uε) +∇(ργε + pε(ρε)) + p̃ε(ρε)uε = div Sε + divKε,

where pε(ρε) is a cold pressure term, p̃ε(ρε)uε is a damping term, Sε and Kε are the approxi-
mating viscosity and capillarity tensors, respectively. As we will see below, the cold pressure
term will give us the higher integrability a priori bounds crucial to prove the global regularity
of the approximating solutions. However, this introduces some difficulties in the analysis, first
of all that prevents to obtain a Mellet-Vasseur type estimate. To overcome this problem we
then add the damping term, with a suitable choice of the coefficient p̃ε(ρε) such that in the
auxiliary system written in terms of the effective velocity the cold pressure cancels. In order
to show the convergence to zero of the cold pressure and damping terms we need additional
a priori estimates. We manage to get further integrability properties for those singular terms
by considering a regularized viscous stress tensor, similarly to [27]. On the other hand, this
requires that also the capillarity tensor has to be regularized accordingly; this is necessary
so that the approximating system is consistent with the transformation through the effective
velocity, as already remarked above. We will thus consider a regularization for the capillarity
tensor such that it can be transformed as a part of the effective viscous tensor. Moreover, this
is the good approximation for the capillarity tensor since this yields the necessary a priori
bounds on the mass density.

We conclude this introduction by a comparison with the result in [3]. The compactness
holds for any ν, κ > 0 positive such that κ < ν. In the two dimensional case we prove the
existence result for the same range κ < ν, while in the three dimensional case we consider ν
and µ at the same scale, namely κ < ν < ακ for some α > 1. However, it is worth to point
out that no smallness assumption on ν and κ are assumed.

Our paper is structured as follows: in Section 2 we introduce the notations and definitions,
in Section 3 we study the approximating system and we show some useful identities. Then,
in Section 4 we prove the a priori estimate we need. Finally, in Section 5 we prove the The-
orem 2.2 and 2.3 and in Section 6 we prove the global existence of smooth solutions for the
approximating system.

2. Notations, Definitions and Main Result

In this section we are going to fix the notations used in the paper, to give the precise
definition of weak solution for the system (1.1) and to state our main results.

Notations

Given Ω ⊂ R3, the space of compactly supported smooth functions will be D((0, T )×Ω). We
will denote with Lp(Ω) the standard Lebesgue spaces and with ‖·‖p their norm. The Sobolev

space of Lp functions with k distributional derivatives in Lp is W k,p(Ω) and in the case p = 2

we will write Hk(Ω). The spaces W−k,p(Ω) and H−k(Ω) denote the dual spaces of W k,p′(Ω)
and Hk(Ω) where p′ is the Hölder conjugate of p. Given a Banach space X we use the the
classical Bochner space for time dependent functions with value in X, namely Lp(0, T ;X),
W k,p(0, T ;X) and W−k,p(0, T ;X). Finally, Du = (∇u+ (∇u)T )/2 is the symmetric part of
the gradient and Au = (∇u − (∇u)T )/2 the antisymmetric part. In what follows, C will be
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any constant depending on the data of the problem but independent on ε. Moreover, ε will
be always less than a small εf depending only on γ, ν and κ, which will be chosen in the sequel.

Weak Solutions

We first recall two alternative ways to write the third order tensor term, which will be
very useful in the sequel:

(2.1) 2ρ∇
(

∆
√
ρ

√
ρ

)

= div(ρ∇2 log ρ) = ∇∆ρ− 4 div(∇√
ρ⊗∇√

ρ).

Then, by using (2.1), we can consider the following definition of weak solutions.

Definition 2.1. A pair (ρ, u) with ρ ≥ 0 is said to be a weak solution of the Cauchy problem
(1.1)-(1.2) if

(1) Integrability conditions:

ρ ∈ L∞(0, T ;L1 ∩ Lγ(Td)),
√
ρu ∈ L∞(0, T ;L2(Td)),

√
ρ ∈ L∞(0, T ;H1(Td)).

(2) Continuity equation:
∫

ρ0φ(0) +

∫∫

ρφt +
√
ρ
√
ρu∇φ = 0,

for any φ ∈ C∞
c ([0, T );C∞(Td)).

(3) Momentum equation:
∫

ρ0u0ψ(0) +

∫∫ √
ρ(
√
ρu)ψt +

√
ρu⊗√

ρu∇ψ + ργ divψ

− 2ν

∫∫

(
√
ρu⊗∇√

ρ)∇ψ − 2ν

∫∫

(∇√
ρ⊗√

ρu)∇ψ

+ ν

∫∫ √
ρ
√
ρu∆ψ + ν

∫∫ √
ρ
√
ρu∇ divψ

− 4κ2
∫∫

(∇√
ρ⊗∇√

ρ)∇ψ + 2κ2
∫∫ √

ρ∇√
ρ∇ divφ = 0,

for any ψ ∈ C∞
c ([0, T );C∞(Td)).

(4) Energy Inequality: if

E(t) =

∫

1

2
ρ|u|2 + ργ

γ − 1
+ 2κ2|∇√

ρ|2,

then the following energy inequality is satisfied for a.e. t ∈ [0, T ]

E(t) ≤ E(0).
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Main Result

Let us start by specifying the assumptions on the initial data. Let ν > κ and let η be a
small fixed positive number. We consider an initial density ρ0 such that

(2.2)

ρ0 ≥ 0 in T
d,

ρ0 ∈ L1 ∩ Lγ(Td),

∇√
ρ0 ∈ L2 ∩ L2+η(Td).

Concerning the initial velocity u0 we assume that

(2.3)
u0 = 0 on {ρ0 = 0},
√

ρ0u0 ∈ L2 ∩ L2+η(Td).

The hypothesis of higher integrability on ∇
√

ρ0 and
√

ρ0u0 imply that

(2.4) ρ0
(

1 +
|v0|2
2

)

log

(

1 +
|v0|2
2

)

is uniformly bounded in L1(Td),

with v0 = u0+ c∇ log ρ0 and c > 0. In order to simplify the presentation we assume also that
ρ0 is bounded from above and below, namely there exists ρ̄0 > 0 such that

(2.5) 0 <
1

ρ̄0
≤ ρ0 ≤ ρ̄0.

Then, we state our main result in the two dimensional case.

Theorem 2.2. Let d = 2. Let ν, κ and γ positive such that κ < ν and γ > 1. Then for any
0 < T <∞ there exists a finite energy weak solutions of the system (1.1) on (0, T )×T

2, with
initial data (1.2) satisfying (2.2), (2.3) and (2.5).

In the three dimensional case we need the a restriction on ν, κ and γ.

Theorem 2.3. Let d = 3. Let ν, κ and γ positive such that κ2 < ν2 < 9
8κ

2 and 1 < γ < 3.
Then for any 0 < T < ∞ there exists a finite energy weak solutions of the system (1.1) on
(0, T )× T

3, with initial data (1.2) satisfying (2.2), (2.3) and (2.5).

Let us briefly comment on the extra assumption we have in Theorem 2.3. This assumption
it is not required in the passage to the limit from the approximating solutions (ρε, uε) to
solutions of (1.1) but only in the proof of global existence of smooth solutions of the approx-
imating system, see Theorem 6.2. As it will be clear from our proof (see Proposition 6.3),
we need the viscosity and capillarity constants to be comparable in order to prove regularity
of solutions of the approximating system. The constant 9/8 is not optimal there and can be
improved. Furthermore we stress that we do not need any smallness assumptions on ν.κ.

3. The Approximating System

In this Section we first introduce the approximating system we are going to study and we
then show how that can be transformed into an equivalent system in terms of the effective
velocity, analogously to what was done in [3].

Approximating System

The system in (0, T ) × T
d we consider is

(3.1)
∂tρε + div(ρεuε) = 0,

∂t(ρεuε) + div(ρεuε ⊗ uε)− 2ν div Sε +∇(ργε + pε(ρε)) + p̃ε(ρε)uε = κ2 divKε.
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The system (3.1) is coupled with initial data on {t = 0} × T
d:

(3.2)
ρε(0, x) = ρ0ε(x),

ρεuε(0, x) = ρ0ε(x)u
0
ε(x).

Let us describe in what follows the various terms appearing in (3.1).
The viscosity coefficient hε(ρε) is defined as follows

(3.3) hε(ρε) = ρε + ερ
7
8
ε + εργε

and we define gε(ρε) to be

(3.4) gε(ρε) = ρεh
′
ε(ρε)− hε(ρε).

Then the stress tensors Sε = Sε(∇uε) is:
(3.5) Sε(∇uε) = hε(ρε)Duε + gε(ρε) div uεI.

The following inequalities follow from the definitions of hε(ρε) and gε(ρε)

(3.6)
hε(ρε) ≥ 0, |gε(ρε)| ≤ (γ − 1)hε(ρε),

h′ε(ρε)ρε ≤ γhε(ρε), |h′′ε(ρε)|ρε ≤ (γ − 1)h′ε(ρε).

In particular it follows from (3.3) that

(3.7) hε(ρε)|Duε|2 + gε(ρε)|div uε|2 >
5

8
hε(ρε)|Duε|2.

The approximating dispersive term Kε = Kε(ρε,∇ρε) is defined as

div(Kε(ρε,∇ρε)) = 2ρε∇
(

h′ε(ρε) div(h
′
ε(ρε)∇

√
ρε)√

ρε

)

.

We notice that, for ε = 0, we recover the quantum term in (2.1). Next Lemma clarifies how
this approximation is consistent with the approximating viscous tensor in (3.5).

Lemma 3.1. The following formulae hold for the tensor Kε:

2ρε∇
(

h′ε(ρε) div(h
′
ε(ρε)∇

√
ρε)√

ρε

)

= div(hε(ρε)∇2(φε(ρε)) +∇(gε(ρε)∆φε(ρε))

= ∇
(

h′ε(ρε)∆hε(ρε)
)

− 4 div((h′ε(ρε)∇
√
ρε)⊗ (h′ε(ρε)∇

√
ρε))

where φε(ρε) is such that ρεφ
′(ρε) = h′ε(ρε).

Proof. By direct computations we get

div(K(ρε)) = ∇(h′ε(ρε)
√
ρε div(h

′
ε(ρε)∇ρε/

√
ρε))− 4h′ε(ρε)∇

√
ρε div(h

′
ε(ρε)∇

√
ρε)

= ∇(h′ε(ρε)∆hε(ρε))− 2∇
(

|h′ε(ρε)∇
√
ρε|2

)

− 4 div(h′ε(ρε)∇
√
ρε ⊗ h′ε(ρε)∇

√
ρε) + 4∇

(

h′ε(ρε)∇
√
ρε
)

· (h′ε(ρε)∇
√
ρε)

= ∇(h′ε(ρε)∆hε(ρε))− 4 div(h′ε(ρε)∇
√
ρε ⊗ h′ε(ρε)∇

√
ρε).

To prove the remaining identity, we use the fact that ρεφ
′(ρε) = h′ε(ρε) we have

∇(h′ε(ρε)∆hε(ρε))− 4 div(h′ε(ρε)∇
√
ρε ⊗ h′ε(ρε)∇

√
ρε)) =

∇(h′ε(ρε) div(ρε∇φε(ρε)))− div(∇hε(ρε)⊗∇φε(ρε)) =
∇(h′ε(ρε)ρε∆φε(ρε)) +∇(∇hε(ρε) · ∇φε(ρε))
−∇2(hε(ρε)∇φε(ρε)) + div(hε(ρε)∇2φε(ρε)) =

∇(h′ε(ρε)ρε∆φε(ρε))−∇(hε(ρε)∆φε(ρε)) + div(hε(ρε)∇2φε(ρε)) =

∇(gε(ρε)∆φε(ρε)) + div(hε(ρε)∇2φε(ρε)).

�
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The previous Lemma explains how the regularization of the dispersive tensor is consistent
with (3.3) and the transformation through the effective velocity. Indeed, since the viscous
tensor Sε(∇uε) = hε(ρε)Duε + gε(ρε) div uε, the effective velocity is given by vε = uε +
c∇φε(ρε), where as above φε(ρε) is defined through h′ε(ρε) = ρεφ

′
ε(ρε). Then, from the

identities in Lemma 3.1, it is straightforward to see that divKε(ρε,∇ρε) = div Sε(∇φε(ρε)),
so that in the effective system this can be incorporated in the effective viscous tensor.

The coefficient p̃ε(ρε) in the damping term is defined by

p̃ε(ρε) = λ(ε)

(

ρ
1
ε2
ε + ρ

− 1
ε2

ε

)

where λ(ε) = e−
1
ε4 . The cold pressure pε(ρε) is defined such that

p′ε(ρε) = µp̃ε(ρε)
h′ε(ρε)

ρε
,

where

(3.8) µ = ν −
√

ν2 − κ2.

In particular, by using the definition of hε(ρε) and p̃ε(ρε) by direct computations we get the
following expression for pε(ρε)

(3.9)

pε(ρε) = µε2λ(ε)ρ
1
ε2
ε +

ε3µ7λ(ε)

8− ε2
ρ

1
ε2

− 1
8

ε

+
ε3µλ(ε)γ

1 + ε2(γ − 1)
ρ

1
ε2

+γ−1
ε − µλ(ε)ε2ρ

− 1
ε2

ε

− ε3µ7λ(ε)

ε2 + 8
ρ
− 1

ε2
− 1

8
ε − ε3γλ(ε)

1− ε2(γ − 1)
ρ
− 1

ε2
+γ−1

ε

=

6
∑

i=1

piε(ρε).

Let fε(ρε) such that

pε(ρε) = ρεf
′
ε(ρε)− fε(ρε).

Then, again by direct calculation we have that
(3.10)

fε(ρε) =
µε4λ(ε)

1− ε2
ρ

1
ε2
ε +

ε5µ7λ(ε)

(8− ε2)(8 − 9ε2)
ρ

1
ε2

− 1
8

ε

+
ε5µλ(ε)γ

(1 + ε2(γ − 1))(1 + ε2(γ − 2))
ρ

1
ε2

+γ−1
ε +

ε2µλ(ε)

ε2 + 1
ρ
− 1

ε2
ε

+
ε5µ7λ(ε)8

(8 + ε2)(9 + 8ε2)
ρ
− 1

ε2
− 1

8
ε +

ε5µγλ(ε)

(1− ε2(γ − 1))(1 − ε2(γ − 2))
ρ
− 1

ε2
+γ−1

ε =

6
∑

i=1

f iε(ρε).

It is straightforward to check that there exists εf = εf (γ) > 0 small enough such that both
f iε(ρε) and (f iε(ρε))

′′ are positive for any i = 1, ..., 6, ε < εf .
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Finally we construct the initial data (3.2). Given (ρ0, u0) satisfying (2.2), (2.3) and (2.5)
it is easy to construct a sequence of smooth functions (ρ0ε, u

0
ε) such that

(3.11)

1

ρ̄0
≤ ρ0 ≤ ρ̄0,

ρ0ε → ρ0 strongly in L1(Td),

{ρ0ε}ε in uniformly in bounded in L1 ∩ Lγ(Td),

{h′ε(ρε)∇
√

ρ0ε}ε is uniformly bounded in L2 ∩ L2+η(Td),

h′ε(ρε)
0∇
√

ρ0ε → ∇
√

ρ0 strongly in L2(Td),

{
√

ρ0εu
0
ε} is uniformly bounded in L2 ∩ L2+η(Td),

ρ0εu
0
ε → ρ0εu

0
ε in L1(Td),

fε(ρ
0
ε) → 0 strongly in L1(Td).

In particular the hypothesis on the boundedness of ρ0 makes easy to prove that h′(ρε) and

fε(ρε) are uniformly bounded. Moreover, the higher integrability on h′(ρ0ε)∇
√

ρ0ε and
√

ρ0εu
0
ε

implies that

(3.12) ρ0ε

(

1 +
|v0ε |2
2

)

log

(

1 +
|v0ε |2
2

)

is uniformly bounded in L1(Td),

with v0ε = u0 + c∇φε(ρ0ε) and c > 0.

The effective velocity formulation

We now consider the effective velocity vε = uε + c∇φε(ρε). Next Lemma shows that the
system (3.1) can be equivalently written in terms of (ρε, vε). Furthermore, with a suitable
choice of the constant c, either the dispersive and the cold pressure terms will vanish.

Lemma 3.2. Let (ρε, uε) be a smooth solution of the system (3.1). Then, (ρε, vε), with
vε = uε + c∇φε(ρε) and c > 0 satisfies the following system,

(3.13)

∂tρε + div(ρεvε) = c∆hε(ρε)

∂t(ρεvε) + div(ρεvε ⊗ vε) +∇ργε + λ̃∇pε(ρε)− c∆(hε(ρε)vε) + p̃(ρε)vε

− 2(ν − c) div(hε(ρε)Dvε)− (2ν − c)∇(gε(ρε) div vε)− κ̃2 divKε = 0,

where µ > 0 is defined in (3.8), κ̃2 = κ2 − 2νc+ c2, λ̃ = (µ − c)/µ.

Proof. Let c ∈ R. From the first equation in (3.1) we have that

(3.14) c(ρε∇φε(ρε))t = −c∇(div(hε(ρε)uε))− c∇(gε(ρε) div uε).

Moreover, it is straightforward to prove that

(3.15)
cdiv(ρεuε ⊗∇φε(ρε) + ρε∇φε(ρε)⊗ uε) = c∆(hε(ρε)uε)− 2cdiv(hε(ρε)Duε)

+ c∇ div(hε(ρε)uε)

and

(3.16) c2 div(ρε∇φε(ρε)⊗∇φε(ρε)) = c2∆(hε(ρε)∇φε(ρε))− c2 div(hε(ρε)∇2φε(ρε)),

see also [23]. Then, by using the definition of vε we have

(3.17)

∂t(ρεvε) + div(ρεvε ⊗ vε) +∇ργε =

∂t(ρεuε) + div(ρεuε ⊗ uε) +∇ργε+
c(ρε∇φε(ρε))t + cdiv(ρεuε ⊗∇φε(ρε) + ρε∇φε(ρε)⊗ uε)

c2∆(hε(ρε)∇φε(ρε))− c2 div(hε(ρε)∇2φε(ρε)) +∇ργε
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and by using (3.14)-(3.16) and the fact the (ρε, uε) satisfies the momentum equation in (3.1)
we get

(3.18)

∂t(ρεvε) + div(ρεvε ⊗ vε)− c∆(hε(ρε)vε) +∇ργε
− 2(ν − c) div(hε(ρε)Dvε)− (2ν − c)∇(gε(ρε) div vε) + p̃(ρε)vε

= cp̃ε(ρε)∇φε(ρε)− p′ε(ρε)∇ρε + (κ2 − 2νc+ c2) divKε(ρε).

By using that vε = uε + c∇φε(ρε), Lemma 3.1 and the definition on pε(ρε) we get

(3.19)

∂t(ρεvε) + div(ρεvε ⊗ vε)− c∆(hε(ρε)vε) +∇ργε
+ cdiv(hε(ρε)Dvε)− (2ν − c) div Sε(vε) + p̃(ρε)vε

= (c2 − 2νc+ κ2) divKε(ρε)−
µ− c

µ
∇pε(ρε).

Let us notice that, by taking c = µ, then the right hand side in (3.19) vanishes. �

4. A priori Estimates

In this Section we are going to show that the approximating system satisfies, uniformly in
ε > 0, the a priori estimates used in [3] to prove the compactness of weak solutions to (1.1).
First of all we prove the classical energy estimate for system (3.1).

Proposition 4.1. Let (ρε, uε) be a smooth solution of (3.1). Then, the following estimate
holds.

(4.1)

d

dt

(
∫

ρε|uε|2
2

+
ργε
γ − 1

+ fε(ρε) + 2κ2|h′ε(ρε)∇
√
ρε|2

)

+ 2ν

∫

hε(ρε)|Duε|2 + 2ν

∫

gε(ρε)|div uε|2 +
∫

p̃ε(ρε)|uε|2 = 0.

Proof. Let us multiply the momentum equation in (3.1) by uε. After integrating by parts
and using the first equation we get

(4.2)

d

dt

∫

ρε|uε|2
2

+ 2ν

∫

hε(ρε)|Duε|2 + 2ν

∫

gε(ρε)|div uε|2 +
∫

p̃ε(ρε)|uε|2

− κ2
∫

divKεuε +

∫

∇(ργε + pε(ρε))uε = 0.

Then, we consider the pressure terms. By multiplying the first equation by γργ−1
ε

γ−1 we get

(4.3)
d

dt

∫

ργε
γ − 1

−
∫

∇ργεuε = 0.

By multiplying again the first equation by f ′ε(ρε)

(4.4)
d

dt

∫

fε(ρε)−
∫

∇pε(ρε)uε = 0.

Finally, we deal with dispersive term. By multiplying the first equation by
−2κ2h′ε(ρε) div(h

′
ε(ρε)∇

√
ρε)/

√
ρε we get

−2κ2
∫

∂tρε
h′ε(ρε) div(h

′
ε(ρε)∇

√
ρε)√

ρε
− 2κ2

∫

div(ρεuε)
h′ε(ρε) div(h

′
ε(ρε)∇

√
ρε)√

ρε
= 0.

Then, by using Lemma 3.1, integrating by parts and using the chain rule we get

(4.5)
d

dt

∫

2κ2|h′ε(ρε)∇
√
ρε|2 + κ2

∫

divKεuε = 0.

By summing up (4.2), (4.3), (4.4) and (4.5) we get (4.1). �

Next Lemma gives the energy estimate for the transformed system (4.11).
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Proposition 4.2. Let (ρε, vε) be a smooth solution to (3.1) and let us consider (ρε, vε), where
vε is the effective velocity vε = uε + c∇φε(ρε), with c ∈ (0, µ). Then we have

(4.6)

d

dt

(
∫

ρε|vε|2
2

+
ργε
γ − 1

+ λ̃fε(ρε) + 2κ̃2|h′ε(ρε)∇
√
ρε|2

)

+ c

∫

hε(ρε)|Avε|2 + (2ν − c)

∫

(hε(ρε)|Dvε|2 + gε(ρε)|div vε|2)

+

∫

p̃ε(ρε)|vε|2 + cγ

∫

h′ε(ρε)|∇ρε|2ργ−2
ε + cλ̃

∫

h′ε(ρε)|∇ρε|2f ′′ε (ρε)

+ cκ̃2
∫

hε(ρε)|∇2φε(ρε)|2 + cκ̃2
∫

gε(ρε)|∆φε(ρε)|2 = 0,

where λ̃ = (µ− c)/µ and κ̃2 = c2 − 2νc+ κ2.

Proof. Since (ρε, uε) is a smooth solution of (3.1) we can use Lemma 3.2 to deduce that (ρε, vε)
satisfies equations (3.13). Then, by multiplying the momentum equation by vε, integrating
by parts and using the first equation we get

(4.7)

d

dt

∫

ρε|vε|2
2

+ c

∫

hε(ρε)|Avε|2 + (2ν − c)

∫

(hε(ρε)|Dvε|2 + gε(ρε)|div vε|2)

+

∫

∇ργε · vε + λ̃

∫

∇pε(ρε) · vε +
∫

p̃ε(ρε)|vε|2 − κ̃2
∫

divKεvε = 0,

where we used that |∇vε|2 = |Dvε|2 + |Avε|2. Then, by multiplying the first equation by
γργ−1

ε

γ−1 and integrating by parts we get

(4.8)
d

dt

∫

ργε
γ − 1

+ cγ

∫

|∇ρε|2h′ε(ρε)ργ−2
ε −

∫

∇ργεvε = 0.

By multiplying again the first equation by λ̃f ′ε(ρε) we get

(4.9)
d

dt

∫

λ̃fε(ρε)− λ̃

∫

∇pε(ρε)vε + cλ̃

∫

h′ε(ρε)|∇ρε|2f ′′ε (ρε) = 0.

Then, we consider the dispersive term. By multiplying the first equation
by −2κ̃2h′ε(ρε) div(h

′
ε(ρε)∇

√
ρε)/

√
ρε we get

− 2κ̃2
∫

∂tρε
h′ε(ρε) div(h

′
ε(ρε)∇

√
ρε)√

ρε
− 2κ̃2

∫

div(ρεvε)
h′ε(ρε) div(h

′
ε(ρε)∇

√
ρε)√

ρε

+ c2κ̃2
∫

∆hε(ρε)
h′ε(ρε) div(h

′
ε(ρε)∇

√
ρε)√

ρε
= 0.

The first two terms are treated as in Proposition 4.1 and we get

− 2κ̃2
∫

∂tρε
h′ε(ρε) div(h

′
ε(ρε)∇

√
ρε)√

ρε
− 2κ̃2

∫

div(ρεvε)
h′ε(ρε) div(h

′
ε(ρε)∇

√
ρε)√

ρε

=
d

dt

∫

2κ̃2|h′ε(ρε)∇
√
ρε|2 − κ̃2

∫

divKεvε.
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We then consider the last term, by integrating by parts we get

2

∫

∆hε(ρε)
h′ε(ρε) div(h

′
ε(ρε)∇

√
ρε)√

ρε
=− 2

∫

∇φε(ρε)ρε∇
(

h′ε(ρε) div(h
′
ε(ρε)∇

√
ρε)√

ρε

)

=−
∫

∇φε(ρε) divKε

=−
∫

∇φε(ρε) div(hε(ρε)∇2φε(ρε)

−
∫

∇φε(ρε)∇(gε(ρε)∆φε(ρε),

where Lemma 3.1 has been used. By integrating by parts we get

2

∫

∆hε(ρε)
h′ε(ρε) div(h

′
ε(ρε)∇

√
ρε)√

ρε
=

∫

hε(ρε)|∇2φε(ρε)|2 +
∫

gε(ρε)|∆φε(ρε)|2.

Resuming, we have

(4.10)

d

dt

∫

2κ̃2|h′ε(ρε)∇
√
ρε|2 + κ̃2

∫

divK(ρε)vε

+ cκ̃2
∫

hε(ρε)|∇2φε(ρε)|2 + cκ̃2gε(ρε)|∆φε(ρε)|2 = 0

By summing up (4.7), (4.8), (4.9) and (4.10) we get (4.6) �

Let us now choose the constant in the effective velocity to be µ = ν−
√
ν2 − κ2. Throughout

this paper we will denote by wε the effective velocity with this particular choice of the
constant, i.e. wε = uε + µ∇φε(ρε). As we already noticed, in this case both the dispersive
term and the cold pressure term vanish in (3.13), so that the system reads

(4.11)

∂tρε + div(ρεwε) = µ∆hε(ρε),

∂t(ρεwε) + div(ρεwε ⊗ wε)− µ∆(hε(ρε)wε) +∇ργε + p̃(ρε)wε

− 2(ν − µ) div(hε(ρε)Dwε)− (2ν − µ)∇(gε(ρε) divwε) = 0.

Analogously to what we did in [3], we now prove a Mellet-Vasseur type estimate for (4.11).
We will first prove an auxiliary Lemma which will also be useful later in section 6, see Lemma
6.3.

Lemma 4.3. Let (ρε, uε) be a solution of the system (3.1). Then, for any β ∈ C1(R) the
pair (ρε, wε) satisfies the following integral equation
(4.12)

d

dt

∫

ρεβ

( |wε|2
2

)

+ µ

∫

hε(ρε)|Awε · wε|2β′′
( |wε|2

2

)

+ µ

∫

hε(ρε)|Awε|2β′
( |wε|2

2

)

+ (2ν − µ)

∫

hε(ρε)|Dwε|2β′
( |wε|2

2

)

+ (2ν − µ)

∫

gε(ρε)|divwε|2β′
( |wε|2

2

)

+

∫

p̃ε(ρε)|wε|2β′
( |wε|2

2

)

+ (2ν − µ)

∫

hε(ρε)|Dwε · wε|2β′′
( |wε|2

2

)

= −
∫

∇ργεwεβ
′

( |wε|2
2

)

− 2ν

∫

hε(ρε)(Dwε · wε) · (Awε · wε)β
′′

( |wε|2
2

)

− (2ν − µ)

∫

gε(ρε) divwεwε · (Dwε · wε)β
′′

( |wε|2
2

)

.
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Proof. Let β ∈ C1(R). By a simple integration by parts we get

−µ
∫

∆(hε(ρε)wε)wεβ
′

( |wε|2
2

)

=− µ

∫

∆hε(ρε)|wε|2β′
( |wε|2

2

)

+ µ

∫

∆hε(ρε)β

( |wε|2
2

)

+ µ

∫

hε(ρε)|∇wε|2β′
( |wε|2

2

)

+ µ

∫

hε(ρε)

∣

∣

∣

∣

∇|wε|2
2

∣

∣

∣

∣

2

β′′
( |wε|2

2

)

.

Then, by multiplying the first equation in (4.11) by wεβ
′
(

|wε|2

2

)

we get

(4.13)

d

dt

∫

ρεβ

( |wε|2
2

)

+ µ

∫

hε(ρε)

∣

∣

∣

∣

∇
( |wε|2

2

)
∣

∣

∣

∣

2

β′′
( |wε|2

2

)

2(ν − µ)

∫

hε(ρε)|Dwε|2β′
( |wε|2

2

)

+ (2ν − µ)

∫

gε(ρε)|divwε|2β′
( |wε|2

2

)

+

∫

p̃ε(ρε)|wε|2β′
( |wε|2

2

)

+ 2(ν − µ)

∫

Dwεwε∇wεwεβ
′′

( |wε|2
2

)

= −
∫

∇ργεwεβ
′

( |wε|2
2

)

− (2ν − µ)

∫

gε(ρε) divwεwε∇
( |wε|2

2

)

β′′
( |wε|2

2

)

.

Let us consider the last term on the left-hand side of the equality, we have

(4.14)

2(ν − µ)

∫

hε(ρε)

(

∂jw
i
ε + ∂iw

j
ε

2

)

wi∂jw
l
εw

l
εβ

′′

( |wε|2
2

)

=

2(ν − µ)

∫

hε(ρε)

(

∂jw
i
ε + ∂iw

j
ε

2

)

wi
ε

(

∂jw
l
ε + ∂lw

j
ε

2

)

wl
εβ

′′

( |wε|2
2

)

+

2(ν − µ)

∫

hε(ρε)

(

∂jw
i
ε + ∂iw

j
ε

2

)

wi
ε

(

∂jw
l
ε − ∂lw

j
ε

2

)

wl
εβ

′′

( |wε|2
2

)

.

Concerning the last term in the right-hand side of the inequality we have

(4.15)

∫

gε(ρε) divwεw
i
ε∂iw

l
εw

l
εβ

′′

( |wε|2
2

)

=

∫

gε(ρε) divwεw
i
ε

(

∂iw
l
ε + ∂lw

i
ε

2

)

wl
εβ

′′

( |wε|2
2

)

+

∫

gε(ρε) divwεw
i
ε

(

∂iw
l
ε − ∂lw

i
ε

2

)

wl
εβ

′′

( |wε|2
2

)

=

∫

gε(ρε) divwεw
i
ε

(

∂iw
l
ε + ∂lw

i
ε

2

)

wl
εβ

′′

( |wε|2
2

)

.
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Finally, by using that

(4.16)

∫

hε(ρε)

∣

∣

∣

∣

∇
( |wε|2

2

)
∣

∣

∣

∣

2

β′′
( |wε|2

2

)

=

∫

hε(ρε)|Awε · wε|2β′′
( |wε|2

2

)

+

∫

hε(ρε)|Dwε · wε|2β′′
( |wε|2

2

)

+ 2

∫

hε(ρε)(Awε · wε)(Dwε · wε)β
′′

( |wε|2
2

)

.

Then, by using (4.14), (4.15) and (4.16), we get from (4.13) exactly (4.12). �

Now, we are in position to prove the Mellet & Vasseur type inequality.

Proposition 4.4. Let (ρε, uε) be a smooth solution of (3.1). Then, there exists and a generic
constant C > 0 independent on ε such that (ρε, wε) sastifies

(4.17)

sup
t∈(0,T )

∫

ρε

(

1 +
|wε|2
2

)

log

(

1 +
|wε|2
2

)

≤ C

∫∫

hε(ρε)|∇wε|2

+

∫
(
∫

ρ(2γ−δ/2−1)(2/(2−δ))
ε dx

)
2−δ
2

(

∫

ρε

(

1 + log

(

1 +
|wε|2
2

))

2
δ

dx

)

dt

+

∫

ρ0ε

(

1 +
|w0

ε |2
2

)

log

(

1 +
|w0

ε |2
2

)

for any δ ∈ (0, 2).

Proof. By choosing β(t) = (1 + t) log(1 + t) in Lemma 4.3 and keeping only the terms we
need we get that there exists a generic constant C > 0 independent on ε such that

sup
t∈(0,T )

∫

ρε

(

1 +
|wε|2
2

)

log

(

1 +
|wε|2
2

)

+

∫∫

ρε|∇wε|2 log
(

1 +
|wε|2
2

)

≤ C

∣

∣

∣

∣

∫

∇ργεwεβ
′

( |wε|2
2

)∣

∣

∣

∣

+ C

∫

hε(ρε)|∇wε|2 + C

∫

|gε(ρε)||divwε||∇wε|

+

∫

ρ0ε

(

1 +
|w0

ε |2
2

)

log

(

1 +
|w0

ε |2
2

)

.

Then, by using (3.6), integrating by parts the first term, using Hölder and Young inequality
we get

sup
t∈(0,T )

∫

ρε

(

1 +
|wε|2
2

)

log

(

1 +
|wε|2
2

)

+

∫∫

ρε|∇wε|2 log
(

1 +
|wε|2
2

)

≤ C

∫∫

ρ2γ−1
ε

(

(1 + log

(

1 +
|wε|2
2

))

+
1

2

∫∫

ρε|∇wε|2 log
(

1 +
|wε|2
2

)

+ C

∫∫

hε(ρε)|∇wε|2 +
∫

ρ0ε

(

1 +
|w0

ε |2
2

)

log

(

1 +
|w0

ε |2
2

)

.
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Finally, for δ ∈ (0, 2) by using Hölder inequality we get

(4.18)

∫∫

ρ2γ−1
ε

(

1 + log

(

1 +
|wε|2
2

))

≤
∫
(
∫

ρ(2γ−δ/2−1)(2/(2−δ))
ε dx

)
2−δ
2

(

∫

ρε

(

1 + log

(

1 +
|wε|2
2

))

2
δ

dx

)

dt

≤ C

∫
(
∫

ρ(2γ−δ/2−1)(2/(2−δ))
ε dx

)(2−δ)/2

dt.

Then, (4.17) is proved. �

5. Proof of Theorem 2.2 and Theorem 2.3

In this section prove we give the proofs of Theorem 2.2 and Theorem 2.3. Let us start by
collecting and deriving the main bounds which will be needed.

Uniform Bounds

Let ε < εf and let {(ρε, uε)}ε, with ρε > 0, be a sequence of smooth solutions of (3.1)
with initial data (ρ0ε, u

0
ε) satisfying (3.11). The global existence of (ρε, uε) will be proved in

the next section. By Proposition 4.1 there exists a generic constant C > 0 independent on ε
such that

(5.1)

sup
t

∫

ρε|uε|2 ≤ C, sup
t

∫

|h′ε(ρε)∇
√
ρε|2 ≤ C,

sup
t

∫

(ρε + ργε ) ≤ C,

∫∫

hε(ρε)|Duε|2 ≤ C,

sup
t

∫

fε(ρε) ≤ C,

∫∫

|p̃ε(ρε)||uε|2 ≤ C.

where (3.6) has been used. In particular, by using (3.3) we have that

(5.2) sup
t

∫

|∇√
ρε|2 ≤ C,

∫∫

ρε|Duε|2 ≤ C.

Then, by (3.11) and Proposition 4.2 we get that there exists a generic constants C > 0
independent on ε such that

(5.3)

∫∫

hε(ρε)|Auε|2 ≤ C,

∫∫

h′ε(ρε)|∇ρε|2ργ−2
ε ≤ C,

∫∫

h′ε(ρε)|∇ρε|2f ′′ε (ρ) ≤ C,

∫∫

hε(ρε)|∇2φε(ρε)|2 ≤ C,

where we have used (3.6) and the fact that Awε = Auε. In particular combining (5.1), (5.2),
(5.3) and (3.3) we have

(5.4)

∫∫

hε(ρε)|∇uε|2 ≤ C,

∫∫

ρε|∇uε|2 ≤ C.
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Next we consider the pressure. From (5.1) and (5.3), after using (3.3), we get

(5.5)

∫∫

|∇ρ
γ
2
ε |2 ≤ C

and then by interpolation with (5.1) we have that

(5.6)

∫∫

ρ
5γ
3
ε ≤ C for any γ > 1 if d = 2 and for any γ ∈ (1, 3) if d = 3.

Finally, we have the following uniform bounds

(5.7)

∫∫

|∇2√ρ|2 + |∇ρ 1
4 |4 ≤ C.

The bounds (5.7) are crucial to handle the passage to the limit in the dispersive term and are
not a straightforward consequence of the a priori estimates. Indeed in order to obtain them
we need a generalization of the inequality

∫∫

|∇2√ρ|2 + |∇ρ 1
4 |4 ≤ C

∫∫

ρ|∇2 log ρ|2

proved in [21], see also [31] for an alternative proof.

Lemma 5.1. Let ρ > 0 and h(ρ) be a smooth function such that

(5.8) h(ρ) ≥ 0, h′(ρ) > 0, h′(ρ)ρ ≤ Ch(ρ), |h′′(ρ)|ρ ≤ Ch′(ρ)

Then, the following inequality hold

(5.9)

∫∫

h′(ρ)|∇(h′(ρ)∇√
ρ)|2 +

∫∫

(h′(ρ))3|∇√
ρ|4

ρ
≤ C

∫∫

h(ρ)|∇2φ(ρ)|2

where ρφ′(ρ) = h′(ρ). Moreover, if in addition we assume that h′(ρ) ≥ c > 0 then

(5.10)

∫∫

|∇2√ρ|2 +
∫∫

|∇ρ 1
4 |4 ≤ C

∫∫

h(ρ)|∇2φ(ρ)|2.

Proof. By using (5.8) we have that

(5.11)

∫∫

ρh′(ρ)

∣

∣

∣

∣

∇
(

h′(ρ)∇√
ρ

√
ρ

)
∣

∣

∣

∣

2

=

∫∫

ρh′(ρ)|∇2φ(ρ)|2 ≤ C

∫∫

h(ρ)|∇2φ(ρ)|2,

where h′(ρ) = ρφ′(ρ) has been used. Then, by using the chain rule we have

(5.12) ∇
(

h′(ρ)∇√
ρ

√
ρ

)

=
∇(h′(ρ)∇√

ρ)
√
ρ

− h′(ρ)∇√
ρ⊗∇√

ρ

ρ
.

Taking the square we get

(5.13)

∣

∣

∣

∣

∇
(

h′(ρ)∇√
ρ

√
ρ

)∣

∣

∣

∣

2

=
|∇(h′(ρ)∇√

ρ)|2
ρ

− 2
∇(h′(ρ)∇√

ρ)h′(ρ)∇√
ρ⊗∇√

ρ
√
ρρ

+
(h′(ρ))2|∇√

ρ|4
ρ2

.

Then, by using (5.11)

(5.14)

∫∫

h′(ρ)|∇(h′(ρ)∇√
ρ)|2 + (h′(ρ))3|∇√

ρ|4
ρ

≤ C

∫∫

h(ρ)|∇2φ(ρ)|2

+ 2

∫∫

ρh′(ρ)
∇(h′(ρ)∇√

ρ)h′(ρ)∇√
ρ⊗∇√

ρ
√
ρρ
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Now we focus on the last term of (5.14). By integrating by parts we get
∫∫

h′(ρ)
∇(h′(ρ)∇√

ρ)h′(ρ)∇√
ρ⊗∇√

ρ
√
ρ

=

∫∫

∂i(h
′(ρ)∂j

√
ρ)h′(ρ)∂i

√
ρh′(ρ)∂j

√
ρ

√
ρ

=

−
∫∫

∂i(h
′(ρ)∂j

√
ρ)h′(ρ)∂i

√
ρh′(ρ)∂j

√
ρ

√
ρ

−
∫∫

h′(ρ)∂j
√
ρ∂i

(

h′(ρ)∂i
√
ρ

√
ρ

)

h′(ρ)∂j
√
ρ.

Then,

(5.15)

2

∫∫

h′(ρ)
∇(h′(ρ)∇√

ρ)h′(ρ)∇√
ρ⊗∇√

ρ
√
ρ

=

−
∫∫

h′(ρ)∇√
ρdiv

(

h′(ρ)∇√
ρ

√
ρ

)

h′(ρ)∇√
ρ =

−
∫∫ √

ρ
√

h′(ρ)

√

h′(ρ)
√
ρ

∇√
ρdiv

(

h′(ρ)∇√
ρ

√
ρ

)

h′(ρ)∇√
ρ ≤

C

∫∫

ρh′(ρ)

∣

∣

∣

∣

∇
(

h′(ρ)∇√
ρ

√
ρ

)
∣

∣

∣

∣

2

+
1

2

∫∫

(h′(ρ))3|∇√
ρ|4

ρ
.

Then, by (5.14) we get

(5.16)

∫∫

h′(ρ)|∇(h′(ρ)∇√
ρ)|2 +

∫∫

(h′(ρ))3|∇√
ρ|4

ρ
≤ C

∫∫

h(ρ)|∇2φ(ρ)|2.

Now we prove the second part of the Lemma. Assuming that h′(ρ) > c it is straightforward
to prove that

∫∫

|∇ρ 1
4 |4 ≤ C

∫∫

h(ρ)|∇2φ(ρ)|2.
By using the chian rule we have

(5.17)

∫∫

h′(ρ)|∇(h′(ρ)∇√
ρ)|2 =

∫∫

h′(ρ)|h′(ρ)∇2√ρ+ 2h′′(ρ)
√
ρ∇√

ρ⊗∇√
ρ|2

=

∫∫

h′(ρ)|h′(ρ)∇2√ρ|2

+ 4

∫∫

h′(ρ)
h′(ρ)∇2√ρh′′(ρ)ρ∇√

ρ⊗∇√
ρ

√
ρ

+ 4

∫∫

h′(ρ)|h′′(ρ)√ρ∇√
ρ⊗∇√

ρ|2.

By using the fact that |h′′(ρ)ρ| ≤ Ch′(ρ) we get

(5.18)

∫∫

h′(ρ)|h′(ρ)∇2√ρ|2 ≤ C

∫∫

h′(ρ)|∇(h′(ρ)∇√
ρ)|2

+ 4

∣

∣

∣

∣

∫∫ ∫∫

h′(ρ)
h′(ρ)∇2√ρh′′(ρ)ρ∇√

ρ⊗∇√
ρ

√
ρ

∣

∣

∣

∣

≤ C

∫∫

h′(ρ)|∇(h′(ρ)∇√
ρ)|2 + C

∫∫

(h′(ρ))3|∇√
ρ|4

ρ

+
1

2

∫∫

h′(ρ)|h′(ρ)∇2√ρ|2.
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Then, by using (5.16) we get

(5.19)

∫∫

h′(ρ)|h′(ρ)∇2√ρ|2 ≤ C

∫∫

h(ρ)|∇2φ(ρ)|2.

Then, since h′(ρ) > c we have that

(5.20)

∫∫

|∇2√ρ|2 ≤ C

∫∫

h(ρ)|∇2φ(ρ)|2.

Summing up (5.19) and (5.20) we get (5.10). �

Preliminary Lemma

In the following lemma we prove the main convergences needed in the proof of the main
Theorems.

Lemma 5.2. Let {(ρε, uε)}ε be a sequence of solutions of (3.1). Then up to subsequences
there exists a function

√
ρ such that

√
ρε →

√
ρ strongly in L2(0, T ;H1(Td)).(5.21)

Proof. Let us consider the first equation in (3.1). Since, by Proposition 6.4 ρε > 0 we have
that

(5.22) ∂t
√
ρε = −

√
ρε

2
div uε − div(

√
ρεuε) +∇uε

√
ρε,

and, by the uniform bounds we have in (5.2) and (5.4), we have that

{∂t
√
ρε}ε is uniformly bounded in L2(0, T ;H−1(Td)).

Then, since {√ρε}ε is uniformly bounded in L2(0, T ;H2(Td)) by using Aubin-Lions Lemma
we get (5.21). �

Lemma 5.3. Let {(ρε, uε)}ε be a sequence of solutions of (3.1). Then

h′ε(ρε)
√
ρε →

√
ρ strongly in L2((0, T ) × T

d)),(5.23)

h′ε(ρε)∇
√
ρε → ∇√

ρ strongly in L2((0, T ) × T
d),(5.24)

h′′ε(ρε)ρε∇
√
ρε → 0 strongly in L2((0, T ) × T

d).(5.25)

Proof. Let us start by proving (5.23). By using (3.3) we get
∫∫

|h′ε(ρε)
√
ρε −

√
ρε|2 ≤

∫∫

|√ρε −
√
ρ|2

+ ε2
∫∫

ρ
3
4
ε

+ ε2
∫∫

ρ2γ−1
ε .

The first term goes to zero because of (5.21). The second term, simply by using Hölder
inequality and the uniform bound (5.1). Finally, for the last term we have that when d = 2
there for any γ > 1 fixed there exists δ = δ(γ) small enough such that 2γ − 1 < (2 − δ)γ
and them the integral is bounded because ργε ∈ Lr((0, T ) × T

d) for any r < 2. When d = 3
since γ ∈ (1, 3) it holds that 2γ − 1 < 5

3γ. Then, the third term goes to zero by using Hölder
inequality and (5.6).
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To prove (5.24) we have
∫∫

|h′ε(ρε)∇
√
ρε −∇√

ρ|2 ≤
∫∫

|∇√
ρε −∇√

ρ|2

+ Cε2
∫∫

ρ
− 1

4
ε |∇√

ρε|2

+ Cε2
∫∫

ρ2γ−2
ε |∇√

ρε|2.

Then, the first term goes to 0 because of (5.21). Concerning the second term we have

ε2
∫∫

ρ
− 1

4
ε |∇√

ρε|2 ≤ ε2
∫∫

ρ
1
4
ε |∇ρ

1
4
ε |2.

Then, by Hölder inequality

ε2
∫∫

ρ
− 1

4
ε |∇√

ρε|2 ≤ Cε2
(
∫∫ √

ρε

)
1
2
(
∫∫

|∇ρ
1
4
ε |4
)

1
2

≤ Cε2.

Now, we treat the last term. From (5.3) we have that
∫∫

|∇ρε|2h′ε(ρε)ργ−2
ε ≤ C.

Then, by using (3.3) we get

ε

∫∫

|∇ρε|2ρ2γ−3
ε = 4ε

∫∫

|∇√
ρε|2ρ2γ−2

ε ≤ C,

which implies the convergence of the last term. Finally concerning (5.25), by using again
(3.3), we have

∫∫

|h′′ε (ρε)ρε∇
√
ρε −∇√

ρ|2 ≤ Cε2
∫∫

ρ
− 1

4
ε |∇√

ρε|2

+Cε2
∫∫

ρ2γ−2
ε |∇√

ρε|2.

Then, it goes to zero arguing as above. �

Lemma 5.4. Let {(ρε, uε)}ε be a sequence of solutions of (3.1) then

hε(ρε)− ρε → 0 in L1((0, T ) × T
d),(5.26)

gε(ρε) → 0 in in L1((0, T )× T
d).(5.27)

Proof. By (3.3) and (3.4) we have that
∫∫

|hε(ρε)− ρε| ≤ Cε

∫∫

ρ
7
8
ε + Cε

∫∫

ργε ,

∫∫

|gε(ρε)| ≤ Cε

∫∫

ρ
7
8
ε + Cε

∫∫

ργε .

Then, we conclude by using Hölder inequality and (5.1).

Lemma 5.5. Let {(ρε, uε)}ε be a sequence of solutions of (3.1) then

(5.28)

ργε → ργ in L1((0, T ) × T
d),

pε(ρε) → 0 in L1((0, T ) × T
d),

p̃ε(ρε) → 0 in L1((0, T ) × T
d).
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Proof. The convergence of ργε follows from (5.21) and the bound (5.5). By the definition of
pε we have that there exists a generic constant C independent on ε such that

(5.29)

∫∫

|pε(ρε)| ≤ C

6
∑

i=1

∫∫

|piε(ρε)|.

Let us recall from (5.1)

(5.30) sup
t
ε5λ(ε)

(
∫

ρ
1
ε2

+γ−1
ε + ρ

− 1
ε2

− 1
8

ε

)

≤ C.

We start by estimating p1ε(ρε), by (3.9) and Hólder inequality we have

(5.31)
∫∫

|p1ε(ρε)| ≤ Cε2λ(ε)

∫∫

ρ
1
ε2
ε ≤ Cε2λ(ε)

(
∫∫

ρ
1
ε2

+γ−1
ε

)
1

1+ε2(γ−1)

.

Then, by using that λ(ε) = e−1/ε4 we get

∫

p1ε(ρε) ≤ C
ε2

ε5/(1+ε2(γ−1))
e
−
(

(γ−1)

ε2(1+ε2(γ−1))

)(

ε5λ(ε) sup
t

∫

ρ
1
ε2

+γ−1
ε

)
1

1+ε2(γ−1)

and then by using (5.30) we get the convergence to 0 of p1ε(ρε). The term p2ε(ρε) is treated at
the same way. Now, we deal with convergence of the term p3ε(ρε). First of all, we have that

∫∫

|p3ε(ρε)| ≤ Cε3λ(ε)

∫∫

ρ
1
ε2

+γ−1
ε .

Then, we recall from (5.3) the following uniform bound

(5.32)

∫∫

|∇ρε|2h′ε(ρε)f ′′ε (ρε) ≤ C

which contains the following uniform bound

ε10λ(ε)

∫∫

|∇ρε|2ρ
1
ε2

+2γ−4
ε ≤ C

which means that

ε14λ(ε)

∫∫
∣

∣

∣

∣

∇
(

ρ
1

2ε2
+γ−1

ε

)
∣

∣

∣

∣

2

≤ C.

Then, by Sobolev embedding

ε14λ(ε)

∫
(
∫

ρ
3
ε2

+6γ−6
ε

)
1
3

dt ≤ C.

Now, by Hölder inequality we get

∫∫

|p3ε(ρε)| ≤ Cε3λ(ε)

(

∫
(
∫

ρ
3
ε2

+6γ−6
ε

)
1
3

dt

)

1+ε2(γ−1)

1+2ε2(γ−1)

≤ C
ε3

ε
14(1+ε2(γ−1))

1+2ε2(γ−1)

e
− (γ−1)

ε2(1+2ε2(γ−1))

(

ε14λ(ε)

∫
(
∫

ρ
3
ε2

+6γ−6
ε

)
1
3

dt

)

1+ε2(γ−1)

1+2ε2(γ−1)

.

Then, we have that p3ε(ρε) vanishes as ε goes to 0. Let us consider the term p4ε(ρε). We have

∫∫

|p4ε(ρε)| ≤ Cε3λ(ε)

∫∫

ρ
− 1

ε2
ε ≤ Cε3λ(ε)

(
∫∫

ρ
− 1

ε2
− 1

8
ε

)
8

8+ε2

≤ C
ε3

ε
40

8+ε2

e
− 1

ε2(8+ε2)

(

ε5λ(ε) sup
t

∫

ρ
− 1

ε2
− 1

8
ε

)
8

8+ε2

.
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Then we get that p4ε(ρε) goes to 0. Now, we consider the term p5ε(ρε). By (3.9) and Hölder
inequality

(5.33)

∫∫

|p5ε(ρε)| ≤ Cε3λ(ε)

∫∫

ρ
− 1

ε2
− 1

8
ε .

In the bound (5.32) is contained the following bound

ε10λ(ε)

∫∫

ρ
− 1

8
−1

ε |∇ρε|2ρ
− 1

ε2
− 1

8
−1

ε ≤ C

which means that

ε14λ(ε)

∫∫
∣

∣

∣

∣

∇
(

ρ
− 1

2ε2
− 1

8
ε

)
∣

∣

∣

∣

2

≤ C

which by Sobolev embedding implies

(5.34) ε14λ(ε)

∫
(
∫

ρ
− 3

ε2
− 6

8
ε dx

)
1
3

dt ≤ C.

Then,

(5.35)

∫∫

|p5ε(ρε)| ≤ C
ε3

ε
14(8+ε2)

8+2ε2

e
− 8+ε2

ε2(8+2ε2)

(

ε14λ(ε)

∫
(
∫

ρ
− 3

ε2
− 6

8
ε

)
1
3

dt

)

8+ε2

8+2ε2

.

and then p5ε(ρε) vanishes as ε goes to 0. Finally, the term p6ε(ρε) is treated as the term p4ε(ρε).
The same proof of the convergence of the term p1ε(ρε) and p

4
ε(ρε) show the convergence of the

damping coefficient p̃ε(ρε). �

Lemma 5.6. Let {(ρε, uε)}ε be a sequence of solutions of (3.1) then up to subsequences there
exists a vector m1 such that

(5.36) ρεuε → m1 strongly in L2(0, T ;Lp(Td)) with p ∈ [1, 3/2).

Proof. To prove (5.36) we first notice that from the bounds (5.1)

(5.37) {∇(ρεuε)}ε is uniformly bounded in L2(0, T ;L1(Td)).

Then, we need to estimate the time derivative of ρεuε. Precisely, we are going to prove that

(5.38)

∫

‖∂t(ρεuε)‖W−1,1 ≤ C

By using the first equation in (3.1) we get

(5.39)

∂t(ρεuε) = − div(ρεuε ⊗ uε)−∇ργε −∇pε(ρε)− p̃ε(ρε)uε

+ 2ν div(hε(ρε)Duε) + 2ν∇(gε(ρε) div uε)

+ κ2 div(hε(ρε)∇2(φε(ρε)) +∇(gε(ρε)∆φε(ρε))

=
8
∑

i=1

Iεi

First of all we notice that

(5.40)
|gε(ρε)| ≤ Chε(ρε)

hε(ρε) is uniformly bounded in L1
t,x.

Then, we estimates each term. From (5.1) we have that

(5.41) {Iε1}ε is uniformly bounded in L1(0, T ;W−1,1(Td)).

By using Lemma (pressure) we get that for i = 2, 3, 4

(5.42) {Iεi }ε is uniformly bounded in L1(0, T ;W−1,1(Td)).
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Regarding the stress tensor by using (5.40) and (5.2) we have for i = 5

(5.43) {Iε5}ε is uniformly bounded in L1(0, T ;W−1,1(Td)).

Then, by using the (5.3) and (5.40) we have also that for i = 7, 8

(5.44) {Iεi }ε is uniformly bounded in L1(0, T ;W−1,1(Td)).

Then, by using Aubin-Lions the lemma is proved. �

Lemma 5.7. Let (ρε, uε) be a sequence of solutions of (1.1) and let wε = uε + c∇φε(ρε).
Then, up to subsequences we have that

(5.45)
√
ρεuε →

√
ρu strongly in L2((0, T ) × T

d),

where u is defined m/ρ on {ρ > 0} and 0 on {ρ = 0}.
Proof. Let us consider the Mallet-Vasseur type estimate (4.17) in Proposition 4.4. By using
(5.1)-(5.5) and by taking δ > 0 sufficiently small in (4.17) we may infer

(5.46) sup
t∈(0,T )

∫

ρε

(

1 +
|wε|2
2

)

log

(

1 +
|wε|2
2

)

≤ C.

By Lemma 5.2 and Lemma 5.3 we can extract a further subsequence such that

(5.47)

√
ρε →

√
ρ a.e. in (0, T )× T

d,

∇√
ρε → ∇√

ρ a.e. in (0, T ) × T
d,

h′ε(ρε)∇
√
ρε → ∇√

ρ a.e. in (0, T ) × T
d,

m1,ε = ρεuε → m1 a.e. in (0, T ) × T
d.

Then, it follows that

(5.48) m2,ε := m1,ε + 2µ
√
ρεh

′
ε(ρε)∇

√
ρε → m1 + 2µ

√
ρ∇√

ρ =: m2,

a.e. in (0, T ) × T
d. Arguing as in [29] by using (5.1)-(5.4) and Fatou Lemma we have that

(5.49)

∫∫

lim inf
ε

m2
1,ε

ρε
≤ lim inf

ε

∫∫

m2
1,ε

ρε
<∞.

This implies that m1 = 0 a.e. on {ρ = 0}. Let us define the following limit velocity

u =











m1

ρ
on {ρ > 0},

0 on {ρ = 0}.
In this way we have that m1 = ρu and m1/

√
ρ ∈ L∞(0, T ;L2(Td)). Then from (5.48) we

have that m2 = m1 + 2µ
√
ρ∇√

ρ and since ∇√
ρ is finite almost everywhere we also have

that m2 = 0 on the set {ρ = 0}. This in turn implies that after defining the following limit
velocity

w =















m1

ρ
+ 2µ

√
ρ∇√

ρ

ρ
on {ρ 6= 0}

0 on {ρ = 0},
we have that m2 = ρw and

m2√
ρ
=

√
ρu+ 2µ∇√

ρ ∈ L∞(0, T ;L2(Td)).

Now we can prove (5.45). First, by using (5.47), (5.46) and Fatou Lemma we get that

(5.50) sup
t

∫

ρ|w|2 log
(

1 +
|w|2
2

)

≤ sup
t

∫

ρε|wε|2 log
(

1 +
|wε|2
2

)

≤ C.
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Then, we note that for any fixed M > 0

(5.51)
√
ρεwεχ|wε|≤M → √

ρwχ|w|≤M

a.e. in (0, T ) × Ω. Indeed, in {ρ 6= 0} it holds

(5.52)
√
ρεwε =

m1,ε√
ρε

+ h′ε(ρε)∇
√
ρε →

m1√
ρ
+∇√

ρ a.e.

While, in {ρ = 0} we have

(5.53) |√ρεwεχ|wε|<M | ≤M
√
ρε → 0 a.e.

Then,
∫∫

|√ρεuε −
√
ρu|2 ≤

∫∫

|√ρεwε −
√
ρw|2 + 4µ2

∫∫

|h′ε(ρε)∇
√
ρε −∇√

ρ|2

≤
∫∫

|√ρεwεχ|wε|<M −√
ρwχ|w|<M |2

+ 2

∫∫

|√ρεwε|2χ|wε|>M + 2

∫∫

|√ρw|2χ|w|>M

+ 4µ2
∫∫

|h′ε(ρε)∇
√
ρε −∇√

ρ|2

≤
∫∫

|√ρεwεχ|wε|<M −√
ρwχ|w|<M |2

+ 4µ2
∫∫

|h′ε(ρε)∇
√
ρε −∇√

ρ|2

+
2

log(1 +M)

∫∫

ρε|wε|2 log
(

1 +
|wε|2
2

)

+
2

log(1 +M)

∫∫

ρ|w|2 log
(

1 +
|w|2
2

)

.

The first term vanishes by using dominated convergence and (5.51), the second term converges
to 0 because of (5.21) and finally the last two term goes to 0 by using (5.50) and by sending
M → ∞. �

Proof of Theorem 2.2 and Theorem 2.3

Let (ρ0, u0) be initial data for (1.1) satisfying (2.2) and (2.3) and let (ρ0ε, u
0
ε) be the sequence

of initial data constructed in Section 3 satisfying (3.11). For any ε < εf by using Theorem
6.1 in the two dimensional case and Theorem 6.2 in the three dimensional one, there exists
a sequence of global smooth solutions {(ρε, uε)}ε, ρε > 0, of (3.1)-(3.2) and (ρ, u), with u
defined zero on the set {ρ = 0}, such that the convergences stated in Lemma 5.2-5.7 hold.
We still denote with (ρε, uε) the subsequence chosen in the convergence lemma. Let us prove
that (ρ, u) is a finite energy weak solution of (1.1)-(1.2). Let us consider the first equation
of (3.1).

∂tρε + div(ρεuε) = 0.

The convergence to the weak formulation of (1.1) holds because of Lemma 5.2 and Lemma
5.6. Next, let us consider the momentum equation

∂t(ρεuε) + div(ρεuε ⊗ uε)− 2ν div(ρεDuε) +∇ργε − κ2 divKε,

= 2ν div((hε(ρε)− ρε)Duε) + 2ν∇(gε(ρε) div uε)

−∇pε(ρε)− p̃ε(ρε)uε.
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Then,
∫∫

|hε(ρε)− ρε||Duε| ≤
(
∫∫

|hε(ρε)− ρε|
)

1
2
(
∫∫

|hε(ρε)||Duε|2 + |ρε||Duε|2
)

1
2

and this term converges to zero because of Lemma 5.4, (5.1) and (5.2). Then,
∫∫

|gε(ρε)||div uε| ≤
(
∫∫

|gε(ρε)|
)

1
2
(
∫∫

|gε(ρε)||div uε|2
)

1
2

(
∫∫

|gε(ρε)|
)

1
2
(
∫∫

|hε(ρε)||∇uε|2
)

1
2

and this term converges to zero because of Lemma 5.4 and (5.4). Note that (3.6) has been
used. Then, the pressure term pε(ρε) goes to 0 because of Lemma 5.5. Concerning the
damping term we have

∫∫

|p̃ε(ρε)uε| ≤
(
∫∫

|p̃ε(ρε)|
)

1
2
(
∫∫

|p̃ε(ρε)||uε|2
)

1
2

≤ C

(
∫∫

|p̃ε(ρε)|
)

1
2

which goes to zero thanks to Lemma 5.5. Now, we consider the terms in the left-hand
side. The only convergence to prove is the convergence in the dispersive term. Indeed,
since the strong convergence in L2

t,x of
√
ρεuε holds the convergence of the other terms is

straightforward, see [3] for more details. Let us consider the following term where φ ∈
C∞([0, T ) × T

d)
∫∫

divKε · φ =

∫∫

∇(h′ε(ρε)∆hε(ρε))φ− 4

∫∫

div(h′ε(ρε)∇
√
ρε ⊗ h′ε(ρε)∇

√
ρε)φ

= 4

∫∫

h′′ε(ρε)ρεh
′
ε(ρε)|∇

√
ρε|2 divφ

+ 2

∫∫

h′ε(ρε)
√
ρεh

′
ε(ρε)∇

√
ρε∇ divφ

+ 4

∫∫

h′ε(ρε)∇
√
ρε ⊗ h′ε(ρε)∇

√
ρε∇φ

and by using Lemma 5.3 it easy to conclude that

4

∫∫

h′′ε(ρε)ρεh
′
ε(ρε)|∇

√
ρε|2 divφ→ 0,

2

∫∫

h′ε(ρε)
√
ρεh

′
ε(ρε)∇

√
ρε∇ divφ→ 2

∫∫ √
ρ∇√

ρ∇ divφ,

4

∫∫

h′ε(ρε)∇
√
ρε ⊗ h′ε(ρε)∇

√
ρε∇φ→ 4

∫∫

∇√
ρ⊗∇√

ρ : ∇φ.

�

6. Global Regularity for the approximating system

In this section we prove the global in time existence of smooth solutions for the approxi-
mating system (3.1). In the two-dimensional case the following theorem holds:

Theorem 6.1. Let ν, κ > 0 such that κ < ν and γ > 1. Then for ε < εf = εf (ν, κ, ν, γ)
there exists a global smooth solution of (3.1)-(3.2).

Concerning the three dimensional case, we have the following result
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Theorem 6.2. Let ν, κ > 0 such that κ2 < ν2 < (9/8)κ2 and γ ∈ (1, 3). Then, for ε < εf =
εf (ν, κ, ν, γ) there exists a global smooth solution of (3.1)-(3.2).

In order to prove Theorems 6.1 and 6.2 the main estimate to show is that the density is
bounded from above and below, namely (6.7). Indeed, the higher order a priori estimate
can be done with minor change as in [27], Lemma 2.5. Then, Theorem 6.1 and Theorem
6.2 follow by a standard continuity argument on local smooth solutions of (3.1)-(3.2) with
ρ0ε > 0. To prove (6.7) we exploit the fact that the first equation in (4.11) is uniformly
parabolic since h′ε(ρε) ≥ 1. Then, to apply the parabolic regularity estimates we need that
ρεwε, wε/ρε ∈ L∞

t (Lp
x) with p > d. On the other hand we already know by the energy

estimate that ρε and 1/ρε are L
∞
t (Lq

x) for some very large q depending on ε. Then, it suffices
to infer that ρε|wε|d+δ is in L∞

t (L1
x). This is proved in the next Lemma and it is exactly here

that we need the restriction on κ and ν in three dimensions. This is due to the fact that in
the second equation of (4.11) there is the symmetric part of the gradient of wε.

Lemma 6.3. Let (ρε, uε) be a smooth solution of 3.1. Then, (ρε, wε) satisfies the following
estimates:
In the two dimensional case, for any γ > 1 and ν, κ > 0 there exists a small δ̄ = δ̄(γ, ν, κ)
and a constant C, possibly depending on ε, such that for any δ < δ̄

(6.1) sup
t

∫

ρε|wε|2+2δ ≤ C.

In the three dimensional case, for any γ ∈ (1, 3) and ν, κ > 0 such that κ2 < ν2 < 9
8κ

2 there
exists a constant C, possibly depending on ε, such that

(6.2) sup
t

∫

ρε|wε|3+2δ ≤ C.

Proof. For convenience of the reader we write again the integral equality of Lemma 4.3

d

dt

∫

ρεβ

( |wε|2
2

)

+ µ

∫

hε(ρε)|Awε · wε|2β′′
( |wε|2

2

)

+ µ

∫

hε(ρε)|Awε|2β′
( |wε|2

2

)

+ (2ν − µ)

∫

hε(ρε)|Dwε|2β′
( |wε|2

2

)

+ (2ν − µ)

∫

gε(ρε)|divwε|2β′
( |wε|2

2

)

+

∫

p̃ε(ρε)|wε|2β′
( |wε|2

2

)

+ (2ν − µ)

∫

hε(ρε)|Dwε · wε|2β′′
( |wε|2

2

)

= −
∫

∇ργεwεβ
′

( |wε|2
2

)

− 2ν

∫

hε(ρε)(Dwε · wε) · (Awε · wε)β
′′

( |wε|2
2

)

− (2ν − µ)

∫

gε(ρε) divwεwε · (Dwε · wε)β
′′

( |wε|2
2

)

.
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Let β(t) = t1+δ and with δ > 0. Then we have that β′(t) = β′′(t)t
δ . By integrating by parts

the pressure term and using Young inequality we get

d

dt

∫

ρβ

( |wε|2
2

)

+ µ

∫

hε(ρε)|Awε · wε|2β′′
( |wε|2

2

)

+ (2ν − µ)

∫

hε(ρε)|Dwε · wε|2β′′
( |wε|2

2

)

+ (2ν − µ)

∫

hε(ρε)|Dwε|2β′
( |wε|2

2

)

+ (2ν − µ)

∫

gε(ρε)|divwε|2β′
( |wε|2

2

)

+ µ

∫

hε(ρε)|Awε|2β′
( |wε|2

2

)

+

∫

p̃ε(ρε)|wε|2β′
( |wε|2

2

)

≤ 1

2δ

∫

ργε divwε|wε|2β′′
( |wε|2

2

)

+

∫

ργεwε(Dwε · wε)β
′′

( |wε|2
2

)

+ ν

∫

hε(ρε)|Dwε · wε|2β′′
( |wε|2

2

)

+ ν

∫

hε(ρε)|Awε · wε|2β′′
( |wε|2

2

)

+
(2ν − µ)(γ − 1)

2
ε

∫

ργε |divwε|2|wε|2β′′
( |wε|2

2

)

+
(2ν − µ)(γ − 1)

2
ε

∫

ργε |Dwε · wε|2β′′
( |wε|2

2

)

+
3(2ν − µ)

16
ε

∫

ρ
7
8
ε |Dwε|2|wε|2β′′

( |wε|2
2

)

+
2ν − µ

16
ε

∫

ρ
7
8
ε |Dwε · wε|2β′′

( |wε|2
2

)

.

Then, by writing everything in term of β′′
(

|wε|2

2

)

, using (3.6) and the fact that |Awε ·wε|2 ≤
|Awε|2|wε|2 we have

d

dt

∫

ρεβ

( |wε|2
2

)

+
(

µ+
µ

2δ

)

∫

hε(ρε)|Awε · wε|2β′′
( |wε|2

2

)

+ (2ν − µ)

∫

hε(ρε)|Dwε · wε|2β′′
( |wε|2

2

)

+
2ν − µ

2δ
ε

∫

ρε|Dwε|2|wε|2β′′
( |wε|2

2

)

+

(

2ν − µ

2δ

)

ε

∫

ργε |Dwε|2|wε|2β′′
( |wε|2

2

)

+
5(2ν − µ)

16δ
ε

∫

ρ
7
8
ε |Dwε|2|wε|2β′′

( |wε|2
2

)

+
(2ν − µ)(γ − 1)

2δ
ε

∫

ργε |divwε|2|wε|2β′′
( |wε|2

2

)

≤ C(τ)

2δ

∫

ρ2γ−1
ε |wε|2β′′

( |wε|2
2

)

+
3τ

2δ

∫

ρε|Dwε|2|wε|2β′′
( |wε|2

2

)

+ C(α)

∫

ρ2γ−1
ε |wε|2β′′

( |wε|2
2

)

+ α

∫

ρε|Dwε · wε|2β′′
( |wε|2

2

)

+ ν

∫

hε(ρε)|Awε · wε|2β′′
( |wε|2

2

)

+

(

ν +
(2ν − µ)

16

)

ε

∫

ρ
7
8
ε |Dwε · wε|2β′′

( |wε|2
2

)

+

(

ν +
(2ν − µ)(γ − 1)

2

)

ε

∫

ργε |Dwε · wε|2β′′
( |wε|2

2

)

+ ν

∫

ρε|Dwε · wε|2β′′
( |wε|2

2

)

+
(2ν − µ)(γ − 1)

2
ε

∫

ργε |divwε|2|wε|2β′′
( |wε|2

2

)

+
3(2ν − µ)

16
ε

∫

ρ
7
8
ε |Dwε|2|wε|2β′′

( |wε|2
2

)

.
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Finally, by absorbing terms from the right hand-side to the left hand-side we get

(6.3)

d

dt

∫

ρεβ

( |wε|2
2

)

+
(

µ− ν +
µ

2δ

)

∫

hε(ρε)|Awε · wε|2β′′
( |wε|2

2

)

+ (ν − µ)

∫

ρε|Dwε · wε|2β′′
( |wε|2

2

)

+

(

ν − µ− (2ν − µ)(γ − 1)

2

)

ε

∫

ργε |Dwε · wε|2β′′
( |wε|2

2

)

+

(

7ν

8
− 15µ

16

)

ε

∫

ρ
7
8
ε |Dwε · wε|2β′′

( |wε|2
2

)

+
2ν − µ

2δ

∫

ρε|Dwε|2|wε|2β′′
( |wε|2

2

)

+

(

2ν − µ

2δ

)

ε

∫

ργε |Dwε|2|wε|2β′′
( |wε|2

2

)

+

(

5(2ν − µ)

16δ
− 3(2ν − µ)

16

)

ε

∫

ρ
7
8
ε |Dwε|2|wε|2β′′

( |wε|2
2

)

+
(2ν − µ)(γ − 1)

2

(

1

δ
− 1

)

ε

∫

ργε |divwε|2|wε|2β′′
( |wε|2

2

)

≤ C(τ)

2δ

∫

ρ2γ−1
ε |wε|2β′′

( |wε|2
2

)

+
3τ

2δ

∫

ρε|Dwε|2|wε|2β′′
( |wε|2

2

)

+ C(α)

∫

ρ2γ−1
ε |wε|2β′′

( |wε|2
2

)

+ α

∫

ρε|Dwε · wε|2β′′
( |wε|2

2

)

By considering δ ∈ (0, 1] and choosing τ = (2ν − µ)/6 and α = ν − µ, after using Young
inequality we get

(6.4)

d

dt

∫

ρε|wε|2+2δ +
(

µ− ν +
µ

2δ

)

∫

hε(ρε)|Awε · wε|2β′′
( |wε|2

2

)

+

(

ν − µ+
2ν − µ

2

(

1

δ
− (γ − 1)

))

ε

∫

ργε |Dwε · wε|2β′′
( |wε|2

2

)

+

(

18ν − 17µ

16

)

ε

∫

ρ
7
8
ε |Dwε · wε|2β′′

( |wε|2
2

)

≤ C(ν, κ, δ)

(
∫

ργ̃ε +

∫

ρε|wε|2+2δ

)

with

γ̃ :=

(

2γ − 1− δ

1 + δ

)

(1 + δ) > 0 for any δ ∈ (0, 1).

Now we consider the two dimensional case. Given ν, κ > 0 with ν > κ and γ > 1 it is easy
to find δ small enough

µ− ν +
µ

2δ
> 0

1

δ
− (γ − 1) > 0.

By Proposition 4.1 we have that

sup
t

∫

ρ
1
ε2
ε ≤ C(ε).
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Then, by choosing if needed εf small enough such that for any ε < εf it holds γ̃ < 1/ε2 we
arrive at

d

dt

∫

ρε|wε|2+2δ ≤ C(ε, κ, µ, ν) +

∫

ρε|wε|2+2δ

and we get (6.1) by Gronwall Lemma. Then, we consider the three dimensional case. Since
it seems not possible to avoid a restriction on ν, κ we do not aim to optimality, which can be
obtained by optimizing the the Young inequalities and minimizing in δ. Going back to (6.4)
we argue as follows. First we note that for any δ ∈ (0, 1) it holds

(6.5) µ− ν +
µ

2δ
>

3µ

2
− ν

and the left-hand side of (6.5) is positive if the following restriction on ν and κ holds:

(6.6) κ2 < ν2 <
9

8
κ2

Then, by using that γ ∈ (1, 3) we can choose δ = min{1/(γ − 1), 1}. Notice that δ ∈ (1/2, 1)
and

ν − µ+
2ν − µ

2

(

1

δ
− (γ − 1)

)

> 0

Then, since δ = 1
2 + δ′, with an abuse of notation avoiding the prime, we have

d

dt

∫

ρε|wε|3+2δ ≤ C(ν, κ, δ)

(
∫

ργ̃ε +

∫

ρε|wε|3+2δ

)

Then, by choosing if needed εf small enough such that for any ε < εf it holds γ̃ < 1/ε2 we
get (6.2) by using Gronwall Lemma. We stress that εf depends only on γ, ν and κ. �

Now, we are in position to give the proof of Proposition 6.4.

Proposition 6.4. Let (ρε, uε) be a smooth solution of the system (3.1). then, there exists a
constant C > 0 possibly dependent on ε such that

(6.7)
1

C
≤ ρε ≤ C

Proof. First we want to prove that

(6.8) ρεwε and
wε

ρε
∈ L∞(0, T ;Lp(Td) with p > d

When d = 2, by Hölder and Young inequality we get
∫

|ρεwε|2+δ ≤
∫

ρδ̃ε +

∫

ρε|wε|2+2δ

with δ̃ = δ̃(γ, ν, κ) > 0. Then by choosing if needed ε small enough such that δ̃ < 1/ε2 we
get the desired estimate. Then,

∣

∣

∣

∣

|wε|
ρε

∣

∣

∣

∣

2+δ

=

∣

∣

∣

∣

1

ρε

∣

∣

∣

∣

1+ 2+δ
2+2δ

|ρε|
2+δ
2+2δ |wε|2+δ.

Then, by Hölder and Young inequality
∫
∣

∣

∣

∣

|wε|
ρε

∣

∣

∣

∣

2+δ

≤
∫
∣

∣

∣

∣

1

ρε

∣

∣

∣

∣

δ̃

+

∫

ρε|wε|2+δ ,

with

δ̃ =

(

1 +
2 + δ

2 + 2δ

)(

2 + 2δ

2 + δ

)∗

.

Then, again by choosing if necessary ε small enough such that δ̃ ≤ 1/ε2 we get the desired
estimate. Now we are in position to prove (6.7). The proof is standard and it is based on
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De Giorgi type estimate. We use the same approach as in [27], Lemma 2.4. Let us start by
proving that ρε is bounded. Let mε = ρεwε. Then the first equation in (4.11) is the following

(6.9) ∂tρε − div(h′ε(ρε)∇ρε) = divmε.

Let k > ‖ρ0ε‖∞ and Ak(t) = {ρε > k}. Then by using Hólder inequality and the fact that
h′ε(ρε) > 1 we get

(6.10)

d

dt

∫

|(ρε − k)+|2 +
1

2

∫

h′ε(ρε)|∇(ρε − k)+|2 ≤
(

∫

Ak(t)
|mε|2

)

(
∫

|mε|p
)

2
p

|Ak(t)|1−
2
p .

By using (6.8) and denoting rk = supt∈(0,T ) |Ak(t)| we get

(6.11)
d

dt

∫

|(ρε − k)+|2 +
1

2

∫

h′ε(ρε)|∇(ρε − k)+|2 ≤ C r
1− 2

p

k .

Let σ ∈ (0, T ) such that
∫ ∫

|(ρε − k)+(σ)|2 := sup
t∈(0,T )

∫

|(ρε − k)+(t)|2.

Then,
∫

|(ρε − k)+(σ)|2 +
∫

|∇(ρε − k)+(σ)|2 ≤ r
1− 2

p

k ,

where the fact that h′ε(ρε) > 1 has been used. Let l > k > ‖ρ0ε‖∞ and q ≥ 6 to be chosen
later. Then it holds that

(6.12)

|Al(t)|(l − k)2 ≤ ‖(ρε − k)+(t)‖22
≤ ‖(ρε − k)+(σ)‖22
≤ ‖(ρε − k)+(σ)‖2q |Ak(σ)|1−

2
q

≤ ‖∇(ρε − k)+(σ)‖22|Ak(σ)|1−
2
q

≤ Cr
2− 2

p
− 2

q

k .

If we show that

(6.13) rl ≤ (l − k)2r1+α
k for some α > 0

by De Giorgi Lemma, see [32, Lemma 4.1.1], we get that ρε is bounded. Then, in the three
dimensional case by Sobolev embedding we are forced to take q = 6 in (6.12). Then since
p > 3 we get (6.13) with

α =
2

3
− 2

p
> 0.

Note that since p is depending only on ν, κ and γ then α has the dependence as well. In
the two dimensional case by Sobolev embedding we can take any q < ∞. Then, given
p = p(ν, κ, γ) > 2, it always possible to find q big enough such that

α = 1− 2

p
− 2

q
> 0.

Now we prove that ρε is bounded away from 0. By using (6.9) it follows that the equation
for qε := 1/ρε is the following.

(6.14) ∂tqε − div(h′ε(ρε)∇qε) + 2
h′ε(ρε)|∇ρε|2

ρ3ε
= − divwεqε + wε · ∇qε.
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Let k > ‖1/ρ0ε‖, mε := qεwε and Ak(t) := {qε > k}. Then we get

(6.15)

d

dt

∫

|(qε − k)+|2 +
∫

h′ε(ρε)|∇(qε − k)+|2 +
∫

2
h′ε(ρε)|∇ρε|2

ρ3ε
qε

= −
∫

qε divwε(qε − k)+ +

∫

wε · ∇qε(qε − k)+

= 2

∫

Ak(t)
wε∇qε(qε − k)+ +

∫

Ak(t)
qεwε · ∇(qε − k)+

≤ 2

∫

|∇(qε − k)+||wε||qε|,

where it has been used that |(qε − k)+| ≤ |qε|. By using Hölder inequality, Young inequality
and the fact that h′ε(ρε) ≥ 1 we have that

d

dt

∫

|(qε − k)+|2 +
1

2

∫

h′ε(ρε)|∇(qε − k)+|2 ≤
(

∫

Ak(t)
|mε|2

)

(
∫

|mε|p
)

2
p

|Ak(t)|1−
2
p ,

with p > d and the last term in the right-hand side of (6.15) has been dropped because it is
positive. Then, by using (6.8) and defining as before rk = supt∈(0,T ) |Ak(t)| we get

d

dt

∫

|(qε − k)+|2 +
1

2

∫

h′ε(ρε)|∇(qε − k)+|2 ≤ C r
1− 2

p

k .

Arguing as in the proof of boundedness of ρε we can conclude that qε is bounded and then
ρε is bounded away from 0. �
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