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Abstract. In this paper we introduce a notion of sensitivity for topo-
logical dynamical systems and show some of its basic features and relation
to dynamical properties such as transitivity and weak mixing. Finally, we
will restrict our attention to the related class of weakly positively expansive
dynamical systems.
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1. Introduction and preliminaries

Sensitive dependence on initial conditions is a metric-dependant property
which gives some informations on the unpredictability of a dynamical system
and it is one of the most relevant concept in chaotic dynamics (see, e.g.,[3],
[19]). In this paper we start the investigation of a topological version of
sensitive dependence on initial conditions and we will relate this property
with the notion of weak positive expansiveness introduced by Richeson and
Wiseman [26].

Let N and N0 be the sets of positive integers and nonnegative integers,
respectively. A continuous self-map f on a metric space (X, d) is said to have
sensitive dependence on initial conditions (f is sensitive for short) if there is
some ε > 0 (called sensitivity constant) such that, for any x ∈ X and any
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open neighbourhood V of x in (X, d), there exist y ∈ V and some κ ∈ N0 for
which d(fκ(x), fκ(y)) ≥ ε (see, e.g., [13]).

By a dynamical system we mean a pair (X, f) where f is a continuous
self-map on a (nonempty) topological space X (called phase space). We say
that the dynamical system (X, f) (or simply the map f) is :

(i) (topologically) transitive if for every pair U and V of nonempty open
subsets of X there is some κ ∈ N such that fκ(U) ∩ V ̸= ∅;

(ii) periodically dense if the set of periodic points of f is dense in X.

Let (X, f) be a dynamical system, where X is a metric space. Two of
the most popular definitions of chaos in which sensitivity plays an important
role are the following: (X, f) is said to be chaotic in the sense of

(i) Devaney whenever f is transitive, periodically dense and sensitive [10].

(ii) Auslander-Yorke whenever f is transitive and sensitive [6].

Let us recall that, for instance, every transitive self-map on an interval is
Devaney chaotic [29], while every hypercyclic operator on a separable Fréchet
space is Auslander-Yorke chaotic ([14], see also [17, Prop. 2.30]). A discussion
of the various notions of chaos can be found in [5],[8] and [27].

We refer the reader to [1],[17],[21] and [30] for more informations on topo-
logical dynamics and to [31] for undefined topological notions.

2. Topological sensitivity

Our topological version of sensitivity is based upon the following special
covers.

Definition 2.1. Let (X, f) be a dynamical system and let U be an open
cover of X. U is called sensitivity cover (s-cover for short) for (X, f) if for
every nonempty open subset G of X there exist x, y ∈ G and n ∈ N0 such
that (x, y) ̸∈

∪
{f−n(U)× f−n(U) : U ∈ U}.

Definition 2.2. A dynamical system (X, f) (or simply the map f) is
called topologically sensitive if (X, f) has an s-cover.

Note that we put no restriction on the cardinality of the s-cover and ob-
serve also that the phase space of a topologically sensitive dynamical system
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cannot have isolated points. If (X, d) is a metric space, τd will denote the
topology on X generated by the metric d and B(p, ε) the open ball with
center p and radius ε.

The basic links between sensitive dependence on initial conditions and
topological sensitivity are summarized in the following

Theorem 2.3. Let f be a continuous self-map on a metric space (X, d)
and let us consider the following conditions:

(i) f : (X, d) → (X, d) is sensitive;

(ii) There exists some ε > 0 such that {B(p, ε) : p ∈ X} is an s-cover
for (X, f) (with respect to τd);

(iii) f : (X, τd) → (X, τd) is topologically sensitive.

Then (i) ⇐⇒ (ii) =⇒ (iii). If, in addition, (X, τd) is compact, then (iii)
is equivalent to (i) (and (ii)).

Proof. (i) ⇐⇒ (ii). Let δ be a sensitivity constant for (X, f) and set
ε = δ

2
. Then U = {B(p, ε) : p ∈ X} is an s-cover for (X, f). In fact let G

be a nonempty open subset of X and let x ∈ G, then there is some y ∈ G
and n ∈ N0 such that d(fn(x), fn(y)) ≥ δ. So {fn(x), fn(y)} ̸⊂ B(p, ε) for
every p ∈ X (otherwise d(fn(x), fn(y)) < 2ε = δ) and this is equivalent to
say that (x, y) ̸∈

∪
{f−n(B(p, ε))× f−n(B(p, ε)) : p ∈ X}. Therefore U is an

s-cover for (X, f).
Now let us suppose that {B(p, ε) : p ∈ X} is an s-cover for (X, f),

for some ε > 0. Now let x ∈ X and let U be an open neighbourhood
of x. Then there are y, z ∈ U and a nonnegative integer n such that
(y, z) ̸∈

∪
{f−n(B(p, ε)) × f−n(B(p, ε)) : p ∈ X}, so d(fn(y), fn(z)) ≥ ε

(otherwise {fn(y), fn(z)} ⊂ B(fn(y), ε)). Hence d(fn(x), fn(y)) ≥ ε
2
or

d(fn(x), fn(z)) ≥ ε
2
and ε

2
is a sensitivity constant for f .

(ii) =⇒ (iii) is clear.
(iii) =⇒ (i). Let U be an s-cover for (X, f) and let ε be a Lebesgue

number of U (i.e., ε is a positive number such that every subset of X with
diameter less than or equal to ε is included in a member of U). Then
ε
4
is a sensitivity constant for f . In fact let x ∈ X and let V be an

open neighbourhood of x, then there are y, z ∈ V and n ∈ N0 such that
(y, z) ̸∈

∪
{f−n(U) × f−n(U) : U ∈ U}. So d(fn(y), fn(z)) ≥ ε

2
(otherwise

{fn(y), fn(z)} ⊂ B(fn(z), ε
2
) ⊂ U for some U ∈ U). Hence d(fn(x), fn(y)) ≥

ε
4
or d(fn(x), fn(z)) ≥ ε

4
.
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Remarks. (i) The compactness condition in Theorem 2.3 cannot be
omitted. In fact let f be the self-map on R given by f(x) = x+ 1 and let us
consider the following metric on R: ρ(x, y) = |ex − ey|. This metric is equiv-
alent to the usual metric d, i.e., τd = τρ. Since the map f : (R, ρ) → (R, ρ)
is sensitive, it follows that f : (R, τd) → (R, τd) is topologically sensitive,
nonetheless f : (R, d) → (R, d) is not sensitive.

(ii) It is worth noting that our definition of topological sensitivity is a
natural extension of the notion of sensitivity in the uniform setting. Let
(X, f) be a dynamical system and let V be a neighbourhood of the diagonal
∆ = {(x, x) : x ∈ X} in X × X. We say that f is V -sensitive if for every
nonempty open subset G of X there exist x, y ∈ G and n ∈ N0 such that
(fn(x), fn(y)) ̸∈ V , i.e., G×G ̸⊂

∩
{(f × f)−m(V ) : m ∈ N0}.

A (uniformly continuous) self-map f on a uniform space (X,V) is called
sensitive if f : (X, τV) → (X, τV) is V -sensitive for some entourage V ∈ V
(where τV is the topology on X induced by the uniformity V).

Now let U be an open cover of a space X and let V =
∪
{U×U : U ∈ U}.

Observe that U is an s-cover for a dynamical system (X, f) if and only if
f : X → X is V -sensitive.

Sensitivity is a dynamical property in the realm of compact metric spaces.
Moreover a continuous self-map f on a compact metric space is sensitive if
and only if fn is sensitive for each n ∈ N.

For topologically sensitive maps we have the following general result.

Theorem 2.4. Let f : X → X and g : Y → Y be continuous maps and
let n ∈ N.

(i) If f and g are conjugate and g is topologically sensitive, then f is
topologically sensitive.

(ii) f is topologically sensitive if and only if fn is topologically sensitive.

Proof. (i) Let φ : X → Y be a homeomorphism such that φ ◦ f = g ◦ φ
and let V be an s-cover for (Y, g). Then U = {φ−1(V ) : V ∈ V} is an s-cover
for (X, f). In fact, let G be a nonempty open subset of X, then φ(G) is
a nonempty open subset of Y , so there are y1, y2 ∈ φ(G) and n ∈ N0 such
that (y1, y2) ̸∈

∪
{g−n(V ) × g−n(V ) : V ∈ V}. Let x1, x2 ∈ G be such that

y1 = φ(x1) and y2 = φ(x2), then (x1, x2) ̸∈
∪
{f−n(U)× f−n(U) : U ∈ U} as

required.
(ii) If U is an s-cover for (X, fn), then U is also an s-cover for (X, f).
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Now let us assume that f is topologically sensitive and let us take an
s-cover U for (X, f). For every κ ∈ {0, ..., n− 1} let Uκ = {f−κ(U) : U ∈ U}.
Call V the join of the covers U0,..., Uκ, i.e., let V be the open cover of X
consisting of all (nonempty) sets of the form U0∩f−1(U1)∩ ...∩f−(n−1)(Un−1)
with Uκ ∈ U for κ = 0, ..., n − 1. We claim that V is an s-cover for (X, fn).
So let G be a nonempty open subset of X, then there are x, y ∈ G and
m ∈ N0 such that (x, y) ̸∈

∪
{f−m(U) × f−m(U) : U ∈ U}. Let q ∈ N0

and 0 ≤ p < n be such that m = qn + p. Now {(fn)q(x), (fn)q(y)} =
{fm−p(x), fm−p(y)} ̸⊂ V for every V ∈ V (if {fm−p(x), fm−p(y)} ⊂ V for
some V = U0∩f−1(U1)∩...∩f−(n−1)(Un−1) ∈ V , then {fm(x), fm(y)} ⊂ Up ∈
U , a contradiction). So V is an s-cover for (X, fn) and fn is topologically
sensitive.

It is well-known that sensitivity is a redundant condition in Devaney chaos
if X is infinite ([7],[28]), that is, a transitive periodically dense self-map on
an infinite metric space is sensitive.

For the general case we need to consider the following property: a space
X is called Urysohn if for every pair of distinct points x and y there are two
open sets U and V in X such that x ∈ U , y ∈ V and U ∩ V = ∅. It is worth
noting that the class of Urysohn spaces lies strictly between the class of T3-
spaces and the class of Hausdorff spaces (see, e.g., [31, Pb. 14F.]). Observe
also that there are Hausdorff spaces such that U ∩ V ̸= ∅ for every pair of
nonempty open subsets U and V of X (see, e.g., [15]).

Moreover let f : X → X and recall that x ∈ X is said to be:

1) eventually periodic whenever there exists m ∈ N0 such that fm(x) is
periodic;

2) almost periodic whenever for every open neighbourhood U of x there
is some r ∈ N0 satisfying the following condition: for every n ∈ N0 there is
some nonnegative integer κ ≤ r such that fn+κ(x) ∈ U .

Theorem 2.5. Let f : X → X be a transitive map with a dense set
of almost periodic points, where X is an infinite Urysohn space. If f has
an eventually periodic point, then (X, f) has an s-cover with two elements.
Therefore f is topologically sensitive.

Proof. Let p be an eventually periodic point of f and let us take some
x ∈ X \ O(f, p) where O(f, p) = {fn(x) : n ∈ N0} is the orbit of p (observe
that O(f, p) is finite). Since X is a Urysohn space, there exist two open
subsets U and V of X such that x ∈ U , O(f, p) ⊂ V , and U ∩ V = ∅.
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We claim that the open cover H = {X \ U,X \ V } of X is an s-cover for
(X, f). So let us take a nonempty open subset G of X. By hypothesis there
is an almost periodic point q such that q ∈ G ∩ f−l(U) for some l ∈ N.
Since f−l(U) is an open neighbourhood of q, there is a nonnegative integer
r such that for every n ∈ N0 fn+κ(q) ∈ f−l(U) for some κ ≤ r. Now set
W =

∩
{f−j(V ) : l ≤ j ≤ l + r} and observe that W is a nonempty open

subset of X (note that p ∈ W ). So by transitivity of f , we can find z ∈ G and
s ∈ N such that f s(z) ∈ W . Now let us take some κ ≤ r such that f s+κ(q) ∈
f−l(U). Then f l+s+κ(q) ∈ U and f l+s+κ(z) = f l+κ(f s(z)) ∈ f l+κ(W ) ⊂ V .
So q, z ∈ G, f l+s+κ(q) ̸∈ X \ U and f l+s+κ(z) ̸∈ X \ V . Set n = l + s + κ,
then (q, z) ̸∈

∪
{f−n(H) × f−n(H) : H ∈ H}. Therefore H is an s-cover for

(X, f) and f is topologically sensitive.

In particular we have

Corollary 2.6. Every transitive and periodically dense self-map on an
infinite Urysohn space is topologically sensitive.

Theorem 2.5 should be compared with the following result: let f : X → X
be a transitive map with a dense set of almost periodic points, where X is a
compact metric space. Then f is either minimal (i.e., every orbit is dense)
or sensitive ([2], [13]).

A dynamical system (X, f) (or simply the map f) is called weakly mixing
if the system (X × X, f × f) is transitive, where f × f is the self-map on
X ×X given by (f × f)(x, y) = (f(x), f(y)) for x, y ∈ X.

Clearly f is weakly mixing if and only if for any four nonempty open
subsets G,U,H and V of X there is some n ∈ N such that fn(G) ∩ U ̸= ∅
and fn(H) ∩ V ̸= ∅.

Every weakly mixing self-map on a metric space with at least two points is
sensitive (see, e.g., [30]). The counterpart for topological dynamical systems
is the following

Proposition 2.7. Let X be a topological space with two nonempty open
subsets U and V such that U ∩ V = ∅ and let f : X → X be a weakly mixing
map. Then (X, f) has an s-cover with two elements, so f is topologically
sensitive.

Proof. Let us consider the open cover W = {X \ U,X \ V } of X. We
claim that W is an s-cover for (X, f). Let G be a nonempty open subset of
X. Since f is weakly mixing, there is some n ∈ N such that G∩ f−n(U) ̸= ∅
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and G ∩ f−n(V ) ̸= ∅. So let us take x, y ∈ G such that fn(x) ∈ U and
fn(y) ∈ V . Since fn(x) ̸∈ X \ U and fn(y) ̸∈ X \ V , it follows that W is an
s-cover for (X, f) and f is topologically sensitive.

Corollary 2.8. Let f be a weakly mixing self-map on a space X which
is disconnected or a Urysohn space with at least two points. Then f is topo-
logically sensitive.

As observed by the referee, Theorem 2.5 and Proposition 2.7 raise the
question of whether there exists a sensitive homeomorphism on a compact
metric space without s-covers with two elements.

Remarks. (i) A transitive and periodically dense (or weakly mixing)
self-map on a T1-space (without isolated points) need not be topologically
sensitive. In fact, let X be an infinite cofinite space, then every surjective
continuous self-map on X is weakly mixing (every pair of nonempty open
subsets of X intersect). So, for instance, if f is the identity, then f is a
weakly mixing (and periodically dense) map. On the other hand f is not
topologically sensitive. Since X is compact, it is enough to see that there are
no finite s-covers. So let U = {U1, ...Uκ} be an open cover of X, with Ui ̸= ∅
for every i. Then F =

∪
{X \ Ui : i = 1, ...κ} is finite and for every x, y in

the open set X \ F we have {fn(x), fn(y)} = {x, y} ⊂ Ui for every n ∈ N0

and i = 1, ..., κ. So U is not an s-cover for (X, f).
(ii) Let X = ([0, 1], τ), where τ is the cocountable topology on [0, 1], and

let T : X → X be the tent map, i.e., T (x) = 1− |2x− 1| for every x ∈ [0, 1].
Clearly T is continuous, weakly mixing (as above, every pair of nonempty
open sets has nonempty intersection), moreover T is not periodically dense
(the set of periodic points of T is contained in Q and Q is closed in ([0, 1], τ)).

T is not topologically sensitive. Since X is a Lindelöf space, it is enough
to check that there are no countable s-covers. So let us take a countable
open cover U = {Un : n ∈ N0} of X with Un ̸= ∅ for every n. Then
F =

∪
{[0, 1]\Un : n ∈ N0} is countable and G = [0, 1]\

∪
{T−n(F ) : n ∈ N0}

is a nonempty open subset of X. If x, y ∈ G, then Tm(x), Tm(y) ∈ [0, 1]\F =∩
{Un : n ∈ N0} for every m ∈ N0. So {Tm(x), Tm(y)} ⊂ Un for every

m,n ∈ N0. Therefore U is not an s-cover for (X, f).

However, it is unclear if there exists a transitive self-map on a noncompact
metric space which is not topologically sensitive.

We have already observed that the phase space X of a topologically sensi-
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tive dynamical system (X, f) cannot have isolated points, more generally X
cannot have almost P-points. A point p of a space X is called almost P-point
if every Gδ-set containing p has nonempty interior (a Gδ-set is a countable
intersection of open subsets). If every point of a space X is an almost P-
point, then X is called almost P-space (see, e.g., [23]). It is worth noting that
βX \X is an almost P-space (where βX is the Stone-Čech compactification
of X) for every space X which is locally compact and realcompact (a space
is called realcompact if it can be embedded as a closed subset of a product
of copies of the real line endowed with the usual topology) [12]. Thus, for
example, βN \ N, βR \ R and β[0,+∞) \ [0,+∞) are almost P-spaces.

Proposition 2.9. A space X with an almost P-point does not support a
topologically sensitive map.

Proof. Let f be a continuous self-map on X and let U be an open cover
of X. Let Un = {f−n(U) : U ∈ U} for every n ∈ N0. Let x be an almost
P-point of X and let us take Un ∈ Un such that x ∈ Un for every n ∈ N0.
Then

∩
{Un : n ∈ N0} is a Gδ-set containing x. Set G =Int(

∩
{Un : n ∈ N0})

and observe that G is a nonempty open subset of X such that for every n ≥ 0
there is some U ∈ U with fn(G) ⊂ U . So for every x, y ∈ G and every n ∈ N0

there exists some U ∈ U such that (x, y) ∈ f−n(U) × f−n(U). Therefore U
is not a s-cover for (X, f) and f is not topologically sensitive.

Remark. It is worth pointing out that an infinite Hausdorff space with
an almost P-point does not support a transitive map. In fact, let X be a
Hausdorff space with an almost P-point x and let f be a transitive self-map
on X, then x is a periodic point and X = O(f, x). Let us suppose that
fn(x) ̸= x for every positive integer n and let us take two disjoint open sets
Gn and Hn such that x ∈ Gn, f

n(x) ∈ Hn for every n ∈ N. Since every fn is
continuous, there is an open neighbourhood Vn of x such that Vn ⊂ Gn and
fn(Vn) ⊂ Hn for every n. Therefore V =Int

∩
{Vn : n ∈ N} is a nonempty

open subset of X such that fn(V ) ∩ V = ∅ for every n ∈ N, a contradiction.
So x is a periodic point. Moreover if there is some y ∈ X \O(f, x), then there
are disjoint open subsets G and H of X such that O(f, x) ⊂ G and y ∈ H.
Let us take an open neighbourhood Wn of x such that fn(Wn) ⊂ G for each
n ∈ N. Then W =Int

∩
{Wn : n ∈ N} is a nonempty open subset of X such

that fn(W ) ∩H = ∅ for every n ∈ N, a contradiction. Hence X = O(x, f).

By Proposition 2.9, it follows that βN\N, βR\R and β[0,+∞)\ [0,+∞)
do not admit topologically sensitive maps. On the other hand we have
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Examples 2.10. β[0,+∞) and βR are (nonmetrizable) compact Haus-
dorff spaces which support a topologically sensitive map.

Let (X, f) and (Y, g) be two dynamical systems. We say that (Y, g) is
quasiconjugate to (X, f) if there is a continuous map ϕ : X → Y with
dense range such that ϕ ◦ f = g ◦ ϕ. A property P for dynamical systems
is preserved under quasiconjugacy if the following holds: if (X, f) has P
then every dynamical system (Y, g) that is quasiconjugate to (X, f) also has
property P . For every continuous map f : X → X, where X is a Tychonoff
space, there exists a continuous map βf : βX → βX (called Stone extension
of f) such that βf ◦ e = e ◦ f , where e : X → βX is a dense embedding
(e is the evaluation map induced by the collection of all bounded continuous
real-valued functions on X). So (βX, βf) is quasiconjugate to the dynamical
system (X, f). Now let us consider the map f : [0,+∞) → [0,+∞) defined
by f(2nx) = 2n+2T (x − 1) where x ∈ [1, 2], n ∈ Z, f(0) = 0 and T is the
tent map. This map is bitransitive, i.e., f 2 is transitive [28], therefore f is
transitive and periodically dense. Since transitivity and periodic density are
preserved under quasiconjugacy (see, e.g., [17, Ch. 1]), it follows that the
Stone extension βf : β[0,+∞) → β[0,+∞) of f is transitive and periodically
dense, so, by Corollary 2.6, βf is topologically sensitive. In a similar vein,
the Stone extension of any (Devaney) chaotic self-map on R (see, e.g., [28])
is topologically sensitive.

Remarks. (i) Since every point of N is isolated in βN, it follows that βN
does not support a topologically sensitive map.

(ii) Let T : [0, 1] → [0, 1] be the tent map (where [0, 1] is endowed with
the usual topology). The restriction g : [0, 1] ∩ Q → [0, 1] ∩ Q of the tent
map is transitive and periodically dense , therefore the Stone extension of g
βg : β([0, 1] ∩Q) → β([0, 1] ∩Q) is topologically sensitive.

(iii) If f is a continuous self-map on a Tychonoff space X and βf is
topologically sensitive, then f is topologically sensitive. More generally, if g
is a topologically sensitive self-map on a paracompact space X and D is a
dense invariant subset of X, then f = g|D is topologically sensitive. In fact,
let U = {Us : s ∈ S} be an s-cover for (X, g). Since X is paracompact, it
follows that there is a locally finite open cover V = {Vs : s ∈ S} of X such
that V s ⊂ Us for every s (see, e.g., [11, Remark 5.1.7]). Set U =

∪
{Us×Us :

s ∈ S}, V =
∪
{Vs × Vs : s ∈ S} and observe that V =

∪
{Vs × Vs : s ∈ S}

(recall that V is locally finite) and V ⊂ U . Let Ws = Vs ∩ D for every s
and W =

∪
{Ws × Ws : s ∈ S}. Now let us take a nonempty open subset
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G of D and an open set H of X such that H ∩ D = G. Since U is an
s-cover for g, it follows that H × H ̸⊂

∩
{(g × g)−n(U) : n ∈ N0}. So

(H ×H) \
∩
{(g × g)−n(V ) : n ∈ N0} is a nonempty open subset of X ×X.

Since D×D is dense in X ×X, it follows that [(H ×H) \
∩
{(g× g)−n(V ) :

n ∈ N0}] ∩ (D × D) ̸= ∅. So G × G ̸⊂
∩
{(f × f)−n(W ) : n ∈ N0} and

W = {Ws : s ∈ S} is an s-cover for (D, f). Hence (D, f) is topologically
sensitive.

(iv) If f is a continuous self-map on a normal space X and (X, f) has a
finite s-cover, then (βX, βf) has a finite s-cover. In fact, let U = {U1, ..., Uκ}
be an s-cover for (X, f) and let us apply the Ex operator to the members of U ,
namely let us consider the following open subsets of βX: Ex Ui = βX\X \ Ui

for every i. Observe that Ex Ui is the largest open subset of βX whose
intersection with X is Ui.

Since X is normal, Ex (
∪
{Ui : i = 1, ...κ}) =

∪
{Ex Ui : i = 1, ...κ} (see

for instance [11, Lemma 7.1.13]). Therefore V = {Ex Ui : I = 1, ..., κ} is an
open cover of βX. Now let G be a nonempty open subset of βX, since U
is an s-cover for (X, f), it follows that there are x, y ∈ G ∩ X and n ∈ N0

such that {fn(x), fn(y)} ̸⊂ Ui for every i. So {(βf)n(x), (βf)n(y)} ̸⊂Ex Ui

for every i and V is an s-cover for (βX, βf).

Now let us consider a dynamical system (X, f), where X is a metric
space with metric d. (X, f) is equicontinuous at the point x (or x is an
equicontinuity point) if for every ε > 0 there is an open neighbourhood U
of x such that fn(U) ⊂ B(fn(x), ε) for every n ∈ N0. Let Eq(X, f) be
the set of all equicontinuity points in X and observe that a sensitive system
cannot have equicontinuity points, i.e., Eq(X, f) = ∅. The converse is not
true in general (see, e.g., [21, Ex. 2.28] and [30, Ex. 8 p. 330]), nonetheless,
a well-known result of Akin, Auslander and Berg states that a transitive
self-map on a compact metric space is either sensitive or has equicontinuity
points [2]. It is worth noting that a topologically sensitive self-map f on a
metrizable space (X, τd) can have equicontinuity points (with respect to the
metric d). In fact let X = (0, 1

2
], d the usual metric, ρ the metric given by

ρ(x, y) = | 1
x
− 1

y
| and let f be the self-map on X defined by f(x) = x2 for

x, y ∈ X. Since d and ρ are equivalent and f : (X, ρ) → (X, ρ) is sensitive
(even positively expansive, see the next section for the definition), it follows
that f : (X, τd) → (X, τd) is topologically sensitive, on the other hand every
point of X is an equicontinuity point with respect to the usual metric d, see,
e.g., [30, Ex. 7 p. 329-330].
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Remark. Let f be a continuous self-map on a topological space X and
let V be a neighbourhood of the diagonal in X×X. Let Ef (V ) be the union
of the open sets U of X such that U × U ⊂

∩
{(f × f)−n(V ) : n ∈ N0} and

note that Ef (V ) is open and inversely invariant, i.e., f−1(Ef (V )) ⊂Ef (V ).
Observe that f is topologically sensitive if and only if Ef (V ) = ∅ for some
neighbourhood V of the diagonal. Let us set E(X, f) =

∩
{Ef (V ) : V is a

neighbourhood of ∆} and let Tr(X, f) be the set of points with dense orbit.
If f is not topologically sensitive, then Tr(X, f) ⊂ E(X, f). In fact, let
x ∈Tr(X, f), then for every neighbourhood V of the diagonal there is some
n ≥ 0 such that fn(x) ∈Ef (V ). Since Ef (V ) is inversely invariant, it follows
that x ∈Ef (V ) for every neighbourhood V of ∆. Therefore x ∈E(X, f).
From this it may be concluded that a system (X, f) with a dense orbit is
either topologically sensitive or E(X, f) ̸= ∅.

On the other hand, as observed by the referee, E(X, f) ⊂ Tr(X, f) when-
ever f is a transitive self-map on a paracompact space X. In fact, let x ∈
E(X, f) and suppose that y ∈ X\O(f,X). Let V be a symmetric open neigh-
bourhood of ∆ such that (V ◦ V )[y] ⊂ X \ O(f,X) and let us take an open
neighbourhood U of x such that U×U ⊂

∩
{(f×f)−n(V ) : n ∈ N0}. Since f

is transitive, there are some z ∈ U and m > 0 such that fm(z) ∈ V [y]. Since
(x, z) ∈ U × U , it follows that (fm(x), fm(z)) ∈ V . Now (fm(z), y) ∈ V , so
(fm(x), y) ∈ V ◦ V and fm(x) ∈ (V ◦ V )[y], a contradiction. Therefore the
orbit of x is dense.

Now let us show a possible way to fill the gap between sensitivity and
topological sensitivity. Let us call a dynamical system ((X, τ), f) (or sim-
ply the map f) subsensitive if there are a metric d on X such that τd ⊂
τ and a positive constant ε satisfying the following condition: for every
nonempty open subset G of (X, τ) there are x, y ∈ G and n ∈ N0 such
that d(fn(x), fn(y)) ≥ ε (spaces admitting a weaker metrizable topology are
called submetrizable, see, e.g., [16] and [25]).

Remarks. (i) If f : (X, d) → (X, d) is sensitive , then the map f :
(X, τd) → (X, τd) is subsensitive. Observe also that every subsensitive map
f : (X, τ) → (X, τ) is topologically sensitive. In fact, let d be a metric on X
and ε > 0 witnessing the subsensitivity of f . Then U = {B(p, ε

2
) : p ∈ X} is

an s-cover for ((X, τ), f).
(ii) Let d be the usual metric on R and let f : (R, d) → (R, d) be the map

given by f(x) = x + 1 for every x ∈ R. Then f is not sensitive, nonetheless
f : (R, τd) → (R, τd) is subsensitive. In fact let ρ be the metric on R given
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by ρ(x, y) = |ex− ey| for every x, y ∈ R, then τd = τρ and f : (X, ρ) → (X, ρ)
is sensitive.

(iii) Since a compact Hausdorff space does not admit a strictly weaker
Hausdorff topology, it follows that nonmetrizable compact Hausdorff spaces
do not support subsensitive maps.

If f : (X, τ) → (X, τ) is subsensitive, then there is a metric d on X
such that τd ⊂ τ and f : (X, d) → (X, d) is a (not necessarily continuous)
map for which is satisfied the sensitivity condition. On the other hand if
f : (X, d) → (X, d) is sensitive and τ is a (metrizable) topology such that
τ ⊂ τd, then f : (X, τ) → (X, τ) need not be topologically sensitive, as the
following example shows.

Example 2.11. Let f : (R, d) → (R, d) be the sensitive map given by
f(x) = 2x for every x ∈ R, where d is the usual metric. Let us consider
the topology τ on R in which the basic neighbourhoods of each point other
than the origin are the usual open interval centered at x, while the basic
neighbourhoods of 0 are the sets of the form (−ε, ε) ∪ (−∞,−n) ∪ (n,+∞)
for all ε > 0 and n ∈ N. Observe that τ is a separable metrizable topology
on R weaker than the usual topology τd. (R, τ) is called looped line (see,
e.g., [31, Pb. 4D.]). Now the continuous map f : (R, τ) → (R, τ) is not
topologically sensitive. In fact, let us consider an open cover U of (R, τ).
We claim that U is not an s-cover for ((R, τ), f). Let us take some U ∈ U
such that 0 ∈ U , we may assume, without loss of generality, that U =
(−ε, ε) ∪ (−∞,−m) ∪ (m,+∞) for some m ∈ N and ε > 0. . Now (m,+∞)
is a nonempty open subset of (R, τ) such that {fn(x), fn(y)} ⊂ U for every
x, y ∈ (m,+∞) and every n ∈ N0. Therefore U is not an s-cover and f is
not topologically sensitive.

We end this section by showing that topological sensitivity and subsensi-
tivity are equivalent for a well-known class of submetrizable spaces.

We recall that:

(i) A space X has a Gδ-diagonal if the diagonal ∆ is a Gδ-set in X ×X.

(ii) A zero-set of a space X is a set of the form f−1(0) for some continuous
map f : X → [0, 1].

(iii) A subset of a normal space is a zero-set if and only if it is a closed Gδ-set.

Theorem 2.12. Let f be a topologically sensitive self-map on a para-
compact space X with a Gδ-diagonal. Then f is subsensitive.
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Proof. Let {Vn : n ∈ N} be a countable family of open subsets of
X × βX such that ∆ =

∩
{Vn ∩ (X ×X) : n ∈ N} (we may assume, without

loss of generality, that X is a subspace of βX). Since ∆ is a closed set in
X × βX and X × βX is normal (see, e.g., [31, Theorem 21.1]), we may
define inductively a sequence {Wn : n ∈ N} of open subsets of X × βX
such that ∆ ⊂ W1 ⊂ W 1 ⊂ V1 and ∆ ⊂ Wn ⊂ W n ⊂ Vn ∩ Wn−1 for
n ≥ 2. So Z =

∩
{Wn : n ∈ N} =

∩
{W n : n ∈ N} is a closed Gδ-set of

X × βX such that ∆ = Z ∩ (X × X). So, again by normality of X × βX,
it follows that Z is a zero-set of X × βX, i.e., there is a continuous map
F : X × βX → [0, 1] such that Z = F−1(0). Now let U = {Uλ : λ ∈ Λ}
be an s-cover for (X, f) and let us take, for every λ ∈ Λ, an open set Yλ

of βX such that Uλ = Yλ ∩ X. Set K = (X × βX) \
∪
{Uλ × Yλ : λ ∈ Λ}

and observe that ∆ and K are disjoint closed subsets of X × βX. So, by
Urysohn’s lemma, there is a continuous map G : X × βX → [0, 1] such
that G(∆) ⊂ {0} and G(K) ⊂ {1}. Let H : X × βX → [0, 1] be the
continuous map defined byH(x, y) = max{F (x, y), G(x, y)} and observe that
∆ = H−1(0)∩(X×X). Now let d(x, y) = sup {|H(x, z)−H(y, z)| : z ∈ βX}
for every x, y ∈ X and observe that d is a metric on X: it is enough to note
that d(x, y) = 0 yields H(x, z)−H(y, z) = 0 for every z ∈ βX, in particular
H(x, y) − H(y, y) = H(x, y) = 0, so (x, y) ∈ H−1(0) ∩ (X × X) = ∆, i.e.,
x = y.

Now let us verify that the topology τd on X generated by the metric
d is weaker than the original topology τ on X. It suffices to show that
for every x ∈ X and ε > 0, there is some open set U of X such that
x ∈ U ⊂ B(x, ε). Let 0 < δ < ε

2
, since H is continuous in (x, z) for every

z ∈ βX, there is a basic open neighbourhood Az × Bz of (x, z) in X × βX
such that H(Az × Bz) ⊂ (H(x, z) − δ,H(x, z) + δ). Set V = {Az × Bz :
z ∈ βX} and observe that V is an open family in X × βX which covers the
compact set {x} × βX. Thus there are A1 × B1, ..., An × Bn ∈ V such that
{x} × βX ⊂

∪
{Ai × Bi : i = 1, ..., n}. Now let U =

∩
{Ai : i = 1, ..., n} and

observe that U is an open neighbourhood of x in X such that U ⊂ B(x, ε).
In fact let p ∈ U , then for every z ∈ βX there is some j ∈ {1, ..., n} such
that (p, z) ∈ Aj × Bj. Since H(x, z), H(p, z) ∈ H(Aj × Bj) it follows that
|H(x, z)−H(p, z)| < 2δ for every z ∈ βX. So d(x, p) < ε, i.e., p ∈ B(x, ε).

It remains to show that f is subsensitive. Let G be a nonempty open
subset of X, since U is an s-cover for (X, f) there are x, y ∈ G and n ∈ N0

such that (x, y) ̸∈
∪
{f−n(Uλ)×f−n(Uλ) : λ ∈ Λ}. Therefore (fn(x), fn(y)) ̸∈

Uλ × Uλ for every λ ∈ Λ, so (fn(x), fn(y)) ∈ K = (X × βX) \
∪
{Uλ ×
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Yλ : λ ∈ Λ}. So d(fn(x), fn(y)) ≥ |H(fn(x), fn(y)) − H(fn(y), fn(y))| =
H(fn(x), fn(y)) = 1, and the proof is complete.

3. Weakly positively expansive maps

Let f be a continuous self-map on a metric space X, with metric d. The
system (X, f) (or simply f) is called positively expansive if there is a real
number ε > 0 such that for every pair of distinct points x and y there is
some n ∈ N0 such that d(fn(x), fn(y) ≥ ε.

Observe that every positively expansive self-map on a metric space with-
out isolated points is sensitive.

Now let f be a continuous self-map on a topological space X. An ex-
pansivity neighbourhood for f is a closed neighbourhood C of the diagonal
∆ in X2 such that for every pair of distinct points x and y of X there
is some n ∈ N0 such that (fn(x), fn(y)) ̸∈ C. Note that a closed neigh-
bourhood C of ∆ is an expansivity neighbourhood for f if and only if
∆ =

∩
{(f × f)−n(C)) : n ≥ 0}. A system (X, f) (or simply the map f)

is called weakly positively expansive if there is an expansivity neighbourhood
for f [26]. If f : (X, d) → (X, d) is positively expansive, then f : (X, τd) →
(X, τd) is weakly positively expansive (if ε is an expansive constant, then
C = {(x, y) ∈ X2 : d(x, y) ≤ ε} is an expansivity neighbourhood for f). If,
in addition, (X, τd) is compact, the conditions above are equivalent [26].

To investigate the relationship between topological sensitivity and weak
positive expansiveness we need, as in the definition of topological sensitivity,
a particular type of covers.

Definition 3.1. Let (X, f) be a dynamical system and let U be an open
cover of X. U is called e-cover for (X, f) if for every x, y ∈ X, with x ̸= y,
there is some n ∈ N0 such that (x, y) ̸∈

∪
{f−n(U)× f−n(U) : U ∈ U}.

Remark. Let f be a continuous self-map on a space X and let U be
an open cover of X. It is easy to see that U is an e-cover for (X, f) if and
only if |

∩
{f−n(Un) : n ∈ N0}| ≤ 1 for every sequence {Un : n ∈ N0} of

members of U . Therefore the notion of finite e-cover coincides with the well-
known concept of one-sided (weak) generator, so a continuous self-map f on
a compact metric space X is positively expansive if and only if (X, f) has a
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finite e-cover (see, e.g., [20]).

The next result will clarify, in a rather general setting, the connections
between e-covers and weak positive expansiveness.

Theorem 3.2. Let (X, f) be a dynamical system.

(i) If f is weakly positively expansive, then there is an e-cover for (X, f).
(ii) If (X, f) has an e-cover and X2 is normal, then f is weakly positively

expansive.

Proof. (i) Let C be an expansivity neighbourhood of ∆. For each x ∈ X
let us take an open neighbourhood Ux of x such that Ux × Ux ⊂ C. Then
U = {Ux : x ∈ X} is an e-cover for (X, f). In fact, let {Un : n ≥ 0}
be a sequence of members of U and x, y ∈

∩
{f−n(Un) : n ≥ 0}. Then

((fn(x), fn(y)) ∈ Un × Un ⊂ C for every n ∈ N0, so x = y and we have
|
∩
{f−n(Un) : n ≥ 0}| ≤ 1. Therefore, by the previous remark, U is an

e-cover for (X, f).
(ii) Now let U = {Uα : α ∈ A} be an e-cover for (X, f) and set U =∪

{Uα × Uα : α ∈ A}. Then U is an open set of X2 containing the diagonal
∆. Since X2 is a normal space (and ∆ is closed) there is some open subset
V of X2 such that ∆ ⊂ V ⊂ V ⊂ U . The closed neighbourhood V of ∆ is an
expansivity neighbourhood for f . In fact for every pair x, y of distinct points
of X there is some n ≥ 0 such that (x, y) ̸∈

∪
{f−n(Uα)× f−n(Uα) : α ∈ A},

i.e., (fn(x), fn(y)) ̸∈ U . So (fn(x), fn(y)) ̸∈ V and f is weakly positively
expansive.

Corollary 3.3. Every weakly positively expansive self-map on a space
without isolated point is topologically sensitive.

Proof. By Theorem 3.2.(i) there is an e-cover U for (X, f). Since every
nonempty open subset of X has at least two points, it follows that U is an
s-cover for (X, f). So f is topologically sensitive.

Recall that a space X has a regular Gδ-diagonal if there is a countable
family {Un : n ≥ 0} of open subsets of X2 such that ∆ =

∩
{Un : n ≥ 0} =∩

{Un : n ≥ 0} (see, e.g., [32]). Note that every space X which has a regular
Gδ-diagonal must be a Urysohn space: if x and y are two distinct points of
X, then (x, y) ̸∈ ∆ =

∩
{Un : n ≥ 0} =

∩
{Un : n ≥ 0}. So there is some n

such that (x, y) ̸∈ Un. Take a basic open neighbourhood G ×H of (x, y) in
X2 disjoint from the open set Un. Then G×H ∩Un = ∅, so G×H ∩∆ = ∅.
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Therefore G and H are open subsets of X such that x ∈ G, y ∈ H and
G ∩H = ∅.

Now let f be a continuous self-map on a space X. It is straightforward to
see that the weak positive expansiveness of f is equivalent to the existence
of an open neighbourhood U of ∆ in X2 satisfying the following conditions:

∆ =
∩
{(f × f)−n(U) : n ∈ N0} =

∩
{(f × f)−n(U) : n ∈ N0}.

So the phase space of a weakly positively expansive dynamical system
(X, f) has a regular Gδ-diagonal: since (f × f)−n(U) ⊂ (f × f)−n(U), it
follows that ∆ =

∩
{Un : n ∈ N0} =

∩
{Un : n ∈ N0}, where Un is the open

set (f × f)−n(U) of X2 for every n ∈ N0.

In the next remarks we will see how this observation can be used to show
that certain spaces do not admit a weakly positively expansive map.

Remarks. (i) Since every separable space with a regular Gδ-diagonal can
have at most the cardinality of the continuum c (a more general statement
can be found in [9]), it follows that every separable space of cardinality
greater than c does not support a weakly positively expansive map. So, for
instance, βR and β[0,+∞) do not admit weakly positively expansive maps
(cf. Examples 2.10).

(ii) A space X is called pseudocompact if every continuous real-valued
function defined on X is bounded. Since every pseudocompact Tychonoff
space with a regular Gδ-diagonal is (compact and) metrizable ([24], see also
[4]), it follows that a nonmetrizable pseudocompact Tychonoff space does not
admit a weakly positively expansive map. In particular a compact Hausdorff
space supporting a weakly positively expansive map must be metrizable.

(iii) It is well-known that the unit interval I (with the usual topology)
does not admit a positively expansive map (this is true, more generally, for
every compact connected topological manifold with boundary, see [18]).

A topological space X is called locally euclidean (of dimension n) if every
point of X has a neighbourhood which is homeomorphic to Rn (endowed with
the usual topology). Since every locally connected and locally compact T2-
space with a regular Gδ-diagonal is metrizable [16, Th. 2.15], it follows that
every nonmetrizable locally euclidean T2-space does not support a weakly
positively expansive map (the long line is an example of a connected locally
euclidean T2-space which is not metrizable, see, e.g., [22, Pb. 4-6]).

It is worth noting, despite the remarks above, that there are weakly posi-
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tively expansive dynamical systems whose phase space is a (Hausdorff) non-
metrizable space.

Example 3.4. Let τ be the usual topology on R and let us define a
topology σ on R by declaring open all sets of the form U \ A, where U ∈ τ
and A is countable. X = (R, σ) is a Hausdorff space which is not regular
(so, a fortiori, X is not metrizable). Let f : X → X be the map defined
by f(x) = 2x for every x ∈ R. Clearly f is continuous. Moreover (X, f) is
weakly positively expansive, in fact C = {(x, y) ∈ R2 : |x − y| ≤ 1} is an
expansivity neighbourhood of ∆ in X2. In a similar way, let X = (R, τs) be
the Sorgenfrey line (τs is the topology generated by the base consisting of all
intervals of the form [a, b)) and let f : X → X be as above. Then (X, f)
is a weakly positively expansive dynamical system whose phase space is a
nonmetrizable paracompact space.

We end this paper mentioning another variation of topological sensitivity
which could be worth considering.

Let (X, f) be a dynamical system and let C be a closed neighbourhood
of the diagonal ∆ in X2. Following the definition of weak positive expan-
siveness, we say that C is a sensitivity neighbourhood for f if for every
nonempty open subset G of X there are x, y ∈ G and n ∈ N0 such that
(fn(x), fn(y)) ̸∈ C.

Let us say that (X, f) (or simply f) is strongly topologically sensitive if
there exists a sensitivity neighbourhood for f .

Clearly every weakly positively expansive self-map on a space without
isolated points is strongly topologically sensitive.

Observe also that every subsensitive self-map f on a space (X, τ) is
strongly topologically sensitive. In fact let d be a metric on X and ε > 0 wit-
nessing the subsensitivity of f . Then the set C = {(x, y) ∈ X2 : d(x, y) ≤ ε}
is a sensitivity neighbourhood for f : (X, τ) → (X, τ).

Moreover the arguments in Theorem 3.2 give also:

(a) Every strongly topologically sensitive map is topologically sensitive.

(b) If (X, f) is topologically sensitive and X2 is T4, then (X, f) is strongly
topologically sensitive.

Observe that (b) shows, for instance, that every topologically sensitive
self-map on β[0,+∞) or βR is an example of a strongly topologically sensitive
map which is not subsensitive (recall that β[0,+∞) and βR are compact
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Hausdorff spaces which are not metrizable).

Since the phase space of a weakly positively expansive dynamical sys-
tem (X, f) has a regular Gδ-diagonal, it follows that X must be a Urysohn
space. Let us conclude observing that, in a similar way, if (X, f) is strongly
topologically sensitive then every nonempty open subset G of X must con-
tain two points that can be separated by disjoint closed neighbourhoods. In
fact let C be a sensitivity neighbourhood of the diagonal ∆ and let us take
x, y ∈ G and n ∈ N0 such that (fn(x), fn(y)) ̸∈ C. Since C is closed in
X2, there is a basic open neighbourhood U × V of (fn(x), fn(y)) in X2 such
that (U × V ) ∩ C = ∅. Now ∆ ⊂ Int C and U × V ∩ Int C = ∅, therefore
U ∩ V = ∅. So f−n(U) and f−n(V ) are open neighbourhoods of x and y
respectively and f−n(U) ∩ f−n(V ) = ∅.

Acknowledgments. The author wishes to express his thanks to the
referee for the careful reading of the manuscript and for several helpful com-
ments.

References

[1] E. Akin, The General Topology of Dynamical Sys-
tems,Grad.Stud.Math.,vol. 1. Amer.Math.Soc., Providence, 1993.

[2] E. Akin, J. Auslander, K. Berg, When is a transitive map chaotic ?, Con-
vergence in ergodic theory and probability (ConferenceColumbus, OH,
1993) Ohio University Math Res. Inst. Pub., 5, de Gruyter, Berlin,
(1996), 25-40.

[3] K.T. Alligood, T.D. Sauer and J.A. Yorke, Chaos: An Introduction to
Dynamical Systems, Springer-Verlag, 1996.

[4] A.V. Arhangel’skii, D.K. Burke, Spaces with a regular Gδ-diagonal,
Topology Appl. 153, (2006), 1917-1929.

[5] B. Aulbach, B. Kieninger, On three definitions of chaos, Nonlinear Dyn.
Syst. Theory 1, (2001), 23-37.

[6] J. Auslander, J.A. Yorke, Interval maps, factors of maps, and chaos,
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[21] P. Kůrka, Topological and Symbolic Dynamics, Societé Mathématique
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